A PHYSICOCHEMICAL AND ELECTROCHEMICAL STUDY OF AQUEOUS THIAMINIUM DICELORIDE AT 250 C

$$
\begin{aligned}
& \begin{array}{l}
\text { ETVIRSITY OF NAIROH } \\
\text { MHROMO LIBRARE }
\end{array} \\
& \text { By }
\end{aligned}
$$

This thesis has been submitted to the college of Biological and Physical Sciences, University of Nairobi in partial fulfillment of the requirements for the degree of Master of Science.

$$
\text { July, } 1990 .
$$

DECLARATION

Abstract

I, Asa Okoth Ooko, hereby declare that the work described here-in was carried out by me at the Physical Chemistry Research laboratory of the Chemistry Department, University of Nairobi. I further declare that this work has neither been accepted nor being concurrently submitted in candidature for any other degree in another university.

Signed:

ASA OKOTH OOKO

Date: . .01-.07-199!...

This work has been presented for examination with the knowledge of:

The Project Supervisor,

Signed: ..m. Shame...
DR. MOHAMMED SHAMIM

Date: $17-07$-1991......

DEDICATION

To the family of Ooko Angwang'a - especially his sons.

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my project supervisor, Dr. M. Shamim, for the easy and clear manner in which he gave constant guidance and invaluable advice through out this project. My thanks are also due to Prof. A. H. S. El-Busaidy, the Chairman of Chemistry Department, for useful suggestions and administrative work.

I would like to thank the entire technical staff of the science workshop and the department of chemistry, especially, Mr. Nelson Ngatia, Moses Njau and Khalifa Said. My sincere gratitude also goes to my colleague, Mr. Charles Mirikau, for his readiness to help with the computers at all times.

The author is indebted to the German Academic Exchange Service (DAAD) for providing the scholarship with adequate financial assistance and the University of Nairobi for use of its facilities and laboratory equipment.

Lastly but not least, special thanks are due to my wife, Mrs. Marren Aketch Okoth, for her patience and assistance during the typing of the manuscript.

ABSTRACT

Investigation of density, viscosity, refractive index, conductivity and diffusivity of aqueous Thiaminium dichloride solutions at $25^{\circ} \mathrm{C}$ have been carried out over the concentration range $0-1 M$. The concentration dependence of density and related quantities - apparent and partial molal volumes- have been obtained and the latter agrees with Masson's theory. The values of the latter quantities at infinite dilution "have been obtained as $\phi 0=V^{0}=157 \pm 2 \mathrm{~cm}^{3} \mathrm{~mol}-1$ and the ionic contribution have been discussed. The variation of viscosity, refractive index and molal refractivity with concentration have also been shown. The viscosity results support the Jones-Dole and Einstein's theories, with the A and B coefficients having magnitudes that confirm strong interactions between the solute and solvent particles. Bion values have been discussed. The value of molal refractivity at infinite dilution,
[Rapp] ${ }^{0} \mathrm{D}=70.0 \pm 1.4 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$, suggests the presence of loosely bound or delocalised electrons and therefore high polarisability of some solution constituents. The concentration variation of conductivity can be explained by proposing higher valency ionic species resulting from a two step ion association scheme with association constants being $K_{1}=1 / \mathrm{Kal}_{1}$ and $\mathrm{K}_{2}=1 / \mathrm{Ka}_{2}$

1 mol-1. Kal and Kaz values are calculated from literature18 pKa1 and pKa2 values respectively. The mixture rule is more appropriate to this situation as opposed to Kohlrausch's isoionic rule. The limiting ionic equivalent conductivity of the ions involved have been found to be; $\lambda^{0} T h 1+=29.3 \pm 0.3, \lambda^{0} T h i H^{2}+$ $=35.8 \pm 0.3$ and $\lambda^{0} \mathrm{ThiH}^{3+}=41.3 .0 \pm 0.3 \mathrm{~S} \mathrm{~cm}^{2}(\mathrm{~g}$ equiv.)-1. The electrolyte's infinite dilution equivalent conductivity was 532.7 ± 0.5 S cm^{2} (g equiv.)-1. The variation of the differential diffusion coefficient, determined within an accuracy of 0.5% using a modified diaphragm cell, with concentration has been established and the electrolyte's infinite dilution value, Do, was $1.275 \times 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$.

These results indicate strong ion-ion, ion-solvent and solvent-solvent interactions.

CONTENTS

PAGE
TITLE 1
DECLARATION 11
DEDICATION iii
ACKNOWLEDGEMENTS iv
ABSTRACT v
CONTENTS vii
LIST OF PRINCIPAL SYMBOLS $x i$
LIST OF APPENDICES xv
LIST OF TABLES xvi
LIST OF FIGURES xviii
CHAPTER 1: INTRODUCTION, OBJECTIVE AND CHEMISTRY OF THE COMPOUND1
1-1 INTRODUCTION 1
1-2 OBJECTIVE 5
1-3 THE CHEMISTRY OF THIAMINIUM DICHLORIDE 7
CHAPTER 2: THEORETICAL BASIS OF EXPERIMENTAL PROCEDURES 11
2-1 PARTIAL MOLAL VOLUME 11
2-2 VISCOSITY 14
2-2-1 Concentration dependence of relative viscosity 20
2-2-2 A coefficient 20
2-2-3 B coefficient 22
2-2-4 D coefficient 24
2-2-5 The Einstein's effect 25
2-3 REFRACTIVE INDEX 27
2-3-1 Specific and Molal refractive index 28
2-3-2 The molal refractive index in solutions 29
2-4 CONDUCTANCE 31
2-4-1 Measurement of conductivity 32
2-4-2 Kohlrausch's Equations 32
2-4-3 The interionic theory 35
2-4-4 Extension of the Onsager equation for high concentrations 39
2-4-5 Ionic Conductivity in electrolyte mixtures 41
2-4-6 The modified Conductivity equation 42
2-4-7 Calculation of α and β 44
2~5 DIFFUSION 462-5-1 The Nernst-Hartley relationship instrong electrolytes 47
2-5-2 Diffusion coefficient in concentratedelectrolyte solutions 50
2-5-3 Fick's Laws 51
2-5-4 Methods of determining diffusion coefficient 52
2-5-5 Theory of the porous diaphragm cell method 54
2-5-6 Calculation of the differential
diffusion coefficient, D, from the intergral diffussion coefficient, \bar{D} 57
CHAPTER 3: EXPERIMENTAL 61
3-1 APPARATUS AND EQUIPMENT 61
3-1-1 The tanks 61
3-1-2 Temperature Control 63
3-1-3 Pyknometer 66
3-1-4 Viscometer 66
3-1-5 Refractometer 66
3-1-6 Conductivity Cell and Bridge 67
3-1-7 Rotating disphragm cell 75
3-1-8 On-Off Switch 77
3-1-9 Potentiometer and Titration cell 80
3-2 METHODOLOGY 81
3-2-1 Density measurements 81
3-2-2 Víscosity measurements 86
3-2-3 Refractive index measurements 89
3-2-4 Conductivity measurements 90
3-2-5 Determination of Cell Constant 91
3-2-6 Diffusion measurements 94
3-2-7 Diffusion Cell Calibration 96
3-2-8 Potentiometric titration 104
3-2-9 Calibration of Volumetric flasks 105
3-3 CHEMICALS 106
3-4 SOLUTIONS 107
CHAPTER 4: RESULTS, DISCUSSIONS AND CONCLUSION 109
4-1 RESULTS AND DISCUSSIONS 109
4-1-1 Density 109
4-1-2 Density of solid Thiaminium dichloride 115
4-1-3 Viscosity 116
4-1-4 Refractive index 127
4-1-5 Conductivity 128
4-1-6 Diffusion coefficient 134
4-2 CONCLUSION 143
REFERENCES 146
APPENDICES 155

LIST OF PRINCIPAL SYMBOLS

A Area, coefficient in Jones-Dole equation
a0 Distance of closest approach in Angstrom
a Coefficient in Masson's equation, ionic radii including water of hydration
a1 Coefficient in Einstein's equation
B Coefficient in Jones-Dole equation
b Coefficient in the extended Onsager equation
$\mathrm{B}_{1}, \mathrm{~B}_{2}$ and B3 parameters of conductivity equations
C Concentration in mol.1-1 or gram equivalent
$C A, C B$ Concentrations in chambers A and B of the diffusion cell
$\mathrm{CO}_{\mathrm{A}}, \mathrm{CO}$ B Initial concentrations in the specified chambers
$\mathrm{Ct}_{\mathrm{A}}, \mathrm{Ct}_{\mathrm{b}}$ Final concentrations in the specified chambers
$\bar{C}_{A}, \bar{C}_{B} \quad\left(\mathrm{CO}_{A}+\mathrm{Ct}_{A}\right) / 2,\left(\mathrm{CO}_{B}+\mathrm{Ct}_{\mathrm{B}}\right) / 2$
$\Delta C O, \Delta C t\left(C_{B}-\mathrm{CO}_{A}\right),\left(\mathrm{Ct}_{\mathrm{B}}-\mathrm{Ct}_{\mathrm{A}}\right)$
D Coefficient in Jones-Dole equation and the differential diffusion coefficient

Do Differential diffusion coefficient at infinite dilution

Dexp Experimental diaphragm cell integral diffusion coefficient
$\overline{\mathrm{D}}(\mathrm{Ci})$ Integral diffusion coefficient at concentation C_{i}
$\overline{\mathrm{D}} 0\left(\mathrm{Ci}_{\mathrm{i}}\right)$ Hypothetical integral diffusion coefficient defined by equation (2-87)

E Electric field strength
e Electronic charge
F Faraday constant $=96487 \mathrm{C}$ equiv. ${ }^{-1}$
F Force per unit area in equation (2-16)
f_{i} Activity coefficient of species i
$\mathrm{f}_{ \pm}$Mean activity coefficient
日 Matrix in the Onsager-Fuoss conductivity equation
h Coefficient in Redlich-Meyers equation
I, I Ionic strength and identity matrix respectively
J Flux of matter
K Coefficient in Redlich - Meyers and Kohlrausch's equations respectively

Kn Conductivity cell constants and association constants

L Effective length of diffusion path in the porous disc and distance between electrodes in the conductivity cell

M Molarity
m Molality
n, N Refractive indices in equation (2-35)
n Hydration number
P Pressure
p Pressure gradient
q Velocity vector in equation (2-16)

R Resistance, Molar gas constant and radius in equation (2-20)

Re Reynold's number
T Absolute temperature
t Time in seconds
u Mobility
V_{A}, V_{B} Volumes of chambers A and B
$V_{i}, V o, V o_{i}, V o, V$ Partial Molal volume of component i, electrostriction volume, partial molal volume of component i at infinite dilution, volume of solvent and volume of solution respectively

W Molecular weight
X Modification factor in the Onsager equation (2-61)
y土 Mean activity coefficient divided by mean ionic molar concentration
a First degree of association, coefficient in equation (4-8)
β Diffusiop cell constant, second association constant or coefficient in equation (4-8)
$\varepsilon \quad$ Dielectric constant
η, η, η rel Absolute viscosities of solvent, solution and relative viscosities of solutions respectively
k Specific conductance or conductivity
A, Λ^{0} Electrolytic equivalent conductivity at finite concentration and infinite dilution respectively
λi, λC_{i} Ionic equivalent conductivity of ion i at finite concentration and infinite dilution respectively
$v+, v$ - and v Number of positive, negative ions, coefficient in equation and Kinematic viscosity respectively
$\pi \quad$ Coefficient in equations (2-20) and (2-21)
p Specific resistivity, density or coefficient of ionic friction in equation (2-26)
$\sigma \quad$ Coefficient in equation (3-6)
τ Force per unit area
\varnothing, $\varnothing 0$, \varnothing Apparent Molal volumes at finite concentration, infinite dilution and fluidity respectively

LIST OF APPENDICES

$\left.\begin{array}{llll} & & \text { Page } \\ \text { I The computer program for calculation and } & \\ & & \\ & \text { iterative correction (for air bouyancy) of }\end{array}\right)$

LIST OF TABLES

		Page
3-2-1(a)	Volume calibration of the pyknometer at	
	250 C	83
3-2-1(b)	Density calibration measurements of	
	aqueous Thiaminium dichloride solutions	
	at $25^{\circ} \mathrm{C}$	84
3-2-2	Calibration viscosity measurements using	
	water at 250 C	85
3-2-3	Concentration calibration refractive	
	index measurements of aqueous Thiaminium	
	dichloride solutions at 250 C	88
3-2-5	Conductivity Cell Constant	93
3-2-7(a)	Comparison of fitted and Literature D	
	values of KCl at 250 C	99
3-2-7(b)	Comparison of literature and calculated	
	$\overline{\mathrm{D}}$ (Cl^{\prime}) values for KCl at 250 C	100
$3-2-7(c)$	Literature D and Calculated $\overline{\mathrm{D}}$ ($\mathrm{Ci}^{\text {) }}$	
	values for NaCl at $25^{\circ} \mathrm{C}$	101
3-2-7 (d)	Diffusion Cell Constant from 0.09977M	
	$\left(\mathrm{CO}_{\mathrm{B}}\right) \mathrm{KCl}$ solution	102
3-2-7(e)	Diffusion Cell Constant from 0.09786M	
	$\left(\mathrm{CO}_{\mathrm{B}}\right) \mathrm{NaCl}$ solution	103
4-1-1	Apparent and partial molal volumes of	
	Thiaminium dichloride in aqueous	
	solutions at 250 C	111

4-1-3(a)	Viscosities of aqueous Thiaminium	
	dichloride solution at 250 C	
4-1-3(b)	Comparison of fitted and observed	

TABLE OF FIGURES

Page
2-5-5 Diffusion cell (schematic diagram) 53
3-1-3(a) Flask-type pyknometer 64
3-1-3(b) Pyknometer Holder 64
3-1-4 Ubbelohde-type viscometer 65
3-1-6(a) Conductivity Cell 68
3-1-6(b) Cell holder 68
3-1-6(c) Components of the Circuit 70
3-1-6(d) Complete circuit diagram 70
3-1-6(e) Amplifier circuit 72
3-1-7 Rotating diaphragm cell 74
3-1-8 Timer Circuit 78
3-1-9 Titration cell 79
4-1-1(a) Apparent molal volume, \varnothing, versus $\mathrm{m}^{1 / 2}$ in the concentration range 0-1.OM 112
4-1-1 (b) Apparent molal volume, \varnothing, versus $\mathrm{m}^{1 / 2}$ in the concentration range $0-0.01 \mathrm{M}$ 113
4-1-3 Extended and the non-extended Jones-Dole equations fitted to nrel data 119
4-1-4(a) Apparent molal refractivity, [R]D,versus C in the concentration range0-1.0M125
4-1-4(b) Apparent molal refractivity, [R]D,versus C in the concentration range
0-0.01M 126
4-1-5 \quad obs versus $\mathrm{Cl} / 2$ in the concentration range 0-1.0M 1304-1-6(a) Experimental integral diffusionCoefficient, $\mathrm{D}_{\mathrm{ap}} \mathrm{p}$ versus $\left(\mathrm{CO}_{\mathrm{B}}\right)^{1 / 2}$, and$\overline{\mathrm{D} O}\left(\bar{C}_{\mathrm{B}}\right)$ versus ($\left.\bar{C}_{\mathrm{B}}\right) 1 / 2 \quad 139$4-1-6(b) Differential diffusion coefficient, D,versus $\mathrm{C}^{1 / 2}$ (or (CO_{B}) 1/2)140

CHAPTER 1

INTRODUCTION, OBJECTIVE AND

 CHEMISTRY OF THE COMPOUND
1-1 INTRODUCTION

The experiments - refractive index, density, viscosity, conductivity and diffusion measurements described in this work were undertaken with an intention of gaining a new insight and to produce some physicochemical data on aqueous Thiamine chloride hydrochloride (Vitamin B1) solution. The behaviour and properties of ions in solutions, with special reference to ionic association-dissociation processes, have been looked into critically to explain the observed behaviour in the light of available theories of electrolyte solutions.

The development of electrolytic theoryl began ealier than 1800 . In 1805 T. Von Grotthuss made the first attempt to explain electrolytic conductivity on the basis of molecule chains. R. Clausius (1857) objected to the theory on the basis of relatively little energy expended in the processes of electrolysis. Arrhenius put forward the theory of electrolytic dissociation in 1883 and modified it in 1887 to accommodate Vant Hoff's discovery of large deviations of osmotic pressure shown by electrolytes in solution. Finally this became the basis of the modern treatment of electrolytes.

The mathematical formulations on the dynamic theory ${ }^{2}$ of interionic attraction were developed by Sutherland and Milner. Debye and Huckel, Onsager and Fuoss ${ }^{3}$ worked on the thermodynamics of ionic solutions and concentration dependence of equivalent conductivity. Later, statistical mechanics4,5 was used to include the finer details of theoretical models. Falkenhagen ${ }^{6}$, Onsager and Fuoss7 also developed a theory of viscosity of electrolyte solutions.

These theories, in most cases, support experimental findings in strong low-valent electrolytes and predictions have been found to be remarkably exact, especially by the Debye-Huckel(1923) formulation.

More detailed knowledge of the behaviour of electrolyte solutions arose complimentarily as much from studies of the dynamics as from the thermodynamic properties of ions in solutions e.g conductance and diffusion measurements.

Certain properties do not just depend on the total ionic strength of the solution but on the individual ions actually involved, especially at high ionic concentrations where such effects must be attributed to ionic solvation - characteristic of the ionic radius, charge and structure of the ions. Thus Bronstede recognised the necessity of considering specific ionic interactions with Oxyanions and Alkylammonium cations. He also recommended the disordered solution lattice theory instead of the

Debye-Huckel theory at concentrations above 0.1M where the latter is expected to fail. The work of Guggenheim and Turgeon ${ }^{9}$ also emphasised this fact. These effects are largely attributed to ion-solvent interactions except in the case of weak electrolytes and complex ions.

There exists enough individual behaviour to warrant specific study on any one chosen electrolyte. Specific effects exhibited by electrolytes at high concentrations require that more precise knowledge of individual thermodynamic properties and certain scales of ionic properties be set up. Such attempts have been previously reported by Mukerjeelo, Couture and Laidler ${ }^{11}$, Conway, Desnoyers and Verralli2, Halliwell and Nyburg ${ }^{13}$.

If the bases of these individual ionic properties are accepted, more theoretical work7 is necessary such as using dielectric and electrostatic theory coupled with the methods of statistical mechanics, where the Debye-Huckel theory fails, so as to find adequate interpretations of any specificities in the ionic thermodynamic properties.

Such specificities in ionic behaviour are undoubtedly of importance in the areas of Biophysics e. g the mechanism of transport of ions through the cell wall, the generation of action potential across the neuron, and specific ion association effects in proteins and polynucleotides. This will be important in

```
the dynamics of folding, unfolding, extension and
contraction of certain proteins and also in the
mechanism of scission of DNA.
    This study is uniquely placed since for many
electrolyte solutions very precise information is
obtained from e.m.f and isopiestic measurements on the
deviations from ideality which such solutions exhibit
and which arise from long-range interaction effects
between particles of the solute already at high
dilutions. These measurements have been and still are
carried out with relatively simple and cheaper
instruments.
The experiments carried out to test some of the consequences of the modern existing theory of electrolytes are described and discussed in chapter 3.
```

Thiaminium dichloride (Vitamin B1) functions in enzyme systems as Thiamine pyrophosphate, a coenzyme known as co-carboxylase. It is only required by animals in small amounts and an adult human requirement is about 5 mg per day. Thiamine deficiency is symptomised by poor growth since muscles and nerve tissues are affected. People with Beriberi may suffer from partial paralysis of the motor nerves of the eyes.

The above information ${ }^{14}$ is just a glimpse of the extensive biological work on Vitamin B1 that has been done. The literature surveyed between 1917 and 1987 indicates that work concerning physicochemical and electrochemical properties of this Vitamin has been mainly ignored. It is now understood that enzyme systems mainly operate through specific folding, unfolding, extension, contraction and adsorption etc. These manifestations, in turn, are dependent on the physicochemical and electrochemical properties of the constituents of the enzyme system.
As mentioned earlier, specific ionic behaviour are important for the function of nerves; in areas of Biophysics, ion transportation across membranes and cell wall, generation of action-potentials and ion association at protein sites are very significant. It follows that if the ionic
constituents of biological systems were known, the overall behaviour of the system could be predicted from individual ionic properties.

Schneeberger, Stahl and Loncin ${ }^{15}$ have reported diffusion measurements, using the Diaphragm cell method, of Thiaminium dichloride solution, at $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ over a temperature range $25-500 \mathrm{C}$; and at 250 C they have studied concentration dependence in the range 0.01 - 0.1 moldm-3. Shamim and Bakil' in their work have pointed out that the result of the former group were contrary to expectation.

Yao et all 7 have reported Kal value for Thiaminiun dichloride using quininium selective electrodes. Other values 18 of dissociation constant are pKal $=4.8$ and $\mathrm{pKa2}+\mathrm{pKaz}=9.2$. William and Ruehlel ${ }^{19}$ also reported an estimated values of pKb (stronger base) $=5.0$ and pkb $($ weaker base) $=9.5$.

The objective of the present work is to study Viscosity, Density, Refractive index, Conductivity and Diffusivity of Thiamine in aqueous solutions over a concentration range $0-1 M$ in the light of the present theories. Hopefully this work will avail part of the physicochemical and electrochemical data so far not available in the literature.

IUPAC'S commission for the reform of nomenclature in Biological Chemistry adopted the name 'Thiamine' for the substance curing beriberi. Other names are Vitamin B1 and Aneurine.
R. R. Williams et al2 ${ }^{0, b}$ followed the attempts of workers21 to isolate and concentrate sufficient Thiamine to enable its constitution to be worked out. Williams ${ }^{14}$ has described his own studies and of others, which finally led to the elucidation of the structure of Vitamin B1.

Neutral Sodium Sulphite solution at room temperature22 cleaved the Thiaminium dichloride molecule into two halves:
$\mathrm{C}_{12} \mathrm{H}_{1} \mathrm{~N}_{4} \mathrm{SOCl}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{3} \longrightarrow \mathrm{C}_{6} \mathrm{HeNaSO}_{3}+\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NSO}+2 \mathrm{NaCl}$

The primary cleavage product, $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{SO}_{3}$, on hydrolysis with acid23, yielded ammonia and another substance $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{SO}_{4}$. Both $\mathrm{C} 6 \mathrm{HeN}_{3} \mathrm{SO}_{3}$ and C 8 HzNzSO , on treatment with water at 2000 C , yielded sulphuric acid, and with alkali sulphurous acid. This proved the presence of a sulphonic acid group in both. Ultra-violet absorption spectra characteristic of a pyrimidine nucleus was also given by both compounds. This was confirmed by conversion 24 of the former compound into 4-amino-2,5-dimethyl-pyrimidine (I), by action of sodium in liquid ammonia.

(I)
The constitution of the pyrimidine ring was established by sythesis25. 5-ethoxymethyl-4-hydroxy-2-methyl-pyrimidine26 was similary prepared, which on treatment with sodium sulphite, yielded 4-hydroxy-2-me-thylpryrimidyl-5-methane-sulphonic acid; identical to the compound $\mathrm{C} 6 \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{SO}_{4}$. The primary cleavage product, $\mathrm{C} \mathrm{H}_{8} \mathrm{~N}_{3} \mathrm{SO}_{3}$, was thus presumed to be 4-amino-2-methyl-pyrimidyl-5-methane-sulphonic acid(II).

(II)

The other primary cleavage product, CeHeNSO, was oxidized with nitric acidz? giving 4-methyl-thiazole-5-carboxylic acid, identical with a compound previously prepared by M. Wohmann2e. This substance had also been obtained by A. Windaus et al29 during oxidation of thiamine with nitric acid, but they did not detect the presence of the thiazole nucleus.
H. T. Clarke and S. Gurinso synthesised and established the correctness of the assumption that this compound was 5- β-hydroxyethyl-4-methyl-thiazole (III), it contained an alcoholic hydroxy groups readily replaceable by chlorine.

(III)

The point of attachment to the pyrimidine ring was settled by the position of the sulphonic group in the sulphite cleavage product (II) whilst the point of attachment to the thiazole ring was established by titration experiments ${ }^{9}$ where one mole of the Thiamine dichloride reacted with 3 moles of alkali. This behaviour indicated intra-molecular rearrangement. 5-b-hydroxyethyl-4-methyl-thiazole methiodide 27 behaved similarly, towards the last two moles of alkali, on titration. Thus it was concluded that Thiamine chloride hydrochloride was also a quartenary ammonium salt. The titration result after consumption of the first mole of the alkali was explained18 by the opening of the thiazole ring forming mercapto and aldehydic groups. The first mole of alkali liberated the weakly basic amine group on the pyrimidine ring. The third mole neutralised the mecarpto group.

The formula known to be correct,

(IV)
was proposed by R. R. Williams and confirmed as explained earlier. The systematic name is $3-\left[\left(4^{\prime}-a m i n o\right.\right.$ -2'-methyl-5'-pyrimidyl)methyl]-5- β-hydroxyethyl-4-me-thyl-thiazolium chloride hydrochloride.

Complete syntheses ${ }^{20 a, b}$ of Thiaminium dichloride are due to R. R. William et al, A. R. Todd et al, A. Windaus et al, K. Makino and T. Imai and H. Andersag and K. Westphal. Methods involving Biosythesis also exist. These are reviewed in standard texts of heterocyclic organic compounds.

The chemical reactions of this compound are also summarised in most standard organic texts21 . It is perhaps important to mention certain reactions.

Thiaminium dichloride is a stable ${ }^{18}$ salt of Thiamine, m.p. 247-80 C with decomposition, molecular weight 337.3 (unhydrous), 355.3 (hydrated). Thiamine is heat-labile and acts like a weak base but can be adsorbed on basic ion-exchangers such as Decalso and Fuller's earth. It is relatively stable in acid solutions ($\mathrm{pH} 3-6$) but in alkaline solutions it is rapidly destroyed. Nitric acid oxidizes the Vitamin to destruction. Concentrated HCl acid converts it to a chloro-oxy Vitamin. Many reactions are characteristic of the thiazolium structure.

CBAPTER 2

THEORETICAL BASIS OF EXPERIMENTAL PROCEDURES

2-1 PARTIAL MOLAL VOLUME 31 a

The density of any substance, ρ, is defined as mass per unit volume, i.e,

$$
\rho=M / V \quad 2-1
$$

where, ρ can be expressed in $g \mathrm{~cm}^{-3}$, if the mass, M, is in g, and its volume, V, in cm^{3}.

The partial molal volume ${ }^{31 b}$, $\overline{\mathrm{V}}_{\mathrm{i}}$ of a solute i in solution, is a quantity derived from the density of the solution and may be defined as

$$
\bar{\nabla}_{i}=\left[\frac{\partial V}{\partial m_{i}}\right]_{T, m j, m k \cdots}-\cdots \quad 2-2
$$

where, V is the volume of the solution, $m i$ is the concentration of solute i on the molality scale, the concentration of the other components of the solution, $j, k,-$ - - and temperature T, being kept constant.

More explicitly, $\overline{\mathrm{V}}_{i}$ may be regarded as the increase or decrease of volume due to the addition of a mole of component i to an infinite amount of solution at constant temperature.

The value of $\overline{\mathrm{V}}_{1}$ (here-after $\overline{\mathrm{V}}$) is obtained as
follows:
The apparent molal volume of the solute, \varnothing, is defined by the equation

$$
\varnothing=\left(V-V_{0}\right) / m
$$

in which V is the volume of an molal solution of component i and $V 0$ is the corresponding volume of the solvent.

> Differentiating equation (2-3) with respect to m one obtains

$$
\begin{aligned}
\frac{d \varnothing}{d m} & =\frac{1}{m}\left(\frac{\partial V}{\partial m}-\frac{V}{m}+\frac{V_{0}}{m}\right) \\
& =\frac{1}{m}\left(\frac{\partial V}{\partial m}-\varnothing\right)
\end{aligned}
$$

It follows that

$$
\bar{V}=\partial V / \partial m=(m \partial \varnothing / \partial m)+\varnothing \quad 2-5
$$

Values of \varnothing may be computed from equation (2-3) using V and Vo defined by the equations

$$
V=\frac{1000+W m}{\rho} \text { and } V_{0}=\frac{1000}{\rho 0}
$$

$$
2-6
$$

i.e.

$$
\emptyset=\frac{W}{\rho}-\frac{1000}{m}\left(\frac{(\rho-\rho 0)}{\rho p^{\circ}}\right)
$$

$$
=\frac{W}{\rho}-\left(\frac{1000 \Delta \rho}{m \rho \rho o}\right)
$$

Where, W is the molecular weight of the solute $\rho, \rho 0$, and Δ_{ρ} are the densities of solution, solvent and their difference respectively.

In the low cencentration range, the following limiting equation is provided by the theory of electrolyte solution.

$$
\emptyset=\emptyset 0+a m^{1} / 2
$$

$$
2-8
$$

Where, \emptyset and 'a' are constants which are determinable graphically by constructing a plot of \emptyset against $\mathrm{m}^{1 / 2}$. Equation (2-8), known as Masson's32 equation, together with equation (2-5), yields

$$
\bar{\nabla}=\partial V / \partial m=\varnothing 0+(3 / 2) a m^{1} / 2
$$

The author has used his density measurements in the above equations to calculate the partial molal volumes of Vitamin B1 in aqueous solutions.

2-2 VISCOSITY33a

Earlier workers, among them, Daniell, Bernoulli, d'Alembert, Euler and Langrange dealt with perfect fluids. These fluids were showing no internal friction or viscosity. The stress across any element of surface in such fluids is wholly normal to that surface. There is no tangential component of stress. A shearing motion is involved in which one portion of fluid moves tangentially with respect to an adjacent portion without opposition.

Newton in his second book of the Principia, considered problems of motion in a resisting medium. In Newtonian liquids, as known today, the frictional resistance is directly proportional to the velocity of the shearing motion.

