UNIVERSITY OF NAIROBI

SCHOOL OF COMPUTING AND
INFORMATICS

Comparative Study of REST and SOAP: Case of
Registrar of Political Parties’ Kenya

By
Christopher Wambua Kiama
P58/61788/2010

Supervisor: Mr. Lawrence Muchemi

August 2013

A Research Project Submitted in Partial Fulfillment of Requirements for the degree
of Master of Science in Computer Science

Declaration
The Research Project as presented in this report is my original work and has not been
presented for any other University Award. Materials of work done by other researchers

are mentioned by clear reference and citations.

SIgNALUIE: tueiniieiieeiiineenenececnsannns

D2 | (< S

Christopher Wambua Kiama

P58/61788/2010

The Research Project has been submitted in partial fulfililment of the Requirements for
the Degree of Master of Science in Computer Science at the University of Nairobi with

my approval as the University supervisor.

SIgNALUIE: tuivniieiieiiiiniinrneensenrnnens

DT | (< N
Mr. Lawrence Muchemi

School of Computing and Informatics

Abstract

This project focuses on the comparative studies of Representational state Transfers
(REST) and Simple Object Access protocol (SOAP), it demonstrates on how REST can
perform better compared to SOAP in terms of consolidating data from different sources
and presenting it in a common relational databases that can be used on a day to day
activities. The data is presented in a web service in the form of HyperText MarkUp
Language (HTML), Extensible Markup Language (XML) and JavaScript Object
Notation (JSON).

It is also show how applications built on REST consume less memory and load fast
compared to the ones build on SOAP, in addition to performance and scalability which is
a key feature of REST.

They differ in context and usage; SOAP is a protocol while REST is architecture though
they are all based on web service.

The comparative study of the two technologies is based on the data from different sources
submitted by political parties to the registrar of parties.

Experiments were done to measure how much time and memory a SOAP and REST clients in
PHP take in accessing the web service applications. The response messages and results showed
that a REST client performs better on this than a SOAP client. Also experimented on scalability
to determine how the two grow to accommodate increasing number of users, applications and

systems.

Acknowledgement

My heartfelt gratitude goes to my Supervisor Mr. Lawrence Muchemi for his unrelenting
intellectual guidance, motivation, suggestions and support at all the stages of my research
project. Without him, this project would not have been possible. I would also wish to
extend my sincere appreciation to my presentation panel members, Dr. E. Opiyo, Mr. A.
Mwaura, Mrs. C. Ronge for their time, input and giving me ideas on the areas that

required improvement on the project.

Special thanks to my parents Mr. and Mrs. Kiama who inspired and pushed me

throughout the course and more so to complete the project

Above all, I owe this achievement to the Almighty God for the strength, gift of life and
for enabling me pay my fees.

May God bless you all!

Dedication
| dedicate this Master of Science Research Project to my beloved parents Mr. and Mrs.
Kiama and my daughter Sally Ngina. There is no doubt in my mind that without their

inspiration and counsel, I couldn’t have completed this process.

Table of Contents

DIECIAIALION. ...t bbbt [
ADSEFACT ...ttt I
ACKNOWIBAGEMENT ...ttt ii
DEAICALION ...t b bbbt b ettt b e n et Y%
LISE OF FIQUIES ...ttt Vv
LISE OF TADIES ... Vi
DefiNITION OF ACIONYMIS.....uiiiiiiiiiiiee et bbbttt vii
(01 5 F=T o (=1 P ERP PP 1
INEFOTUCTION ...ttt et r et R et R e et R e e e e e r e nr e e er e n e e s e e n e nr e e e nenn e arenneneas 1
1.1 ProDIEM SEAIEMENT......c.eitiiiiiiie ettt bbb bbb bbb bbbt bbb 3
1.2 JUSTITICALION ...tttk bbb bbbt bbbttt bbbt 3
1.3 ODJECHIVES OF PIOJECT ...ttt bbbt bbbt bbbt be e 4
1.4 Project outcomes and their significance to Registrar of Political parties...........cccocvvneininineiieneie 4
1.5 RESEAICH QUESTIONS. ...ttt Rt Rt n e n e r e 4
1.6 SCOPE OF T8 PIOJECT ...ttt r e n e r e 5
1.7 ASSUMPLIONS OF tNe FESEAICIcvviiieiecir e 5
Chapter 2: LIterature REVIEW..........coi it 6
2.0 INEFOAUCTION ...ttt h et r et bt h et b e Rt R e bt Rt et n et b e n st r e 6
2.1 Differences between REST and SOAP WED SEIVICESciiiiiiiiirieiie e 6
2.2 HOW REST cOMPAres WIth SOAPoouiiiiiiietie et bbbt b et 7
2.3 Challenges facing Registrar of POIItICAl PArtis.........ccocoreiiiriiiee e 7
2.4 Contemporary Issues of Kenyan Voting SYSIEMS.........ooeiiiiiiiienee et 8
2.5 Sources of political parties membership INformation ..o 9
2.8 MODITE USE ...ttt Rttt 9
2.7 Case Study: Yahoo Web Services based on REST approachccccceeveveeiieiieie e 9
2.8 Use of SOAP in the Mobile TEChNOIOQYcoiiiiiiiiie e 10
2.9 Building a web service for political parties 0N SOAP ..ot 11
Chapter 3: MethodOIOgY.........ccouiiiiiieieie i 15
BL0.0 INEFOAUCTION ..ttt et b e et b ettt b ettt b et b e bbb e bt ettt e bbb en e st e 15
3.1.0 REQUITEIMENTS PRASE.......cuiiteieteite ettt sttt sttt sttt sttt bbbttt be bbbt b e e bt be st e ebe st e 15
3.2.0 ANAIYSIS PRESE ...ttt bbb bbbt R e bRt b e bt b n et e 16
3.2.1 Data SOUrCeS and PrePAratiONcccierieiiirieiite ettt sttt sttt b ettt be bt e st ettt s et nren et e 17
3.3.0 DeSIgNS frameWOrKS PRASEc.eiiiieiiiie ittt ettt bbb b eesne e 18

3.3.1 SOAP DeSign FraMEWOTKccuiiiiiiiieiiie bbbttt bbbt eesne e 18

3.3.2 REST DeSign framMEBWOIKccuieieicie ettt e e se et sreeneeneene e eenrenns 19

IO o (0] (01470 T-IN I 1=T] o[S 20
3.5.0 SCIEEN DIBSIGN ...ttt ittt sttt ettt bt bt bt b bbbt b e bbb bbb b e bt bbbt bbbt bbbt b e ren e b 22
3.6.0 DALADASE DESIGNvevieeteite etttk et b etttk b bbbt b e bR R bbb bbbt b b n e 23
3.7.0 IMPIEMENLALION PRESE......ccuiietiite ettt bbbt b bbb bbbt b e re e 24
3.7.1 Prototype IMPIEMENTALIONceiviiiiieiieriee ettt 24
KT T @) AN ol 1] (=Y 1T o1 =L o] RS 26
3. 7.3 REST IMPIEMENTALIONoviieiticiiceeie ettt e et st e s te e e s e e e tesaesbesteenaereeneeseeneenns 27
3.8.0 EXPEIIMENES PRASE.....c.uiviiiiieiteeteee et e st te ettt te st e e e e e et et e se et e s teene e s e et e testesbeseeeneeneeneeseenrenrn 27
3.8.1 REST and SOAP EXPErMENtSc.ccvevvererierieriesirseerereeseenieseens ettt rn et 27
3.9.0 DEPIOYMENT PRASE ...ttt bbb et b bbb bbb bbb bbbttt b bbb 28
Chapter 4: Results and DISCUSSIONc.cocueiieiieiiiieeie e e seesteesie e sre e reenae e sres 30
4.0.0 INEFOAUCTION ..ttt r et r et r e bt R et r e nn e n s e e e e r e nn e enenr e enenn e 30
L0100 1 g TSP 30
4.1.1 Data consolidation (CSV/XLS and TXT fil€)......ccoveiiiiiiie it 30
4.1.2 Performance measure in REST and SOAP ...ttt 32
4.1.3 Graphical Analysis of REST and SOAP 0N Performancecccoeveiiiniinineneneese s 34
4.1.4 Graphical Analysis of REST and SOAP 0on Scalabilityccoviiiiiiiiiiiiieeesc e 36
4.1.5 Extensibility 0f REST @GN0 SOAP ..ottt sttt et sr et sne e 40
4.1.6 Maintainability 0f REST @nd SOAPoo ittt ae e sre e teenteeeeenes 43
4. 2.0 DISCUSSIONctvereeieireeeiesre et sr et r ettt r e s e r e s e Rt ne et R e ne e st e Rt ne e bt e Rt A e e s e e Rt nr e s e e Rt e e e e e r e nn e e erenn e enenne e 44
Chapter 5: Conclusion and Recommendationcccccveveiieieciesie e 45
5.0 CONCIUSION ..ttt bbb e bt bbbt b e bbb b bt e bt b e s bt et be bbb 45
5.1 RECOMMENGALIONS ..ottt ettt r et b bbb e bt r et et r e r e nn e 45
5.2 Suggestions for FUrther IMProVEMENTcoii it ta et e e ae s aeaneas 46
RETEIEINCES ...ttt bbbt 57
Appendix A: Systems SPeCIfiCatiONScccooveiieii i 49

