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SUMMARY OF CONTENTS.
This dissertation is an attempt to study the 

capture-recapture models estimation of closed population 
size. Where possible, the assumptions underlying various 
models have been discussed in some detail. Departures from 
various assumptions have also been discussed.

Chapter one, outlines the basic principles underlying 
the capture-recapture method of estimating population size. 
Some statistical methods used capture-recapture studies are 
also presented.

In Chapter Two, a very extensive literature review of 
the most work done on both open and closed populations is 
presented. A statement of the problem is also outlined in 
this Chapter.

In Chapter Three, we discuss various models based on 
Single-Mark release experimental set-up. The various 
assumptions underlying these models have also been 
discussed in some detail. The properties of the Petersen 
estimate have also been discussed. Inverse sapling scheme 
and the models based on it are also discussed.

In Chapter four, we discuss the models based on the 
Schnabel sapling scheme. Properties of the estimates 
derived from these models have also been discussed. Some 
Regression models have been presented. The testing of the 
underlying assumptions have been presented. We also 
discuss the models based on constant probability of 
capture. Inverse Multiple sampling census together with 
the models based on it have also been discussed. The 
models based on the Multi-Single recapture census have also 
been presented. Conclusions are in section 4.4 .

Lastly we give an appendix and references.
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CHAPTER ONE

BASIC PRINCIPLES UNDERLYING THE CAPTURE-RECAPTURE METHOD

1.1 THE CAPTURE-RECAPTURE METHOD

The estimation of the total population size 

of animal populations is of great importance in 

a variety of biological problems. These problems 

may relate to population growth, ecological 

adaptation, genetic constitution, natural selection 

and evolution and so on. Obvious practical 

consequences are the maintenance of human food 

supplies and control of insect pests. For human 

comiTiun I ties, procedures employing fixed sampling 

units are available, but for mobile populations, 

other methods must be used. Techniques for estimating 

total population size of organisms which are mobile 

and wary of man are still in relatively primitive 

stage of development and while indices of abundance 

may be available in a variety of forms, the assessment 

of total size with any degree of precision generally 

requires considerable ingenuity and effort. Thus the 

number of fish of a given species present in a lake 

is not an easily accessible parameter. By a judicious 
selection of times and places to set nets each year, 

however, the fishery biologist may be able to monitor 

change in relative abundance with little difficulty.
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Among the techniques which have been developed for 

estimating the total population size, the capture-recapture 

method is the most widely used. In its simplest and most 

commonly applied form, the capture-recapture experiment 

is a two sample experiment in which the members of the 

first sample are marked in some recognizable manner and 

returned to the population. The proportion of marked 

individuals appearing in the second sample is then 

regarded as an estimate of the proportion marked in the 

population. Since the number of marked individuals in 

the population is known, this reasoning leads directly 

to an estimate of the total population size. Thus if n^ 

individuals are marked and released in the first sample 

and m2 marked individuals are subsequently recaptured 

in a sample of size n2, then the population size is 

estimated by N = n^ n2/m2 on the assumption that 

m2/n2 estimates n-̂ /N.

In more extensive investigations the sampling 

and marking continues intermitently over a period of time, 

the unmarked individuals captured on each occasion being 

marked before being returned with the others to the 

population. Distinct "batch marks" are sometimes used 

in such studies; that is on each sampling occasion all 
unmarked individuals are given an identical batch-mark 

but recognizably different mark is used for each 

successive batch. More commonly in the multiple sample 

experiment the "mark" consists of a numbered tag which is 

attached to the individual and thereafter uniquely 

identifies it. In some multiple sample experiment?,
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both the marked and unmarked individuals are 

distinctively marked any time they are caught 

and then released to the population. Each time an 

individual is captured, a record is marked for it or 

on it to show the recapture history. We shall here 

consider statistical aspects of k-sample capture- 

recapture experiment.

The k-sample capture-recapture experiment

Sample size on any one occasion is usually 

limited by the amount of capture gear and manpower 

which can be brought into operation at any one time. 

Under such economic restrictions the only feasible 

means of increasing the precision of the experiment 

may be steadily increased by marking all unmarked 

individuals captured on each sampling occasion and 

returning the entire sample to the population.

The general field experiment is similar for all 

capture-recapture studies. At the beginning of the 

study, a sample of size n-̂  is taken from the 

population. On each occasion the catch is considered 

as a random sample of individuals from the population. 

That is each individual in the population has an equal 

chance of being captured on any given occasion. Each 

time an individual is caught a record is marked for it 

or on it to show the occasion of capture. The 

individual is then returned into the population.



After allowing time for the marked and unmarked animals 

to mix, a second sample of size n2 is taken. The 

second sample normally contains both marked and unmarked 

animals. In some methods the unmarked animals are 

marked and all captured animals are released back into 

the population, where as some methods demand that, both 

the marked and unmarked be marked distinctively and then 

released into the population. This procedure proceeds 

for k periods where k >_ 2.

During the course of this sampling experiment the 

population itself may undergo changes through such 

processes as mortality, emigration and immigration; 

and conceivably, the risks associated with these processes 

may vary with the previous capture history of an 

individual. In particular, the untagged portion of the 

population may be subject to different rates of mortality, 

emigration and immigration from the tagged portion.

The early models assumed deterministic changes, constant 

over different periods, where as the later models 

(stochastic) considers variable changes. Since stochastic 

models describing capture-recapture studies have recently 

been shown not only to be less complicated to analyse 

than their corresponding deterministic models but also 

to provide more valid results, these methods should 

totally supersede their deterministic counterperts. 

However, if it is assumed that no changes occur over the 

sampling period, then the population is considered 

closed.

- 1] -
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ASSUMPTIONS:

Before any mathematical formulation of capture- 

recapture models can be done, there are certain basic 

assumptions that have to be made about the population 

under study. These assumptions vary from one model 

to the other. We now give some of the assumptions which 

are made for most of the capture-recapture models; 

these are:

(i) animals do not loose their marks;

(ii) sampled animals are classified correctly as 

marked and unmarked according to when they 

were recaptured;

(iii) sampling is random with respect to mark status 

so that, either

(a) every animal has the same chance of 

recapture, or

(b) if there exist strata within the population

such that, by size, behaviour or any other

variation, different strata have different

chances of recapture, then the marked

animals belong to these strata in exactly 
the same proportions as the occurrence of 
the strata in the whole population.

The following assumption holds for strictly

closed population models.

(iv) either (a) the population is really closed, or



6

(b) there is neither recruitment nor immigration 

(both of which affect unmarked animals only), 

and death and emigration affect marked and 

unmarked animals equally, or

(c) knowledge is available from other sources 

which permit an allowance to be made for 

migration, birth, and death prior to the 

analysis of the data.

We shall give more assumptions later as we study each model. 

NOTATION AND TERMINOLOGY;

NOTATION

In this desertation we shall adopt the international 

notations used by F.A.O. for fishery research and 

especially the " mnemonic " notation. For example, N 

and n denote the number of individuals in the population 
and sample respectively; M and m refer to the number 

of marked (or tagged members) of the population and 

sample respectively s represents the number of samples 

and so on. Each chapter will be self contained as 

far as the notation is concerned.

Some statistical symbols are required: E[y], o[y]

v[y] (= a [y], c[y] (= a[y]/E[y]) will represent the 

mean, standard deviation, variance and coefficient of 

variation respectively, of the random variable y, 
where as cov[x,y] will denote the covariance of the 

random variables x and y, and E[x|y], v[x|y]
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are the mean and variance of x conditional on fixed 

y. The symbols z a and tk [a] will represent the 

100a percent upper tail for the values of standard 

normal distribution and the t-distribution with 

k-degreeo of freedom, respectively.

Occasionally the symbols 0[N] and o[N] will 

be used; if g is a function of N, then g(N) = 0[N] 

if there exists an integer N-j and a positive number 

A such that, for N> f^, cd(|sCN)/N | < A; g(N) = oi_N]

if lim {g(N)/N} = 0. Roughly speaking, 0[n 1

means "of the same order of magnitude as N when N is 

large", while o[N] means "of smaller order of 

magnitude than N when N is large".

If x has a multivariate normal distribution 

with mean vector £ and variance covariance (dispersion) 

matrix E , we shall write x ^  N(_0,Z).

All logarithms written logx will be to base 

e unless otherwise.

TERMINOLOGY

The size of an animal population in a given area 

will be determined by the process of immigration 

(or movement into an area), emigration (or movement 

out of the area), total mortality, and recruitment.

Total mortality: In dealing with exploited populations,

we shall usually subdivide total mortality into mortality 

due to exploitation and natural mortality, i.e. mortality due
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to natural processes such as predation, disease, 

clLmatLcconditions: Contrary to some authors, 

emigration is not included here under "mortality".

We shall also distinguish between mortality rate 

and Instantenous mortality rate as follows:

Let (p be the probability that an animal survives t
for the period of time [0,t], then if Nq animals are 

alive at time zero we would expect = NQ<f>t to be

alive at time t.

The proport Lon (pt , sometimes expressed as a percentage, 

is called the survival rate over period t, and 

1 - <j> is called the mortality rate over period t.

If, however, the mortality rate may be regarded as a 

Poisson process with parameter y , that is the 

probability that an individual dies In the time 

interval (t, t+St) is y6t + o(6t), then 

. -pt
'f’t = e

dN
~dt~ = liNt 5

and the parameter \i is called the instantanous 

mortality rate.

Mean L1 fe_Exnej^ taacy^i  L e t  Y be t h e  t lm e  a t  whlch

a member of N dies.o

Then ,

F[y] = Pr[Y < y]

= 1 - Pr[Y > y]
= 1 - Pr[animal survives until time y
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= 1 - exp(-py)

and Y has the probability density function 

f(y) =F'(y) = ue“uy , (y > 0).

Therefore the mean life expectancy is
00

E[Y] = / pye"My dy .
o

= 1/n

= - 1/log <$>1 .

Recruitment: By recruitment, we shall refer to those

animals born into the population or, where applicable, 

those animals which grow into the catch.able part of the 
population. In fishery research, recruitment some times 

denote those fish which grow into the class of legally 

catchable fish. Thus we do not treat immigration as a 

component of recruitment.

Open and closed populations: A population which

remains unchanged during the period of investigation 

(i.e. the effects of migration, mortality and recruitment 

are negligible) is called a closed population. If a 

population is changing due to one or more of the above 

processes operating, then the population is said to 
be open.
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1#3 SOME STATISTICAL METHODS USED IN CAPTURE-RECAPTURE 

STUDIES:

maytmiim T.TKELIHOOD ESTIMATION:

is the likelihood function. Then, under regularity condi 

t.Lons, 0, the maximum-likelihood estimate of 0, is a 

solution of the equation

_91ogL_(0_L = o.
90

and as n + 0 is asymptotically distributed
2as N(0,0 w ), where

Let x1,x2,--.,xn be a random sample of size 

which are Independently and identically

distributed (i.i.d) as fCx^O) then

n
L( 0) = n f(x.}0)

i=l

 ̂2
Replacing 0 by 0 leads to the estimate o0 , say of
p

Oq , and an approximate large-sample 100(1-a) 

percent confidence interval for 0 is given by

0± z /o0 Q a /2 0

Coefficient of variation: The coefficient of

variation 0 is asymptotically given by

C(0) = oQ/0
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which can be estimated by

C = O q /9

Here C Is related to the width of the interval

B + z , a and is therefore a useful measure of the 
" a/2 A"accuracy" of 0 .

Bias Consider an estimate 0 of 0 , suppose that

E[0] = 0 + b0 .

Then, the bQ = E[0] - 0 is called the bias of 

0, as an estimate of 0 . The quantity b0/0 is called 

the bias of 0.

Several Parameters: Let x1)x2 J*,,Jxn be a random
sample from f(x,0), where Q is now a vector of

parameters 0^, 02,..., • Then if f satisfies

the regularity conditions, then, Q_ , the vector 

of the maximum likelihood estimates, is a solution 

of the r equations

31og L(0)
--- g-Q--- = 0 (i - 1,2 , . . . , r ) .

And is asymptotically distributed as a multivariate 

normal distribution N(0,Iq ), where Zq is an rxr 

matrix with i,jth element

E f ar2log L( 6 ) l " 1
d 0 . 0 0. ̂ J —

The matrix Zg is sometimes called the Information

matrix.
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Moment Estimates:

The maximum-likelihood theory is applicable 

to more general situations than those stated above.

For example, the x ^ s  may have different distri­

butions or x i ' s may not be independent but have a 
joint multinomial distribution. In this case the 

number of random variables equals the number of 

unknown parameters, then the maximum-likelihood 

estimates can usually be obtained by equating 

each random variable to its expected value and 

solving the resulting equations for the unknown 

parameters. This method is called moment estimation 

and the estimates are called moment estimates.

Estimating a Mean

Let x.(i = l,2,...,n) be n independent random va
2riables with known variances ck and common mean 0 .

For the class of estimates of the form

xw = (Lfx wix1)/(Ewi) •

it is readily shown that x has minimum variancew
2when w^ is proportional to 1/ck . In particular 

2if w^ (K = a say then

v[xw ] = a/( Zw.L) .
It can be shown that

v (x ) = w '
^ l (xl-xw ) 
(n-1) Zw.

where n =
n
 ̂ w 

i=i ;
is an unbiased estimate of

this minimum variance.
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Unweighted Mean: If the variances c2 are unknown

then we can simply use the sample mean

X = Lx ± /n

as our estimate of 0 . In this case, it transpires

that
v[x] =

Z(xi-X)2
nTn-l)

is an unbiased etimate of v[x] .

A similar estimate of

i—iIX1_1> can also be

obtained when xi ’s are not independent but .

correlated. Suppose that

cov(x1,xj. ) = -

•<“D•H
* & J = i+1

_ 0 J > i+1

so that the (unknown) non zero covariances are

°12 5 U 2 3 ’ °n-l;n *

Then

n p n-1
v[x] = ^  { Z o. + 2 Z o }

n2 i=l 1 i=l ’

= KrtA + 2B} say, 
n

and the problem reduces to finding the estimates 

of A and B.

Let
Z (x,-x) 

i=l 1

S22
n
Z

i=l
(xi+1-xi

2



where xn+i " xi> then

E[s2] = n 1 ■*- A - —  iJ n n

E[S*] = 2A - 2B .

and using moment estimation, unbiased estimates of 

A and B are
2 2 

n S 1 " S 2A = T n ^ U

a- i pB = A - S 2

Therefore an unbiased estimate of v[x] is given by

v[x] = A + 2B 3^1 S2
n n(n-3)

we note in passing that A > 0 since

_ 2 _ 1 v v , v n2  ̂ 2nS — 2 2 E ( x ̂ —x ̂ ) > S 2 *
i j

If x^'s actually have different means 0^ , then

E[v [x] ] = v[x] + (3c1-c2)/[n(n-3) ]

n
where, c-, = E (0. - 0) and cp = E (9. 

i=! 1

n
Z

1=1

THE DELTA METHOD:

A useful method used repeatedly in this dissertation 

for finding approximate means, variances and covariances 
is demonstrated by the following examples.

Mean Let x^ be a random variable with mean

el(i=l,2,...,n) and suppose we wish to find the mean of
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some function g(x^)X2 j•••jx^) ( 6(x) j say). Then

using the first few terms of Taylor expansion about 0,

we have

g(x) = g(Q) +
n
Z (x.-0.) 

i=l
+ 1

2 !
n
Z

i=l

where all partial derivatives are evaluated at x = 0. 

Therefore taking expected values ,

where
b =

E[g(x)] = g(9) + b

Z Z ^  c o v [x . , x . ] 9 f ■ ■■
i j 2 1 J 3xi3xj

n n ~ 2 ^2
I o- v[x. ] + Z Z cov[x,,x.] a ■fy—

1=1 2 1 3xf i j 1 J dxidxj

Variance: If we ignore the bias b and neglect

quadratic terms in the above Taylor expansion, then

v[g(x)] a E[{g(x) - g(e)}2]

+ 2 Z Z cov[x,,x,] -If- If • 
i j 1 J °Xi Xj

Z v[x.] ^
i=l 1 9xi

AN EXACT FORMULA. If x and y are independent random 

variables then we have the exact relation (Goodman [I960])

v[x,y] = (E[x])2v[y] + [E(y)]2v[x] + v[x] v[y].

CONDITIONAL VARIANCES.

Let x and y be a pair of random variables.

E[x] = E (E[x |y] }
V

Then, we have
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and

v[x] = E{v[x|y)} + v {E[x|y]}.
y *

where E , and so on, denotes taking the expected 
y

value with respect to the distrubiton of y. We note 

that if E[x|y] does not depend on y, then the 

second term of the last expression is zero. By the 

delta method

v[x] = E {v[x |y] }.
y

= E {g(y)} , say
y

= g(o)

= <v[x|y]}y=0

where 0 = E[y].

REGRESSION MODELS : * 2

Weighted Linear Regression

Consider the regression line

Y x = 60 + 8x1 + e± (1.1)

where x^fs are constants, the e^ are random
2variables independently distributed as N(0,o /w^),

2the weights w^ are known, 3oJ 3 and o are 

unknown parameters. Thus
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3 = Z w ^ Y ±-Y)(x1-x)/Zwi(xl-x)2

and 3 = Y - 3xo

where Y = Zw^Y^/Zw^ and x = Zw^x^/Zw^

Also,
v[3] = a2/Zwi(xi-x)2

2and an unbiased estimate of a Is

a2 = Zw1(Yi-Y-3(xi-x))2/(n-2)

A lOO(l-a) percent confidence interval for 3 can be 

obtained in the usual manner from the t-distribution, 
namely

3 + tn_2[a/2](c2/Zwi(xi-x)2)2 

There are two cases:

CASE 1. When 3Q = 0 in the regression model (1.1), 

the least-squares estimate of 3 is now

3 = Zw^ Y^x^ / Zw^x2

The corresponding confidence interval for 3 is 

3 t tn_it°/2](o2 / Zw^x2)2

(n-l) a2 = j:wi(Yi-3x1)2

= 2wiYi “ ^  w xy 1x 1)2/^w 1x 2

where
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CASE 2. When 3 = 0  In the regression model (1.1), the 

least-squares estimate of 0Q is now 

§o = £wiyi / Zw± = Y 

with confidence interval

B + tn [a/2](o2 / Zw )2 o — n-i o ±

where
(n-X) a2 = Iw1(Y1-6o )‘i

= XwLy? - (£ w ^ ) 2 / (X w^) .

Weighted multiple linear regression

A generalization of model (1.1) is the multiple 

regression model

y = XB_ + e

where e_ has a multivariate normal distribution
pN(£ b ), X is a known nxr matrix of rank r,

B is a known nxn positive definite matrix, and 
23 and a are unknown parameters. The weighted 

least-squares estimates of 3 obtained by minimizing

( i  -  x &)1 (£ -  xe j

with respect to 6 , Is

3 = (X,B"1X)”1X ,B_1^ *

The variance matrix of this estimate lo

v[3] = a2(X'B"1X)"1
2and o is estimated by

52 = (y'B-1x - £'B-1xe) / (n-r)

The confidence interval for 3 can be obtained in the
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usual manner.

GOODNESS-OF-FIT t es ts 

Binomial distribution

Let , * 2 5 * * ' 9 xn a ran^om samPle from the
binomial distribution

f(x) = (“ )pxqN_X, (q=l-p, x=l,2,...,N).

suppose x L takes a value x with frequency

f (y. f =n) then it is readily shown that the x x x
maximum-likelihood estimate of p is

n
p = x/N = E xf /nN 

x=o X

and the expected frequencies E . are given by
A

„ _ „/NxaX aN-X „ _ 0 MEx — a ( x) p Q f 1j 2,. . . ,N .

Since the joint distribution of the random variables 

f is multinomial with N+l categories^ the goodness- 

of-f.Lt statistic for testing the appropriateness of 

the binomial model is

T1 = " (fx-Ex )2/Exx=o
where f y is as defined above. is approximately

Pdistributed as when n , is large.
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An alternative test sl at j stlc can be obtained by

putting the data in the form of a contigency table,

namely

X1 X2 ... Xn Exi

N-x1 N-x 2 . . . N-xn nN-Ex^

N N N nN

and carrying out a test for homogeneity. The test 

statistic is then

Tp = E (x.-Np)^/N p q 
i=l

n 2
= Z (x.-x) /{x(l-X/N)} . 

i = l 1

This is the so-called Binomial Dispersion Test Statistic
2and it is asymptotically distributed as Xn-1*

We note that Tp/(n-l) is effectively based on 

comparing observed variance estimate

E (x^-x) n-1) with N p q

an. estimate of the expected variance under a 
binomial model.

Poisson distribution

Let x^,x2,...axn be a random sample from a 
Poisson distribution

f(x) = £ ±  Xxx! x = 0,1,2, ...
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Then the maximum-likelihood estimate of A is 

X = x and the expected frequences are

usually the expected frequencies are pooled for 

x > X so as to ensure that

n " ^  Ex (= Ex+ say }x=0

is cheater than about 5 (though a value as small 

as 1 can usually be tolerated if X >. 4) and the 

goodness-of-fit statistic

X -1 2 (fx+-Ex+ )T. = I {(f - E / / E )  + X 
1 x=0 x Ext

is then approximately distributed as 2
Xx-1 •

Alternatively, we can use the Poisson 

Dispersion Test (Purey and Mead (1979))* The

test statistic of which is given by

Tp = Z (x l-x )2/x = Z fx(x-x)2/x,

2
is asymptotically distributed as Xn_^* Since 

the mean of a Poisson variable equals its variance,

Tp/(n-l) can be regarded as a statistic for 

comparing the observed variance estimate with 

the estimate, x, of the expected variance 

under a Poisson model.
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In general, will provide a more sensitive

test than 1^, though when the underlying distribution 

Ls not Poisson a comparison of the fx and Ex may 

give some idea as to. the form of depature from Poisson. 

Also T2 can be used for quite small values of

n (n > 20, or if x > 1, n > 6 Kathirgumatamby 

(1953))j while requires a much larger sample

size n in order to ensure that Ex _> 5 for several 

values of x.

Multinomial Distribution with N unknown

Let y,,y9,...,y , have a multinomial distribution 
1 d k

f (y-, 3yp3.. • 5y )1  ̂ k
N!

k

k
where r = Z y , p

.1=1 1 k+1

( n y1!)(N-r)! i=l 
i=l L 

k
= 1 - 2 P 1

1=1

, * yi s N-r 
npi pk+l

we wish to test the hypothesis Hq that

P L = P L(0) (i = 1,2,...,a) where p^CO) is a

function of t unknown parameters 9^, ©2 , . . . , 0̂, .

When N is known, we can test it using the standard 

multinomial goodness-of-fit statistic

T., =
k
Z

i=l
(y1-Np1)2/Np1 + (N-r-Npk+1) /Npk+1
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where

Pi - Pj/i) > pk+l
k

1 - I p .,
1=1

G Ls the M.L.E. of 9 for the multinomial model above.

When N is unknown, then we can work with the 

conditional multinomial distribution.

f2^yi>y2 f •* * *^k ̂ r^
n y,! i=l L
i = l x

and use
k

T2 = if1{yi-rPl/ (l-Pk+1)} /r pi(1-pk+l)

k ft A x2Z (y. - N p ) / N p.
i=l

where

N = r/(l-p^.+^) , = p^(6) and G is the M.L.E.

of 0 for f2.

It can be shown that when H is true, T0 iso d
2asymptotically distributed as as N -*■ 00

By solving the equations Slogf^/SG^ = 0

j = l,2,...ar an(j Vlogf1 = 0 (V denotes backward 

difference with respect to N), we find that when 

N is unknown, G and N are close to the maximum- 

likelihood estimates of 0 and N for the model f^.
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o.r>MF. conditional distributions

Poissnn Variables
and x2 are independent Poisson random

variables with means and ©2 respectively, then

Lt Ls readily shown that the distribution of 

conditional on y = x 1 + x 2 is binomial, namely

Conversely, if x^ and y are a pair of random 

variables such that the conditional distribution of x^ 

given y is binomial with parameters y and p, then 

y is a Poisson with mean Ap.

Multinomial Variables

Let x1,x2,...,xk have a multinomial distribution

then the joint marginal distribution of x^ and 
x2 is

f(x15 |y) = (y )p 1 q 2
X,

where P 0 -j/( 01 + 0 2 ) .

f(x-^,x2, . . . ,X^)

i=±

■̂1 (X}, x2 )
x1 !x2!(n-x1-x2)!

n!

If y - x i + x 2 then y has probability function,
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f(y) = (y) ( Px+P2 )y ^1-Pi"P2 ) y

and the condition probability function of x
= X-, + x0 isgiven y 1 2

pl •xi 2
pl+p2 P1 +p2



CHAPTER TWO

t.ttF.RATURE review and statement of the problem 

2#1 literature review

We shall start by giving the history of a closed 
population (single marking). The structure is extremly 
simple. A closed population of unknown size N is under 
study, n^ individuals of which are marked and released. 
From this population, a sample of size r i2 is taken at 
a single instant over a period of time, m 2  of which 
are found to be marked.

The first recorded use of this technique is due 
to Laplace (1786). He estimated the population of 
France by recording the number m 2 , of births in some 
parishes of known population n 2 , whose names were 
recorded amongst the n^ names in the birth registrations 
for the whole country. Petersen (1886) first suggested 
the use of records of the proportion of marked indivi­
duals in the study of fish population. When we spread 
the labelled fish over the whole fishing ground, we 
may with some reason suppose that, proportionally,
"as many of unlabelled fish which are living there 
will be caught as those that are labelled." Then 
intuitively the proportion of marked individuals should 
be the same in the sample as in the population, that 

m2^n2 = ni/N. This leads to the Petersen estimate
A

^ = nln2^m2* The recorded use of Petersen's
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idea is due to Dahl(1919). Lincoln (1930) used bird 
returns from sportsmen to estimate the size of the wild 
fowl population of North America. Jackson (1933) 
independently applied the same method to an insect 
population. Karl Pearson (1928) examined the theory 
of this type of sampling scheme. He critized Laplace's 
formulation in terms of an urn model, and proposed a 
new solution based on inverse probability on the a prior 
assumption that every value of N>n is equally likely.

If we assume that: the marks are permanent, 
sampled animals are classified correctly as marked 
and unmarked, population is closed and that every 
animal has the same chance of capture, then m2 is 
distributed as hypergeometric, given N,n^,n2 . The

Aproperties of N are discussed fully by Chapman (1948, 
1951) and an equation given for confidence limits for

A

N. Although N(or strictly its integer part) is the 
maximum likelihood estimate of N, so that its large 
sample properties are assured, its behaviour in small 
samples may be less satisfactory. Notably, because 
of the non-zero probability that m2=0, it has an infinite 
bias. Chapman (1951) proposes Nc= [ (n^ + 1)/(m2+l) ] ~ 1 
as a more satisfactory estimate, and gives a 
table of the sample size required, for various N, to 
ensure that the bias be certainly less than 1. A table 
of exact and approximate percentage bias of N^ for 
N=100, n1 = n2 , is given by Robson and Regier (1964).
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Chapman shows also that, for values encountered
A„ N has a smaller expected mean s<in practice,

A

jrror than N.

mean square

However, since N is usually fairly large, the 

hypergeometric distribution may be approximated by a 
binomial, Poisson, or normal distributions. Chapman 

(1948) suggest the following criteria for approximating 

the hypergeometric distribution by binomial, Poisson, 

and normal distributions:

for n 2 < 500: m2/n2 < 0.1: Poisson
m2/n2 > 0.1: Binomial

for 500<n2 1000 : m2/n2 < 0.075: Posson
m2/n2 > 0.075: Normal

for n2 > 1000: m2 < 100 or m2/n2 < 0.05
Otherwise : Normal.

Robson and Regier (1964) use the normal approxi­
mation when N>100. Admas (1951) suggests the use of the 
Poisson approximation when N>_25, and provides charts for 
reading off confidence limits, based on theory developed 
by Ricker (1937). Since Poisson and normal distributions 
are themselves approximations to the binomial, it is 
usual for theoretical discussion to be based on a binomial 
distribution for the number of recaptures of marked 
animals. Confidence intervals for estimates from the 
binomial distribution may be obtained by reference to 
t e charts by Clopper and Pearson (1934). The use of

approximations was also suggested by DeLury (1951),normal
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who derived confidence intervals for N on the assumption
that m, is normally distributed with mean n ^ / N ,

2

variance (n ^ / N ) (l-n1/N): thus (n±n2/{Sm2( l-m2/n2 )} ,
n n /{m -l.96/m2(l-m2/n2 )}) is the 95 percent confidence
interval for N. Gaskell and Parr (1966) introduce
Bayesian methods to the binomial model. Having shown
that what they regard as the ideal prior distribution
of N, f(N) a NB e-av, leads to intractable algebra, they

2consider f(N) constant and f(N) 1/N as ’extreme' 
prior distributions 'between' which their optimal prior

A

must lie. For these distributions N = n ^(n^-l)/(m^-2) 
and n-^n^ + l)/!!̂  respectively, so that they recommend the

A

use of the 'intermidiate' N=n^n^/(m^-1). Questions 
of whether the prior distributions are really 'extreme', 
and what inference is to be drawn if one recapture is 
made, render this estimate unacceptable (Cormark-1968); 
whatever the merits of Bayesian inference.

Bailey (1952) shows that N=n^n2/m2 has a positive 
bias of order 1/m^. Thus in long run the size of the
population will be overestimated. He proposes (1951,1952),

/\
the modified estimate NB=n1(n2+l)/(m2+l) with bias of order
e 2> its variance is given by n^2( n2 + l)( n2~m2 )/(11̂  + 1 )̂ (1112+2 ) .

/\

The difference between and Nc is negligible.

Bailey suggests an estimate = n2(n^+1)/m2-l, 
with variance (n^rr^ + l) (N+l) (N ; n2 ) / (m2+2 )m2 if sampling 
without replacement is assumed. Assuming binomial model, 
nln2//m2 an unbiased estimate of N, with variance
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N(N-m )/m2 which may be estimated unbiasedly by 
22 (ru-m0)/m0 (m9+l) (Chapman (1952)). Chapman uses

**1 l l 2 ' 2 ^  ^  ^

the normal approximation to set up confidence intervals 
and tests for N, but suggests that the Poisson approxi­
mation will be more useful if both and n^/N are
small. For inverse sampling from a Poisson distribution

2it is well known that 2n^n2/N is distributed as X with 
2m2 degrees of freedom. This well-tabulated distribu­
tion permits confidence limits for N to be easily 
constructed.

Chapman (1952) shows that the inverse sampling 
method gives a more efficient estimate of N with less 
average effort than can be obtained by direct sampling. 
However, if the experimenter knows absolutely nothing 
about N, he may, by an improper choice of n^,n2, give 
himself a sampling scheme which in practice cannot be 
carried out: the variation is extremly large. This 
difficulty may be partly overcome by devising the 
inverse sampling to stop when a predetermined number of 
unmarked individuals have been caught. Chapman (1952) 
shows that no strictly unbiased estimate exists:
A

N=n2((n1 + 1) / (m2 + l)} -1 has a bias less than unity for 
samples for which n ^ n ^ n ^ )  > N log N. The variation 
in N is much reduced by this scheme. Despite these 
theoretical advantages, inverse sampling has been little 
used in practice (Ricker, 1958). Czen Pin (1962) shows 
that, for a loss function of the form (N-N) /N , a
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minimax estimator of N exists, given by n ^ / ( m 2 + l) + b,
H f  n is the smallest allowable value of N) where ir-*-

N (1- A l - m 2 ̂ / n ”) / (m2 + l) < b <: N q (1+ /l-m2n1/N0) / (m2+l) .
^ubrzycki (1963) shows that such estimators with
h < N (nu+1) are inadmissible.D o 2

The decision as to when to stop sampling may be 
made according to a rule other than a fixed n2 and m2 
discussed above. Chapman (1954) considers a series of 
samples of predetermined sizes n^(which are not returned 
to the population), sampling being stopped as soon as a 
total number, m, of marks have been recovered. If N is 
large, and a Poisson distribution is assumed,
AN = n1Zni/m2 is asymptoticatly a minimum variance

2unbiased estimator with variance N /m2. Knight (1965) 
discusses the feasibility of estimating 1/N if sampling 
stops when either m2 or n2 attain a pre-assigned value, 
whichever happens first: he gives rules for choosing 
these values in such away that the variance of 1/N is 
less than any assigned value.

One theoretical difficulty in estimating N is that 
the distribution of n^n2/m2, or the modifications proposed 
by Bailey or Chapman, is far from symmetrical. Thus the 
confidence limits obtained from Clopper-Pearson curves 

be biased. One way out of this difficulty is to 
estimate the reciprocal 1/N. As Leslie (1952) point out, 
under the binomial assumption m2/n^ is an unbiased maximum
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ljkelih°ocl estimate of 1/N, and the confidence limits
/s

may he obtained for 1/N by Clopper-Pearson charts or 
normal approximation. Since the distribution of

A

1/N is more symmetric than that of N, this procedure 
should lead to confidence limits of N less baised than 
the methods described earlier in this section. One 
disadvantage of using 1/N is seen if sub-populations 
are estimated separately, and it is desired to add the 
estimates together.

If we assume that (i) there is neither recruit­
ment nor immigration both of which affect unmarked 
animals only and death and emmigration affect marked 
animals equally and (ii) if there exists strata 
within the population such that, by size, behaviour 
or any other variation, different strata have different 
chances of recapture, then the marked animals belong to 
these strata in exactly the same proportions as the 
occurence of the strata in the whole population, then 
the estimates considered above retain their properties 
ol consistency and unbiasedness. However their variances 
are now dependent on further unknowns, death rates and 
strata sizes, about which the investigation provides no 
information. Chapman (1952) shows that the modification 
is slight unless mortality is excessive. Chapman and 
Junge (1956) assert that, under the binomial assumption, 
a death rate, identical for marked and unmarked animals,
does not affect the variance of the Petersen estimates. 
This is, however, true only if both marked and unmarked
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populations are large enough for the death rate to be 
truLy deterministic. With death rate (l-(f>) , the 
population to be sampled must be assumed to contain 
N$ members of which n̂<|> are marked.

Chapman and Junge (1956) have investigated a 
possible modification of the last assumption. The 
population is assumed to consist of a number of distinct 
strata which do not mingle uniformly. These may be 
'tribes' differentiated by geographical locality It 
is known to which stratum any sampled individual belongs 
at the moment of sampling, but its history is unknown 
unless it is already marked. Estimates are now required 
for population migration between strata as well as for 
total population size. Using suffixes i,j to represent 
the strata at the times of marking and sampling respecti-

A

vely, Chapman and Junge show that Z N . w h e r e
. j 3

A

Z nKj N *j^n *j=ni for all i, is a consistent estimator
of N .. if it is assumed that sampling is random within
each stratum, individuals in each stratum are properly
mixed after moving, individuals move independently
one stratum to another, and the probability of such a
move is independent of marking. (A suffix replaced by
a# (period) has been summed over: thus, for example,
while nr ̂  is the number of individuals marked in
stratum i, recaptured in stratum j, m.j = £ nr . is the

i -*
total number of individuals recaptured in stratum j ). 
Under the same assumptions neither the standard Petersen
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estimate nor an estimate Z Z nj -mij/m± *mj , proposed
arlier for this situation by Schaefer (1951b), is
onsistent unless the assumption that there exist strata

within the population, such that by behaviour, size or
ary other variation, different strata have different
chances of recaptures holds strictly. Estimates are
also given for migration between strata:
/\  ̂ am = m N..N. ./n..n. .. This situation was studied ij ij i J 1 J
further by Darroch (1961). If there are at least as 
many strata in the population at the time of marking, 
as at the time of recapture, maximum likelihood 
estimates are obtained without any assumption as to 
the movement of unmarked animals. If not, then it is 
necessary to assume that unmarked animals move between 
strata with the same probabilities as marked ones. If 
the movement of individuals is not independent, the 
estimate remain consistent.

More important than these theoretical problems of 
trying t.o extract from the data, under the assumptions, 
the last scrap of information, is the problem of how 
departures from the assumptions affect the estimate of 
N, and how, if at all, the estimate may be adjusted to 
allow for such departures. Indeed, as Schnabel (1938) 
says: "since the assumptions of random sampling and constant 
populations are only rough estimates to the actual 
situation in taking fish census, small differences 
between the results of various methods are not important."
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Be ort on actual experiments with fish populations 
'llustrating the breakdowns of these assumptions which 
occur in practice will be mentioned later.

Rupp (1966) has pointed out that the Petersen 
procedure can be regarded as a particular instance of 
a survey removal method of estimating population size.
In survey-removal study, originally suggested by 
Kelker (1940, 1944), the change in ratio of the observed 
frequencies of occurence of two distinguishable classes 
of individuals, before and after a period during which 
known numbers of the two classes are removed from the 
population, provides information about the size of the 
population if markedly different numbers are removed 
from the two classes. Theory of this method, allowing 
for mortality is developed by Chapman (1954), Lander 
(1962), Hanson (1963) and Chapman and Murphy (1965).
In Petersen-type study the initial ratio of marked: 
unmarked is zero. The final sample ratio is m^/(n2_fTO2̂  >“ni 
marked animals having been removed before the final sample. 
Paulik and Robson (1969), in a unified treatment of the 
methods, study the effect of N of an unobserved removal 

Cm> Cu animals from the two classes during the period 
before the final sample. These C , C^ cover mortality, 
immigration, and emigration (not necessarily the same for 
each class), and this formulation permits any knowledge of 
these unobserved removals obtained from other sources to 
e used in the estimation of population size.
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The effects of recruitment may be eliminated in some 
hv restricting the counts to suitable age groups - 

if these are recognizable and non-overlappJ ng (Ricker (1958)). 

Even if age 9rouPs overlap, subsidiary information on 

growth rate can be used to eliminate the effect of 
recruitment. The possibility that the process of marking 

in itself introduces an extra cause of mortality to marked 
fish may be investigated by using different types of mark, 
if one of these involves more mutilation than another, and 

yet both types are recovered equally in the subsequent 
sample, this provides evidence that marking does not 

contribute directly to the mortality. This does not 

cover additional mortality due to purely handling the 
animals, which often have to be removed from their natural 
environment.

The assumption that there is no loss of marks, may

be investigated by fixing two marks to some individuals.

If it is assumed that losses of single marks are independent

Lhen the number of individuals in the sample which have
lost none or one of the two marks fixed on them provides

information on the rate of loss. Thus, if all animals
released bear tow marks and are recovered still bearing

both marks, m with a loss of one mark, the loss rate s
may be estimated by m / (m +m^), and the population size

u s s D
by 4 mDm s.n2/(2mD+ms) 2. A more general model than this 

is examined by Gulland (1963). Data on plaice recorded
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b Beverton and Holt (1956) suggest that the rate of 
detachment of external tags increases with time ini­
tially (with increasing wear), but then decreases (as 
the tags become imbedded).