Navier and Stokes34 have made major developments in the modern theory of viscous fluids. When tangential stresses across every element of surface is introduced in perfect fluids then viscosity is considered. The component stresses are proportional to the corresponding velocity-gradients in Newtonian fluids and the constant of proportionality is called the viscosity or viscosity coefficient of the fluid. The following, more specific terms, have been defined in connection with viscosity.

Absolute Viscosity. For laminar flow in a Newtonian fluid, the absolute viscosity is the force per unit area required to maintain unit difference in velocity between two parallel layers of the fluid which are unit distance apart.

$$
n=\tau /(d u / d y)
$$

$$
2-10
$$

Where η is the absolute viscosity, τ is the force per unit area or shear stress and du/dy is the velocity gradient normal to the plane of flow.

The units of η are $g \mathrm{~cm}^{-1} \mathrm{~s}^{-1}$ or Poise. Centipoise, $c P$, is the unit commonly used.

Kinematic viscosity. This is the ratio of absolute viscosity to density.

$$
v=\eta / \rho
$$

in $\mathrm{cm}^{2} \mathrm{~s}^{-1}$ or Stokes.

Relative Viscosity. This is defined as the ratio of the viscosity of a solution to that of the pure solvent under the same conditions.

$$
n \in \operatorname{n}=n / n^{0}
$$

Specific Viscosity. The ratio of difference between the solution and solvent viscosities to the solvent
viscosity is known as specific viscosity.

$$
\begin{align*}
\eta_{B} & =\left(\eta-\eta_{0}\right) / \eta_{0} \\
& =\eta \mathrm{rel}-1
\end{align*}
$$

Instrinsic viscosity. This is defined as

$$
\begin{aligned}
& n_{1 n t}=\lim c \rightarrow 0\left(\eta-n^{0}\right) / C \eta_{0} \text { or } \\
& n_{1 n t}=\lim c \rightarrow 0(1 / C) \ln \left(n / n^{0}\right) \quad 2-14
\end{aligned}
$$

for a solution of concentration C.

Fluidity. This is the reciprocal of absolute viscosity.

$$
\phi_{t}=1 / \eta
$$

From fundamental equations 34 of the hydrodynamics of viscous fluids, the results which are of importance in the theory of electrolyte solutions are stated briefly.

The differential equation of motion of a viscous liquid is of the form

$$
\rho((\partial q / \partial t)+q \cdot \nabla q)=p F-\nabla p+\eta \nabla^{2} q \quad 2-16
$$

where $q . \nabla q$ and $\nabla^{2} q$ are dyadic products, ∇p denotes the pressure gradient, ρ is the density of the incompressible fluid, q is the velocity vector, with such components as u, v and w, while F is the external
force per unit mass, with components X, Y and $Z . n$ is the viscosity which is independent of direction and rate of shear.

When equation (2-16) is expressed in terms of cartesian components, terms arise that are non-linear in the velocities and so have no exact solutions. For low velocities, quadratic terms are ignored provided the Reynold number (Re) associated with the solution do not exceed 1000 (For most ions $R e \simeq 10^{-9}$). Reynold numbers are expresses as

$$
R_{e}=u a \rho / \eta \quad 2-17
$$

where u is velocity of the order occuring in the problem, a is a quantity of the relevant linear dimension, such as diameter of the tube through which the fluid is flowing, ρ is density of solution and η its viscosity.

For steady-state conditions, $\partial \mathbf{q} / \partial t=0$ and so at small Reynolds number the general equation in the X-direction becomes

$$
p X=\partial p / \partial x-n \nabla^{2} u
$$

and in the absence of an external force

$$
\partial p / \partial x=n \nabla^{2} u
$$

$$
2-19
$$

Such
supplemented
differential equation, when with the boundary conditions aaa, b
applicable to viscous flow, yields solutions specific to the shape of the instrument intended for measurement of viscosity.

One case of such a solution, important for the theory of electrolyte solutions and the method of measurement used here-in, is the Poiseuille's formula and concerns laminar flow through a cylindrical tube under pressure.

$$
V / t=\pi\left(P_{0}-P_{1}\right) R^{4} / 8 n L \quad 2-20
$$

Where Po, P_{1} are the pressures at the two ends of the tube, L is the length of the tube having radius R, V is the volume flowing through the tube in time t and η is the viscosity.

This formula arose from the work of Poiseuille ${ }^{35}$ and Hagenbach ${ }^{36}$ and is known as Poiseuille's Law. This law applies under the following assumptions:
(a). The flow is parallel to the axis of the tube throughout
(b). The flow is steady, initial disturbance due to accelerations from rest having been dumped out (c). There is no slip at the walls of the tube
(d). The fluid is incompressible
(e). The fluid will flow when subjected to the smallest shearing force, the viscous resistance being proportional to the velocity gradient

These assumptions dictate the design of appropriate instrument, otherwise corrective33a measures must be taken where the instrument departs from these assumptions.

In this work the author has employed Poiseuille's Law in measuring relative viscosities of aqueous solutions. A capillary viscometer of the Kinematic type is employed where the head of the liquid itself furnishes the pressure differential across the capillary. Hence for liquids of densities $\rho 1$ and $\rho 2$, the average pressure differences are $h^{\rho_{1} g}$ and $h \rho 2 g, h$ being the average difference of the liquid level during the flow period.
If the times of flow are taken for the two
liquids, then

$$
\begin{aligned}
V & =\pi h_{1} g^{g} R^{4} t_{1} / 8 n_{1} L \\
& =\pi \rho_{\rho} g^{g} R^{4} t_{2} / 8 n_{2} L .
\end{aligned}
$$

Thus

$$
n_{2} / \eta_{1}=\rho_{2} t_{2} / \rho_{1} t_{1} \quad 2-22
$$

If the subscript (1) refers to the solvent or a primary standard (e.g water) then $\eta_{r e l}$ or η_{2} can be easily determined with accuracy. This was the method used by the aldhor. For pure water ${ }^{37}$ at 250 C , $n_{1}=0.008937$ Poise and $\rho_{1}=0.99707 \mathrm{~g} \mathrm{~cm}^{-3}$.

2-2-1 Concentration dependence of relative viscosity

Gruneisen ${ }^{38}$ measured and found out that in the dilute range, the viscosities of solutions show characteristic negative curvations with increase in concentration - meaning an increase in viscosity regardless of what happens at higher concentration.

Jones and Doles9 gave a semi-empirical equation that described this effect qualitatively. Namely,

$$
n / n^{0}=1+A C 1 / 2+B C
$$

Desnoyers ${ }^{40}$ and others extended equation to the form

$$
n / n 0=1+A C 1 / 2+B C+D C 2
$$

where A, B, D, are coefficients with both quantitative and qualitative properties and C is the concentration.

Once the Debye-Huckel interionic theory was accepted, Jones and Dole correctly surmised the dependence of ηM^{0} on $C^{1 / 2}$ and Falkenhagen ${ }^{8}$ (cf. reference 7) used the equilibrium theory to calculate the A coefficient. Later work by Onsager and Fuoss? on irreversible processes in electrolytes led to the more general case of multicomponent systems.

2-2-2 A coefficient
The A coefficient possesses a non-zero value only for electrolytes where it is always positive. It accounts for the increase in viscosity produced by the
long range coulombic forces between the ions.
It has been interpreted on the basis of deformation of the Debye-Huckel spherical ion atmosphere under a shearing stress.

Falkenhagen and Vernon41, Harned and Owen42 have shown that the A coefficient can be calculated from limiting molar conductivities. For a strong uni-univalent electrolyte at 250 C the equation is

$$
A=\frac{0.2577 \lambda 0}{\eta(\varepsilon T)^{1 / 2} \lambda^{0}+\lambda^{0}-}\left[1-0.6863\left(\frac{\lambda^{0}+\lambda^{0}-}{\Lambda^{0}}\right)^{2}\right] ~(\ldots \ldots .2-25
$$

where $\dot{x}^{\circ}, \lambda^{\circ}$ - and represent the limiting conductivities of the substripted ions and salt; and η, ε and T are viscosity, dielectic constant and absolute temperature respectively.

A general expression given for the electrostatic contribution to the viscosity, n^{*}, by Onsager and Fuoss? for electrolyte solutions is

$$
n^{*}=\frac{0.362}{(\varepsilon T)^{1} / 2}\left(\sum_{i} \frac{\mu_{i} Z_{i}}{\lambda_{1}}-4 r \sum_{n=0}^{\infty} C n s(n)\right) I 1 / 2
$$

$$
2-26
$$

where r and s are vectors with elements, I-pi/ $\bar{\rho}$ and $\left(\left(Z_{i} / \lambda_{i}\right)-\left((Z / \Lambda)^{2} /(Z / \Lambda)\right)\right.$ respectively. $s(n)=2(H-I) S(n-1)$ and Z is the total sum of valencies. ρ_{1} and $\bar{\rho}$ are the ionic and the average frictional coefficients respectively. The other quantities are as defined later in section (2-4-5).

Since $n^{*}=n^{0} A I^{1 / 2}$, when I, the ionic
strength, is taken as a measure of concentration, it follows that

$$
A=\frac{0.362}{\eta^{0}(E T)^{1 / 2}}\left(\sum_{i} \frac{\mu_{i} Z_{i}}{\lambda_{i}}-4 r \sum_{n=0}^{\infty} C_{n s(n)}^{\infty}\right)^{\infty \ldots \ldots .2-27}
$$

Falkenhagen and Kelbg43 and also Pitts44 attempted to calculate the A coefficient by including the parameter 'a' the distance of closest approach. But Stokes and Millsts have indicated that the concentration range of validity extends negligibly and in some cases even wrong results are obtained.

Evidently A is a function of solvent properties, ionic mobilities and temperature.

Generally, beyond 0.002 M the absolute magnitude of the electrostatic increment to the viscosity is small while the contribution from ion-solvent interaction represented by the BC term is large and swamps the small changes due to the $\mathrm{AC} / \mathrm{L}^{2}$ term.

The constant A may also be evaluated from experimental data by plotting a suitable form of equation (2-23).

2-2-3 B coefficient

Various correlations4 concerning viscosity B coefficents are only qualitative in nature as a quantitative theory for the B Coefficient is yet to be developed.

Stokes and Mills45 have given a representative selection of B coefficients for various salts and made the following two deductions:
(a). Negative B coefficients are confined to highly associated solvents, such as water, at fairly low temperatures. B values vary widely for different solvents and accordingly S. Phang46 indicates that in aqueous solutions the B coefficients are positive for non-electrolyte and can be positive or negative for electrolytes. For electrolytes, negative values become less negative or change to positive as the temperature is raised. In non-aqueous solutions the B coefficients of electrolytes are mostly positive although negative values have been reported47.
(b). Ions present in highly associated solvents at low temperatures exert a "structure breaking" effect. At higher temperatures the solvent structure is already affected by thermal agitation, thus ions exert little effect. Negative B coefficient hardly decrease the viscosity by 10%. Positive B coefficients signify "Structure making" effects.

The B coefficient is an additive property48 of the constituent ions. B values for pairs of salts with the same anion but different cations have constant differences. Additivity is thus adduced to the separate ions and most correlations with other solution
properties are made in terms of ionic B coefficients. Interpretations are more significant if given for individual B ion values and such facts and regulations have been discussed by Stokes and Mills45 showing, like Kaminsky ${ }^{47 \text {, that the observed viscosity changes result }}$ from competition between various effects occuring in the ionic neighbourhood, that is,

$$
\begin{aligned}
& =n 0+n *+n E+n A+n D \\
& =n 0+n 0(A C 1 / 2+B C) \quad 2-28
\end{aligned}
$$

where $n^{*}=n^{0} \mathrm{ACl}^{1 / 2}$ is the ionic interaction contribution and is positive and $n E+n A+n D=n 0 B C$. The terms on the L.H.S. of the latter expression are more specialized viscosity effects defined as:
ne - the increment arising from size and shape of an ion which is closely related to the Einstein effect.
riA - the increment due to the orientation of polar molecules by the ionic field with subsequent restriction of motion.
nD - change associated with distortion of the solvent structure leading to greater fluidity.

2-2-4 D coefficient40
This includes all those solute-solvent, solute-solute interaction not accounted for by A and B coefficients. These interactions may include ion-pair, triple ions or even higher ionic complexes and higher terms of hydrodynamic effects.

2-2-5 The Einstein effect
For particles relatively larger than the solvent molecule the B coefficient values are mainly due to the effect of large solute size and shape. In electrolytes containing such ions - either due to strong hydration or the intrinsic size - the hydrodynamic theories applicable to particles in a fluid continuum states that the increase in viscosity is due to the particles lying across the fluid streamlines. These particles are subjected to torsional forces, they tend to rotate and absorb energy which results in an increased viscosity of the solution.

The first quantitative treatment was given by Einstein 49 who dealt with the case of rigid spheres suspended in a continuum. The results were restricted to cases of small volume fractions of spherical particle and is given by the equation

$$
\begin{array}{cc}
n / \eta^{0}=1+2.5 \emptyset & 2-29 \\
\text { Generally, for non-spherical particles the }
\end{array}
$$ equation becomes

$$
\eta / \eta^{\circ}=1+a_{1} \varnothing \quad 2-30
$$

where η / η^{0} has its usual meaning, al takes values greater than 2.5 and \varnothing is the volume fraction occupied by particles so that

$$
\varnothing=C \bar{V}
$$

where C is the concentration in mol lol $^{-1}$ and $\overline{\mathrm{V}}$ is the molar volume of the solute in 1 mol-1. Holtzer and Emerson ${ }^{50}$ have shown that $\bar{\nabla}$ includes the hydration shell as part of the ion dimension.

An extended form of equation (2-29), for concentrated suspensions, has been employed by Eirich and Ford ${ }^{1}$.

$$
n / n_{0}=\left(1+2.5 \varnothing+k_{1} \varnothing_{2}+k_{2} \varnothing^{3} \quad 2-32\right.
$$

Where kn are the interaction constants.
Vand52 had proposed the equation

$$
\ln \left(n / n^{0}\right)=a 1 \varnothing /(1-k \varnothing) \quad 2-33
$$

Thomas ${ }^{53}$ has shown that for $\varnothing<0.25$, the equation becomes

$$
n / n 0=\left(1+2.5 \varnothing+10.05 \not \varnothing^{2}\right) \quad 2-34
$$

Investigations4 ${ }^{8}$ on large ions in solution and the calculated B coefficients agree satisfactorily with literature B coefficients which were obtained at low concentrations. For spherical and relatively large ions, compared to the solvent molecules, Einstein effect may be observed.

2-3 REFRACTIVE INDEX54a,b

When a ray of monochromic light passes from an optically lighter medium to a denser one, it gets bent or refracted towards the normal. If is the angle of incidence in the less dense medium and \mathbf{r} the angle of refraction in the second medium, then according to the law of refraction

$$
\operatorname{Sin} i / \operatorname{Sin} r=N / n
$$

where n, N are the refractive indices of the lighter and denser media respectively.

When $i=900 ; r$ has a maximum value and when $i>900$ then the ray undergoes total internal reflection. Since Sin $900=1$, then;

$$
\operatorname{Sin} r=n / N
$$

and $n=N$ sin r, where r is measurable and N is the known absolute refractive index of the denser medium, e.g prism material in the refractometer. Thus n can be measured.
Refraction arises55 from the fact that
extra-nuclear electrons of atoms tend to follow the
oscillations of the electromagnetic field associated
With light. The extent and nature of binding of
electrons - polarizability - in atoms, molecules, etc.
governs the extent of refraction in a medium containing these particles.

Refraction changes with temperature, pressure and wavelength. Due to this latter phenomenon, known as dispersion, the wavelength must be specified when refractive indices are stated.

2-3-1 Specific and molar refractivity

From the electromagnetic theory of light, Lorentz and Lorenz have deduced an equation

$$
r_{D}=\frac{n^{2}-1}{n^{2}+2} \cdot \frac{1}{\rho}
$$

where r_{0} is the specific refraction which is independent of temperature and pressure and ρ is the density of the medium.

Molar refraction, [R]D, is the product of specific refraction and the molecular weight, i.e

$$
[R] D=r_{D}=\frac{n^{2}-1}{n^{2}+2} \cdot \frac{W}{p}
$$

The Clausius-Mosotti equation also gives a quantitative relationship between molar refraction and polarizability, thus
where NA_{a} and α are the Avogadro number and electronic polarizability respectively.

2-3-2 The Molal Refractive Index in Solution

The apparent molal refractive index, Repp, of a solute of molecular weight W_{1}, is defined by the condition that the total molal refraction of the solution, R, containing one mole of solute, is the sum of Repp and the refraction which the amount, Wo (gram), of solvent present in the solution would have in pure state.

For the solvent

$$
r_{0}=\frac{n^{2} 0-1}{n^{2} 0+2} \cdot \frac{1}{\rho 0}
$$

Thus $R o=r_{0} W 0$ and $R=R a p p+R o$.
It follows, therefore, that

$$
R_{a p p}=\left(\frac{n^{2}-1}{n^{2}+2} \cdot \frac{W_{1}+W_{0}}{\rho}\right)-\left(\frac{n^{2} 0-1}{n^{2} 0+2} \cdot \frac{W_{0}}{\rho_{0}}\right)
$$

Repp is not equal to the molal refraction of the pure solute, R_{1}. The difference, Rapp-R1, indicates the deviation from exact additivity in the mixture due to all possible causes. It includes any refractometric effects due to a change in the state of
the solute and the solvent which might arise as a result of mixing. Rapp - R1 will be small for solutions in which components have similar physical properties or do not exert strong forces on each other. On the molality scale

$$
\begin{array}{ll}
\text { Rapp }=\left(\frac{n^{2}-1}{n^{2}+2} \cdot \frac{y}{m}\right)-\left(\frac{n^{2} \theta-1}{n^{2} 0+2} \cdot \frac{V_{0}}{m}\right) & 2-42 \\
\text { Electronic interactions between the }
\end{array}
$$ components may also be analysed through the difference between Rexp ($=$ Rapp) and Radd. On the mole fraction scale the value of Radd is given by the equation

$$
\operatorname{Radd}=X_{1}\left(\frac{n^{2} 1-1}{n^{2} 1+2} \cdot \frac{W_{1}}{\rho 1}\right)+X_{0}\left(\frac{n^{2} 0-1}{n^{2} 0+2} \cdot \frac{W_{0}}{\rho 0}\right) \quad 2-43
$$

where in all cases quantities with subscripts 0,1 denote a solvent, solute and those without subscripts denote a solytion respectively.

Pure solids, liquids and solutions obey Ohm's
Law, i.e

$$
I=V / R
$$

where V (in volts) is the potential difference across the conductor carrying a current I (in amperes) and having resistance R (in ohms).

The resistance of an electrical conductor is directly proportional to its length L, and inversely proportional to its cross-sectional area, A, thus

$$
R \propto L / A \Rightarrow R=\rho L / A
$$

where ρ is the proportionality constant known as the specific resistance or resistivity of the conductor.

Conductivity or specific conductance, k, which is a more important quantity in electrolyte solutions is defined as the reciprocal of resistivity.

$$
k=1 / p
$$

From equations (2-45) and (2-46) it follows that

$$
K=L / R \cdot A
$$

In the measurement of conductivities of electrolyte solutions, L is a fixed distance between the two electrodes each having an effective area A. The quantity L/A is constant for a particular cell and is called the Cell Constant, K, of the conductivity cell.

Consequently equation (2-47) becomes

$$
K=K / R
$$

2-4-1 Measurement of conductivity

The resistance of a KCl solution of precisely known concentration and conductivity, is measured using a conductance cell and the Cell Constant is calculated using equation (2-48). The units of the cell constant are obviously cm^{-1}.

Once K is known, the resistance of the solutions under investigation can be measured and א calculated at each" concentration using equation (2-48).

To compare the specific conductivities of solutions containing different amounts of the same electrolytes or of solutions having different electrolytes, the quantities, equivalent or molar conductivity have been defined as

$$
\Lambda=1000 \mathrm{k} / \mathrm{C} \quad 2-49
$$

where C is the concentration of electrolytes under study in gram equivalent or gram mole per litre.

2-4-2 Kohlrausch's equations

Kohlrausch57 proposed the following two relationships as a result of his studies on equivalent
conductivities of various electrolyte solutions:
The law of independent migration of ions. This states that the limiting equivalent conductivity of an electrolyte $A B, \quad \Lambda^{\circ} A B$, is equal to the sum of the individual ionic equivalent conductivities $\lambda^{0} A^{+}$and λ_{B-}^{0}, at infinite dilution.

$$
\Lambda^{0} A_{B}=\lambda^{0} A++\lambda_{B-}^{0}
$$

The empirical conductivity equation. An empirical equation relating observed equivalent conductivity to the corresponding concentration was put forward in the form

$$
\Lambda=\Lambda^{\circ}-\mathrm{KCl}^{1} / 2 \quad 2-51
$$

where K is a constant and C the concentration in units specified earlier.

Kohlrausch could not assign any specific physical meaning to the constant, K, but the equation did explain the concentration dependence of equivalent conductivities of most dilute aqueous solutions of strong 1:1 electrolytes. The observed Λ decreases with increase in concentration.

Arrhenius58 was first person who attempted to explain this phenomenon using the theory of electrolytic dissociation as outlined in the following lines.

When an acid, base or salt is dissolved in
water, a considerable portion becomes spontaneously dissociated into positive and negative ions. These ions are free to move independently and are simply guided to the electrodes of opposite sign by the applied electric field. The proportion of molecules which dissociate into ions were believed to vary with concentration, such that the degree of ionization approached unity at infinite dilution. Arrhenius explained that the change in the degree of ionization caused the variation of conductivity with concentration.

The assumption that the conductivity of solutions only depended on the total number of ions is approximately true for weak electrolytes only, where the degree of dissociation, α, as defined by Arrhenius, is

$$
\alpha=\Lambda / \Lambda^{\circ}
$$

This calculated proportion of ions explained the concentration dependence of equivalent conductivity in weak electrolytes. The data for strong electrolytes, however, could not find any explanation since these electrolytes were known to undergo complete dissociation at all concentrations.

A theory was, therefore, needed which could explain the concentration dependence of conductivity in both types of solutions.

2-4-3 The interionic theory

The conductivity of a solution depend on
(i) the total number of the ions, (ii) the charge on the ions, and (iii) the speed of the ions.

The present view is that strong electrolytes are completely ionized in the pure solid, pure liquid and solution states. The decrease in equivalent conductivity with increasing concentration must, therefore, be attributed to the diminution in the ionic velocity.

A simple picture of the theory is that with an increase in concentration the coulombic interactions between ions of opposite charge and hydrodynamic effects result in the decrease of the speed of ions and hence in the equivalent conductivity of the solutions.

The quantitative treatment of the theory of interionic attraction is due to the efforts of many workers, the main ones being P. Debye, E. Huckel and L. Onsager ${ }^{3}$.

The fundamental idea underlying the deductions is that due to the electrical attraction superimposed over thermal motion, every ion, on the average, has more ions of opposite sign in its vicinity than ions of the same charge. Each ion may, therefore,
regarded as being surrounded by a centrally symmetrical ionic atmosphere with a charge opposite to that of the ion itself as long as the system is not exposed to an applied electric field or shearing force which causes a disturbance.

When a current is passed the central ions are continuously caused to move off center. In the new position, the spherical ionic atmosphere begins to form while it dies out at the previous centre. The restoration of the ionic atmosphere and its decay infront and behind the ion respectively - to an equilibrium value, involves a molecular concept of relaxation of the ionic atmosphere with a definite relaxation time. Since there will be an excess of ions of opposite sign behind the central ion, its motion will be retarded. The average restoring force experienced by the central ion is called the Relaxation Effect or Asymmetry Effect.

Another effect results from the movement of the ionic atmosphere, in the opposite direction to that of central ion with its associated solvent molecules. The ion has thus to moves in a direction opposite to that of solvent molecules and thus experiences a dragging force causing further retardation. This additional retardation effect is known as the Electrophoretic Effect.

Finally, the normal frictional resistance of the medium - determined by Stokes Law and dependent on
the speed of the ion, its radius and the viscosity of the medium - also adversely affects the migrating ions. On the basis of the above argument Debye and Huckel derived an expression relating observed equivalent conductivity at a particular concentration to that at infinite dilution in terms of the physical properties of the ions and the solvent. This expression was subsequently improved by L. Onsager to the form

$$
\lambda i=\lambda_{i}^{0}-\left[\frac{2.801 \times 106 Z_{i} Z_{1} q^{0} \lambda_{i}}{(\varepsilon T)^{3 / 2}\left(1+q^{1 / 2}\right)}+\frac{41.25 Z_{i}}{\left.n(\varepsilon T)^{1 / 2}\right)}\right] I 1 / 2
$$

where

$$
q=\frac{Z_{i} Z_{j}\left(\lambda_{i}^{0}+\lambda_{j}^{0}\right)}{\left(Z_{i}+Z_{j}\right)\left(Z_{i} \lambda_{j}^{0}+Z_{j} \lambda_{i}^{\circ}\right)}
$$

and the ionic strength

$$
I=1 / 2 \sum_{K=1}^{j} \mathrm{Ck} \mathrm{Z}^{2} k
$$

Z_{i}, Z_{j}, are the valencies ${ }_{k=1}$ and $\lambda_{1}{ }_{1}, \lambda_{j}{ }_{j}$ are the limiting equivalent conductivities of ions 1 and j respectively. ε and η are the respective dielectric constant and viscosity of the solvent at temperature T.

The first term in the brackets in equation (2-53) accounts for the Relaxation Effect and the second, the Electrophoretic Effect.

For a strong uni-univalent electrolyte, the equation becomes

$$
\lambda_{i}=\lambda_{i}^{0}-\left(\mathrm{B}_{1} \lambda_{i}^{0}+(1 / 2) \mathrm{B}_{2}\right) \mathrm{C}_{1 / 2}
$$

where I and C have the same value.
By adding two such equations - one for anion, i, and another for cation j - we get an equation for the equivalent conductivity of the electrolyte.

$$
\Lambda=\Lambda^{0}-\left(B_{1} \Lambda^{0}+B_{2}\right) C^{1 / 2} \quad 2-57
$$

This is the Debye-Huckel-Onsager equation. A comparison of equation $(2-51)$ and $(2-57)$ shows that K in Kohlrausch's equation is equivalent to $\left(\mathrm{B}_{1} \Lambda^{0}+\mathrm{B}_{2}\right)$.

If water is the solvent at $25^{\circ} \mathrm{C}$ then $\mathrm{B}_{1}=0.2300 \quad 11 / 2(\mathrm{~g} \text { equiv. })^{-1 / 2}$ and $\mathrm{B}_{2}=60.65 \quad \mathrm{~S}$ $\mathrm{cm}^{2} \mathrm{l}^{1 / 2}$ (g equiv.)-3/2 These values ${ }^{7} 7$ are based on $\eta=0.008937$ Poise and $\varepsilon=78.35$. According to equation (2-57) a plot of Λ against $C 1 / 2$ should give a straight line curve of slope $\left(\mathrm{B}_{1} \Lambda^{\circ}+\mathrm{B}_{2}\right)$. This is the case with most dilute solutions of strong uni-univalent electrolytes in the concentration range below 0.002M.

In concentrated solutions, however, deviation from the equation occur because in the derivation of equation (2-57) simplifying assumptions and subsequent mathematical approximations, true only in dilute solutions, are used. Shedlovsky et al59 found that calculated Λ values using equation (2-57) are within experimental expections in the concentration range below 0.001 M .

Accurate experimental data fits upto 0.003 M for 1:1 electrolytes and also for $1: 2$ and 1:3
electrolytes at lower concentrations.
More exact equations 60 exist. Falkenhagen and others extended the theory by including finite size of the ions, a different distribution law and a more complete definition of the potential without Onsager's approximation. Pitts also employed a more complete solution of Poisson-Boltzmann equation due to Gronwall, LaMer, and Sandred. This treatment differed from Falkenhagen's in the chotce of expression for the potential resulting from a different distribution function.

2-4-4 Extension of the Onsager equation for high concentrations

Various empirical extension 60 of the limiting Onsager equation have been proposed to account for the deviations at higher concentrations. Shedlovsky59 proposed the equation given below which fitted very well for many electrolytes at relatively higher concentrations but there is no simple meaning associated with constant b in the equation:

$$
\Lambda=\Lambda^{0}-\left(\mathrm{B}_{1} \Lambda^{0}+\mathrm{B}_{2}\right) \mathrm{C}_{1} / 2+\mathrm{bC}\left(1-\mathrm{B}_{1} \mathrm{C}_{1} / 2\right) \quad 2-58
$$

Robinson and Stokes60 have once more proposed the inclusion of the factor, $(1+k a)$ in the denominator of $I 1 / 2$ as implied earlier by Onsager and
suggested by Lattey, Kaneko and later implemented by Ritson and Hasted. The use of a reasonable value of 'a' extends the validity of the Onsager equation above 0.001 M . In this case neglecting the cross-product of the relaxation and electrophoretic terms, equation (2-53) becomes:

$$
\begin{array}{r}
\lambda_{i}=\lambda_{i}-\left(\frac{2.801 X 108 Z_{i} Z_{j} q \lambda_{i} 0_{i}}{(\varepsilon T)^{3 / 2\left(1+q^{1 / 2}\right)}}+\frac{41,25 Z_{i}}{\left.n(\varepsilon T)^{1 / 2}\right)}\right) \frac{I 1 / 2}{(1+\kappa a)} \\
\ldots \ldots \ldots \ldots \ldots .2-59
\end{array}
$$

For 1:1 electrolytes this may be expressed as

$$
\Lambda=\Lambda^{0} \frac{-\left(\mathrm{B}_{1} \Lambda^{0}+\mathrm{B}_{2}\right)}{1+\mathrm{B}_{3} \mathrm{a}^{0} I_{1 / 2}^{1 / 2}} I_{1 / 2}
$$

where 'a' is the ionic radius and a^{0} is the distance of closest approach.