Appendix B: SOAP Implementation Code SNIPPETL.......c.cooiiiiiiiieiiieie e 50

List of figures

FIGURE 3.1: MODEL FRAMEWORK OF SOAPccuiiiiieiiisee sttt sttt ss st ssssesessssenens 19
FIGURE 3.2: MODEL FRAMEWORK OF RESTouviiiiiiiieiisieesi ettt sttt snssenens 20
FIGURE 3.3: MODEL FRAMEWORK OF THE TWO PROTOTYPESuutiitiiiiiuiestienteeieetesieesiessiessiessaessesnsesnneseee e 20
FIGURE 3.4: MVVC DESIGN PARADIGM FOR THE TWO PROTOTYPEScetiuiiitieitieiieiesiesiessieeseeeseeeeessnesseeseee e 21
FIGURE 3.5: OUTPUT DISPLAY FORM FOR THE PROTOTYPESeciutiiiiiiiiuiestiesteeieatesiaesiessiessaeesaeesessnesnnessee e 23
FIGURE 3.6: WEB SERVICE DEVELOPMENT LIFECYCLEuciitiiittaieieeaitesieesteeste et et sieesiessbeesbeesaeesesnnesnnesnee e 29
FIGURE 4.1: TEXT FILEctitititetsieterestetesesteseestesesessesesessesesessesessssesessssesessnsesessssesessssessssssesessssessssssesensesenens 31
FIGURE 4.2: CSV / XLS FILE ...tiuiittitiietisteieteste ettt etttk ettt sttt sttt 31
FIGURE 4.3: PHP MYADMIN SCREEN FOR MY SQLcciiiiiiiisieiesieie s siee sttt sessenens 32
FIGURE 4.4: SCREEN SHOT FOR PERFORMANCE MEASURE IN SOAPcooiiiiiieiiieie et 33
FIGURE 4.5: SCREEN SHOT FOR PERFORMANCE MEASURE IN RESToiiiiiiiieiiee e 34
FIGURE 4.6: MEMORY REQUIRED FOR DATA ACCESS IN REST AND SOAPc.ccoiieiee et 35
FIGURE 4.7: TIME REQUIRED FOR DATA ACCESS INREST AND SOAP.......cii et 36
FIGURE 4.8: REST REQUESTS TO MEASURE SCALABILITY BASED ON NUMBER OF USERS........ccovvveiieeeiiiinnnnnee, 37
FIGURE 4.9: REST THROUGHPUT MEASURING SCALABILITY BASED ON NUMBER OF USERS.......ccccveivirirenneene 38
FIGURE 4.10: SOAP REQUESTS TO MEASURE SCALABILITY BASED ON NUMBER OF USERSccccvvviieeeiiiinnnne. 38
FIGURE 4.11: SOAP THROUGHPUT MEASURING SCALABILITY BASED ON NUMBER OF USERS.........cccvrvenneene. 39
FIGURE 4.12: SCALABILITY OF REST AND SOAP MEASURED USING THROUGHPUTcccceviiriiieieaiesieseee e 40
FIGURE 4.13: XML DATA USING REST ...ttt ettt sttt st 41
FIGURE 4.14: JSON DATA USING REST ..ottt sttt ettt st st ste e eneeenee e 42
FIGURE 4.15: HTML DATA USING REST ...ttt ettt sttt e e 42
FIGURE 4.16: JSON DATA USING SOAP ...ttt sb et n e an e nr e s 43

List of tables

TABLE 3.1: DESIGN VIEW OF THE SIMULATED POLITICAL PARTIES’ DATA ...vcveieieriestestesteseenseseessesseseessessens 17
TABLE 3.2: DATASHEET VIEW OF THE SIMULATED POLITICAL PARTIES’ DATA ...cveiveriiiteiteereeeeeeseesreseesneeseens 17
TABLE 3.3: DESIGN VIEW OF THE SIMULATED POLITICAL PARTY MEMBERS’ DATA ...coiitiiiiiesiieeiieesiveeanieessinas 18
TABLE 3.4: DATASHEET VIEW OF THE SIMULATED POLITICAL PARTY MEMBERS’ DATAcoviviviiieiiresiee s 18
TABLE 3.5: POLITICAL PARTY’S IMPLEMENTATION DESIGN VIEWceitiiiiieiieesieseieesteesieesteesveesvaesvee s 24
TABLE 3.6: PARTY MEMBERS’ IMPLEMENTATION DESIGN VIEW.uitiitieiiieiieesieeaieesieesseesisssnsessssssnsessssnas 24
TABLE 4.1: REST AND SOAP DATA ON PERFORMANCEccveieieiestestessesseeaessessessessessesssssssssessessessessessenses 34
TABLE 4.2: REST AND SOAP DATA THROUGHPUT BASED ON USERSvvvveuierieieiesiestessesseesessessessessessessenses 39

Vi

Definition of Acronyms

SOAP
REST
XML
ECK
IEBC
CSVv
HTTP
HTML
JSON
SQL
URLs
CRUD
API
RPC
ACL
URI
WSDL
MVC
WS

Simple Object Access protocol
Representational state Transfers
Extensible Markup Language
Electoral Commision of Kenya
Independent Electoral and Boundaries Commission
Comma Separated Values
HyperText Transfer Protocol
HyperText MarkUp Language
JavaScript Object Notation
structured Query Language
Uniform Resource Locator

Create, Read, Update, Delete
Application Programming Interface
Remote Procedure Call

Access Control List

Uniform Resource Interface

Web Service Definition Language
Model View Controller

Web Service

vii

Chapter 1:

1.0 Introduction

Registrar of political parties being the body charged with the responsibility of registering
political parties before going for elections in Kenya, it is faced with a number of challenges
which hinder it in determining the actual membership of each political party across the
country as well as ensuring no multiple registration of members either in one or different
parties.

To achieve its main objective of bringing sanity in an efficient manner, Registrar of political
parties requires a technology that can collect data / information from political parties’, stores
data from different sources regardless format and transform it into a standard format to be
used using web service applications that have improved performance, scalability through an
interface that is easy and quick to maintain when need arises.

There are quite a number of technologies that can achieve these objectives including REST
and SOAP,

REST stands for Representational State Transfer and marks a software architecture pattern (in
contrast to SOAP which is a protocol). It relies on a stateless, client-server, cacheable
communications protocol and in virtually all cases; the HyperText Transfer Protocol (HTTP)
protocol is used.

REST being an architecture style for designing networked applications, its more preferred
rather than using complex mechanisms such as CORBA, Remote Procedure Call (RPC) or
SOAP to connect between machines and simple HTTP is used to make calls between
machines (Singh, 2009).

It is a simple HTTP-based protocol that enables users to contact the message broker through a
Web browser by navigating to appropriately formatted Uniform Resource Locator (URL) or
by posting HyperText MarkUp Language (HTML) forms based on a subset of the HTTP

protocol.

HTTP is the only supported transport and as result REST performs operations on resources
through it, including the so called CRUD operations (Create, Read, Update, Delete) and
query resources in an easy and natural way. REST uses the HTTP protocol to identify, query
and manipulate resources in a computer network by using information provided by the HTTP
protocol (Maven, 2011).