If the recapture sampling is continued over a 
period of time, any dilution of the population - by 
recruitment or immigration - should become apparent 
through a progressive decrease in the proportion of 
marked animals in the recaptured samples. Jackson 
(1937) in his 'positive method' adopted this procedure, 
and Bailey (1951) provides a mathematical formulation 
by which dilution, if assumed to have a specific mathe­
matical form, could be estimated. Parker (1955) sug­
gested plotting, as a function of time, m/n, or 
log(m/n) or arcsin (/ m/n ), whichever provides the 
best straight line, and was more satisfactory.

Knowledge of the effort expended in sampling the 
population allows the estimate of the population size 
to be obtained in a different way, since the numbers 
obtained per unit effort will diminish in successive 
samples (Leslie and Davis, (1939)). If the effort is 
the same at each sample, the expected catch in the sample, 
Etci], is related to the probability p of an individual 
being caught, by the relation E[CL] = Np(l-p)^ ^ . A
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wei hted regression of log Ci against (log(Np)+(i-1)log p) 
; estimates of p and N. Moran (1951)pointedg i v
.. + r ’ s are not independent and derived maxi- out tnai '■'i

mum likelihood estimates for N and p. Skellam (1962) 
proposed direct numerical extrapolation to the curve 
of catch against time, suggesting that a transformation 
of the time variable t to a form b/(b+t) (where b 
is arbitrary) enables the extrapolation to be carried 
out more accurately. Chapman (1954), following DeLury 
(1951), proposes an unweighted regression of - in
this case the catch per unit effort - on K^, the total 
catch removed before the ith sample. This give

nN = K - C (K.-K) /IC.(K.-K). A comprehensive study J
of these removal methods is given by Zippin (1956).
Chapman shows further that this idea can be suitably 
combined with capture-recapture experiment with a 
single release of nQ individuals, and successive 
periods of recapture yielding n.̂ individuals of 
which no are marked. If n^ and no given n^, are 
both assumed to have a Poison distribution, maximum 
likelihood equations are given for N and q the 
probability that a unit of effort captures one member 
°f the population, in terms of the efforts f. expended 
(Chapman (1954)).

The Petersen estimate or Lincoln Index, perhaps 
modified for bias, has been much used as providing a 
simple and intuitively reasonable estimate of population
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However, the universal lack of faith in the 

assumptions together with the lack of internal evidence 

as to their applicability led to consideration of models 

for more complicated sampling procedures.

Discussion of the study of a closed population 

by the use of marked individuals would be incomplete 

without mention of some proposed methods based on the 

number of times individuals are recaptured. Craig (1953) 

suggested that if the total sampling period is subdivided 

into a large number of short intervals and each individual 

is equally likely to be caught in any short interval, 

the number of recaptures should have a Poisson distribu­

tion, truncated at zero since it is not known how many 

individuals are never captured. From this, N and the 

Poisson parameter can be estimated by maximum likeli­

hood or by moments. Darroch (1958) shows that Craig's 

use of truncated Poisson distribution can not serve 

as a probability distribution of any capture-recapture 

experiment since it implies that both the total effort 

expended and the number of different individuals seen 

be fixed in advance, was impossible. Taylor (1966) 

reports that for bird population the number of times 

an individual is recaptured is not well fitted by a 

trancated Poisson distribution. He suggests a negative 

binomial distribution.

Me Donald and Palanacki (1989) considers the 

problem of estimating the size of a small population
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ased on the results of a certain type of capture- 
recapture experiment. They give seven methods of 
constructing confidence intervals for the population

Among these methods is the 'adhoc' method which 
for N = tends to give actual confidence levels
which are close to the desired level and tends to 
give shorter intervals than the other methods when the 
probability of capturing individuals is small.

We now consider a situation where marked animals 
are released into the population on more than one 
occasion. As with Petersen method described earlier 
these marked animals are usually themselves samples 
from the population under study, but this need not be 
the case provided due assumptions about marked and 
unmarked individuals, are satisfied. The earlier studies 
of this situation took no account of the possibility 
that a particular individual may be recaptured on more 
than one occasion. At sampling time i, i = 0,l,2,...,k, 
the data recorded are n^, the size of the sample, and nr , 
the number of previously marked animals in the sample.
Ihe (n^-m^) unmarked individuals are then marked and 
aH  the returned to the population. The first 
sample serves only to provide a pool or n (=M1) marks 
ln the Population. There are k subsequent recapture
samples.
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The first study (Schnabel, 1938) assumed that
the total number of marked animals in the popula- 

1 '
tion immediately before the ith sample in taken, are 
known parameters of the population. The situation is 
then identical with a series of Petersen estimates 
which have to be combined to yield a single estimate 
of the population size N. The situation remains to 
decide with what weights the estimates should be 
combined. Under the assumption of binomial sampling 
on each occasion, Schnabel (1938) proposed the estimate
AN = (En^nr )/Enr as an approximation to the solution 
of the maximum likelihood equation:

(n.-m.)M.
Em. = E --— —1 (N-M.)l

buL gave no consideration to the precision of her esti­
mate. If M./N is small, and m. is assumed to be al l

APoisson variable, N is the exact maximum likelihood 
estimate, Schumacher and Eschmeyer (1943) proposed 
En^Ak /Effî M̂  and suggested that its variance be obtained 
from the mean square error about the regression line 
mi^ni a9ainst M.. The estimate of variance has the 
advantage of referring to 1/N, which is more symmetri- 
cally distributed than N itself. Hyne (1949) proposed 
 ̂e same method, apparently independently of Schumacher 
and Eschmeyer, commenting that it has an advantage over
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the removal method, in that it is not so severely upset 
by a day-"to-day fluctuation in the probability of capture. 
The different wei9 ^tings for each point on a graph of

/n against n̂  through the origin which are implied by
1 1

the various estimates were studied by DeLury (1958).
The weights for the maximum likelihood solution are

A

n N/n (1 -n.j/N) those for the Schumacher and Eschmeyer2 t
solution, preferred by DeLury, are simply n. Ricker
(1945b) asserts that Schumacher and Eschmeyer's estimate
attains maximum efficiency when half the population is
marked; Schnabel's maximum occurs when a negligible

proportion is marked. They have equal efficiency when
the proportion of marks is 1/4. In an earlier paper
DeLUry (1951) had given an iterative solution for the
maximum likelihood equation. Using Schnabel's estimate
as a first approximation, a new weighted estimate •
EW.n.M./EW.m., is constructed with weights

= 1/(1 - M^/N). Gilbert (1956) suggests that
the difference between the hypergeometric and binomial
distributions can be allowed for by dividing each term
in the binomially based likelihood equation by a
finite population factor(1-n^/N). Thus instead of
solving the equation E(m.n .—Nm^)/ (N^-M^) = 0, one

i
solves the equation E(M.n .-Nm.)/(N-n^) (N-M^) = 0.

i
small example gives results very similar to the
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binomial model.

Chapman (1952) points out that, although the Nh 

re known at the interest of taking the ith sample and 
are thus conditional parameters, they are not known 

except for when the 'a priori' probability model

is constructed. The above models are thus incorrect. 

Using the hypergeometric model, Chapman shows that 

j;m. is a sufficient statistic for N, and that the 

maximum likelihood estimate of N is the solution of 

the equation
k
n (1 - n . / N) 

i=0
1 - M /Hk+r H

where M, , is the number of different individuals seen k+1
during the experiment. The mean square error of this 

estimate is given by Dorroch (1958) as,

1/ (n- P) + K/n X l/(N-ni)
-1

f

where p = E(Mk+1), this error being of order N.

An alternative model regards the n^(including nQ) 
as random dependent on parameters p^, the probability 

that any individual is caught in the ith sample «

From this model, Darroch (1958) derives the same 

maximum likelihood equation for N, and gives an
A

approximate formula for the variance of N as
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N/ 1/0 + k - £ 1/(1 p,)
i=0

where Q = tt (l-po)

is the probability that an animal is never captured. 

This variance can not be obtained from asymptotic 

maximum likelihoods theory since the sample size is 

not constant and the likelihood not the product of 

likelihoods of the individuals. It is obtained by a 

standard 6-technique. Dorroch's new model requires 

that the effort to be expended in each sample be 

pre-assigned. In practice the applicable model will 

be determined by whether it is the difficulty of 
catching animals or the labour of marking them which 

limits the numbers caught. Since the same numerical 

estimate of N is obtained, and the variances are 

both of order N, it cannot make much practical dif­

ference which model is used. Confidence limits may 

be obtained by assuming that M^+1 is normally distri­

buted. Seierstad and Mysterud (1965) suggest a 

version uf Darroch's model with p^=p. Their proposed 

estimator of p is insufficient in that it does not 
count the number of samples in which these individuals 

are not seen. No reason is given why the fully 

efficient estimator for p, based on the total number 
°f sightings is not used.

The maximum likelihood estimate, to which
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n.n./£ m. is the first approximation

(Chapman (1952)), is also moment estimator. Czen Pin

and Dzan Dzai (1961) show that Znr has a limiting 
Poisson distribution, and suggest the use of (Znr+1) 

as the denominator of the moment estimator

this suggestion, proposed also by Chapman (1954) in a 

different context, is that the reciprocal of a bino­

mial or Poisson variate + 1 is an almost unbiased 

estimator of the reciprocal of the prameter. Czen 

Pin and Dzan Dzoi give confidence limits for N based 

on normal approximation to this Poisson variate - An 

unbiased estimator based on the sufficient statistic 

will have a smaller variance than the almost unbiased 

estimator obtained by merely averaging the successive 

modified Petersen estimates [(n^+1)(m^+1)/ (m^+1)]-1. 

However, in situations where the binomial assumption is 

appropriate, the Petersen estimate, despite the loss 

°f information from the lack of weighting, has the 

conciderable merit of simplicity. It remains almost 
unbiased whether the are regarded as parameters or 

as random variables. If n^NL/N are too small for 

the binomial assumption to be valid, Chapman (1952) 

suggests = Zn-^nr/ (Enr+1) as a suitable modifica-

k
Z n.n,/Z nr, 

i=l i=i+l 1=1
instead of Znr. The basis for
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t ’on reducing the bias, of Schnabel's original estimate 

The variance of Np is approximately

(N /fnim i)(l+2N/fnim 1)

Chapman also points out that, under the strict 

ssumptions of closed population and equal catchability 

of marked and unmarked animals, knowledge of the history 

of capture of an animal contribute no additional 
information towards the estimation of N. Such know­

ledge does, however, allow these assumptions to be 
tested. If expected values are sufficiently large, a 

standard X “ goodness of fit test can be carried out, 

although Chapman points out that there is a lack of 
independence. He conjectures that this will have 

negligible effect. He suggests as an alternative, 

the use of non-parametric test proposed by Moore and 

Wallis (1943) which examines the signs in a sequence 

of successive series of differences of observations. 
Apparently, no example of the use of this test is 

recorded in the literature.

Recently Chapman and Overton (1966) have extended 

consideration of Chapman's (1952) nearly unbiased esti-
A

mate . Each nr has approximately a Poisson distri­
bution with parameter n.^nr/N, at least if the number of 

recaptures is fairly small. To test the difference 

etween two different populations we may use the fact
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-if x and x. are Poisson variates, x is a that, 11 Ao 1 o
inomial variable for fixed (x^+x^). An example based 

n data of Nelson (1960) illustrates the manner in which 

uch a significance tests may be carried out. It is 

possible to do appropriate calculations on the power of 

the test before any samples are taken so that the size 

of the experiment required to detect, with appropriate 

significance level, a pre-assigned difference in size 

of population can be calculated beforehand. In view 

of all the assumptions required, I doubt whether it 

is wise to attempt to discuss the difference between 

two populations in terms of a significant test.

As in a single stage census, sampling may be 

continued at each stage until a predetermined number 

of marked animals have been captured. The m^ are 

fixed and the n. are random variables. An unbiasedl
estimate is now easily found, being the unweighted 

mean of the corresponding estimates from the inverse 

sampling. Thus, N^l/KZCn^+l/rrK-l), with approximate 

variance fN2E1/nK }/k2 . Chapman (1952) derives these 
results and goes on to discuss how to choose the para­

meters at one's disposal, n^,k,m^ ....... ,mk*
obvious aim at achieving a fixed precision of estimation

while minimizing the effort expended, minimizing k
E(E n.) subject to constant 5 /N, leads to a very complex 

i=0 1
algebraic problem. Chapman provides guidance in 

this problem in the form of a table of properties
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f a number of simple designs. Unfortunately interesting 

cases with small iik break the mathematical assumptions 

nd so cannot be considered. An increasing sequence of 

m spreads the effort most evenly; constant seems 

to provide the maximum precision for the same expected 
sample size.

Since direct censuses contain the awkward possi­

bility that not enough marked animals are captured to 

permit reasonable estimates of N, and inverse censuses 

have a similar physically imposed restriction, namely, 

that it may not be possible to continue sampling until 

the pre-assigned number of marked animals have been 

caught, it is clear that optimal sampling procedures 

must be sequential. Urn models for different sequential 

schemes - one at a time, several at a time, single and 

multiple markings - were introduced by Cox (1949).

Chapman (1952) considers in the direct case, the 
number of recapture samples k as a random variable to 

be determined by the course of the sampling. He takes 

np as fixed. Under the assumption that the m^ are 

Poisson variates, a standard type of sequential 

probability ratio test can be constructed. For any 

valid study of optimality and expected number of samples 

required to be taken the itk have to be independent, a 

consideration not satisfied in this case. Sequential 

aPproach was extended by Goodman (1953). A series of
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samples predetermined sizes are to be drawn, 

amplin9 to stop as soon as a total of m marked indivi­
duals has been captured. A further extension by 

Chapman (1954) did not restrict the replacement of 

marked individuals in the population to those captured
in previous samples. Chapman showed that 2 En^M^/N

2is asymptotically distributed as X with 2m degrees
2of freedom, so that Zn^Nh/m with variance N /m, is 

the asymptotic minimum variance unbiased estimate of 

N. Darroch (1958) considers a special case of Goodman's 

sequential census in which each sample consists of a 

single individual. For this case a unique unbiased 

estimator, with minimum variance, exists for N. If 

n samples have to be taken to achieve the recapture 

of m marked individuals, the estimate is given by 

the ratio o /a -i where as = Ar (os)/r '. *

a Starling number of the second kind. Other stopping 

rules for this one-at-a-time census have been considered 

by Samuel (1943). He suggests as a working approximation 

to Darroch's estI mate the value n/w, where w is the 

solution of the equation (1-e W)/w = (1-m/n) . Tables
°f the function (1-e w )/w are given, for example, by 
Pearson (1934). Boguslavsky (1956) discusses estimation 

N for small populations in which a number of succe­

ssive observations have yielded only marked animals.
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Overton (1965) discussed the modifications to be 

ade to the Schnabel estimator when known numbers of 
nimalS/ both marked and unmarked, are removed from 

he population during the course of the experiment.
This removal may be deliberately caused by the experi­
menter or the result of accidential damage to the sampled 
individuals. The modification takes the form of a term, 
which has to be computed iteratively, and is then added 

to the usual Schnabel estimator.

The assumptions under which the above theory of 

Schnabel type estimators is valid are the same as for 

the Petersen case. Since the sampling is usually 

continued over a longer period than the Petersen-type 

studies, Ricker (1958) considers the recruitment and 

natural mortality (and fishing mortality if the popu­

lation is subject to this pressure) as errors of 

special importance. Undetected natural mortality 

seriously affects the multiple sample census (Chapman 

(1952)). One method of testing for natural mortality, 

particularly adapted for entomological studies, is to 

compare for any one recapture sample the Petersen 

estimate obtained by considering only individuals 

marked on different occasions (Southwood and Saudden 

(1956)). By considering the multiple census as a time 

sequence of single cencuses, each of which gives an
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stimate of the population size at that time, any change 

in the population over time may be investigated. This 

is the basic principle of the models to be considered 

in the later sections of this dissertation, which includes 

mortality and recruitment as parameters. Mortality 

causes the population to decline, and thus the Schnabel 

estimate of the population size will be less than the 

Petersen estimate from the first sampling. This was 

used to measure mortality by Debury (1951). With 

greater sophistication, natural mortality may be estimated 

as that which eliminates any time trend from succesive 

daily estimate of 1/N (Ricker (1958)). This type of 

estimation is closely analogous to the analysis of 

catch curves to give estimates of mortality.

Fienberg (1972) considers the problem from a 

different angle. The resulting data can be put in a 

form of an incomplete 2 contingency table, with one 

missing cell, that displays the full multiple recapture 

history of all individuals in the population. Log 

linear models are fitted to this incomplete contigency 

table and the simplest possible model that fits the 

observed cells is projected to cover the missing cell, 
thus yielding an estimate of the population size.

If sampling contines over an appreciable period 

°f time, the population cannot be assumed closed. Other 

Population parameters for recruitment and mortality (and
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ssibly immigration and emigration) must be included in 

the model. What is meant by an appreciable period of time 

depends on the population under study. Insect studies 

with daily samples for a week have to allow for mortality. 
Surveys of large mammals over period of a month may not. 

The early models assumed a deterministic death rate, 
constant over different periods. With death rates (1— 0) ,

N individuals become exactly <}>N. The simplest estimate 

of mortality over a period during which dilution may 

be ignored is the ratio of two Petersen or Schnabel 
estimates of population size at the beginning and end 

of the period.

In a series of papers, Jackson (1937, 1939, 1940, 

1948) suggested two sampling schemes which he termed 

'positive' and 'negative' methods. The positive method 

is release on a single occasion, a large number of 

marked animals, recapture (and re-release) being effected 

frequently on several occasions. The negative method 
called for the release of marked individuals on several 

occasions. The number of recaptures being noted only at 

one final intensive sampling. This second method was 

deemed most suitable when unskilled workers were used to 
carry out the marking. Jackson stated that either the 

^ rst capture or the recapture should be carried out non- 

solectively since 'dispersal ....might not be complete in 

the Period between marking and recapture, or individual
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lies might return to places to which they were speci­
fically attached'. Jackson tried to standardize the 

a^piing effort by analysing not the basic number m 

0f recaptures, but yQ1 = m ^ / n ^ ,  where mQ1 is the 

mnber of individuals among the n^ caught in week 1, 

which were marked in week 0 when nQ were caught.

The ideas behind the negative method is that the 

samples released early have been exposed to natural 
mortality for longer periods than samples released 

at a later date, and therefore will be represented 

by fewer individuals in the recapture sample. The 

death rate can be estimated and used to give an estimate 

of the number of marked animals alive in the population 

at the time of recapture sample. An estimate of the 

population size at this stage follows as usual from
A

N=riin^/m2 . Since it is the population at this final 

time which is being estimated, immigration during the 

period of sampling is an integral part of the popula­

tion. There is no problem of allowing for it. A very 

simple example is given by Ricker (1944). If s1,S2 

fish are marked and released immediately before the 

fishing season in two successive years, and during the 

second year's fishing, m 12, m22 resPectively of the si' 
s 2 are caught, then the mortality between the years, 

inclusive of that due to fishing in the first year, is 

estimated by s2 m 12/s^m^. In the positive method
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when all animals arc re Leased in week, 0, the y 

will decrease with time on account of dilution 0f the 

population by unmarked animals. This curve may be 

extrapolated to time 0 to provide an estimate of 

population size, and the rate of fall of the curve 

gives an estimate of dilution rate 3. Jackson's 

estimate of population size, which he attributes 

to Fisher is

{y01+ y02 + .... + y0(k-l)}
-  {

02 y0k
y01+ '“ +yO(k_2)}

and a variance formula, due to W.L. Stevens, is also 

quoted. The dilution rate is estimated by

(y01+--- +yok-l)/(y02+ --•+y0k)' If 3 does not aPPear
to be constant, Jackson later (1940), suggested using

the estimate provided by YQ2/y01 Perf°rm the 
extrapolation to provide an estimate of the population 

size. Identical consideration apply to the negative 

method.

Bailey (1951) comments on the lack of proper

weighting factors in Jackson's (1937) estimates, and

develops a maximum likelihood solution. For the 'negative'

method with recapture only on the final day, day k>

assuming a constant death rate (1-$), s.e ^1 v)(k-j)

°f the s. animals released on day j will be still alive.J
The likelihood of the parameters 4>, is thus proportional to
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-(1-<J>) j
Nk - f j e

(N, -Em . ) 1- k j ]k C-]L
s .e_(1"l,>) j D

Nk j = l

From this maximum likelihood equation, estimates <J>, 

are derived by an iterative solution. Bailey also 

gives the variance of the estimates. He shows also 

how maximum likelihood estimates, although more compli­

cated, can be obtained from Jackson's positive method.

For an experiment with only 3 sampling occasions 

(2 releases and 1 recapture, or 1 release and 2 

recaptures) Bailey (1952) gives explicit formulae for 

the estimates and modifications of those which make them 

almost unbiased.

Jackson suggests two estimates of survival rate,

<|>, namely:

(y0k+ '’,+y(k-1)J(ylk+ ‘'•+Ykk) and

{(y0k+ ' ’ •+y(k-2)k)/(y(2k+ - ' '+ykk)}4 

Chapman and Robson (1960) point out that the information 

used by Jackson's negative method is virtually the age 

distribution of a single sample, which, under the name 

of 'catch curve' has long been used by marine biologists. 

Both of Jackson's estimators have the undesirable property 

that they can be greater than unity. A modification of 

Jackson's estimators, (m^* • • •+m (k-i) k ^  ̂ mok+ ’ * *+mkk^ '
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hich was suggested by Heincke (1913), avoids this

difficulty, an<̂  is infact an unbiased estimator of <j> in

the study of catch curve. To allow for variations in

effort the irt ̂  should presumably be replaced by Jackson's

v Chapman and Robson give a detailed discussion of
yij*
the regression techniques behind graphical estimates of 

(j) from the relation between the logarithm of the number 

captured and the time since marking. These remarks 

apply strictly to the 'catch curve' situation but have 

considerable relevance to such techniques as used in 

marking experiments, (Beverton and Holt (1956)).

In most recapture experiments the 'age' distribu­

tion of the recaptures - in the sense of time since 

marking-is truncated at the upper and sometimes fairly 

severely, since these experiments are not usually 

continued over long periods. For catch curve for which 

k is the maximum age on which estimation is to be based, 

Chapman and Robson (1960) show that the maximum likelihood 

estimate of (j) is the solution of:

■\r i 1 k  + 1

X = <|>/(l-<f>) - (k+l)(T -Vd-* ) ,

where x is the mean 'age' of the recaptures. Solution 

of this is facilitated by a table of the function of k 
and (j) , given in Chapman and Robson (1960) and extended 

in Robson and Chapman (1961). Examples of this method 

both for single release and multiple release surveys, 

are given by Paulik (1962). For earlier work on this
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subject see Haldane (1955). An example is given by 
Murton (1966) .

A model based on the Poisson distribution is given 

by Parker (1963). In this, removal of captured marks 

is specifically taken into account. If there is a 

single release of Mq marked fish into a population, 

subject to constant absolute recruitment B- compare 

Chapman's comments below - and instantenious mortality 

rate x, from which samples of n^, of which m^ are 

marked, are subsequently taken, then at time t, the 

population will consist of

N e~xt - Z n. ex(l_t) + B(l-e"xt)/x 
° i=l 1

among which the expected number of marked individuals 

is
... -xt tv1m x(i-t) M e  - l m. e
° i=l 1

If may be assumed to be a Poisson variable condi­

tional on m^, m 2 i ••• r mi_i and ni are taken as para­
meters, N , x and B can be determined by iterative o
solution of maximum likelihood equations.

Further entomological studies on similar lines to 

Jackson's were carried out by Dowdeswell, Fisher and 

Ford (1940, 1949) and by Fisher and Ford (1947). These 

introduce a new method of grouping and displaying the 

observation as in the form of a trellis diagram.
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Releases on day Total recaptures
f '0 1 2  3

Recaptures

on day "1 m oi n

2 m02 m12 n

<
3 m03 m13 m23 n

4 m04 m14 m24 m 34 n

L* • • • • •

Total
releases so si S2 S3 4

w

These m . . include all individuals seen on both day i and ID
j. The average survival rate <j) is estimated from the 

average time interval separating release from observed 

recapture. From this, the population on day j is esti­

mated by n.m./M., where M. is an estimate of the number

marked animals alive at time j. The estimate given by

Fisher and Ford is M. = E s . (pJ , which counts each
3 i=l 1

individual, at any recapture, as often as it has previous 

marks. Using only the last previous recapture of each 

mark would be more valid. No estimate of the precision 

is available. The logic of this estimate of N is the 

same, given <J) , as Jackson's estimate as derived by 

Bailey (1951). A modification to Fisher and Ford's



59

calculation of available marked animals is given by 

Macboad (1958) for the case in which recapture sampling 

is continued until no hope remains of survivors being

caught.

Jackson (1948) also considers this type of sampling 

with varying survival rate <ĵ . Leslie (1952) gives 

the estimate of (f)̂ from Jackson's modified recaptures

If a model with varying is adopted and an average

estimate of survival rate is required, the geometric

mean of the (f>̂ should be given.

Maximum likelihood techniques for estimating death 

rates, initial population size and dilution rates, were 

developed in three papers by Leslie and Chitty (1951), 

Leslie (1952) and Leslie, Chitty and Chitty (1953). The 

general assumption is that at each instant of sampling 

several distinct classes of animals are at risk, these 

classes being distinguished by their previous marking 

history. If the size of each sample is small it can 

he assumed that the observations at each instant come 

from a multinomial distribution, the probabilities of

as

k
y..)/( £ y.,.. •) , with variance

n = -i+l 1 + ± ' J

k
4>i (1-^i) /
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the different classes being expressible in terms of the 

basic parameters of the model. The overal likelihood 

is the product of a set of such probabilities.

To understand the reasoning behind this method, 

consider first, following Leslie and Chitty (1951), the 

estimation only of the survival rate <J> from the recap­

tures of marked individuals released at time 0, recaptured at 

two further times. Using the notations defined earlier, 

the expected number of marked individuals falling into 

various classes are:

Times i 2

02 4,M0(n,01) 4>2Mo-0m01 (m02 >

Marks 12 $ (ni-m0i) <m12>
012 <Dm0 j ( m012

The likelihood is thus proportional to:

f
o£-e-

•

moi 2<f> M0-4>m0i m02 ’
4> (n^- ^ m12 <f)m0i

. *Mo.
2<t> MQ+(p (n1-m01) 2<p Mq + cJ) (n1-mQ1) 24> Mq+(J) (n1-mQ^

for which, by differentiating with respect to $ and equating 

to zero in the usual way, an estimate of <j> may be obtained. 

The estimate of cf> so obtained refers to all time intervals 

except the last. An estimate of expected life span may 

also be obtained as -l/log<J>, assuming that the death rate
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is not age-dependent.

For along chain of samples, the solution of this 

equation will be extremely difficult Leslie and Chitty 

suggest grouping the data to reduce the difficulty, and 

also so that there shall be a reasonable number of 

animals in each class. They reject the solution proposed 

by Jackson (1939, 1948) and by Fisher and Ford (1947) 

which effectively forms the distribution of marks 

observed, each individual being counted as many times 

as it has the marks. In this method, the expected number 

of marked individuals falling into various classes now 

become

Times 1 2

Marks 0 (\>‘ m02+ITl012)

1 (})n1 (m12+m(

This (method A) form of grouping they show to be ineffi­

cient in terms of the asymptotic variance of the estimate 

. They adopt an alternative (model B) grouping of the 

recaptures according to the interval since they were last 

seen. The triple catch survey is treated as

Times 1 2
2

Intervals 1 ^Mo^m01^ ^  M0-(̂ ra01^ (m02^

<f>n12 (m12+m012 ^



62

for which grouping they assert there is no loss of 

information. For the triple catch

$ = {mQ1(mo2+m12+m012^+ n̂l-m01^m0 2 ^ ^ m 12+m012^M0 
with variance estimated by

m02(m02+m12+m012*nl /(m12+m012) M0 *

A method of estimating the sample size required to reduce 

var ($) to a pre-assigned value is given by Sonleitner

and Bateman (1963) for a three point sample.

Bailey (1951) analyses a triple-catch sample grouped 

according to the time of first marking. He considers 

deterministic birth rate, 3/ and death rate, y, per 

unit time• With three available observat ions

m01> n'02+m012 = m02 * and three parameters N , (5, Y , the 
maximum likelihood solution equates observation to 

expectations. Thus, if the samples are taken at times 

0,t1,t1+t2, the estimates are

Ni = ( s-î -m^ )̂ nx (m02+m012)/m01m 12

§t2
e = ni01n2/n1 (m02+m012)

A

"Ytle = (s-̂ +m̂ ) m̂ o2+m0 1 2 ^ S 0m12 *

Variances of these estimates are given, as also are 

modified estimates which are almost unbiased estimates
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of variances of these estimates. Gaskell and Parr (1966) 

from their Bayesian standpoint, recommend always replacing 

l/mij by 1/(mij”1).

The problems of estimation of population size were 

subsequently studied by Leslie (1952). The complete 

likelihood function, including all the animals not caught 

at each sample, has to be maximized. Classes were grouped 

according to method B. For a population with constant 

death rate and no dilution Leslie used the estimate of 

survival $ from the earlier paper and obtained an approximate 

estimate of N by substituting <j> for (p in the likelihood 

equations. Leslie also derived maximum likelihood 

equations for the populations with:

(a) constant death rate, but dilution occuring

(b) changing death rate and no dilution;

and he mentions a possible method of attack on the problem 

when dilution is occuring and the death rate is varying 

both in time and between different groups of animals. The 

estimate of the population size suffer the same disadvant­

age of bias as the standard Petersen index and Leslie 

extends Bailey's modifications to the general case. It 

should be noted that dilution in these models - as in 

Jackson and Bailey - is a function of the size of the 

existing population.

Leslie, Chitty and Chitty (1953) develops the
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theory further with particular reference to the problems 

discovered during an extensive study on two small mammals. 

An improved approximate method is used to derive estimates 

from a method B grouping. Various tests were applied 

to the data. The assumptions necessary for valid esti­

mation of the population parameters were found to hold 

for one population but not for the other. He asserts 

that reasonable, and useful inferences, may be deducible 

about the sub-population of marked animals, even if 

not about the population. The point is made again by 

Pope (1963); "when only mortality rates are to be 

estimated from marking experiments it is not necessary 

to consider the whole population, but only the sub­

population of marked individuals". This is however, no 

advantage if marking affects mortality.

Corbet (1952), using Fisher and Ford's method 

estimated different survival rates for different periods 

of experiment. He reiterates the warning to analyse 

sexes separately because of their differential activity. 

Coulson (1962) modified Bailey's tripple catch method 

to allow the first recapture to be taken on the day of 

release, this is necessar^ because of the short lifespan 

of the animals studied. Wohlschlag (1954) applied Bailey's 

method to a eontinouos experiment by dividing the study 

into three equal periods and considering all sampling 

and marking as if done at mid-period. Orians (1958),
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using Leslie and Chitty's method B , and by studying 

separately the birds first caught in a particular year, 

found that the estimated survival rate was low for the 

first year after marking, then higher for a few years, 

finally decreasing again because of loss of rings.

Various tests led Krebs(1966) to the conclusion that, for 

the population of mice under study, non of the condi­

tions necessary for valid capture-recapture study were 

satisfied. Although other workers have come to less 
drastic pessimistic conclusions, it is clear that all 

relevant biological and statistical knowledge must be 

applied together if any satisfactory information is to 

be gained.

Studies of the particular problems of insect popu­

lations have led Iwao and Kuno to various modifications 

of the general model suggested by Leslie (1952) and 

Leslie and Chitty (1953). These models include migration 

between two types of fodder plant on which the insect 

have different survival rates, and from which different 

fractions are sampled (Iwao, 1963). Similar models for 

the dispersion of insects among neighbouring areas are 
given by Jackson (1939). Any more s o p h i s t i c a t e d  t r e a t ­

ment of such problems should take note of the stochastic 

Models for animal movement given by Pyke (1955).

The most general deterministic model is given by



- 66 -

where is the number of animals released at j which

are next caught at i, and
i-1
tt W,

w .i-1,t+1 k=t+l
1

for (i-1) > t. 
for (i-1) = t.

and W, are the set of positive numbers.

That is a reasonable estimate of M can be seen

by considering one of the (M -m ) marked individuals not

caught at t. Its probability of being captured at some

subsequent time i is mti* The number of such
t-1

animals is l m.. so that (M -m ) is estimated by 
i=0 3

t-1
(s Z m.. )/m,.. The above general formula is a
tj = 0 J1 T1

weighted combination of such estimates for different 

values of i. By setting up a formal model to this 

estimate, and considering the asymptotic variances of 

the M , Jolly develops optimal weights:

Wr

k i-1
1+ £ (n. /N. ) E 4> ./ (1-n ./N .)

i=r+2 1____ j=r+l 3______3 3
k

(1-n /N )(1+E (n./N.)
r r i-r+l 1 1

i_1 iZ <*>./(l-n./N .)> j_r J J J

In practice, as we illustrated by an example given by 

Jolly (1963), these Wr have to be obtained iteratively 

from the $ and N̂ _ obtained from unweighted estimates 

of M̂ _. One iteration is adequate in most examples.
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jolly (1963). At time t, from the population Nt, of which

which mfc are found marked, with various (known) histo­

ries of capture. Animals are given an individually 

identifying mark and allowing for some accidental deaths 

in handling - st are released. These animals are 

subject to death rate (l-c|> ) and dilution rate At 

defined as **t + (Nt-nt+st) before next sampling 
period at time t+1. The unknown parameters of interest, 

N,<j),X, are all expressible in terms of M and a=M/N, 

the proportion of marked animals in the population. 

Assuming, at each sample, a multinomial distribution 

conditional on the results of all previous samples, and 

that (nt-st) is so small that the essential randomness 

of the s_£ can be neglected. Jolly shows that the 

maximum likelihood estimate of is m^/n^, and gives

an equation - a kin to Leslies' - for the maximum like-
A Alihood estimate of . All the â_ and are shown 

to be asymptotically independent, and explicit formulae 

are given for the variances of the estimates.

From further study of various forms of the maxi­

mum likelihood equation, Jolly (1963) was led to 

postulate a general form of estimate for M^, in the 

form of weighted ratio:

Mt
k t-1 k

I m . . )/ l W
j=0 -̂1 i=t+l
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We now discuss the stochastic models. If the 

population is subject to naturally occuring changes, 

in the form of birth, death, migration, and growth, 

any comprehensive theory must take into account the 

natural variability between individuals in respect of 

these changes. If not only the population but also the 

observed samples are large in number, and interest lies 

in the behaviour of an 'average' individual in the 

population, this variability contributes negligibly to 

the variability of the estimates of the behaviour of 

this hypothetical animal. Every individual can then be 

assumed to behave identically; a deterministic model, 

such as we have considered in the previous sections, 

is adequate. However in most practical studies it 

is stretching the definition to assume large samples. 

Since the stochastic models describing capture-recapture 

studies have recently been shown by Jolly (1965) and 

Seber (1965) not only to be less complicated to analyse 

than the corresponding deterministic models, but also 

to provide more valid results, these methods should 

totally supersede their deterministic counterparts.

Although some earlier workers had pointed out 

that the variance of an estimator from a deterministic 

Model would underestimate the true variance of the 

estimator, Moran (1952) was the first to discuss the 

implications of deterministic and stochastic models in
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this context. A truly deterministic model is virtually

unworkable in practice since, if the proportion <J> of

the population survive between sampling at time t and

t , not only <b N but also d> M - and the size of J o o o o
any other survival class - is restrained to be an

integer. Thus an approximation has to be introduced

by assuming that all values such as ^0N0 can regarded

as integers. Under the assumption of multinomial, rather

than multi-hypergeometric, sampling, the probability

distribution, assuming integers, of the set of observed

recaptures remains a probability distribution if the

<t) N and so on are integers. This difference defines fo o
the 'deterministic model' which can only be an approxi­

mation to what really happens. Moran points out that 

Leslie and Chitty (1951) and Leslie (1952) use a 'semi- 

probabilistic' model. In this, a fixed proportion <J> 

of the population survives, but the Nq (|)o individuals 

surviving are chosen at random without reference to 

their markings. A fully probabilistic model assumes 

that each individual independently has a probability 

$ of survival, the number which survive being a random 

variable binomially distributed with index Nq and

parameter <b . Moran does not attempt to analyse this o
Model, being deterred by the difficulty that the sample 

numbers n^ can not be prescribed in advance since there 

is a non-zero probability that fewer than n^ animals
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are alive at that time.

The way round this difficulty was noted first by 

Hammersley (1953). The sampling scheme hitherto consi­

dered have all assumed that the sample on each occasion 

is complete when a predetermined number of animals have 

been captured. In practice, however, sampling usually 

ceases through a decision of the experimenter determined 

by the effort expended, and not the number of animals 

caught. Each individual may be assumed to have the 

same probability of capture, p^, during the ith sample 

period, the size of that sample being thus binomially 

distributed with index ISL . The p^ are parameters, 

sometimes to be estimated from the data, sometimes 

considered as known except for a single constant 

of proportionality; the n^ are random variables. This 

simple change of outlook, bringing theory more into 

line with practice, circumvents the difficulties of 

a stochastic approach. Unfortunately, as shown by 

Dorrah (1959), Hammersley's subsequent analysis is 

based on an incorrect model for the likelihood function. 

Hammersley does consider the population to be of

two different classes, young and adult, with different 

survival rates, the one growing into other during the 

course of the experiment.

The distinction between the two models was first
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brought out by Darroch (1958) in his analysis of a 

closed population. The earlier model with fixed sample 

size (Darroch's model B) "is likely to be appropriate 

when the main limiting factor on the sample size is the 

trouble involved in marking animals". The new model 

(Darooch's model A) "when it is the difficulty in 

catching them". The simplicity of the multinomial

distribution implied by the new model, rather than
}

the mult ihypergeometric model, enables Darroch (1959) 

to derive the maximum likelihood estimators for the 

unknown parameters when either death or immigration, 

but not both, are affecting the population. Seber 

(1962) derived maximum likelihood estimates for a model 

appropriate to commercial fisheries. A series of batches 

of marked individuals are released, after each of which 

-allowing time for redistribution of the marked animals- 

a commercial catch is taken and this is immediately 

followed by the release of more marked fish. Seber 

shows that if only one release followed by a number of 
catches is made and no immigration or emigration is 

assumed to occur, his model becomes a discrete equivalent 

of Gulland's(1955) model for a coni Inouos fishery.

These methods of Darroch and Seber are special 

cases of a general theory proposed independently by 

dolly and Seber (1965). Since Jolly's model is slightly 

more general than Seber's in that it allows for the
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removal, either deliberately or by accident, of some of 

the animals caught in any sample, it will be discussed 

here. A part from this modification, the estimates 

obtained by Jolly and Seber are identical.