Or

$$
\Lambda^{0}=\Lambda+\frac{\left(B_{1} \Lambda+B_{2}\right) I_{1} / 2}{1+\left(B_{3} a^{0}-B_{1}\right) I_{1} / 2}
$$

where B3 is a constant with a value ${ }^{37}$ of 0.3291×10^{-8} and a^{0} is the distance of closest approach of the ions in Angstroms (\AA). This equation gives a fairly good account of the conductivities of aqueous solutions of strong 1:1 electrolytes up to 0.1 M and yields reasonable values of a^{0} parameter. However the equation fails to account for the concentration dependence in non-aqueous systems61. In the present work, equations (2-60) and (2-61) have been further modified and used to analyse the conductivity data of aqueous Thiaminium dichloride solutions.

2-4-5 Ionic conductivity in electrolyte mixtures

The general limiting law of conductivity in mixtures were derived by Onsager and Fuoss7. The ionic equivalent conductivity at finite concentrations is given by the equation

$$
\lambda_{i}=\lambda^{0} 1-\left[\frac{1.971 \times 106}{(\varepsilon T)^{3 / 2}} Z_{i} \lambda^{0}{ }_{i} \sum C_{n} r i=\frac{28.98 Z_{i}^{(n)}}{\left.n(\varepsilon T)^{1 / 2}\right)}\right] I 1 / 2
$$

where λ_{1} is the Kohlrausch's value of limiting ionic equivalent conductivity, $C n$ are the coefficients of the series expansion of (I. - $H^{1 / 2}$), $r_{i}(n)$ are vectors defined as $r_{1}(n)=(2 H-I) i_{f}(n-1) ; r_{i}(0)=r i, n$ is the ionic concentrations (or number), I is the total 'ionic strength', $I=n_{\sigma} z_{\gamma}^{2}, H$ is a matrix with elements $h_{j i}=\mu_{\sigma} \omega_{j} \delta i j+\mu i \omega i j$ (subscripted greek letters indicate summations), μ_{1} is the ratio of concentration of i ions to the total ionic concentration, ω_{i} is the mobility of the ith species of ions, $\omega_{i} j=\omega_{i} / \omega_{j}+\omega_{j}$ and $\delta i j$ is the Kronecker symbol.

This formula gives the limiting law for the conductivity of the ith species of ions in a mixture of different kinds. It is evident that of the two effects that tend to diminish the velocity of an ion in solution, only the relaxation effect has a different value in a mixture of salts than it would have in a pure salt solution. The electrophoretic term depends only on $I 1 / 2$ but the relaxation effect depends on the
ratios of mobility, ω, and those of the ionic concentrations, μ. This change in the expected value of the relaxation term is known as the mixture effect.

The consequences of the above effect are that Kohlrausch's rule of the independent migration of ions, valid as a limiting law for simple binary electrolytes, neither apply to mixtures nor to the conductivities summed together. The Lee-Wheaton and QuintViallard equations also exist for such systems.

2-4-6 The modified conductivity equation
Conductivity in a number of solutions show concentration dependence contrary to theoretical expectations. Selvaratnam and Spiro62a and Pethybridge and Pruefib have respectively explained such an anomolous concentration dependence by postulating complex ion formations on $\mathrm{H}_{3} \mathrm{PO}_{4}$ and HIO_{3} solutions. Similar explainations were used by Shamim and Spiro62c, Shamim and Seng62d for tartaric, picric and citric acids solutions.

Several values of pKa and pKb values have been reported in the literature (see section 1-2). These values refer either to the Vitamin itself or its moieties63, Thiazole (pKa (proton gain)) $=2.53$ and Pyrimidine $(\mathrm{pKa}($ proton gain)) $=1.30$.

Generally, these values indicated the presence of two or three organic basic groups and for this reason a three step mechanism has been proposed
for Vitamin B1 solutions.

1. $\mathrm{ThiCl} . \mathrm{HCl} \longrightarrow \mathrm{Thi}^{+}+\mathrm{H}^{+}+2 \mathrm{Cl}^{-}$
2. $\mathrm{H}^{+}+\mathrm{Th}_{1}+\xrightarrow{\alpha, \mathrm{K}_{1}} \mathrm{ThiH}^{+}$
3. $\mathrm{H}^{+}+\mathrm{ThiH}{ }^{2}+\xrightarrow{\mathrm{B}, \mathrm{K}_{2}} \mathrm{ThiH}_{2}{ }^{3}+$

Where Thi refers to the Thiamine moiety, α and β are the degrees of complexation associated with the equilibrium constants KI and K 2 respectively.

The concentrations of these ionic species are

$$
\left[\mathrm{Cl}^{-}\right]=2 \mathrm{C} ;\left[\operatorname{Th} i^{+}\right]=-(1-\alpha) \mathrm{C} ;\left[\mathrm{H}^{+}\right]=(1-\alpha-\beta) \mathrm{C} ;
$$

$\left[\mathrm{ThiH}^{2}+\right]=(\alpha-\beta) \mathrm{C} ;\left[\mathrm{ThiH}^{3}{ }^{+}\right]=B C$.
where C is the concentration of the electrolyte in mol 1-1.

From equation (2-55),

$$
I=C[2(1+\beta)+\alpha]
$$

The observed equivalent conductivity, Lobs, should be the sum of the equivalent conductivities of all the ionic species suggested, thus from equation (2-49)

```
\(1000 \mathrm{k}=\mathrm{C} \Lambda \mathrm{obz}=\mathrm{C}\{2 \lambda \mathrm{Cl}+\mathrm{t}(1-\alpha) \lambda \mathrm{Thi}++(1-\alpha-\beta) \lambda \mathrm{H}+\)
    \(\left.+2(\alpha-\beta) \lambda \operatorname{ThiH}^{2}++3 \beta \lambda \operatorname{ThiH} 2^{3+}\right\} \quad 2-64\)
```

It follows that a fitted value, $\Lambda_{\text {fit }}$ should be

$$
\begin{aligned}
& \Lambda_{\text {fit }}=2 \lambda \mathrm{Cl}-+(1-\alpha) \lambda \operatorname{Thi}++(1-\alpha-\beta) \lambda H++2(\alpha-\beta) \\
& \lambda \text { ThiH }{ }^{2}+3 \beta \lambda \operatorname{ThiH} 2^{3+}
\end{aligned}
$$

$$
\begin{aligned}
& =\left(2 \lambda \mathrm{Cl}^{-}+\lambda \mathrm{Thi}_{\mathrm{H}}+\lambda \mathrm{H}+\right)-\left[\quad \alpha \mathrm{Thi}_{\mathrm{H}}+(\alpha+\beta) \lambda_{\mathrm{H}}+\right. \\
& +(\beta-\alpha) 2 \lambda \text { ThiH2 }{ }^{2}-3 \beta \text { ThiH2 }{ }^{3+} \text {] 2-65 } \\
& \text { For a normal 1:1 electrolyte, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Asalt }=\left(2 \lambda \mathrm{Cl}_{-}+\lambda \mathrm{Thi}++\lambda_{\mathrm{H}}+\mathrm{O}\right. \\
& =\Lambda_{\text {salt }}-\frac{\left(\mathrm{B}_{1} \Lambda_{88} \mathrm{~B}_{2} t+\mathrm{B}_{2}\right)}{1+\mathrm{B}_{3} \mathrm{a}^{0} \mathrm{I} 1 / 2} \quad \mathrm{I} / 2 / 2 \\
& \text { 2-66 }
\end{aligned}
$$

Therefore,

$$
\Lambda_{\text {tit }}=\Lambda_{\text {salt }}-X
$$

where

$$
X=\alpha \lambda \operatorname{Thi}++(\alpha+\beta) \lambda_{H++}(\beta-\alpha) 2 \lambda \operatorname{ThiH} 2+-3 \beta \lambda \operatorname{ThiH2}{ }^{3}+
$$

Similarly X can be added to equation (2-61) to calculate conductivity at infinite dilution, Neal. ^it should be equal to Λ obs if the proposed mechanism is correct.

2-4-7 Calculations of α and B
From the proposed mechanism above, step 2 yields the equilibrium constant

$$
\begin{aligned}
\mathrm{K}_{1} & =\frac{\left[\mathrm{ThiH}^{2+}\right]}{\left[\mathrm{H}^{+}\right]\left[\mathrm{Th}^{+}\right]} \\
& =\frac{(\alpha-\beta) C . f T h i H^{2}+}{(1-\alpha) C \cdot(1-\alpha-\beta) C \cdot f T h i+f H+}
\end{aligned}
$$

where

$$
\log f_{i}=\frac{-A Z_{i} I^{1} / 2}{1+B_{3} a^{0} I^{1 / 2}}
$$

and A has a values 7 of 0.5115 at 250 C .
Rearranging this equation into a quadratic form
$K_{1} C^{2} f_{T h i}+f H+\alpha 2+\left[(\beta-2) K_{1} C^{2} f_{T h i}+f H+-C f T h i H^{2}+\right] \alpha+(1-$ B) $\mathrm{Ki}_{1} \mathrm{C}^{2} \mathrm{fThi}+\mathrm{fH}++\beta \mathrm{CfThiH}^{2+}=0$

If

$$
\begin{aligned}
& a=K_{1} C^{2} f \operatorname{frh} i+f H+ \\
& b=(\beta-2) K_{1} C^{2} f_{T h i}+f H+-\operatorname{CfThiH}^{2}+ \\
& c=(1-\beta) K_{1} C^{2} f T h i+f H++\beta \text { CfThiH }^{2}+
\end{aligned}
$$

then

$$
a_{1,2}=\vec{b} \pm \frac{\left(b^{2}-4 a c\right)^{1 / 2}}{2 a}
$$

For step 3

$$
K_{2}=\frac{\left.\operatorname{ThiH}_{2} 3+\right]}{\left[\operatorname{ThiH}^{2}+\right]\left[\mathrm{H}^{+}\right]}
$$

Similar treatment, as above, yields;
$\mathrm{K}_{2} \mathrm{C}^{2} \mathrm{fH}+\mathrm{fthin}^{2}{ }^{*}+\beta^{2}-\left(\operatorname{CfThin} 2^{3}++\mathrm{K}_{2} \mathrm{C}^{2} \mathrm{fH}+\mathrm{fthiH} 2+\right) \beta-\mathrm{K}_{2} \mathrm{C}^{2}$ $f H+\operatorname{frhi}^{2+}\left(\alpha^{2}-\alpha\right)=0$ 2-70

In this case $a=K_{2} \mathrm{C}^{2} \mathrm{fH}+\mathrm{frhiH}^{2}+$

$$
\begin{aligned}
& b=-\left(\operatorname{CfThiH2}^{3}++\mathrm{K}_{2} \mathrm{C}^{2} f \mathrm{H}+\mathrm{fThiH} 2+\right) \\
& \mathrm{c}=-\mathrm{K}_{2} \mathrm{C}^{2} \mathrm{fH}+\mathrm{fTh} \mathrm{H}^{2}+\left(\alpha^{2}-\alpha\right)
\end{aligned}
$$

Thus β can be calculated using equation (2-69).

Diffusion is one of the most fundamental irreversible process. If a difference of ooncentration of a solute exists in different regions of a solution, this process automatically set in and the solute spontaneously diffuses from higher to lower concentration until the concentration difference ceases to exist. The solvent, likewise, flows in the direction opposite to that of the solute.

The process of diffusion and conductance both involve migration of ions. In the latter, the positive and negative ions move in opposite direction while in diffusion the movement is in the same direction. At infinite dilution the ionic movement is independent of the other ions while conducting current. However, in case of diffusion all ions must move in the same direction and with the same speed otherwise electrical charge separation would result. The forces that make the ions move with the same speed are:
(i). The concentration gradient, dc/dx, defined as the rate of change in concentration with distance in the direction of flow. This is also taken as the positive direction of distance x. This force is more accurately refered to as the gradient of chemical potential, $\mathrm{d} \mu / \mathrm{d} x$, for the diffusing ionic species.
(ii). The electrical force, $Z_{i e E}$, which results from the tendency of the more mobile ions to move
faster than the less mobile ones, creating a charge separation - on a microscopic scale - or a gradient of electrical force which then causes a faster motion of slower ions and slows down the faster ions. The result is an identical speed for all ions. This phenomenon eliminates the relaxation effect which is associated with the conducting ions.

2-5-1 The Nernst-Hartley relationship in strong electrolytes

The forces on single ions due to the gradients of chemical potential and electrical field when expressed in terms of measurable physical quantities yield the following relationship - known as the Nernst-Hartley relationship 65.

$$
D=\frac{v++v-}{v+|z+|} \frac{\lambda^{0}+\lambda^{0}-}{\lambda^{0}++\lambda^{0}-} \frac{R T}{F^{2}}\left(1+\frac{d \ln y t}{d \ln C}\right) \quad 2-71
$$

Where $\mathrm{v}+$, v - are the number of subscripted ions of valencies $\mathrm{Z}_{+}, \mathrm{Z}$ - and conductivities $\lambda^{0}+, \lambda^{0}-, R, T$ and F are the molar gas constant, temperature and Faraday constant respectively. $y \pm$ represents the mean activity coefficient divided by the mean ionic molar concentration, at molar concentration C of the salt, as defined earlier. The limiting value of diffusion coefficient $D 0$, when ($d \ln y \pm / d \operatorname{lnC}$) tends to zero, is given by

$$
D_{0}=\frac{v++v-}{v+|Z+|} \frac{\lambda^{0}+\lambda^{0}-}{\lambda q+\lambda-} \frac{R T}{F^{2}}
$$

It follows that

$$
D=D^{0}\left(1+\frac{d \ln y_{t}}{d \ln C}\right)
$$

For single electrolytes yielding two ionic species, equation (2-71) is composed of two parts; the mobility factor,

$$
\frac{\mathrm{v}++\mathrm{v}-}{\mathrm{v}+|\mathrm{Z}+|} \frac{\lambda^{0}+\lambda^{0}-}{\lambda 0+\lambda^{0}-} \frac{\mathrm{RT}}{\mathrm{~F}^{2}}
$$

This factor solely determines the diffusion coefficient at infinite dilution. The activity factor,

$$
1+\frac{d \ln y_{t}}{d \ln C}
$$

is a seperately available experimental quantity; thus Interest centres on the contribution of the mobility factor at finite concentrations in the dilute range.

When the observed D values are divided by the activity factor, a quantity proportional to the actual mobility of the diffusing solute is obtained and can be compared with the limiting value D^{0}. Robinson and Stokes64 have shown that the variation of diffusion coefficient with concentration is many times greater than that of the quantity $D / f(y)$ where $f(y)$ represents the activity factor. Thus a greater part of change in D is attributed to non-ideality in thermodynamic behaviour. The residual variation in $D / f(y)$ with concentration indicates that the actual mobility of ions vary slightly with concentration.

Their re-examination of Nernst-Hartley equation shows that actual ionic conductivities at finite concentrations cannot be used since experiments indicate that ionic mobilities during electrolytic conduction have a much greater variation and always decrease. However, in diffusion, these may decrease, increase or remain constant with concentration changes.

The relaxation effect is absent in diffusion, but a small electrophoretic effect is thought to be responsible for the slight variation of mobility with concentration and is included in the Nernst-Hartley equation in the forms

$$
D=\left(D^{0}+\Delta_{1}\right)\left(1+\frac{d \ln y_{ \pm}}{d \ln C}\right)
$$

for asymmetric electrolytes, and

$$
D=\left(D_{0}+\Delta_{1}+\Delta 2\right)\left(1+\frac{d \ln \mathrm{y}_{\ddagger}}{\mathrm{dln} C}\right)
$$

for symmetric electrolytes.
Where Δ_{1} and Δ_{2} are quantities reflecting electrophoretic effect in diffusion as given by Robinson and Stokes. These authors have shown that, generally, the above theory holds up to 0.01 M for $1: 1$ electrolytes.

Where more than two ionic species are present, the situation becomes more complex since there is an infinite number of ways of satisfying the electrical neutrality condition (cf. reference 7). Generally, equations can be derived, but not necessarily solved for such cases.

2-5-2 Diffusion coefficient in concentrated electrolyte solutions

Effects, negligible for dilute solution below 0.02 M , that become important in concentrated solution are as follows:
(i) the solvent molecules will in general move in the opposite direction to the solute molecules. (ii) ions may carry with them a permanent hydration layer which acts as part of the diffusing solute entity and
(iii) the viscous forces may be considerably modified by the presence of large numbers of ions. The above situation is complex and involves difficult concepts, Robinson and Stokes have given a theoretical treatment based on the work of Hartley and Crank. The equation applicable in this case is

$$
\begin{array}{r}
D=\left(D 0+\Delta_{1}+\Delta_{2}\right)\left(1+\frac{m d l^{2} y_{ \pm}}{d m}\right)\left[1+0.036 m\left(\frac{D^{*} H_{8} 0}{D^{0}}-n\right)\right] \frac{n^{0}}{n} \\
\ldots \ldots \ldots \ldots 2-76
\end{array}
$$

where m, n, η°, η and $D * H_{2} O$ are molality, moles of bound water, viscosities of solvent, solution and self-diffusion coefficient of water respectively.

2-5-3 Fick' s Laws

The flux of matter, J. This is defined as the amount of material, in grams or moles, crossing a unit area of a plane perpendicular to the direction of flow in unit time. J has the units of mole $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ and is given by the equation:

$$
J=-D \partial c / \partial x
$$

The diffusion coefficient, D. Essentially diffusion coefficient, D, is defined by equation (2-77). J is expressed as a partial differential of concentration, C, with respect to distance, x, because C is dependent both on time, t, and distance. The negative sign means that the direction of flow of matter is opposite to that of the concentration gradient as per the definition of distance x and D is a positive quantity.
 mol $\mathrm{cm}^{-2} \mathrm{~s}^{-1}, \mathrm{D}$ would have units of $\mathrm{cm}^{2} \mathrm{~s}^{-1}$.

Another equation which relates the change of concentration with time to the rate of change of flux is

$$
\frac{\partial C}{\partial t}=\frac{\partial}{\partial x}\left(D \frac{\partial C}{\partial x}\right)
$$

Equations (2-77) and (2-78) are known as Fick's first and second laws of diffusion respectively. The two Laws, thus summarise D as a constant for a given system; the constancy is, however, not followed
and D varies with concentration. The main interest of diffusion studies lies in the variation of D with C.

2-5-4 Methods of determining diffusion coefficient

Various methods for the determination of diffusion coefficients have been described in the literature ${ }^{4 .}$. They are classified into absolute and relative methods. Gouy interference and conductometric methods are examples of the former. Stokes porous diaphragm cell facilitates a relative method. The latter method has been universally accepted for measuring diffusion coefficients above 0.05M64.

The diaphragm cell is a relative method because it requires calibration with a known solute. It has great advantage over absolute methods for being inexpensive and easy to install and calibrate; and can be successfully employed to determine diffusion coefficient at elevated temperatures8 6 and is considered to be capable of yielding diffusion coefficients with a relative precision of 0.3\%. This method was employed to study diffusion coefficients of aqueous Vitamin B1 solutions and a detailed discussion of its theory is as follows.

FIGURE 2-5-5. DIFFUSION CELL (SCHEMATIC DIAGRAM)64

2-5-5 Theory of the porous diaphragm cell method

This method was first introduced by Northrup and Anson. Modification, with improvement, by Hartley and Runnicles; McBain and Dawson; Monguin and Cathcart and Gordon ${ }^{67}$ then followed. Finally, Stokes ${ }^{68}$ made important improvements in the theory and practice of this method.

The schematic diaphragm cell, shown in Figure (2-5-5), has two chambers A and B, which are separated by a porous $G 4$ glass disc. The volume of the two chambers are represented by V_{A} and V_{B} respectively and that within the porous disc by $V D$. The effective average length of the diffusion path within the disc is L. The total effective cross-sectional area of the diaphragm pores is A and the concentrations of solutions in chambers A and B are $C A$ and $C B$ respectively. CB is always kept greater than C_{A} to ensure gravitational stability.

The assumptions made in developing the theory for this method are:
(i) the diffusion is without convection and occurs only within the confines of the porous glass disc,
(ii) the solutions in chambers A and B are well stirred so that there is no concentration gradient in either chambers,
(iii) the flux, J, at any time, t, is independent
of the distance x, but only depends on time. To stress this fact J is represented as $J(t)$, (iv) Fick's first law describes the diffusion occuring within the disc of the diaphragm cell. The assumption about the space and time dependence of J being called the 'pseudo-steady state' and (v) there is no material accumulation within the diaphragm during the time when transport by diffusion is proceeding.

The rate of change of solute concentrations in the top and bottom chambers are related to the flux, $J(t)$, by the following equations.

$$
\mathrm{dCA} / \mathrm{dt}=\mathrm{J}(\mathrm{t}) \mathrm{A} / \mathrm{V}_{\mathrm{A}} ; \quad \mathrm{dCB} / \mathrm{dt}=-\mathrm{J}(\mathrm{t}) \mathrm{A} / \mathrm{V}_{\mathrm{B}}
$$

Hence

$$
\frac{d\left(C_{B}-C_{A}\right)}{d t}=-J(t) \cdot\left(\frac{1}{V_{B}}+\frac{1}{V_{A}}\right) \cdot A
$$

The average value of the diffusion coefficient $\bar{D}_{,}$with respect to concentration, over the concentration $C B$ to $C A$ prevailing at the time considered (this quantity is also time dependent) is denoted by $\overline{\mathrm{D}}(\mathrm{t})$ and is given by the equation

$$
\begin{aligned}
\bar{D}(t) & =\frac{1}{C B-C_{A}} \int_{C_{A}}^{C B} D d c \\
& =-\frac{1}{C_{B}-C_{A}} \int_{x=0}^{L} D \frac{\partial G}{\partial x}_{\partial}^{D}
\end{aligned}
$$

$$
=\frac{L J(t)}{C B-C A}
$$

$$
2-80
$$

Since $J(t)=-D(\partial c / \partial x)$ is constant for all points within the diaphragm at time $t . x$ is the distance of the plane considered from the lower surface of the diaphragm (in the opposite direction of concentration gradient). Combining equations (2-79) and (2-80) one gets

$$
-\frac{d \ln \left(C_{B}-C A\right)}{d t}=\frac{A}{L}\left(\frac{1}{V_{B}}+\frac{1}{V_{A}}\right) \bar{D}(t) \quad 2-81
$$

Hence integrating between initial and final conditions as shown in Figure (2-5-5) one obtains

$$
\ln \frac{C 0_{B}-C_{A}}{C t_{B}-C t_{A}}=\frac{A}{L}\left(\frac{1}{V_{B}}+\frac{1}{V_{A}}\right) \int_{t=0}^{t=t} \bar{D}(t) d t
$$

$\overline{\mathrm{D}}(\mathrm{t})$ is a concentration average, its time average is denoted by $\overline{\mathrm{D}}$ such that

$$
\overline{\mathrm{D}}=\frac{1}{t} \int_{0}^{t} \overline{\mathrm{D}}(\mathrm{t}) \mathrm{dt}
$$

$$
2-83
$$

Let the cell constant, $\frac{A}{L}\left(\frac{1}{V_{B}}+\frac{1}{V_{A}}\right)$, be denoted by β. Equation (2-82) then becomes

$$
\overline{\mathrm{D}}=\frac{1}{\beta t} \ln \left(\frac{\Delta \mathrm{Co}}{\Delta \mathrm{Ct}^{t}}\right)
$$

where $\Delta C_{0}=C_{B}-C_{A}$ and $\Delta C^{t}=C^{t} B-C_{A}^{t}$.
Concentrations of Vitamin B1 solutions were determined, in this experiment, by refractive index
measurements, such that,

$$
\bar{D}=\frac{1}{\beta t} \ln \left(\frac{\Delta n^{0}}{\Delta n^{t}}\right)
$$

where $\Delta n^{0}=n^{0} B-n^{0} A, \Delta n^{t}=n^{t} B-n^{t} A$ and $n^{0} B, n^{0} A$, $n^{t} B$, and $n^{t} A$ are the initial and final refractive indices of the solutions in the subscripted chambers.

The average diffusion coefficient \bar{D} which is calculated directly from the initial and final solute concentrations in the top and bottom cell chambers, the duration of the run and cell constant using equation (2-84) or $(2-85)$, is a rather complicated double average of both concentration and time, and is called the Diaphragm cell integral diffusion coefficient. The integral diffusion coefficient, \bar{D}, so obtained can be converted into the real or differential diffusion coefficient, D, by the method described below.

2-5-6 Calculation of differential diffusion coefficient, " D, from the integral diffusion coefficient, $\overline{\mathrm{D}}$

Gordon 67 has shown that the integral diffusion coefficient, \bar{D}, is related to the true or differential diffusion coefficient, D, within an error of 0.02%, by the equation

$$
\bar{D}=\frac{1}{\bar{C}_{B}-\bar{C}_{A}} \int_{\bar{C}_{A}}^{\bar{C}_{B}} D \mathrm{dc}
$$

where $\mathrm{C}_{\mathrm{B}}=\left(\mathrm{CO}_{\mathrm{B}}+\mathrm{Ct}_{\mathrm{B}}\right) / 2$ and $\overline{\mathrm{C}} \mathrm{A}=\left(\mathrm{CO}_{\mathrm{A}}+\mathrm{Ct}_{\mathrm{A}}\right) / 2$
To compute the differential diffusion coefficient at particular concentrations from the \bar{D} values, an analytical expression6s with arbitrary Coefficients is usually assumed for $\overline{\mathrm{D}}$.

A hypothetical integral diffusion coefficient, $\overline{\mathrm{D}} 0(\mathrm{C})$, is defined such that it would be obtained in an experiment of vanishingly short duration with initial concentrations C and 0 in the lower and upper sides of diaphragm respectively. From equation (2-86) one obtains

$$
\overline{\mathrm{D} O}(\mathrm{c})=\frac{1}{\mathrm{C}} \int_{0}^{\mathrm{C}} \mathrm{D} d c
$$

In such hypothetical experiments with initial concentrations in the lower chamber being \bar{C}_{B} and \bar{C}_{A}, the corresponding integral diffusion coefficients would be $\bar{D} 0\left(\bar{C}_{B}\right)$ and $\overline{\mathrm{D}}\left(\overline{\mathrm{C}}_{\mathrm{A}}\right)$. The experimental diffusion coefficient, \bar{D}, is incorporated in this hypothetical situation by the equation

$$
\bar{D} O\left(\bar{C}_{B}\right)=\bar{D}-\left(\bar{C}_{A} / \bar{C}_{B}\right)\left(\bar{D}-\bar{D} 0\left(\bar{C}_{A}\right)\right.
$$

$\bar{D} 0$ can be calculated for the higher concentration, \bar{C}_{B}, from experimental $\overline{\mathrm{D}}$ value provided we know it for the lower concentration, \bar{C}_{A}.

A solution to this equation is possible since plots of $\overline{\mathrm{D}}\left(\overline{C B}_{\mathrm{B}}\right)$ against ($\overline{\mathrm{C}}$) and $\overline{\mathrm{D}}$ against (CO_{B}) lie within 1\%. In this connection, a graphical method
based on Stokes methods 8 of successive approximations which converge rapidly to give excellent results for the differential diffusion coefficients was employed. This was as follows:
(i) Experimental $\overline{\mathrm{D}}$ values were fitted against $\left(\mathrm{CO}_{\mathrm{B}}\right)^{1 / 2}$ using a BBC Basic Computer programme, based on the weighted least squares polynomial calculation by Forsythe's method, given in appendix II. From the best polynomial equation covering the concentration range down to infinite dilution, $\overline{\mathrm{D}}\left(\bar{C}_{A}\right)$ was calculated, as a first approximation, by substituting \bar{C}_{A} values for each run into the polynomial equation. The resulting $\overline{\mathrm{D}} 0\left(\mathrm{C}_{\mathrm{A}}\right)$ values were substituted in equation (2-88) for calculations of $\overline{\mathrm{D}} 0(\overline{\mathrm{C}} \mathrm{B})$ values.
(ii) The above $\overline{D^{0}}\left(\mathrm{C}_{B}\right)$ values were also fitted against ($\left.\bar{C}_{B}\right)^{1 / 2}$ from which, as a second approximation, $\overline{\mathrm{D}} 0\left(\bar{C}_{A}\right)$ values were again calculated and substituted in equation (2-88) to calculate new values of $\overline{\mathrm{D}}{ }^{\circ}(\overline{\mathrm{C}} \mathrm{B})$ for each run. (iii) Step (ii) was repeated with new $\overline{\mathrm{D}} 0$ ($\overline{\mathrm{C}} \mathrm{B})$ values until their subsequent values did not vary. (iv) The $\overline{\mathrm{D}}(\mathrm{CB})$ values finally obtained in (iii) were fitted against ($\left.\mathrm{C}^{0} \mathrm{~B}\right)^{1 / 2}$. The slopes, at each $\left(\mathrm{CO}_{\mathrm{B}}\right)^{1 / 2}$ point obtained from the concentrations of experimental solutions, were calculated using a BBC Basic Computer program given in appendix IV. This program differentiated the polynomial equation of the best fitting curves. On
differentiating equation (2-87), with ($\left.\mathrm{CO}_{\mathrm{B}}\right)^{1 / 2}$ substituted for C one obtains the equation:

$$
D=\bar{D}^{0}\left(\bar{C}_{B}\right)+\frac{\left(C_{0}\right)^{1 / 2}}{2} \cdot \frac{d \bar{D}^{0}\left(\bar{C}_{B}\right)}{d\left(\mathrm{C}^{0}\right)^{1 / 2}}
$$

The slope, $d \bar{D}\left(\overline{C B}_{B}\right) / d\left(C_{B}\right)^{1 / 2}$, together with values of $\left(\mathrm{CO}_{\mathrm{B}}\right)^{1 / 2 / 2}$ are substituted in the above equation to calculate the Differential Diffusion Coefficient, D.

This method overcame the problem of drawing tangents to the curve of the graph of $\overline{\mathrm{D}} 0(\overline{\mathrm{C}} \mathrm{B})$ against $\left(\mathrm{CO}_{\mathrm{B}}\right)^{1 / 2}$ in order to get slopes at each concentration, a method that was quite subjective although the second factor in equation (2-89) is the product of two small factors and subjectivity in the reading of slope may not produce a pronounced error in the final D value.