The HTTP URL is responsible for allocating a resource and can contain parameters in its
query part. For instance the HTTP method is used for choosing the right action to be
performed on the resource, Request headers provide Meta data for accessing a resource and
the request body provides the resource input in case of POST and PUT requests.

SOAP stands for Simple Object Access Protocol and brings its own protocol and focuses on
exposing pieces of application logic (not data) as services. It exposes operations and is
focused on accessing named operations through different interfaces.

Though SOAP is commonly referred to as “web services” it has very little if anything to do
with the Web but REST provides true “Web services” based on URIs and HTTP.

SOAP is not made for resource constrained mobile devices but it is for fixed network. The
SOAP messages has heavy payload. In contrast, the REST messaging framework has
lightweight payload which is suitable for mobile as well as cellular network. REST identifies
the service resources by single URL only (Kishor Wagh, 2012).

SOAP request uses POST and require a complex XML request to be created which makes
response-caching difficult While RESTful APIs can be consumed using simple GET requests,
intermediate proxy servers / reverse-proxies can cache their response very easily.

SOAP consumes more bandwidth because its response could require more than 10 times as
many bytes as compared to REST while REST consumes less bandwidth because its response
is lightweight.

SOAP web services always return XML data While REST web services provide flexibility in
regards to the type of data returned.

SOAP has heavy payload as compared to REST while REST is definitely lightweight as it is
meant for lightweight data transfer over a most commonly known interface, - the URI

In SOAP, Client-Server interaction is tightly coupled while REST, Client-Server interaction

is loosely coupled.

In the development of prototypes using REST and SOAP, a research is done to determine the
best web service in terms of scalability, performance, extensibility in solving the main
problem of the registrar of political parties.

Extensibility is the ability of the prototype system to allow and accept significant extension of
its capabilities, functionality, enhancement for the purpose of meeting future needs and

2

significantly changing requirements without major rewriting of code or changes in its basic
architecture. (Christoph Becker, 2009)

Scalability is the ability of the prototype architecture to grow to accommodate increasing
number of users, applications and system. (Jon, 2007)

1.1 Problem Statement

Before the Registrar of political parties was introduced in by an act of parliament, the
political parties used to provide their membership data using either printed documents or just
soft copies which were not harmonized. This used to bring a lot of inconsistencies and false
information to the former Electoral Commission of Kenya (ECK) as many members had
multiple registrations across multiple parties which had a lot of redundant information. This
used not to provide a true picture of parties popularity across the country and some of them
got registered with only regional representation.

In this case the registrar of political parties, they had no way to analyze the data received and
determine if it really represents a true picture of the situation.

This is really a great challenge as the membership data which the parties provide for them to
be registered is not a true picture of some parties’ representation, and some members end up
being registered in more than one political party. Other members who end up being registered
are either not aware or they are dead.

This usually brings a lot of difficulties and some parties end up being registered with no
representation in some parts of the country.

So far no researches has been done to demonstrate on how web service applications can be
used to solve the problem of data consolidation from different sources and present it in a
common database format for use with emphasis on performance, scalability and extensibility.

1.2 Justification

This project is focusing on bringing sanity to the Registrar of political parties by ensuring
they get a true representation of each individual political party in the country using web
services. This will be achieved by having every political party establish a data store either
using the normal standard databases, spreadsheets, comma separated values (CSV) or any
other format that supports Open Database Connectivity.

The Registrar of political parties will be provide to the political parties a link and credentials
to post data from their data stores which they will now be consolidated to a normal structured

3

query language format for analysis and presenting the required data through a common

browser using REST and SOAP technologies.

1.3 Objectives of Project
The objectives of this project are:

1. Design frameworks that Combine Registrar of political parties’ data from different
data sources and use REST and SOAP frameworks to present it through a browser.

2. Develop prototypes that use simulated political parties data based on HTTP web
service on REST and SAOP principles that demonstrates the framework in objective
one.

3. Evaluate and compare the prototypes based on REST and SOAP frameworks.

4. Recommend the most suitable framework for political parties’ problem in terms of

performance, scalability extensibility and maintenance.

1.4 Project outcomes and their significance to Registrar of Political parties

The system prototype is a web based interface which provides a facility for users (registrar of
political parties) to upload their information and have it transformed to a standard format for
storage in MYSQL database. It will also feature a representation of the parties’ data in
various data formats (HTML, XML and JSON) for consumption by other organization (NGO

and international bodies and also the parties themselves).

Level of Complexity: Average

The project will ensure registrar of political parties have better maintained (Create Read
Update and Delete) data that can be shared to the public and any other interested parties to

add value and transparency in their operations.

1.5 Research Questions
To perfectly manage the current problems with the registrar of political parties, the research
will be guided by the following questions
a. How does REST compare with SOAP in terms of scalability with the number of users
(threads).

b. To what extent does REST increases performance compared to SOAP.
c. To what extend does REST interface and prototypes compare with SOAP in

extensibility and maintainability.

1.6 Scope of the project

This research intends to design frameworks and come up with prototypes that combines and
works with data using REST and SOAP web services. This will enable and guide the registrar
of political parties in analyzing and determine presentation of each political party in every
county. The consolidation of data will be limited to SQL databases using TXT, CSV files and

spreadsheet formats.

1.7 Assumptions of the research
a. All political parties have a data store for their data and are willing to present to the
register of political parties on demand.
b. Political parties can trust a third party with their data by providing credentials to their

database.

Chapter 2: Literature Review

2.0 Introduction

Web Services is a modern and popular technology in managing institutional data and
systems. To manage the Web service a list of protocols and technologies related to Web
Services grows every day, but REST and SOAP are probably the most popular. SOAP being
the first technology it was rapidly becoming the standard protocol for accessing Web
Services using XML messages to exchange information across endpoints, and provides
several advantages over other binary protocols (Singh, 2009).

With advancement of the technology, Web Services are the key point of Integration for
different applications belonging to different Platforms, Languages, and systems. To achieve
this, Representational State Transfer (REST) which basically means that each unique URL is
a representation of some object was brought into action so as to outdo SOAP.

REST APIs haven’t been around for long and their APIs are definitely modern for creating

most of the web services (Singh, 2009).

The main advantages of REST web services are:
= Lightweight — not a lot of extra xml markup
* Human Readable Results
= Easy to build — no toolkits required

2.1 Differences between REST and SOAP web services

1. SOAP is a protocol based on XML message, while REST is an architectural style

2. SOAP uses WSDL for communication between consumer and provider, whereas
REST just uses XML or JSON to send and receive data

3. SOAP invokes services by calling RPC method, REST just simply calls services via
URL path

4. SOAP doesn't return human readable result, whilst REST result is readable with just
plain XML, JSON or HTML

5. SOAP is not just over HTTP, it also uses other protocols such as SMTP, FTP and
REST is over only HTTP.

2.2

2.3

How REST compares with SOAP

Maintainability and extensibility - Compared to SOAP, Restful applications are
easy to maintain and extend as you only need to change the configuration files and the
REST files for any changes you need to make, and also REST is able to process
requests and responses in a very short time. SOAP requires any changes to be done in
the WDSL which is complex compared to REST and it requires client and server files
to be created and modified to match with the WSDL.

Data Consolidation — Both REST and SOAP will in the end be seen as only channels
through which we post data to the consolidative database where we will store the data.
SOAP and REST will use the HTTP POST method to pull data from clients and store
in the database. As for SOAP, a WDSL document with this post method will have to
be created and will require subsequent updates whenever there is a slight change in
structure as it always will be referenced by the service to respond to the client,

compared to REST as all the responses will come from the service.

Performance and scalability - REST uses web's semantics instead of trying to
channel its requests via XML, so RESTful web services are generally designed to use
cache headers, so they work well with the web's standard infrastructure like caching
proxies and even local browser caches thus increased performance.
Compared to REST, SOAP uses HTTP, it does not take advantage HTTP's supporting

infrastructure as SOAP-based reads can’t be cached.