At time t^, a population of individuals,

of which are marked by a mark which identifies the last

occasion on which they were caught, is sampled in

such a way that each individual in the population has

probability p^ of being captured. This results in a

sample of n^ individuals, nr of which are marked. After

this sample each of the n^ has probability of being

marked and released again, individuals being released

into the population. Between t. and t^+1 the population

of (N.-n. + s.) individuals is altered by the effect of 
1 1 1

death (or emigration) each individual independently

having a probability (1—4>̂ ) of leaving the population;

and also by immigration of a number of new individuals,

Bi of which are alive in the population at time ti+l*
Of these parameters Nq ,B^, p^,4>^, are unconditional.

The others N. and M. are conditional on events prior to 1 1
t^. This means that the general probability distribution 

of Nji , Mji , mj ± , U±, ui,si (where Mj± and ± are 
the numbers in the population and sample at time t^ 

which were last caught at t^ and U^, u^ those that have 

never been caught), conditional on the fixed parameters 

Nq, B^, p., <j) nif is not identical to the likelihood
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function of the parameters. Three approaches are 

possible. One is the orthodox one of summing over all 

values of the conditional parameters; Darroch (1959) 

discovered the difficulties of this, which were sur­

mounted by a change of approach in Jolly's work, by 

treating not as a parameter but as a determinate 

function of lh, U^+1, <J>̂ , u^. This introduction of 

a deterministic element affects only unmarked animals 

which do not contribute to the estimate of survival rates. 

The third method treats the general probability distri­

bution; regarded as a function of the parameters, as if 

it were a true likelihood. This is proved justifiable 

by the identity of the estimates provided by it and the 

previous approach. Seber avoids the difficulty by 

considering the net increase in the number of marked 

individuals as a fixed parameter again, identical 

estimates are obtained.

These estimates, obtained after much complicated 

algebra, turn out to be remarkably simple in form, each 

with obvious intuitive meaning:

(i) M. ={Z.s./r.}+ m. (i=l,2,...,k-1) l 1 l l iJ r
where r. is the number of the s. which are recaptured l i
subsequently, Z^ is the number of individuals marked 
before t., not caught at t^, but which are recaptured 
subsequently. Intuitively this estimate is obtained 
by equating Z./(M^-nr), the proportion of marked animals
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alive but not seen subsequently, to r^/s^, the propor­

tion of marked animals released at time t^ which are 

seen subsequently.

- n. „
(ii) Ni = HT Mi (i=l/2,...,k-l)

i
Intuitively this is equating the proportion of marked 

animals caught at time t^, itk/M^ to the proportion 

caught n^/IT.

(iii) $ = Mi+i/(NL-nr+s^ i=l, 2, . . ,k-2

of the (M^-m^+s^) marked animals known to be alive in 

the population immediately after t^, are alive

at H + r

(iv) Bi = Ni+1-(()i (Ni"ni+si) , (i=l, 2,--,k-2)

of the (N.-n.+s.) animals alive in the populationi l l
immediately after t^, <j>̂ (N^-n^+s^) will be alive at

time t^+ .̂ The difference between this figure and 

Ni+1 must be accounted for by immigration.

(v) = n^lL (= nr/Mi)
The numbers of recaptures contribute to these estimates 

in two distinct ways. First recaptures after t^ 

contribute to through in the form of the ratio

Z^/r^. Also recaptures at t^ contribute directly to 

and also in the estimate m^/n^ of the proportion of 

marked animals in the population which is used in (ii) 

to convert M. to N.. The s.̂ , on the otherhand, contribute
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to the estimates only in the form of creating a pool of 

marked animals from which later samples may be taken. 

There is no direct connection between and n^,nK in 

the estimation procedure. Seber's (1965) estimates for 

a model in which no losses on capture are allowed, are 

identical with those given if s^ is put equal to n^. 

Moreover Jolly shows that Seber's (1962) estimates can 

also be expressed by the above relations, because, as 

Jolly points out, the only relevant information is the 

occass:ion on which an individual was last seen. Its 

history of capture prior to the last previous sighting 

contains no information about its chance of death or 

recapture after that sighting. The information provided 

by a single individual caught at times t ., t ., t , is1 J K
precisely the same as if one individual released at t. 

were recaptured (and removed) at t^, a second individual 

released at t^ and recaptured at t^. Thus a commercial 

fishery with single recapture yields the same estimates 

as a research project with multiple recapture. The 

name multiple recapture is thus irrelevant, at least as 

far as the estimation of the population parameters is 

concerned. If interests lie in testing the assumptions 

of the model, particularly with regard to the equal 

catchability of individuals, then information on multiple 

recaptures does become valuable.

It is interesting to compare these estimates with 

the corresponding estimates obtained on the basis of
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jolly's (1963) deterministic model. Relation (ii) is 

identical with the earlier estimate of the proportion

which has been marked. In the estimation of the

deterministic model used complicated weighting sums of 

various recapture frequencies. The stochastic has 

the same form, but is in terms of the unweighted sums

r. and Z^. As Jolly says "the stochastic solution

therefore, far from being complicated, is actually 

simpler than the other". The variances of these simple 

estimates, as derived by Jolly (1965) on the assumption 

that B. are the basic parameters (Seber's model), the

M n and so on random variables arising fromji ’ ji
partitioning the into multinomial classes, are 

complex expressions involving the various observations 

used in the estimates, or strictly their expected values 

and also such terms as ISL(j) and JVL(j), respectively the

number of individuals and of marked individuals at t^

which were part of the B^ animals which first entered

the population between t^ and tj + -̂. Evaluation of these 

is carried out by use of relationships:

Nj + 1(j) = Bj

NkJi (j) = { (Nk+l"Bk)/Nk }Nk (j) for a11 k>j 

These terms thus appearing include N^(=B_^) which cannot

be estimated from the experiment. Jolly suggests that

a value for N , which will be needed in calculating o
estimates of variances of the parameters, be taken as
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equal to if the population is initially stable, or
✓N

otherwise guessed from the trend of INh.

The theoretical and estimated variances of

J., EL may be obtained by substituting respectively

expected values and estimated or observed values for 

the symbols in the expressions below.

var[N] = Ni(Ni-mi)[Mi-mi+si)(l/ri-l/si)/Mi+(N1-Mi)/miNi]

i_1  2+ N.- I N.Z(j)/Bj
j = l

(Mi + l-mi+l)(Mi+l"rni+l'Si + l)
var[$. ] = -------------2 0 / ri+1_1/si+x̂

Mi+1

,1 1 u  H i
+ (M.-m^s.) S;L M.+1

var [Bi] = B.2(M. + 1-m 1+1)(M.+1+s.+1)( ^  - f . ^ )

* W

( M . -m. )v l l
2 2 / ]\J m X2

l l v l i
M.l

2(Mi-mi+si)

(Ni_njL)(Ni + 1-Bi))Ni-Mi)(l-»i) 

Mi^Mi-mi+Si)

(i - i ).
ri si

+ Ni+l(Ni+l-ni+X)i1W ^ i ± l ) + n 2Ni(Ni-ni>
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Similar expressions for the covariances of the estimates 

may be found in Jolly. The terms
i-l 2

N. t N. (j)/B.
1 j = l 3

in var [ N i ] and i+1 in

var[(|)̂ ] are contributions to the variance from the 

conditional nature of and <Jk .

Jolly's initial formulation of the problem is even 

more general than has been described here. The joint 

probability distribution from which the estimates are 

derived, is stated from a heterogeneous population 

that is, for a population composed of different classes 

(for example, sexes) between which there is no migration. 

If all parameters are different for each class, each 

class may be analysed as a homogenous population. But 

if some parameters, perhaps survival rate or probability 

of capture, are common to different classes, more 

complex estimation equations would have to be constructed, 

and solved by iteration. Jolly (1965) also analyses 

the restricted cases of "death, no immigration" and 

"immigration, no death", showing that, when s^=n^, bis 

estimates and their variances are identical with those 

given earlier by Darroch (1959). These restricted 

models should not be used, now that a simple analysis 

of the general model is available (Cormack (1968)) .

In common with earlier, simpler models, these
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likelihood estimates can be considerably biased if the 

numbers of recaptures are small. Seber (1962, 1965) 

suggests modifications , similar in form to those of 

both Bailey and Chapman which lead to almost unbiased 

estimates with a negligible loss of efficiency. For 

the case of no losses on capture, n^=s^, the modified 

estimate of is

M* = Z .(S.+1)/(r.+1) + (m.+l);l i l l l

The estimates N*, cj)?, B?, p* being the same functions

of M* as N. , d>. , B. , p. are of M. . A precisely similar i i Yi l r i i

modification, adding unity to each observation except 

Z is shown by Seber (1962) to yield almost unbiased 

estimates for the single recapture census.

Alternative description of the properties of 

dilution and survival are introduced by Jolly (1963) 

and Seber (1965), respectively. Jolly defines a 

dilution rate A^ as the ratio of the population size 

at t^+  ̂ to the survivors at that time of the population 

st t^. He gives an expression of A^ as:

Xf = [*i (Ni-ni+si)+Bi]/4)i (Ni-ni+si)

'the estimate of A^ is merely the corresponding function 

°f other estimates. This representation has the advantage 

that Â.  ̂ is estimable although B^_^ is not. Seber (1965) 

considers an instantaneous death rate during the
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period ( ,  t^+1), defined by the relation

cj)̂ = e ^i^i+l fcî  . Again its estimate is the corres­

ponding function of the estimate of <Jk .

One further extension of this model was suggested 

by Darroch (1958, 1959) but not by the later authors, 

except Seber (1965) makes use of the idea in constructing 

at test of the assumptions. In many fields of study 

a measure of the effort, f^, put into the sampling at t^, 

is available. This usually takes the form of the number 

of man-hours expended, or in commercial catches, the 

total number of gear used. If f^ are known, and the 

catchability (q) of all individuals remains constant 

throughout the experiment, the p^ are known functions 

of a single unknown parameter q. Most earlier authors 

have assumed that p^ = qf^. Darroch (1958) makes the 

assumption that the probability of any individual being 

caught when subjected to df units of effort is qdf, 

which leads to the model p^= 1-e ^ i .  As manageable 

approximation to this, Darroch uses p^=qf l-qf^/2). For the 

models assuming death or immigration but not both, Darroch 

derives an approximate maximum likelihood estimator for 

and modifies it in the usual way to provide an almost 

unbiased estimator. The estimator p^ may be replaced by 

^ i  (1—qf^/2) f and this used in the subsequent estimation 

°f the other population parameters. Darroch gives a 

able showing the increase of information about provided
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by this knowledge of effort.

The only other model to have received a fully 

stochastic treatment in these terms was proposed by 

Cormack (1964). This refers to the situation in which 

recapture information is available on marked individuals 

only, random sampling of the whole population being 

impossible. Estimates were obtained for the mortality 

of the marked population. For these estimates to be 

applicable to the whole population some assumptions of 

the representative character of the marked animal is 

required. In general no estimate of the population size 

is possible from such data, although Jolly (1965) points 

out that, "whether or not the survival rates are the 

same for the two populations, provided they have the 

same probability of being captured in a sample", an 

estimate of is possible. If, however, as in the 

data from Dunnet, Anderson and Cormack (1963) discussed 

by Cormack (1964), sampling of the marked and unmarked 

individuals are total.Ly separate, the proviso in Jolly's 

statement will be impossible to fulfil. Similar data 
may also be obtained in commercial studies, n^ not being 
recorded although nr is. Again cannot be estimated 

and the survival estimates cf>̂ apply strictly only to 

the marked population. This situation fits easily 

into Jolly's frame work within which and n^ need 

not be composed of the same individuals, and Jolly has
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shown that both the estimates and their variances as 

given by Cormack are a special case of the general 

formulae.

Parr (1965) discusses the various methods which have 

been proposed for entomological population studies and 

compares their results with those provided by Jolly's 

method. Stochastic models of a somewhat different kind 

are discussed by Chapman (1954). These assume that 

in have a Poisson distribution and that the probabilitytJ
of an individual's survival between samples is a constant

<J>. Model I refers to a population not subject to dilution

In this case m ^  conditional on M_j • and N^, has expected

value n. M../N.. Since E[m. .] = s . ^ " 1, and E[N.]=NJ ij i l.] l K ' 1 j J o '
for larger population, m. . can be taken to have a Poisson1 J
distribution with mean (s^n^ (J)”1) Nq . This leads to the 

maximum likelihood equations:

N = ZZs.n. $ 1 /1Zm . . and, o . . 1 j r . 11 'ij ° ij J

a i m  ) a z  is.n. $ 1) = (Z im. ) (IZ s.n.J'1 )
ij J ij >i J ij J ij >i J

The second of these equations, being a polynomial in (p, 

can be solved by standard methods. Chapman admits this 

ignores multiple recapture and thus loses some informa­

tion.
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2.2 STATEMENT OF THE PROBLEM.

The estimation of total population size of animal 

populations is of great importance in a variety of 

biological problems which may relate to population growth, 

ecological adaptation, genetic constitution, natural 

selection and evolution, and so on. Obvious practical 

consequences are the maintenance of human supplies of 

food and control of insect pests. For human communities 

procedures employing fixed sampling units are available, 

but for mobile populations other methods must be used.

Of the methods available for obtaining information about 

animal populations, capture-recapture method is the most 

widely used.

Any animal population is subject to continual 

change by birth, death, immigration and emigration. In 

a study carried out over a short period of time, these 

effects may be negligible and the experimenter may 

reasonably consider the population as closed. More usually, 

temporal changes in the population are of primary interest; 

is the population growing, stationary or heading for 

extinction? A study over a longer time-scale is required.

If sampling continues over an appreciable period of time, 

the population can no Longer be considered closed. Other 

parameters of recruitment and mortality (and possibly 

immigration &nd emigration) must be included in the model.
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A detailed study of such parameters as mortality rates, 

survival rates and total population size, provide the 

information required to generate enough scientific 

guidelines and advice for rational exploitation, 

management and utilization of renewable resources.

Hence the need to study them.

Estimation of population size is important in the 

following areas: the exploitation of fresh water fish 

for food, the removal of insect pests from crops, the 

control of Tse-Tse flies, the destruction of verminous 

small mammals by poisoning, the control of an out break 

of an desease, and so on.

The aim of this dissertation is to study capture- 

recapture models for estimation of population size. We 

shall also give an application of these models to the 

real-life data. More specific objectives are listed below.

1) To review some capture-recapture models used in the 

estimation of population size.

2) To apply the selected model(s) to the real life 

data.

3) To study the departures from the underlying 

assumptions
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CHAPTER THREE

3.1 ESTIMATION

A simple method, which we shall call the Petersen 

ĵ ethod for estimating N, the number of animals in a closed

n animals is taken from the population, the animals are 

marked or tagged for the future identification and then 

returned to the population. After allowing time for marked

Assuming that the proportion of marked animals in the 

second sample is a reasonable estimate of unknown 

population proportion, we can equate the two and obtain an 

estimate N of N. Thus

which is the so called Petersen estimate or Lincoln index. 

As this estimate is widely used in ecological 

investigations, we shall now discuss the above method in 

some detail.

For N to be a suitable estimate of N, the following 

assumptions must be made .

the population is closed, so that N is constant

all animals have the same probability of being caught

in the first sample.

• marking does not affect the catchability of an animal 

• the second sample is a simple random sample that is .

population, is described as follows. A ‘ sample of

and unmarked to mix, a second sample of n2 animals is 

taken and suppose it is found that mz are marked.

m2/nz = ni/N or N =  n, n2/ m2

possible samples has an equal chance of

^®ing chosen.
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animals do not loose their marks in the time between 
the two samples.

yj all marks are reported on recovery in the second

sample •
Note that the assumptions listed above are not

nutually exclusive, for example IV will depend on the
validity of II and III, as any variation in the
catchability of animals, whether natural or induced by the
handling and marking will lead to a non-random second
sample.

When the assumptions I, IV, V, and VI are satisfied,
then the conditional distribution of m given n 2 1 and n 2

is the Hypergeometric distribution.

f ( W n 2) = (n‘] £
2 2 - d ' ■ C ) (3. 1 )

where mz = 0 ,1 ,2 ,..., minimum (n ° 2 )•
Now, regarding the hypergeometric distribution (3.1) 

as the likelihood function L(N) of N, then

logL(N)=Const.+log(N-ni)!+logN!+log(N-nz)!+log(N-ni-n2 +m2)!
(3.2)

An equation for maximum likelihood estimate N of N is 
found by equating AlogL(N) to zero, where A is the 
diffe rence operator. This involves an error of less than 
unity in the solution and is equivalent to the ratio method 
°f maximizing L, which equates L(N) to L(N-l) (Darroch, 
1958) .  Now,

AlogN! = logN (3.3)
Thus N must satisfy the equation

log(N-n±) - log(N-ni~n2+m2) - logN + log(N-n2) = 0
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That is
log{(N-ni)(N-n2)} = log{(N(N-ni-n2~m2)}

or

(N-ni)(N-n2) = H(H-nr n2+B2)

n n = Nm 12 2

which gives

That is
N = nin2/m2

Which is the Petersen estimate. It can be shown that the 
bias of N is

(nr m2 )(n2-m2 )/m2

Darroch (1958) derived an approximate bias of N resulting
from multiple recapture experiment of s samples to be

. {<-l>/( N-n. } 2 +{<s-l)/N2 - 7 1/(N-n )2}
ft =-------------------------------^------- i---

2{1/(N-P) + (s-l)/N - 2 l/(N-n ) } 2

where p - E [ m. ]L
In our case s = 2 , thus the approximate bias is given by

ft = (N-ni)(N-n2 )/nin2 = (ni-m2 )(n2-m2 )/m2 

That is, the bias of N is:
(3.6)

(nl-m2)(n2-in2)/ni2

Now consider the estimate
. (n + 1 )(n + 1 )

N = — —7 —=4--------1(m +1)
°t N. Robson and Regier (1964) shows that when n 1 + n 2 - N, 
then N is an exactly unbiased estimate of N , while, when 
nt+n2 < N we have to a reasonable degree of approximation,

E[N*|n ,n ] = N-Nb 1 1 2 (3.7)

where
b = exp{-(ni+l)(n2+l)/N }

ne bias Nb of N in this later case is less than that



is almost an unbiased estimate of N and0f N . Thus N*
hence it is more preferable to N as an estimate of N. It 
is easy to check that N is the solution of

(N - n±)(N - n2) = (N + 1)(N - r) (3.8)

where, r “ ni + n2 ~ m2 '

P r o p e r t i e s  o f  N.

The properties of N with respect to the hypergeometric 
distribution have been fully discussed by Chapman (1951). 
He shows that although N is a best asymptotically normal
estimate of N as N ----- >oo, it is biased and the bias can
be small for small samples. However, when n±+ n2 >N , his 
modified estimate, N is exactly unbiased, while if 
ni + n2 < N , we have, to a reasonable degree of 
approximation (Robson and Regier(1964))

E[N*|n1,n23 = N - Nb
where,

Def ining
b = exP{-(n1+l)(n2+l)/N }

P = E{m2/n±,n2} = n ^ / N
Robson and Regier (1964) recorded that in designing a 
Petersen type experiment it is essential that p >4, so 
that b is small. They also say if mz > 7 in a given
e*periment, then we can be 95 per cent confident that
^ >4 . This implies that for 7 or more recaptures we can 
be 9 5 per cent confident that the bias of N* is
negligible.

Chapman (1951) shows that N not only has a smaller 
xPected mean square error than N for values encountered 
lri Practice, but also appears close to being a minimum



variance unt,iase<  ̂ estimate over the range of parameter 
values for which it is almost unbiased. Using what is
essentially a Poisson approximation to the hypergeometric 
model (3.1), he shows that the variance of N* is
approximately given by

V[N*|ni,nz] S N(/u'1+2/j'2+6p '3) (3.9)

* 4tAn estimate V say, of the variance of N is obtained
*by simply replacing N by N in (3.9). However, an

approximate unbiased estimate has been given by Seber 
(1970) and Wittes (1972), namely

V[N*|ni,nz] = (ni+l)(n2+l)(ni-m2 )(n2-m2 )/(m2+l)(m2+2).

2which has a positive proportional bias of order ^ exp-AJ It
*can be shown that V is exactly unbiased when n±+nz>N .

4tThe co-efficient of variation of N is approximately
given by

C[N*] = 1/V£

and if a rough estimate of N is available before the
experiment, n± and nz can be chosen before hand to give a
desirable value of C. We note that an estimate of C is
obtained by replacing v by mz , giving C = 1/Vmz . This
means that the "accuracy” of N is almost solely dependent
°o the number of recaptures in .2

hailey’s Binomial Model.
Assume that n2 is sufficiently small compared with 

" for us to be able to ignore the complications of 
sampling without replacement. The large sample theory of 
ft3cimum likelihood approach will be appropriate if we
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envisage n , nz and N all tending to infinity while 
keeping constant ratios to each other. Then using the 
binomial approximation to hypergeometric distribution 
(3 .1 ), the likelihood function becomes

f ( V W * E a) ( r  ] * t1- r  )

< n -m > 
2 2

(3.10)

therefore

L= log{f(m /n ,n )}= constant+(n -m )log(N-n )- n logN
X £  b  X

(3.11)
Differentiating (3.11) with respect to N gives

6 L
<5N (n2-m2 )/(N- n±) - n2/N (3.12)

Hence, the maximum likelihood estimate of N satisfies

(n2 - m2) /(N - n±) = n/N

that is
N(n2 - m2) = n2(N-n±)

or ,
Nm = n n 2 12

Therefore

N = n±n2/m2 (3.13)
which is Petersen’s estimate. Expanding N as a taylor 
series in powers of t(=m2~m), where m=E[mz], and taking the 
expectation of both sides we have

E[N] = N{ 1 + (N-ni)/nin2 + o(m'2)}
= N{ 1 + 1/m + o(m~2) } (3.14)

Thus, clearly, the bias of N is approximately Nm-1 .
Now consider the estimate

N ' = n4(n2 + l)/(m2 + 1 )
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Then,

E[N']
n , . .-2 n1<n2 + 1>
X o  (B2+1>

<n -m > 2 2

)

<n -m > 2 2

Thus the bias of N ' is approximately Nexp(-m) which is 

quite small even for moderate m. Thus N' may be preferred
a

to N as an estimate of N.

To get the variance of N, we differentiate equation 

(3.12) with respect to N and taking expectations provides 

the required information in the case of a single sample. 

Thus:

In = -E [32L / a n 2 ) = nin2/{N2(N-nl) (3.16)

Using N = n n /m 1 2  2
Var[ N ] = C  = n2 n2(nl-»2)/m2 

We note that var[ N ] is infinite if we admit the value 

m2 = 0. On the other hand, this value will occur so rarely 

in large samples for which m = E[ ra2] is not small, that 

w© can choose to omit it.

A satisfactory expression for the variance of N ' is 

somewhat more difficult to find. However using the 

'method described in chapter one, we can derive the

Asymptotic series
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. 2 n (n + 1 )
E [ N ' ] = — — ----

{Il + H r +- - }  <3 -18>

where p=ni/N. We now obtain the variance from the 
relation.

Var [ N ' ] = E [ N'2 ] - {E[ N ' ]}2 (3.19)

We could obtain a single series expression for the variance
by substituting (3.18) in (3.19) and writing

2 2 2, „ n2 
^ 2  2 ni nz n (n + 1 )(E [ N ] } 2 = N 2 = l---- (1 - 2/nz + ...}

2 2

but this would involve the consideration of inverse powers 
of n, there seems little gained by this device.
Fortunately, there exists a nearly unbiased estimate of the 
variance of N', which is quite convenient for use with 
samples that are not too small. It is easy to show that

2 , 2E[ni(n2+l)(n2+2)/(m2+l)(m2+2)]

,■ {1 - {(N-nl)/N}‘,V 2>- (nz+2)
[ N «v ^

S F ? )  }
= Nz(l-me m ) ,for large n2- (3.20)

Ther efore,if we write

T=n2 (n2+l)/(m2+l) - n2 (n2+l )<nz+2)/(m2+l)(m2+2 )

=n2( 1 )(n2-m2)/ ( m2+ 1 ) < mz + 2 ) .

Then

E[T]=E[N'2] - Nz( 1-me "’) ^ o-f + Nzne m
N '

0w> we know from equat ion( 3.17) that is of order Nz/m;



so that

E[T] 3 a?(1+ nze m )
N '

Thus the variance of N' has a positive proportional bias
, 2 -m0f order m e
If n4/N is sufficiently small for one to be able to 

ignore the complications of sampling without replacement,
* 4|tthen N' may be used as an estimate of N instead of N, 

though in practice there will often be little difference in 
the two estimates. We saw above that N is an intuitively 
reasonable estimate when the sample proportion of marked 
animals in the second sample faithfully reflects the 
population proportion of marked. This means that N 
can still be used even when assumption IV is false and the 
second sample is systematic rather than a random sample, 
provided that
(i) there is uniform mixing of marked and unmarked so the 
proportion n^N of marked throughout the population is 
constant, and
(ii) given that a certain location in the population area 
is sampled, all animals at that location, whether marked or 
unmarked, have the same probability of being caught.

When (i) and (ii) are satisfied, the probability that 
an animal is found to be marked, given that it is caught in 
the second sample, is n^N , and the binomial model above 
aPPlies.

Qzndoni Sample Si ze

In practice it is not always possible to fix n2 in 
Advance as the sample size may depend on the effort or time
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available for sampling. However, if n2 is regarded as a
*random variable rather than a fixed parameter, N is still 

approximately unbiased, since

E[N*/nt] = En ,n ] £ En [N] = N .
2 2

*Using a similar argument, it is readily shown that V is
*an approximately unbiased estimate of Var[N |n ] . We know 

that

Var[x] = Ey{V[x/y]} + Vy{E[x/y]}

thus

Var[N* | ] = En {V[N* I n ^ }  + Vn {E[N* | nA, n2] }
2 2

2= En {V[H*|n1 ,n2]} 2= Var[N*|n ,n2]
2*where Var[N In ,n ] is evaluated at n =E[n /n ]. This

means that in the former, n2 is replaced by E[n2/n ] in
the variance formula. There is therefore little difference
between treating n2 as a fixed parameter or as a random
variable as far as estimation is concerned. But it can be
argued that once n2 is known, we are only interested in
the distribution of m2 given n and n2, and f(m2 |ni,n2)
is then the appropriate distribution irrespective of
whether n is fixed or random.

2

Confidence I n t e r v a l s

As N---->oo , N is asymptotically normally
distributed,so that the approximate 95% confidence
interval for N is given by

* *N ± 1.96V
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However, according to Ricker (1958), 1/N is more
symmetrically distributed and more nearly normal than N , 
s 0 that in general it is better to base confidence 
intervals on the probability distribution of mz . Now, we
know that the distribution of mz given n± and n. is

hypergeometric. The hypergeometric distribution (3.1) has

been tabulated and exact confidence limits for p = ^/N

when N is known and n± unknown are available (Chung and

Delury (1950)). Unfortunately no such tables are available

for the case when N is unknown and n± known, so that the

approximate methods have to be used. For various values of

n , n and N the hypergeometric distribution can be1 2
satisfactorily approximated by the Poisson, binomial and 

Normal distributions. But the choice of which approximation 

to use when N is unknown still needs further

investigations, so that the following recommendations 

should be regarded as a general guide only.

(i) Let p = m2/n2 ; then when p < 0.1 and m2/ni<0.1, 

the Poisson approximation is recommended using m2 as the 

e n t e r i n g  variable in appropriate tables. For example, a 

confidence interval for V = n n / H  can be read off from 

tables such as Pearson and Hartly (1966), Crow and Gardner 

(1959) or from a graph (Adams (1951)).

Per m2< 50 , it is simpler to use a table specially 

Prepared by Chapman (1948), giving the shortest confidence 

intervals for N/X where X=n n . This table is 

reProduced in Appendix 1, and we demonstrate its use with 

the following example.
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pvajnple 1

SupPose n1=100°> nz=500, mz = 20 then p=0.04, m2/ni=0.02 and 
the poison approximation is appropriate using mz as the 

entering variable a 95% confidence internal for N/X is 

(0.03004, 0.0773) that is

Pr[0.03004 < N/X <0.0773] = 0.95

and so
Pr[15020 < N < 38650] = 0.95

Thus the 95% confidence interval for N is (15020,38650).

(ii) When p < 0.1 and mz>50, we can use the normal 

approximation to hypergeometric distribution given by 

Cochran (1977) to obtain a 95% confidence interval for p, 

namely

P ± {1.96{[l-f)p(l-p)/(m2-l)z + l/2nz} (3.22)

which can be inverted to give a confidence for N. Here

f=nz/N, the unknown sampling fraction, can be neglected if

its estimate f = m /n is less than 0.1; also l/2n . the
2 1 2

correction for continuity, will often be neglected. We note 

that, neglecting f when f > 0.01 will lead to conservative 

confidence interval that is intervals which are over 
wide. (iii)

(iii) When N > 150, n± > 50, n2 > 50, m2 is approximately 

normally distributed and the most accurate method than the 

above is to solve the cubic equation in N

N2(m - n n /N)2(N-1)____f____ 1 __________ - in1n2(N-nl)(N-n2 ) “
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The two largest roots then give an approximate 95% 

confidence interval for N. The graphical solution is 

discussed by Schaefer (1961).

(iv) If p > 0.1, we can use either the binomial 

approximation or normal approximations named above. A 

rough guide as to the smallest value of n2 for which the 

normal approximation is applicable is given by the 

following table reproduced from Cochran (1977).

T a b le  3 . 1 :  S m a l l e s t  v a lu e  o f  n z f o r  w h ic h  t h e  n o r m a l 

a p p r o x im a t io n  i s  a p p l i c a b l e .

p or (1-p) 0.5 0.4 COo 0.2 0.1 0.05 ~0*

"2 30 50 80 200 600 1400 CD

When the normal approximation is not applicable, a binomial 

confidence interval for p can be obtained from the 

Cloper-Pearson Charts in Pearson and Hartley (1966), or for 

extensive binomial tables such as those of Harvard 

Computational Laboratory (1955).

3.2 VALIDITY OF ASSUMPTIONS

A s s u m p t io n  of C lo s e d  P o p u l a t i o n

If the assumption of constant population size is to 

hold, the experiment should be carried out over a short 

Period of time, in fact, ideally at a single point in 

time. For this reason the Petersen method is often called 

a P o i n t  c e n s u s .

Departures from this assumption can occur in a number



of ways and we now discuss these in detail.

Accidental deaths

If there are d accidental deaths through the process 

of catching and marking the first sample, the general 

theory in section 3.1, remains unchanged provided that n 

now refers to the number returned alive to the population,
aN and N are estimates of N-d.

N a t u r a l  M o r t a l i t y

Suppose that mortality is taking place in the time 

between the two samples, and let N be the size of the 

population when the first sample is released. When the 

assumptions IV,V and VI of section 3.1, are true and the 

only departure from I is due to mortality, the 

hypergeometric model (3.1) still holds, provided the 

mortality process is such that the deaths constitute a 

simple random sample of known size. This follows from the 

fact that the survivors will also constitute a simple 

random sample from which the second sample is a random 

sub-sample. Since a random sub-sample of a random sample 

is itself a random sample, the second sample will still 

represent a simple random sample from the original

Populat ion .

When deaths do not constitute a simple random sample, 

the Petersen estimate can still be used provided the marked 

and unmarked have the same average probability of surviving 

UP till the time of the second sample. This can be seen 

lrituitively from the equation.

-  98  -
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(3.23)

We note that mortality is often selective with regard to

sample is a simple random sample, the more "vulnerable"

individuals will be proportionately represented in both

marked and unmarked populations, thus ensuring that marked

and unmarked have the same survival probabilities.

To examine the effect of variable mortality in the

marked proportion, suppose that there are various

subcategories in the population with numbers x, y,...., w

where N = x + y +....+W. For the marked members of these

categories, let 4> ,<P ,...,<£ be the respective survivalx y v
probabilities and let p 2x, P2y, • • • • >P2v the

probabilities of recapture in the second sample. Then 

using suffix x to denote membership of category X, we

the size or age of the animal. However, if the first

have

(3.24)

and we can test the hypothesis

. - <P pv 2 v

using a standard chi-squared test based on the following 

contingency table:
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fable 3 . 2 : C o n t i n g e n c y  table c l a s s i f y i n g  different

c a t e g o r i e s  o f  a n i m a l s  as c a p t u r e d  and not captured

X Y W TOTAL

Captu red m m m m2 x 2 y 2 v 2
Not capt. n -m n — m n -m n — mlx 2x ly 2y lv 2 v 1 2

t o t a l n n n n1 X 1 w 1 V 1

When <p - (p - ... - <p t a test of H is a test that thex y v O
second sample is random with respect to the marked

individuals in the various categories. Conversely when a

second sample is random so that , p = p = ... = P,2x 2y 2v , this

is a test of constant survival probability for marked

members.

Catchable P o p u l a t i o n

It should be noted that N may sometimes refer to the 

catchable proportion of the population only, and not to the 

whole population. If an approximately unbiased estimate pC
of the catchable proportion p of the population isC
available,then we can estimate the total Nt by

Nt = N*7pc (3.25)
If N and p are based on separate sampling experiments, asC
will usually be the case, they are statistically 

independent. Therefore.

E[N] = E[H*] E[l/pc] (3.26)

Now, we know that, if x is a random variable with mean, 

®then

E[g(x)] = g(0) + b
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Where g(x) is some function of x and

b = 1  1  I Cov[xt'xj]3f-fc.
I = 1 J = 1 V J

= 1 )  Var[xi + I I  Cov[xi’xj]3f-fct = 1 wX t < J V J
Therefore

2
E[g(x)] ^ g(0) + 7 \ Var[x. ]

^ 1 <Jx2i
It follows that equation (3.6) now becomes

E[N] = E[H*]{ l/pc + V[pc]/pa }

N{ 1/p c +Var[pc]/pc }

Nt{ 1 + Var[pc]/p^ ) (3.27)

and

Var[Nx] 3 Var[N*]/P* + Var[pc]Nx/P* (3.28)

If binomial sampling is used to obtain p then,c

v[pc] = Pcqc/N ,

where N is the number of animals investigated for 

catchability. Assuming that Nt is approximately normally 

distributed, an approximate confidence interval for NT
can be calculated in the usual manner. However, unless 

*PGand N are accurate estimates, this interval may be too 

wide to be of much practical use.

Recruitment

Sometimes the time lapse between two samples is 

Efficient to allow the recruitment of younger animals into
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the catchable part of the population. These recruits will 

tend to decrease the proportion of the marked in the second 

sample, and Petersen estimate N , would overestimate the 

initial population size. In the situation where there is 

recruitment but no mortality, N will be a valid estimate 

of the population number at the time when the second sample 

is taken. However when both the recruitment and mortality
A

occur, N will overestimate both the initial and final 

population size. This is seen mathematically by noting 

that if there are r recruits in the population at the 

time of the second sample, we have the approximate relation

By enlarging the definition of r to include permanent 

immigration and redefining <P as the average probability 

that an animal in the population at the release of the 

first sample is alive and still in the population at the 

time of the second sample, then, provided <t> is the same 

for marked and unmarked, the above comments apply to a 

Population in which there is immigration and emigration 

also.

If an animal becomes immediately catchable as soon as 

it reaches a certain age, then an age analysis of the 

second sample would provide an estimate of the ratio of 

recruits to non-recruits. Using this ratio and the Petersen 
estimate of non-recruits we could then obtain an estimate 

°f total recruits. But the process of age determination is

(3.29)

or

E[N |n±] ^ N + r<P

where N + r<p 1 is greater than N and <£N + r, (0 <<p< 1).
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usually time consuming and the thr e s h o l d for recruitment is

not usually well defined so that partial recruitment may 

occur over a range of younger ages. Usually the more 

readily available information such as length or weight is 

used to classify the individual, and such data can be used 

for carrying out the following tests of recruitment.

C h i - S q u a r e d  t e s t .

If the individual measurement are not actually 

recorded and the animals are simply allotted to the 

particular size-classes, we can test for recruitment as 

follows. Let x, y,..., w denote both the classes and the 

numbers in the classes at the beginning of the experiment 

and suppose that x increases to x+r , and so on, through 

recruitment. Then if the second sample is random within 

the classes (but not necessarily between classes), we have

Plx > say (3.40)
~~ P

fm2x

In l n J = *  |1 n ‘ x ]  lx + r  J
K  Z x  J l x L 2x lx

and the hypothesis H : p =p = ...= p, can be testedO lx ly lv
using a standard Chi-Squared statistic based on the 

contingency table (3.3) below. When there is no 

recruitment, so that r = 0 for each class, then this willX

be a test that the first sample is random with respect to 

size-class. Conversely, if the first sample is a simple 

random sample then E[n /x] will be the same for eachlx
class, and since there is no recruitment in the classes 

with larger animals, a test of Hq will then amount to a 

test of r = 0 for all the classes. In this laterX

situation, the test will be unaffected by mortality 
Provided that the survival probabilities are the same for



marked and unmarked. This follows from the simple 

relationship.
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K *  1 - E f 0n-  1 - T? n.x ]
k x  J k x +

— Ci
x+r J

(3.41)

Where <p is the average survival probability for class 

X. Finally, it is noted that the above test can still be 

used, even when animals grow from one class into another 

with unknown overlap during the course of the 

experiment.This is because although size-classes are 

usually determined from the second sample, X may be 

regarded as the con c e p t u a l population, existing at the time 

of the first sample, which grows into the required class; 

nixwill then be unknown.

Table 3.3
S i z e  c lass

X Y w T O TAL

mar k e d m m m m2 x 2 y 2v 2
unmar k ©d n — m n — m n — m n — m2x 2x 2y 2y 2v 2v 2 2
T O TAL n n n n2 x 2 y 2 v 2

No n - P a r a m e t r i c  Test

This test is due to Robson and Flick (1965). In the 

following discussion, the word “length" will denote some 

readily available measurement of size. Let us define a 

variable u = n„ - in . We shall assume that n is

sufficiently large and the first sample sufficiently random 

^°r the length distribution of animals to be the same for 

both marked and unmarked. Suppose that the lengths of m 

recaptures are L < Lo < ... < L and let u.1 2  m t
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(i=l,2 ...,m+ 1 ) be the number of unmarked animals caught in 
the second sample with length L in the interval 
L < L <L. (L = 0, L =oo). If the second sample is

1,-1 l  O THt I

random with respect to mark status and length, the 
probability that the length of an unmarked animal falls 
into any one of the above m + 1 length classes is l/(m+l) 
and the expected value of u l will be u/(m+l). However if 
recruitment has occurred in the shorter size range, the 
observed ui for the intervals in this range will be 
greater than expected. Thus if recruitment in the length 
class [ 0,Li ] has occurred, n£ will be significantly 
larger than u/(m +1). To determine the significance of 
u± we calculate the tail probability

Pr [ U± > u±
f u + m - n / l f u + m  I
[  m J / [  m J (3.42)

where Ui is the random variable taking the values u± and
compare this with the significance level ot.