The author has obtained the Differential Diffusion Coefficients of Thiaminium dichloride in aqueous solution at 250 C using this method.

CHAPTER 3

EXPERIMENTAL

3-1 APPARATUS AND EQUIPMENT

3-1-1 The Tanks

Two tanks were fabricated using 1.5 inches angle-iron framework and glass plates; one was filled with non-conducting oil and the other with water.

The Oil Tank. The dimensions of the tank were $29.5 \times 29.5 \times 50.0 \mathrm{~cm}$. Five sides were made of 3 mm glass plates. The tank, was placed on a working bench of convenient height. It was filled with a non-conducting and adequately transparent Shell Diala BX oil.

The constant temperature was maintained using a GALLENKAMP adjustable contact thermometer68 Model JUMO D.B.P 2.67 connected through an NGN - Relais LR VI relay69 and employing a 40 Watts bulb as a heater. The stirring motors were fixed on to separate steel stands to minimise vibrations. These GALLENKAMP a.c. induction motors were connected to BERCO rotary regulators Type 72 A capable of varying the output voltage from 0 to 110%. Several paddles were welded onto each stirring steel rod.

A B. BRAUN thermoregulator model Thermix 1420 Type 850022 also circulated water through a hollow copper coil immersed in the oil bath when room
temperatures were far below or above 250 C .
Conductance measurements were carried out in this tank, with temperature variations being monitored using a Beckmann thermometer. This arrangement kept the temperature constant at $25^{\circ} \mathrm{C} \pm 0.010 \mathrm{C}$.

The Water Tank. This tank had dimensions of $71 \times 40 \times 35 \mathrm{~cm}$. The walls and the base were made of 3 mm glass plates and all, except the walls facing the experimeter were painted white to enable easy inspection of immersed apparatus.

It was placed, on a working bench of convenient height and filled with distilled water. The same type of a thermoregulator as for the oil tank maintained the temperature at $250 \mathrm{C} \pm 0.010 \mathrm{C}$. A water circulator - HETO Type FX23 - attached to a BERCO rotary regulator type LSOLAB was also used. The bath's temperature was then monitored using a Beckmann's thermometer. Water was added occasionally to replace losses due to evaporation.

This tank was set next to a large window providing enough daylight. The use of a magnifying glass greatly facilitated the inspection and use of apparatus.

3-1-2 Temperature Control

Density, Viscosity, Refractive index, Conductance and Diffusion coefficient, like most properties, are both concentration and temperature dependent. The intention of this study was to investigate the concentration dependence of these properties in aqueous Thiaminium dichloride solution. The measurements were therefore carried out at $25.00 \pm$ 0.010 C .

The facts that follow will help the reader realise the need for precise temperature control.

A change of 0.010 C causes approximately 0.02% change in the viscosity of water70a. The density70b decreases by $0.03 \% 0^{0} \mathrm{C}^{-1}$ rise in temperature for aqueous solutions or water. Refractive indices of aqueous solutions and water also show a temperature dependence54a of $0.00010 C^{-1}$. The Abbe's refractometer may require a control to within 0.50 C for liquids. The calibration changes54b by 0.0001 units for every 150 C . Diffusion71 coefficients and conductivity72 both change by about 2% per every degree change.

The Beckmann and the adjustable contact thermometers used were capable of detecting temperature variations within $\pm 0.0050 \mathrm{C}$. The recorded fluctuations were within $25.00 \pm 0.010 \mathrm{C}$.

FIGURE 3-1-4 UBBELOHDE-TYPE VISCOMETER
(ON PERSPEX-IRON FRAMEWORK) (NQT TO SCA\&E)

3-1-3 Pyknometer

The neck of a $25 \mathrm{~cm}^{3}$ volumetric flask was replaced by another neck of 3 mm internal diameter. This flask-type pyknometer had its etch-mark made very close to the stopper position to enable easy removal of liquid above the mark. A holder was specially made for the pyknometer, such that it was firmly held into the tank during density measurement. Figures [3-1-3(a)] and [3-1-3(b)] shows the pyknometer and its holder respectively.

3-1-4 Viscometer
A Ubbelohde33 viscometer, shown in Figure (3-1-4) while mounted onto a perspex-steel tripod framework with rubber-tipped legs to absorb shock due to external vibrations, was used for determining viscosities of solutions.

This Kinematic viscometer had B-10 sockets on all openings to facilitate easy closure. The capillary was long-flared to minimise Kinetic energy losses. The suspended level provided at the top of bulb G compensated for the forces operating in bulb H and eliminated static and dynamic surface tension effects.

3-1-5 Refractometer

A CARL ZEISS Type 120650 version of the Abbe's54a refractometer was used. Water, at 25.000 C , from the thermostatted bath was connected to the device through a circulator such that it maintained the
solutions and the prism-box at the desired temperature. The instrument required only a few drops of liquid and the refractive index could be read very quickly. The refractometer covered a range from 1.3000 to 1.7000 with an accuracy of ± 0.0002 when using light from a GRIFFIN \& GEORGE sodium lamp connected through a 500 Watts control transformer. Thus the refractive index was measured with respect to the sodium D-line54a although white or day light could also be used with elimination of coloured bands in the telescope. The Thiaminium dichloride solution from compartment A and B before and after diffusion runs were analysed by refractometry.

3-1-6 Conductivity Cell and Bridge
Conductivity Cell. Figure [3-1-6(a)] shows a conductivity cell that was fabricated in the science workshop of the University of Nairobi.

This cell was designed with a cell constant such that the measured resistance remained between $1000-30,000$ ohms73 for the concentration range $0-0.2 M$. The measured resistance was not to fall too far above or below this range because excessive polarization or insulation leakage would respectively occur. The filling tubes and the connecting leads were relatively far apart to avoid parasitic current? 4 flow through capacity resistance paths causing an apparent variation in the cell constant.

FIGURE $3-1-6(a)$ CONDUCTIVITY CELL

FIGURE 3-1-6(b) CELL HOLDER

Platinization of Electrodes. Polarization effects75 can be considerably reduced if the platinum electrodes of the conductance cell are given a coating of platinum black.

The cell was first cleaned with chromic and nitric acids and was then washed and rinsed with distilled and conductivity water.

A solution containing 0.3% Chloroplatinic acid and 0.25% lead acetate76 was transfered into the conductivity cell and a direct current of approximately $10 \mathrm{~mA} \mathrm{~cm}^{-2}$ was passed while reversing the polarity every 30 seconds. After about 15 minutes, the electrode surfaces appeared black and well coated. During electrodeposition only a moderate stream of gas evolved at the electrodes. Addition of lead acetate improved the adhesion of the platinum deposits?7.

After platinization, the cell was thoroughly washed with cleansing mixture, distilled water and finally with conductivity water. When not in use, the cell was filled with conductivity water, stoppered using glass stoppers and kept in a safe place.

Conductivity Bridge. For the purpose of conductance determination, resistance measurement are almost always measured by means of an a.c. wheatstone bridge circuit (Kohlrauch's method) shown in Figure [3-1-6(d)].

FIGURE 3-1-6(c) COMPOHENI'S OF THE CJRCUIT

The components of the circuit assembled in the laboratory, described below, were as shown in Figure [3-1-6(c)].

Signal generator: An ADVANCE Audio-Frequency signal generator type HIB supplied an alternating voltage up to 22 V at frequencies 15-50000 c s-1. The Voltage used was 4 V and the frequency was varied within the range $1000-3000$ c s^{-1}.

Ratio resistances: The ratio resistances, R_{1} and R_{2} were assembled in the University's science workshop and had provisions for varying the ratio resistances on the ratio arms of the bridge. These were fixed non-inductive resistors.

Wagner earth ${ }^{2}$: An oscilloscope (Detector) gives satisfactory performance only when points A and C [see Figure 3-1-6(d)] are close to earth potential without directly connecting to earth, thus the inclusion of Wagner earth. These fixed non-inductive resitors were assembled in the science workshop.

Amplifier ${ }^{2}$:
This nas assembled as shown on Fieure [3-1-6(e)], in the science worlshrop. Its sensitivity was varied by clanging the voltage upto 9 V over a 0.5 M ohms resistor.

Resitance decades: R3 could be varied in steps of 1 ohm between 0-999,999 ohms using a Heathrit model IN-11 Decade box of low-inductive resistors.

Capacitance decades:A Heathkit Model IN-21 decade condenser, variable over the range $0-0.111 \mu f$ in steps of $10-4$ hf and augnonted by an air capacitor (curnected in parallel) for finer adjustment.

Detector:
A Esneval purpose ascilloscope, CEARIRAD double beam Type 273E, of sensitivity 10 mV per 1 mm defleation of electron beam over the vertical set of condenser Platias was used. This sensitivity was not sufficient hence the inclusion of an amplifier.

SCALE. EULLSI2E D1MENSIOHS INCM
FIGURE 3-1-7 ROTATING DIAPHRAGM CELL
(vertical cross-section)

3-1-7 Rotating Diaphragm Cell

A modified version of the Stokes diaphragm cell68, developed by Wendt and Shamim8 was used to determine diffusion coefficients. The cell, shown in Figure (3-1-7), was machined out of a solid cylindrical perspex block of 6.40 cm diameter. The cell essentially has four main parts, namely, Caps A and B and Compartments A and B. Compartments A and B screwed together formed the main body of the diffusion cell. The parts of the cell are as described below:

Cap A. A perspex cylindrical block, 4.5 cm in length, had a threaded blind hole of about 3.0 cm in diameter. A Teflon tapered pin was screwed and permanently fixed with Araldite into the centre of the blind hole. A stainless steel shaft was screwed and permanently fixed with epoxy cement into the top of the Cap opposite the teflon tapered pin. A drainage hole ran diametrically from the threaded blind hole. The threaded blind hole, Teflon tapered pin, the steel shaft and the cylindrical main body were all coaxial. This Cap closed the top compartment (A) and the steel shaft went into motorized chuck.

Cap B. This was similar to cap A except that it had no steel shaft. This Cap closed the bottom compartment B.

Compartment A. This consisted of a threaded section, 2.0 cm long, that fitted into the threaded hole in cap A. Concentric with this section was a hole into which the Teflon tapered pin tightly fitted. This hole ran into a solution chamber. This solution chamber had a concentric shoulder into which fine porosity, G4, fritted glass disc was permanently fixed using Araldite. The two ends of a small turbulence impeller were fixed into two slots cut into the walls of this chamber before fixing the fitted glass disc.

This compartment had four circumdrilled holes into which 3.5 cm long screws went through into similar but threaded holes in compartment B holding both compartments tightly together. Another shoulder was machined around the fritted glass disc to accomodate a protruding edge in compartment B.

Compartment B. This was made similar to Compartment A except that it had no fritted glass disc but had a sealing ring seated into a groove concentric with the solution chambers. Once the two compartments were secured together the sealing ring sat around the porous disc and sealed off the solution chambers from the water bath. The turbulence impellers in both compartments were placed very close to the surface of the disc. These compartments were never separated after calibrating the cell. Compartment B held the denserli solutions during diffusion runs.

Compartments A, B and the porous disc held approximately $3.00 \mathrm{~cm}^{3}, 3.50 \mathrm{~cm}^{3}$ and $0.25 \mathrm{~cm}^{3}$ of solution respectively. The tapered pin design made sure of sealing off solution volumes which were highly reproducible. The cell constant did not change with time.

The assembled cell was mounted into a motorized chuck. The motor, a 30 Watts GRIFFIN \& GEORGE, Type LC8 - with variable speed, rotated it intermittently. Accelaration increased to maximum set speed within five seconds, followed by a sudden stop for the next five seconds. During the 4-6 Hours diffusion runs, these intermittent rotations were continously executed since these caused the impellers to induce turbulence and consequently stirred7l the solutions in the two chambers thereby effectively removing the diffusive boundary or stagnant layers immediately above and below the porous disc.

The above motor was fixed on a separate support such that it hang above the water bath. This avoided vibrations which would otherwise interfere with other measurements.

3-1-8 ON-OFF Switch79

A simple electronic device whose electronic circuit is shown in Figure (3-1-8) was used to control the motor's intermittent rotation at intervals of 5 seconds. The mounted diffusion cell was therefore similarly controlled.

FIGURE 3-1-9 TITRATION CELL

3-1-9 Potentiometer and Titration Cell
The potentiometric titration apparatus
consisted of the titration cell, $\mathrm{Ag} \mid \mathrm{AgCl}:$ Solution: $\mathrm{KNO}_{3}:$ Saturated $\mathrm{KCl}: \mathrm{Hg}_{2} \mathrm{Cl} 2 \mid \mathrm{Hg}$, shown in Figure (3-1-9), a P. Haack A-grade milliburette of 5 ml capacity, a magnetic stirrer, a Radiometer Copenhagen type PHM 22a potentiometer and an A-grade graduated pipette of 1 ml capacity.

The cell consisted of 100 ml beaker which was covered with a lid provided with holes to accomodate the apparatus that went into the test solution. The test solution also held a., magnetic stirring bar, one arm of the salt-bridge 80 and a $\mathrm{Ag} / \mathrm{AgCl}$ electrode 80 . The other arm of the salt-bridge was placed into the calomel electrode, $\mathrm{Hg}\left|\mathrm{Hg} 2 \mathrm{Cl}_{2}\right|$ Sat. KCl^{80}.

The concentration of $\mathrm{KCl}, \mathrm{NaCl}$, used for calibration runs for Diffusion cell, at the end of each diffusion experiment were analysed potentiometrically using this apparatus. The Chloride solutions were titrated against AgNO_{3} solution using $\mathrm{Ag} \mid \mathrm{AgCl}$ as a working electrode and calomel as the reference electrode. The saturated KCl solution in the Calomel electrode and the test solution were connected by a potassium nitrate, agar-agar salt bridge.

3-2-1 Density Measurements

The pyknometer was soaked in Chromic acid overnight then in concentrated nitric acid for cleaning purposes. It was then thoroughly washed with distilled water and finally rinsed with double-distilled water. The pyknometer was dried in a vacuum desiccator. The dried pyknometer was stoppered and weighed on a METTLER TYPE H10 balance upto an accuracy of $\pm 0.00005 \mathrm{gm}$. This procedure was repeated ten times with weights agreeing within $\pm 0.0005 \mathrm{~g}$. The average value of the weights was taken as the apparent weight of the empty pyknometer.

The pyknometer was then filled with degassed double-distilled water to a level slightly above the etch-mark using a 30 ml syringe with a large bore hypodermic needle fixed to a 15 cm long plastic tubing. The stoppered pyknometer was then placed in the water bath for 30 minutes to attain thermal equilibrium. The level of water in the pyknometer was brought to the etch-mark by blotting the water with thinly cut filter paper strips. The area above the mark was dried carefully with the same filter paper strips. The pyknometer was then taken out of the water-bath and its outer surface wiped and dried. It was weighed and the procedure was repeated many times. The weights were corrected for air bouyancy80 and the volume of the vessel was determined from the corrected weight and density of water at 25.000 C . The volume of the
pyknometer was found to be $25.7027 \mathrm{~s} \pm 0.0005 \mathrm{~cm}^{3}$. The calibration density measurements are shown in Table [3-2-1(a)].

The same procedure was repeated 'for aqueous Vitamin B1 solutions. Their densities were determined from the volume and corrected weight relationship given by equation (2-1). The pyknometer was cleaned after each density determination and was occasionally recalibrated.

The density of solid Vitamin B1 was determinated by the liquid displacement method 31 b using acetone and benzene as the non-dissolving solvents.

When correcting the apparent weights of the solutions and the solid, the accurate densities of either is required yet this is the quantity sought. For this reason a simple computer program was developed. It used the apparent densities calculated using apparent weights to iteratively correct themselves until constant density values were obtained (see Appendix I). The density data in the concentration range 0.001 to $1 M$ were related by the analytical equation,

$$
p=0.99707+0.10684 C-0.00114 C^{2}
$$

The standard errors in the y-intercept and in the coefficients of C and C^{2} were $\pm 0.00003, \pm 0.0009$ and ± 0.007 respectively. The correlation coefficient was 0.9998 .

TABLE 3-2-1(a) VOLUME CALIBRATION OF THE PYKNOMETER AT $25^{\circ} \mathrm{C}$

$W_{E} *$	$W_{E} *$	WWA	WWC	V
42.8738	17.2730	25.6008	25.6279_{5}	25.70326
42.8730	17.2734	25.5996	25.62675	25.70206
42.8735	17.2727	25.6008	25.62795	25.70326
42.8736	17.2728	25.6008	25.62795	25.70326
42.8731	17.2732	25.5999	25.62705	25.70236
42.8732	17.2726	25.6006	25.62775	25.70306
42.8730	17.2730	25.6000	25.62715	25.70246
42.8733	17.2730	25.6003	25.62745	25.70276
42.8738	17.2730	25.6008	25.62795	25.70326
42.8729	17.2730	25.5996	25.62675	25.70206

Wz* = Weight of filled pyknometer.
Wz* $=$ Weight of empty pyknometer.
Wws = Weight of water (apparent).
Wwc $=$ Weight of water (corrected).
$V=$ Volume of pyknometer.

UNITS:- Weights, g; V, cm^{3}.

* Averages of ten readings for each water sample.

Mean Volume $=25.70278 \mathrm{~cm}^{3}$.
Standard Deviation $= \pm 0.0005 \mathrm{~cm}^{3}$.
Statistical Analysis done by a BBC INSTAT program.

TABLE 3-2-1(b) DENSITY MEASUREMENTS OF AQUEOUS THIAMINIUM DICHLORIDE SOLUTIONS AT $25^{\circ} \mathrm{C}$

C	Pobs	p*eal.	Δp
0	0.99707	0.99707	-0.00000
0.00098	0.99726	0.99730	-0.00004
0.00196	0.99738	0.99740	- 0.00002
0.00300	0.99750	0.99751	- 0.00001
0.00415	0.99764	0.99764	- 0.00000
0.00491	0.99764	0.99772	- 0.00008
0.00598	0.99785	0.99783	0.00002
0.00702	0.99798	0.99794	0.00004
0.00829	0.99807	0.99807	0.00000
0.00906	0.99816	0.99816	0.00000
0.00982	0.99828	0.99824	0.00004
0.01964	0.99933.	0.99928	0.00005
0.03000	1.00039	1.00037	0.00002
0.04146	1.00146	1.00158	-0.00009
0.05894	1.00346	1.00343	0.00003
0.06821	1.00443	1.00440	0.00003
0.07712	1.00542	1.00534	0.00008
0.11342	1.00917	1.00915	0.00002
0.21212	1.01938	1.01942	-0.00003
0.28981	1.02737	1.02743	- 0.00006
0.50377	1.04919	1.04913	0.00006
0.59802 **	1.07052	1.05851	0.01201
0.75388	1.07664	1.07380	0.00284
0.78205	1.07918	1.07653	0.00266
0.99538	1.10110	1.09693	0.00417

UNITS:- C, mol 1-1; p and $p^{*}, g \mathrm{~cm}^{-3}$ and $\Delta p=P_{\text {obs }}-\rho^{*}$ cal. - Calculated using equation (3-1).

The equation fits within ± 0.0001 upto 0.5 M .
The 5TH decimal place arises from averaging of ten weight readings and titration readings.
** The values below this are not represented by equation (3-1).

TABLE 3-2-2 CALIBRATION VISCOSITY MEASUREMENTS AT $25^{\circ} \mathrm{C}$

WATER SAMPLE	
1	451.816
2	451.831
3	451.851
4	451.835
5	451.807
6	451.826
7	-451.870
8	451.821
9	451.839
10	451.801

UNITS:- Time in seconds.

* Results from averaging over ten readings.

Mean time $=451.830 \mathrm{sec}$.
Standard Deviation $= \pm 0.02$ seconds.

This analytical equation best fits the density data in the concentration range 0.001 - 0.500 M . Table [3-2-1(a)] gives density values at corresponding concentrations. The density data was used to compute the partial molal volume using equation (2-9).

3-2-2 Viscosity Measurements

The earlier stated cleaning procedure was followed for the Ubbelohde-type viscometer. Calibration was done using double-distilled water without drying the apparałus.

The viscometer was dried using a stream of dry Nitrogen then rinsed with the test solution ensuring that the prepared concentration does not suffer a change due to moisture in the viscometer.

The solution was finally introduced into the viscometer bulb, K, to either of the marked levels, F, [see Figure (3-1-4)] using a 30 ml syringe. The loaded instrument was placed at a marked position in the thermostatted bath for one hour to attain thermal equilibrium. The solution was then forced above the upper etch-mark, A, using a spray bellow operating through mouth E, having stoppered mouth C. By opening C and releasing the spray bellow, the solution was allowed to flow. The flow-time between the etch-marks A and B were recorded using an ALBA electronic stop-watch within ± 0.01 seconds. The actual starting
and ending points on the etch-marks were sighted using a 4 inches magnifying eye-piece.

The liquid was initially allowed to flow through the capillary several times before taking readings which were recorded until ten subsequent recordings agreed within 0.05 seconds.

Calibration was similarly done using several samples of double-distilled water.

The openings of the viscometer when in use were kept covered with aluminium foil to prevent any dust particles from entering the apparatus; and when not in use they were closed with rubber teats over aluminium foil. Relative viscosities were calculated using equation (2-22) using an average flow-time of water as 451.830 ± 0.02 seconds and density of water as $0.99707 \mathrm{~g} \mathrm{~cm}^{-3}$. Calibration viscosity measurements are shown in Table [3-2-2]. The Jones-Dole equations were fitted to the graph of relative viscosity versus concentration. The A, B and D coefficients were then derived.

TABLE 3-2-3 CONCENTRATION CALIBRATION REFRACTIVE INDEX
MEASUREMENTS OF AQUEOUS THIAMINIUM DICHLORIDE SOLUTIONS AT 250 C

	nobs	neal $*$	$\Delta \mathrm{n}$
0.00103	1.33253	1.33255	-0.00002
0.00198	1.33260	1.33262	-0.00002
0.00262	1.33265	1.33267	-0.00002
0.00504	1.33285	1.33286	-0.00001
0.03000	1.33480	1.33481	-0.00001
0.04146	1.33570	1.33570	0.00000
0.05006	1.33638	1.33637	0.00001
0.05897	1.33708	1.33707	0.00001
0.06821	1.33780	1.33779	0.00001
0.07712	1.33850	1.33848	0.00002
0.09368	1.33980	1.33978	0.00002
0.11342	1.34135	1.34131	0.00004
0.21212	1.34910	1.34902	0.00008
0.28981	1.35520	1.35508	0.00011
0.39934	1.36380	1.36367	0.00013
0.50377	1.37200	1.37185	0.00015
0.59802	1.37940	1.37924	0.00016
0.70627	1.38790	1.38774	0.00016
0.78205	1.39385	1.39370	0.00015
0.99538	1.41060	1.41050	0.00010

UNITS:- C, mol 1^{-1} and n is a ratio.
$\Delta n=n o b s-n e a l *$

* Calculated using equation (3-2) which fits nobs values within -0.00002 and +0.0002 in the concentration range 0.001 to 1 M

3-2-3 Refractive Index Measurements

A series of Thiaminium dichloride solutions with concentrations ranging from approximately 0.001 to 1.00 M , were prepared at 25.000 C . The prism box of the properly levelled refractometer was then opened and its surfaces wiped clean using a tissue paper soaked in absolute ethanol, water and finally with double-distilled water. A drop of double-distilled water - previously kept at 25.000 C in a flask - was transfered on to the lower prism. The prism box was then closed and fastened and the index recorded.

For each sample, the intersection of the cross-wires was approached from the top and bottom to eliminate error due to backlash on the meter screw. Readings were duplicated using another sample of water.

The final refractive index was thus an average of four readings.

On using double-distilled water, the refractometer was calibrated by setting it at 1.332554 a , at 25.000 C .

The average refractive index values for a series of Thiaminium dichloride solutions were used to obtain a calibration equation by fitting the indices, $\mathrm{n}_{\text {, }}$ against concentrations, C as shown in Table [3-2-3].

Thiaminium dichloride is a very fine powder and is difficult to weigh accurately. The concentration of solutions prepared for these
measurements were confirmed using potentiometric titrations against 0.05 M AgNOz solutions.

The slope and intercept calculated using a BBC micro-computer statistical package, are related by the analytical expression

$$
n=1.33247+0.07793 C+0.00047 C^{2}
$$

The standard errors in the y-intercept and in the coefficients of C and $C 2$ were $\pm 0.0002, \pm 0.001$ and ± 0.001 respectively. The correlation coefficient was 0.9998. Table [3-2-3] shows experimental and calculated values of Refractive indices and their difference at each concentration. The refractive indices were measured within ± 0.0002 but averaging over four values increased this accuracy.

3-2-4 Conductivity Measurements

The cell was cleaned with chromic acid, concentrated nitric acid, deionized water and rinsed with conductivity water. The cell was then left overnight in an inverted position for partial drying. The following day, a slow stream of filtered dry nitrogen gas was passed through the cell to ensure complete dryness. The cell was rinsed several times With aqueous Thiaminium Dichloride solution and then filled with the same. The loaded conductivity cell was placed in a wire gauze holder, shown in Figure [3-1-6(b)], then placed in the oil bath to attain the
bath's temperature. During this period the glass and electrode surfaces adsorbed some Thiaminium dichloride from the solution.

The cell was removed, its outer surface washed free of oil using carbon tetrachloride, emptied, refilled with the same but fresh solution and put back into the oil bath. Half an hour was allowed for thermal equilibration before measuring72 the resistance at a frequency within $1000-3000 \mathrm{~Hz}$. Duplicate experiments agreed within 0.1%.

3-2-5 Determination of Cell Constant

The cell constant of a conductivity cell is usually obtained by measuring the resistance, R, of a solution of known specific conductivity, k. The cell constant, K, is then calculated from the equation,

$$
\Rightarrow \quad K=k R=C \Lambda R / 1000
$$

Potassium chloride solutions are generally used for this purpose because the specific conductivities of its solutions at various concentrations have been very accurately determined81. The Bradshaw demal values81 at 25.000 C are most commonly used.

In this work the author used an alternative method which allows for the use of KCl solutions of any moderate concentrations. The method involves analysis8 2 of the molar or equivalent conductivity of
aqueous KCl solutions at 25.000 C by means of the following equations:

$$
\Lambda=149.82-93.85 \mathrm{C} 1 / 2+94.9 \mathrm{C}(1-0.2274 \mathrm{C} 1 / 2) \quad 3-4
$$

$$
\Lambda=149.93-94.65 \mathrm{C} 1 / 2+58.74 \mathrm{Clog} C+198.4 \mathrm{C}
$$

$$
\Lambda=\left\{\left(n^{0}+B C+D C l o g C\right)(1-v C 1 / 2)\right\}-2 \sigma C 1 / 2
$$

where $\nu=0.2289, \quad \sigma=30.09, \Lambda^{0}=149.88, \quad B=153.70$, $D=32.10$ and C is the molar concentration.

The cell constant arising from all these equations were compared and an average value, based on all the equations above, was adopted for calculating related quantity.

To determine the cell constant, the clean and dry cell was then rinsed several times with KCl solution of known molar concentration and filled with the same. The cell was then immersed into the oil bath and the resistance measured.

This was carried out for about ten solutions of KCl at different concentrations. The measured resistances of various solutions and the resulting cell constants are recorded in Table (3-2-5). Every analytical equation produced a matching but different value for the cell constant and revealed no trend with concentration. A mean value of 5.40 g cm^{-1} was adopted for subsequent calculations.

TABLE 3-2-5 CONDUCTIVITY CELL CONSTANT

C	R	K 1	K 2	K 3
0.00538	6949.90	5.368	5.367	5.366
0.00660	5714.40	5.390	5.387	5.386
0.00838	4573.30	5.452	5.450	5.448
0.00977	3876.80	5.357	5.354	5.353
0.01015	3768.90	5.404	5.402	5.400
0.01047	3679.90	5.440	5.438	5.436
0.01537	2529.60	5.428	5.428	5.428
0.02946	1354.20	5.441	5.450	5.460
0.03990	1001.00	5.380	5.398	5.418

UNITS:- C, mol $\mathrm{l}^{-1} ; \mathrm{R}$, Ohms and $\mathrm{Kn}, \mathrm{cm}^{-1}$.
K_{1}, K_{2} and K_{3} are based on Λ values from equations (3-4), (3-5) and (3-6) respectively.

Mean cell constant $=5.408 \mathrm{~cm}^{-1}$.
Standard Deviation $= \pm 0.034 \mathrm{~cm}^{-1}$.
Standard error of mean $= \pm 0.007 \mathrm{~cm}^{-1}$.
Coefficient of variation $=0.6 \%$.
Statistical analysis by BBC INSTAT program.

3-2-6 Diffusion Measurements

Double-distilled water and the solution under study were kept at $25.00 \pm 0.010 \mathrm{C}$ in the water bath and degassed using a water-pump.

Hypodermic needles were cut shorter so as not to damage the porous glass disc when filling and emptying the chambers. The syringes were each marked for each chamber and were used for filling, emptying or collecting sample solutions. Chamber B was rinsed three times with solution B (under study). Each time the solution was forced through the fritted glass disc with the help of a rubber teat. This was repeated four times with chamber B retaining half its contents to ensure that the disc was air-free and contained solution B only. Finally, Chamber B was completely filled with the same solution and Cap B was carefully screwed into place. The tapered pin in the cap allowed liquid to flow out as it advanced to form a tight seal.

Chamber A was also rinsed several times with double-distilled water and eventually filled completely with the same. Cap A was then screwed into position to isolate solution A from the water in the thermostatted bath.

The diffusion cell was inspected for air bubbles and then clamped into the motorized chuck via the steel shaft such that the cell was vertically held in the water bath. The porous disc was then assumed to
lie in a horizontal plane ${ }^{8}$. The motor was switched ON and the intermittent $O N-O F F$ rotation commenced. The motor speed was then so adjusted as to have an $O N$ and OFF duration of 5 seconds each.