Challenges facing Registrar of Political parties

As a result of personal and community interests registrar of political parties faces great

challenges during parties’ registrations:-

a. Political parties’ memberships — unprincipled party officials register people /

citizens to their parties without their consent when they get their personal information
from unknown sources. This particularly happens to people who are public figures
and the parties need to show they have representation across the country. At times an

individual is found to be registered in more than one political party

2.4

To resolve this challenge the Registrar of political parties introduced a link in their
website which the public can enter the national identity number for them to confirm if

their name has been used unknowingly. http://www.iebc.or.ke/rpp/

In this project REST and SOAP web service technologies will comparatively
demonstrate how data from all political parties can be consolidated into common
structured database format for analysis and reporting for the registered members. This
will drastically reduce double registrations and the culprits found can be black listed

from holding political and public offices.

. Hate Speech — with invent of social media (face book, twitter etc) people across the

world are using them and some post political sentiments, that can cause violence in
the country as they are fast circulated across the world.

Also politician during political rallies use inciting statements that can cause fights in
the country; to resolve this, government have introduced zoom recorders assigned to
police so that they can record content for later analysis to determine if it’s really hate
speech. Watchdog personnel have also been put in place to check on the content from
the media i.e. digital (face book, twitter etc) and voice (radio stations and TV).

With the RESTful interface because of its less bandwidth consumption all the audio
clips will be uploaded and the registrar of political parties’ personnel will be able to

listen and audit them online.

Contemporary Issues of Kenyan Voting Systems

In the past, registration of political parties and its members has been manual system; this

stretched all through voter’s registration until the final voting process. There has been no a

clean way to determine legitimate members of the registered political parties, this resulted to

problems which brought serious conflicts in the country.

It was not easy to determine the true party membership and representation across the country

as each party used to provide their list of members and there was no genuine way to

determine the truth from the list as it was not easy to go through all the records provided.

Incase Kenyans find their names in any political party through: http://www.iebc.or.ke/rpp/,

they can report to the registrar of political parties through reg.pol.party@gmail.com for

action. With the help of web service technologies, REST and SOAP registrar of political

http://www.iebc.or.ke/rpp/
http://www.iebc.or.ke/rpp/
mailto:reg.pol.party@gmail.com

parties can confirm the membership status for different political parties by consolidating the
data in a common standard database format.

To achieve this each political party will be given a link to the web service system to post their
list of members online, so that the issue of double registrations is avoided and they can

confirm the list from each political party and also compare across multiple lists.

2.5 Sources of political parties membership Information

Previously political parties used to provide membership list to registrar of parties in any
format (hand written papers, word processed formats or spreadsheets), which in most cases
was not easy and efficient to determine the truth of the data.

Present the registrar of political parties have given a link to all political parties which they
can use to post their list of members to their database online which is very cumbersome to
parties as they have to type name by name and not upload automatically.

With the web service technologies (REST and SOAP), all the political parties’ will present
their data in specified formats for consolidation to a standard format that can be used and
made available to members who have accounts with registrar of political parties. This will
enable Kenyans to register with political parties which are genuine and honest as they have

information about the parties.

2.6 Mobile Use

The IEBC has been very vibrant in ensuring Kenyans get real time information on request
through either the mobile technology or the electronic media online through their site.

At the moment Kenyans can check their registration details by sending their national identity
card number to 15872 through SMS (Short Message Service)

With the web service technologies based on REST and SOAP, Kenyans will be in position to
know their membership status with the political parties as all the data will be readily be
available and consolidated in a common pool. In that case a mobile technology can be put

into use as almost 90% of Kenyans now have access to mobile phones.

2.7 Case Study: Yahoo Web Services based on REST approach
Yahoo provides a variety of Web services at http://developer.yahoo.net/, from searching the

web to interfacing with Flickr (Yahoo’s photo-sharing community). Using REST, you can

9

easily add integration for them within a Web page or larger application. Although several
services are available, this case study demonstrates how to perform a Web search
(http://developer.yahoo.net/search/web/) and how to perform a product search
(http://developer.yahoo.net/shopping/VV1/productSearch.html). Using the ideas and

techniques presented in the examples, it is quite easy to apply them to access other offered

services.

The Flickr service requires its own API key. Although a lot of functionality does not require
authentication, to upload photos you must also register for an API secret key (at
http://www.flickr.com/services/api/registered_keys.gne) once you have your APl key you are

now in position to register and share your profile for pictures.

2.8 Use of SOAP in the Mobile Technology

SOAP has been used in Unstructured Supplementary Services Data (USSD) service, which
allows high speed interactive communication between mobile subscribers and applications
across Interfaces to SOAP, XML, LDAP services

Basically the way USSD works is that you send some cryptic number like *333# to your
mobile servers who in turn forward the request via various protocols mostly HTTP or SOAP
but not limited to these.

The diagram below shows a USSD Gateway that provides the connection to the IP-based
network which enables connection over the internet. The gateway contains application

modules that enable development of applications based on an API or Soap interface.

10

http://developer.yahoo.net/

Pravider

WINGS
LISSD-Portal

SMPP, SOAP

Operator
WINGS USSD

Provider

Gateway
- P,
SMPP, SOAP —
USSD-Portal
SMPP, SOAP o
LSSD-Portal
Provider

WINGS
LSSD-Portal

http://www.wings-solutions.com/solutions/operator/ussd center.php

2.9 Building a web service for political parties on SOAP

This will allow other applications to easily access the same data, also separates the data
extraction from the data source and the application itself. For instance if you were storing the
data in a MySQL database but later decided to move it to other database format. In this
scenario your application wouldn't know the difference. Its calls to the Web Service remain
unchanged.

To provide a political parties’ resource service you will have to present the political party
name and symbols to be stored in a database. This is not going to concentrate on the storage

mechanism or how to obtain the political parties data.

To create the web service first | will create the SOAP server using script that will fetch the
data from the database and then deliver it to the Client. Using the NuSOAP library, same
Server script will also create a WSDL document for us.

To achieve this, I will create a function that will fetch the data we want. The name given to

the function will be the name that is used when the Client contacts the Server.

<?

11

http://www.wings-solutions.com/solutions/operator/ussd_center.php

function getPartyMembers($symbol) {

mysql_connect('server','user’,'pass’);

mysql_select_db(rp);

$query = "SELECT party_members FROM political_parties "
. "WHERE party_symbol = '$symbol"’;

$result = mysqgl_query($query);

$row = mysql_fetch_assoc($result);

return $row[‘party_members ‘];

hy

7>

The code below turns the function getPartyMembers into a Web Service. We have to include
the NuSOAP library, instantiate the soap_server class and then register the function with the

Server.

1. The first thing necessary is to simply include the NuSOAP
library.require('nusoap.php’);

2. Next, instantiate an instance of the soap_server class.
$server = new soap_server();

3. The next line is used to tell NuSOAP information for the WSDL document it is going
to create. Specifically we specify the name of the server and the namespace, in that
order.

$server->configureWSDL (‘partyserver’, ‘urn:partymembers');

Next, we register the function we created with the SOAP server. We pass several different
parameters to the register method.

First is the name of the function we are registering.

The next parameter specifies the input parameters to the function we are registering. The

implementation is in form of an array. The keys of the array represent the names of the input

12

parameters, while the value specifies the type of the input parameter. This specify the types

of input and return parameters with the designations of xsd:string and xsd:decimal.

The third parameter to the register method specifies the return type of the registered function.

As shown below, it is fashioned in the same way as the last parameter, as an array.
The next two parameters specify the namespace we are operating in, and the SOAPAction.

$server->register(*getPartyMembers”,
array('symbol' => 'xsd:string’),
array(‘return' => 'xsd:decimal’),
‘urn: partymembers',

‘urn: partymembers# getPartyMembers");

Now, we finally finish it off with two more lines of code. The first simply checks if
$HTTP_RAW_POST_DATA is initialized. If it is not, it initializes it with an empty string.
The next line actually calls the service. The web request is passed to the service from the
$HTTP_RAW_POST_DATA variable and all the magic behind the scenes takes place.

SHTTP_RAW _POST _DATA =isset(SHTTP_RAW_POST_DATA)
?$HTTP_RAW POST DATA:";
$server->service(SHTTP_RAW_POST_DATA);

Creating a SOAP Client to access our Server does not necessarily need to be a PHP Client.
The SOAP Server we just created can be connected to by any type of Client, whether that be

Java, C#, C++, etc.
To create the SOAP Client, needs to do are three things.