The same procedure can now be applied to the second
length class [ L , Lz ] by eliminating L± and the class
of u animals from the data. Thus we compare U with1 2
the expected value (u-ui)/m and if this difference is 
significant, we compare u3 with (u-u -u )/(m-l), and so
°n. Proceeding in this step wise fashion through the 
larger classes, the recruits, if any, will dwindle in 
number until the rth step, say, is reached when the 
recruits no longer make any significant contribution. Thus 
ur will not be significantly greater than
(u~ar-l)/(m-r+2 ), where
ar = u+u +...+U ; for this step the tail probability is1 2  r
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This would suggest that the remaining sample of 
U + U +...+ U unmarked animals is free ofr+l r+2 m+1
recruits, and the average

Ur+l (Ur+l

is therefore an estimate of the number of unmarked 

non-recruits that should occur between adjacent pair of 

marked recaptures. Hence the estimated number of 

non-recruits in the second sample is (m +1)0 „ and the 

modified Petersen estimate of N becomes

N*
<n+l){Ur + i(m+l) +m+l} 

m + 1 <n4 +l)[0 r+ 1 + 1 ] - 1

*
Mean and Variance o f  N  . *

*In evaluating the mean and variance of N we run 

into the difficulty of r being a random variable. This 

problem arises, for example, in fitting a polynomial 

regression where the degree of the final polynomial is 

strictly a random variable. However, as with the 

regression problem, treating r as though it were a 

constant would not seem unreasonable and would perhaps lead 

to a slight underestimate of Var[N ].

Now, under the assumption of non-recruitment after the 

rth class we have

E[Ur+i |m, r ,ar] = (u-ar)/(m+l-r )
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Thus
E[N*|m,r,a ,n ] = {(n +l)(n-r-a +l)/(m-r+l)} - 1

= { (ni+l)(n' + l)/(m' + l) } - 1 (3.44)
Where m' and n' are simply the values of ra and n obtained 
by truncating the second sample of length Lt. If this 
truncation successfully eliminates recruits we would then 
expect

E[N*/nJ = N .
Also

V[N*|nt] = (n, + l)2Var[Ur+l] (3.45)

where the variance of u „ can be estimated robustly fromr+i
replicated u's, namely

m+ 1 - r
Var[u ] =r+1 (m+l-r)(m=F7 1  (uv = 1 r+i - U r+2> (3.46)

C o m b i n i n g  c l a s s e s  to I m p r o v e  the Test P r o c e d u r e :

As the recruitment will generally tend to decrease 
with increasing body-length there will be a decrease in the 
probability of detecting these recruits. Also this 
decrease in detectability is further accentuated by a 
decrease in the length interval between marked animals as 
the test progresses from the lower tail toward the centre 
of the length distribution, and also by the decrease in 
sample size resulting from the successive removal of the 
intervals tested. To overcome this difficulty, we 
therefore require, a method of pooling intervals as the 
number of recruits falls off.

A further need for combining intervals arises when 
iength measurements are sufficiently crude to permit ties 
to occur. In particular, if several marked animals are
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recorded as having the same body-length, then the resulting 

degenerate intervals must be combined to include all marked 

animals having the same recorded length. It transpires 

that the optimal pooling procedure is simply to combine 

adjoining intervals giving a new total interval and a new 

total number of unmarked. If the first k intervals are 

combined, then a test for recruitment in this total 

interval has a tail probability of

kT'1 fsk+r_:H  fu+m-s -r'') fu+ml
T[Sk] = Pr£Sk * ■„ J* 2  L r Jl J / L  J (3.47)

where sk < = V U2 + ••• + V is the number of unmarked
animals in the total interval.

As k gets large, the above tail probability becomes

computationally awkward, and for small values of s thek

recursive relation

Prt W
(s +k-l)(u-s +1) 
sk( k+m-sk-k+l) Pr^Sk"sk-1^ (3.48)

where

[u+m-k I fu+m ‘'I
u J / U  J

is useful When u is much greater than m, so that 

(m+l-k)/kn = o and u(n+l)/n2 = 1
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the napplication of Stirling's formula to (3.48) gives

rm+1Pr[Sk > « ] a
k m+l-k D

i = i v y

where p-(sk+k-1)/n. This incomplete beta approximation to

(3.48) holds for all K > 1 .

Suppose now that, the first intervals, the second

k2 intervals, and so on are combined to give new length 

class [0,L ),[L , L ),... with unmarked numbers S,, S,1 1 2  1 J c k 2
and so on. Then if

Pr[Sk > Sk]< a
l

We reject the hypothesis of no recruitment in the length

class [0, Lk) at ot level of significance and proceed to 
i

consider Sk . Dropping the date in the first interval
2

from the sample, we now evaluate the tail probability

T[Sk ,Sk ] = Pr[Sk > sk |Sk =sk ] 
2 1 2 2 1 1

■ 2  ( T 1) r  ) / ( ? ■  )

where m'= m-k and u' u-S# are new values of m and u.We1 Ki
again reject the hypothesis of no recruitment in

, Lk ] if for Sk , Sk , and so on until 
1 2  2 1

non-significance is achieved. The number of non-recruits 

xn the second sample can then be estimated as before. One 

the problems in combining adjacent intervals is to 

datermine the best sequence k , k2, . .. since there is a 

Practical possibility that all the recruits are smaller 

(shorter) than the smallest non-recruit, it would seem
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reasonable to use k± = 1. Also, because of the steady 

reduction in numbers of recruits between successively 

larger marked animals, the k-sequence should be increasing, 

so that 1 = ki < k2 ^ ... unfortunately the optimum 

sequence can only be determined if length frequency 

distributions are known for both recruits and non-recruits, 

although as the statics Sk , , . . . . etc are virtually
1 2

independent, the k-sequence could perhaps 

sequentially by regression methods, 

extrapolating the regression of u on 

indicate the number k of intervals which3
combined in order to achieve the relation

u
u-s -s. -s,k k k 1 2  3

k+k+k m-k -k -k +1
1 2  3 1 2  3

abe determined 

For example, 

i=2,3,...,k2 to 

must be next

Further research needs to be done on such methods of 

finding a suitable k-sequence.

If one wishes to combine intervals still further (e.g 

the first k4 +k2 intervals), then, as mentioned above, the 

optimal procedure is simply to use the sum

Sk +sk ^= k̂ + k  ̂ anc* ev&luate the tail probability:1 2  1 2
T[SU . ] = Pr [S. . > . ]k +k - k +k k +k1 2  1 1 2

However, to avoid this additional computation Robson and

flick (1965) suggest a number of approximate procedures

such as using T[Sk ] + T[ Sk ; Sk ] with significance level
1 2 1

( 2ot)1/2 , or

T[Sk ] + T[Sk ; Sk ] + T[Sk ; Sk ;Sk ]
1 2 1 3 2 1

with signif icance level of (6ot)1/2 if three groups are
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poo led.

Assumption II, III a nd I V  
l . P r a c t i c a l  c o n s i d e r a t i o n s

variable calchability .

One of the crucial assumptions underlying the theory 

of section 3.1, is that the second sample is a simple 

random sample. Strictly speaking, such a random sample can 

only be obtained by numbering the animals 1,2,...,N and

using a table of random numbers to select n animals.
2

However, in practice, if all the animals have the same 

catchability, we can approximate to a random sample by 

arranging that every point of the population area has the 

same probability of being sampled and that all points 

selected are sampled with the same effort. If a more even 

coverage is required one can use stratified random 

sampling, whereby the population area is divided into equal 

sub-areas and one or more points are allotted at random 

within each sub-area. Unfortunately the requirement of 

constant probability of capture may not hold, either 

because of an inherent variation in catchability or because 

catching and handling in the first sample affect future 

catchability. Very often the probability of capture will 

vary between various sub-groups defined by age, sex, 

species, etc, for example certain sub-groups may be more 

mobile and have different habitat preference, while others 

may have certain bait and trap preferences.

In f isheries, catchability usually varies with the
size of the f ish, and considerable research has been

carried out on such problems as gear selectivity and
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length-selection curves. When recruitment and mortality 

are negligible and the marked members are individually 

identifiable, then the randomness of the second sample with 

respect to size can be tested by partitioning the first 

sample into that portion which is ultimately recaptured and 

into the portion which is not (Robson ,1969).

A Mann-Whitney rank-sum test comparing these two 

sub-samples with respect to body size will be a test for a 

monotonic ration between body size and probability of 

capture in the second sample. Alternatively, if the marked 

members are allotted to size-classes one can carry out the 

goodness-of-fit test described earlier. When there is 

variation in the inherent catchabilities of individuals and 

the first sample is not random, assumption II will be false 

and the more catchable individuals will be caught in the 

first sample. This means that for the second sample, the 

marked will in general be more catchable than the unmarked, 

and assumption IV will be false. Unfortunately, apart from 

a careful choice of catching method and preliminary studies 

-for example, on activity, feeding habits, length-selection 

curves, etc -little can be done to overcome this problem of 

variable catchability in the first sample. However we 

shall see below that the bias in the Petersen estimate N 

due to variation in catchability can be reduced by using 

different trapping methods for the two samples.

If the catchability is constant within certain 

well-defined sub-groups and there are sufficient recaptures 

from each sub-group, the numbers in each sub-group should 

estimated separately.
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S y s t e m a t i c  S a m p l i n g :

We have seen that the Petersen estimate can still be 

used, even when assumption IV is false and a systematic 

rather than a random sample is taken, provided there is 

uniform mixing of marked and unmarked and all animals are 

catchable in the second sample. But in many populations 

uniform mixing is unlikely because of territorial behaviour 

on animals and the presence of well-defined home ranges. 

Another situation where it is difficult to obtain a uniform 

mixing is when the population is not randomly distributed 

throughout the population area and animals are relatively 

immobile. For example Hancock (1963) suggested that the 

excessive variability in the monthly returns of marked 

Whelks may have been due to the random distribution of 

marked individuals among essentially non-randomly 

distributed unmarked individuals.

It would seem that where possible the experimenter 

should aim for a random sample rather than rely on the 

assumption of uniform mixing. However in many population 

studies it is helpful to arrange the release of the first 

sample so that mixing can take place as much as possible. 

For example, one can divide up the total area into 

sub-areas,sample each sub-area with same effort, and then 

release the marked animals back into the same area from 

which they were taken. If catchability is independent of 

sub-area, one would hope that this method produces roughly 

the same proportion of marked in each sub-area. To check 

this, a standard goodness-of-fit test can be carried out to 

See whether the proportion of marks recorded in the second 

sample from the various sub-areas are signif icantly
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different.

C a t c h i n g  and H a n d l i n g :

Departures from assumption III that trapping and 
marking do not affect catchability can be minimized if the 
following points are observed by the experimenter.

i. Type o f  t r a p .

It is essential that a trapping method be used which 
will not harm the animal in any way. For example, in small 
mammal populations such things like placing the trap under 
cover of vegetation, drugging the bait, and visiting traps 
frequently can reduce trap mortality. If several types of 
traps are available one would endeavour to choose the type 
which is most efficient, as the accuracy of Petersen 
estimate increases with n and n„. Also to increase 
trap efficiency, the bait or lure should be selective for 
the species under investigations and some consideration 
should be given to the spacing and distribution of the 
traps. ii.

i i . M e t h o d  o f  h a n d l i n g .

Care is needed in handling the captured animals so
that they quickly recover on their return to the

%
Population. Another problem arises with small mammals and 
birds where trap a d d i ction or trap s h y n e s s can alter an 
animals' pattern of behaviour after it has been caught for 
the f irst time. The effect of trap shyness can be minimized 
by prebaiting the traps for a suitable period of time 
before the census, thus allowing the animals to get used to
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the presence of traps. This however does not always work 
and of course trap addiction is not helped by prebaiting- 

Sometimes trap addiction can be reduced by altering the 

trap positions throughout the trapping period, thus, for 

example, preventing individuals from building their runways 

up to the mouth of the trap. Another way of minimizing the 

effect of trap response is to use a different trapping 

method for taking the second sample. For example animals 

can be live-trapped for marking and then shot for 

recapture; if the mark is conspicuous, sight of the mark 

itself could be the means of r e c a p t u r e. In the later case, 

observing animals and noting the proportion of marked 

amounts to sampling with replacement, so that Bailey s 

binomial model is appropriate.

In some circumstances the tag itself may affect the 

longevity and behaviour of the animals. For example, jaw 

tags on fish can interfere with feeding and thus affect 

growth rate, while Petersen disk tags can make fish more 
vulnerable to gill nets through the net catching under the 

disk. Another aspect of marking particularly relevant to 

insects is that presence of conspicuous marks may well 
destroy an animal's natural camouflage and make it more or 

less liable to predation. Also when animals are marked by a

method which relies on the sight of the collector then the

marked animals may tend to be collected more than the

unmarked. On the other hand, if the tags are not

conspicuous enough they may be overlooked, particularly if

one relies on huntsmen, fishermen, farmers, and so on to

return the tags.
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jiii. M e t h o d  of  r e l e a s e :

Animals often show a high level of activity 

immediately on release, and efforts should be made to 

minimize this. For example, birds and insects could 

perhaps be restrained from flying immediately by covering 

them with small cages until the effects of handling wear 

off. While tagged fish could be held in tanks so as to 

reduce and measure initial tagging mortality. If animals 

have activity during the day they could perhaps be released 

during an active period.

Theoretical a n a l y s i s  o f  c a t c h a b i l i t y

For the ith member of the population (i=l,2,..., N),

let x i be the probability that it is caught in n±, let 

yt be the conditional probability that it is caught in n2 

given that it is caught in n and let z. be the1 t
conditional probability that it is caught in n2 given 

that it is not caught in n . Assuming that the population 

represents a random sample of N triples (xi,yi,zi) with 

regard to the species as a whole and the particular method 

used, then (xt, y. ,zt) may be regarded as a random 

observation from a trivariate probability density function 

(f„(x,y,z), say. If we set a.=n.-m (the number of animals1 v i 2
caught in the ith sample, only, i=l,2), then the

Probability of a given outcome of the whole experiment.

p __
J r  ■>

a  + a  
1 2

’’a  +a  + m 
1 2  2

TT *(i.-y.) TT a - x t)z. TT x ky kII L l=a1+1 J k = a  + a  +1  
^ 1 2  ^

x
N
TT (i-xl)ci-zl>

l = a + a + m +1 1 2  2
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Therefore the conditional probability function of a±, a2,
m1 is

f (a ,a ,m !x.,y.,z.) = ) P2 X l ’ 2' l 1 r  L vV

where 1  denotes summation over all possible groups of

the N animals such as a , a2, mz are the numbers in 

each of the three categories, that is w represents a 

permutation of N objects such that aA fall in the first 

category, and so on. Since the triple (xt, ŷ , ẑ ) are

independent they can be integrated out and thes'*
unconditional probability function is given by

f 3( a l > a2 ,ml ) = E f 2( a l , a 2 j ini|xi , y . , z . )

= 1 E cp„ ] =  1 < p , - P i 2 >  ‘ <p3- P i 9> 2a - p r p 9+pls >
N - a  -n.

where

]> 1 = N!/{ai!a2!mi!(N-ai-n2)!}

and p± = E[x], pg = E[z], p±3 = E[xz], and p±2 =E[xy], 

all expectations being with respect to f . Now

f5(a2’mZlni> = f3(ai'a2’ni> / W

f n  1 f p  1
m

2 r  P o l a i f N - n  1
r  _  _  \  

P  - P J#1
i *  12

i  12
i 3 13

K  J Lp »  J
i

p * j l a * J 1 - p * J

fl-p “P ~P 
* 1  3 13

1 - P

N-n -a 1 2

and approximating these two binomial distributions by two
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independent Poisson distribution we have (Feller,1957)
✓V *\

f<,("2 lni’n2) =
n
m2y. j

m n -m
P 2(1-P) 2 2

where

P= n± / ((N-n±)k + n±} , k=^P3_P13>P1 / (P^d-Pi)}

Therefore, it can be shown that

E[N*|ni,nz] = { (nl+l)/P }{ (l-(l-P) * } -1
n +1 2

= n/P =( N-n± )k + n ±
*so that N is approximately unbiased estimate of N if and 

only if k = 1. Suppose that assumption III is true. Let

where
k = (B-pi)/(l-pi)

B=p (p -p +p )/p1 3  13 12 '  * 1 2

obviously k = 1 if and only if B = 1 and k < B when 

B <1. Since assumption III is true, that is marking does 

not affect catchability, we have

y. = z. ( i=l, 2, . . .N)

so that P 13= pl2 , P3 = p2. and

1-B = 1-p p /p 
1 2  12

= (p -p p )/p

= Cov[x,y]/E[xy]

suppose, now that B = 1, then, Cov[x,y]/E[xy] = 0 

°r Cov[x,y] = 0- and Cov[x,y] = 0  if and only if x and 

y are uncorrelated. Thus B= 1 if and only if x and y are 

uncorrelated.

A positive correlation will lead to an underestimate 

N and a negative correlation will lead to an 

0verestimate of N . We note that if a correlation exists we
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would generally expect it to be positive. This accounts 

for the persistent underestimation observed by Buck and 

Thoits (1965) who checked on several estimates of fish 

population numbers by draining the ponds containing the 

populations.

We conclude from the above that variation in 

catchability due to, say trapping selectivity could exist 

for both samples without introducing biase of the source of 

selectivity in two samples were independent. This supports 

the statements by a number of authors that bias due to 

difference in catchability can be reduced by using a 

different sampling method for each sample.

Special c a s e :

Let y =bx^ ( b >0 ). Here the correlation is unity 

and we find that

B = l-Var[x]/{E[x]}2 S 1,

with equality if and only if Var[x] = 0  or x is 

constant.

If x e [c,d] ( 0 ^ c < d ^ 1) then, provided W=c/d 

is not too small, it can be shwon that B will be nearer 

unity and insensitive to the shape of f(x), the probability 

density of x.

On the other hand if c=0, B may be significantly

less than unity; if in addition f(x) is concentrated near

x=0, that is the probabilities of capture are near zero for 

a substantial proportion of the population, then B could 

still be much smaller. In this case x and y are 

uncorrelated if either x or y is constant, that is B=1

If at least one of the two samples is a random sample. In
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particular if the first sample is random, the second sample 

peed not be random and in fact could be highly selective, 

provided the selectivity was independent of mark status.

When x is constant we find that p =p p , p =p p
13 1 3  12 1 2

and k=p3/p2< This means that k=l if and only if the 

average probability of capture of the marked in the second 

sample is the same as the average for the unmarked.

We see from the above discussion that if Assumption 

III is true and y^=bx^, then k =1 if and only if 

Assumption II is true. A test for this case based on 

taking two samples from a known (for example, marked) 

population is given below. Conversely, if Assumption II is 

true then k=l if and only if Assumption III is true.

Test for constant c a t c h a b i l i t y

We shall now consider the problem of testing 

Assumption I given that the assumptions I, II, III, V and 

VI are true, by taking 3 samples and using the first sample 

as an identifiable population.

Suppose that m2 tagged animals in the second sample 

are given another tag and the second sample then returned 

into the population. If a third sample of size ng is now 

taken then on the basis of the tagging information obtained 

and assuming that catching and tagging do not effect future 

catchability, Cormack (1966) gives two procedures, one of 

which we discuss below, for testing the hypothesis of 

constant catchability.

In the following discussion we note that n , n£ and 

n3 play the same role as N, n , n2 in theoretical 

analysis of the previous section above.
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The probability pj (j=1,2,...,n±) that the jth 

members of the first sample is captured in a later sample 

will be proportional to its inherent catchability and to 

the intensity of sampling or sampling effort. Assuming the 

sampling effort f to be the same for each individual, we 

therefore define c =P/f as the catchability of the jth

individual for the particular catching method used. We 

shall assume that cv's to be a random sample of size n4 

from a probability density function g(c) with moments /u' 

about the origin and moments v about the mean. If wer
standardise ĉ  so that the domain of g is [o,l], then 

f will be uniquely determined and 0 5S f ^ 1. The

catchability of an animal may be regarded as the

probability with which it places itself in a position where 

the experimenter is able to catch it; and the sampling 

intensity is then the probability that an animal in this

position will be caught. Alternatively, if ĉ  is not

standardised, we can regard it as the probability that one 

unit of sampling effort catches the jth individual. Then 

considering f as the number of units of effort to be 

additive, p. = fc. as before. Let f and f be theJ J 2 3
sampling efforts for samples two and three respectively. 

Then if and yj are the probabilities that the jth

member of sample one is caught in samples two and three 

respectively, and assuming assumption III is true, we 
have: -

x.= f c., y.=f c., and hence y =bx.J 2 J J 9 J J J
het in be those individual caught in the first sample,10

®12 those caught in both samples one and two only, mi3, 

those caught in both samples one and three only, and mi23
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those caught in all the three samples. Then, the joint 

probability function of in , m . and m is given by
12 13 123

n ; 1
( « 2 < i - * 3 x > r i 2 ( V 1- 2X>)m !12 m ! m ! m !

13 123 l O

X  ( C,2 0,3 X )  12 3  (
1 - a  - a  4-a  a  X 1 2 3 2 3 J

13

lO (3.49)

where
*a2 = f2M i ' "a = f3 ^  and x =

To test the hypothesis of constant catchability it is

sufficient to test whether the variance of c. is zero.j
Note that varCcp = 0  if and only if ĉ  is a constant. 

This is equivalent to testing the hypothesis.

H :d = 0 o
where d, the square of the co-efficient of variance, is 

given by

a = *v<^>2
=\ - 1 (3.50)

Now, for the multinomial distribution (3.49) the maximum 

likelihood estimates of c*2, and X are simply the

moment estimates.

Theref ore, writing 

described earlier,

a  - (m +m )/n
1 V 12 1 2 3 "  1

°2 = (mi3+m!23)/n2

X = n1m123/{(”.2+%23)<m.3+mi23>>
d = X , we have from the delta method 

the asymptotic expressions are

E[ d ] = d+d(l+d)/nA (3.51)

and

Var[ d ] (d+l){l-(a2+a3)(d+l) + ot2ot3(d+l)(2d+l)}/niot2a3

(3.52)
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The asymptotic bias and variance of d can be estimated as 

usual by replacing each unknown parameter by its estimate; 

thus

m
Var[d]= 1 2 3

n

(m +m ) (m +m
V 12 1 2 3  13 123

- {— ■~  N 2 1 m n
)  ^  1 2 3  1

m +m
12 1 3

(m +m )(m +m )
V 12 1 2 3 ' '  13  1 2 3 ;

(3.53)
Under the null hypothesis Hq we have, assuming 

approximate normality, that d is

N( 0, ( 1-a )( l-« )/n a a ) ■ Therefore a one sided test 

statistic for Hq is given by

z = d/Vn^otg/Ul-c^Kl-otg) (3.54)

which is approximately distributed as the standardized

normal when Hq is true. If Z is negative we accept 

d=0 as the most reasonable hypothesis. It is readily seen 

that the power of this test will be maximized when f2, fg 

and n̂  are as large as possible.

Suppose we relax the assumption of a closed population 

to the extent of allowing mortality. Let <P±, <P2> be the 

probabilities of survival for a tagged animal between the 

first two and the second two samples respectively. To 

allow for the estimation of the 4> , we require

additional information provided by releasing a further r2 

tagged animals in addition to the mz into the population 

after the second sample and noting the recaptures, m23 say, 

from this group is in the third sample. Under the 

assumptions of the above test, and assuming the members of 

r2 to represent a random sample of catchabilities from 

S(c), the joint probability of mi2, mi3, m23, mi23 is 

Siven by
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n l • r -v 'T* r -vTn
-- ni— rz-- rr— , °<_(1-0 a X.) \<p ( 1 -a X)a <p 1
II112!mi 3 !,ni2 3 !miO! >- ‘ 2 ”  J  l  * 2 3 2J

[i m m
<p a <p a xl 123 0 10
1 2 2 3 J m

2 3v — ./

™   r -m
x 2 3  . 2  2 3

(*2V

where 0 = 1- ^>a - <p <p a (1-a X).1 2 ^1~2 3 v 2 y
In the above probability function we have four 

independent observations but five parameters, and we find 
that 4>z and cannot be estimated separately; only the
product <P2a3 can be estimated. The maximum likelihood 
estimates are

\  = (mi2+%23)r2/[n23ni 

“ 2 = m 23<m i2+ n i 2 3 > / t r 2 ( m i3+ m i23>>
A A

<p a = m / r2 3 23̂  2
A

X = m r /{m (m +m )
12 3  2.' L 2 3 '  12 1 2 3 '

A A

setting d = X-l we find as before the asymptotic mean 
and variance to be

E[ d ] = d
* h  f e  - . 1

and

Var[d] = n <p a <p a
1 1  2 2 3

1+X(fan r ± - < p a - < p a < p c i n r ±) i-
1 2 1 2  2 3 * 1  2 * 2  3 1 2 '

To test the hypothesis d = 0 we again use a one tailed 
test based on the statistic

2 = (d + b )/a
Where b = X( l/m2 3-l/r2) , and

2 2 .. r m f
- = — - 123 2 jl/n

m (m +m )
2 3  12  1 2 3  ^ ^

” 123 + v®,, - 1 A " 12+">123) - 1 /
■1

In testing HQ :d=0, there is unfortunately a very
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considerable loss in power having to estimate <p± . Cormack 

(1966) states that even when the death-rate is actually 

zero ( - <P2 - 1 ), five to ten times the number of

tagged animals n1+r2 are required to give discriminatory 

power as the test for a closed population. Because of this 

lack of sensitivity and the need for such large numbers of 

tagged animals Cormack (1966) suggests that the experiment 

should be arranged so that the probability of death can be 

neglected.

If information on 4>± is required we can use <P± 
and the approximate variance formula

<P
Var[<P ] - ----4—  {r (1-<P <p a ) + n <t> (1 -<p a )}i n r  <P cn L 2V 1 2  3 y i^iv * 21 2  2 3

to obtain an approximate confidence interval for 4>̂  . We 

note that if ^3/ ^ 2 = is known, can obtain the
estimates

a = a f /f
3 2 3 / 2

A A

<t> - m / r c*.2 23y 2 3
When <P±-1 and fg/f2 is known, the second release of r2

animals is unnecessary as the parameters a , <p . and X2 2

can be estimated from the joint multinomial distribution of 

, m43,®i23 * m10* this case the maximum-likelihood
estimates are again the moment-estimates, and their 

asymptotic means and variances can be derived using the 

delta method.

Assumption o f  No  loss o f  tags

If animals lose their tags or marks, the observed 

recaptures will be smaller than the expected and N* will 

overestimated N. Therefore considerable thought should



be given to the choice of tag, and some experiments should 

be carried out either before or during the census 
experiment period to check for the tag losses or tag 

deterioration. The type of tag chosen will depend on such 

factors as the species studied, the information required by 

the experimenter, time and personnel available for the 

tagging, and the method of tag return- whether by hunter* 

fisherman, or research worker. obviously tags should be

durable so that they are not lost through the effects of
/

weather or physical changes in the animal, such as molting- 

E s t i m a t i o n  o f  tag l o s s .

One simple method Of detecting tag loss is to give all 

the n̂  animals in the first sample two types of tags and 

then to note those recaptures with just one tag and those 

with both tags intact. Denoting the two types of tags by A 
and B, we define

nx =Probability that a tag of type x is lost by the time 

of the second sample (x=A,B).‘ 

nAB=The probability that both tags are lost. 

nx = number of tagged animals in the second sample 
with tag x only (x = A,B).

mAB= number of animals in the second sample with both 
tags. 

and

m2 = members of n caught in n1 2
ssuming that the tags are independent of each other that 

ls nAB = nA nB »the joint probability function of mA 

mABanc* m2 Is £iyen by
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f(mA ,mB , mAB , ln»*n»> = f(mA ’%  '“a. I V ^ I ' V ' V

Where

* ^ “2 5 = m > m , , m ! { ( i - n A )nB }»A {nA( i - n B ) } “B
A B AB O

x{(i-n )d-n„)}mAB { n n _ }moA B

and

m = m  - m - m + m O 2 A B AB

f < w v  = £ ; ]  ( i ; j / [  : j

The maximum - likelihood estimates of N 

which are also the moment estimates are given by

N = nj,n2/ m2

m ,n2 A 77

m A= in (1-77 )77A 2 x A / B
A A A

% =  m2(1-nB>’IA
% B = ” 2< 1 - " A K 1 - ^ B )

Which have solutions

"a = V < V " a b >
A.

"B = “A/(mA+mAB> 

m2= (mA+lnAB)<mB + mAB>/mAB
= c (mA+mB+mAB),say.

^his means that the observed recaptures m +m +mA B AB must be
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corrected by a factor

■ [ -

m mA B
( 11 A+mAB > ( BB + lnAB ,]

- 1

to give an estimate of the actual number of recaptures m .
2

For large samples, NAB is an approximately unbiased 

estimate of N ,and defining N = n n /m * we have from the 

fact that if x and y are two random variables ,then 

V[x] = Ey[V[x|y 3] +Vy[E[x|y]]
that is

= Em + Vm {E[Nab 1 ^ , 1 ^ ] }
2 2

= \ W » a.Iw b23> +

which by delta method and the relation

V[N* |nt,n2] = NZ(a/_1 + 2v~2 + 6aj~3) 
is approximately equal to

M3N n nA B
n n 1 2

I-* __
i

l + N9 11 1 2N . 6N2 ]
l _nA) ( 1-™ b ) J n .n2 n in2 n in2 J

(3.55)

In some situations the only information recorded is the 

number of tags from each tagged individual,so that just the 

number m • and m =m +m_ are available. For this case weA d  C  A  B

Can still estimate m if we can assume that n =rr =n, say.Z A B
then have

_ m l  r \m \in 2m
<m |m )=,°c!mAB !m0! {̂2rt( 1-71}} c{ a - " ) }  AB « ‘
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and the maximum-likelihood estimates (and moment

estimates)of m2 and n are

and

m = (m + 2m ) /4m
2  V C  A B '  '  A B

"  =  m C / ( m C  +  2 m A B )

(3.56)

Now setting

SAB * n,BA  <3-57>
The estimate(3.57) is asymptotically unbiased and its
asymptotic variance is given by

»i 3  2N n
n in2(l+rr)<

+ 1 + 2N
n in2

+

When information on m and m is available for the
A B

whole or perhaps a part of the second sample,we can test 

the hypothesis n =n as follows:
A B

Let tt =krr ; then,the conditional probability
D A

function of m given m +m is given by
A A B

(3.58)

Where

Testing k=l is 

the b inomial 

It is noted 

will be the case 

terms involving 

the effect of tag

k ( 1 _ 7 T A )TTAP = j— ----x-- ;--- Tk--- \ and p = l-qk(l-n*)nA+ nA (l-»A )

therefore equivalent to testing p=i/2

distribution(3.8).

that when tag losses are small, which 

for many populations, the above variance 

n ,n and tt will be negligible, so that
A B

loss can be neglected. For example, when



n and n are both less than 0.1 ,the contribution ofA B
the first expression to equation (3.55) is still less than

3.5per cent. In such cases, the general theory of

section 3.1 can still be used with m replaced by m or
2 2

N

■V
Note that the above theory can be extended to the 

case of more than two marks by defining n as the 

probability that a particular mark is lost and as the

probability of loosing at least one of the other marks.
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Assumption that all tags are r e p o r t e d :

When there are incomplete tag returns the observed

value of m will be too small and N will overestimate
2

N . This problem arises when tags are returned by 

hunters,commercial fishermen, local inhabitants and so on, 

who may or may not be interested in the experiment. It is 

found that the percentage returns is usually related to 

such factors as the training of observers, size of reward, 

publicity given to the experiment, and ease of visibility 

of the tag. However, if the second sample can be 

classified into two categories, one which has a known 

reported ratio of unity or nearly so, and the other with an 

unknown reported ratio, then Paulik's(1961) method 

described below can be used to test whether the unknown 

ratio is significantly less than unity.

Let n =n +n , where the suffixes a and b denote

the categories respectively.

Let m , m , be the number of of recaptures in
2 a  2 b

the two groups and let r , r , be the number of
2 a  2 b

recaptures actually reported that is r2a=m2a* Then if n2
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is large,the ratio n^/N small, and the sample ratios the 
same for both groups , that is n /N = n ./N , we can
uSe the Poisson approximation to the hypergeometric
distribution and assume that the recaptures m in each2i
group have independent Poisson distributions with
parameters n^n^/N (i=a,b). If p is the constant
probability that a member of m2a is reported, then
the conditional probability function of r given m is2b 2b

[m . "1 r (m -r >2b f 2b, „ . 2b 2b
r I p 2b J

(3.59)

We know that if x̂  and x2 are independent Poisson 
random variables with means and Q  ̂ respectively,then
it is readily shown that the distribution of x± conditional 
on y = x± + x2 is binomial, namely

f ( x j y )  = (  *  ) p x .  q xa

Where p=0±/( ei+e2) • - Conversely, if x± and y are a pair of 
variables such that the conditional distribution of x 
given y is binomial with parameters y and p , and y 
is Poisson with mean X , then the conditional distribution 

x± is Poisson with mean XP (Feller, 1957). 
therefore , it follows that , the unconditional 
distribution function of r2b is Poisson with parameter 
nin2p/N ■ As r2a and r2b are independent Poisson 
Variables, it follows that
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Where, r = r2<j+r2b and p = n2a/( n2c+n2b ) . Therefore the 

estimate of p is given by

r2d/r = n2a/(n2a+^n2b) -
or

P = n2ar2b
n2br2a

and a test of HQ :p=l against the one sided alternative 

H :p<l is equivalent to testing Hq :p=n2a/n2 =(P0*say)

against H^p > p q for the binomial model (3.60).

Note that an estimate of m2 ,the actual number of 

tagged individuals recaptured is given by

and
m2 = B2a+(r2b/P) = V 2/nza •

N = nin2/m2a = n,n2a/m2a
This means that we base the Petersen estimate on the 

recapture data for which we have 100 per cent reporting 

rate.

If the tag ratio n±/N is not small, the m2i may be 

more approximately represented by a binomial law, namely

. < ■ » > = £ :  ]  G O -  r  )
<n -m > 

2 i  2 a

Assuming model (3.59), the above equation leads,to

f ( 2'* . >  ■  t  ]  r - n  -  V s )
<n-r >

2l 2l

(i=a,b). (3.6)

is nowNhere P a = 1 , Pb = P • Therefore testing Hq 

ec3uivalent testing for homogeneity in the 2x2 contingency



133

table below.

r r r2a ’ 2b
n - r n - r n - r2a 2a 2b 2b 2

n n . n2a 2b 2

As the alternative is one sided, the usual test is modified 

slightly by only rejecting Hq when r2a/ n 2a > r2b//n2b ' 
and the Chi-Squared statistic is significant at 2a level 

of significance, where a is the size of the test. When 

the r . and n . are small, Fisher's exact test should
2l 2i

be used.

It is important not only to detect incomplete

reporting after the experiment, but also to decide before

the experiment how many tags should be released and how

much of the sample should be inspected to be reasonably

sure of detecting non-reporting of a given magnitude. Such

an information can be obtained by examining the power of

the test H for particular alternative p < 1. When the o
smaller of rp or rq is greater than 5 , and the

correction for continuity is used, the normal approximation 

to binomial distribution can be used. In this case the 

most powerful one sided test of Hq is to reject Hq when 

r2a >d , where

d = z "/(rp +q ) + - + rp a v 2 o
Here z satisfies Pr[Z ^ z ] = a ,where z has a unit a a
normal distribution. If ft is the type II error for a 

Siven alternative p ,that is

Pr[r2a > d |p] = 1-ft

then the number of recoveries needed to test Ho at 

Pre-set values of a and ft for different values of P
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can be expressed as

1 -  <- z ftypg_  + z a  >2/<P-P0)Z
Where p = n2a/(n2o+Pn2b) = P0/(P0+P( 1-P0 ) ) •

Paulik has tabulated r as a function of ft, p, and 

p for a = 0.10, 0.05, 0.01, and the tables are

reproduced in table A.2 of the appendix. He points out 

that if the binomial model (3.60)is more approximate than 

the Poisson model which led to (3.61), then the value of r 

obtained from the tables is conservative in that the true 

true power of the test exceeds 1-ft.

The method of Paulik is a very flexible one and can be 

applied to a number of different experimental situations. 

In particular it can be used for the case when pQ refers 

to the proportion of the total effort inspected rather than 

the proportion of the total catch. We shall not give the 

theoretical justification of the above extension here.

Note:

The incomplete reporting can arise either through 

(i)tags being accidentally overlooked, or (ii)tags being 

deliberately with held. For larger animals a tag can 

usually be designed so that the chance of being overlooked 

is negligible. In fisheries, however, where large numbers 

are rapidly handled and tags are small this source of error 

can usually be minimised by extensive advertising and the 

fering of an a d e q u a t e reward for a returned tag.

In conclusion we see that the above methods of Paulik 

Can still apply even if natural mortality is operating, 

Provided that the tagged and untagged have the same
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mortality rate, so that the tag ratio remains constant 
throughout.

3.3 ESTIMATION FROM SEVERAL SAMPLES:
Let n i animals be captured, marked and released 

throughout the population and let p=nt/N , where N is 

the total population size. Suppose that the total 

population area can be divided up into R sub areas of 

which k are selected at random for further sampling. Let 

N.=number of animals in the ith sub area (i=l,2,...R) 
N =N/R

nit=number of marked animals in the ith sub area 

(nij} = set of n±j( 0=1,2, . . ,R)

{nitk } =sample set of (i=l,2,...R)

n2.=number of animals caught in the ith sub are (i=l,..,R) 

n =number of marked in n .Zl 2l
p. = n ,/N.

t ll V

P = m2i/n2i
f ^ k / R

and

f_. =n /N.Zl 2l l
Note that

P = n4/N N

^gtlo Estimate.

With the above experimental set up we effectively have 

two-stage sampling, in which we choose k unequal size 

Ur*its or clusters at the first stage and then sub sample 

^rom each sub unit, noting the proportion p o f  the marked
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in each sub sample. Therefore, if the cluster sizes N

were known, p could be estimated by the ratio type 

estimator

1  W j  Ni •

However, as the IT are known, one possibility is to use 

weights proportional to the sample sizes n . , so that p2v
is estimated by

i

and N is estimated by n ±/p , the Petersen estimate once 

again.lt is noted that

= 1  n2lPi / "2 <3 ‘62)

We now consider two cases where p is unbiased and 

approximately unbiased respectively.