After about one hour pre-diffusion time67, the cell was removed from the motor, assuming that the 'pseudo-steady state' had been established between solution A and B and so fritted glass disc contained a non-uniform solution instead of a uniform solution B initially present. The cell was wiped dry using a towel and Cap B unscrewed. Cap A remained in position to ensure that no solution flows through. This would have destroyed the steady-state. Solution B was drained off with the syringes described earlier, rinsed the chamber several times with fresh degassed test solution still kept at 25.000 C , filled with the same and Cap B carefully screwed back in position.

Cap A was then unscrewed, solution A drained out, rinsed several times and filled Chamber A with fresh degassed double-distilled water kept at 25.000 C . The time when water touched the porous disc surface in Chamber A during the final filling was considered as the starting time for the diffusion run, $t=0$. An ALBA electronic stop-watch was switched $O N$ at this point. Cap A was then screwed back, the cell put back into the thermostatted bath and the motor switched ON. During the diffusion run, the cell was occasionally inspected for air bubbles in the solution chambers.

Their presence meant a repetition of the diffusion run. The cell was taken out of the water bath after an interval of $3-6$ Hours, wiped dry, Cap B unscrewed, solution B withdrawn using a syringe and the solution stored in a clean and dry vial. The moment solution B left the porous disc surface, the stop-watch was stopped marking the time when the diffusion ceased, $t=t . \quad$ Cap A was then unscrewed a few drops of solution A were allowed to drain into Chamber B through the porous disc, in case any solution in the disc was sucked into Chamber A when Cap B was opened. The remaining solution A was drained off using a syringe and stored for analysis.

For calibration diffusion experiments with Potassium Chloride and Sodium Chloride solutions, the concentration changes in chambers A and B were determined by potentiometric titrations. Analysis of Thiaminium dichloride solution was done by refractometry using equation (3-2).

The experiments were discarded in case there were any air bubbles in either of the chambers at the end of a diffusion run.

3-2-7 Diffusion Cell Calibration
Calibration diffusion experiments were done with Potassium and Sodium Chloride solutions. The cell constant was determined from the known diffusion time t in seconds and the initial and final
concentrations of KCl^{83} and NaCl solutions in the two chambers.

As mentioned earlier in section (2-5), the integral diffusion coefficient D is given by the equation

$$
\overline{\mathrm{D}}=\left(\overline{\mathrm{D}}^{0}\left(\overline{\mathrm{C}}_{B}\right)-\left(\overline{\mathrm{C}}_{A} / \overline{\mathrm{C}}_{B}\right) \overrightarrow{\mathrm{D}}^{0}\left(\overline{\mathrm{C}}_{A}\right)\right) /\left(1-\left(\overline{\mathrm{C}}_{A} / \overline{\mathrm{C}}_{B}\right)\right)
$$

where $\overline{\mathrm{D}} 0\left(\bar{C}_{i}\right), \overline{\mathrm{C}} \mathrm{B}$ and \bar{C}_{A} are as defined earlier.
The cell constant was then calculated from the diaphragm cell equation

$$
\beta=(1 / \bar{D} t) \ln \left(\Delta C^{0} / \Delta C t\right) \quad 2-84
$$

Values of $\overline{\mathrm{D}} 0\left(\overline{\mathrm{C}}_{B}\right)$ and $\overline{\mathrm{D}} 0\left(\overline{\mathrm{C}}_{A}\right)$ in equation (2-88) for KCl solution were obtained by fitting literature $68,84 \overline{\mathrm{D}}(\mathrm{C})$ values against C using the BBC Basic computer program given in Appendix II then calculating them using the so obtained equations for the curve.

The following procedure was adopted to test the computer program, when proved satisfactory it was used to process $\overline{\mathrm{D}} 0(\overline{\mathrm{C}} \mathrm{B})$ and $\overline{\mathrm{D}} 0\left(\overline{\mathrm{C}}_{\mathrm{A}}\right)$ values from the literature D values ${ }^{3}$ for NaCl .
(i) Literature D values ${ }^{3}$ for KCl were obtained and a curve(s) fitted to the D against C graph using the above mentioned method [see Table 3-2-7(a)].
(ii) $\overline{\mathrm{D}} 0\left(\mathrm{C}_{1}\right)$ values were then obtained as per equation (2-87) using a program that integrated and
averaged D values over the concentration range from 0 to C (see appendix III).
(iii) The so obtained average integral diffusion coefficients at respective concentrations, $\overline{\mathrm{D}} 0\left(\mathrm{C}_{i}\right)$, were compared with literature $\overline{\mathrm{D}} 0\left(\mathrm{C}_{\mathrm{i}}\right)$ values for KCl and the agreement was excellent as shown in Table [3-2-7(b)].
(iv) Literature D values for NaCl were then treated as in steps (i), (ii) and (iii) The results are shown in Table [3-2-7(c)].

For each electrolyte, curves were fitted to $\overline{\mathrm{D}} 0\left(\mathrm{C}_{i}\right)$ against C graphs and extrapolated to infinite dilution. The curve polynomial equations were then used to calculate $\overline{\mathrm{D}} 0$ ($\overline{\mathrm{C}}_{\mathrm{B}}$) and $\overline{\mathrm{D}} 0\left(\overline{\mathrm{C}}_{\mathrm{A}}\right)$ in each case.
(v) From the values of $\overline{\mathrm{D}} 0$ ($\overline{\mathrm{C}}_{\mathrm{B}}$) and $\overline{\mathrm{D}} 0\left(\overline{\mathrm{C}}_{\mathrm{A}}\right), \overline{\mathrm{D}}$ was calculated for each case using equation (2-88). Having known $\overline{\mathrm{D}}, \Delta \mathrm{C} 0$ and $\Delta \mathrm{Ct}$ values, β was calculated using equation (2-84).

The relevant data and resulting cell constants are recorded in Tables [3-2-7(d)] and [3-2-7(e)]. Solutions of approximately 0.1 M were used for calibration in both cases. The agreement between β values obtained from these systems of different electrolytes indicated the reproducibility of volumes V_{A} and V_{B} of the cell, steady state condition within the disc, its horizontal alignment, titration method used for analysis and the method used for obtaining $\overline{\mathrm{D}}^{0}\left(\mathrm{C}_{1}\right)$ values.

TABLE 3-2-7(a) COMPARISON OF FITTED AND LITERATURE D VALUES OF KCl AT 250 C

C	Dist	Deit	$\Delta \mathrm{D}=\mathrm{Digit}^{\text {c }}$
0.000	1.996	1.9958	0.0002
0.001	1.964	1.9649	- 0.0009
0.002	1.954	1.9524	0.0016
0.003	1.945	1.9461	- 0.0011
0.005	1.934	1.9337	0.0003
0.007	1.925	1.9251	- 0.0001
0.010	1.917	1.9170	0.0000
0.050	1.864	1.8638	0.0002
0.100	1.844°	1.8441	- 0.0001
0.200	1.838	1.8380	0.0000
0.300	1.838	1.8380	0.0000
0.500	1.850	1.8500	0.0000
0.700	1.866	1.8656	0.0004
1.000	1.892	1.8921	- 0.0001
1.500°	1.943	1.9431	- 0.0001
2.000	1.999	1.9988	0.0001
2.500	2.057	2.0570	0.0000
3.000	2.112	2.1120	0.0000
3.500	2.160	2.1600	0.0000
3.900	2.196	2.1960	0.0000

UNITS:- C, mol 1-1; Diit and Deit, $\mathrm{cm}^{2} \mathrm{~s}^{-1} \times 10^{-5}$.
Deit values obtained by computer program shown in Appendix II.

TABLE 3-2-7(b) COMPARISON OF LITERATURE AND CALCULATED
DO (Ci) VALUES FOR KCl AT $25^{\circ} \mathrm{C}$

C			$\overline{\mathrm{D}}\left(\mathrm{Cl}_{1}\right) \mathrm{cal}$		$\Delta \overline{\mathrm{D}}$ (Cli)
0.000	1.996	(1.9958)	1.9958	(1.9958)	0.0002
0.001	1.974	(1.9744)	1.9781	(1.9781)	0.0007
0.002	1.966	(1.9654)	1.9679	(1.9679)	0.0013
0.003	1.960	(1.9605)	1.9616	(1.9616)	- 0.0016
0.005	1.951	(1.9508)	1.9530	(1.9530)	- 0.0020
0.007	1.945	(1.9450)	1.9460	(1.9460)	0.0010
0.010	1.938	(1.9380)	1.9385	(1.9385)	0.0005
0.020	1.920	(-)	-	(-)	
0.030	1.908	(-)	-	(-)	-
0.050	1.893	(1.8928)	1.8970	(1.8967)	0.0040
0.070	1.880	(-)	-	(-)	-
0.100	1.873	(1.8731)	1.8741	(1.8743)	0.0011
0.200	1.857	(1.8570)	1.8575	(1.8575)	0.0005
0.300	1.850	(1.8500)	1.8503	(1.8502)	0.0003
0.500	1.848	(1.8480)	1.8477	(1.8479)	0.0003
0.700	1.851	(1.8507)	1.8508	(1.8504)	0.0005
1.000	1.859	(1.8591)	1.8590	(1.8590)	0.0000
1.200	1.866	-)	-	(-)	-
1.400	1.874	(1.8740)	-	(-)	-
1.500	-	(-)	1.8784	(1.8784)	-
1.600	1.882	(1.8820)	-	-)	-
1.800	1.892	(-)	-)	-
2.000	1.901	(1.9010)	1.9014	(1.9014)	0.0004
2.500	1.927	(1.9270)	1.9268	(1.9268)	0.0002
3.000	1.953	(1.9530)	1.9531	(1.9530)	- 0.0001
3.500	1.979	(1.9790)	1.9793	(1.9790)	- 0.0003
3.900	2.000	(2.0000)	1.9997	(1.9997)	0.0003

UNITS:-C, mol 1-1; $\overline{\mathrm{D}}(\mathrm{Ci}), \mathrm{cm}^{2} \mathrm{~s}^{-1} \times 10^{-5}$.
The values in brackets were those fitted using the program in Appendix II.

Do (C_{1})cal values were calculated using the program in Appendix III.
$\Delta D O\left(C_{i}\right)=\bar{D} O\left(C_{i}\right) 1 \pm t-\bar{D} O\left(C_{i}\right) c a l$.

TABLE 3-2-7(c) LITERATURE D AND CALCULATED DO(Ci) VALUES FOR NaCl AT $25^{\circ} \mathrm{C}$

C	Dist		$\overline{\mathrm{D}}$ (Ci_{1})cal	
0	1.612	(1.6119)	1.6118	(1.6118)
0.001	1.585	(1.5853)	1.5965	(1.5965)
0.002	1.576	(1.5754)	1.5881	(1.5881)
0.003	1.570	(1.5704)	1.5830	(1.5830)
0.005	1.560	(1.5599)	1.5759	(1.5759)
0.007	1.555	(1.5550)	1.5703	(1.5703)
0.010	1.545	(1.5450)	1.5658	(1.565s)
0.050	1.506	(1.5067)	1.5334	(1.5333)
0.100	1.484	(1.4830)	1.5131	(1.5131)
0.200	1.478	(1.4785)	1.4957	(1.4957)
0.300	1.477	(1.4769)	1.4901	(1.4901)
0.500	1.474	(1.4740)	1.4838	(1.4839)
0.700	1.475	(1.4757)	1.4811	(1.4812)
1.000	1.483	(1.4826)	1.4805	(1.4805)
1.500	1.495	(1.4951)	1.4831	(1.4831)
2.000	1.514	(1.5140)	1.4884	(1.4884)
2.500	1.529	(1.5290)	1.4950	(1.4950)
3.000	1.544	(1.5438)	1.5020	(1.5020)
3.500	1.559	(1.5590)	1.5090	(1.5090)
4.000	1.584	(1.5840)	1.5167	(1.5167)

UNITS:- C, mol 1-1; Dlit_{1} and $\overline{\mathrm{D}}\left(\mathrm{C}_{1}\right)$, $\mathrm{cm}^{2} \mathrm{~s}^{-1} \times \mathrm{l}^{-5}$. The values in brackets were those fitted using the program in Appendix II.

Do (C_{i})cal values were calculated using the program in Appendix III.

TABLE 3-2-7(d) DIFFUSION CELL CONSTANT FROM 0.09977 M (COB) KCl SOLUTION

t	\bar{C}_{B}	\bar{C}_{A}	ΔC^{t}	$\overline{\mathrm{D}}$	B
10860	0.01307	0.08878	0.05143	1.8678	3.2764
10820	0.01321	0.08893	0.05146	1.8677	3.2864
10810	0.01304	0.08883	0.05158	1.8678	3.2763
10800	0.01307	0.08888	0.05163	1.8678	3.2755
14415	0.01587	0.08655	0.04138	1.8668	3.2783
14420	0.01598	0.08661	0.04133	1.8668	3.2817
14420	0.01598	0.08666	0.04136	1.8668	3.2786
14405	0.01600	0.08670	0.04143	1.8667	3.2763
18000	0.01769	0.08430	0.03323	1.8665	3.2788
18050	0.01786	0.08441	0.03312	1.8664	3.2794
18120	0.01791	0.08439	0.03298	1.8663	3.2793
18090	0.01792	0.08442	0.03302	1.8663	3.2811

UNITS:- t , sec.; $\mathrm{C}_{\mathrm{A}}, \overline{\mathrm{C}}_{\mathrm{B}}, \Delta \mathrm{Ct}$ and CO_{B}, mol l-1; $\overline{\mathrm{D}}$ in cm^{2} $\mathrm{s}^{-1} \times 10^{-5}$ and β, cm^{-2}.

Mean cell constant $=3.2790 \mathrm{~cm}^{-2}$.
Standard deviation $= \pm 0.0030 \mathrm{~cm}^{-2}$.
Standard error of mean $= \pm 0.000$ o cm^{-2}.
Coefficient of variation $=0.1 \%$.
All calculations done using the BBC INSTAT statistical program.

TABLE 3-2-7(e) DIFFUSION CELL CONSTANT FROM O.09786 M (CO B) NaCl SOLUTION

t	$\overline{\mathrm{C}}_{\mathrm{B}}$	$\overline{\mathrm{C}}_{\mathrm{A}}$	$\Delta \mathrm{Ct}$	$\overline{\mathrm{D}}$	B
11330	0.0899_{1}	0.01150	0.0570_{5}	1.5089	3.2706
11300	0.08992	0.01142	0.0572_{1}	1.5090	3.2627
10970	0.08993	0.01098	0.0581_{1}	1.5092	3.2660
11020	0.08978	0.01092	0.05794	1.5093	3.2687
14450	0.08835	0.01397	0.04897	1.5080	3.2669
14470	0.08844	0.01413	0.0488_{3}	1.5079	3.2753
14480	0.08837	0.01406	0.0488_{4}	1.5079	3.2724
14490	0.08832	0.01396	0.04893	1.5080	3.2611
18075	0.08630	0.01590	0.04101	1.5075	3.2636
18070	0.08640	0.01604	0.04093	1.5074	3.2719
18020	0.08635	0.01595	0.04102	1.5075	3.2727
18000	0.08642	0.01602	0.04103	1.5074	3.2756

UNITS:-t, sec.; $\bar{C}_{A}, \bar{C} \bar{B}, \Delta C t$ and $C O_{B}, m o l-1 ; \bar{D}$ in cm^{2} $\mathrm{s}^{-1} \times 10^{-5}$ and β in cm^{-2}.

Mean cell constant $=3.2690 \mathrm{~cm}^{-2}$.
Standard deviation $= \pm 0.0046 \mathrm{~cm}^{-2}$.
Standard error of mean $= \pm 0.0013 \mathrm{~cm}^{-2}$.
Coefficient of variation $=0.1 \%$.
All calculations done using the BBC INSTAT statistical program.

The average value of β over both electrolytes was $3.2740 \mathrm{~cm}^{-2}$ with a standard deviation of ± 0.0065, standard error of mean being ± 0.0013 and coefficient of variation being 0.2%. This value was adopted for subsequent \vec{D} and D calculations in Thiaminium dichloride solutions.

3-2-8 Potentiometric Titrations
The concentrations of $\mathrm{KCl}, \mathrm{NaCl}$ during each diffusion experiment and Thiaminium dichloride during calibration refractive index measurements were analysed potentiometrically.
0.01 M and 0.05 M AgNO3 solutions were used for analysing KCl and NaCl , and Thiaminium dichloride solutions respectively. In each case the appropriate AgNO_{3} solution was loaded into the milliburette. A graduated 1 ml pipette was used to pipette out 1 ml volume of the inorganic chlorides from each diffusion experiment and lesser volumes of the Vitamin B1 solutions depending on the prepared concentration.

AgNO3 solution was then added in convenient proportions after setting up the titration cell and the potentiometer. The total volume already added and the corresponding potentiometer reading was recorded. As the end-point approached, the change in potential difference increased markedly with every proportion of AgNO_{3} solution added necessitating the latters reduction so that a sharp end-point was obtained.

The end-points were determined by constructing second order differential plots85 i.e. $d^{2} E / d V V^{2}$ against V. For each sample,titrations were duplicated with reproducibility being within $\pm 0.5 \%$.

3-2-9 Calibration of Volumetric Flasks

When working at temperatures other than those at which commercially available volumetric flasks have been calibrated by the manufacturers, volume recalibration must be done.

Flasks were thoroughly cleaned with chromic and then concentrated nitric acids, followed by rinsing with plenty of distilled water. They were dried in a vacuum desiccator over silica gel. On drying the marked flasks were weighed together with their marked stoppers using a METTLER H1200 top pan balance weighing within $\pm 0.005 \mathrm{~g}$.

The flasks were then filled to just below the etch-mark with air-free double-distilled water, stoppered and "placed in constant temperature water bath. After 30 minutes, the levels of water were carefully brought upto the mark, any water adhering onto the neck above the mark was removed using a fine tissue paper. Calibrations were done as outlined for the pyknometer in section (3-2-1). 250 and $100 \mathrm{~cm}^{3}$ volumetric flasks, six of each type, were calibrated in this manner.

Double-distilled water. This was prepared by distilling twice tap-water in an all glass apparatus commercially available for this purpose. The distilled water was stored in two litres volumetric flasks.

Conductivity Water. The above double-distilled water was passed through an Elgastat deionizer Type C113 packed with Elgalite (Resin) Type c208. The conductivity, measured using a GALLENKAMP Type CM11 conductometer, was $1.45 \times 10-7 \mathrm{mho}$.

Ethanol. The ALPHA AnalaR grade absolute ethanol was used as bought for cleaning purposes.

Potassium Nitrate. ALPHA GPR grade potassium salt, used as it was bought.

Potassium Dichromate. The ALPHA GPR salt was used as obtained.

Concentrated Nitric acid. The ALPHA GPR acid was used as obtained.

Concentrated Sulphuric acid. The ALPHA GPR acid was used as obtained.

Potassium Chloride. The BDH AnalaR grade salt was dried for 140 hours at 980 C in a temperature controlled oven. The bottle was occasionally removed for shaking to allow the escape of trapped water vapour and to break the lumps if any.

Sodium Chloride. The BDH AnalaR grade salt was also treated as above.

Silver Nitrate. The BDH AnalaR grade salt was used as bought without any reprocessing.

Thiamine Chloride Eydrochloride. The SIGMA AnalaR grade salt was dried for 48 hours at 980 C in a temperature controlled oven. The salt was shaken occasionally to crush lumps that formed from fine powder and trapped water vapour. The dried salt was distinctively fine, powdery and lump free.

All the chemicals that were dried in the oven were cooled tö room temperature while stored over silica gel in a vacuum desiccator. Vitamin B1 powder was kept in a vacuum desiccator through out the work.

3-4 SOLUTIONS

KCl, NaCl and AgNO_{3}. Solutions of these salts were prepared by transfering a known weight of the substances. The exact weight transfered was determined by the difference method. The solutions were made up at 25.000 C . Concentration values were based on the
corrected weights of the reagents.

KNO3. This solution was prepared for the purpose of making the Agar-Agar salt bridge. Approximate amount for making $0.01 \mathrm{M} \mathrm{KNO}_{3}$ solution was weighed out.

Thiaminium Dichloride. This dry salt was so fine and light that weighing was a difficult task. The weighing bottle (50 ml beaker) and the funnel used for transfer into the volumetric flask were thoroughly cleaned. A little water was put into the weighing bottle and weighed before adding approximate weight of the salt required and recording the actual weight. The contents of the weighing bottle were then washed into the volumetric flask and the solution made up to the mark.

Since the density of Thiaminium Dichloride was not available, its apparent weights could not be corrected for air bouyancy. Attempts to measure the density at 25.000 C failed but at 20.000 C the density was measured. For this reason the concentration of the Vitamin solutions were verified by refractometry.

Chromic Acid. This was prepared by adding one volume of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ to the same volume of saturated $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution previously filtered through sintered glass.

CHAPTER 4

ReSULTS, DISCUSSIONS AND CONCLUSION

4-1 RESULTS AND DISCUSSIONS

4-1-1 Density

The densities, at various concentrations, of aqueous Thiaminium dichloride are shown in Table [3-2-1(b)]. The concentration dependence of these densities in the concentration range $0-0.5 M$ is given by equation (3-1). The expected cumulative ${ }^{86}$ standard error in density measurements was $\pm 0.00003 \mathrm{~g} \mathrm{~cm}^{-3}$

Equation (2-7) was employed to calculate the values of apparent molal volumes, \varnothing, which have been plotted against $m^{1 / 2}$. Figure [4-1-1(a)] shows the plot. It is obvious from the plot that the first three points, in the very dilute range, fall way off the expected straight line. The most likely reason for the deviation is the error incurred in weighing small quantities of the sample and hence in calculating the values of \varnothing. Error analysis shows that at 0.0009851 m the standard error was $\pm 15 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ for \varnothing. However, at the remaining concentrations, \varnothing shows a good linear dependence. Linear regression using a BBC INSTAT statistical program yielded a limiting value of $\varnothing_{0}=157 \pm 2 \mathrm{~cm}^{3} \mathrm{~mol}-1$ and $640 \pm 25 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} \mathrm{Kg}^{1 / 2}$ as the slope. The correlation coefficient was 0.9894. The slope corresponds to the constant 'a' in the Massons's equation.

Inserting $\varnothing 0$ and 'a' values obtained above, equation (2-8) becomes

$$
\emptyset=157+640 \mathrm{~m}^{1 / 2} \quad 4-1
$$

and hence the equation for the partial molal volume, \bar{V}, takes the form

$$
\bar{\nabla}=157+960 \mathrm{~m}^{1 / 2} \quad 4-2
$$

\emptyset and \bar{V}, calculated from equation (4-1) and (4-2) respectively, are shown in Table (4-1-1).

Redlich and Meyer ${ }^{87}$ derived the semi-qualitative relationship

$$
\varnothing=\varnothing 0+k w^{3} / 2 m^{1 / 2}+h m
$$

where $k=1.867$ for $1: 1$ electrolytes and can be calculated from the gas constant, R, and properties of the solvent, w is similar to the ionic strength with C_{k} in equation ($2-55$) equal to the number of species k produced by one molecule of the electrolyte, h is a factor responsible for the interactions not accounted for by k and w. The quantity $k w^{3 / 2}$ accounts for ion-ion interactions in dilute solutions.

TABLE 4-1-1 APPARENT AND PARTIAL MOLAL VOLUMES OF
THIAMINIUM DICHLORIDE IN AQUEOUS SOLUTIONS AT 250 C

C	m	ρ	\varnothing	$\overline{\mathrm{V}}$
0.00098	0.00098	0.99725	148.0	187.5
0.00103	0.00103	0.99726	150.5	188.2
0.00196	0.00197	0.99738	179.5	200.1
0.00198	0.00198	0.99737	185.0	200.2
0.00262	0.00263	0.99746	190.0	206.6
0.00298	0.00300	0.99750	192.5	210.0
0.00415	0.00416	0.99764	200.4	219.3
0.00504	0.00508	0.99775	202.7	225.7
0.00598	0.00601	0.99785	208.1	231.8
0.00702	0.00705	0.99798	208.9	238.0
0.00828	0.00833	0.99807	216.9	245.0
0.00906	0.00910	0.99816	217.9	249.0
0.01964	0.01978	0.99933	222.7	292.5
0.03508	0.03548	1.00094	227.7	338.3
0.04528	0.04588	1.00198	229.4	363.2
0.05038	0.05111	1.00258	228.5	374.6
0.05897	0.05996	1.00346	229.5	392.6
0.07330	0.07478	1.00496	230.2	420.1
0.07712	0.07874	1.00542	229.7	427.0
0.09750	0.10004	1.00751	230.9	461.2
0.11342	0.11682	1.00917	231.2	485.7
0.19938	0. 20971	1.01803	232.8	597.3
0.28981	0.31175	1.02737	233.4	693.8
0.39934	0.44144	1.03930	232.2	795.7
0.45920	0.51564	1.04541	232.7	847.2
0.50377	0.57294	1.04918	234.5	884.6
0.70627	0.84773	1.07134	232.8	1041.9
0.78205	0.95907	1.07918	232.9	1098.2
0.99538	1.30048	1.10110	233.4	1253.0

UNITS:- $C, \operatorname{mol} \mathrm{l}^{-1} ; \mathrm{m}, \operatorname{mol} \mathrm{Kg}^{-1} ; \rho, \mathrm{g} \mathrm{cm}^{-3} ; \varnothing, \mathrm{cm}^{3} \mathrm{~mol} \mathrm{l}^{-1} ;$ $\overline{\mathrm{V}}, \mathrm{cm}^{3} \mathrm{mol-1}$.

FIGURE 4-1-1(a). APPARENT MOLAL VOLUME, \varnothing, VERSUS m1/2 IN THE CONCENTRATION RANGE $0-1.0 \mathrm{M}$

FIGURE 4-1-1(b). APPARENT MOLAL VOLUME, \varnothing, VERSUS m $\mathrm{m}^{1 / 2}$ IN THE CONCENTRATION RANGE $0-0.01 \mathrm{M}$

In the light of the conductivity results it was concluded that since Kohlrausch's law and the Debye-Huckel theory failed even at quite high dilutions, equation $(4-3)$ was bound to fail as well since it is based on the same theory. However, the empirical Masson's equation was prefered although this empirical equation is not suitable for extrapolation if one takes the entire range into consideration.

The apparent and partial molal volumes at infinite dilution both have the value $157 \pm 2 \mathrm{~cm}^{3} \mathrm{~mol}-1$. This is of the expected order of magnitudesia in related other pyrimidines and 6 -membered aromatics. The value of these quantities are the sums 10,88 of ionic molal volumes, VO_{1}. For each ion, $V O_{1}$ can be considered as the difference between intrinsic ion volumes ${ }^{8}$ or the physical volume occupied by the ion, V_{1}, and the decreased volume, $V e$, of the solvent resulting from the enormous electrical field of the ion which tends to compress. Thus

$$
V O_{i}=V_{i}-V_{e}
$$

This model of interaction was established by Mukerjee ${ }^{10}$; Benson and Copeland 7 using three different approaches of analysis of density data. Except for small ions like Li+, polyvalent ions; for which Ve becomes independent of radius, Ag^{+}with exposed d-electrons for special interactions and unsymmetrical polyatomic ions whose anomalous behaviour could be
explained by taking their detailed charge distribution into account, this model is generally in very good agreement.

According to the results from conductivity measurements the value, $157 \mathrm{~cm}^{3}$ mol-1 is apparently due to Thi+, ThiH2+, ThiH2 ${ }^{3+}$, H^{+}and Cl-. VO ${ }_{1}$ values for H^{+}and Cl^{-}were taken ${ }^{10}$ as - 4.5 and $22.3 \mathrm{~cm}^{3} \mathrm{~mol}{ }^{-1}$ respectively. The other ions are polyatomic so additivity may not be that straight forward.

The partial molal volume shows a marked increasel ${ }^{10}$ with concentration as expected because of a decrease in Ve caused by increasing ionic interactions. In the expression for $\overline{\mathrm{V}}$, the slope at moderate concentrations depends ${ }^{88}$ primarily on the charge type of the ions and somewhat on their individual nature.

4-1-2 The Density of solid Thiaminium Dichloride
Attempts were made to obtain the density of Thiaminium dichloride at 250 C by the liquid displacement method but the volatility of the non-dissolving solvents, Benzene and Acetone89, rendered this measurement impossible at the above temperature. However density was measured using the same method at 200 C . The average density value was $1.41090 \pm 0.0005 \mathrm{~g} \mathrm{~cm}^{-3}$.

The apparent density of the solute calculatedso from the density of solutions at 250 C was $1.1163 \mathrm{~g} \mathrm{~cm}{ }^{3}$. The density of salts8日, at temperatures far below their melting points, vary negligibly with temperature. Thus
the difference between the apparent and measured densities is due to the strong interactions between solute and solvent particles.

4-1-3 Viscosity

The results of viscosity measurements are shown in Table [4-1-3(a)]. The absolute and relative viscosity, η and $n r e l$, values were calculated using equation (2-22). The expected cummulative error in n was $\pm 0.00007 \mathrm{cP}$.

The relative viscosities, for aqueous Thiaminium dichloride were fitted to two forms of the Jones-Dole equation. The non-extended form was fitted by plotting ($\left.\eta_{r e l}-1\right) / C 1 / 2$ against $C 1 / 2$ giving a straight line whose slope and intercept gave the respective values of B and A coefficients of the Jones-Dole equation. Regression was done using the BBC INSTAT statistical package and the equation that best fitted the concentration range $0-0.1 \mathrm{M}$ was

$$
\eta_{r e l}=1+0.009 \mathrm{C} 1 / 2+0.823 C \quad 4-5
$$

The standard errors in the coefficients of $C 1 / 2$ and C were ± 0.002 and ± 0.01 respectively. The correlation coefficient was 0.9959. This equation is generally valid33a up to a few tenths molar.