1. First, include the NuSOAP library. This is done just as it was for the Server.
require_once('nusoap.php");

2. Secondly, we need to instantiate the soapclient class. We pass in the URL of the
SOAP Server we are dealing with.

13

$c¢ = new soapclient(‘http://localhost/partiesserver.php";
3. Last make a call to the Web Service. The one caveat is that the parameters to the Web
Service must be encapsulated in an array in which the keys are the names defined for

the service.
$members = $c->call(’ getPartyMembers ', array('symbol’ => 'image"));

Now, here is the completed Client script, which | have saved in a file named
partiesclient.php.

<?php

require_once('nusoap.php’);

$c¢ = new soapclient('http://localhost/patriesserver.php’);

$members = $c->call(' getPartyMembers ',
array('symbol’ => 'image"));

echo "The Members for 'Ford Kenya' is $members.";

7>

14

Chapter 3: Methodology

3.0.0 Introduction

This chapter presents the analysis, design, implementation and testing of the project
prototypes for the registrar of political parties using both the REST and SOAP frameworks. It
outlines the database structure in MYSQL in form of tables and fields where the political
parties data is uploaded to using a feature that import data from CSV / XLS and TXT into the
database tables.

The chapter outlines the algorithms and frameworks to be developed towards the

achievement of the project objectives as well as addressing the research questions.

Methodology describes guidelines for solving a problem, with specific components e.g.
phases, tasks, methods, techniques and tools to be used. It can be defined also as follows:-
1. The analysis of the principles of methods, rules, and postulates employed by a
discipline.
2. The systematic study of methods that are, can be, or have been applied within a
discipline.
3. The study or description of methods.
A methodology can be considered to include multiple methods, each as applied to various
facets of the whole scope of the methodology.

To develop and implement the Web service prototypes for the registrar of political parties;
the following phases are considered suitable for the Web Service implementation lifecycle:
requirements, analysis, design, implementation, test, and deployment.

3.1.0 Requirements Phase

This brings an understanding on the issues affecting the registrar of political parties then
translating them into REST and SOAP web service requirements in terms of the features, the
functional and non-functional requirements, and the constraint that can help in solving the
registrar of political parties’ problem. Again this phase provides an opportunity for
identifying the Web Services that can be used to solving the problems.

At the moment the registrar of political parties perform parties membership registrations

manual, there is no way to determine how many times a member is registered across different

15

political parties as the officials just submit their documents in non standard formats and the
registrar of political parties has no mechanisms to know how many times a member is
registered.

In the past the registrar of political parties introduced a link and gave it to the political parties
for them to type all their data to the system, this is not only a tedious process but also an hard
way to determine how many times a member is registered and to how many parties as the link

was specific to individual parties.

3.2.0 Analysis Phases

This phase refines the requirements further and translates the requirements into conceptual
models. Architecting analysis is done to define high-level structure and identify the Web
Services interfaces contracts.

In this phase the following will be achieved: - Analyzing the granularity of Web Services
interface contracts, selecting the web service (REST and SOAP) technology platform for
implementation framework, Defining Web Services candidate architecture and finally
Identify architectural components to be exposed as WSs and specify major information
exchanged with client.

To eliminate the problems Registrar of political parties’ faces when doing follow-ups on
political parties’ membership and representation across the country, a proper analysis is
required on how they present their data to Registrar of political parties and how it analyses it.
This was done using the following techniques:-

a. Observation — this involved gaining access to some information one of the political
was to submit to the Registrar of political parties. The information was available in
files (manual and electronic) and was to be typed one by one to through a link that
was provided by the registrar office.

b. Documentation — the registrar of political parties had provided a link through the
IEBC website for the public to confirm, to which political parties they are registered
as members. A lot of inconsistencies were found as quite a number of people found

their names appearing as legitimate members without their consent.

The proposed system will be based on an API and has a feature to allow the political parties

to upload their membership data to the registrar of political parties’ database. The documents

16

to be uploaded need to be in the form of CSV / XLS, TXT format which the registrar will
specify to the parties when collecting information from the members so that they can conform
to the acceptable format for the prototype to be developed.

The uploaded information will be represented in the form of tables which can now be fetched
and displayed using any of the following formats JSON, XML, HTML for analysis or

references by the registrar of political parties.

3.2.1 Data sources and preparation
The prototype is based on political parties’ simulated data, which is presented in CSV, TXT
and XLS formats.
The following tables show the simulated political parties data, which forms just a percentage
of the data kept by the registrar of political parties.

a. Parties table

The table below shows the design view of the simulated political parties’ data

Attribute Name Data Type
1d int(5) (PK)
party_name varchar(40)
party_patron varchar(40)
party_secretary varchar(40)
party logo varchar(40)
party_office varchar(40)
Dcreated Timestamp

TABLE 3.1: DESIGN VIEW OF THE SIMULATED POLITICAL PARTIES’ DATA

The table below shows the datasheet view of the simulated political parties’ data

ID | Party name | Party Patron | Party Secretary | Party _Logo | Party Office | DCreated

1 Wiper Chris Kiama Umbrella Machakos 12/2/2009
2 Sisi kwa Kiama Chris Hand shake | Nairobi 2/12/2009
Sisi

TABLE 3.2: DATASHEET VIEW OF THE SIMULATED POLITICAL PARTIES’ DATA

17

b. Members table

The table below shows the design view of the simulated political party members’ data

Attribute Name Data Type

id int(11) (PK)
National_id varchar(40)
Name varchar(40)
Position varchar(40)
date_joined Timestamp

party_id varchar(40)

TABLE 3.3: DESIGN VIEW OF THE SIMULATED POLITICAL PARTY MEMBERS’ DATA

The table below shows the datasheet view of the simulated political party members’ data

ID National ID | Member Position Date Joined | Party ID
Name

1 14730531 Chris Kiama | Member 12/3/2016 3

2 20086546 Sally Ngina | Secretary 3/12/2009 4

TABLE 3.4: DATASHEET VIEW OF THE SIMULATED POLITICAL PARTY MEMBERS’ DATA

3.3.0 Design framework Phase

This phase deals with detail design of REST and SOAP Web Service prototypes. This is
where the web service prototypes interfaces are refined further. The interactions between the
web services (REST and SOAP) and the client, e.g. asynchronous/synchronous or RPC /
document are considered.

The research being a comparative study of rest and soap, two prototype designs are designed
that will be used to implement them and comparatively compare the results of the

experiments’ done.

3.3.1 SOAP Design framework
After getting the actual information relevant to the registrar of political parties and carefully
analyzing the content, what follow is the design frameworks of how the project will be

implemented.

18

SOAP services are typically defined using the Web Services Description Language (WSDL)
as they require a library called NuSOAP from where to access most of its resources and
features.
This can readily be downloaded from http://sourceforge.net/projects/nusoap/ or developed
and modified every time depending on the modifications that you need to make on it the
WSDL.

The diagram above shows the model framework of SOAP

SOAP
request

—

o

FIGURE 3.1: MODEL FRAMEWORK OF SOAP

3.3.2 REST Design framework

When designing the REST framework, there is no standard definition language for defining
RESTTful interfaces (Chappell, 2009). RESTful service can use XML, JavaScript Object
Notation (JSON), and other formats to match different performance requirements as any
HTTP client library may be used to interact with the Portal REST server. Any of the options
below can be used as they provide a model framework of how:-

Option 1: Clients write raw HTTP calls

e o—

19

http://sourceforge.net/projects/nusoap/

Option 2: A RESTful service provides a client library — Clients see methods with parameters

: HTTP :
Client »{»—— Service

FIGURE 3.2: MODEL FRAMEWORK OF REST

3.4.0 Prototype Design

The project being a comparative study of REST and SOAP, two prototypes will be developed
that compares and answers the research questions.

The prototype will involve the input (upload) of political parties data through a standard
browser to a MYSQL database, then try to access the data using REST and SOAP
frameworks and present it through the browser in HTML, XML and JSON.

Input Data R /N Output data
from the \ Csv _ Comp | from
political I Consolid ariso ! MYSQL
parties’ e.g. i | 3‘;‘;‘ dnS | database to
! . one |
1. TI_IA, | TX \ from the on | thg browser
2. Wiper, T political the —pi USING REST
3. ODM, . : parties ResT | | and SOAP
' i | MYSQL soA ! | formats of
, ; database P \ XML,
5. etc /L HTML,
————————— " | JsON

FIGURE 3.3: MODEL FRAMEWORK OF THE TWO PROTOTYPES

The proposed system on REST will be developed using the Code Igniter, which is an open
source rapid development web application framework for building dynamic applications with
PHP. It very well supports REST by providing a rich set of libraries for the needed tasks, as

well as a simple interface and logical structure to access libraries.