Constant M a r k  R a t i o :

When p̂  = p ( i = l, 2, . . . , k) the right-hand side of

(3.62) is reduced to p and p is unbiased. In this case
A A

Var[p|{n }] , the variance of p can be estimated by

V±[p] = P(l-p)/(n2-l)

The hypothesis Ho :pt=p can be tested using the standard 

goodness-o-fit statistic

9 = Z <n2i"n2ip )Vn2lP(l-P)-i = 1
Which when H is true is o approximately distributed as

Chi-Squared with k-1 degrees of freedom. When Ho is
**rue and n2 is large (say, greater than 30). p is

aPproximately normal with mean p and variance estimate
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Vl[p]• An approximate confidence interval for p can be 

calculated in the usual manner.

Constant S a m p l i n g  e f f o r t :

In general, if Hq is not true p will be biased. 

If however, the same sampling effort is used within each 

sub area and the expected fraction caught (0,say) is 

proportional to the sampling effort*, then

E [n | n ] = E [n ] = N.0

and

E[m In̂ . ] = n .02l 1 It It
Hence, for large n2i,

E C p  | =  2  E C “ 2 i l n , i V  2  E [ n 2 i / n i t ]
i  = l  i  = l

= }  n.-/ > N. Li it' L  t (3.63)
t = i t = i

Since k sub areas are chosen at random, equation (3.63) 

represents a ratio estimate of p with respect to the first 

stage in the sampling. Therefore, taking expectations with 

respect to this first stage, we have, for large k

E[p|{nlt}] = | |E[p | {n J]1 * \  n / \  N
L  J  i  = l  i  = l

= n4/N = p.

Thus p is approximately unbiased for large gL and large 
k- Noting that

6 = E[nz.]/N. = E[n2]/ ]>N. Ss E[n2]/kN = E[H2]/ N ,

*here n2 = n2/k , N/fi can be estimated by n /n . 

therefore,from Cochran (1977) an approximate estimate of 

VarCp|{n }] is given by
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Var[p|(nit}] is given by

», 1 f l V fn2i) * fn2i *] n2i * *

V2 l-P-1- k( k -1  )Z [ n2J  (pi p) kn2 Z [ n2 Jn2.-lpi/ P v ^

(3.64)

Where f (= nz/N) can either be ignored, or estimated 

using n1//P as an estimate of N.
When k = R, that is f = 1 , we have the special 

case of stratified random sampling. The expression (3.63) 

then reduces to p and the first term of (3.64) is zero.

When f is small the second term in (3.64) can be 

neglected, and Var[p|{nit}] is now estimated by

va = k 1  <">2r n2ip)/(k-l)n^

Using the delta method(explained earlier), the variance of
A A

the Petersen estimate N = n /p is approximately given by

n^p”4Var [p | (nii)] (3.65)

which can then be approximated by
"2 k

Var[N] = n2p 4V [p =  ̂ k V (m .-naip)2 (3.66)
1 3 m2< k-1) i = i

Mean E s t i m a t e s :

An alternative estimate of p is the average

and

an

from the general

v V k •
unbiased estimate o

(l-f±) 
Var[p] = R F T )

theory of Cochran (1977), 

y ' = p /k , n - k/Rl l t
f the variance is given by

I <pr p > V  12l

setting

which reduces to the usual sample estimate of the variance L •
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when f is ignored. As
a A n

E [5|{ntlJ] = | E[p|{n 2J] = | ( J p, A )  = J V rV y i = l
= P ,say

Then p is unbiased when either HQ :p=p^ for all i, is 

true or when p =p. If Hq is true p seems to be 

preferable to p because of the general robustness of a 

mean with regard to normality and because Varfp] is more 

robust than V [p] with regard to the departures from H . 

On the other hand, if Ho is rejected by the 

goodness-of-fit test and the sampling effort is uniform, 

then p can be used with V [p] of equation (3.64).

In some experiments the numbers n . of markedit
animals in the individual sub ares are known and N can be 

estimated by

»' = Rt̂ V k= R 1 f (<nu+lXn2l+l)/<m2t+l>) - l U

Then

E[N' ] = | E[N* | k] 2= R | N./k = RN = N

and using the general theory of Cochran (1977), setting 

y* = Nr/k , y* = N./k , n. = k/Rt t t t t
it can be shown that an approximate unbiased estimate of 

the variance of N ' is

- 1 8 =8 . 1t = i t = i
Var[N*]t

Where
*  (n . + l ) ( n „  + l ) ( n  -m . ) ( n -m )

Var [N . ] = -------------------------------t ,, „ N 2Onz.+l) (m2t+2)

"hen n +n £ N for each i , then N' andIt 2t t Var [N']
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are exactly unbiased.

3 . 4  INVERSE SAMPLING METHODS.
We now consider an inverse sampling method for the 

second sample which in contrast to d i r e c t Petersen method 

considered so far, provides an unbiased estimate of N 

with an exact (rather than large sample) expression for the 

variance, and a co-efficient of variation which is almost 

independent of N.

The method is to tag or mark n± animals as before

and then continue taking the second sample until a

prescribed number m2 of marked animals have been

recovered. This means that n4 and m2 are now

considered fixed parameters and n is a random variable.
2

As in the direct Petersen method, the second sample can be 

taken with or without replacement and we shall consider 

these two cases separately.

Sampling Without Replacement.
When the assumptions I,IV,V, and VI of section 3.1 are 

satisfied, we shall show that the probability of n2 

conditional on n2 , mz , is negative hypergeometric.

The probability of obtaining n± is the probability 

of drawing first a sample of size (ni~l) containing 

(m2~l) marked animals, followed by the drawing of just one 

further marked animal. Having regard to the existence of 

sampling without replacement the likelihood function is 

olearly

n -ra +1 r n 1 fN-n 1 r n
f(n2 |nl>m2) = 1

m -1 1n -in / n2-l 
V2 l 2 J l 2 2 J
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Which is the negative hypergeometric distribution. Where

n = in ,m+l , ...,N+m-n . Now the distribution (3.67)
* 2  2 2 2 1

can be written as

(3.68) that
N+ m  - n 2 1

n = m 2 2

n r ni -n ra-n. l fN-l 1ir ■ u - J k k J / n -1 <3-68> 2
n2 S nL , ®2 - n +m0-n<i . 2 2 1 It follows from

•

N + m - n
f N-nl ra-i 1 2

- +  I

1 fN-i 'i
k - " 2 / n 2 _ 1

f(n2|n1,m2)/ m -ix. 2 2J l 2 J n = m L 2 J
2 2

(3.69)

The expectations of n2 and n2(n2+l) , which we shall 

have an occasion to use below, are readily derived as 

follows:
N+ m  - n 2 1

E[V -  I
n = m 

2 2

2 1

N+ m - n

ci£ rN-i i

( v 1.

i
n -in 2 2 k. J

/ D N
1 , 

..
..

fn-11 2 1 fN-n 1
=", m -1 Y n24 2 /

n 2l 2 J n = m l 2 2J l 2J
(3.70)

2 2

The summation on the right-hand side of (3.70) is obtained 

immediately from expression (3.69) on writing N+l , n+l, 

n2+l , and mz+l for N , n± , nz , and m2 respectively.

therefore

fn -11 f O
E[n2] = nl<H+l) 2

Lm2_1 l  ̂ j
/(nt+l) = m2(N+l)/(n1+l) (3.71)

similarlyx

E[n2(n2+1)] ' Y

N + m  - n 2 1
2' 2
N

n = m 2 2

rn -11 fN-n 1 H-l '

r s N
1

V_
__
__
__ i

n -n_L  2 2 J / n2-i

= (N+l )n
fn -11 fN-n 1 "N+l 'i y i

/
V 1-

L_. n -mL 2 2 J V 1.
(3.72)
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To evaluate the summation on the right-hand side of(3.72) 

we write N+2 , n±+2 ,nz+2 and m2+2 for N ,n± , n z , and 

m in equation (3.69). Therefore

E[n2(n2+1)] = n±(N+l)(N+2)

m (m +1)(N+l)(N+2)
=  (n. + l X n , ^ )  (3'73)

Now, strictly speaking, N can take only integral values. 

Thus the greatest value attained by the likelihood is 

derived by considering the ratio

f(nz |N+l) (N-nl+l)(N-n2+l)
f(n2 |N) = (N+l)(N-nl-n2+m2+l)

Using (3.68), it

r

f(nz/N+l) h

follows from (3.74) that
n inz> f (n | N ) if N • < - 1
m2

nin2< f(nz|N) if N > - 1
(3.75)

2

Unless n n /m is an integer, the likelihood attains its 12 2
greatest value when N is equal to the integral part of 

nin2/m2 . If nin2/m2 is integral, the greatest value is

attained at both (n n /m12 2 1) and n n^/m, 12 2 • In practice

N is usually sufficiently large for us to be able to

ignore its discreteness. In any case we are led to

consider the estimates of the general type nin o/mo 2 2 • It

follows from (3.71) that

=
n2<n,+ 1) ,

"a
is an unbiased estimate of N for any values of N ' ni >

n2 and m2 . In large samples N2 approximates to the 

Maximum likelihood solution. The exact sample variance of



Nz is also easily evaluated using (3.71) and (3.73) . We 

find

Var[N2] = (nl-n2+l)(N+l)(N-nl)/m2(nl+2) S N2/m2 .

Assuming N+l and N-n± to be approximately equal to N , 

the co-efficient of variation is close to

C(H2) = |̂ (ni-m2+l)/m2(ni+2)J

and since n4 is known, m2 can be chosen before hand so 

that this coefficient has a prescribed value.
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P r o p e r t i e s  of N 2 : * 1 2

Chapman (1952) mentions several useful properties of 

Nz relative to the direct sampling. The inverse sampling 

method provides an estimate of N with an expected sample 

size

E[nz] = (N+l)m2/(ni+l)

so that
n (n +1)

N = — — ------ 12 m_

is unbiased estimate of N . In contrast to the

sample estimate, this unbiasedness does not depend

parameters n and n„ . Further more1 2

(3.76)

direct 

on the

Var[N2] = (N+l)(N-ni)(nl-n2+l)/m2(n1+2) ^ N2/n2 (3.77)

This approximate formula (which exaggerates the actual
variance ) may be useful in the choice of m^ By an

* 2appropriate choice of m2 , Var[N2]/N can be fixed at any 

desired level.

For testing purposes we note that N2 is
2aPproximately normal with mean N and variance N /in for

2

*-arge m2. A model similar to that of David (1938) can be
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used to prove that as m tends to infinity n is
2 2

asymptotically normally distributed.

On the average, the inverse sampling procedure is 

better than direct sampling procedure. For if n2 , m2 

denote the fixed sample and the random number of tags 

recovered in the direct procedure and m2 is chosen equal 

to n2nA/N , then

While

E[nz] 1 + 1/N ,
1 + l / n ±n 2

< n2

Var[N ] < N2/m, = N2N/n'n < o-.2 
2 2 2 1 N

Where

N = (n2+l)(ni+l)/(m2+l)

is the almost unbiased estimate in the direct sampling 

case . Hence a more efficient estimate is obtained with 

less average effort.

On the other hand if the experimenter knows absolutely 

nothing about the possible population size, then by an 

improper choice of nA and mz , E[nz] may be extremely 

large. Moreover

Var[NJ S m N2/nf 
2 2 1

is very large. This may be undesirable feature of this 

procedure.

These difficulties may be partly overcome by a

modification of the inverse sampling plan as follows: the

number of untagged individuals to be recaptured is

Predetermined, rather than the number of tagged

individuals. In other words, n -in is chosen in advance of
2 2

sampling:m and n are now both random variables, though, 
2 2

completely dependent. For convenience write uz=n2~ m2, the
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number of unmarked individuals caught in Then , the

conditional distribution of n given n and m2 1 2

f(n2 / ni,m2)= (3.78)
(n2- u2)!(ni~n2+u2)!(n2_1)i (N-n1~n2)iN!

is derived in the usual manner. However the obvious 

estimate again is no longer strictly unbiased, for

' [ w l - ' f e ]

n +uo 
2 2

= E
n =u 

2 2

n2 i(ni+l)!(N+1-ni-l)i(N+l-n2-l)i

(n2-u2+l)!(ni+l-n2-l+n2)!(N-l-ni+l-n2)!(N+l)!(u2-l)

N+l 
ni + !

= N+l.
ni+1

x_ (N+l-u2 )!(N-ni)!(N-ni) 
(N+l)i(N-ni-uz ) ! I

(3.79)

It follows that that the second term in the parentheses is 

negligible provided n4u2̂  N > log N. For such values of u2,

n , N the estimate

„ n (n +1)
N = — --Ti--- 13 m_ + l

has bias less than 1 in absolute value .

To determine the variances of Ng, we note that

V l ) 2=(V l)2 (n2<N2+l)-nJ(;(mz+l)(m2+2)

(m2+1)(mz+2)(mz+3) (m2+1)(mz+2)(m2+3)(m2+4)+ R

To evaluate the expectation of this later series let

n<i>= n2< V 1)(n2-2)-•-(n2-i+1)
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and observe that for any i ^ 3 (j-i=0

(3.80)

Where

If the r). is neglected and the remaining terms on the
right hand side of (3.80) are denoted by q. . , that is'•j

The average sample size required by this procedure can be 

determined from (3.80). In fact by direct summation

Either of these formulae can be obtained from (3.76) and 

(3.78)by an interchange of N-n and n2 and by replacing 

® by u . It is now seen immediately that the tremendous 

variation in the earlier inverse sampling model is now 

eliminated.

Since uz will usually be reasonably large the most 

appropriate approximation to use for the testing purposes 

is the normal distribution. In particular, it is desirable

Then

Var[N3]=E[N3]-S2=(ni+l)2

-2N-2-N2.

E[(n2+i-1>,i>]

so that

ECnz] ‘ (N-n'l+l)
u 2(N+1>

and

Var[n ]= 2

u2n i(N+l)(N-u2-ni+l) ^ n ±
(3.81)

<N-ni+l)z(N-nl+2)2 N ni
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to work with n2 using formula
u (N+l)

= (N-n +1)

and (3.81). Writing n±/( N-ni+1 )=p' and using a trivial 

modification of the approximation of (3.81)

z = n2 " uz//( 1_p  ̂
•/u2p ' ( 1-p ' )

is approximately N(0,1) and confidence limits for p' 

(and hence for N ) are obtained from the quadratic 

equation

[n2(l-p')-u2]2 = k2u2p'(l-p) ,ka =z
01/2

The approximation may be improved slightly if the exact 

formula for Var[n2] is used but this involves solving a 

higher degree equation.

S a m p l i n g  With R e p l a c e m e n t

We now consider the less common situation in which 

members of the second sample are caught one at a time and 

returned immediately to the population. For example this 

model apply when the animals are merely observed and not 

actually captured. In the inverse method, sampling is 

continued until a prescribed number m2 of marked animals 

have been caught and released, so that the probability 

function of n^ is now negative binomial;

=
h2- n
m2-l

m  <n -m >2/1 \ 2 2 P (1-P)

Where n2=m2,m2+l, . .. , p = n±/N . As

E[n2|n±,m2] = Nm2/n±

the obvious estimate for N is the Petersen estimate

N = n n /m
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This maximum likelihood estimate is unbiased with variance

Var[N|ni,mz] = (N2-Nni)/m2

and an unbiased estimate of the variance is

Var[N] = nzni(n2~m2)

C o n f i d e n c e  I n t e r v a l s .

Consider the statistic

z = f nin7 b, - N 2 2 / / ( N 2/m2 - Nn/m2)

The moment generating function of z is
m ( pm / V m  <l-p> - ~/m 0/<l-p> )w / /̂ \ 2 2 2 2M (#)=p ez

p / V m  <l-p> 1-tn.
(l-p)e )

By routine algebra and the usual manipulations it may be
2seen that logMz(0) tends to 0 /2 as m2 tends to 

infinity. Thus z is approximately distributed as N(0,1) 

for large m2 . This fact may be used to set up confidence 

intervals and tests for N .

For m2 and n±/N both small as will be more 

frequently the case,the second limiting distribution given 

above will be more useful. For this range of parameters 

2ntn2/N has approximately ^-distribution with 2mz

degrees of freedom. This is equivalent to the Poisson 

aPproximation to the binomial and is related to the results 

Sandelius (1950) concerning inverse sampling with random 

Variables distributed according to a Poisson distribution.
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2If * (€ ) denotes the e-th quartile of the x2m ^
2

distribution with 2mz degrees of freedom that is:

2

Then (1-e) confidence intervals for N are given by

« = 2n1n2/ ^ m <1-e/2 ) N = 2" * V 4 » « 2>
2 2

3.5 COMPARING TWO POPULATIONS

Suppose we have two populations of unknown sizes Na
and N, , and on the basis of a single Petersen experimentO
in each population we wish to test the null hypothesis

H :N = NkO a b
such a situation could arise, for example, where a control 

area and an experimental area are under observation and one 

wishes to test any difference in population size due to 

experimental management practice. Alternatively, N anda
could refer to the same population area but at 

different times. A third possibility is when N and N,a b
refer to the same population at the same time but two 

different sampling methods are used, for example seine and 

gill-net fishing. A test of Hq would then be indirectly 

provide a test for the hypothesis that marked animals are 

equally vulnerable to both methods of sampling. In

notation of section 3.1 , we can test Ho by assuming that

is approximately unit normal when Hq is not true. A more 

sensitive test is given by Chapman (1951) as follows: using 

suffixes a and b to denote the two populations

N NbaZ
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respectively, let

N =
\2 \3 X m L u ^ u , - X ,  m u u a 2 b lb 2b b 2 a la 2a

2 2m m . ( X u . u . + X ,  u u )2a 2o a lb 2b b la 2aJ
where Xa=nlan2a , ula=nia-m2a , u2a=n2a-m2a ,and so on 

Def ine

T. = I t  ) / ( i - x H ‘ - y )

TZ * 1  \  (",< - V  8 ) /•z«"l.nK

Z 2(m - Xc/fi)2
x------------- ---------------------

f(i-n^/S) [l- n2c/fi) + m2cnlcn2c/Xc

Where ^ denotes summation over two values c = a,b . Then 

when Hq is true, T ±, T , Tg are each approximately

distributed as Chi-Squared with one degree of freedom when 

N is large, and the three statistics are candidates for 

testing H . Chapman (1952) suggests using T when X =XO 2 a o
, T3 when these quantities differ moderately, and T± 

when X is widely different from X .a t>
To test H against the two sided alternative N *N.O a b

, the criterion is to reject Hq at lOOot per cent level 

of significance when T. is greater than ct critical 

value of x" .

Using P o i s s o n  A p p r o x i m a t i o n .

When the experimental circumstances are such 

hypergeometric distributions of in and m .2a 2b
approximated by Poisson distributions, the 

technique of Chapman and Overton (1966) can be

that the 

can be 

following 

used for
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testing Ho Let

m = m +m
2 2a  2b

and N = kN .
b a

then the conditional probability function of m
2a

given id
2

is

m2 m m 
2a  2bp q >f ( m 2a / n 2 ) =

c.
m

2a  J

Where

p = 1-q = kX /(kX +Xw)
a ' a  b

Setting po = X /(X +X ) >we
a  a  o

note that p is greater than

or less than P if and only if o
»
k is greater or less

than unity, so that testing Ho against the two sided

alternat ive N *N. is equivalent to testing p:CL O =po against

p * pD • Therefore, given m , 
2 ’ U 2a  & n d  PC > we can test

Hq by evaluating the exact tail probabilities, using such

tables as those of Harvard computational laboratory (1955), 

or we can obtain a confidence interval for p and reject

H if p lies outside this interval. Confidence o o
interval for p can be determined from Clopper and Pearson 

charts of Pearson and Heartly (1966) , using p =m /m as
2  CL 2

the entering variable, or from tables such as Owen (1962).

Special c a s e s .

(i) When p < 0.1 and for any mz (Raff,1956), the Poisson 

approximation to the binomial can be used to find a 

confidence interval for in p , using in as the entering2 2d

variable in Poisson tables (for example Pearson and 

Heartly(1966 ) ) .

(ii) When 0.1 ^ p ^ 0.9 , mzp and mzq are both greater 

than 5 , and a correction for continuity is used, the 

normal approximation is applicable (Raff,1956) and we can
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use the following statistic for testing Hq

K a ‘m2Pol~1/2 Z = -------------
"/m p q 2 0 0

(iii) When X =V ( > 2.5) ,another procedure is given by
'  C l D

Sichel (1973).

We note that the above methods can be used to obtain a

confidence interval for k . In particular when Nq and

N refer to the same population at different times, and b
the population is closed except for mortality, k can be 

interpreted as the proportion of N surviving, that is asCl
a survival probability. If we are interested in just one 

sided alternative, say N > N. , then we could reject Ha. b O

if m lay in the upper tail of the binomial distribution2 ci
with P=PQ ; the approximate probability could be evaluated 

using binomial tables or normal approximation.

3.6 ESTIMATION BY LEAST SQUARES.
In commercially exploited populations the second 

sample in the Petersen method may consist of a sequence of 

samples each being permanently removed from the population. 

For this situation N can be estimated by the following 

least-squares method due to Paloheimo (1963). Let

N = initial size of the total populationo
M = initial size of the marked population.o

0 o o
n.=size of the ith sample removed from the populationL

(1=1,2,..,s)
m.=number of marked individuals in the ith sample,t
u.=n.-m.t i t
y. =m./n.1 l . I
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i - l
M. =M - ) m and,
1 ° j h  '

i - 1
N. =N - y n. .t o .Li JJ = l

Then if the assumptions underling the Petersen method of 

section 3.1 hold for each sample,

E(yi|H.,N.) =M./N. i=l, 2, . . . , s

Paloheimo suggests estimating Nq by minimizing

Yw. (y.-M./N. )2 with respect to N , where the W. , are£  V V t t O t s
appropriate weights, customarily taken to be proportional 

to the inverse of the variance of y. When the sampling is 

random, or the marked and unmarked are randomly mixed, 

these variances may be calculated by assuming Poisson or 

binomial sampling. For example assuming Poisson sampling, 

the variance of y equals its expected value M./IT and

the weights would have to be estimated iteratively as they 

contain unknown Nq . Not only are such weights awkward to 

compute, but very often , in practice, the y vary more 

than expected on the assumption of random fluctuations. 

Under these circumstances DeLury (1958) argues that one 

should preferably choose weights equal to the sample sizes. 

Also if the marked and unmarked are removed at the same 

rate, we have approximately

so that
M./N.V t Mc/No

E[y/M.,N.] = Mo/No <=^0 ,Say).

Therefore assuming the yt s to approximately
independently and normally distributed with variances 

° /rr , and setting Ŵ  = n̂  , we can use the general 

theory of chapter 1 (Regression models) to obtain an
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estimate and a 100(l-o<) per cent confidence interval for 

ft , namely

K= 1  w  H  = K  / K
and

K  - { % / 1  " J 1"2
Where

( S- 1 ) ^  = £  < / " ,  -  g  mt) 2/ J  n.

The least squares estimate of Nq is then

fi = M /ft = M Z n./Z m.O  O  O  O  l V

This is simply the usual Petersen estimate based on pooling 

the data*from all catches. The above interval for ft 
gives the following lOO(l-ot) per cent confidence interval 

for Nq , namely

[  H j  n .__________________  '

. I  4 t 8- 1[ « / 2] ( ^  l  n S ' 2l  n.

In the same way we can obtain an estimate and confidence 

interval for ^ n./No >the rate of exploitation.

As the first step in examining the underlying 

assumptions of the above least squares method we can plot 

yt against i as a visual check on the constancy of

Ml/Nl. If necessary, a test of ft=0 for model 

E[yil=^o+/?i could be carried out using the theory of

chapter 1 (Regression models). Also by drawing the line 

^i-ft* > an examination of the deviation of each y. from

this line would provide a rough check on the reliability of 

the weights W.=n. . When there is no mortality takingt t
Place the above method can still be used, provided that the
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mortality rates for marked and unmarked are the same, so 

that M/N remains approximately constant. However, if 

recruitment and immigration into the population are 

appreciable then more complex methods which we shall not 

discuss here are required.



CHAPTER 4
4.1 SCHNABEL CENSUS.
Notation.

A simple extension of the Petersen method to a series 

of s samples of sizes n . no .... . n is the so called* Z ̂ S
Schnabel census (Schnabe1,1938). In this method each 

sample captured (except the first) is examined for marked 

members and then every member of the sample is given 

another mark before the sample is returned to the 

population. If different marks or tags are used for 

different samples, then capture-recapture history of any 

animal caught is known. For the closed population, a 

variety of theoretical models have been suggested, but 

before we discuss these, we shall need the following 

notation:

N =total population size, 

s =number of samples

nt =size of the ith sample (i=l, 2 s) 

m. = number of marked individuals in nt
u. = n.-m.t t v

Since there 
we have ir̂ 0 
as, the total 
the end of

different

hT= E mj » i 1,2,.... s + 1

= number of marked individuals in the 

population just before the ith sample is 

taken

are no marked animals in the first sample, 

, M =0 , M =u =u and define M , (=r,say) 

number of marked animals in the population at 

the experiment that is, the total number 

animals caught throughout the experiment.
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FIXED SAMPLE SIZES

The Generalised Hypergeometric Model.

Let av be the number of animals with a particular 

capture history w , where w is a nonempty subset of 

integers {l,2,...s}: thus * tZ4r represents those animals

caught in the first, second and fourth samples only, also 

r = £&v • If Pv , the probability that an animal chosen
V

at random from the population has history w , is the same 

for each animal, and animals act independently, the animals 

may be regarded as N independent trials from a 

multinomial experiment. Therefore the joint probability 

function of the random variables (a } isV

f<{av}) nav v
N!
(N-r)J Q

N-r
Tw

(4.1)

where Q = 1 - JP . We shall assume that:V
V

(i) all individuals have the same probability p. = 1 - q.1 V
of being caught in the ith sample, and

(ii) for any individual the events "caught in the ith

sample (i = 1,2,3, ...,s)" are independent. Then

9 = T  <3, . P124 = Pi P 2<33P «<35 q s =P lP2P4Q/ q i q 2q «  an d  3 0  ° ni= l

We notice that

QN-rTT p, =eN TT
' z

v 2 i

aV
V V



Thus equation (4.1) reduces to

f N!
naw!(N-r)!

n
n p ^i=l

N-nQ . »■ (4.2)

It is obvious from our assumptions and it is easily deduced 

from (4.1) that n^s are independent binomial variables 

B[n,p ], so that

f({n.}) ni=l
n N — np.v q . v v t

and the joint function of {a^} conditional on fixed sample 

sizes {n^} (that is the sample sizes are chosen in advance) 

is

f K } l { n i>)  = n .  H H - r ) !  , n [ ” ) -1 ( 4 - 3 )1 1 V  1 = 1  V
V

Equation (4.3) represents a generalizes hypergeometric 

density. /

Estimation u s i n g  the g e n e r a l i z e d  H y p e r g e o m e t r i c  Model.

Regarding equation (4.3) as representing likelihood 

L(N) of N and omitting the constant terms,

log L(N) = E log(N-n.)i - (s-l)logN! - log(N-r)!
i

an equation for the maximum likelihood estimate N of N
i

can be found by equating Alog(N) to Zero. This involves 

an error of less than unity in the solution and is 

equivalent to the ratio method of maximizing L , which 

equates L(N) to L(N-l) . Since AlogN! = logN , N
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must be one of the roots of the equation

s r n . ̂
(■ - a  * ni = i ( • - r )

This equation has a single finite root greater than 

maximizes the likelihood, except when r takes one 

extreme values:

(4.4)

r which 

of its

(i) If r = , no individual is observed more than once
i

and N is infinite

(ii) If r = max{n.) = n say, no individual is observedv m
which does not appear in mth sample and N = r = n . It ism
of course in the nature of capture-recapture experiment 

that (i) and (ii) are extremely unlikely to occur.

When s = 2, equation (3.4) is of first degree and we 

find that N = ninz/m2 ,the Petersen estimate. For s = 3 , 

we have the quadratic equation.

N 0n2+m3)-N(nln2+nln3+n2n3 J + n ^ n ^ O

which can readily be solved for the larger root N .

When s > 3 we require some iterative method of solution. 

The most widely used is the Raphson iterative method. 

However, since we are only interested in finding N to the 

nearest integer, Robson and Regier's (1964) technique will 

be used as it is the easiest method for a desk calculator. 
Let

g(N) = n (1 - n./N)i— 1
and let h(N)= N-r-Ng(N), then the ith step of the iteration 

is given by

■ W  H<i>"h<H(i>>/7h(H<i>>
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where

Vh(N(i)> = h(N(U)-h(N<.>-l)

= 1 - N(i,a(N<l,)-<H(.>-1)g(N<.,-1)

solution N , where N > r

To begin the iterations we require first of all a trial

If N is large, then 

expanding g(N) in powers of 1/N , neglecting powers greater 

than the second and using

E n.-r = E m.. t tt= 1 1=2
since m =0

we find that equation (4.4) yields the approximate solution
s s s

Nb = E E n.n /E mi = R2/m, say
i = 1 j= i+1 i=2

where Rz can be expressed in the form

r2 = f* { }

However, if the cubic terms are retained, equation (4.4)

reduces to the quadratic

N m-NR +R =02 3 (4.5)

where
s
E

s
ER = E E E n.n.n,3 v j kL=1 j=i+l k=j+l

= sf( S nj ( v  E +=1 J v 1=1 V=1

and the desired solution of the quadratic is the larger 

root, N say. Chapman (1952) shows that under certainA
conditions, which are often satisfied when N is much 

larger than Zn. , N < N < N . Chapman also gives anotherl A B
Pair of numbers

N = maximumc
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„  m a x im u m  f .. . |N = 0< < < n.M./m. 1D 25i5s 1 ij v vl

and in general this pair will be satisfactory provided that 

no mL (except mi) is zero.

In solving equation (4.4) we see that the only 

recapture information required is r , the number of 

different animals caught during the experiment. This 

follows from the fact that r is a sufficient statistic for 

N , and means that as far as the estimation of N is 

concerned, distinguishing marks are not needed for each 

sample. In fact, at each stage, we need only mark the 

unmarked members of the sample. However, if the tags have 

sufficient information (for example numbered) then we can 

record all recapture histories. This information is useful 

in testing some of the underlying assumptions as shall be 

seen later.

P r o p e r t i e s  o f N

Using the generalised hypergeometric distribution 

derived above, Darroch (1958) proves that asymptotically 

(that is N--->oo , n.---- >co such that n./N remains constant)t V

E[N] = N + b

, the bias, is estimated by

f j f  - I  I / C K ) ) 2 + ( ^ -  - l  l/(H-nt>2)

r -v2
2 |l/(N-r) + <s-l)/fi - J l/(N-n.)l

where b
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and the asymptotic variance of N is estimated by

Var[N]=(N-r)/h'(N) = £ l/(N-r) + (s+l)/K - £ l/(N-n.) 1

All summations are for i=l,2,.... ,s . Obviously the last

step in the Newton-Raphson method which requires h'(N) ,

can be used for evaluating Var(N). Also Vh(N) = h'(N),

so that the last step of Robson and Regiers' method will 

provide a reasonable approximation for Var(N) . It can be 

shown that

b = -<N-r)h"(N)/2{h'(N)}2

A
so that b can be approximated by

-(N-r)Vzh(N)/2{7h(N)}2

Although this approximation may not be accurate, it does at 

least indicate the order of magnitude of b .

Confidence Interval for N

Assuming N to be asymptotically normal, we have the 

approximate 95 per cent confidence interval for N, namely

N-b ± 1.96/Var[N], (4.6)

where b can be neglected if it is less than one tenth of 

y/var[N] (cochran, 1977). However, the statistic r is 

more nearly normally distributed than N (Darroch, 1958). 

Therefore, we can use r as a basis for a confidence 

interval as follows:

We know that N is a solution of the equation.

TT <N-n.) = Ns~‘(H-r)
i = 1
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Therefore

(N-r) = JT (N-n.)/ N8 - 1

l =1

Now, let E[r]=p Then using the identity

-ii
U .  (  l  }  I  n r / H

r{at }
na !V V

= 1

We have

E[N-r] = N-p =(.[ j i (  H-nt ) / N - ‘ ITT X)  ' X ( H - l - r ) ! ! 
1 J  1 r {a }

na 1V V

= n (N-n. )/Ns-l

which implies that, the expected value of r , regarded as 

a function of N is

p(N) = N - n (N-n. )/Ns —1
i =1

The variance of r, expressed as a function of N , is 

(Lee,1972)

o 2(N ) = (n -p (N)J [p(N)-p(N-l)l

and we have

>r |r-1 .96cr (N)  < p(N) < r + 1 . 9 6  <?(N)J ^ 0 . 9 5  

= Pr |r-1 .96o*(N)  < p( N) < r + 1 . 96 o ' (N) J

= Pr[^ < P<M> < *,]

(4.7)

= Pr[ P 1(rl) < N < P ‘(r2)l
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< N < (4.8)

since P(N) is a monotonic increasing function of N. The 

confidence limits and Nz can be calculated by setting

h(N)=P(N)-ri and solving h(N)=0 iteratively as above. 

Alternatively we could deal with the interval (4.7) 

directly by solving the equations r±1.96 <?(N)=p(N) 

iteratively on a computer.

Random S a m p l e  S i z e s

We now mention briefly the more common situation in 

which the sample sizes rv are random variables rather than 

fixed parameters. Darroch (1958) has investigated model 

(4.2) in some detail and shows that as far as the point and 

interval estimation of N is concerned, there is no 

difference (asymptotically) between the two cases of fixed 

and random sample size. This is because, the
A

maximum-likelihood estimate N is almost the same in both 

cases, and in estimating the variance of N, one effectively 

replaces n̂  by E[n^] , when n̂  is random.

Sample of  Size one

Putting nL=l in equation (4.4), we find that N is 

the solution of

(1 - r/N) = (1 - 1/N )s (4.9)

and this equation can be solved in the same way as equation 

(4.4). However, since s is generally large, Craig (1953)
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suggests taking logarithms and solving

H(N) = (s-l)logiQN + logio(N-r)- slogio(N-l) = 0

Using a good table of logarithms for example Spencely 

(1952) and a suitable first approximation Nq such as the 

following:

Let f be the frequency of cases in which the same

individual is caught x times (x = 1,2,.... ) and let
2s2 = Ex fx ; then craig suggests

No = s 2/( s 2-s )

Alternatively, following Darroch (1958) and letting N— >oo ,

s--->oo subject s/N (=D say) remaining constant, equation

(4.9) becomes

1 - r/N = e ° (4.10)
a

A first approximation to N (an upper bound) is then NT =

s/D' where D' , the solution of ' o o

( 1-e °)/D = r/s (= a say) (4.11)

is obtained by linear interpolation in table A3 of the

Appendix. Samwel (1969) suggests a further approximation

No = sD , where D is the solution of (4.11) with o o
a = r/(s + D^).

For the limiting process mentioned above, Darroch (1959) 

shows that asymptotically

E[N] = N + b

where

b = D2(eD-l-D) 2/2
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and

Var[N] = N(eD-l-D)'*

Both b and Var[N] can be estimated by replacing D by 

D = s/N . Extensive tables of e° are given, for example, 

in Becker and Van Orstrand (1924), and Comrie (1959).

Confidence interval for N based on r can be 

calculated as in equation (4.7) above using

P(N) = N(l-e-D).

and

p2(N) = Ne_2D(eD-l-D).

If the interval (4.8) is used, we have to solve two 

equations of the form

P(N) = rt or (1-e d)/D = r^/s

Which, as for the case r^=r above in equation (4.11) can 

be solved for D by interpolating linearly in table A3 of 
the Appendix.

Mean P e t e r s e n  E s t i m a t e

At each stage of sampling a modified 

of N can be calculated as explained in

*N.i
(M. + l)(n. + 1) 

Cm"™+T)

Petersen estimate 
section 3.1

(i = 1,2,...,s)

With variance estimate

(M + 1)(n + 1 )(M - m )(n. - m.)1 V V v V
(mi + l)2(mi + 2)

Therefore, a natural estimate of N, suggested by Chapman
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(1952) is the average:

s
N = E N./<s-l)

1 = 2

Since the covariances of the N are asymptotically

negligible compared with their variances, we have 

approximately

{n.,M.}] = Z_iVar[N*|n.,M.]/<s-l):

This can be estimated by either

s
V = E  Vt/(s-l)2

i =  1

*which is unbiased if and only if each V. is almosti
unbiased, or by

Var[N] = E(N* - N )2/( s-1) (s-2) .

Which is almost unbiased when N. have the same mean .i
When these conditions of unbiasedness are not satisfied, 

both estimates are conservative in that they tend to 

overestimate the true variance.

Schanabel*s Binomial Model
An alternative approach to the Schnabel census can be 

made assuming that the are fixed parameters and then

using the binomial approximation of section 3.1 .This leads 

to Schnabel's (1938) model

f(m2,...,ms|{n.,M.}) l( i-jji) 1

(4.12)

ar>d the maximum-likelihood estimate of N is now the
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appropriate root of the equation.

s ,n. -m. XM . s r ( v O  * - -r m E N-m. - ̂i — 2 L —2
(4.13)

This model^assumes that at each stage, nyN is sufficiently 

small (say less than 0.1) for one to be able to ignore the 

complications of sampling without replacement. If each 

M./N is also small, a first approximation to the solution 

of equation (4.13) is

, s s
N = £ n̂ nr / £ nr = X/m ,say

i  — 2  i  = 2

We note that, irrespective of any assumptions concerning 

the probability function of nr or the magnitudes of 

various parameters, N' has a certain intuitive appeal,

being simply a weighted average of Petersen estimates
n.M./m. . Whent V V n./N

V
and M./N are

V
both less than, say,

0.1 for each i, a modification of N' which is almost
unbiased is

N" = X/(m + 1)

Noting that when the above conditions hold, m isV
approximately a Poisson with parameter M.n./N and the 

sum, m of independent Poisson variables is also Poisson 

with parameter X/N . Chapman (1952) shows that

E [h " }] = N( 1 - exp-X/N)
and

v [n |{n.,H.}l = H2[n/X + 2NZ/X2 + 6N3A 3] .

A study of Raff (1956) would suggest that Poisson



approximation still applies, even if 0.1 < M̂ /N < 0.2,

provided v  that nL/N is less than 0.1, so that the
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hypergeometric distribution of nr is well approximated by

binomial. But errors in these approximations have a

cumulative effect on the sum m , so that for m to be

approximately Poisson we would not have more than one or

two samples with M./N greater than 0.1 .

Con f i d e n c e  Interval

Assuming N to be asymptotically normal we can 

calculate a confidence interval for N in the usual 

manner. However, as in Petersen method of section 3.1 , it

is recommended to base confidence intervals on the

distribution of m . For m ^ 50 , we can use Chapman's

Poisson Table A1 in the Appendix to obtain the shortest

interval for N/X, and hence for N.

When N > 50 we can use the normal approximation to 

Poisson, and the 95 per cent confidence interval for N is 

given by the roots of the quadratic equation.