TABLE 4-1-3(a) VISCOSITIES OF AQUEOUS THIAMINIUM DICHLORIDE SOLUTIONS AT $25^{\circ} \mathrm{C}$

C	t	ρ	η	$\eta r e 1$
0.00098	$452.21 ॰$	0.99725	0.89462	1.00103
0.00103	452.610	0.99728	0.89540	1.00190
0.00196	452.863	0.99738	0.89600	1.00258
0.00198	452.961	0.99737	0.89618	1.00278
0.00262	453.292	0.99748	0.89692	1.00360
0.00415	453.564	0.99764	0.89762	1.00438
0.00491	453.953	0.99764	0.89840	1.00525
0.00504	454.138	0.99775	0.89886	1.00577
0.00598	454.323	0.99785	0.89931	1.00628
0.00702	454.653	0.99798	0.90008	1.00714
0.00828	454.907	0.99807	0.90067	1.00780
0.00906	455.112	0.99816	0.90115	1.00834
0.00982	455.336	0.99828	0.90171	1.00896
0.01964	459.194	0.99933	0.91031	1.01858
0.03000	462.290	1.00038	0.91741	1.02654
0.03508	463.770	1.00094	0.92086	1.03038
0.05008	467.682	1.00252	0.93010	1.04072
0.05897	471.293	1.00346	0.93815	1.04974
0.06821	474.820	1.00443	0.94608	1.05862
0.07712	-477.000	1.00542	0.95137	1.06452
0.09750	484.038	1.00751	0.96741	1.08248
0.11342	489.263	1.00917	0.97947	1.09597
0.17583	510.848	1.01544	1.02903	1.15142
0.19938	520.008	1.01803	1.05016	1.17507
0.28981	554.613	1.02737	1.13031	1.26475
0.45920	638.048	1.04541	1.32318	1.48057
0.50377	663.358	1.04918	1.38064	1.54486
0.56554	697.264	1.05998	1.46464	1.63885
0.70627	803.011	1.07134	1.70660	1.90958
0.75388	840.872	1.07664	1.79403	2.00742
0.78205	864.211	1.07918	1.58011	2.07017

UNITS:- C, mol 1-1; t, sec. ; $\quad \rho, \mathrm{g} \mathrm{cm}^{-3} ; \quad \eta, \mathrm{cP}$ or $\mathrm{g} \mathrm{cm}^{-1}$
5^{-1}

TABLE 4-1-3(b) COMPARISON OF FITTED AND OBSERVED RELATIVE VISCOSITIES OF AQUEOUS THIAMINIUM DICHLORIDE SOLUTIONS AT $25^{\circ} \mathrm{C}$

C	$\mathrm{n} \boldsymbol{r}$ - 1	$n * r=1$	$\Delta n_{\text {r }} \mathbf{l}$
0.00098	1.00103	1.00108	-0.00006
0.00103	1.00190	1.00113	0.00077
0.00196	1.00258	1.00201	0.00057
0.00198	1.00278	1.00203	0.00076
0.00262	1.00360	1.00261	0.00090
0.00415	1.00438	1.00398	0.00041
0.00491	1.00525	1.00466	0.00059
0.00504	1.00577	1.00478	0.00090
0.00598	1.00628	1.00561	0.00067
0.00702	1.00714	1.00652	0.00062
0.00829	1.00780	1.00763	0.00017
0.00908	1.00834	1.00830	0.00004
0.00982	1.00896	1.00896	0.00000
0.03000	1.02654	1.02622	0.00032
0.03508	1.03038	1.03053	-0.00014
0.05006	1.04072	1.04317	-0.00246
0.05897	1.04974	1.05067	-0.00093
0.06821	1.05862	1.05843	0.00019
0.07712	1.06452	1.06591	-0.00139
0.09750	1.08248	1.08298	-0.00050
0.11342	1.09597	1.09628	-0.00032
0.17583	1.15142	1.14836	0.00306
0.19938	1.17507	1.16860	0.00647
0.28981	1.26475	1.25800	0.00675
0.45920	1.48057	1.47398	0.00659
0.50377	1.54486	1.54178	0.00308
0.56554	1.63885	1.64341	-0.00456
0.70627	1.90958	1.90873	0.00086
0.75388	2.00742	2.00916	-0.00174
0.78205	2.07017	2.07117	-0.00100

UNITS:- C, mol 1-1 and η rel, η^{*} rel, $\Delta \eta^{-1}$ rel are all ratios.

* Values calculated using the Jones-Dole equations applicable at that concentration.

FIGURE 4-1-3. THE EXTENDED AND THE NON-EXTENDED

The extended form of Jones-Dole equation was also fitted using the above program and the best fitting equation in the concentration range 0.1 - $1 M$ was

$$
\eta_{r e l}=1+0.175 \mathrm{C} 1 / 2+0.208 \mathrm{C}+1.23 \mathrm{C}^{2} \quad 4-6
$$

The standard errors in the y-intercept and in the coefficients of $C 1 / 2, C$ and C^{2} were $\pm 0.003, \pm 0.003$, ± 0.05 and ± 0.003 respectively. The correlation coefficient was 0.9995.

Table [4-1-3(b)] shows values of nrel calculated using equations (4-5) and (4-6) and compared with experimental values based on $\eta_{1}=0.8937 \mathrm{cP}$, $\rho_{1}=0.99707 \mathrm{~g} \mathrm{~cm}^{-3}$ and $\mathrm{t}_{1}=451.830 \pm 0.02 \mathrm{sec} . \quad[\mathrm{see}$ Table (3-2-2)].

The graphs of these two equations are shown in Figure (3-1-3).

For suspensions or solution of non-electrolytes the A coefficient in Jones-Dole equation is zero but equation (4-5) and (4-6) both yielded positive values of the A coefficient as expected45,46 for electrolytes and indicated ion-ion interactions in dilute aqueous Thiaminium dichloride solutions. It was pointed out earlier that the A coefficients account for long-range coulombic forces between ions. The physical picture of the interaction is based on the Debye-Huckel ionic atmosphere. The electronic contribution to viscosities of electrolytes
solutions results from the stress transfer between the central ion and its atmosphere together with the frictional forces between ions and solvent molecules, since ionic interactions lead to ionic motions relative to solvent molecules.

The nature of the electrolyte studied by the author, clearly indicates that equation (2-26), as given by Onsager and Fuoss7, should yield a theoretical value of the contribution of the $A C 1 / 2$ or $A I 1 / 2$ term and the value of A should be given by equation (2-27). The author found that these equations were not amenable to simple mathematical manipulation with the aim of obtaining a theoretical A value for comparison with the experimental value, nonetheless, these two approaches should yield A values that are practically equal.

The A coefficient in equation (4-5), 0.009 ± 0.0003, covers the concentration range $0-0.1 \mathrm{M}$ but the AC1/2 term contributes little to the viscosity compared to the $B C$ term within the concentration range considered for experimental measurements. A coefficients are more improtant below 0.002M. The contribution due to the $A C 1 / 2$ ranges between 0.03 to 0.3% in the concentration range considered, while the BC term contributes 0.08 to 8.5% in the same concentration range.

Equation (4-6) gives $A C 1 / 2$ and $B C$ contributions as ranging from 6.5 to 8% and 4 to 8.5% respectively in the higher concentration range
mentioned earlier.

| The viscosity | B coefficients in both |
| ---: | :---: | :---: | :---: |
| concentration ranges are 0.823 ± 0.010 and | | 0.228 ± 0.050. This coefficient is highly specific with respect to the electrolyte and temperature. It is more important above 0.002 M , which for most experimental purposes in a modest laboratory makes B coefficient a more important measurement.

Strong ion-solvent interaction existed in this electrolyte solution as indicated by the positive values of B coefficient. The solvent molecules in the vicinity of the positive.ions (neglecting contribution from the chloride anions) had undergone rearrangement giving rise to "hydrophobic hydration" of the water molecules by strengthening their hydrogren-bonds and thereby increasing the viscosity of water. The positive ions in aqueous Thiaminium dichloride solution were thus "Structure makers" or "hydrophobic ions".

B coefficients are fairly accurately additive properties of the constituent ions as mentioned ealier in section (2-2-3). From conductivity measurements, it is assumed that the ions present in solution were Thi+, ThiH ${ }^{+}$, ThiH2 ${ }^{3+}, \mathrm{H}^{+}$and Cl-. Refering to equation (4-5), the B coefficient, 0.823 , is a contribution of all these ions. Given the ionic B_{i} values ${ }^{37}$ $\mathrm{BCl}^{-}=-0.007$ and $\mathrm{BH}+=0.069$, the total ionic B_{1} value due to Thi+, ThiH2+ and ThiH2 ${ }^{3+}$ is 0.761 . From the values of α and β in section (4-1-5) it is clear
that this B value is due mainly to Thi+, ThiH2+ and ThiH2 ${ }^{3+i o n i c ~ s p e c i e s . ~ A ~ q u i c k ~ s u r v e y ~ t h r o u g h ~ t h e ~}$ Table37 of ionic B coefficients gave the author an impression that other than the singly charged ion, Thi+, the value of $\mathrm{Bi}_{\mathrm{i}}=0.761$ was large enough to allow for the existence of at least a doubly charge ion of the same size and shape as Thi+, thus the existence of complex ions were evident even from viscosity measurements.

The B coefficients also contain contributions due to the size and shape of the ions, especially the large ions ($\mathrm{a}^{0}>5 \mathrm{X} 10 .-8 \mathrm{~cm}$) such as Thi+, ThiH2+ and ThiH2 ${ }^{+}$. This is the Einstein effect, which is always positive and increases with increasing ion size and non-spherícality. The Einstein equation obtained for this system in the dilute range was

$$
\eta_{r e l}=1+5.5 \emptyset
$$

This equation fitted experimetal relative viscosity values below 0.003 M within ± 0.0003 units. \emptyset was calculated using V and $V o$ as defined for molal volume calculations. The value of 'al' in the Einstein equation indicates that the ionic species dealt with are not spherical.

TABLE 4-1-4 APPARENT MOLAL REFRACTIVE INDICES OF AQUEOUS
THAIMINIUM DICHLORIDE SOLUTIONS AT $25^{\circ} \mathrm{C}$

C	m	ρ	nobs	[R]D
0.00103	0.00103	0.99726	1.33253	45.753
0.00198	0.00198	0.99737	1.33260	66.313
0.00262	0.00263	0.99746	1.33265	71.164
0.00298	0.00300	0.99750	1.33270	77.065
0.00415	0.00416	0.99764	1.33280	81.743
0.00504	0.00506	0.99775	1.33284	79.492
0.00598	0.00601	0.99785	1.33290	80.257
0.00702	0.00705	0.99798	1.33300	82.860
0.00828	0.00833	0.99807	1.33310	85.122
0.00906	0.00910	0.99816	1.33320	88.099
0.01964	0.01979	0.99933	1.33400	88.563
0.03000	0.03029	1.00038	1.33480	89.655
0.03509	0.03548	1.00094	1.33520	89.875
0.04148	0.04198	1.00148	1.33570	90.754
0.04528	0.04589	1.00198	1.33600	90.423
0.04910	0.04980	1.00250	1.33630	90.036
0.05006	0.05078	1.00252	1.33638	90.399
0.05039	0.05111	1.00258	1.33640	90.304
0.05897	0.05915	1.00346	1.33708	90.594
0.06438	0.06555	1.00346	1.33750	90.753
0.06821	0.06950	1.00443	1.33780	90.764
0.07330	0.07478	1.00498	1.33820	90.824
0.07712	0.07874	1.00542	1.33850	90.729
0.09368	0.09607	1.00674	1.33980	91.809
0.09627	0.09875	1.00734	1.33990	90.517
0.09750	0.10004	1.00751	1.34010	91.034
0.11342	0.11682	1.00917	1.34135	91.131
0.17583	0.18389	1.01544	1.34625	91.626
0.19042	0.19975	1.01752	1.34735	90.882
0.19939	0.20971	1.01803	1.34810	91.478
0.21212	0.22379	1.01939	1.34910	91.459
0.28981	0.31175	1.02737	1.35520	91.547
0.37713	0.41440	1.03727	1.36230	91.404
0.39934	0.44144	1.03930	1.36380	91.198
0.45920	0.51564	1.04541	1.36850	91.243
0.50377	0.57294	1.04918	1.37200	91.570
0.70627	0.84773	1.07134	1.38790	91.003
0.75388	0.91670	1.07664	1.39175	90.952
0.78205	0.95907	1.07918	1.39385	90.953
0.99538	1.30048	1.10110	1.41060	90.816

UNITS:- C, mol l-1; m, mol Kg-1; $\rho, \mathrm{g} \mathrm{cm}^{-3} ;[R] D, \mathrm{~cm}^{3}$
mol-1.

FIGURE 4-1-4(a). APPARENT MOLAL REFRACTIVITY, [R]D, VERSUS C IN THE CONCENTRATION RANGE 0 - 1.0 M

FIGURE 4-1-4(b). APPARENT MOLAL REFRACTIVITY, [R]D, | VERSUS C IN THE CONCENTRATION RANGE $0-0.01 \mathrm{M}$

4-1-4 Refractive Index

The refractive indices of aqueous Thiaminium Hydrochloride at various concentration are shown in Table (3-2-3) and are expressed in terms of concentration by the analytical equation (3-2).

The experimental or apparent molal refractive indices Rapp were calculated using equation (2-42). Rapp values at given concentrations are given in Table (4-1-4). Roapp at infinite dilution, obtained by fitting values at respective concentration in the low concentration range using the BBC INSTAT statistical computer program, was $70.0 \pm 1.4 \mathrm{~cm}^{3} \mathrm{~mol}$-1. The cummulative error expected in Rapp from measurements of related quantities was ± 0.002. Figures [4-1-4(a)] and [4-1-4(b)] show graphs of Rapp in the entire and low concentration ränges respectively. The three values of $[R]_{0}$ for the most dilute solution indicate large errors in density measurements and not in the refractive index measurements.

A comparison of $R a p p$ and Radd - the additive molal refractive index - would give an indication of the extent of ion-solvent interactions at various concentrations54b. Unfortunately the Radd could not be calculated because the refractive index of the solid Thiaminium dichloride is not yet known 9.

4-1-5 Conductivity

Literature survey to date indicates that no conductivity work has been done on aqueous Thiaminium dichloride solution.

Mobs were calculated using equations (2-48)
and (2-49) from the measured resistance, R, the cell constant K and molar concentration, C. Lobs values, obtained within an accuracy of $\pm 0.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}-1$, are shown in Table $[4-1-5(a)]$ and Figure (4-1-5) shows the variation of Nobs with C1/2

The shape of the conductivity curve in Figure (4-1-5) neither ressembled that of a weak electrolyte nor a strong one. This indicated that the situation was not that of a simple electrolyte solution as it appears.

Theoretical calculations of Λ and Λ° (later refered to ds $\Lambda_{f i t}$ and Λ cal respectively) were done using equations (2-67) and (2-61), with X added to the latter as explained in section (2-4-6).

Several mechanisms of complexation were initially postulated but the resulting equations for calculations of degrees of association (complexation) either yielded negative or complex values of α and/or β, or could not be easily solved.

The best scheme arrived at was the one given in section (2-4-6).

C	R	吅b
0.00051	34344.4	311.1
0.00063	28794.1	300.5
0.00076	24614.3	290.6
0.00083	22896.9	285.8
0.00098	20019.2	276.7
0.00098	19929.2	276.3
0.00103	19242.2	273.9
0.00106	18804.7	272.3
0.00123	16720.5	264.1
0.00141	15010.0	256.2
0.00157	13778.4	250.0
0.00170	12947.6	245.5
0.00181	12368.0	242.1
0.00196	11599.0	237.4
0.00198	11521.0	236.9
0.00262	8869.0	232.9
0.00415	5782.5	225.6
0.00504	4841.0	221.8
0.00828	3021.2	215.9
0.00982	2567.1	214.3
0.01964	1342.7	205.1
0.02002	1356.2	199.2
0.03007	927.1	194.0
0.03509	834.0	184.8
0.04146	747.5	174.5
0.05006	644.2	167.7
0.06183	532.3	164.3
0.06439	509.7	164.8
0.06821	485.6	163.4
0.07712	436.3	160.7
0.09368	374.1	154.3
0.11342	316.7	150.6
0.17583	225.7	136.3
0.19938	204.3	132.8
0.21212	195.2	130.6
0.28981	157.3	118.6
0.37713	130.2	110.1
0.39934	126.8	106.8
0.45920	116.6	101.0
0.50377	109.8	97.8
0.56554	104.4	91.6
0.59802	101.3	89.3
0.70627	95.8	80.0
0.78205	92.8	74.5
0.99538	89.0	61.1

UNITS:- C, mol l-1; R, Ohms; Λ obs, $S \mathrm{~cm}^{2}$ mol-1.

FIGURE 4-1-5. 人obs VERSUS C1/a IN THE CONCENTRATION RANGE 0 - 1.0 M

TABLE 4-1-5(b) COMPARISON OF OBSERVED AND FITTED $\quad \wedge$
VALUES OF AQUEOUS THIAMINIUM DICHLORIDE SOLUTIONS BELOW 0.002 M AT 250 C

C	α	β	保s	人pit	neal
0.00051	0.3574	0.3544	311.1	317.0	526.5
0.00063	0.3985	0.3954	300.5	292.2	540.8
0.00076	0.4270	0.4239	290.6	274.9	548.0
0.00083	0.4378	0.4347	285.8	268.4	549.7
0.00098	0.4544	0.4513	276.7	258.4	550.7
0.00098	0.4549	0.4518	276.3	258.1	550.7
0.00103	0.4585	0.4554	273.9	255.9	550.5
0.00106	0.4608	0.4577	272.3	254.5	550.2
0.00123	0.4707	0.4676	264.1	248.5	548.0
0.00141	0.4778	0.4747	256.2	244.2	544.5
0.00157	0.4824	0.4793	250.0	241.4	541.0
0.00171	0.4852	0.4821	245.5	239.7	538.2
0.00181	0.4870	0.4839	242.1	238.6	535.9
0.00196	0.4892	0.4861	237.4	237.3	532.5
0.00198	0.4894	0.4863	236.9	237.2	532.2

UNITS:- C, mol 1-1; Λ obs; Λ itit $\Lambda_{\mathrm{cal}}^{0}, \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}-1$.
α and β are fractions.
Calculations based on $\mathrm{K}_{1}=1.585 \times 10^{-5}, \mathrm{~K}_{2}=6.310 \times 10^{-10}$ mol 1^{-1}, and $\Lambda^{0} \mathrm{cal}=532.7 \pm 0.5 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}-1$.

In the calculation of the degrees of association, α and β, K_{1} and K_{2} values were varied within the vicinity of values derived from literature pKa or pKb values until reasonable values were fixed
 and literature values ${ }^{37}$ of $\lambda_{c 1}{ }_{c 1}$ and λ_{H+}. Values of α, β, K_{1} and K_{2} are shown in Table [4-1-5(b)]. The equilibrium constant values $K_{1}=1 / K_{1}$ and $K_{2}=$ 1/Ka2 1 mol-1 are of the order of those derived from pKa 1 and pKa2 values ${ }^{18}$ for Thiaminium dichloride, i.e $\mathrm{pKa} 1=4.8$ and $\mathrm{pKa} 2=9.2 .1$ mol-1 respectively.

Table [4-1-5(c)] shows calculated values of Λ fit using equation (2-67) and (2-61) together with $\lambda_{T_{h 1}}^{0}+=29.3 \pm 0.3, \lambda_{T_{h i H}}{ }^{2}+=35.8 \pm 0.3, \lambda_{T_{h 1 H}}^{0}{ }^{+}=$ $41.3 \pm 0.3, \lambda_{C l}^{0}=76.35, \lambda_{H}^{0}+=349.81$ and $\Lambda_{\text {cal }}^{0}=532.7$ $\pm 0.5 \mathrm{~S} \mathrm{~cm}^{2}$ (g equiv.)-1. The value of $\Lambda_{0}^{0} \mathrm{bs}, 392.4$ $\pm 0.8 \mathrm{~S} \mathrm{~cm}^{2}$ (g equiv.)-1, was obtained by fitting a curve to the graph of hobs against $C 1 / 2$, using a $B B C$ statistical program, and obtaining the value at infinite dilution. Noal were calculated using the above equivalent ionic conductivities and 价s values as explained earlier. The proposed scheme reasonably fitted the conductivity data in the concentration range 0.0005 in 0.002 M and values were calculated using the computer program shown in appendix V.

Thiaminium dichloride solutions in water can be regarded as a mixture of equimolar Thiamine chloride and Hydrochloric acid solutions. But in this case the situation is further complicated by the fact that ionic complexation is seen to occur even at very low concentration as suggested by the reported values of pKı.

The conductivity of a given total concentration of ions (or total ionic strength) are not additive in mixtures. This fact was first observed by Bray and Huntir. The isoionic principle does not hold and the theory ${ }^{7}$ for ionic conductivities in mixtures, for instance, in $\mathrm{HCl}-\mathrm{KCl}$ mixture, predicts that the faster H^{+}ions will be slowed down more than usual, while the slow K^{+}will be accelerated in proportion and the Cl- ions will practically move with their usual velocity as in 1:1 electrolyte solutions.

The value of $\Lambda^{\circ} \mathrm{cal}$ at infinite dilution, $532.7 \pm 0.5 \mathrm{~S} \mathrm{~cm}^{2}$ (g equiv.)-1, is thus an expected value. Furthermore Smith and Gortner92 also reported an observed departure as large as 7 conductivity units on a Λ value of about $120 \mathrm{~S} \mathrm{~cm}^{2}$ (g equiv.)-1 at quite low concentrations.

The scheme provided in section (2-4-6)
involved only tentative calculations that point to expressions of the form

$$
\Lambda=\Lambda^{0}+\alpha C 1 / 2+\beta C \log C+\gamma C+\cdots-\cdots 4-8
$$

This is the type of equation expected from
theoretical treatments even more exact than those employed by Onsager and Fuoss ${ }^{7}$.

The author has used equation (2-59), that applies to $1: 1$ electrolytes, to approximate λ_{i} values at finite concentrations instead of the more exact equation (2-62) applicable to mixtures because the involved mathematics was too rigorous and not worth it.

Particularly when the minimum expected error in the measurement of Λ was relatively large, $\pm 0.5 \mathrm{~S} \mathrm{~cm}{ }^{2}$ equiv.-1, and the presence of ions of higher valencies further complicated the situation. The data analysis was therefore simply based on an empirical extension of the limiting Onsager equations (2-60) and (2-61) to account for the proposed ionic complexation scheme.

The scheme fitted the observations quite well up to 0.002 M as shown in Table $[4-1-5(\mathrm{~b})]$.

4-1-6 Diffusion Coefficient

R. Schneeberger, R. Stahl and M. Loncinl 5 have reported diffusion coefficients at $25^{\circ} \mathrm{C}$ as $0.95 \times 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ for concentrations $0.01,0.03$ and $0.10 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ respectively and $1.07 \times 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$ at $0.07 \mathrm{~mol} \mathrm{dm}{ }^{-3}$. They also reported variations of diffusion coefficient with temperature at $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ as $[d D / d(T / \eta)] X 1011=0.313 \mathrm{Kg} \mathrm{m} \mathrm{K}-1 s^{-2} \quad$ and compared it with a theoretically calculated value from literature93, 0.325. Values at 25, 30, 40, and 500 C
were reported as $0.95,1.16,1.37$ and 1.77×10^{-5} $\mathrm{cm}^{2} \mathrm{~s}^{-1}$ respectively.

It is evident that, contrary to expectation, some D values show no concentration dependence e.g at $0.01,0.03$ and $0.10 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ the D values were all reported as $0.95 \times 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$. Their value at $0.03 \mathrm{~mol} \mathrm{dm} \mathrm{dm}^{-3}$ is lower than the author's while that at $0.1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ it is higher. The value obtained by the author at $0.03 \mathrm{~mol} \mathrm{dm}^{-3}$ does not fall within the allowed range of the experimental methode4. This measurement was done as a guide for the extrapolation of curves to infinite dilution.

The reasons for this discrepancy are that, firstly, the above authors did not have sufficient experimental data to obtain accurate $\overline{\mathrm{D}} 0$ ($\overline{C B}_{\mathrm{B}}$) values for converting integral diffusion coefficients, \bar{D}, into D, and secondly, from the dimensions of their cell (β value was small) this author gathers that it would have taken them about a week to complete a run. Such a long duration for an experiment makes it very difficult to maintain the other variables under control.

The parameters needed for the calculations of experimental integral diffusion, $\bar{D} e x p$, using equation (2-84) were; duration, t, of a diffusion run, the differences between initial and final concentrations and the cell constant. All these were obtained as outlined in section (3-2-6) and are shown on Table [4-1-6(a)].

TABLE 4-1-6(a) RAW DATA FOR CALCULATION OF INTEGRAL
DIFFUSION COEFFICIENTS OF THIAMINIUM DICHLORIDE IN AQUEOUS
SOLUTIONS AT $25^{\circ} \mathrm{C}, \mathrm{B}=3.274 \mathrm{~cm} \mathrm{~cm}^{-2}$

TIME (t)	$\mathrm{CO}_{\mathrm{B}}=\Delta \mathrm{C}^{\circ}$	Ct ${ }^{\text {b }}$	Cta	$\Delta C t$	Dexp
21960	0.03000	0.01962	0.00776	0.01187	1.290
21330	0.03000	0.01962	0.00744	0.01218	1.290
21690	0.04146	0.03117	0.01321	0.01796	1.178
21610	0.04146	0.03117	0.01321	0.01796	1.183
16285	0.05006	0.04015	0.01257	0.02758	1.118
16260	0.05006	0.04015	0.01257	0.02758	1.120
21690	0.05038	0.03758	0.01448	0.02308	1.098
21600	0.05038	0.03758	0.01449	0.02308	1.103
18050	0.05897	0.04720	0.01513	0.03207	1.031
16190	0.05897	0.04784	0.01385	0.03398	1.038
18060	0.06438	0.05168	0.01706	0.03463	1.048
18150	0.06438	0.05168	0.01706	0.03463	1.044
21640	0.06821	0.05328	0.01962	0.03367	0.996
21660	0.06821	0.05297	0.01962	0.03335	1.001
21670	0.07330	0.05810	0.02091	0.03720	0.956
21610	0.07330	0.05746	0.02027	0.03720	0.958
23140	0.07712	0.05938	0.02218	0.03710	0.963
22080	0.07712	0.05938	0.02091	0.03848	0.962
21690	0.09368	0.07221	0.02411	0.04808	0.938
21610	0.09368	0.07221	0.02411	0.04808	0.942
21960	0.09750	0.07862	0.02860	0.05001	0.928
21780	0.09750	0.07862	0.02828	0.05033	0.927
23040	0.09877	0.07605	0.02604	0.05001	0.902
18165	0.11342	0.09272	0.02668	0.06604	0.907
18240	0.11342	0.09272	0.02732	0.06540	0.922
18045	0.17583	0.14397	0.03758	0.10638	0.850
18030	0.17583	0.14397	0.03758	0.10638	0.851
18030	0.21212	0.17598	0.04656	0.12943	0.837
16215	0.21212	0.17918	0.04271	0.13648	0.831
22350	0.28981	0.25566	0.09368	0.16198	0.795
21660	0.28981	0.25790	0.09336	0.16454	0.798
18050	0.39934	0.33462	0.08374	0.25088	0.787
18000	0.39934	0.33526	0.08374	0.25152	0.784
16290	0.45920	0.39084	0.08567	0.30517	0.766
16450	0.45920	0.39084	0.08695	0.30388	0.767
14440	0.50377	0.40361	0.05168	0.35191	0.759
16230	0.50377	0.41095	0.07445	0.33650	0.759
21860	0.59802	0.48530	0.13501	0.35029	0.747
21660	0.59802	0.48657	0.13372	0.35285	0.744
18028	0.70627	0.55671	0.09656	0.46015	0.726
16200	0.70627	0.56945	0.08631	0.48315	0.716
21960	0.78205	0.64080	0.17151	0.46927	0.710
21720	0.78205	0.64143	0.17023	0.47120	0.712
21960	0.99538	0.79855	0.19648	0.60207	0.698
23040	0.99538	0.78774	0.20096	0.5867 ¢	0.701

$\mathrm{cm}^{2} \mathrm{~s}^{-1} \mathrm{X} 105$.

TABLE 4-1-6(b) SUCCESSIVE APPROXIMATE VALUES OF $\overline{\mathrm{D}}(\mathrm{C} \mathrm{C})$

\bar{C}_{A}	$\overline{\mathrm{D}}$ (C_{C})			
	15 t	2nd	3 rd	4 th
0.00388	1.820	1.802	1.798	1.797
0.00372	1.821	1.802	1.798	1.797
0.00660	1.812	1.794	1.790	1.789
0.00660	1.812	1.794	1.790	1.789
0.00628	1.813	1.795	1.791	1.790
0.00628	1.813	1.795	1.791	1.790
0.00725	1.810	1.792	1.788	1.788
0.00725	1.810	1.792	1.788	1.788
0.00757	1.811	1.792	1.788	1.787
0.00693	1.809	1.793	1.789	1.789
0.00853	1.806	1.789	1.785	1.784
0.00853	1.806	1.789	1.785	1.784
0.00981	1.801	1.785	1.781	1.780
0.01045	1.799	1.783	1.779	1.779
0.01013	1.800	1.784	1.780	1.780
0.01108	1.797	1.782	1.778	1.777
0.01045	1.799	1.783	1.779	1.779
0.01208	1.794	1.779	1.775	1.774
0.01206	1.794	1.779	1.775	1.774
0.01430	1.787	1.773	1.769	1.768
0.01414	1.787	1.773	1.769	1.768
0.01302	1.791	1.776	1.772	1.772
0.01334	1.790	1.775	1.771	1.771
0.01368	1.789	1.773	1.771	1.771
0.01878	1.773	1.760	1.756	1.755
0.01878	1.773	1.760	1.756	1.755
0.02328	1.758	1.748	1.744	1.743
0.02136	1.765	1.753	1.749	1.748
0.04684	1.683	1.682	1.678	1.677
0.04668	1.683	1.682	1.678	1.678
0.04187	1.699	1.696	1.692	1.691
0.04187^{*}	1.699	1.696	1.692	1.691
0.04283	1.696	1.693	1.689	1.688
0.04347	1.694	1.691	1.687	1.687
0.02585	1.750	1.740	1.737	1.736
0.03722	1.714	1.709	1.705	1.704
0.06750	1.617	1.624	1.620	1.620
0.06686	1.619	1.626	1.622	1.621
0.04828	1.679	1.678	1.674	1.673
0.04315	1.695	1.692	1.688	1.687
0.08575	1.559	1.573	1.569	1.569
0.08511	1.561	1.575	1.571	1.570
0.09824	1.519	1.538	1.535	1.534
0.10048	1.512	1.532	1.528	1.528

UNITS:- C, mol 1-1; $\overline{\mathrm{D}}(\overline{\mathrm{C}} \mathrm{A}), \mathrm{cm}^{2} \mathrm{~s}^{-1} \mathrm{X} 10^{5}$.