20

The prototype will be based on Model View Controller (MVC) which is a design paradigm

that breaks application's interface, into three parts: the model, the view, and the controller

which maps the traditional input, processing, output roles into the GUI system (Marston,

2004).

The diagram below shows a simple structure of MV C:-

MODEL

CONTROLLER VIEW
HTTP
P component script
request
|_. component
controller
screen structure
XL data
X5L stylesheet
X5L transformation
HTTP ¢
- HTML output
response

abstract class

.

table subclass

DML class

database

FIGURE 3.4: MVC DESIGN PARADIGM FOR THE TWO PROTOTYPES

i. Model
The model represents data in the form of MYSQL contained in database called RP. It

manages the activities and data of the registrar of political parties on membership, responds

to requests for information about its state and responds to instructions to change state

depending on the need.

The model represents and dictates registrar of political parties’ data and the rules that govern

access to and updates of the data.

ii. View

The view is a form of visualization of the state of the model i.e. it queries the database and

decides on the form of visualization / display.

21

The view also manages the graphical and textual output to the portion of the database to be
displayed which is allocated to its application. The view will generate HTML / XML / JSON
as the standard formats for displaying the queried data from the database.

The view will render the contents of a model (registrar of political parties data) and specifies

the format that data should be presented.

iii. Controller
The controller interprets the mouse and keyboard inputs from the user either through typing
or uploading the contents from other file formats, making the model or the view to change as
appropriate depending on the request.
A controller forms the means by which the user interacts with the application by accepting
input from the user and instructing the model and view to perform actions based on that
input. In effect, the controller is responsible for mapping end-user action to application
response.
The controller translates interactions with the view into actions to be performed by the model.
This prototype (system) being a Web application the interactions appear as HTTP GET and
POST requests.

3.5.0 Screen Design
The prototypes have the common browsers as the client application where the user enters the
URL for the prototypes, then he can present the username and password to access the data /

information about the parties data.

22

Title / Logo

Side menu items Output Area
(Aligned vertically)

Copy write message

FIGURE 3.5: OUTPUT DISPLAY FORM FOR THE PROTOTYPES

3.6.0 Database Design
The prototypes are developed using a MYSQL database named “RP” with several tables as
outlined below:-

a. Parties Table

This table contains a list of all political parties registered with the registrar of the political
parties in Kenya

Before a party appears in the database, the party has to be registered first with the registrar of
political parties by so doing; the secretaries to political parties will be in position to upload
their members to the members table in the RP database.

23

| Field Name | Type | Null || Default |
lid int(5) INo | PRIMARY KEY |
lparty_name |lvarchar(40) |No || |
|party_patron lvarchar(40) |No | |
|party_secretary |lvarchar(40) |No || |
lparty_logo |lvarchar(40) |No || |
lparty_office |lvarchar(40) |No || |
dcreated [timestamp INo ||CURRENT_TIMESTAMP |

TABLE 3.5: POLITICAL PARTY’S IMPLEMENTATION DESIGN VIEW

b. Members table

The members table holds information regarding the members registered to different political
parties after being uploaded by the secretaries of respective parties.

| Field Name | Type | Null || Default |
lid lint(12) INo |[PRIMARY KEY |
Inational_id |varchar(40) INo | |
Iname varchar(40) INo || |
lposition varchar(40) INo || |
date_joined timestamp INo |CURRENT_TIMESTAMP |

TABLE 3.6: PARTY MEMBERS’ IMPLEMENTATION DESIGN VIEW

3.7.0 Implementation Phase

This is where the actual coding of Web Services prototypes (REST and SOAP) is done. The
wrapping of components APIs to Web Services interface is done. The generations of WSDL
for SOAP and WS test client are produced. The WS will be deployed to the target application

Server.

3.7.1 Prototype Implementation
The prototypes are implemented purely on open source software’s using REST and SOAP

frameworks.

a. Server side tools
1. PHP sockets.

24

2. Apache Web server.

3. MYSQL database

b. Client side languages
HTML - HyperText Markup Language (HTML) is the main markup language for
creating web pages and other information that can be displayed in a web browser.

2. XML - Extensible Markup Language (XML) is a markup language that defines a set
of rules for encoding documents in a format that is both human-readable and
machine-readable.

3. JSON- JavaScript Object Notation, is a text-based open standard designed for human-
readable data interchange. It is derived from the JavaScript scripting language for
representing simple data structures and associative arrays

C. Installation and Configuration of the Application Prototype and other
Installations

XAMMP

The system uses the XAMPP server and requires installation of Apache Server, MYSQL, and

PHP in the computer that will serve as the web server. XAMPP is open source and freeware

package that bundles Apache, MYSQL, and PHP into one executable application.

After downloading XAMPP, double click on the file then begin the installation process as

follows:

iv)

Click Next to begin: After agreeing to the XAMPP license, select the destination
location. Leave the default location as "c:/xampp" and click Next.

Leave the default Start Menu shortcut as "XamppServer" and click Next.

Select automatically launch XAMPP on startup. This will allow your machine to act
as a server whenever it is started. Select the check box and click Next.

XAMPP will summarize your selections. Click Install and XAMPP will begin the

install process; XAMPP extracting and installing itself. The process should only take

25

a few seconds, and XAMPP will prompt you to choose a folder for your "Document
Root." Leave the default folder as "www" and click Ok.
v) XAMPP will prompt you to enter the SMTP server to be used by PHP to send emails.
Leave the default value as "localhost" and click Next.
vi) XAMPP will then prompt you to enter the default email address to be used by PHP to
send emails. Put your email address in this field and click Next.
vii) If you have Firefox installed, XAMPP will ask you if you would like to use Firefox as
the default browser with XAMPP. This is a personal preference, so feel free to choose
"Yes" or "No." | will choose "Yes" and then click Next.
viii) Congratulations, the installation process is complete, click Finish and Launch
XAMPP now.

3.7.2 SOAP Implementation

SOAP-based architecture revolves around the transmission of XML-encoded messages over
HTTP. Specific SOAP service sets are defined in web service definition language (WSDL)
files which are essentially XML files (Gavin Mulligan, 2009).

The WSDL file defines the port which is later mapped to the overarching Portal SOAP
service set. The port itself is composed of multiple operations, each one representing a single
service to be implemented in the set. In turn, each operation maps previously-defined SOAP
messages as its input and output types.

The content of this WSDL file represents a language- and platform-neutral method of
remotely communicating the SOAP service interface. Once the WSDL file for the SOAP
implementation of the service-oriented architecture is written, it needs to be made publicly
available to all Portal clients capable of reaching a particular Portal server. This is done
through the use of a SOAP-enabled HTTP web server; and may be enabled in a variety of
different ways.

Regardless of how the HTTP server to be used is configured, server-side code needs to be
written that is responsible for handling incoming service requests and formulating appropriate

responses.

26

3.7.3 REST Implementation

While SOAP adheres very closely to the RPC model, REST revolves around the concept of
resources and focuses on using the inherent power of HTTP to retrieve representations of
these resources in varying states. In REST style, every resource is signified by a unique URL
which may be operated on by a subset of the core set of HTTP commands: Get, Post, Put, and
Delete.

Compared to SOAP, instead of a specialized SOAP client, any HTTP client library may be
used to interact with the Portal REST server. Every contemporary language comes equipped
with a built-in HTTP library as it is a universal protocol for communicating over the Internet
(Gavin Mulligan, 2009).

3.8.0 Experiments Phase

This being a comparative study is where complete test / experiments on both prototypes for
the Web Services including functional and non-functional requirements are done. The
experiment will be done to answer the research questions and also see if the research

objectives are met.

3.8.1 REST and SOAP Experiments

After the two prototypes were completed, experiments were done to determine how the two

compares:-

a. The two are tested on their usage of consolidated data from different sources.
b. How the two compares in terms performance and scalability

As previously mentioned, the main objective of this project is to investigate how REST and
SOAP compares and to examine the performance, scalability, maintainability and
extensibility of the Web Services in application development.