N(m - V N ) ZA  = 1-962

That is

N/X = 2m + 1.962(l-6) ± 1.96 V (1-6)(4m+l.962( 1-6))
2m2 (4.15)

<5 = £ n^M2/ M T  
1 —  2

where
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Regression Methods
The maximum-likelihood method described in section 4.1 

will give the most efficient estimate N of N, provided the 

assumptions underlying the model are satisfied N will, 

however, tend to be sensitive to departures from underlying 

assumptions, particularly those relating to constant N 

and the random behaviour of marked animals. Therefore, in
A

practice, N may sometimes be an inefficient estimate and 

Var[N] may be unreliable. For this reason less efficient 

but more robust estimate of N, like N are desirable. In 

particular a useful regression method has been suggested by 

Schumacher and Eschmeyer (1943) and we now discuss this 

technique in detail.

S c h u m a c h e r  a nd E s c h m e y e r  's M e t h o d

In Schnabel's Model (4.12) each m. is assumed to bet
binomially distributed, so that y. = m./n. has mean M./N

l  V V V

and variance

We may therefore write

y i = fthl + el i=l,2,....,s

where ft - 1/N and the "error" eL has mean zero and 
2variance o. .

If we plot ŷ  against , the plotted points

should lie approximately on a straight line of slope ft 
Passing through the origin. Since the variance of ei is 

not constant, the least squares fitting of a straight line 

should be done using weights VT, say, as in section 1.3.
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Thus N, the least squares estimate of N , is given by

l/N - ft -

Where all summations throughout this section are for 

i=l,2,...,s. If the weights are chosen in the usual 

manner, namely proportional to the reciprocal of variances, 

then the above equation becomes the maximum likelihood 

equation (4.13). However, although, these weights will 

give the most efficient estimate of N when sampling is 

truly random, we are computationally no better off than 

before, as those unknown weights have to be estimated 

iteratively. DeLury (1958) also points out that “owing to 

the tendency of fishes to stratify and for other reasons 

that lead to similar effects, the proportion, of marked 

individuals available to the sampling at any one time is 

likely to differ widely from the "true" proportion, and the 

weights are therefore likely to be seriously wrong. In 

these circumstances, weighting by sample size alone is 

preferable to the weighting according to the proportions 

tagged”. In support of this last statement we note that 

(M./N)( 1-hT/N) does not vary much as ht/N varies from 0.2 
to 0.8. Therefore putting = nt, is now given by

ft = ( B n ^ V C D v M * )  (4.16)

which is equivalent to the formula given by Schumacher and 

Eschmeyer (1943).

P r o p e r t i e s  o f  N

The mean and variance of N could be calculated using 

the <5-method described in section 1.3 and an approximate 

confidence interval for N obtained in the usual manner.
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However, following Delury (1958) it seems preferable to 

assume that et s are independently normally distributed 

with variances o^/n^ and the lOO(l-ot) per cent 

confidence interval for N is given by

£ m M + t

_ 2£m. m.it
_  2 Tm. m .

V t

[a/2](\z(n m )1/2S —2 Dn,M. + fc. ,t“/2K^(n.H*)t t s —z t t

where
(4

(s-2)a = BnZ/rv - (BvM. )Z/Bi.MZ

From bead sampling experiments, DeLury showed that the
%above confidence interval compared favourably with the 

confidence interval based on the more efficient binomial 

weights. We expect the interval (4.17) to be robust with 

regard to departures from underlying assumptions and this 

model should therefore be used in conjunction with the 

other methods mentioned so far in this chapter. In 

particular a graph is always a useful indicator of any 

marked departures from assumptions underlying the model.

Tanaka's Model

Sometimes a plot of y. versus m as indicated abovet t
yields a graph which is definitely curved. For this 

situation Tanaka (1951, 1952) has prepared a non-linear
Vrelationship of the form y = (M/N) or, taking logarithms, 

the linear regression model

, E[-logloy.]^(logloN -logloM. ) ( i=l, 2, . . . , s)

Least squares estimates and confidence intervals for̂  Y

1/2

.17)
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and <J> = lo^10N can be obtained by setting.

Yi = l0giOyt = = 1°eio<ni/'ni> - *t = loeioMt

and using the regression methods of Chapter 1 . A visual 

estimate of <|> can be obtained by drawing the regression 

line by free hand and extending this line to meet the 

x-axis . However, before actually looking up the

logarithms it is simpler to plot ŷ  versus M. on log-log 

paper first. The parameter r can be interpreted as an 

index of trap response. For example, if r < 1 , then

E[mi/ni] > M./N
or, rearranging,

E[m./n.] > E[n./N]

and the marked individuals have a higher probability of 

capture than the unmarked. However, care should be taken 

in interpreting the graph of ŷ  versus M. as several 

interpretations are possible.

If for example, the graph curves downwards, Hayne 

(1949) argues that the fall-off in the proportion of marked 

in the sample could be due to the immigration of unmarked 

into the trapping area. But if the graph is interpreted in 

the light of Tanaka's model we have r < 1 and the 

curvature is due to the marked animals having a higher 

probability of capture than the unmarked. In this case the 

fall off is simply due to the curve settling down to its 

"correct" position instead of dropping away from its 

"correct" position as suggested by Hyne. Obviously both 

interpretations are possible, and one could perhaps 

distinguish between the two by an analysis of the 

recaptures to see whether any individuals were being
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captured more often than expected. Alternatively Marten's 

regression model discussed below may be applicable.

M a r t e n  's Model

One of the difficulties in using Tanaka's regression 

model above is the interpretation of parameter y.

Although one may obtain a good straight-line fit to the 

graph of Yt versus , the model lacks, a simple

"physical" interpretation and other regression curves may 

give just as good a fit.

For example, suppose that the average catchability of 

the nr marked individuals in each sample bears a constant 

ratio to the average catchability of the û  unmarked

members, then we have approximately
m. = u. n.t l — L

I T  k(N-M. ) k(N-M ) + M.V l t t

and , since y = nr/rr , then

ECm./njM.) 2= k(H_H )+Mt L

That is

m.t
k(N-M. )+M.t V

This means that the plot of y. versus M. will be curvedt i.
upwards or downwards, depending on whether k is less than 

or greater than unity. Instead of fitting Tanaka's model 

we can rearrange the above equation, apply a bias 

correction, and obtain linear regression model

E[y^/nr M. ) ^ k(N-M )

E[y.|Mt] ^

( 4 . 18)
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where

y. = u. (M. + l)/(m. + l)t 1 1  i

This model was first suggested by Marten (1970)

We now give a derivation of Marten's model. A closed

population of size N is sampled at times 0, 1, T

Each sample is observed to contain mt marked animals and

u unmarked animals (m =0). At each sample unmarked t o
animals are marked and all animals returned to the 

population. The total number of unmarked animals in the 

population at sample t is known to be

* t-i
= = “i 1 = 0

and the remainder of the population

Ut = N-Mt (4.19)

is unmarked.

Catchability may vary from sample to sample, but let 

us assume the average catchability of unmarked animals 

estimated by U /Ut is in constant and unknown ration k 

to the average catchability of marked animals estimated by 

mt/M . That is

V « t
V Ht

k (4.20)

for all t . The estimate of the unmarked population of 

sample t , under the assumption of equal catchability 

(that is k=l) , may be obtained from equation (4.20) as

U = u m /Mt t t/ t (4.21)
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combining equations (4.20) and (4.21) we get

Ut = k ut (4.22)

Thus Ut , the estimate of the unmarked population under 

the assumption of equal catchabi1ity, consistently

overestimates or underestimates the actual 

population by a constant proportion k .
unmarked

In order to illustrate how removal can exploit this 

error of constant proportion, suppose the unmarked 

population is estimated on two occasions.

ut = kUt

and

(4.22)

U = kU 2 2

subtracting (4.23) from (4.22) we get

(4.23)

V 6.  = (4.24)

That is, the difference between estimates of the unmarked

population at two different samples, under the assumption 

of equal catchability, is also an overestimate or

underestimate of the actual difference by a constant

proportion k . If the actual difference in the unmarked

population is know, by removing a known number of animals

from it, then k may be estimated by rearranging 

(4.24) to

equation

k = (ur D2)/(ut-u2)

If the population is closed, the number of animals marked a

new at each sample represents a known difference in the
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unmarked population. The total numbers of marked animals 

Ht at successive samples therefore provide a succession of 

known differences in the unmarked population which may be 

exploited to obtain a composite estimate of k over all 

samples. This is accomplished by substituting equation 

(4.19) in equation (4.22), which gives

Ut = kN-kMt (4.25)

Note that equation (4.25) has a form suitable for linear 

regression analysis with Mt as the independent variable and 

Ut as the dependant variable. The ratio k is the negative 

of the slope, and N may be obtained by extrapolating the 

line to Ut = 0 that is N=M when U = 0.

The Ut are not independently normally distributed 

with equal variance over all samples, as assumed in 

regression analysis; but this is of small practical 

significance. The procedure, then, is to compute the Mt 

from the fact that Mt = £mtand the Ut from Ut = UL Ht/mt 

The appropriateness of the regression method which depends 

up on whether the catchability ratio k is in fact 

constant over all samples, may be evaluated graphically by
A

the extent to which points (Mt,Ut) fall along a straight 

line.

If judged appropriate equation (4.25) is then fitted 

to the Mt and Ut by conventional linear regression 

analysis. The estimates of k and N following Bennet and 

Franklin (1954) are
T T

k = -EU.(H-M) / E (M -M)2 ( 4 . 27)
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and

N = M + U/k

The standard error of K is then

(T-2)E <M - M)2
t = 1

A first approximation for the standard error 

(following Bennet and Franklin, 1954 ) is

(4.27)

of N

Sn =
E (U -(KN -M )) . . .
t = i__________ _  + (Sk U)

T(T-2)k2 k4

The confidence limits of k may be obtained by multiplying 

S~ by the appropriate value from t-table with T-2 degrees 

of freedom. To test for equal catchability of marked and 

unmarked animals we test the hypothesis.

H :k = 1 o

This is rejected if the confidence interval does not 

cover 1 .

A11owi ng f or Known Removals

The Hypergeometric Model

In many population experiments there are accidental 

deaths due to trapping and handling and some animals may be 

deliberately removed from further study. If the percentage 

of such removals is appreciable, some allowance must be 

made for them in the particular model used. For example, 

the removal could form a major part of the sample as in
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commercially exploited populations, with the remainder of 

the sample being tagged (or retagged) and returned to the 

population.

Suppose, then, that d̂  members of the ith sample 

are not returned to the population and let M be the number 

of marked animals alive in the population before the ith 

sample is taken. Then, assuming the nt to be fixed 

parameters, and noting that

s fM 1 fN-M.l fN ]
f <ml,m2,.... mg/{n. } ) = f] l V

/i-2 L J l u. J k J

as given by Chapman (1952), then the above model becomes

s r*n fN-H -D 1 fN-D "I
f(mi,m2,*. . . .ms/{n.}> = n

i =2
X. V l.

. n.-m. „t y. *
/
. n. .

\

where

i —1
D. = E d. 
v j=i J

is the total number removed up to but not including the ith 

sample, and N is now the initial population size.

It is readily shown that Nd , the maximum likelihood 

estimate of N , is the unique root greater than r of the 

polynomial

(N-r )/N : nt=i

fN-D. -n.‘l V
N -D. (4.28)

where r is the total number of different animals caught 

during the whole experiment, including the ones not 

returned.

By setting g(N) equal to the right-hand side of
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equation (4.28) and defining

h(N) = N-r-Ng(N),

equation (4.28) can be solved in exactly the same way as 

equation (4.4).

If N is large, so that each r^/N is less than about

0.1 , a reasonable first approximation of (4.28) suggested 

by Robson and Regier (1968) is

Where all summations are for i = l,2,....,s (mi=0, Di=0). 

This approximation is obtained by cross-multiplying in

products and neglecting powers of 1/N greater than the 

second.

Another possible first approximation is the mean 

estimate

is the modified Petersen estimate.

The mean and the variance of & can be evaluatedD

N (4.29)
< i >

2E

equation (4.28), dividing both sides by Ns , expanding the

Nd = £ (8* + D.)/(s-l)
i-1

where

1 (4.30)

using the method outlined in Darroch (1958).

E[Nd] = N + b

Asymptotically,
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where b , the bias, is estimated by

1 8 b= r +E
N t -1

D

— ------- — )
V Dr"l «r>-D J

2 I s s
- E

N* i = 1(Nn-D.-n. ) i = i (N -D. )2D D t v  D t

H. Z _ ( V Dt-n i> < V Dt>i - 1

and asymptotic variance of Nd is estimated by

Var[«D] = («r,-r)/h '(«J

n.t
-l

(N -D.-n. )D t  l
(N -D. )D l

Note that

b = - | (ND-r)h"(ND)/[h(ND)]

Therefore the bias and the variance of N can be estimatedD

from the last steps in Robson and Regier's iterative 

procedure as for the case of no removals described earlier.

Overton* s Method

Overton (1965) has given the following method for 

modifying Schnabel's estimate N' to allow for known 

removal. Since

E [m. IM., n., D.l = M.n./(N-D.) , (i=l,2,.... ,s)t t t t I V t V

then summing this equation for i=l,2,...,s and setting
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s
m= E m leads toi—2

E [“ U  = g-E*- J i =;
fn. M. (N-D.+D. )

N-D

n.m. s n. m. D.
1 * . r-. V t V
N >N(N-D.)v=2 t

Equating m to its expected value leads to an estimate N' ofD
N given by

n M s n . m . D .
(HJ’ - D )mt = 1 D l '

= N' + A say. (4.31)

Where A is to be added to the usual Schnabel estimate N'. 

Equation (4.31) must be solved iteratively for Nd and 

overton suggests the following first approximation which 

will usually be close unless removal is heavy, namely,

N
< i > + A<„

A = E n.M.D./mN' = (E n.M.D.)/E n.M.

so that N < Nd . Another first approximation suggested 

by Robson and Regier (1968) is obtained from equation

(4.31) directly by neglecting Dt in the denominator of 

the right-hand side and solving for Nd , namely

| {iT + / n '2+4E n^D./m}

whichever first approximation is used, however, subsequent 

a approximations are

<j> »' + A<j. (4.32)
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where,

A/ v = E n.M D /(N* - D. )m
<J> t  V t  <J> l

*and N {j) is to be determined by N(̂ _1) . In determining
*a suitable method for choosing N {̂  , Overton points out

that the iterative process is not necessarily convergent if

we set = N(j l) . But if N*., < ND , then N(j>> «D

and vice versa, so that Nd will be between any pair 
m(N<j> , N(j)) . Overton therefore suggests the reasonable 

procedure of choosing

C . >  = l [ < o +

*and taking N (z> as the integer nearest to N .

Confidence limits for N can be obtained as in 

equation (4.14) using

X = £ n.M. + E n.M.D./(N' - D.)tt t t v D i

which 

and e 

norma

can be obtained from 

ither Chapman's table 

1 approximation can be

the last step of equation (4.32) 

(Table Al, in the Appendix ) or

used with 

s n.M2
E -- — --
1=2 <Nd - D.)2

R e g r e s s i o n  M e t h o d s

All the regression methods discussed earlier depend 

heavily on the assumption of N remaining constant, and 

these methods cannot be used unless removal is negligible. 

However, the mean estimate N given above will provide aD
robust estimate of N , provided the number of recaptures 

in each sample is not too small. The variance of N can be
D



estimated by

- V "  ^  ’ 1
Var[ Nd 1 = £ (N*-D-fi )/(s-l)(s-2)

or when the assumptions underlying the Petersen method hold 

for each sample, more efficiently by

* s (M. = 1 )(n .+1 )(M.-m )(n.-m.)y* _ *•_____ ^ i
D i=2 (mi+l)(mi+2 )(s-l)2

Testing the Underlying Assumptions

Validity of the Models 

Mu Itino m i a l M o d e l

-  184  -

Using the notation of section 4.1, we wish to test the 

8null hypothesis

H that P can be written as a product of theO v
{pt} and {q.} if Hq holds, then the distribution

N! LN-r
f((av}) - n a i (N-r)!Q n p>

11 V V
V

reduces to Darroch's multinomial model

N! N-n.f({a }) = -------- r, • n p.q iv J y rra i(N-r)!

We now derive a test statistic for the above null

hypothesis. Let x .x . ...,x be a random sample from the1 z n
binomial distribution.

x N-xp q (q=i-p , x=0,l,...,N)
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Suppose that x. takes a value x with frequency f (£f1 X X X
= n), Then it is easily seen that the joint distribution of 

f is multinomial with N+l categories. The

goodness-of-fit statistic for testing the appropriateness 

of the binomial model is

T = V (f -E )2/EL  x x ' x
X — O

Where E^ is the expected frequency.

In our case then the estimate of the expected 

frequency is Np^ , so that the appropriate goodness of fit 

test statistics is

T == 1 ( a v -  N P v jV & P ,

Where, for example

P124 = P,P2P4Q/^ ^ 2̂  and Pi=1-gi=n/K 
When Hq is true, T is asymptotically distributed as

chi-squared with d-s-1 degrees of freedom, where d is 

the number of different recapture histories w. If any of 

the groups are too small they can be pooled in the usual 

manner.

H y p e r g e o m e t r i c  Model

Chapman (1952) has suggested a non-parametric test 

for the validity of hypergeometric model.

N!- na !(N_r))i i I 
V  V  V = 1

TT n .t

-l

Let b (i < j) be the number of marked animals in the 

jth sample which were first caught and marked in the ith 

sample. When sampling is random we have

E[b ,/n | n , u ] = u/N = 0 ,saywj V J o V t
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and an array

12

V 2

b b b
13 1 4 I s

C e v* u n * ‘ • ' u nCT)'H 1 4 1 s

b b b
2 3 2 4 2 s

u u u n2 3 2 4 u n2 s

(s-l>s 
(8-l>n s

may be formed, in which each element is a random variable 

with expectation 1/N . These random variables are

independent within each row, but are dependent between 

rows as b. . and b. . belong to the same sample and are
V J  t  J1 2

therefore correlated. For large N . however, the 

correlation is small and Chapman suggests testing for the 

validity of the underlying model by testing whether the 

t = { s(s-l)}/2 elements formed by putting the rows one 

after another is a sequence of random observations from a 

common distribution. The test suggested is the sign test 

of Moore and Wallis (1943) based on D , the number of 

negative signs in the sequence of successive differences 

of observations (i.e first observation minus second 

observation, e.t.c).

When the hypothesis of a common distribution is true,

E[D] = (t - 1 )/2 , o'2[D] = (t +l)/2

and (D - E[D])/o'[D] is approximately unit normal for 

t £ 12 ; Moore and Wallis (1943) have tabled the exact 

distribution of D for small values of t .

In many cases the alternative hypothesis to randomness
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are essentially one sided. For example, possible

alternatives are:

(a) Some marked individuals die off more rapidly or 

disappear, so that they are not available for sampling;

(b) the marked individuals disperse from the tagging 

location slowly and are more likely to be recaptured in the 

samples taken soon after marking than later; and

(c) the population size N is increasing through 

recruitment.

If any of these alternatives is true, the numbers in each 

row of the array will tend to decrease from left to right. 

In this case a test based on the whole array as a single 

sequence has the following defect: In each row the

probability of a negative difference between successive 

elements is less than 1/2 , but the probability of

negative difference between the last element of any row 

and the first element of the next row will be much greater 

than 1/2 . Also another disadvantage of considering the 

whole array as a single sequence is that the variances of 

the elements will vary from row to row. However, if the 

sample sizes nt are approximately the same, the elements 

within a given row will have approximately the same 

distribution when the underlying model is valid .

Therefore to overcome the above objections, Chapman

recommends treating each row separately so that the array 

may be considered as (s-1) sequences of observations

decreasing in length from s-1 to 1 A test of

randomness may be made using the statistic

X = D + D + ... + D1 2 S —2
Where is the number of negative differences in row i.
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Note that no difference is obtained from the last row.

Then

E[X] = (S-l)(S-2)/2 , o-z[X] = (s+3)(s-2)/4 ,
and X is asymptotically normal.

An alternative test can be carried out using table 4.5 

below. Neglecting the complications of sampling without 

replacement, the columns of Table 4.5 represent independent 

multinomial distributions.

Let p^ be the probability of being in the class 

containing b.. individuals, then from the fact thattj
E(b../n.|n .,u.) = u./N = ©. , say 

it follows that p.. -Q. for j = i+ 1  , ..., s and thetj V
likelihood function for Table 4.5 is proportional to

j i  { ( ! i ! ^  H * -  -  -  v f 1 }

= e 40 2.. z(i-or e 2 ) 9...

The maximum-likelihood estimate 0 of 0. are theV l

solutions of the equations 
bi
Wi

U 2 U 3 U s
d - ^ )

11/~SN
051051tH1

.-e  )  "s-l

b 2 U 3 U s
0 2 . - 0  )  "  s-l'

1
M1

• 
(0 

-Q u8
e (1-0 -0 ..-0 )s-l 1 2  s—1"

- 0

The expected frequencies corresponding to the observed 

frequencies b.. are n .0. and the expected frequencies
UJ j  V

for the u. are obtained by subtraction. Thej
goodness-of-fit statistic based on comparing the observed
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frequencies with the expected frequencies in Table 4.1 is 

Chi-squared with (s-l)(s-2)/2 degrees of freedom.

T a b l e :4.1 C o n t i n g e n c y  table for c a r r y i n g  out L e s l i e ' s  test 
for d i l u t i o n

able3.5
---------------------- T O T A L

b1 2 b 13 . . . b ,3 b i.
b,o b b23 . . . 2 s 2 .

. . .

b bs -l,s s -1,.
uo U Q U U2 3 s
U n^ n n2 3 s

Unfortunately the above maximum likelihood equations 

do not seem to have explicit solutions and alternative 

estimates of 9 are desirable. For example if there were 

no blanks in Table 4.1 the estimate of 9. would bet
b i /n Another problem that arises in the use of the above 

test is that the expected frequencies are often small and 

pooling may be needed. Leslie (1935) suggest pooling the 

b_ (and their expected frequencies) in each column, thus 

reducing the table to s- 1  pairs of frequencies (nL,u^).

The above method can still be used when mortality is 

taking place, provided that all sub classes of marked and 

unmarked have the same mortality rates between successive 

samples. In this case the proportion of the population 

first marked at the ith sample will remain constant and 

equal to u./N, so that E[b. ./n. |n.,u. ] = u./N is still ̂ VJ J J V V
sat isf ied.
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R e g r e s s i o n  Model

The best evidence for the validity of the Schumacher 
and Eschmeyer's regression method is obviously the 
linearity of the graph. Any change in N through
recruitment, mortality, etcetera or any variation in 
catchability will affect the basic equation E[m̂ /ni] = 
MVN and this in turn will show up in the graph provided 
the nr are not too small. In practice, point and
interval estimates of N should be obtained using as many 
different methods as possible, as any departures from 
underlying assumptions will usually affect different
models in different ways. A substantial agreement among 
the estimates would then give support for the validity of 
the models concerned.

Tests for R a ndom S a m p l i n g

A part from poor experimentation and inadequate 
experimental design, there are three basic sources of 
non-randomness:
(a) There may be sub categories in the population due to 
size, sex, species, etcetera; for which sampling is random 
within each sub category, but not between the sub 
categories. In this case, if there is no mortality, the 
chi-squared goodness-of-fit test based on the following 
contingency table

SUBCATEOORY TOTAL
X Y • • • w

Recaptured m2 x m2y 2 w n 2Not recap. n -mlx 2x niy mzy . . . niv_m2vNo.releas. n1 X niy . . . "lv ni
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can be applied to each sample except the first using the 

pairs ( mix , . These s-1 Chi-Squared are

independent and can be added together to give a total 

Chi-Square.

(b) Catching and handling may affect catchability, so that 

marked and unmarked have different probabilities of capture 

in a given example. However, in some populations, once an 

animal has been caught its catchability remains fairly 

constant irrespective of future recaptures. In this case 

the ratio of k of the average probability of capture of 

an unmarked animal may remain approximately constant from 

sample to sample, so that Marten's method can be used for 

testing k=l.

(c) If catching and handling affects the catchability of 

marked individuals after their first capture, then the 

sampling will not be random within the marked population. 

Such randomness can be detected using the following 

technique due to Leslie (1958) based on the frequency of 

recapture of individuals.

Suppose a multiple-recapture experiment consisting of 

t samples is carried out in a closed population containing 

an identifiable group of animals and let G denote both 

the group and the number in the group. If gj of this group 

are caught in the jth sample (j = 1 ,2 , . . . ,t) , then, on the 

assumption of simple random sampling, the probability P = 

1 - Qj that an individual member of G bears the recovery 

mark j is g^/G • Suppose a particular member of G is 

caught x times, then from Kendall and Stwart (1969) we 

obtain
t

E[x|{g }] = ? P = v , say.1 J — 1 J
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Var [x | {g.} ] = ZPQ = ZP.(l-P) = ZP.-ZP2 = p-Zgz/G2J J J  J J  J J  ^
If members of G are caught x times, then

M = ZP. = Zg./G = Zxf A f  = x
t J x' X

and

T = Z fx(x-/J)2/o2

is approximately distributed as chi-squared with G-l

degrees of freedom when sampling is random. Leslie 

suggests that the approximation is satisfactory when G > 20 

and t ^ 3. We note that any samples for which g.^0 are 

ignored in the above analysis.

A p p l i c a t i o n s

The above test can be applied to a Schnabel census of 

s samples. We first of all define G = ni(=ui), the

animals tagged in the first sample. In this case 

g± , g2 , ... are the members of this group caught in the 

second and third samples, etcetera, and t=s-l . We can 

then apply this procedure to the newly tagged individuals 

in each sample, so that G successively represents u2 ,

u u with3 S-3 corresponding t values s - 2 > s-3

,..., s respectively. If there are accidental deaths

through catching, and handling, then G refers to the

members of u. which are still alive at the endV of the

experiment. Since the Test Statistics thus obtained are

based on different individuals they are independent and can

be combined to give a total chi-square. In practice, G

will often be greater than the degrees of freedom tabled,

so that we must use the normal approximation

Z = -/2T - V( 2G-3)

which is approximately distributed as unit normal when
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sampling is random (Carothers (1971)).

Note that any group of identifiable animals can be 

used for G . In particular if the population size is 

known, we can put G=N , and Hq is now a test that 

sampling is random with respect to the whole population and 

not just the marked population.

One advantage of the above method is that it can be 

adapted to open populations in which there are natural 

death and recruitment. In this case the group G consists

of the members of u. known to beV alive over a certain

sequence of samples, say i+ 1 , i+2 > • • • > i+t , through

having been caught after sample i+t This method,

however, does not apply of there is migration, as some 

marked animals may be out if sampling area for several 

sampling occasions.

A p p r o x i m a t e  T e s t s .

If ĝ  = g, say (j = l,2,...,t), we have

P. = ZP/t = P (=x/t)

and x is the outcome of t binomial trials. The test

for randomness is then a test that G values of x

constitute a random sample of size G from a binomial

distribution with parameters t and P . In this case
2 ----

o  - tPQ and T reduces to the standard binomial Index of 

Dispersion

T f„(x-x)* 2/ X(l-x/t)

which may be regarded as an approximation for T when the 

gj are not too different. In fact

tPQ-EPjQ. = - ZCP^-PXQ^-Q) = £(P.-P) 2 > 0



194

so that T' ^ T with equality only in the unlikely event 

of the g. being equal. Therefore, if T± is significant 

then T' will be significant, and T is a c o n s e r v a t i v e  
approximation.

When P is small ( < 0.05, say) we can use the 

Poisson approximation to the binomial with o 2 - p = tP .

The statistic T then becomes the Poisson index of 

dispersion, ^ fx(x-x)2/ x and since P > PQ this statistic 

will be smaller than T' . The Poisson approximation is 

particularly relevant to the situation where the sampling 

is a continuous process and the animals are caught one at a 

time (that is for the £xf samples in which a member of
X

G is caught, we have P̂  = 1/G ).

C o m p a r i n g  O b s e r v e d  a n d  E x p e c t e d  F r e q u e n c y

We note that the statistic T is based on comparing 

the observed variance of x with the theoretical variance, 

calculated on the assumption of random sampling. In

general these tests will be more sensitive than a

goodness-of-fit test based on comparing the observed

frequencies f
X

with the expected frequencies (Cochran

(1977)). However, if T is significant, a comparison of

the observed and expected frequencies can be helpful in 

detecting where departures from random sampling occur. 

Unfortunately, using Leslie's method, the expected 

frequencies require length calculations, particularly for 

large values of x . For example

Pr[x=0] = Q Q  ...Q1 2 Z

Pr [x=i] = q 1q 2 ...q 1 a y e ,
Pr[x=2] = Q Q  ...QZ ZP.P. /Q Q.
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using the b 

frequencies

inomial

are more 
E

approximation, however, the 

readily calculated, namely

expected

Models Based On Constant Probability of Capture

General Theory

Suppose that the trapping effort is the same for each 

sample, so that p^ , the probability of capture in the ith 

sample (i = l,2 ,...,s) is constant (= p,say), then model 

(4.2) reduces to

N!
na !(N-r ) !V V

Zn. sN-Zn p v q v

and N , the maximum-likelihood estimate of N is nowp
the unique root greater than r of the equation

fl - r / N j  = £l - Zr\  ./■»)

Darroch (1958) shows that as N ------- > oo the asymptotic
A

variance of N isp
Var[N ] = N(l/qs + s-1 - s/q) ' 1P

which may be compared with
s

Var[N] = N(l/.n q.+ s-1 - ri/q . ) " 1V = 1 t V

the corresponding expression when the pt are unequal.

Since Var[N] follows from Var[N] by putting P =P,p v.
Darroch concludes that asymptotically, no information is

gained by using the knowledge that p̂ is constant. It is

therefore recommended that the methods of section 4.1 be

used irrespective of whether pt is constant or not, 

except possibly for small samples.
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F r e q u e n c y  o f  C a p t u r e

Several models based on the frequency of capture have 

been developed recently, and these have been used mainly 

for detecting any variation in trap response. For

example, if p is constant, the probability that an animal
I

is caught x times (x = o,l,2,...,5) is given by the

binomial probability

f(x) x s-xp q (4.33)
U  J

If N is known, we can regard the animals as representing 

N independent observation from the above distribution and 

carry out a standard goodness-of-fit test to test for 

constant p . When p is small ( < 0.05), the Poisson

approximation to the binomial (above) can be used.

It should be noted that the above theory is not just 

a repetition of the approximate methods given previously. 

In the above theory, pt is the probability of catching 

any individual in the ith sample, while P in the 

Leslie's method is the conditional probability that an 

individual from an identifiable group is caught in the ith 

sample, given that at least one member of this group is 

caught in the sample.

Truncated Models: Constant Probability of Capture

B i n o m i a l  M o d e l .

When N is unknown we can test whether sampling 

israndom with respect to just the marked population by 

using Leslie's method described above. When p ist
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constant an alternative approach is to truncate the model 

(4.33) by ignoring the group of N-r animals not captured 

during the experiment. Thus x , the number of times an 

animal is captured given that it is captured at least 

once, has probability function

f(x) = [  x ] p X q S  * A l - q S ) , x = l , 2 , . . . , s

For this model the maximum-likelihood estimate q of q 

is the unique root of

hs(q) - |(i-qs)/(i-q)| - s/x = i+q+...+qs 4-s/x

where x = £ x^/r is now the mean number of captures per 

animal for the r animals actually captured. For s > 3

,this equation can be solved using the Newton-Raphson 

method. The ith step is given by

qi+l= V hs(V / hs(V  '
and a possible first approximation q ± is given by the 

positive root of the quadratic equation h3(q) = 0

Alternatively we can use the following technique given by 

Hartley (1958) for handling truncated distributions. 

Beginning with a first approximation N(l) of N , we 

carry out the chain iterations

p(l) = S’ • iuT)

and

N(i+1) = r/(l-qs(i)

This procedure not only gives us p but, as a bonus, we 

also get N , the solution ofp

is

! i - — 11 = ■ 1 - — - 1l N J1 L sN J
This follows from the fact that rx = £n^ . Once p

calculated, a standard g o o d n e s s - o f - f i t  test for the above
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truncated binomial model can be carried out.

P o i s s o n

When p is small we can use the Poisson approximation 

to the binomial and consider the truncated distribution 

(Craig ,1953)

f(x) = ---^-5—  —  (4.34)
(1 -e ) x!

David and Johnson (1952) show that the maximum-likelihood
A

estimate X of X is the solution of

(l-e'X )/X = 1/i

which can be solved by interpolating in Table A3 in the

Appendix. One can then carry out a Chi-Squared

goodness-of-fit test by comparing observed and expected

frequencies in the usual manner.

David and Johnson (1952) suggest the alternative

procedure of using the usual Poisson Dispersion Test, but

with the class of zero recaptures left out, that is
x

t = J  fx(x-;>7 i
X = i

where

and X is the largest observed value of x . They show

that treating T as Chi-Squared with r- 1 degrees of

freedom leads to a conservative test, for if T is

significant then the Poisson Dispersion Test derived from

complete data is also significant.

It should be noted that the distribution (4.43) should 

be truncated on the right at x=s as no more than s 

recaptures are possible. However, if s is sufficiently 

large for Pr( X ^ s ) to be almost 1, the effect of
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truncation on the data will be negligible.

An estimate of N, the population size, is given by 

r/(l-exp(-X)) or rx/X

Truncated Models: Allowing for Trap Response

G e o m e t r i c  Model

Eberhardt, Peterle and Schofield (1963) found that the 

capture frequencies for a rabbit population are well fitted 

by the geometric distribution:

f(x ) = PQX x= 0,1,2,..., ( 0 < P < 1, Q = 1-P) 

and we now outline one of the two derivations that they 

give for this model.

Suppose that conditional on X , the a v e r a g e  capture

r a t e , x has a Poisson distribution

f(x|X) = e ^Xx/x! x = 0,1,2,...

Then assuming a circular home range of radius R, we would

expect the average capture rate to be proportional to the
. 2area of the home that is X = dflR , where d is a

constant depending on such factors as the density of traps 

and the probability of recapture, given that there is a 

c o ntact with one or more traps. Following Calhoun and 

Casby (1958), it is assumed that R has a density function

f,(R) = eR W  
o

so that if C = 2dncyz,

fz( M  = c ' V Xxe , X > 0

Hence
co

f(x) = f  f(x|X)f (X)dX = PQX . 
o

where P = 1/(1 + c).
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When the size of the zero class is known, this
distribution can be truncated at the origin as in the
previous models. If trapping is carried out on s

occasions then the distribution should also be truncated on 

the right, so that we have

f(x) = PQX */( 1-QS ), x = 1,2,...,s . (4.35)

For a sample of r observations from this distribution,

the maximum-likelihood estimate P is the unique solution

of

- = sQs+1 - (s+l)Qs + 1 

Qs+1 - Qs - Q +1

which can be solved by interpolating linearly in Table A4 

in the Appendix.

When s is large, the effect of truncation on the

right is negligible and P = 1/x ; or allowing for bias

(Eberhardt,1969),

P = (r-l)/(rx-1)

which, from Chapman and Robson (1960), is the minimum 

variance unbiased estimate of P . In this case the total 

population size can be estimated by N = r/Q 

(Edwards and Eberhardt ,1967). To determine when the 

truncation can be neglected, we enter 1/x at the top of 

table A4 of the Appendix and in the nearest column we note 

when the entry becomes independent of s .

If f animals are caught x times, then, truncating 

the distribution of x on the right only,

E[fx] = NPQX/(1-QS+1), x = 1,2,..., s 

and taking logarithms we have

E flogfxj 3 logfNP/a-Q3"1)] + xlogQ .

= ft +/?x > say (x=l, 2 , . . . , s )
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S + iwhich neglecting Q is the regression model suggested 

by Edwards and Eberhardt (1967). We can use least squares 

method to estimate N and P. One method of obtaining a 

confidence interval for N is to calculate the confidence 

limits for NP/(1-Q ) , the expected number of animals

not caught, and add r to both limits.

E x a m p l e : Squirrel (Sciurus c a r o l i n e n s i s, a nd so o n ) : N i x o n ,

E d w a r d s  a n d  E b e r h a r d t  (1967)

The aim of the study was to investigate the accuracy 

of Schnabel and Schumacher-Eschmeyer estimates of

population size for squirrel populations, and consider the 

population application of the above geometric model. The 

study area occupied 237 acres of continuous forest habitat 

in 1250 acre Waterloo Wildlife Experiment Station, Athens 

County, Ohio. Both fox and grey squirrels occurred in the 

area, with the grey squirrels comprising about 95% of the 

squirrel population. The area was gridded on a 3x3 chain 

interval with a trap placed at the discretion of the 

trapper within a 1/5-acre plot surrounding each point of 

intersection. This yielded a trap density of about one 

(0.96) trap per acre.

Prebating was used for 10 days before the experiment 

and trapping was carried out for 1 1  consecutive days just 

before the hunting season. All squirrels captured were 

ear-tagged and released at their points of capture, 

squirrels killed by the hunters on the study area during 

the hunting season provided an estimate of proportion of 

tagged, from which N could be estimated using Petersen

method.
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Recapture data for the year (1962) are given in table

(4.3) and a plot of m^n^ versus ht is not linear, thus 

suggesting that the Schnabel estimate and its modifications 

will not give reliable estimate of N. This was borne out 

from a more detailed analysis by the authors, who felt that 

the Schnabel and Schumacher-Eschmeyer methods led to 

underestimation of population size.

Using the capture frequencies f as given in table
X

(4.4) a goodness-of-fit test for the truncated geometric 

model

f(x) = PQX'V(1-Q") X = 1,2,___
can be carried out. We have 1/x = 72/223 = 0.323 and from 

table A4 of the Appendix, we find that the truncation of 

the distribution at s=ll must be taken into account. 

Therefore, entering the table with s = ll and x = 3.097 we 

find that P = 0.300. The expected frequencies are then 

given by
A * V—I * 4 4Ex = 72PQ /(1 -Q )

and

1 < w X  = 2 - 3 •
which at 4 degrees of freedom indicates a close fit.

The authors fitted a truncated Poisson which gave a very
2poor fit to the observed frequencies (x =26.1)

They concluded that the probability of capture did not 

seem to be the same for all individuals and that the 

geometric model gave a reasonable fit to the observed 

frequencies. However, a good fit to this model provides no 

conclusive evidence that the assumptions used in deriving 

the model actually occur in nature: different sets of

assumptions can give rise to the same model. For example,
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suppose that radio-tracking data indicate that the number 

of visits y of an animal to some small regular area around 

the trap follows a geometric distribution

f(y) = w(l-w)y , y=l,2 ,...