TABLE 4-1-6(c) COMPARISON OF FIRST, FINAL AND FITTED VALUES OF $\overline{\mathrm{D}}$ ($(\overline{\mathrm{C}} \mathrm{B})$

$\overline{C l}_{\text {B }}$	$\overline{\mathrm{D}}$ ($\overline{\mathrm{C}}_{\mathrm{B}}$)		
	15 t	Final	Fitted
0.15734	1.372	1.368	1.368
0.19053	1.295	1.292	1.291
0.21241	1.216	1.215	1.212
0.20975	1.215	1.211	1.214
0.23085	1.141	1.172	1.177
0.24104	1.158	1.155	1.155
0.24517	1.133	1.130	1.130
0.25619	1.090	1.106	1.109
0.26146	1.098	1.093	1.097
0.28826	1.068	1.062	1.055
0.29704	1.034	1.030	1.023
0.29595	1.029	1.031	1.035
0.32088	0.959	1.021	1.020
0.39998	0.939	0.957	0.961
0.44198	0.948	0.945	0.942
0.52342	0.889	0.912	0.910
0.60663	0.861	0.889	0.887
0.65265	0.837	0.868	0.867
0.67563	0.854	0.873	0.866
0.73737	0.790	0.854	0.844
0.79728	0.790	0.820	0.819
0.84408	0.813	0.789	0.793
0.94597	0.791	0.793	0.793

[^0]FIGURE 4-1-6(a). EXPERIMENTAL INTEGRAL DIFFUSION

TABLE 4-1-6(d) DIFFERENTIAL DIFFUSION COEFFICIENTS, D, OF THIAMINIUM DICHLORIDE IN AQUEOUS SOLUTIONS AT $25^{\circ} \mathrm{C}$

COB	Dexp	$\overline{\mathrm{D}} 0(\overline{\mathrm{C}} \mathrm{A})$	$\overline{\mathrm{D}} 0(\overline{\mathrm{C}} \mathrm{B})$	SLOPE	D
$0 *$	1.833	1.808	1.859	-	1.275
0.03000	1.290	1.797	1.368	-3.926	1.028
0.04148	1.181	1.789	1.292	-3.094	0.976
0.05006	1.118	1.790	1.215	-2.628	0.921
0.05038	1.101	1.788	1.211	-2.612	0.918
0.05897	1.035	1.788	1.172	-2.241	0.900
0.06439	1.047	1.784	1.155	-2.020	0.896
0.06821	0.998	1.780	1.130	-1.917	0.880
0.07330	0.957	1.779	1.106	-1.765	0.867
0.07712	0.962	1.778	1.093	-1.662	0.862
0.09368	0.941	1.774	1.062	-1.433	0.843
0.09750	0.926	1.768	1.030	-1.227	0.838
0.09877	0.902	1.772	1.031	-1.205	0.842
0.11342	0.916	1.771	1.021	-1.162	0.825
0.17583	0.854	1.755	0.957	-0.749	0.800
0.21212	0.833	1.746	0.945	-0.685	0.787
0.28981	0.797	1.678	0.912	-0.531	0.769
0.39934	0.785	1.691	0.889	-0.438	0.751
0.45920	0.777	1.688	0.868	-0.368	0.743
0.50377	$0.75 s$	1.720	0.873	-0.352	0.748
0.59802	0.746	1.621	0.854	-0.290	0.742
0.70726	0.720	1.680	0.820	-0.194	0.738
0.78205	0.713	1.570	0.789	-0.133	0.730
0.99538	0.700	1.531	0.793	-0.126	0.730

UNITS:- $\mathrm{CO}_{\mathrm{B}}, \operatorname{mol} \mathrm{l}^{-1} ; \operatorname{SLOPE}, 11 / 2 \mathrm{~cm}^{2} \mathrm{~mol}-1 / 2 \mathrm{~s}-1 / 2 \mathrm{X}$ 105; $\overline{\mathrm{D}}_{\mathrm{exp}} ; \overline{\mathrm{D}}^{0}\left(\overline{\mathrm{C}}_{A}\right) ; \overline{\mathrm{D}}\left(\overline{\mathrm{C}}_{\mathrm{B}}\right) ; \mathrm{D}, \mathrm{cm}^{2} \mathrm{~s}-\mathrm{T} \mathrm{X} 105$.

* Values obtained by curve fitted using the computer program shown in appendix II.

The method outlined in section (2-5-6) was followed in the conversion of $\bar{D}_{\text {exp }}$ into the differential diffusion coefficient, D.

Equation (2-88) was used to calculate succesive approximate $\overline{\mathrm{D}} 0$ (\bar{C}_{B}) values from fitted values of $\overline{\mathrm{D}} 0(\overline{\mathrm{C}} \mathrm{A})$. First, final, fitted $\overline{\mathrm{D}} 0(\overline{\mathrm{C}} \mathrm{B})$ and succesive $\overline{\mathrm{D}}^{0}\left(\overline{\mathrm{C}}_{\mathrm{A}}\right)$ values are shown in Tables $[4-1-6(\mathrm{C})]$ and [4-1-6(b)] respectively.

Figure [4-1-6(a)] shows plots of $\overline{\text { Dexp }}$ against $\left(\mathrm{CO}_{B}\right)^{1 / 2}$ and final $\overline{\mathrm{D}}^{0}\left(\overline{\mathrm{C}}_{\mathrm{B}}\right)$ against $\left(\overline{\mathrm{C}}_{\mathrm{B}}\right)^{1 / 2}$.

The third values of $\overline{\mathrm{D}} 0(\overline{\mathrm{C}} \mathrm{B})$ were fitted against $\left(\mathrm{CO}_{B}\right)^{1 / 2}$ and the slope, $\mathrm{d} \overline{\mathrm{D}}\left(\mathrm{C}_{B}\right) / \mathrm{d}\left(\mathrm{CO}_{B}\right)^{1 / 2}$), was calculated using the program given in appendix IV. Finally equation (2-89) was used to calculate the differential diffusion coefficient, D, at each concentration. Table [4-1-6(d)] shows D values and Figure [4-1-6(b)] shows a plot of D against ($\left.\mathrm{CO}_{\mathrm{B}}\right)^{1 / 2}$. The value of D at infinite dilution, $D^{0}=1.275 \times 10-5 \mathrm{~cm}^{2} \mathrm{~s}^{-1}$, was obtained by graphical extrapolation and by curve fitting using the program in appendix II. The expected accuracy in the obtained D values was $\simeq 0.5 \%$. The D values, below 0.05 M demonstrate the limitations of this method at these low concentrations.

Onsager and Fuoss7 have derived equations, applicable to electrolytes in general, by including corrections to the simple theory of diffusion in
electrolyte solutions - which demands that the differential coefficients should depend only on the ratios of the ionic concentrations and remain constant when the concentrations are varied in the same proportion. When interionic forces are taken into account the above demand does not hold. The equation given by the authors mentioned above, was not expressed in experimentally measurable quantities and therefore a theoretical D^{\prime} value could not be obtained for comparison.

4-2 CONCLUSION

The independent measurements and related derived quantities obtained for aqueous Thiaminium dichloride solutions at $25^{\circ} \mathrm{C}$ show that the constituent ions undergo strong interactions with each other and with the water molecules. This reveals part of the physical picture of the interactions, both coulombic and hydrodynamic, going on in systems that contain this electrolyte.

The following new and important data, on Vitamin B1 solutions, have emerged from this study. (a). The equation for Density of solutions in the concentration range $0-0.5 M$. within an accuracy of $\pm 0.00008 \mathrm{~g} \mathrm{~cm}^{-3}$, namely,

$$
\rho=0.99707+0.10684 \mathrm{C}-0.00114 \mathrm{C}^{2} .
$$

(b). The equations for the Apparent and Partial molal volumes in the concentration range 0.002 - 0.01M,

$$
\begin{gathered}
\phi=157+640 \mathrm{~m}^{1 / 2} \\
\overline{\mathrm{~V}}=157+960 \mathrm{~m}^{1 / 2} \\
\text { Limits }= \pm 2 \mathrm{~cm}^{3} \mathrm{~mol}-1
\end{gathered}
$$

(c). The Density of solid Thiaminium dichloride at 200 C ,

$$
\rho=1.4109 \pm 0.0005 \mathrm{~g} \mathrm{~cm}^{-3}
$$

(d). The respective equations for Relative viscosities in the concentration range ($0-0.1 M$) and (0.1-1M),

$$
\begin{aligned}
& \text { nrel }=1+0.009 \mathrm{C} 1 / 2+0.823 \mathrm{C} \\
& \text { Limits }= \pm 0.0009 .
\end{aligned}
$$

$$
\begin{gathered}
\eta_{r e l}=1+0.175 \mathrm{C} 1 / 2+0.208 \mathrm{C}+1.23 \mathrm{C} 2 . \\
\text { Limits }= \pm 0.005 .
\end{gathered}
$$

(e). The Einstein's equation in the dilute range (below 0.003 M),

$$
\begin{aligned}
n_{\mathrm{sel}} & =1+5.5 \varnothing \\
\text { Limits } & = \pm 0.0003 .
\end{aligned}
$$

(f). The equation for Refractive index in the concentration range $0-1 M$,

$$
\begin{aligned}
& n=1.33247+0.07793 C+0.00047 C^{2} \\
& \text { Limits }=-0.00002 \text { and }+0.0002
\end{aligned}
$$

(g). The Apparent Molal Refractivity at infinite dilution,

$$
[R a p p] 0 D=70.0 \pm 1.4 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}
$$

(h). The electrolytic equivalent conductivities in the concentration range 0.00051 - 1 M within an accuracy of $\pm 0.5 \mathrm{~S} \mathrm{~cm}^{2}$ (g equiv.)-1, and

$$
\Lambda^{0}=532.7 \pm 0.5 \mathrm{~S} \mathrm{~cm}{ }^{2} \text { equiv. }-1
$$

(i). The limiting ionic equivalent conductivities,

$$
\begin{aligned}
\lambda_{\mathrm{Thi}^{2}}^{0} & =29.3 \pm 0.3 \\
\lambda_{\mathrm{ThiH}}{ }^{0}+ & =35.8 \pm 0.3 \\
\lambda_{\mathrm{ThiH2}}{ }^{3}+ & =41.3 \pm 0.3 \mathrm{~S} \mathrm{~cm}{ }^{2}(\mathrm{~g} \text { equiv. })^{-1} .
\end{aligned}
$$

(j). The association or ionic complexation constants.

$$
\begin{aligned}
& K_{1}=1.585 \times 10^{-5} \\
& K_{2}=6.310 \times 10^{-10} 1 \mathrm{~mol}-1
\end{aligned}
$$

(k). The diffusion coefficients in the concetration range $0.05-1 \mathrm{M}$ within $\pm 0.5 \%$, and

$$
D 0=1.275 \times 10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}
$$

REFERRENCES

1. GLASSTONE, S. "Textbook of physical Chemistry" 2nd Edn. D. Van Nostrand Company Inc. 1947, p.p. 887, Toronto, NY. London.
2. CONWAY, B. E., "Chemical Physics of ionic Solutions", Ch.1, Eds. CONWAY B. E and BARRADAS (The Electrochemical Society, 1964), John Wiley and Sons Inc., NY., London, Sydney.
3. DEBYE, P. and HUCKEL, E., Phys. 2., 24, 48, 185, 305 (1923); 25, 97 (1924); Trans. Farad. Soc., 23, 334 (1927); ONSAGER. L., Phys. Z., 27, 388 (1926); 28, 277 (1927); Trans. Farad. Soc. 23, 341 (1927).
4. KIRKWOOD, J. G. and POIRIER, J. G., J. Chem. Soc., 58, 591 (1954).
5. MAYER, J. E., J. Chem. Phys., 18, 1426 (1950).
6. (a) FALKENHAGEN, H. K. and DOLE, M., Phys. Z., 30, 611 (1929); (b) FALKENHAGEN, H. K., Phys. Z., 32, 745 (1931).
7. ONSAGER, L. and FUOSS, R. M., J. Phys. Chem., 36 2689 (1932).
8. BRONSTEAD, J. N., J. Amer. Chem. Soc., 42, 761 (1920); 44, 877, 938 (1922); 45, 2898 (1923).
9. GUGGENHEIM, E. A. and TURGEON, J. C., Trans. Farad. Soc., 51, 747 (1955).
10. MUKERJEE, P., J. Phys. Chem., 65, 740 - 746 (1961).
11. COURTURE, A. M. and LAIDLER, K. J., Can. J. Chem., 35, 207 (1957).
12. CONWAY, B. E., VERRAL, R. E. and DESNOYERS, J. E., Zeit. Phys. Chem., (Leipzig) (1965) [Falkenhagen Anniversary Volume].
13. HALLIWELL, H. F. and NYBURG, S. C., Trans. Farad. Soc., 59, 1126 (1963).
14. WILLIAMS, R. R., "Vitamin B1 and its uses in Medicine", Macmillan, 1938.
15. SCHNEEBERGER, R., STAHL, R. and LONCIN, M., Lebensm - Wiss. Technol., 8(5), 222-4 (1975), Ger.
16. SHAMIM, M. and BAKI, S. M. A., Aust. J. Chem., 33, 1857-61 (1980).
17. YAO, SHOUZHUO, LIU and JIANHUA (New Materials Res. Inst.), Hunan Univ. Changsha, China/Huaxue Xuebao, 43(7), 611-19 (1985).
18. DAWSON, R. M. C., ELLIOTT, D. C., ELLIOTT, W. H., and JONES, K. M, Eds., "Data for Biochemical research", 2nd Edn., p.p. 210, Oxford, Clarendon Press (1969).
19. WILLIAMS, R. R. and RUEHLE, A. E., J. Amer. Chem. Soc., 57, 1856 (1935).
20. (a). WILLIAMS, R. R., WATERMAN, R. E. and KERESZTESY, J. C., J. Amer. Chem. Soc., 56, 1187 (1934); (b). ELDERFIELD, R. C., Edr., "Heterocyclic Compounds", Vol. 5, p.p. 653 (1957), NY. John Wiley and Sons. Inc., London, Chapman and Hall Ltd.
21. ROBINSON, F. A., "The Vitamin Cofactor of enzyme systems", 1st Edn., Ch. 2, Pergamon press, Oxford, London, Edinburgh, NY, Toronto Paris (1966).
22. WILLIAMS, R. R., J. Amer. Chem. Soc., 57, 229 (1935); WILLIAMS, R. R., WATERMAN, R. E., KERESZETESY, J. C. and BUCHMAN, E. R.; ibid., 536.
23. WILLIAMS, R. R., BUCHMAN, E. R., and RUEHLE, A. E., ibid., 1093.
24. WILLIAMS, R. R., ibid.; 58, 1063 (1936); CLINE, J. K., WILLIAMS, R. R., RUEHLE, A. E. and WATERMAN, R. E., ibid., 59, 530 (1937).
25. WILLIAMS, R. R., RUEHLE, A. E. and FINKELSTEIN, J., ibid., 526.
26. CLINE, J. K., WILLIAMS, R. R. and FINKELSTEIN, J., ibid., 1052.
27. BUCHMAN, E. R., WILLIAMS, R. R. and KERESZTESY, J. C., ibid., 57, 1849 (1935).
28. WOHMANN M., Annalen., 259, 299 (1890).
29. WINDAUS, A., TSCHESCHE, R. and GREWE, R. 2. Physiol. Chem., 228, 27 (1934).
30. CLARKE, H. T. and GURIN, S., J. Amer. Chem. Soc., 57, 1876 (1935).
31. (a). HORNE, R. A., Edr., "Water and aqueous solutions - structures, thermodynamics and transport processes", Ch. 12 and 13, contributions by MILLERO, F. J., Wiley-Interscience, NY., London, Sydney, Toronto. (b). WEISSBERGER, A., Edr., Physical methods in Organic chemistry,

Vol. I, Part I, 2nd Edn, Contributions by BAUER, N. and LEWIN, S. Z., "Determination of density", Ch. IV, p.p. 131, Wiley Interscience, NY., London (1971); (c). MacINNES, D. A., "The principles of electrochemistry", 1961 Edn., p.p. 82-83, Dover publications Inc., New York.
32. MASSON, D. O., Phil. Mag., 81, 218 (1929).
33. (a). STOKES, R. H. and MILLS, R., International Encyclopedia of Physical Chemistry and chemical physics, "Viscosity of electrolytes and related properties", Chap. 1, Pergamon press Oxford 1965.
(b). DUNCAN, T., "Advanced physics materials and mechanics", p.p. 362 (1977); Ref. 31a, Ch. 17, p.p. 701.
34. (a). STOKES, Trans. Camb. Phil., 8, 287 (1845); (b). LAMB, "Hydrodynamics", 6th Edn., Ch. XI, Cambridge University press, 1932; M1LNE-THOMSON, "Theoretical hydrodynamics", 2nd Edn., Macmillan, 1949.
35. POISEUILLE, Mem. Savants Etrangers, 7, 105 (1841); ibid., 9, 433 (1846).
36. HAGENBACH, Ann. Phys., Lpz. (Pogg. Ann.), 109, 385 (1860).
37. ROBINSON, R. A. and STOKES, R. H., "Electrolyte solutions", 2nd Edn. (Revised), Appendix, Butterworths London 1970. GRUNEISEN

Wiss.
Abhandl.
Physik-tech.

Reichanstat., 4239 (1905).
39. JONES, G. and DOLE, M., J. Amer. Chem. Soc., 51, 1950 (1929); ibid.,2950-2964.
40. DESNOYERS, J. E. and PERRON, G., J. Sol. Chem., 1, 199-212 (1972); WEN, W. Y., TAKEGUCHI, N. and WILSON, D. P., ibid., 3, 103-117 (1974).
41. FALKENHAGEN, H. K., and VERNON, E. L., Phil. Mag., 14, 537 (1932).
42. HARNED, H. S., and OWEN, B. B., "The physical chemistry of Electrolytic solutions", 3rd Edn., p.p. 240, Reinhold Publishing Corp, N.Y., 1958.
43. FALKENHAGEN, H. K., and KELBG, G., Z. Elecktrochem., 56834 (1952).
44. PITTS, E., Proc. roy. Soc., A217, 43 (1953).
45. Ref. 33, Ch. 3, p.p. 30.
46. PHANG, S., Sains, Mal., 5(2), 103 (1976); Mal. J. Chem., 4, (1976); Aust. J. Chem., 25, 1575 (1972).
47. CRICKARD, K. and SKINNER, J. F., J. Phys. Chem., 73, 2060 (1969).
48. KAMINSKY, M., Disc. Farad. Soc., 24, 171 (1957); KAY, R. L., VITUCCIO, T., ZAWOYSKI, C. and EVANS, D. F., ibid., 70, 2336 (1966).
49. EINSTEIN, A., Ann. Phys. Lpz., 19, 289 (1906); ibid. 34, 591 (1911); EINSTEIN, A., "Investigations on the theory of the Brownian Movement", 1929, Dover publications, Inc., N.Y., p.p. 55, Translated by COWPER, A. D.
50. HOLTZER, A. and EMERSON, M. F., J. Phys. Chem.

73, 26-33 (1969).
51. EIRICH, F. R., Edr., "Rheology, Theory and Applications", Vol.1, Academic Press, 'NY (1956); FORD, T. F., J. Phys. Chem., 64, 1168 (1960).
52. VAND, V., ibid., 52, 277 (1948); ibid., 314.
53. THOMAS, D. G., J. Colloid. Sci., 20, 247 (1965).
54. (a). FINDLAY, A. (KITCHENER, J. A., Edr.), "Practical Physical Chemistry", 8th Edn., Ch. 8, Sec 8E, Longmans (1953); (b). WEISSBERGER, A., Edr. Physical methods in Organic chemistry, Vol. I, Part II, $2^{\text {nd }}$, Contributions by BAUER, N., FAJAN, K. and LEWIN, S. Z., "Refractometry", Ch. XVIII, Wiley Interscience, NY. (1971).
55. MOELWYN-HUGHES, E. A., "Physical Chemistry", 2nd Rev. Edn., p.p. 390, Pergamon press, Oxford-London, NY, Paris (1961).
56. ARRHENIUS, S., J. Amer. Chem. Soc., 34, 353 (1912); Kef. 31b, p.p. 15, 40, 322.
57. KOHLRAUSCH, F., Ann. Phys., 6, 1 (1879).
58. ARRHENIUS, S., Z. Phys. Chem., 1, 481 (1887); Phil. Mag., 26, 81 (1888).
59. SHEDLOVSKY, T., BROWN, A. S. and MacINNES, D. A., Trans. Electrochem. Soc., 66, 165 (1934); SHEDLOVSKY, T., J. Amer. Chem. Soc., 54, 1405 (1932); SHEDLOVSKY, T. and BROWN, A. S., ibid., 56, 1066 (1934).
60. Ref. 37, p.p. 143-155.
61. PRUE, J. E. and SHERRINGTON, P. J., Trans. Farad.

Soc., 57, 1795 (1961).
62. SELVARATNAM, M. and SPIRO, M., ibid., 61, 361 (1965); (b). PETHYBRIDGE, A. D. and PRUE, J. E., ibid., 63, 2019 (1967); (c). SHAMIM, M. and SPIRO, M., ibid., 66, 2863 (1970); SHAMIM, M. and SENG, C. E., Z. Phys. Chem., 128, 221-224 (1981).
63. FINAR, I. L., "Organic Chemistry", Vol. II, p.p. 608, Table 12.2, 5 th Edn., London Longman, 1975.; HURST, D. T., "An introduction to the chemistry and biochemistry of pyrimidines, purines and pteridines.", p.p. 27, John - Wiley and Sons, Chochester, N.Y., Brisbane, Toronto.
64. Ref. 37, p.p. 285.
65. NERNST, W., 2. Phys. Chem., 2, 613 (1888); hartley, G. S., Phil. Mag., 12, 473 (1934).
66. CHRISTOPHER, J. D. F. and HURCHINSON, H. P., I. E. C. Fundamentals, 10, 303 (1971).
67. GORDON, A. R., Ann. NY. Acad. Sci., 46, 285 (1945).
68. STOKES, R. H., J. Amer. Chem. Soc., 72, 763 (1950); ibid., 2243.
69. Ref. 54a, Ch. 3, p.p. 37.
70. Ref. 33, p.p. 20; Ref. 31a.
71. WEISSBERGER, A., Edr., Physical methods in Organic chemistry, Vol. I, Part II, Ch. XVI, 3rd Edn, Contributions by GEDDES, A. L. and PONTIUS, R. B., "Determination of diffusivity", Wiley Interscience, NY. (1971); Ref. 64.
72. Ref. 54a, Ch. 10, Sec. 10A, p.p. 205.
73. WEISSBERGER, A., Edr., Physical methods in Organic chemistry, Vol. I, Part IV, Ch. XLV, 2nd Edn., Contributions by SHEDLOVSKY, T., "Conductometry", Wiley Interscience, NY. (1971).
74. JONES, G. and BOLLINGER, G. M., J. Amer. Chem. Soc., 53, 411 (1931).
75. KOHLRAUSCH, F., Wied. Ann., 60, 315 (1897).
76. JONES, G. and BOLLINGER, G. M., J. Amer. Chem. Soc., 57, 280 (1935).
77. KULBAUM, F. and LUMMER, O., Verh. Phy. Ges. Berlin, 14, 56 (1970).
78. WENDT, R. P. and SHAMIM, M., J. Phys. Chem., 74, 2770 (1970).
79. JAGANYI, D., Msc. Thesis, Dept. of Chem., University of Nairobi.
80. JAMES, A. M., "Practical Physical Chemistry", 2nd Edn., p.p. 22, J \& A Churchill Ltd., 104 Gloucester Place, London W1, 1953; Ref. 85, p.p. 913, 915.
81. JONES, G. and BRADSHAW, B. C., J. Amer. Chem. Soc., 55, 1780 (1953).
82. Ref. 80, p.p. 45-47; SHEDLOVSKY, T., ibid., 54, 1411 (1932); LIND, J. E., ZWOLENIK, J. J. and FUOSS, R. M., ibid., 81, 1557 (1959).
83. STOKES, R. H., ibid., 73, 3527 (1951).
84. MILLS, R. and WOOLF, L. A., "The diaphragm coll",
p.p. 47, Table 5.1. The Australian National University. 1968; WENDT, R. P. and SHAMIM, M., "Diffusion in aqueous ternary saline solutions", Research and development report NO 504, p.p. 39, Loyola state University, New Orleans (1969).
85. VOGEL, A. I., "A text book of quantitative inorganic analysis including elementary instrumental analysis, p.p. 931, 3rd Edn., E.L.B.S. and Longmann, 1968.
86. SQUIRES, G. L., "Practical Physics", McGraw-Hill, London 1968.
87. REDLICH, O. and MEYER, D. M., Chem. Rev., 66(3), 221 (1964).
88. BENSON, S.W. and COPELAND, C. S., J. Phys. Chem., 65, 1194 (1962).
89. "Hand book of chemistry and physics.", 57th Edn., p.p. C543, Chemical Rubber Co., Cleveland, Ohio. 1976-77.
90. Ref. 55, p.p. 807.
91. BRAY and HUNT, J. Amer. Chem. Soc., 33, 781 (1911).
92. SMITH, A. K. and GORTNER, R. A., J. Phys. Chem., 37, 79 (1933).
93. BARNES, C., J. Appl. Phys., 5, 4 (1934).

APPENDIX I

L.