The experimental procedure | followed evaluates the best web service to be used. The

following is description of the experiments taken:-

27

i) Performance measure

The two prototypes are used to carry out the experiments needed to check on the performance

of the Web Services during data access from the database server.

The two prototypes are used to access the same data for parties and members data from the
registrar of political parties database and the results are accessed and viewed from a web

application

The evaluation for both services is carried out using two different scenarios. In the first set of
experiments the level of internal resource consumption is examined including memory
resources. In the second set of experiments the overall performance is evaluated by
measuring total elapsed response time for execution of each request. After that, evaluation for

the two web service is done to determine the best performer. (Feda AlShahwan, 2010)

i) Scalability measure

The two prototypes REST and SOAP are experimented on how well they grow or expand
with the increased users; this was done using apache-jmeter which tests throughput with the

increase in the number of users accessing the same data.

For the two prototypes you create a test plan for threads (users), then set the thread properties,
finally you add and set the requests by specifying the server name (IP of the server), the path
of the HTTP request, where the listeners will get their results from.

The process is repeated as many times as possible depending on the number of users

(samples) you intend to run.

3. 9.0 Deployment Phase

From the experiment done in the previous phase above now the registrar of political parties
will make a choice on which web service to use in developing a system or modify one of the
prototypes to a complete system that can solve its problems.

The selection will be base on research findings; performance in terms of time and memory
required to access the same amount of data, scalability, extensibility and finally the
maintainability of the prototypes.

28

The figure below shows Web Service development lifecycle

Requirements

Analysis and

Design

Execution and Implementation
Monitoring and Testing

Provisioning
Deployment

e

FIGURE 3.6: WEB SERVICE DEVELOPMENT LIFECYCLE

29

Chapter 4: Results and Discussion

4.0.0 Introduction

This chapter addresses the research findings, performance and scalability, maintainability
and discussion on the results obtained from the SOAP and REST frameworks. It has
graphical output inform of screen shots and gives analysis for each framework based on the

research questions.

4.1.0 Findings and Results
The two frameworks SOAP and REST are able to work with consolidated data in a common
MYSQL database. The two are able to fetch data from the MYSQL tables and presenting it

through a common browser (internet explorer, Mozilla, Chrome, Opera etc.)

The REST framework is able to fetch the data directly from the database and present it
through a browser unlike the SOAP which the developer has to develop the soap server for
fetching the data from the MYSQL database and a soap client which now presents the data

from the soap server to the browser through WSDL.

REST has the potential to present the data from the database in the formats of HTML, JSON
and XML while soap is only able to present its data in the format of JSON.

4.1.1 Data consolidation (CSV/XLS and TXT file)

The two frameworks REST and SOAP are able support the uploading data to the MYSQL
database using either CSV or TXT without any problem.

The data to be upload has to be pre-processed so that it meets a standard format with all the
columns / attributes as the exactly appear in the database tables.

The screen shots below shows the sample CSV and TXT screen shots to be used for the

purpose of uploading the data.

30

' parties.ixt - Notepad

Fle Bt Famat Yew Heb

wiper | Muthama| ndambuk§ |Mwavul{ [Makuend
sist Kwa 51s‘i|uetangu1alHasasa omar | Umbrella|machakos
0P |Munyao|kamau Mdiba|Taa| Lavington

FIGURE4.1: TEXT FILE

6,;) H9-©> s parties.csv - Microsoft Excel
e
~ Home Insert Page Layout Farmulas Data Review View Acrobat
. " =
J ® Cu Calibri 11 - A AT == || | SEWrapTed General -
<3 Copy
Paste o | 6w Y - |3 2F | - 5 v - 0 .0
S Format Painter ||| B M| EH = Ob A EE F|IEIE adMerge s Center $ % ¢ | % %
Cliphoard] Font = Alignment] Humber s
[i ~ @ £ |
A 8 C D E F G H | | J
1 kanu gideonmoi nicksalat cock Eldoret Kibet Plaza
2 |NarC martha karua ole mitito flower Kileleshawa Nole Rd
3
4
5
6

FIGURE 4.2: CSV / XLS FILE

Once the data is uploaded in the databases using the formats specified above, it will appear in
the MY SQL as shown in the screen shot below:-

31

) Iocalhost / localhost / rp / pl_parties | phpMyAdmin 3.4.5 - Mozilla Firefox

Fle Edit Wew History Bookmarks Tools Help

‘\uca\hustf\ucalhustﬂrnfp\partlesIphpMy. | = |

6 & localhostiphpmyadmin/inde:x,php?db=rpikoken="S5cdfc38e 1 ch2856ed353d3f a8dbabThd# PMAURL db=rp&kable=pl_partiesdtarget=tbl_structure php&token=Scdfc98e1c [| " Google }'-"| ‘ ﬁ
= - -
php 0} localhost - @ g B pl_parties
[= Browse | @4 Stucture L] SOL 4 Search = ¥ Insert & Export | =) Import | 4° Operations ® Tracking
o W) ¢ # Column Type Collation Attributes Null Default Extra Action
0O1id int(5) Mo Mone AUTO_INCREMENT &7 Change @ Drop More w
R v [J 2 party_name varchar(dl) latin1_swedish_ci Mo hione & Change @ Drop More w
|1 plmembers [3 party_patron varchar(d0) latin1_swedish_ci Mo hione &7 Change @ Drop More w
3 flpmiee [0 4 party_secretary varchar(dd) latin1_swedish_ci Mo None & Change @ Drop More w
() Create table [& party_loge varchar(dd) latin1_swedish_ci Mo None &’ Change @ Drop More w
[& party_office varchar(dd) latin1_swedish_ci Mo None & Change @ Drop More w
[0 7 dereated timestarnp Mo CURRENT_TIMESTAMP & Change @ Drop More

+__ Check Al / Uncheck All With selected” 2] Browse &7 Change @ Drop 27 Primary [0 Unigue] Index

(2 Print view 42 Relation view Propose table structure @ # Track table

Feadd |1 colurnnfs) @ At End of Table ¢ At Beginning of Table) After | id v Go
Indexes: o
Action Keyname Type Unique Packed Column Cardinality Collation Null Comment
<" Edit @ Drop PRIMARY BTREE Yes Mo id 16 A

Create an index on | 1 columns Go

5 — =
14 start ®am. - 31« Dichs. | @Ress.. | fwis. B @ aBon@%0F teien

FIGURE 4.3: PHP MYADMIN SCREEN FOR MY SQL

4.1.2 Performance measure in REST and SOAP

When it comes to performance REST takes less time and computer resources e.g. memory to
fetch and load the same amount of data from the database as compared to SOAP which
consumes a lot of memory and time to load.

REST has a bit better performance because it bears minimal overhead on top of HTTP
compared to SOAP which brings with it a stack of different (generated) handlers and parsers.
SOAP requires a lot of linkage with the soap server, WSDL, nusoap and soap client to be

able to load data from the MY SQL server to the browser.

The screen shots below shows the performance and memory benchmarks for SOAP

framework.