If x the number of captures, is conditionally binomial 

with parameters (y,p), then the unconditional distribution 

is once again geometric, namely

f(x) = w(l-w)x , x = 0,1,2,.....  (4.36)

where, w = 0 / { 6 + ( l-0 )p}

Table 4.3: c a p t u r e - r e c a p t u r e  data fro m  a Schnabel census: 
F r o m  N i x o n  et al (1967: Tables, 1963)

T rap day S a m p l  e s i z e M a r k  ed
i n m M m / r\L V v t
1 38 — — —
2 2 P 1 P 3 8 O. <5<5
3 3 1 23 4 8 O. 74
4 1 <5 1 3 5 <5 0.8 1
5 20 1 P 5 P O. P5
<5 1 8 1 7 <50 O. 94
7 17 1 4 <5 1 O. 82
8 1 P 1 3 <54 O. <58
P 1 <5 1 4 70 O. 88

IO 1 4 1 4 72 1 . OO
11 5 5 72 1 . OO
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Table 4.4: O b s e r v e d  c a p ture f r e q u e n c i e s  f i t t e d  to zero-

truncated g e o m e t r i c  a nd P o i s s o n  d i s t r i b u t i o n s : d a t a  
from N i x o n  et-al (1967)

N o .  C a p t r d O b s e r  . f  r © E x p e c t e d  f r e q u e n c i e s
X f x f O e o m e t r i c O e o m e t r i e P o i  s  s o n

X X s = 1 1 S  = 0 0 s  = CO

1 2 3 2 3 2 2 . 0 2 3 .  3 1 1 .  P
2 1 4 2 8 1 5 . 4 1 5 .  8 1 7 .  4
3 P 2 7 1 0 . 8 I O .  7 1 7 .  2

4 <5 2 4 7. <5 7 .  2 1 2 .  <5

5 8 4 0 5 . 3 4 .  P 7 .  4
<5 7 ] 4 2

7 3 2 1

B O O I O .  P I O .  1 5 .  5
►12

P 2 1 8

io O O

1 1 _______ p j O

7 2 2 2  3 7 2 . 0 7 2 .  O 7 2 .  O

N e g a t i v e  B i n o m i a l  Model

The above derivation model (4.36) applies to the 

situation where a single trap is randomly located within a 

given animal's home range. If however the the traps are 

closer together, so that k traps fall within the home 

range, and assuming the traps act independently, then it is 

readily shown that the sum of k random variables 

independently sampled from the geometric distribution 

(4.36) has a negative binomial distribution 

(Eberhardt ,1969).

k(k+l). . .(k|x-l)wk(l-w)x >x=1>2> _  (4 .3 7 )

When k=l then distribution (4.37) reduces to (4.36). 

Alternatively this distribution can also be derived by 

assuming that the poisson with parameter X , but with X 

varying according to a Pearson type III distribution

(Kendall and Stwart ,1969). In this case x has
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probability function

k( k+1) . . . ( k+x-1) X/i. xk+x— -----— j—  -----  a (1+a)xl ,x=0 ,1 ,2 .. (4.38)

By putting 1-w = a/(a+l), (4.38) reduces to (4.37). Thus 

whichever method of derivation is used, the distribution 

of x, truncated at x = 0 , is given by

k(k+1)...(k+x-1) wk(1—w )* 1 9I V » x >
( 1 -w )x! (3.39)

Where k may not be an integer.

From Sampford (1955), the maximum likelihood estimates 

of w and k for a sample of r observations from this 

distribution are solutions of

jrk/w(l-w )j - jrx/(l-w)j = 0

and

jrlogw /( 1 -wk | + | £l/k + l/( k+1 ) +...+ l/( k+x- 1  )j = 0

Where x is the maximum observed value of x. These 

equations can be solved iteratively. However, a simpler 

method of obtaining estimates for k and w has been 

proposed by Brass (1958), and we describe this briefly 

below. Let

T\± = Pr[x=l] = kwk(l-w)/(l-wk) ;
2then if ^ and o are the mean and variance of x for

distribution (4.39), Bras shows that
2w =

k = (w m -^1)/(1-w)
Therefore, replacing fj , o'2 and re by their sample

estimates

xf /r
X  = 1

X



206

s2 = J fx(x-i)z/(r-l)

and

n i

respectively, we have the simple estimates

0

W = i d - r r ^ / r  

k = (Wi-n±)/(l-W)

Brass gives the efficiency of the above estimation 

procedure as compared to the maximum-likelihood method for

large k, Brass's procedure is remarkably efficient.

S k e l l a m  's Model

Suppose that for a given animal the frequency of 

capture follows the binomial distribution with parameters 

s and p . In many experimental situations p may not be 

same for each animal but will vary according to some 

distribution f±(p) > namely

different values of k and m = k(i-w)w. For small M or

Where

B(ot,^) - [a [fT /| a+{3

Accordingly Skellam (1948) has shown that

f(x) B(oi+x, /3+s-x) 
B(«,0 )

x=0 ,1 , . . . , s (4.40)

If s >00 , (3--->00 , (3/s >c and P >0 in such away
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that sp remains finite, then Skellam showed that sp 

tends to Pearson Type III distribution

rt / \ I 1 "Xf (x) = --- x e , X > 0 , 0 < x < oo
F

as given by Kendall and Stwart (1969), and the limit of 

f(x) is the negative binomial distribution (4.38), with 

k = a , a = 1 /c .

The truncated version of the distribution (4.40) which

is appropriate when zero class is not observed is given by

f s 1 B(ot+x,ft+s-x) 1 9
l x J B(a,0 )-B(a,0+s) 'X"1'Z***',S

Unfortunately estimation for this distribution is not

easy, which rather produces its use in practice. However, 

if n^ is the size of the ith sample (i = 1 ,2 ), m2 the

number of recaptures in the second sample, and N=nin2/m2 , 

then

E[n.] = NE[p] = N a/(a+0) (4.41)

E[mz] = NE[p2] = Na( cx+1 ) /(a+ 1 ) (a+f3+1 ) (4.42)

and asymptotically

E[N] = E[n±] E[n2]/E[m2] = Na(af/3+l)/(a+l)(a+/3) = NB , say. 

Where B is tabulated in Table 4.5 below

Table 4.5: B = ot(ot+ft)/(ot+l)(ot+ft) for s e l e c t e d  values of

ot and

(5 ° 1 2 3 5 1 0 00

1 0.75 0.89 0.94 0.97 0.99 1 . 0 0
2 0.67 0.83 0.90 0.95 0.98 1 . 0 0
3 0.63 0.80 0 . 8 8 0.94 0.98 1 . 0 0
5 0.58 0.76 0.84 0.92 0.97 1 . 0 0

10 0.55 0.72 0.81 0.89 0.94 1 . 0 0
00 0.50 0.67 0.75 0.83 0.91 1 . 0 0

Note that B is small when a large proportion of the 

population has a low probability of capture that is a is
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then the limiting

small.

For the special case a- 1

distribution of distribution (4.40) is geometric rather

than negative-binomial and Eberhardt (1969) uses this

special case to derive a new estimate of N when s = 2

Thus setting a = 1 in equations (4.41) and (4.42), we have

E [n ±+n 2 ] = 2N/(/?+l)
E[mz] = 2N/(0+l)O?+2)

and solving we have moment estimates 

/ ?+2 = (ni+n2 )/m2

= (n±+n2 )(^+l) / 2  = (ni+n2 )(ni+n2+m2 )/2m2 

If in fact p is actually constant, then N is 

asymptotically unbiased (since B = 1) and

E[N^] = E[n±+n2] .E[n±+n2-m2 )/E[2m2] 

= 2Np(2Np-Npz)/2Npz = N(2 -p)

which lies between N and 2N .

To find the asymptotic variance of N^, let ŷ  be

the number of animals caught i times, that is y =n +n -2m„1 1 2  2

y =m . Then the joint distribution of y and y is 
2 2 1 2

and

multinomial, namely

N i
f(yi'y2 ) " y !y ! (N-y -y„)!

y N-y -y *2. * 1 P P2 3

N! f 2ft lyif 2
" yi!y2 !(N-yi-y2)! L <(?+l)<(3+2) J L </3+l)</?+2) J

N-y -y.

(A) ‘
Since from equation (4.40) with s = 2 , Pi=Pr[x=l] =f±( i)

Then the maximum likelihood estimate of N once again is
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which takes the form

(y1+2y2 )(y1+y2 )/2yz .

Hence using the delta method, we find, after some algebra, 

that

VarCN^] 2= N/?(/35+7^4+20tf3+29^2+21f?+6)/2(fJ+l)2(^+2)2 

Models Based on Waiting Times Between Captures.

Time for F i r s t  R e c a p t u r e

The probability that an animal is caught for the first 

time in the yth sample, given that it is caught at least 

once in s samples, is given by the function

f(y) <3ylp/(l-qs) , y=l, 2 , . . . , s 

Where p is the probability of capture in a sample. 

However, a slightly different model has been suggested by 

Young, Nees and Emlen (1952) which can still be used when 

there is migration and mortality.

Suppose an animal is captured for the second time in

sample number y+z (z = 1 ,2 , . ..s-y). Then, given y and

given that an animal is caught at least twice, z has the

probability function

f ( z | y ) = qzlp/(l-qs y ) , z = l, 2 , . . .

If we consider only those animals for which s-y is large, 

then the truncation of Z = s-y can be neglected. We are 

led to consider

f(z) = q p

This model has the simple maximum-likelihood estimate

P = 1/z . Young et al (1952) points out that once an

animal has been recaptured, we are not interested in its

subsequent fate, so that we do not need to "correct" the
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data for those dying or disappearing before the end of the 

experiment. Also if the tendency to die or emigrate is not 

related to trap vulnerability, then those animals which 

die or emigrate before being captured at all will be 

distributed randomly over the groups that would have been 

recaptured after 1 ,2 ,... samples, and the disappearance of 

such animals will therefore not bias p and associated 

goodness-of-fit test.

Time o f  Res i d e n c e

Suppose that the population under study is such that
animals move into the population area, stay for a random
number of time, and move out and stay out of the area for
the remainder of the investigation. If the experiment is
carried out at equally spaced intervals of time with

constant trapping effort (that is p constant), then it is 

not unreasonable to assume that O , the probability that 

an animal does not leave the trapping area sometime between 

two successive trappings, is the same for all animals in 

the area and for all successive pairs of trappings. On 

the basis of these assumptions, Holgate (1964b) gives the 

following method for estimating q and p from the 

observed values of y , the recorded period of residence, 

that is, the interval between the first and last occasions 

when it is actually captured.

Let z denote the true period of residence of an 

individual in the study area, that is the interval between 

the first and last occasions when it is exposed to 

capture; then (ignoring truncation on the right)

Pr[Z=z] = (l-e)ez z = 0 ,1 ,2 ,... (4.43)
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Now, an animal that remains in the area for z complete 

intervals is exposed to capture on z+ 1  occasions, so that 

the probability of its not being caught at all (that is y 

undefined) is

Pr[Y undefined |Z = z] = qz+1

Also

Pr[Y=0 |Z=z] = (z+l)pqz

and noting that as far as y is concerned, it does not 

matter how often an animal is captured between its first 

and last capture

Pr[Y=y|Z=z] = (z-y+l)p2qzy y=l,2,...,z

Now

Pr[Y undefined] = ? Pr[Y undefined|Z=z]Pr[Z=z] (4.44)
z = O

= (l-6»q/(l-q0 )
and in a similar fashion it is readily shown that

Pr[Y=0] = (l-0)p/(l-qe)Z (4.45)

and

Pr[Y=y] = p2(l-e)ey/(l-qe) 2 y=l,2, . . . (4.46)

Finally dividing both sides of equations (4.45) and (4.46) 

by {1 - (l-0 )q/(l-q^)} we have the zero modified geometric 

distribution

Pr[Y=0|Y defined] = (l-3)/(l-q0) (4.47)

and

Pr[Y=y|Y defined] = (1-q)(l-e)0y/(1 -qS) y=l,2,... (4.48)

If a sample of r observations is taken from the above 

distribution, then the maximum-likelihood estimates of O 
and q are

O - 1 - u/y and q = (O - u ) / & ( 1 -u)

Where u is the proportion of individuals caught more than 

once (that is with y > 0). Holgate shows that as
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r--->oo asymptotic variances and covariances of these

estimates are given by

Var[e|r] = ( l-0 )2( l-q0 )/r< 1 -q ) ,

Var[q|r] = (1-q)(l-q02 )(l-q0)/r02(1-0)

and

Cov[0 ,q|r] = (l-0 )(l-q0 )/r0 

It is noted that strictly speaking, distribution 

(4.43) should be truncated on the right since the number 

of trappings is finite. Otherwise, at the end of trapping 

series, the animals still in the area will be ascribed a 

duration of residence which is too short. Unfortunately, 

since the time of the first capture varies, each animal 

will have a different truncation point thus leading to a 

complicated likelihood function for the estimate of O and 

q . However, if the study is long compared with the 

average time of residence, this effect will be negligible 

and the truncation can be ignored.

B i v a r i a t e  D i s t r i b u t i o n

Let y be the recorded period of residence and w be 

the number of captures during the intervening period, that 

is between the first and last capture. Holgate (1966) has 

utilised the joint distribution of Y and W to obtain 

more efficient estimates of q and O as follows (in 

Holgate's notation y=x, w=y).

Since Y=y implies y+1 possible captures, the

range of W is 0 to y - 1  and
fy-i

Pr[W=w|Y=y] = w
/ 1 \w y~v_1(1-q) q (y > 0)

Hence from equations (4.44) and (4.45) the joint function
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is given by

and

Pr[Y=0|Y defined] = <l-0 )/(l-q0 )

Pr[Y=y,W=w | Y defined] = f  j{ 1-q )W+V ' W'‘( l-©)ey/<l-qe> .

Where w = 0,1,2,..., y-1 and y = 1,2,... (for Y =0, W is 

not defined). Let n and n denote the correspondingO yw
sample frequencies and let r be the total number in the 

sample that is

r = no + 1 1  n yv y v
Then the likelihood function for the sample is 

proportional to

f l - 0  f o  -pp f ( 1 - q ) v+1 q y " v ~1( l - ^ ) ^ yl
U - q e  J ; ; v { ( i - q * >  J

yv

and it follows that the maximum-likelihood estimates 

and O are given by

q = (y-w-u)(1 +w+u)/(y-(w+u)(1 -y ) }

and

where

e = (y-(w+u)(l-y)}/y(1 +w+u)

w = Z Zwn /r = £wn /r ,say
y v  yv  v . v

y = Z Zyn /r = £yn /r ,say
y v y v  y.

and

u = 1 - nQ/r

Holgate shows that asymptotic variance 

of q and 0 is given by

covariance matrix

e cr
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q(l-q)(l-qe2 )(l-e)
© 2 ( l - q © )

1
r

q(i-e)3
S(l-q©)

g(i-Q) 3
S d - q S )

q+e+q2e2-3qe)(i-e)2
(l-q)(l-q0 )

Where the (1,1) element is the asymptotic variance of q .

Using the determinant of the variance-covariance 

matrix as a measure of asymptotic efficiency of the above 

method with respect to the previous method based on the 

marginal distribution of Y only ,the asymptotic 

efficiency is

e = q(l-e)2/(l-q6>)2 .

4.2 INVERSE MULTIPLE SAMPLE CENSUS
Consider a Schnabel census in which, for each sample 

n̂  , the sampling is continued until a predetermined number 

of animals are recaptured. This modification is a 

generalization of the simple inverse sampling census 

already discussed in section 3.4.

Using the same notations as in section 4.1 , we have 

fixed parameters N, s, n ( =M, ), in , m , ..., m , 

random variables M . r  , n  ,...,n and
O  4 S 1 2 S

the joint probability function of the random variables is 

a straight forward generalisation of the negative 

hypergeometric distribution derived for simple inverse 

sampling case, namely
N-n

f(n2 |nt,n2)
( ">2 -l) [ n2-mj

( 7 7 * )
'N -n +1 2
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Where n = m , m + 1 N + m -n, .

Thus the joint probability function of the random 
variables is

, M . r N-M ,
1 ^ 1

[ m -lj L u. j M - m +1v t * i i
r N i ■ N -n +1 ’
1 n.-l J

t
J

There is now no no-trivial sufficient statistics for N. 

However an unbiased estimate is easily found, namely

"z = i = 2
r ni<Mi+1> 'i ( -1 )/<s-l)

for

r _ -v s f n.(M. + l)
(  = j 2 E { E (  - 1 I V i  ] | / < s _ 1 >

s
= J E[N]/(s-l) = N

i = 2

Using the approximate formula for the variance of N
2

in single sample case, we find that, the variance of N
2

is given by

V a r K  )  = c i S y  X

Thus the coefficient of variation is

C(S2 } = (s^iy 1  1/miv i = 2

This can be used for choosing the fixed parameters to give 

a predetermined precision. However, the correct choice of 

nr is also important for it was earlier pointed out that a 

wrong choice of m. , coupled with unfavourable M. ,i t could
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give rise to a large rr . Therefore a reasonable 

criterion, suggested by Chapman (1952), for choosing these 

parameters is to minimize E ( K )  , subject to C(N2) 

being held constant; unfortunately this does not have a 

simple solution.

To avoid the possibility of large n̂  we can modify 

the above model and continue the sampling until 

predetermined number û  of unmarked individuals is taken 

in the ith sample (i = 2,3,..., s). This means that our 

fixed parameters are now N, s, n , u2 ug , M3 , ...,

M , r and the random variables n , n , . . .n , m . m .S 2 3 S Z . 3

m . An approximately unbiased estimate of N is the mean
S

S3 = 1  » * / < ■ - ! >1 = 2
Where,

3i
n. (M. + l)V t

m. - 1

and asymptotically,

Var(N3) = J Var( j A 5’1)'

Where Var ( &3t) can be estimated using equation

Var(x) = £ (x^-x)Z/n(n-l)

and we get

’ “ I  “a )  = t l 2 (  "3TS3 J/CS-DCS-2) •

4.3 THE MULTI-SAMPLE SINGLE RECAPTURE CENSUS.
The main advantage of this method is that 

individualsare only captured once and are then removed from



the population and is thus specially suited to 

commercially exploited population such as fisheries where 

they are permanently removed.

The technique used for this single recapture census 

is as follows: the experimenter using differentiated 

marking, releases batches of marked individuals of sizes 

R , R2, ... into the population he is investigating, and

after each batch R̂  is released, a commercial catch of 

size n̂  is made and individuals are killed, thus giving a 

sequence R± added, n± removed, R2 added, n2 removed, 

and so on. The numbers of marked individuals from the 

different R. and unmarked individuals are noted for each 

catch n̂  and passed on to the experimenter.

Ideally, the marked individuals which are to be

released, should either be caught before the whole

experiment or perhaps taken from a similar population not

connected with the one under investigation. In actual

practice, however, the experimenter could take the samples

R̂  from the population during the experiment, because in

general, the Ri , although large, will be much smaller

than the nL and therefore the recaptures in the sequence

R̂  , Rz , ... will be negligible. Also the overall

reduction in the number of unmarked individuals due to

marking of ^ Rt will be small compared with the total

population size. Let

N = initial population size,

hT = number marked in nj (j = 1 ,2 ,..., s),

m = The number of individuals from R. caught in n. 
j * J

(j=i,i+1 ,...,s)

u. = n.-m. 
j j j

'

-  217  -
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r = u
j = i

We shall make the following assumptions:

(1 ) all marked individuals present in the population at any 

instant have the same probability of being caught.

(2 ) unmarked individuals have the same probability of being 

caught as the marked ones.

Let p^=l-qi be the probability that an individual is 

caught in the sample n i , given that it is in the

population at the time, the ith sample is taken. If {nt} 

are considered as stochastic variables and the {R.} aret
known constants, then the joint probability distribution of 

{m., u^ is the product of s = 1 independent multinomial 

distributions, namely,

pf{m.  , u . } | (R } , nl  =.nL t J  IJ 1 V J V=1

a. it tt
i-1

.n m..! ( R - ym .)
j = i  i j  '  j  X  i jj= i

m  . R - TVi. ., . v,v+l , . v tjx (q;p;̂ )  . .. (q;. .q ) j=*t l+l

Ni
. n U. ! (N-r)ii =i t

Pi‘<qiP2) Z---(<31---'3SPS) -<3.)

If N and p are the maximum-likelihood estimates 

of N and p l respectively, then we find that

PV= - 1  (i=l,2,...s ) (4.49)
N+ E Rj- E n

j=* j=i
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and N is the root of

q . . . q = . FI ^1 1 =1

n.v
i i-i

H + E R - E n .  
j , jj=i j=i

► (4.50)

We see intuitively that these equations give reasonable 

estimates and may be readily explained if one considers the 

proportion dealt with and the way in which they are 

multiplied together. A natural estimate of Pt is given 

by the proportion of existing population caught in the ith 

sample and this is given by equation (4.48). From the

assumption that unmarked individuals have the same 

probability of being caught as the marked ones, equation

(4.49) a rise naturally by equating the total proportion 

of unmarked individuals which are not captured with the 

overall proportion of uncaptured individuals.
a

To find N we need to solve a polynomial of degree 

s- 1  ; however, we now show that for a successful experiment 

that is one in which there is at- least one recapture (r=0 ), 

equation (4.49) will have a unique finite root greater than 

r . If

(a) r=0 , that is no marked individuals are caught, then 

equation (4.49) is not valid. However, we see thatP[{m^, 

u .} | (R.}, n] is maximized when N=0 , as we would expectj l
intuitively.

s
(b) If r = J|:int then no marked individuals are caught and 
N = oo .

i i
(c) If r = .Z n.-.Z R. , for i = l,2,...s, then there arej = i j j = i j
no marked individuals left immediately after sample nL is 

taken, and the samples , ... , ns consists solely of

marked individuals. For the limit process N >oo and
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each R.----- >oo in suchV a way that R.yN is constant, it
can be shown that the probability of (a), (b) or (c)
occurring is o(cM) where 0 < c < 1 and therefore can be
neglected. Thus we may assume that

s
0 < r < Z n. andj = i j

i i
r ^ .51 n - r .j = i j j = i j for i=l,...,s

Let

= N-r TT {1 = 1 '
N+Z R.-.Z n ) /j=i j j = i jJ ' |n+ Z R - Z n } t J=1 j J=1 j J

Then

Then as n ----> oo

0(N) = 1

<P( r+0 ) = oo

3
X  n . j=i j

N 1 - 0

Now, <£(N) is continuous for N > r and therefore the 

equation <£(N) = 1 has at least one finite root greater than 

r . Denote any such root by N . It can be shown by 

induction that [d0/dN]N < 0 for each N and since <£(N)

is one valued and d<£/dN is continuous for N > r, we see 

that N is unique. Now

L[N] = log pf{m ,n } |{R },n]

may be regarded as a function of N , and since AL(N)=<£(N) 

is decreasing at N=N we see that N maximizes the 

likelihood.

The mean and the variance of N can be found by the 

6-technique (Darroch ,1958).

Let r = ng+i and E[n^]=^ ( i=l, 2, . . , s+1) , then 

N=N(ni,nz, . . . ,ns+i) and N(^, . . . , fts+±) = N . Thus
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expanding N as a Taylor's series about N ,E[N-N] = o(l)
a

Hence N is approximately an estimate of N and 

Var[N] = E[N-N] 2 + o(l)

S +  1

- 1
VarCn^) (§ e i l l J

Cov(n aN m
nt ' # n  anr . } + 0 ( 1 )

Where all the derivatives are evaluated at E{b.} = {ft.}.t t

Special Case

Now regarding {n̂ } as fixed parameters and assuming

that each sample is a simple random sample, the joint

probability function {m ,u} is the multi-hypergeometricj
distribution, namely

f<{m.. ,u .} |{R . ,n .} )=  IT  <

r 1 _1 i r *\ r t -l ^
R - X  m R. N- X  m .r i j=i ij t j =i ij

. m . ̂ it J
jn.. „s tt * uv J

t = 1 j t- 1
N+.Z R .-.Z n .j= i j j= i j

n .t

setting Alogf = 0 , the maximum -likelihood estimate N of 

N is the unique root greater than r , of h(N) = 0 ,

Where

h(N) = N r - N .ni=i
n.t

i i-1
N+ E H -  E n.j jj=i j=i

\
►

s i i
For 0 < r <.Zn. and r *.Zn.-.ZR. for i=l,2,...,s. j =i j j = i j j=i j
We have that

N-N = (r-p)
m

1 , N 2+ - (r-p) d2N
dr2

Where p = E [r|{n }] and r ' lies between r and p.
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Therefore

2 A
E[N-N |{n.}] = \  El(r-p)2 | {rr}]

 ̂ dr J

= b , say.

Thus asymptotically N is unbiased estimate for N 

asymptotic variance of N is estimated by 

Var[N] = <N-r)/h'(N)

n .V
N(N-r) i=i t-i

The

(N+.ZR-.In.)(N-.IR-.In.)j=i j j=i j j=i j j=i j

Now , h(N)=0 can be solved using Robson and Regier's 

iterative method, and once again the last iteration 

provides an approximation for Var[N]. By setting

D. = .Z n - .Z R.V J =1 J J=1 J

a first approximation to N is given by
2

N(
- Z(n -D )z - (r+ZD. )z + rz + ZDz

t t  L t

2Zm.

For the more realistic situation where the mark releases 

R. are obtained from the population during the course ofi
the experiment, we have

f({mij,uj}|{R.,nj}) = TT ■

r i - 1 -x r r i ~ i  ^R - .Z m .i j = i ij
L J

R.V
jn. ..v u

N-ZR. X u  .J J=i ij
L u. J

t = 1 t- 1
N - X n .  

j = i j

n .

In this case R̂  refers to the newly marked individuals 

released; any recaptures are not tagged but simply returned 

to the population. The maximum likelihood estimate N is
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the largest root of

r fN- Z n 1

{ N- i Rr i n J  /  {

r  i  i - l  >
N-.Z R.-.Z n.

k j = i  j  j = i  j

s

=  TT-
i  = 1

j  = i  j

j

i - l
i N- Z n.
k j  = i  j

IT
i  = 1

We note that N and Var[N] are the same, irrespective 

ofwhether the nt are regarded as fixed parameters or 

random variables. However the model arising from the 

later case can be used to provide a goodness-of-fit test 

to test the hypothesis

H that all marked individuals have the

probability p i of being caught in the ith sample

Let p.. be the probability that a member of R.tj t
caught in n̂  , then Hq is the hypothesis that

p. . = q.. . . q . p.

( j > i)and p u  = p̂  . This can be tested using the 

statistic suggested by Mitra (1958):

same

is

T = 1 1 hrRAj)zA0t = l j =v

Where p. ,=q. . . . q . d . , p =q.q. „...qIJ 1 J —1 J  t,S+l V v + l  s

i  i - 1

p. = m. / f .Z R.-.Z m. 1 , m. = R.-r.
t  t  ^ J = l  J  J = 1  J  J v , s + l  v. t

When H is true and R. are large, T is approximatelyO v
distributed as Chi-Squared with (s(s+l)}/2 - s degrees of

freedom.
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4.4 CONCLUSIONS

A wide variety of models have been discussed in this 

dissertation, and the question now arises as to which 

method should be used in a given situation. Obviously the 

choice of the method will depend very much on the nature of 

the population, its distribution over the population area, 

and the method of sampling the population. Where possible, 

the experiment should be designed so that more than one 

method of estimation can be used.

In the past, little attention has been devoted to the 

problem of designing an experiment to yield an estimate 

with a given minimum accuracy or precision. For example, 

in many of the early applications of the Petersen method, 

too few individuals were tagged, so that the number of 

recaptures was too small and resulting confidence intervals 

too wide. However, for many of the models the variance 

formulae are complicated, so that it is not easy to plan 

for a given precision. Clearly more research is needed on 

the question of design for some methods.

Where possible, the robust but less efficient 

regression estimates should be calculated along with more 

efficient maximum likelihood estimates. The regression 

method is particularly useful when expected values appear 

to be correct; but the variances predicted by the model 

underlying the maximum-likelihood theory are open to 

question because of departures from the underlying 

assumptions, for example sampling is not strictly random. 

However, in all cases, the assumptions underlying a 

particular model should be studied carefully,and where
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possible appropriate tests carried out. If there is likely 

to be any question about the validity of the underlying 

assumptions, the sample data should be collected in such a 

way that emperical variance estimates are available from 

replicated samples. A comparison of the sampling variance 

with the estimated theoretical variance predicted by the 

model will often throw some light on the validity of the 

model.

Of the methods considered in this dissertation the 

Petersen method appears to be useful, provided the 

assumptions underlying the method are satisfied and there 

are sufficient recaptures in the second sample. The main 

assumption underlying the Petersen estimate is that marked 

and unmarked animals have the same probability of being 

caught in the second sample. Unfortunately it is not 

always easy to detect departures from this assumption so 

that even when all precautions are taken and the assumption 

appear to be satisfied, the Petersen estimate may appear to 

be biased. If Petersen estimate is to be used extensively 

for a given species, then it should be compared with other 

estimates and where possible tested on a known population.

If the second sample can be taken in stages then 

regression method can be used for testing the assumption 

that marked and unmarked animals have the same probability 

of capture. The problem of variable catchability may be 

overcome by prebaiting, using different sampling methods 

for the two samples, changing trap positions etcetera. 

However, the most promising approach to the problem is to 

avoid recapturing altogether and to obtain an estimate of 

the proportion of the marked by simply observing the



226

animals. Tagged animals may also be detected using remote 

sensing techniques. If sight records are used then the 

second sample is obtained by sampling with replacement and 

the binomial model (Bailey ,1952) is applicable.

Sometimes it is not possible to catch enough animals 

on the first occasion for a satisfactory application of 

Petersen estimate, so that Schnabel method must be used. 

In any case the later method should be used if variable is 

a problem. Moreover, the schnabel estimate is more 

efficient than the Petersen estimate, though the difference 

is not great.

It had initially been planned to apply this procedure 

to real life data especially on fisheries but my efforts 

were fruitless. This was because, most of the models in 

literature require well monitored experiments, but the type 

of data I got from Kenya Marine and Fisheries Research 

Institute (K.M.F.R.I.) lacked this quality. My future goals 

are therefore to carry out extensive survey on fisheries 

based on well monitored experiments and give applications 

of some of the models discussed here. I also hope to 

extend my work to open populations.
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A l Shortest 95% confidence interval for N /A based on the Poisson 
distribution

Entering variable m 2 (or //?)
w 2 Lower limit Upper limit m 2 Lower limit Upper limit
0 0-088 5
1 0-072'0 ’ 19-489
2 0-076 7 2*821
3 0-073 6 1-230
4 0-069 0 0-738
5 0-064 4 0*513
6 0-060 0 0-388
7 0-056 1 0-309
8 0-052 6 0-256
9 0-049 5 0-217

10 0-046 8 0- 188
11 0-044 3 0-165
12 0-042 0 0-147
13 0*040 0 0-133
14 0-038 2 0 - 1 2 1
15 0-036 5 0 - 1 1 1
16 0-035 0 0-1020
17 0-033 62 0-0945
18 0-032 33 0-0880
19 0-031 14 0-0823
20 0-030 04 0-0773
21 0-029 01 0-0729
22 0-028 06 0-0689
23 0-027 16 0-0653
24 0-026 32 0-0620
25 0-025 52 0-0591

26 0-024 78 0-056 3
27 0-024 08 0-053 9
28 0*023 42 0-051 6
29 0-022 79 0-049 5
30 0-022 21 0-047 5
31 0-021 65 0-045 7
32 0-021 12 0-044 0
33 0-020 61 0-042 5
34 0-020 14 0-041 0
35 0-019 68 0-039 6
36 0-019 25 0-038 4
37 0*018 83 0-037 2
38 0-018 43 0-036 0
39 0-018 05 0-035 0
40 0-017 69 0-033 96
41 0-017 33 0-033 00
42 0-017 00 0*032 10
43 0-016 68 0-031 24
44 0-016 36 0-030 43
45 0-016 06 0-029 66
46 0-015 78 0*028 92
47 0-015 50 0-028 22
48 0-015 23 0-027 55
49 0-014 98 0-026 91
50 0-014 75 0-026 25

( R e p r o d u c e d  from C h a p m a n  [19 48J . )
Applications of the above table are given on p. 63 and pp. 139—40.



2̂ Tag recoveries needed for prescribed probabilities of detecting in­
complete tag-reporting with various levels of catch inspection

The parameters are defined in 3.2.4.
a = 0.10

-
Po

1-/3 .90.05 .10 .15 .20 .25 .30 .40 .50 .70
1 .50 6 4 4 3 3 4 4 5 9 28

.80 24 14 11 10 10 9 10 11 17 51

.90 39 23 18 15 14 14 14 15 23 66

.95 54 31 24 20 19 18 18 19 28 80

.99 88 50 37 32 29 27 26 28 40 109

.50 39 23 18 15 14 14 14 15 23 66

.80 136 76 56 47 42 39 38 39 55 147

.90 210 116 85 71 63 58 55 56 76 201

.95 281 156 1 14 94 83 76 71 73 97 252

.99 453 246 178 146 128 117 108 109 113 365
|  .50 84 4 7 36 30 27 26 25 27 38 106

.80 276 151 110 91 80 74 69 71 95 247

.90 421 229 166 136 120 110 101 102 134 344

.95 564 305 221 180 158 144 132 133 172 436

.99 888 478 344 280 243 221 201 200 256 639

.50 197 109 80 66 59 55 52 53 72 191

.80 615 332 210 196 171 156 143 143 186 469

.90 925 498 359 291 253 230 209 208 266 662

.95 1230 660 474 384 333 302 273 271 342 847
j  .99 1917 1026 734 593 513 164 416 410 513 1256
[7 5 0 322 176 128 106 93 86 80 81 108 278

.80 981 527 380 308 268 244 221 220 280 696

.90 1468 787 564 456 395 358 • 323 319 402 990
95 1943 1040 744 601 519 470 422 415 519 1272

.  .99 3016 1609 1148 925 797 720 643 630 781 1895
< .50 568 307 222 182 159 145 133 134 173 439

.80 1688 904 647 523 453 410 369 364 457 1121

.90 2512 1341 958 772 667 602 539 529 658 1603

.95 3314 1767 1260 1015 875 789 701 689 853 2065

.99 5120 2725 1939 1558 1340 1207 1073 1046 1285 3093
I  .50 1130 607 436 354 307 279 252 250 317 787

.80 3290 1754 1251 1007 868 783 699 684 84 7 2052

.90 4866 2590 1844 1482 1275 1 148 1021 997 1225 2950

.95 6401 3403 2420 1943 1670 1502 1333 1298 1590 3814
"

9845 5227 3712 2975 2554 2294 2031 1972 2402 5733
I  .50 2832 1512 1079 869 750 677 605 593 736 1789

.80 8074 4289 3048 2444 2100 1887 1672 1626 1985 4 748

.90 11881 6305 4475 3585 3076 2761 244  2 2369 2880 6859

.95 15579 8261 5859 4691 4022 3608 3 186 3086 3743 8894

.99 23864 12643 8959 7166 6138 5501 4850 4691 5669 13423
.50 12548 6658 4724 3785 3246 2914 "  2576 2499 3036 7227
.80 35080 18573 13151 10513 8999 8060 7097 6855 8262 19515
.90 51367 27181 19237 15369 13119 11770 10352 9989 12013 28320
.95 67153 35522 25132 20072 17167 15362 13503 13020 15641 36822
.99 102459 54175 38312 30586 26148 23389 20510 19791 23732 55778
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Table A.2 { c o n tin n e d )

a  =  0.05

1-/3

50
80
90
95
99
50
80
<)()
95
99
50
80
90
95
99
50
80
90
95
99
50
8090
95
99
50
80
90
95
99
50
80
90
95
99
50
80
90
95
99
50
80
90
95
99

.05 .10 • .15
9 6 5

80 19 15
•17 28 22
68 87 29

101 57 44
68 87 29

180 100 75
261 1 16 108
816 191 110
580 289 211
187 77 58
868 202 118
588 2 9 | 212
698 876 272

1018 566 409
821 178 121
827 118 225

1 188 688 •161
1521 820 590
2281 1228 877

580 289 211
1825 711 515
1888 101 1 726
211 7 1 296 929
8600 1921 1 175

985 506 266
2289 1227 880
8281 1780 1227
1187 2209 15 78
6182 8268 2229
1862 1000 718
1178 2888 1 705
6287 8850 2287
8016 •1267 2027

1 1827 6286 •1168
4666 2 190 1777

11012 5851 1162
15898 8176 5807
19572 10886 7271
28752 152 12 10808
20671 10967 7782
47988 25112 18000
66770 25212 25021
81619 41776 21689

128797 65478 46219

n0

.20 .25 .30 .40 .50 .70 .90
5 5 6 7 8 14 46

12 13 13 14 15 25 75
19 18 18 18 20 32 93
25 23 22 23 25 38 109
27 34 33 32 35 51 143
25 23 22 23 25 38 109
62 57 53 51 54 76 207
90 80 75 71 74 102 271

1 16 103 95 90 92 125 331
174 153 141 131 133 177 458
49 45 42 41 44 63 174

122 109 101 95 97 132 346
175 154 142 131 134 178 460
224 197 180 166 168 221 566
224 291 266 243 244 315 794
109 97 90 85 87 119 315
266 233 213 196 197 257 653
275 327 298 272 272 350 879
4 79 417 379 344 343 437 1091
710 615 558 503 498 628 1549

174 153 141 131 133 177 458
419 364 332 302 301 386 968
589 511 464 420 416 528 1310
751 651 590 532 525 662 1631

1 1 10 959 867 777 764 953 2328

299 261 239 219 220 285 722
712 617 560 505 499 630 1554
999 864 781 701 690 863 2114

1272 1098 992 888 872 1084 2641
1874 1614 1455 1297 1269 1567 3788

582 506 459 415 412 523 1297
1274 1 185 1070 957 939 1166 2836
1920 1654 1491 1329 1299 1604 3877
2111 2100 1891 1682 1641 2018 4859
2585 3080 2769 2456 2390 2922 7000

1422 1235 1115 997 977 1213 2947
2240 2871 2582 2291 2230 2730 6544
4655 3997 3590 3179 3088 3764 8989
5905 5066 4548 4022 3902 4743 11299
8651 7415 6649 5870 5684 6886 16345

6224 5348 4799 4243 4116 5000 11905
14292 12324 11041 9727 9402 11345 26830
19997 17114 15324 13487 13022 15682 2701 1
25217 2 1660 19389 1 7053 16456 19791 46652
36989 31632 28303 24871 23978 28788 67742
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Table A. 2 (c o n c l u d e d )

a =  0.01

P  0

'P .05 .10 .15 .20 .25 .30 .40 .50 .70 .90

50 17 12 10 10 10 11 13 16 28 92
50 45 28 23 21 20 20 22 25 42 131
JO 65 39 31 28 27 26 28 32 51 155
95 84 50 39 35 33 32 33 37 59 175
99 126 73 57 49 46 44 45 49 75 218
V—
50 126 73 57 49 46 44 45 49 75 218
80 278 157 118 100 90 85 83 88 127 350
90 382 213 158 133 119 112 108 113 159 432
95 479 266 197 164 147 137 130 136 188 506
99 692 381 280 232 205 190 179 184 250 661