10 MODE 0
20 REM FILE "DENSOL"
30 REM CALCULA'TION OF THE DENSITY OF THIAMINE-HCL SOLUTIONS
40 DIM Wr (50), WT2 (50), DENS (50), DENS2 (50), CONC(50)
50 DATA $25.60035,25.60498,25.60700,25.60704,25.61001,25.61012,25.612445$
60 DATA $25.61500,25.61506,25.61785,25.62030,25.62362,25.62615,25.62829$
70 DATA $25.63144,25.65851,25.68568,25.69984,25.71401,25.72669,25.74002$
80 DATA $25.74054,25.74205,25.76469,25.7788,25.78949,25.80390,25.81496$
90 DATA $25.84902,25.86430,23.76299,25.91152,26.07245,23.99940,26.13923$
100 DATA $26.17402,26.37914,24.46571,26.68605,26.84288,26.94007,27.21778$
110 DA'TA 25.25091,27.50958,25.39536,27.71125,28.27454
120 FOR I\%=1 TO 47
130 READ WT(I\%)
140 NEXT I\%
150 DATA $.00000000, .00098208, .00102618, .0019641607, .00198137, .00261816$
160 DA'CA . $0029900955, .0041462505, .004910418, .00503798, .005980191, .0070189168$
170 DATA . 0082925018,.0090566528,.009820836,.019641672,.050000245,.035094584
180 DATA $.041462509, .045283264, .049104, .0500592, .0503776, .0589743, .064387$
190 DATA . 0682077,.0733021,.0771228,.0936794,.0962687,.0975002,. 113420056
200 DATA . 1758257,. 1904187,. 199387,.2121228,.2898115,. $3771312, .3993398$
210 DATA $.4591983, .5037738, .565537, .5980191, .7062738, .753875, .7820521$
220 DATA . 9953775
230 FOR J\%=1 TO 47
240 READ CONC(J\%)
250 NEXT J\%
260 PRINT TAB(5);"CONCENTRATION";TAB(25);"APP.WT.";TAB(40);"CORR.WT.";TAB(55); "DENSITY"; TAB(70);"BLT. VOL."
270 PRINT
$280 \mathrm{~V}=25.7028127$
290 FOR J\%=1 TO 47
$300 \operatorname{DENS}(J \%)=W T(J \%) / T$
310 PRINT TAB(40); WT(J*);TAB(55);DENS(J\%)
320 FOR K\%=1 TO 5
330 WT2 (J\%) $=$ WT (J\%) $+.0012 * W T(J \%) *((1 / \operatorname{DENS}(J \%))-(1 / 8.4))$
340 DENS (J\%) $=$ WT2 (J\%)/V
350 Z=GET
360 PRINT TAB(40); WT2(Jx);TAB(55);DENS(J\%)
370 NEXT K\%
$380 \mathrm{Z}=\mathrm{GET}$
390 PRINT TAB(5);CONC(J\%);TAB(25);WT(J\%);TAB(40);WT2(J\%);TAB(55);DENS(J\%);TAB(70) ; V

400 PRINT
410 IF J\%=30 OR J\%=33 OR J\%=37 OR J\%=42 OR J\%=44 THEN 440
$420 \mathrm{~V}=25.7028127$
430 GOTO 450
$440 \mathrm{~V}=23.61061175$
450 NEXT J\%
460 END

APPENDIX II

```
10CLS
    20 VDU6
    30DIM P(30),R(30),T(30),U(30),V(30),W(30),X(30),Y(30),Z(30)
    40DIM A(30),B(30),C(30),D(30),F(30),G(30),L(30),Q(30),S(30)
    50DIM A$(2),I$(3),Q$(3)
    GOREM ARRAY SIZES LIMIT PROGRAM TO A MAXIMIJM OF 100 DATA POINTS.
    7OREM THE NUBER OF DATA POINTS SHOULD BE AT L.EAST 2 GREATER THAN THE
    8OREM MAXIMUM ORDER OF TIIE POLYNONIAL.
    90PRINT "PROGRAM TO FIT A POLYNOMIAL TO A SET OF POIHTS"
```



```
110PRINT
120PRINT "WOULD YOU LIKE FULL INSTRUCTIONS.";
140GOSUB 3720
150LET I$ = Q$
160IF I$ = "NO" THEN 190
17OPRINT "TYPE IN A PAIR OF X & Y VALUES & WEIGHT SEPARATED BY COLMMAS"
180PRINT "THEN PRESS RETURN, TYPE THE NEXT PAIR OF VALUES ETC"
190PRINT "TERMINATE DATA WITH 999,999,999"
200PRINT
210 INPUT "HOW MANY DATA HAVE YOU ? " SUMM
220PRINT "STARTING DATA"
230 CHANL=OPENOUT "COEFES"
231 XX=OPENIN "TRY"
240PRINT " X, Y, WEIGHT"
250LET N = O
260 I1=0
270 REPEAT
280 I1 = I 1+1
290 INPUT£XX ,X(I1),Y(I1),W(I1)
295 PRINT X(II),Y(I1),W(I1)
300 IF ABS(X(I1) - 999) + ABS(Y(I1) - 999) = 0 THEN 390
310 IF W(II) >= 0 THEN 340
320 PRINT "NEGATIVE WEIGHTS ARE IMPOSSIBLE - RETYIE LAST LINE"
3 3 0 ~ G O T O ~ 2 9 0 ~
340 LET N = N + 1
350 UNTIL I1 = SUMM
355 CLOSE&XX
360PRINT "PROGRAM CAN HANDLE MAXIMUM OF 100 VALUES"
37OREM CHECK THAT THERE ARE AT LEAST 2 POINTS
990IF N < 2 THEN 1170
400PRINT
410REM CALL SUBROUTINE TO CHECK THAT DATA ARE CORRECT
420GOSUB 2870
430PRINT
440REM CALCULATE MAXIMUM ORDER BASED ON NUMBER OF DATA POINT:S
450LET N9 = 9
460IFN - 2 >= 9 THEN 480
470LET N9 = N - 2
480IE I $ = "YES" THEN 510
490PRINT "TYPE ORDER REQUIRED"
500GOTO 560
510PRINT "TYPE IN THE ORDER REQUIRED IN THE RANGE 1 -"; N9; " OF THE"
L2OPRINT "ONE SPECIFIC POLYNOMIAL REQUIRED."
53OPRINT "OR TYPE 0 IF ALL THE POLYNOMIALS FROM ORDER 0 -";H9;"ARE TO"
540PRINT "BE EXAMINED, AND THE ONE WHICH FITS BEST REPORIED,"
550PRIN
```

```
550PRINT "THEN PRESS RETURN."
560INPUT L
5701F L <> INT(L) THEN 600
580IF L < O THEN }60
590IF L <= N9 THEN 630
600PRINT "INCORRECT VALUR TYPED"
610GOTO 510
620REM SET THE MAXIMUM ORDER TO 9, IE M1 (MAXORDER+1) TO 10
890LET M1 = 10
640IF L <= O THEN 660
650LET M1 = L + 1
660LET I = N - 1
670IF M1 <= I THEN 700
680LET M1 = I
690REM CALL SUBROUTINE TO FIT THE POLYNOMIAL
700GOSUB 1280
710LET M2 = M1 - 1
720PRINT
730IF L = O THEN 760
740PRINT "ORDER OF POLYNOMIAL SPECIFIED ="; N2
750GOTO 790
760PRINT "MAXIMUM ORDER OF POLYNOMIAL TESTED FOR ="; M2
77OPRINT "ORDER OF BEST POLYNOMIAL, FOUND ="; H2
780PRINT
790PRINT "POLYNOMIAL ORDER GOODNESS OF EIT"
800FOR I = 1 TO M1
810 PRINT TAB(1);I - 1; TAB(10); G(I)
820NEXT I
830PRINT
840PRINT "CORFFICIENTS OF THE BEST OR SPECIFIED ORDER POLYNOMIAL"
8 4 5 ~ V D U S ~
80 VDU2
860PRINT "(Y = A + B*X + C*X^2 + D*X^3 +...)"
870LET N3 = N2 + 1
880FOR I = 1 TO N3
890 READ A$
900 PRINT A$; TAB&5); F(I)
905 PRINT&CHANL, F(I)
910NEXT I
911 *SPOOL A11
912 PRINT "REA X1"
913 FOR I = 1 TO N3
914 PRINT F(I)
915 NEXT
916 PRINT "EOF"
917 *SPOOL
920 VDUS
930DATA "A=", "B=", "C=", "D=", "E=", " E=", ""G=", "H=", "I=", "J="
940RESTORE
950PRINT
960PRINT "WOULD YOU LIKE A TABLE OF RESIDUALS"
970GOSUB 3710
980IF Q$ = "NO" THEN 1080
985 VDU2
990PRINT TAB(0);"X";TAB(10);"Y";TAB(25);"Y(CALC)";TAB(40);"DIFF"
1000LET R2 = 0
1010FOR I
```

```
    =1 TO N
1020 PRINT TAB(0);X(I);TAB(10);Y(I);TAB(25);2(I);TAB(40);R(I)
1030 LET R2 = R2 + R(I) ` 2
1040NEXT I
1050PRINT
1080PRINT "SUM OF ERRORS SQUARED ="; R2
1070PRINT
1075 VDU9
1080PRINT "HOULD YOU LIKE ANOTHER RUN";
1090GOSUB 3710
1100IF Q$ = "NO" THEN 1200
1110LET I$ = "NO"
1120PRINT "WOULD YOU LIKE TO TRY ANOTHER ORDER WITH THE SAME DATA"
1130GOSUB 3710
1140IF Q$ = "YES" THEN 390
1150GOTO }19
1160REM ENTER IF THERE ARE NOT ENOUGH POINTS
1170PRINT "RUN TERMINATED - NOT ENOUGII DATA POINTS"
1180GOTO 1080
1190REM TERMINATE JOB
1200IF I$ = "NO" THEN }124
1205 VDU2
1210PRINT "REMEMBER THAT YOU MUST NOT EXTRAPOLATE BEYOND THE"
1220PRINT "DATA POINTS, AND ALSO THAT INTERPOLATION BETWEEN"
1230PRINT "POINTS IS DANGEROUS WITH HIGH ORDER POLYNOMIALS."
1240PRINT "END OF JOB"
1241 CLOSE &O
1245 CHAIN"DERIVE"
1250STOP
1280REM SUBROUTINE TO CALCULATE A WEIGHTED LEAST SQUARES POLYNOMIAL
1270RRM BY FORSYTHE"S METHOD USING ORTHOGONAL POLYNOMIALS.
1280LET M3 = M1 - 1
1290LET N2 = M3
1300FOR I = 1 TO M1
1310 LET C(I) = 0
1320NEXT I
1330LET Q(1) = 0
1940LET D(1) = 0
1950LET D(2) = 0
1980LET A(1) = 1
1970LET D2 = 0
1380LET P1 = 0
1390LET S1 = 0
1400LET G1 = 0
1410LET I1 = 0
1420LET S2 = W(1)
1430REM FIND THE MAXIMUM AND MINIMUM X & Y
1440LET X9 = X(1)
1450LET X1 = X(1)
1480LET Y9 = Y(1)
1470LET Y1 = Y(1)
1480FOR I = 2 TO N
1490 IF X(I) = X9 THEN 1510
1500 LET X9 = X(I)
1510 IF X(1) > = X1 THEN 1530
```

```
1520 LET X1 = X(I)
1530 IE Y(I) <= Y9 THEN 1550
1540 LET Y9 = Y(I)
1550 IF Y(I) )= Y1 THEN }157
1580 LET Y1 = Y(I)
1570 LET S2 = S2 + W(I)
1580NEXT I
1590REM CHECK THAT SUM OF WEIGHTS IS NOT 2ERO
1600IF S2 = 0 THEN 2840
1610LET Y3 = (Y9 + Y1) / 2
1620LET Y4 = (Y9 - Y1) / 2
1690IF Y4 > O THEN }168
1640LET F(1) = Y(1)
1650LET N2 = 0
1860GOTO 2820
1670REM SCALE Y TERMS INTO THE RANGE +1 TO -1
1680FOR I = 1 TO N
1690 LET V(I) = (Y(I) - Y3) / Y4.
1700 LET D2 = D2 + W(I) * V(I) ~ 2
1710 LET P(I) = 1
1720 LET T(I) = 0
1730 LET P1 = P1 + W(I) * V(I)
1740 LET S1 = S1 + W(I)
1750NEXT I
1760LET S(1) = P1 / S1
1770LET C(1) = S(1)
1780LET D2 = D2 - S(1) * P1
1790LET G(1) = ABS(D2 / (N - 1))
1800LET A1 = 4 / (X9 - X1)
1810LET B1 = -2 - A1 * X1
1820REM SCALE X TERMS INTO THE RANGE +2 TO -2
1830FOR I = 1 TO N
1840 LET U(I) = A1 * X(I) + B1
1850NEXT I
1860REM START LOOP FOR EACH ORDER
1870FOR I = 1 TO M3
1880 LET D1 = 0
1890 FOR J = 1 TO N
1900 LET D1 = D1 +W(J) * U(J) * P(J) ~ 2
1910 NEXT J
1920 REM L IS FORSYTHES ALPHA
1930 LET L(I + 1) = D1 / S1
1940 LET W2 = S1
1950 LET S1 = 0
1960 LET P1 = 0
1970 REM STORE VALUE OF CURRENT ORTHOGONAL POLYNOMIAL IN P( )
1980 REM AND OF PREVIOUS ORTHOGONAI, POII,YNOMIAL IN T( )
1990 FOR J = 1 TO N
2000 LET D1 = Q(I) * T(J)
2010 LET T(J) = P(J)
2020 LET P(J) = (U(J) - L(I + 1)) * P(J) - D1
2030 LET S1 = S1 +W(J) * P(J) 2
L040 LET P1 = P1 + W(J) * V(J) * P(J)
2050 NEXT J
2060 REM Q IS FORSYTHES BETA
2070 LET Q(I + 1) = S1 / W2
```

```
2080 LET \(S(I+1)=P 1 / S 1\)
2090 LRT D2 = D2 - S(I + 1) * P1
\(2100 \operatorname{LETG} G(1+1)=\operatorname{ABS}(D 2 /(N-I-1))\)
2110 IE L > 0 THEN 2280
2120 REM ENTER IF PROGRAM HAS TO DECIDE ON BEST ORDER (L = 0)
2130 IF II = 1 THEN 2230
2140 IF G(I + 1) < G(I) THEN 2280
2150 REM ENTER IF A MINIMUM DETECTED
2160 LET N2 = I - 1
2170 LET I1 \(=1\)
2180 LET G1 \(=G(I)\)
2190 FOR J = 1 TO M1
2200 LET \(B(J)=C(J)\)
2210 NEXT J
2220 GOTO 2280
2230 IF G(I + 1) > \(=0.6 *\) G1 THEN 2280
2240 LET II = 0
2250 LET N2 = M3
2260 REM BUILD COEFFICIENTS OF J TH ORDER TERM IN A( ) \& SUM TO FORM
2270 REM EXPLICIT POWER SERIES IN C( )
2280 FOR J = 1 TO I
2290
2900
2310
2920
2330
2340 LET \(C(I+1)=S(I+1)\)
2350 LET \(A(I+1)=1\)
2360 LET D \((I+2)=0\)
2370 IF II = 0 THEN 2420
2380 IF I 〈〉 M3 THEN 2420
2390 FOR J = 1 TO M1
2400 LET C(J) \(=B(J)\)
2410 NEXT J
2420NEXT I
2430LET D(1) \(=1\)
2440LET B(1) \(=1\)
2450LET \(\mathrm{F}(1)=\mathrm{C}(1)\)
2460FOR I \(=2\) TO M1
2470 LET \(D(I)=1\)
2480 LET \(B(I)=B 1 * B(I-1)\)
2490 LET \(F(1)=F(1)+C(I) * B(I)\)
2500 REM WORK OUT EXPLICIT POWER SERIES IN UNSCALED \(X\), \& ADD
2510 REM INTO THE COEFFICIENTS \(F(\) ) THE RELEVANT CONTRIBUTIONS
2520 NEXT I
2530FOR J = 2 TO M1
2540 LET \(D(1)=D(1) * A 1\)
2550 LET \(E(J)=C(J) * D(1)\)
2560 LET K1 = 2
2570 LET J1 = J t 1
2580 IF J1 > M1 THEN 2660
2590 FOR I = J1 TO M1
2600 LET \(D(K 1)=A 1 * D(K 1)+D(K 1-1)\)
2610 LET \(F(J)=F(J)+C(I) * D(K 1) * B(K 1)\)
2620 LET K1 = K1 + 1
2630 NEXT I
```

```
2640NEXT J 
2650REM CALCULATE YCALC & RESIDUAL FOR EACH POINT (ON ORIGINAL SCALE).
2660FOR I = 1 TO N
2670 LET J = N2 + 1
2680 LET Y5 = F(J)
2690 IF N2 = O THEN 2730
2700 FOR K = 1 TO N2
2710 LET Y5 = F(J - 1) + (X(I) * Y5)
2720 LET J = J - 1
2730 NEXT K
2740 LET Z(I) = Y6 * Y4 + Y3
2750 LET R(I) = (V(I) - Y5) * Y4
2760NEXT I
2770REM CONVERT COEFF ARRAY F( ) BACK TO ORIGINAL SCALE
2780LET F(1)=(F(1) * Y4) + Y3
2790FOR I = 2 TO M1
2800 LET F(I) = F(I) * Y4
2810NEXT I
2820RETURN
2830REM ENTER IF ERRORS DETECTED
2840PRINT " JOB TERMINATED BY PROGRAM BECAUSE SUM OF WEIGHTS = 0"
2850STOP
2860REM SUBROUTINE TO CHECK THAT DATA ARE CORRECT & ALTER IF NECESSARY
2870PRINT "ARE THE DATA VALUES ENTERED CORRECT?";
2880REM A4 SHOULD BE SET TO THE NUMBER OF LINES ON THE VDU
2890LET A4 = 20
2900GOSUB 9710
2910IF Q$ = "YES" THEN 3690
2920PRINT "HERE IS A LIST OF THE CURRENT DATA"
2930 VDU2
2940PRINT TAB(0);"LINE";TAB(5);"X";TAB(20);"Y";TAB(30);"WEIT"
2950FOR I = 1 TO N
2960 PRINT TAB(1);I;TAB(5);X(I);TAB(20);Y(I);TAB(30);W(I)
2970 IF INT(I / (A4 - 1)) * (A4 - 1) <> I THEN 3010
2980 PRINT "WOULD YOU LIKE TO CONTINUE LISTING";
2990 GOSUB 3710
3000 IF Q$ = "NO" THEN 3030
3010NEXT I
3020 VDU3
3030PRINT "TYPE R TO REPLACE";
3040IF I$ = "NO" THEN 3060
3050PRINT " AN EXMSTING LINE OF DATA"
3080IF N = 100 THEN 3110
3070PRINT TAB(5); "A TO ADD";
3080IF I$ = "NO" THEN 3100
3090PRINT " AN EXTRA LINE"
3100IF N = 1 THEN 3140
3110PRINT TAB(5); " D TO DELETE";
3120IF I$ = "NO" THEN 3140
3130PRINT " AN EXISTING LINE"
3140PRINT TAB(5); " L TO LIST";
3150IF I$ = "NO" THEN 3170
3160PRINT " THE DATA"
3170PRINT " OR C TO CONTINUE";
3180IF I$ = "NO" THEN 3200
3190PRINT " THE CALCULATION"
```

```
3200INPUT Q$
3210IF Q$ = "R" THEN $310
3220IF N = 100 THEN 3250
3230IE Q = "A" THEN 3450
3240IF N = 1 THEN 3260
32501F Q$ = "D" THEN 3550
3260IF Q$ = "L" THEN 2920
3270IF Q$ = "C" THEN 3690
3280PRINT "REPLY '"; Q$; "' NOT UNDERSTOOD."
3290GOTO 3030
3300REM REPLACE LINE
3310PRINT "TYPE THE LINENUMBER OF THE LINE TO BE REPLACED";
3320INPUT I
3330IF I << INT(I) THEN 3350
3340IF (I - 1) * (I - N) < = 0 THEN 3380
3350PRINT "LINENUMBER MUST BE AN INTEGER IN THE RANGE 1 -"; N
3360PRINT "RE-";
3370GOTO 3310
3380PRINT "TYPE THE CORRECT LINE TO REPLACE THE ONE WHICH IS WRONG:"
3390PRINT "X, Y, WEIGIIT""
3400INPUT X(I), Y(I), W(I)
3410IF W(I) >= 0 THEN 3520
3420PRINT "NEGATIVE WEIGHTS ARE IMPOSSIBI.E - LAST LINE REJECTED"
3430GOTO 3380
3440REM ADD A NEW LINE
3450LET N = N + 1
3460PRINT "TYPE THE ADDITIONAL LINE OF DATA AS SHOWN:"
3470PRINT "X, Y, WEIGIIT"
3480INPUT X(N), Y(N),W(N)
3490IF W(N) >= O THEN 3520
3500PRINT "NEGATIVE WEIGHTS ARE IMPOSSIBI,E - LAST LINE REJECTED"
3510GOTO 3460
3520PRINT "OK"
3530GOTO 3030
3540REM DELETE A LINE
3550PRINT "TYPE THE LINENUMBER OF THE LINE TO BE DEIETED"
3560 INPUT J
3570IF (J - 1) * (J - N)
3580IF J = INT(J) THEN 3610
3590PRINT "LINENUMBER MUST BE AN INTEGER IN THE RANGE 1 -"; N
3600GOTO 3550
3610FOR I = J + 1 TO N
3620 LET X(I - 1) = X(I)
3630 LET Y(I - 1) = Y(I)
3640NEXT I
3650LET N = N - 1
3660PRINT "OK"
3670IF J > N THEN 3030
3680GOTO 2920
9690RETURN
3700REM SUBROUTINE TO CHECK REPLIES
3710IF I$ = "NO" THEN 3730
3720PRINT " TYPE YES OR NO $ PRESS RETURN."
3730PRINT
3740INPUT Q$
3750IF Q& = "YES" THEN 3790
3760IF Q$ = "NO" THEN 3790
3770PRINT "REPLY '"; Q$; "' NOT UNIERSTOOD.";
3780GOTO 3720
3790RETURN
3800END
```


APPENDIX III

5 VnII 3
10 CLI;
$\%(1)$ lifls vilug
10 I'RIN'T "IPROGRAMME INTER2 FOR INTEGIRATION OF AREA BLi"TWEEN THE VALINES I,O \& UP"
40 PIRINT'
(1) $A=0: B=0: C=0: 1)=0: \mathbb{E}=0: F=0: G=0: 13=0: 1=0: J=0: N(J M=1:$ SUMMY = : SUlMM1 $=0$
for ville
OK FILE=OPRNIN "COEFF'S"
BO IH[III "[IOWER I,IMIT VALIUE ", L,
! 0 LAPIII "UPPER LIMIT VALUE ", UI
loo REPPA!'

141 (ill 1114 (3110 $150,190,230,270,310,350,390,430,470,530$

:30 C=(\%)wlipJCJENT'

\because ?月) (ioral 540

3 SUMMIL $=$ SIHIHI $+($ COEFFICJENI * (LOCNHT)/NUM)

36O SUMHY z SHAMY + (COEFFICIENT * (UP^NHM)/NUM)
370 SIMIN. - SUMMI (COEFLIGIENT * (LO^NUI)/NUM)

130) $1=$ ColdrdicIEN'I

440 SUHHY $=$ SUMHY $+($ COEFFICIENT $*($ UP^NUM $) /$ NUM $)$
450 SUHIH1 $=$ SUMMI $+($ COEEEICIENT $*($ LO^NUM $) /$ NUH $)$
160 GOTO 540

480 SUMPMY = SUMHY + (COEFFICIENT * (UP^NUM)/NUM)
490 SUIHI - SUMMI + (COEFFICIENT * (LO^NUM)/NUM)
500 GOTO 540
$510 \mathrm{~J}=\mathrm{COEFFICIENT}$
520 SHAlly $=$ SUMMY + (COEFFICIENT * (UP^NUM) /NUM)
5.30 SUHHI = SUHM1 + (COEFEICIENT * (IO^NUM)/NUM)

540 NUM $=$ NUM +1
550 UN'PI\& EOF\&(FILE)
560 NUM $=1$: PTREFILE $=0$
E.70 $1 F$ IJP=10 THEN 580 ELSE PRINT "D0 $="$; (SUMMY-SUMM1)/UP: SURMP =0: SUIAM1 = 0: GOTO 80
$5 B O$ IMPII' " T K Y YOU WANT TO LOAD MIRPOLAY Y/N ?" A\$
590 JF As="Y" THEN CLOSE£O:VDU3:CIIAIN "MIRPOLY" ELSE VDU3:STOP
flfA
旡

310 SLORE = SLORE

 $360 G=C \mathcal{C L E F F I C I E N T}$
370 SLORIE $=$ SI.OPE
370 SLORTE = Sl.OPE + ((NIM-1)*COEFFICIEHT * (RC^(HUM-2)))
39OII=COETFICIENT
 10 GUTO 470 OLENT
 응
$4 \mathrm{SOJ}=\mathrm{COERFICIE}$
-

1 Eso

APPENDIX V

```
10 MODE O
20 REM FILE "SUPER3"
30 REM CALCULATION OF EXPERIMENTAL CONDUCTIVITY OF THIAMINE-HCL SOLUTIONS
40 DIM CONC(20),REST(20),ALPHA(20),Y(20),Y1(20),BETA(20),IS(20)
50 DATA .00050625,.000625,.00075625,.0008265625,.0009765625,.00098208
DATA .00102618,.00105625,.001225,.0014063,.00157014,.0017016,.00180625
DATA .0019641607,.00198137
FOR IK=1 TO 15
READ CONC(I%)
NEXT I*
DATA 34344.4,28794.1,24614.3,22896.9,20019.2,19929.2,19242,2,18804.7
DATA 16720.5,15010.0,13778.4,12847.6,12368.0,11599.0,11521.9
FOR J%=1 TO 15
READ REST(J%)
REM PRINT TAB(1);JX;TAB(5);REST(JX);TAB(20);CONC(J%)
NEXT J%
2T=1:2TH1=2:ZTH2=3:2H=1:2CL=1
B1=.2300:B3=.3291E8:AO=1E-3
FOR KA=10^(-4.8) TO 10^(-4.7) STEP 5E-8
REM READ KA
FOR KB=10^(-9.2) TO 10^(-9.1) STEP 5E-13
REM READ KB
K2= (1/KA): K3= (1/KB)
REM PRINT "PRESS ANY KEY FOR RUN OF K2 =";K2
REM W$=GET$
PRINT TAB(5);"MOLALITY";TAB(22);"ALPHA";TAB(37);"BETA";TAB(50);"ITERATES";
TAB(65);"RESIST"
FOR LX=1 TO 15
ALPHA(LX)=1:TEST1=1 :SUM =0:TEST2=0:BETA(L%) =0
REM CALCULATIONS OF LOG &i
IS (L%) = (ALPHA (L%) + (2* (1 +BETA (L*))))*CONC (L*)
Y(L%)=SQR(IS(L%))/(1+(B3*AO*SQR(IS(L%))))
Y1(L%)=SQR(IS(LX))/(1+((B3*A0)-B1)*SQR(IS(L%)))
A=(-0.5115*(2T~2)*IS(L*)) :FT=10 A
B=(-0.5115*(2TH1^2)*IS(Lx)) :FTH1=10`B
C=(-0.5115*(2TH2^2)*IS(L*)):FTH2=10^C
D=(-0.5115*(2H^2)*IS (LX)):FH=10^D
E=(-0.5115*(2CL^2)*IS(Lx)):FCL=10^E
REM CALCULATION OF LAMBDA
R=K2*(CONC(L*)) ^ 2*FT*FH:R1=(R*(BETA(Lx)-2))-FTH1:R2=R-(BETA(L%)*(R-FTH1))
GOSUB 900
REM PRINT"ALPHA"TAB(4); CONC(LX);TAB(20);SOLN1;TAB(35)SOLN2
ALPHA(L%) =SOLN2: REM ALPHA(L%)=SOLN1
REM CALCULATION OF BETA
R=K3*(CONC(L*))^2*FTH1*FH:R1=-(R+FTH2):R2=R*(ALPHA(L*)-ALPHA(L*)`2)
GOSUB 900
RRM PRINT"BETA" TAB(4);CONC(L%);TAB(20);SOLN1;TAB(35)SOLN2
BETA(L%)=SOLN2 : REM BETA (L%)=SOLN1
IF ABS(TEST1-ALPHA(LX))<0.0000001 AND ABS(TEST2-BETA(Lx))<0.0000001 THEN
510
SUM =SUM+1:TEST1=ALPHA(LX) :TEST2=BETA(LX)
GOTO 300
PRINT TAB(4);CONC(L%);TAB(20);ALPHA(L%);TAB(35);BETA(L%);TAB(53);SUM;
TAB(65);REST(L*)
NEXT L*
RESTORE
J=5.40859188
TIDLAM2 = 0
REM FITTING OF LAMBDA VALUES AS PER EXISTING THEORY
FOR LTH2O=41.25 TO 42 STEP . }2
```


TIVERSTTY OP NAIR GHIROMO UHIROMO LIERARY

```
580 FOR LTH10=35.5 TO 36 STEP , 25
590 FOR LTO=29 TO 29.5 STEP . }2
600 B1=.23: B2=60.65:LHO=349.81:LCLO=76.35:A0=1E-3:E=78.54:T=298.16:N=8.937E-3
6 0 5 \text { IDLAM1 =LHO +LCLO + LTO +LTH10 +LTH20}
610 REM INPUT "LAMBDA VALUE AT INFINITE DILUTION ";IDLAM2
620 PRINT TAB(1);"CONC";TAB(16);"ROOTC";TAB(28);"INF.DIL.L";TAB(40);"I/D.L.CA"
    ;TAB(56);"EXLAM";TAB(70); "EXLAM.CAL"
630 FOR L%=1 TO 15
640 LCL=LCLO-((B1*LCLO)+(.5*B2))*Y(LX)
850 LT =LTO-((B1*LTO) +(.5*B2))*Y(L*)
660 LH=LHO-((B1*LHO)+(.5*B2))*Y(L*)
670 LTH1=LTH10-((B1*LTH10) +(.5*B2))*Y(LX)
680 LTH2=LTH20-((B1*LTH20) +(.5*B2))*Y(L%)
690 EXLAM=(J*1000)/(REST(L%)*CONC(L%)):CONCSQR=SQR(CONC(L%))
700 X= ((ALPHA(L%)*LT) + ((ALPHA (L%) + BETA (L%))*LH)- (2*(ALPHA(L%)-BETA (L%))*LTH1)-
    (3*BETA(L%)*LTH2))
710 EXLAM2 = IDLAM1 - (((B1*IDLAM1) +B2)*Y(L`))-X:IDLAM2=EXLAM+(((B1*EXLAM)+B2)*Y1(
    L*))+X
120 TIDLAM2 = TIDLAM2 + IDLAM2
730 PRINT TAB(1);CONC(LX);TAB(15);CONCSQR TAB(29);IDLAM1;TAB(40);IDLAM2;
    TAB(54); EXLAM;TAB(68);EXLAM2
740 NEXT L%
7 5 0 ~ B = G E T ~ T
760 IF ABS((TIDLAM2/15)-IDLAM1)>0.01 THEN 800
770 PRINT "AVERAGE IDLAM2 ",TIDLAM2/15
780 IDLAM1 = TIDLAM2/15
790 TIDLAM2=0
800 IDLAM1 = LHO +LCLO +LTO +LTH10+LTH20
810 PRINT TAB(1);"HLAM.";TAB(14);"TLAM.";TAB(27);"CLLAM";TAB(40);"THLAM.";
    TAB(53);"TH2LAM.";TAB(67);"ION RAD"
820 PRINT TAB(1);LHO;TAB(14);LTO;TAB(27);LCLO;TAB(40);LTH10;TAB(53);LTH20;
TAB(67);AO
830 REM PRINT TAB(1);LH;TAB(14);LT;TAB(27);LCL;TAB(40);LTH1;TAB(53);LTH2;
TAB(67); AO
840 PRINT KA , KB
80 NEXT LTO
80 NEXT LTH1O
8 7 0 ~ N E X T ~ L T H 2 O ~
8 8 0 ~ Q = G E T : R E S T O R E : N E X T ~ K B ~
890 RESTORE : NEXT KA:END
900 REM SUBROUTINE TO SOLVE QUADRATIC EQUATION
810 DIS=(R1)^2-(4*R*R2)
920 IF DIS<>0 THEN 960
930 PRINT "BOTH ROOTS ARE EQUAL, AND HAVE THE SAME VALUE:"-R1/(2*R)
40 GOTO 1020
950 PRINT
960 IF DIS>0 THEN }99
970 PRINT "THIS EQUATION DOES NOT HAVE REAL ROOTS"
900 GOTO }102
990 DIS2=SQR(DIS)
1000 IF R1 >=0 THEN 1010
1010 SOLN1=((-R1)+DIS2)/(2*R): SOLN2=((-R1)-DIS2)/(2*R)
1020 RETURN
```


[^0]: UNITS:- C, mol l-1; $\overline{\mathrm{D}} \mathrm{O}^{\left(\bar{C}_{\mathrm{B}}\right)}, \mathrm{cm}^{2} \mathrm{~s}^{-1} \mathrm{X} 105$.
 These values are representatives of the duplicated
 experimental data shown on Table [4-1-6(a)].