50 271 154 116 98 89 84 82 87 125 317
80 578 319 235 195 174 162 153 158 217 579
90 781 428 314 259 230 212 199 204 276 723
.95 971 531 387 319 281 259 242 246 329 855
.99 1385 75  3 546 448 393 360 332 336 441 1131

ST 648 357 262 218 193 179 169 174 238 629
.80 1312 713 518 425 373 342 316 320 422 1083
.90 1751 948 686 561 490 449 412 414 539 1368
.95 2162 1167 843 687 599 54  7 500 500 645 1629
.99 3048 1640 1180 959 834 758 688 685 874 2181

:5 o 1060 578 422 347 305 281 261 266 353 914
80 2110 1140 823 671 586 535 489 490 633 1597
90 2802 1509 1087 883 769 700 636 634 811 2029
95 3446 1852 1331 1080 938 852 772 767 975 2424
99 4835 2591 1857 1503 1302 1180 1063 1050 1323 3261

50 1869 1011 732 597 522 477 437 439 570 1444
80 3661 1966 1413 1145 994 903 817 81 1 1029 2555
90 4834 2591 1857 1502 1301 1179 1063 1050 1323 3261
95 5927 3172 2270 1834 1586 1435 1290 1271 1593 3909
99 8775 4419 3156 2544 2196 1984 1775 1743 2169 5282

50 3724 2000 1437 1 165 1011 918 830 824 1045 2593
80 7184 3840 2744 2214 1913 1729 1550 1524 1902 4647
90 9441 5038 3595 2896 2498 2255 2015 1976 2152 5957
95 11537 6150 4383 3528 3040 2741 2445 2393 2958 7161
99 16035 8534 6074 4882 4201 3782 3364 3283 4036 9719

50 9332 4980 3554 2863 2470 2229 1993 1954 2424 5894
80 17752 9444 6720 5398 4643 4178 3714 3621 , 4445 10689
90 23221 12342 8773 7040 6049 5438 4824 4695 5742 13759
95 28291 15027 10674 8560 7351 6604 5851 5687 6938 16586
99 39150 20774 14743 11812 10134 9096 8044 7804 9488 22601

50 41348 21937 15566 12469 10696 9600 -8487 8232 10002 23813
80 77628 41128 29142 23312 19969 17897 15779 15263 18444 43682
90 101102 53539 37919 30318 25958 23254 20483 19795 23878 56448
95 122823 65021 46037 36797 31496 28206 24830 23981 28893 68223
99 169262 89565 63386 50642 43326 38784 34111 32916 39588 93317

' tot luced from P a u l i k  [1 9 6 11 . )
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A3 Solution of exp (-a) ax  -  1 

Note: For a < 0*05 take v - 1 /a .

a .V a V a X a X a X

o or.o 20 OOOO 000 0 ino 9 9995 458 0 150 6 6581 095 0 200 4 0051 142 0 250 3 9206004
or. i 19 6078 431 •101, 9 9004 937 151 0 6136295 •201 4 9395120 •251 3 9037 180
or.2 19 2307 691 102 9 8033 798 •152 0 5697 225 202 4-9141 487 •252 3 8808671

•053 18 6679244 103 9 7081477 1 53 0 5263 771 •203 4 8SP0207 •253 3 8701 303
or. i 18 5185184 •10* P 6147 420 •154 0 4835823 •204 48641246 •254 3 8535241

0 055 18 1818180 0 105 9 5231129 0 155 0 4413272 0 205 4 8394 508 0 255 3 8370 292
058 17-8571 4 25 •106 9 4332073 • 150 0 3996 012 •200 4 8150140 •250 3 8206502
•057 17-5438592 •107 9 34 49775 157 0 3583 940 •207 4-7907 929 •257 3 8043857
•058 17 2413787 108 9 2583 768 •158 6 3170950 •208 4-7607 902 •258 3-7882 344
•059 16 9491518 •109 9 1733599 •159 G 2774 902 ■209 4-7430026 •259 3-7721 949

0 060 16 0666657 0 110 9 0898836 0 100 G 2377 804 0 210 4 7194 272 0 2G0 3-7562060
•061 16 3934 414 •111 9 0079060 101 6 1985508 211 4 0900608 •261 3-7404 463
•062 16 1290307 112 8 9273 866 •162 0 1597 983 •212 4 6729003 •202 3-7247347
•063 15 8730138 •113 8-8482865 •163 0 1215021 •213 4 6499430 •263 3-7091299
•004 15 6249974 -114 8 7705G81 •104 0 0830590 •214 4 6271 857 •264 3 6936 307

0 005 15-3840 122 0 115 8 6941 952 0 105 0 0102625 0 215 4 6046258 0 205 3 6782358
066 15 1515112 •116 8 6191 320 •166 0 0093024 •216 4 5822G05 •266 3 6629441
•067 14 9253 682 •117 8-5453 466 •167 5 9727714 •217 4-5600869 •207 3 6477545
•068 14 7058763 •118 8 4728044 •108 5-9360 617 •218 4 5381024 •2G8 3 0320057
■069 14 4927 463 •119 8 4014 745 •169 5 9009657 •219 4 5163014 •269 3 0170767

0 070 14 2857 054 0 120 8 3313262 0 170 5 8650 758 0 220 4 4946903 0 270 3 0027 863
•071 1 4 0844 903 121 8-2623 301 •171 5 8307 850 •221 4 4732575 •271 3 5879935
•072 13 8888 760 •122 8 194 4 575 •172 5-7902859 •222 4-4520036 •272 3 5732972
073 13 6986 147 •123 8 1276809 •173 5 7021 718 •223 4 4309262 •273 3 5580902
074 13 5134952 •124 8 0619 734 174 5 7284 359 •224 4-4100228 •274 3 5441 807

0 075 13 3333 117 0 125 7-9973091 0175 5 G950714 0-225 4-3892910 0-275 3-5297 705
•076 13 1578693 •126 7-9336 629 •176 5 0620721 •226 4 3687 286 •276 3 5154 556
•077 12 9809 832 •127 7 8710106 •177 5 6294 315 •227 4 3483333 •277 3 5012201
•078 12 8204 781 •128 7 8093 287 •178 5 5971430 •228 4 3281028 •278 3-4870869
•079 12 6581876 •129 7-7485942 •179 5 5652022 •229 4 3080351 •279 3 4730370

0 080 12 4999534 0 130 7G887 851 0 180 5-5336015 0 230 4-2881 278 0-280 3-4590756
•081 12 3456 253 •131 7-6298 800 •181 5 5023 357 •231 4-2083789 •281 3 4452017
•082 12 1950603 •132 7-5718581 ■182 5 4713992 •232 4-2487 864 •282 3 4314 143
•083 12 0481 222 •133 7-5146991 •183 5 4407 865 •233 4-2293 482 •283 3 4177 125
•084 11-9046814 •134 7-4583837 •184 5 4104 922 •234 4-2100622 •284 3 4040953

0 085 1 1-7646 144 0 135 7-4028927 0 185 5 3805 110 0 235 4-1909 2G0 0-285 3 3905 624
•086 1 1-6278 033 •136 7 3482078 •180 5 3508 378 •230 4 1719393 •280 3-3771 122
•087 1 1 4941358 •137 7 2943 1 10 •187 5 3214 075 •237 4 1530 985 •287 3 3637 441
•088 11 -3035044 •138 7-2 4 1 1 851 188 5 2923 952 •238 4 1314 024 •288 3 3504 572
•089 1 1 2358 068 • 139 7 1888131 •189 5 2630101 •239 4 1158400 •289 3-3372 508

0 090 11 1 109 150 0140 7 1371786 0 190 5 2351255 0 240 4 0974 300 0 290 3 3241 240
•091 10 PSSR25I •141 7-0862 658 •191 5 2009187 •241 4 0791031 •291 3 31 10759
• 092 10 8693 583 •142 7 0360 593 192 5 I7S99I2 •°4 2 4-OG10277 •292 3 2981058
•093 10 7521581 •143 6 9865 4 38 • 193 5 1513386 •243 4 0430277 •293 3 2852 129

1 094 10-6380 427 111 6 9377 0 49 194 5 1 239566 •214 4 0251617 •294 3 2723964

0 095 10 5260 331 0 l 15 6 8895 283 0 195 5 0908408 0 245 1 0074 2S2 0 295 3 2594555 
3 2469895 
3 2343 976 
3 2218 790 
3 2094331

•090
•09'

10 4163548
10 3089 3 47

116
147

G 8420002 
0-7951 072

•196
•197

5 0699872 
5 0433 917

•246
•247

3 9898 254 
3 9723 518

•296
•297

•09/
•099

10 2037 037 
10 1005954

118
149

0-7488 362 
6 7031 744

•198
•199

5 0170503 
4 9909591

•248
•249

3 9550058 
3-9377858

•298
•299

0-100 9 9995 458 0 150 6 6581095 0 200 4-9651 142 0 260 3-9206 901 0 300 3 1970 591
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Table A.3 ( c o n t i n u e d )

a X a X u X a X a X

' 0 300 3-1970 591 0 350 2 6506127 0 400 2 2316119 0 450 1 8847348 0 500 1-5936243
•301 3 1847564 •351 2 0471 41 1 •401 2 2240010 •451 1-8784240 •501 1 5882633

1 -302 3 1725241 •352 2 0377 143 •402 2 2104218 •452 1 8721351 •502 1 5829188
•303 31G03G17 •353 2-0283321 •403 2-2088724 •453 1-8658679 •503 1-5775904
•304 3 1482684 •354 2 0189 939 •404 2 2013532 •454 1 8596224 •504 1-5722783

0 305 313G2436 0 355 2 0090 990 0 405 2 1938638 0 455 1 8533984 0 503 1-5669623
•300 3 12428G6 •356 2-0004 487 •406 2 1864042 •450 1 8471 958 •506 1 5617022
•307 3 1123968 •357 2 5912 409 •407 21789740 •457 1 8410145 •507 1-5564 38!
•308 3 1005735 •358 2-5820758 •408 21715732 •458 1 8348542 •508 1-5511898
•309 3-0888160 •359 2-5729 530 •409 2 1642015 •459 1 8287149 •509 1-5450572

0 310 3 0771 238 0 300 2-5038723 0 410 215C3580 0 4C0 1 8225905 0 510 1 5407 403
•311 3-OG54 9G1 •361 2 5548333 -411 2 1495444 •461 1 8164989 •511 1 5365389
•312 3 0539325 •302 2-5458 356 •412 21422588 •462 1 8104218 •512 1-5303 53!
313 3 0424 323 •303 2-5368790 -413 2 1350014 •403 1 8043652 •513 1 5251820
•314 3 0309949 •364 2 5279631 •414 2 1277721 •464 1-7083 290 •514 1 5200276

0 315 3 0196198 0 305 2-5190875 0 415 2 1205707 0 465 1 7923131 0 515 1-5148876
•316 3 0083 002 •306 2 5102520 •410 2 1 133 971 •466 1 7*63172 •516 1 5097628
317 2 9970 537 •367 2 5014 563 •417 2 1002510 •407 1 7603413 •517 1 5046532
•318 2-9658 017 •368 2-4927 000 •418 2 0991 322 •463 1 7743854 •519 | -4995 6*5
319 2 9747297 •369 2-4839828 •419 2 0920 406 •469 l 7684491 •519 1 4944788

0 320 2 9G3G570 0 370 2 4753044 0 420 2 0849 750 0 4 70 1-7625325 0-520 1 4894139
•321 2-9526 432 •371 2 4006045 •421 2 0779381 •471 1 7566 355 •521 1 4*43637
•322 2 9410876 •372 2 4580 629 •422 2 0709268 •472 1 7507 573 •521 1-4793282
•323 2-9307 898 •373 2 4 494 991 •423 2 0039420 •473 1 74 49 995 •523 1-4743 074
•324 2 9199493 •374 2 4409730 •424 2 0509 834 •474 1 7390603 •524 1-4693011

0-325 2 9091 655 0 375 2 4324 843 0 425 2 0500 510 0 475 1 7332402 0 525 1-464 3092
•326 2-8964 379 •376 2 4240326 •420 2 0431444 •470 1 7274391 •526 1 4593317
•327 2-8877 060 •377 2 4150176 •427 2 0302035 •477 1 7210 56ft •527 1-4543686
•328 2-8771 494 •378 2 4072391 •428 2 0291083 •478 1 7163932 •528 1 4494195
•329 2-8005874 •379 2-3988 909 •429 2 0225 784 •479 17101 483 •529 1 4444847

0 330 2-8500 797 0 3S0 2-3905 900 0 4 30 2 0157 738 0 430 1-7044219 0 530 1-4395640
•331 2-8456257 •381 2-3823 199 •431 2 0089 942 •4S1 1 6987139 •531 1-4346573
•332 2 8352249 •3S2 2-3740846 •432 2 0022 395 -482 1 6930242 •532 1 4297645
•333 2 8248 770 -383 2-3G68 845 •433 1-9955 095 •4S3 1 6873 527 •533 1-4243856
•334 2 8145814 •384 2 3577192 •431 1-9838042 •484 1 6816993 •534 1-4200 205

0 335 2 8043 377 0 385 2-3495885 0 435 1-9821 232 0 485 1 6760639 0 535 1-4151691
•336 2-7941 455 •3S6 2 3414 922 •436 1-9754 665 •4S0 1-6704464 •536 1 4103313
•337 2-7840042 •387 2-3334 300 •437 I-9GS3339 •437 1 6GI8467 •537 1-4055072
•338 2-7739134 •388 2 3254 016 •438 1 9622 253 •483 1 6592647 •538 1-4006965
•339 2-7638 728 •389 2 3174068 •439 1-9550 405 •489 i 6537 002 •539 1-3958994
0 340 2*7538 818 0 390 2 3094 453 0 440 1-9400 792 0 490 1 6481533 0-540 1-3911 155
•341 2-7439401 •391 2 3015170 •441 1 9425415 •491 1 6426 237 •541 1-3863 450
•342 2 7340472 •392 2 2936214 ■442 1-9360271 •492 1 6371 ill •542 1-3815878
•343 2 7242027 •393 2-2857 5.85 443 1-9295360 •493 1 6316164 •543 1 -3768437
314 2-7144062 •394 2 27792SO 444 1 9230678 •494 1 6201384 •514 1-3721 128

0-345 2 7016573 0 395 2 2701 297 0 445 1-9166 226 0-495 1 6206774 0 545 1-3673 946
•316 2 0949555 •396 2-2023 632 •446 1 9102001 •496 1 6152333 •516 1-3620 899
•347 2 6853000 •397 2 2546 264 447 l-903800£ 54-*97 1 6098 061 •517 1-3579 979
•318 2 6756921 •398 2 2409251 •448 1 8974 228 -498 1 Go 13955 •518 l 3533187
•319 2 OGGI 290 •399 2 2392 530 •419 1 891067? •499 1-5990016 •519 1-3466 ;>23

0 350 2 6566127 0 400 2 2310 119 0 450 1S81734S 0 500 1-5936 243 0-550 1-3439987
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Tfible A .3 {continued)

a V (l X

0 550 1 3139987 0 0«HI 1 1202 012
551 1 3393577 •601 1 1221 H20
•552 1-3347 293 -002 M 181127
•653 1 3301 J35 •IW*3 j 1140533
•554 I 3255101 •604 1 1100038

0-555 1-3209 191 0 005 1-1059 041
•550 1 3163405 ooo 1-1019 3*2
•r».s7 13117742 607 1 0979 1 4 1
55 R 1 3072201 008 1 0939037
•559 1 3026782 ■609 1 0H99029

0 500 1 2981485 0 610 1 0859 1 17
•501 1 2936 307 O il 10819301
•502 1-2S91 250 -012 1 0779581
•503 1 2840312 •613 10739 955
•564 1-2K01 493 -614 1 0700424

0 605 1 2756792 0 015 10000 987
•600 1 2712 209 -010 1 0021043
•507 1 2007743 •017 10582 393
•508 1-2023 394 -618 1 0543230
•609 1 2579161 -019 1-0504 171

0 570 1 2535043 0 620 1 0405198
•571 1 2491 040 021 J 0420317
•57 2 1 2447151 •022 1-0387 527
573 1 2403377 •623 J 0348828
•574 1 2359715 024 1 0310219

0 575 1-2310 167 0 625 1-0271 701
•670 1 2272730 •620 1 0233 272
■577 1-2229406 ■627 1 0194 933
•678 1 2180192 •028 1 0150083
•579 1 2143089 •G29 1 0118 521

0-580 1 2100 097 0 030 1 0080447
•581 1-2057 214 631 1 0042401
•582 1 2014440 ■032 1 0004503
•583 1-1971 774 633 0 9906 752
•584 1 1929217 •634 0 9929027

0 585 11880708 0 635 0 9891 389
•680 1 18 44 420 •636 •9853837
•587 1 1802190 037 •9810 371
•588 1 1760060 ■038 9778989
•589 11718030 039 •9741G93

0 590 1 1070 1 18 0 040 0 9701481
•691 1 1034304 641 9007354
•592 1 1592594 •642 •9630310
•593 1-1550 9HH 043 9593350
•591 I 1609485 04 4 •9550473

* 595 1 )4 6 8 0 8 5 0 015 0 9519679
•596 M420788 040 9182907
•697 1 1385592 047 •9116 338
•598 1 1344498 ■04 8 -9409790
•599 I 1303505 -049 937 3 324
600 1 1202 012 (l 050 9330 939

a X a .V a

0 050 0 9330939 0 700 0 7014 337 0 750
051 •9300635 •701 •7581091 •751
052 •9264 412 •702 •7549 III •752
053 •9228 268 •703 •7510 598 •753
•054 9192204 •704 •7484 150 •754

0 055 0 9150 220 0 705 0 7451 707 0 755
•650 •9120315 •700 •7410450 •756
•057 •9084 489 •707 •7387 198 •757
-058 •9048742 •708 •7355 010 •758
•059 •9013073 •709 •7322887 •759

0 000 0 8977 481 0 710 0 7290629 0 760
•001 •8941908 •711 •7258834 •701
•002 •8906531 •712 •7226003 •762
003 •8871 172 •713 •7195036 •703
•004 •8835889 •714 •7103232 •704

0 065 0 8800 683 0 715 0 7131 491 0 705
•000 •8705 553 •710 •7099813 •700
•007 •8730498 •717 •7008 198 •707
•008 •8095 519 •718 •7030045 •708
•0G9 ■8000 810 •719 •7005154 •700

0 070 0 8625 787 0-720 0 0973725 0 770
071 8591032 •721 •0942 358 •771
•072 ■8550 352 •722 0911053 •772
•073 8521746 •723 0R79R0R •773
•074 8487 214 •724 •0848 025 •774

0 075 0 8452 755 0 725 0 0817 503 0 775
070 8418370 •720 •0780441 •770
077 8384057 •727 •0755440 •777
678 •8349816 •728 •0724499 •778
•G79 •8315048 •729 •6093 618 •779

0 080 0 8281552 0-730 0 GG02790 0-780
•081 •8247 528 •731 •0632035 •781
•082 •8213575 •732 ■GG01332 •782
■083 8179694 •733 •6570 089 •783
•684 •8145883 •734 •6540104 •784

0 085 0 8112143 0 735 0 0509579 0 785
080 •8078 473 •730 •6479112 •786
087 •8014 874 •737 •6448703 •787
■088 8011344 •738 •6418 352 •788
089 •7977 884 •739 6388059 •789

0 090 0 794 4493 0-7 40 0 0357 824 0 790
•091 •7911 171 •741 •6327 640 •791
092 •7877918 •742 •0297 520 •792
• 093 •7911733 •743 •0207 462 •793
694 •7811617 •744 •0237450 •794

(1095 0 7778568 0 745 0 6207 500 0 795
•696 •7715 587 •740 •0177012 •700
697 •771 267 1 •747 •01 4 7 775 •797
098 •767" •748 •6117 994 •798
•G90 •704'TOf9 •749 •0088209 • i Mil

0 700 0 7GI1337 0-750 0-6058 600 o goo

x

o-oo.r,8 0oo
•602ft986 
•6999 4 27 
•6969 924 
•5940475

0-5911 Of) | 
•SftRl742 
•5862 457 
•6823 227 
•5791060

0 5764 927 
•5735 858 
•5706842 
•5677 880 
•5048970

0 5620 II4 
5591 310 
•5562558 
•5533 859 
•5505 213

0 5470018 
•5449073 
•6419584 
•5391 144 
•5302 760

0 5334419
•5300132
•5277897
•5249712
•5221578

0 5193494 
•5165460 
•5137470 
•5109542 
•508165S

0 5053823 
•5026037 
•4998301 
•4970613 
•4942975

0 4915385
• 4887843
• 4660350 
•4832 905
• 4 805508

0 1779 159 
•4750958
• 4723601
• 4690398 
4609239

0 4642 129
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Table A.3 (c o n c lu d e d )

(i X u X

0 800 0 4642128 0 850 0 3313 117
801 •4615003 •851 3318 652
802 4588015 852 •3293 697
•803 4561073 853 •3268 882
804 4534 148 -854 •3244 107

0 805 0 4507 270 0 855 0 3219371
•806 •44HO 438 •850 •3194 675
•807 4453652 857 •3170019
■808 •44 20 911 •858 •3145 402
•809 •4400217 •859 3120824

0 810 0 4373508 0 800 0 309G2SG
■811 •4340 905 •861 •3071780
812 •4320407 •862 •3017 325
813 •4293 894 •863 •3022903
814 •4267 420 •864 •2998520

0 815 0 4241 004 0 805 0 2974170
-810 4214620 •800 •2949 869
•817 •4188292 •807 •2925 001
•818 •4102003 •808 •2901372
•819 4135759 •b09 •2877180

0 820 0 4109558 0 870 0 2853027
•821 •4083 402 •871 •2S28911
•822 •4057 290 •872 •2801833
•823 •4031222 •873 •2780793
•824 •4005197 •874 •2756 790

0 825 0 3979215 0 875 0 2732 625
•820 •3953 278 •870 •2708 897
•827 •3927 383 •877 •2685007
■828 •3901532 •878 •2001153
•829 •3875723 •879 •2037 337

0 830 0 3849957 0 8S0 0 2613557
•831 •3824 235 •881 •2569 815
•832 •3798 554 •882 •2506109
•833 •3772910 •883 •2542439
•834 •3747 321 •884 •2518 606

0 835 0 3721768 0 885 0 2495210
836 •3690 257 •886 •2471649
837 •3070787 •887 •2448125
•838 •3045 360 •898 •2424037
•839 •3019974 •883 •2401185

0 840 0 3594 030 0 890 0 2377709
•HI 1 •3509 327 •891 -2354 389
812 •3514 000 K92 •2331014
813 3518840 •893 •2307 735
841 3493 007 •891 •2281401

0 815 0 3108 528 0 895 0 2261 222
•816 3143431 ■896 •2238019
•847 •3418374 •897 •2214 851
•818 •3393358 •898 •2191718
849 •3308 383 •899 •2168 620

0 850 0-3313 117 0-900 0-2145 557

u X a V

0 900 0 2145557 0 950 0 1034 7bH
•901 •2122129 951 •1013381
•902 •2099 535 •952 •0992005
•903 •2070 576 653 0970656
904 •2053 652 954 0949342

0 905 0 2030702 0-955 0 0928056
•906 •2007 900 •950 0906799
907 •1985064 •957 •0685573
•908 •1902296 •958 0864376
■909 •1939542 •959 (1643 209

0 910 0 1916824 0 900 0 0822071
911 •1694137 •901 0S00963
-912 1871484 •962 •0779885
•613 •184 8 660 •963 •0758 836
-914 •1620281 ■964 •0737 610

0 915 0 1603729 0 965 0 0710 825
•616 1761211 •900 •0695 864
•617 •1758 725 •967 •0074 932
•918 •1730 274 •908 •0654028
•919 •1713655 •969 •0033154

0-920 0 1091469 0 97() 00012 308
•921 -1069 1 10 971 ■0591492
•922 1610 79 > 972 •0570 704
•923 1024 50.n 973 •054 9 94 4
•924 •100225 i U74 •0529 213

0 925 01580031 <* 975 0-050S5I 1
•920 •1557841 •976 •0487 837
•927 •1535 683 •977 •0407191
•628 •1513 558 •978 •0140574
•629 •1491405 •979 •04 25 985

0 930 0 1409104 0 9S0 0 0 405424
931 •1 4 47 374 •981 •03.84 691
•932 •1425 377 •982 •0304 366
•633 •1403412 •963 •03 4 3 909
934 •1381478 •984 •0323400

0 935 0 1359576 0 985 0 0303 038
•936 •1337706 •986 •0282644
•937 •1315867 •967 •0262 278
■938 •1291060 •688 •0241939
■639 •1272283 •989 •0221628

0 910 0 1250538 0 990 0 0201 345
911 •1228825 •991 -0181088
942 •1207 142 •992 •0160 859
913 •1185190 •993 •o| 4**657
911 •1103809 •99 4 •0120 492

(t 945 0 1 142 279 0-995 0 0100 335
■916 •1120720 •996 •Oo>u 214
•947 •1099191 •997 (1060 120
■948 •1077 693 •998 •0o 10053
■949 1056 226 •999 •0020013

01034786 1-000 0-0ot *0 4*1*0

( R e p r o d u c e d  from B a r t o n ,  D a v i d  a n d  M er r i n g t o n  11960).  T h e  a b o v e  t a b l e  is  a l s o  
g i v e n  by D a v i d ,  K e n d a l l  a n d  B a r t o n ,  Sy mme tr ic  Inunct ions  ami  A l l i e d  l a h l e s  
( C a m b r i d g e  U n i v e r s i t y  P r e s s ,  for  t h e  B i o m e t r i k a  T r u s t e e s ) ,  1966 ,  T a b l e  8 . 1 . )
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A4 Table for finding the maximum-likelihood estimate of P , the parameter 
of a truncated geometric distribution

In (he following table the function

K O ) - •s<-r+1 - ( * ■  ' 1

is evaluated for differenj values of /’ (- 1 — (1) and 5. Using linear inter­
polation, this table can be used for solving the equation f ( Q )  =  x  as des­
cribed in 4.1.6 (4).

P

s 0-001 0* 10 0-20 0*30 0-40 0-50 0-60 0-70 0-80 0-90 0-999
2 1-500 1*474 1*444 1-412 1-375 1-333 1-286 1-231 1-167 1-091 1-001
3 1-999 1*930 1-852 1*767 1-673 1-571 1-462 1-345 1*226 1-108 1-001
4 2-499 2-369 2-225 2-069 1-904 1-733 1-562 1-396 1-244 M i l 1-001
5 2-998 2-790 2-563 2-323 2-078 1-839 1-615 1-416 1-248 1-111 1-001
6 3-497 3-195 2*868 2*533 2-206 1-905 1-642 1*424 1-250 1-111 1-001
7 3-996 3-582 3-142 2-705 2-298 1-945 1-655 1-427 1-250 1-111 1-001
8 4-495 3-953 3*387 2-844 2-363 1*969 1*661 1-428 1-250 1*111 1-001
9 4-993 4-308 3-605 2-955 2-408 1-982 1*664 1-428 1-250 1-111 1-001
10 5-492 4-647 3*797 3-043 2-439 1-990 1*666 1-429 1-250 1-111 1-001
11 5-990 1-969 3-966 3-111 2-460 1*995 1-666 1-429 1-250 1-111 1-001
12 6-488 5*277 4-115 3-165 2-474 1-997 1-666 1-429 1-250 1-111 1-001
13 6-986 5-569 4-244 3-206 2-483 1-998 1-667 1-429 1-250 1-111 1-001
14 7-484 5-847 4-356 3-238 2-489 1-999 1-667 1-429 1-250 1-111 1*001
15 7-981 6-111 4-453 3-262 2-493 2-000 1-667 1-429 1-250 1-111 1-001
16 8-479 0-300 4*537 3- 280 2*495 2-000 1-667 1-429 1-250 1-111 1-001
17 8-976 6-597 4-608 3*294 2-497 2-000 1-667 1-429 1-250 1-111 1-001
18 9-473 6-821 4-670 3-304 2-498 2-000 1-667 1-429 1-250 1-111 1-001
19 9-970 7-033 4-722 3-312 2*499 2-000 1-667 1-429 1-250 1-111 1*001
20 10-467 7*232 4-767 3-317 2*499 2-000 1-667 1-429 1-250 1-111 1-001
21 10-963 7-429 4-805 3*322 2-500 2-000 1-667 1-429 1-250 1-111 1-001
22 11-460 7-597 4-836 3*325 2-500 2-000 1-667 1-429 1-250 1-111 1-001
23 11*956 7*763 4-863 3-327 2-500 2-000 1-667 1-429 1-250 1-111 1-001
24 12*452 7*920 4-886 3*329 2*500 2-000 1-667 1*429 1-250 1-111 1-001
25 12-948 8-066 4-905 3*330 2-500 2-000 1-667 1-429 1-250 1-111 1-001
26 13*444 8-204 4-921 3-331 2-500 2-000 1-667 1-429 1-250 1-111 1-001

( R e p r o d u c e d  fiom T h o m a s s o n  a n d  Ks ip ad ia  119G8J.)



- 236-

A5 Tabulation of

Using linear interpolation, the following table can be used for solving 
the equation /(a) = «(e.g. see equation (6.5)).

X •0 •l •2 •3 •4 •5 •6 •7 •8 •9
0 •4916 •4832 •4750 •4668 •4584 •4504 •4422 •4340 •4 260
1 •4180 •4102 •4024 •3946 •3870 •3794 •3720 •3648 •3576 •3504
2 •3434 •3366 •3300 •3234 •3168 •3106 •3044 •2984 •2924 •2866
3 •2810 •2754 •2700 •2648 •2596 •2546 •2496 •2450 •2402 •2358
4 •2314 •2270 •2228 •2188 •2148 •2110 •2072 •2036 •2000 •1966
5 •1932 •1900 •1868 •1836 •1806 •1778 •1748 •1720 •1694 •1668
6 •1642 •1616 •1592 •1568 •1546 •1524 •1502 •1480 •1460 •1440
7 •1420 •1400 •1382 •1364 •1346 •1328 •1310 •1294 •1278 •1262
8 *1246 •1232 •1216 •1202 •1188 •1174 • 1160 •1148 •1134 •1122

( R e p r o d u c e d  from D e e m e r  a n d  Votuvv I 1 9 5 5 b )



AG Tabulation of X kSk \ SKa g  o
^  K = 2 3 1 .5 6 7 8

.01 .0101 .01 10 .01 10 .01 10 .01 10 .0111) .01 10.02 .0201 .0201 .020 1 .0201 .0201 .0204 .0204.01 .0.308 .0309 .0309 .0309 0)09 .0309 .030901 .0115 .0110 .0110 (II10 .0110 .0410 .0110.05 .0523 .0520 .0527 0527 .0527 .0527 .0527.00 .0032 .0038 .0038 .0038 .0038 .0038 .0038.07 .0712 .07 12 .0752 (1752 0752 0752 .0752.08 .085 1 .0808 .0809 .0809 0809 .0809 .0809.0!) .0967 .0980 .0989 .0989 .0989 .0989 .0989.10 .1081 .1107 1 II 1 111) 1111 .1111 .1111.1 1 .1190 .1230 .1235 .1230 . 1230 . 1230 .1230.12 .1312 .1.355 .1363 .1301 . 1 Hi 4 1304 . 1301.13 .1 128 .1483 .1493 .1 19 1 1 195 .1495 .1495.11 1515 .1012 . 1025 .1027 1028 .1028 1028.15 . 1 003 .1711 .1701 .1701 170.5 .1705 1705.10 .1781 .1879 .1900 . 190 1 .1905 . 1905 .1905.17 .1900 .2015 .2011 .2017 .2017 .2017 .2047.18 .2019 .2153 .2180 .2193 2195 .2195 .2195.19 .2138 .2291 .2.33.3 .234 1 .2345 .2) 10 .2340.20 .2258 .2430 .2181 2190 .2199 .2499 .2199.21 .2378 .2.580 .2038 .2053 2057 .2058 .2058.22 .2 198 .2727 .2795 .2814 .2818 .2819 .2819.23 .2018 .2875 .2955 .2978 2985 .2980 .2987.24 .2737 .3025 .31 18 .31 17 .3155 .3158 .3158.25 2857 .3177 .3285 .3319 .3329 .3332 .3333.20 .2977 .3.3.30 .3454 .3 195 . 1508 .3.512 .3513.27 .3090 .3485 .3027 .3075 .3091 .3090 .3098.28 .3210 .30 11 .380.3 .3800 .3879 .3880 .3888.29 .3335 .3800 .3982 .1019 .4072 .1080 .4083.30 .3153 .3959 .4 101 .4212 . 1270 .1281 .428 1.31 .3572 .4120 .4319 .11 19 1 174 .4180 .4491.32 .3090 .4282 .4 538 .4012 1082 .4098 .4704.33 .3807 .14 15 . 1729 .18 18 1895 .1911 .4921.31 .3924 .4010 1923 .5058 5114 .51 17 .51 15.35 1011 .4775 .5121 527 1 .53 10 .5307 .5.377.30 .1157 .4912 .5321 .5 19 l .5570 5003 .5010.37 .4272 .5109 .552 1 .5718 .5800 .5845 .5801.38 .4387 .5277 .5730 .5918 .0019 .609 1 .01 14.39 .4502 .5 110 .5938 .0181 .0297 .0350 .0374.40 .1015 .5010 .0149 .0120 0552 .001 1 .004.3.41 .4728 .5780 .6303 .000 I 0813 .0885 .0920.42 .4811 .5957 .6579 .0910 .7080 .7101 .7205.43 495.3 .0128 .0798 .7 102 .7.353 .7450 .7 199.44 .5001 .0299 .7019 .7 118 .7033 .7715 .7801.45 .5171 .0471 .7212 .7079 .7919 .8017 8111.40 .5281 0041 .7407 .7915 .8212 .8358 .8435.47 .5392 .0810 .709 1 .821 1 .8512 .8077 .8707.48 .5500 .0988 .7923 .8188 .8817 .9005 .9109

.49 .5008 .7161 .8 15 l

.50 .5714 .7.333 .8387

.51 .5820 .7500 .802 1

.52 .5925 .7678 .8857

.53 .0029 .7850 .909 1

.54 .0132 .8022 .9.333

.55 .6235 .819.3 .9573

.56 .6336 .8.305 .98 1 3

.57 .0437 .8535 1.0055

.58 .65.37 .8705 1 0297

.59 .0630 .8875 10510

.60 .0735 .9014 1.0781.01 .0832 .921.3 1 1028

.62 .6929 .9.380 1.1273

.6.3 .7025 .9548 1 1518

.04 .7119 .9714 1 1763

.65 .7214 .9880 1.2009

.60 .7307 1.0044 1.2251
67 .7399 1.0208 1.2199
.08 .7491 1.0371 1.2743
.69 .7581 1 05.31 1.2988
.70 .7071 1 0095 1.32 12.71 .7700 1.0855 1.3470
.72 .78 18 1.101 1 1 .3719.73 .7930 111 73 l .3901.74 .8022 1.1330 I 4202.75 .8108 1.1486 1.1113.70 .8193 1.10 11 1.1683.77 .8277 1.1795 1 1921.78 .8300 1.1917 1.5 1 59.79 .84 13 1.2099 1.5395
.80 .8525 1.2219 1.5631
.81 .8005 1.2399 1.5805
.82 .8686 1.2547 1 6097
.83 .8705 1 209 1 1.0328
.84 .8843 1.2839 1.6558
.85 .8921 1.2984 1.6780
.80 .8998 1.3127 1.7013
87 .9075 1.3209 1 7238.88 .9150 1.3409 1.7 (<• 1
.89 .9225 1.35 19 1 71.83
.90 .9299 1.3087 1 7903.91 .9372 1.382 l 1.8121
.92 .9445 1.3900 1.8337
.93 .9517 1.409 1 1.8552
.9 1 .9588 1.4227 1 8705
.95 .9058 1.4359 1.8975
.90 .9728 1.4 190 1 9181
.97 .9797 1.4019 1.9391
.98 .9805 1.4747 1.9596.99 .99.33 1.487 1 1.97991.00 1.0000 1.5000 2.0000

.8700 .9130 .0.341 .9401

.9018 .9449 .9080 .9824

.9.333 .9774 1.0041 1.0198.9023 1 0100 1.0403 1.0583

.9917 1.0445 1.0775 1.09781021 1 1.0789 1.1157 1.13871 051 1 1.11 10 1.1547 1.1806
1.0818 1.1 197 1.1910 1.2237
1 1125 1.1800 1 235 1 1.2081
II 135 1 2229 1.2772 1.31.30
1.1748 1 2004 1.3198 1.300 i1 200 1 1 298 1 1 1031 1,10811.2382 1.3370 1.1077 1 45701.2702 1 1701 1.45)0 1 50811 3025 1.4157 1.4991 1.5.5981.3 150 1 1557 1.5 161 1.61271.3077 1 1903 1 5938 1.00681.1000 1 5373 1.042 1 1.7220111 10 1 5787 1 0917 1 7780
1.4007 1 0205 1.7417 1.83621 5000 1 0020 1.7925 1 89501.5333 1 7051 1 8 1 19 1 95 191 51.67 1 7 179 1 8900 2.01581.0002 1.7910 1 9487 2.07781 03 18 1.83 11 2 0019 2.14071 0773 1 8779 2 0557 2.20461.7009 1.9217 2.1 100 2.26941 73 15 1.9050 2.1617 2.33501.7080 2.0097 2.2199 2 10141.8015 2 0539 2.2754 2 24801 5 150 2 0981 2 3312 2.53641.8083 2.1 124 2.3872 2.00 181.9010 2.1868 2 4436 2.0737
1.9)48 2.2311 2.5001 2.74321 9078 2 2751 2 5507 2 81312 0007 2.3197 26135 2 883.3
2.0335 2.3638 2.6702 2.95382 0002 2 4079 2.7270 3.0215
2 0986 2.4518 2.7838 3 0953
2 1309 21955 2 8 105 3.1662
2 1629 2 5391 2 8970 3.2372
2.1918 2 5824 2 953 1 3 30b02 2261 2 6255 3 0090 3.37882 2578 2 663 1 .3.0055 .3 4 19 32.28*10 2 7110 3.1212 3 51902.3200 2 75 33 .3 1705 3.58002.3500 2 795 1 3 2315 3.65932.381 1 2.8309 3.2801 3.72352 11 12 2 3793 3 3102 3.79722 411 1 2 9192 3 39 10 3.80512 I7u7 2 9598 3.4 172 3.93322.5000 3.0000 .3.5000 4 0000

( R e p r o d u c e d  from R o b s o n  and  C ha p m a n  [1 ‘J b l l . )
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