32

= Uintithed Document - Windses Internet Explorer

Fe Bt e Favetes Took Hep
o Fwults | o3 B Pesiomel B fupeed e - B Getmore fdd-ons -

[E]riesisd mocaruane G- B 0 m - P S Teke e
Registrar Of Political Parties
Upload Parte — BENCHMARKS
; Loading Time: Base Claszes 0,075
Upload Messhers
Coatroller Execation Time { Bpelient | lndex 01230
Ve e ST Total Fauecniom Y 02028
Meaihers ========= Panties.
))MI—-)}M — e
)}Iml_—}:p]'_m .
==l >l — MEMORY USAGE
IGEEOL6
View data In SOAP yet
==>hes — POSTDATA
== smiars N POST dlata evists
r URI STRING |
o ¥
i I8 ¥
Dane o Localiranet - B -

s Slant B IMors.., = 7 e, vl 2 A LI 1= T=] | e
FIGURE 4.4: SCREEN SHOT FOR PERFORMANCE MEASURE IN SOAP

The screen shot below shows a demonstration of how REST framework fetches and loads
same amount of information from the database within a short time and memory usage
compared to SOAP

33

£ Untitled Dacument - Windews Interned Explerer

G'D Lo L qugﬂ! s
Fle Edt Wesa Foarbes Took Hep

i Freokes | 53 B Free Hotmal 1 Suggested Sies + £ \Get mere fdd-oms -

[E] untited cocument fi- 0 0 Mo Faee Setys Toke @ °
Registran Of Political Parties
™~
Uphsad Party
BENCHMARES
Upload Mesbers Loading Time: Base Classes DI
View data In REST Coatroller Execution Time | Pdata / Parties) 03T
Members Pariies Tatal Execurion Time 00666
):ﬂum--l):ﬂu -
»2lsm »2lsom Mo GET data exisis
ol > Xml
MEMORY [CSAGE
Ti!'dﬂi II 5‘0:"? ’j-l';f S0 brvies
==nParies
Menk POST DATA
o ’752-: POST data emists
|— LRI STRING |
[TP EprL g pe—— S ™
bane A Local et e R -

Tistait. [Watke. [5dme. | Frie. [-2 Ak - | B B Ciem B o6 xofT usim
FIGURE 4.5: SCREEN SHOT FOR PERFORMANCE MEASURE IN REST

4.1.3 Graphical Analysis of REST and SOAP on Performance
The data below forms a sample data of the analysis that | did on performance of both REST
and SOAP

Transaction | Data REST REST | SOAP SOAP
ID Records Memory Time Memory Time
1 10 2.4 0.06 3.504 0.1842
2 40 3.0 0.8 4.38 2.456
3 70 4.0 0.1 5.84 0.307
4 110 4.4 0.26 6.424 0.7982
5 140 5.2 0.3 7.592 0.921

TABLE 4.1: REST AND SOAP DATA ON PERFORMANCE

34

Memory Usage Graph

Memory Required to Access Data in REST and SOAP

14.0

12.0

Bs

=10.0

—=— SOAP Memory

Memoryin
®
o

——REST Memory

o
o

2.0

0.0

1 2 3 4 5

TransactionID

FIGURE 4.6: MEMORY REQUIRED FOR DATA ACCESS IN REST AND SOAP

35

Time Usage Graph

Time Taken to Access Data in REST and SOAP

25

Timein Seconds
o]
o
o]
n}

1.5 \ A —=—SOAP
/ \/ Time
—+—REST Time
0.8

-
o

2]
//0-6

0.5 . —— 65
A\FU/
0.0 —OT |
1 2 3 4 5

Transaction D

FIGURE 4.7: TIME REQUIRED FOR DATA ACCESS IN REST AND SOAP

From the results above, REST has proved to have the best performance compared to SOAP in
terms of Time and Memory required to access to access the same amount of information.
This is because REST is lighter than SOAP. SOAP requires an XML wrapper around every
request and response while in REST not a lot of extra xml markup is needed. SOAP response
could require more than 10 times as many bytes as would the same response in REST
(Rozlog, 2010).

4.1.4 Graphical Analysis of REST and SOAP on Scalability

Scalability being the ability of the prototype architecture to grow to accommodate increasing
number of users, applications and system; this will be measured based on the throughput in
bits per second as the number of users or threads increase.

In this research scalability is measured using throughput depending on the number of users
connecting to the server. Throughput or network throughput is the average rate of successful

message delivery over a communication channel. The data is delivered over a physical or

36

logical link, or pass through a certain network node. The throughput is usually measured in
bits per second (bit/s or bps), and sometimes in data packets per second or data packets per
time slot.

The throughput can be analyzed mathematically by means of queuing theory, where the load
in packets per time unit is denoted arrival rate, and the throughput in packets per time unit is
denoted departure rate.

The screen shot below shows the process of capturing throughput for both SOAP and REST
using apache-jmeter which is simulation software that measures scalability.

¥ RP Rest Server. jmx (C:\xamppthtdocsiapache-jmeter-2. 9lapache-jmeter-2.9\hinlexamples\RP Rest Server. jmx) - Apache JMeter (2.9 r1437961)
File Edit Search Run Options Help

Haeaw [g]C[B] +[-]4][v]e]e]o % 2 [d]d] o[v| =] 14 0w c
P TestPian H -
¢ [ResT users | View Results Tree
¢ 47 REST Request 2| |Name: [view Results Tree
| corment

Graph Results

=] Spine Visual: | write resuits toile / Read from file
=] Spline Wisualizer

i REST Authoriztion enager /| Filename | || eronse.. LogMisplay Only: [Errors [] Successes
Summary Report i -
arkBench &b REST Request #|[Sampler result

&k REST Request
&b REST Request
&k REST Request
&b REST Request
&k REST Request
&b REST Request
&k REST Request
&b REST Request
&k REST Request

: Text |v 4

i |] scroll automatically? H | Raw |_Parsed

e = m . %) = o
‘4 Start ®am. - T4, -l Adan - @am. -] Ogam., [@ bin

FIGURE 4.8: REST REQUESTS TO MEASURE SCALABILITY BASED ON NUMBER OF USERS

37

¥ RP Rest Server. jmx (C:\xamppthtdocsiapache-jmeter-2. 9lapache-jmeter-2.9\hinlexamples\RP Rest Server. jmx) - Apache JMeter (2.9 r1437961)

File Edit Search Run Options Help

EREC

CHE3E

B[+- (4| [v]e]

9 a Test Plan

EIEIES N

@ [REST Users
¢ 47 REST Request
few Resuts Tres

raph Results
pline Visualizer
3 REST Suthorization Manager

Bummary Report

WiorkBench

% start @zm. -

4 L.

FIGURE 4.9: REST THROUGHPUT MEASURING SCALABILITY BASED ON NUMBER OF USERS

i Summary Report

| Name: |Summant Report

I

Write results to file / Read from file

Filename ‘ || sromse.. | Logmisplayonly: CIEors [Successes
Label | # Samples \ Averane \ Min | [LEYS \ Std. Dev. | Errar % | Throughput \ KBiser \ Avg. Bytes
|IREST Request | 10 2708| 1324 3141] 627.37| 0.00% 320580 13.24] 4376.0
SlToTAL 10 2708 1324 3141] 627.37| 0.00%| 3.21zec] 13,29 4276.0

MdA

- @m3M. -

) KAM. .

["] Include group name in label? Save Table Data Save Table Header

Search Dieskiop

E ncems.

== S0AP Users. jmx (C:\xampplhtdocslapache-jmeter-2. Mapache-jmeter-2. 91binlexamples\SOAP Users. jmx) - Apache JMeter (2.9 r1437961)

File Edit Search Run Options Help

EREC

Zl

Loje| +[-[4][»]x]

9 a Test Plan

EIEIES N

@ [s0mp Users
¢ 47 RP (S04P) Reduest (DEPRECATED)

raph Results
pline isualizer

ummary Repart

|| View Results Tree

:| Name: |View Results Tree

I

Write results to file / Read from file

Filename ‘

=

LogMDisplay Only: [| Errors [| Successes

4 RP (SDAF) Request IDEFRECATED)
Ly RP (S0AP) Request (DEPRECATED)
£ RP {SDAP) Request IDEPRECATED)
Ly RP (S0AP) Request (DEPRECATED)
£ RP {SDAP) Request IDEPRECATED)
Ly RP (S0AP) Request (DEPRECATED)
£ RP {SDAP) Request IDEPRECATED)
Ly RP (S0AP) Request (DEPRECATED)
£ RP {SDAP) Request IDEPRECATED)
L RP (S0AP) Request (DEPRECATED)

#|| Sampler result

Text

[] Scroll automatically?

+4 start 2

FIGURE 4.10: SOAP REQUESTS TO MEASURE SCALABILITY BASED ON NUMBER OF USERS

|l _Raw | Parsed

Search Dieskiop

=l s “e@x 0

38

== S0AP Users. jmx (C:\xampplhtdocslapache-jmeter-2. Mapache-jmeter-2. 91binlexamples\SOAP Users. jmx) - Apache JMeter (2.9 r1437961)

File Edit Search Run Options Help

Haeaw [g]C[B] +[-]4][v]e]e]o % 2 [d]d] o[v| =] i e
? “ Test Flan 4
@ [50mP Users /| Summary Report
? {'RP(SOAP)RequEﬁ(DEPRECATED] §§ Name: |SummaryRepurt
[E] visw Resuts Tres 3| |comments:
raph Resuits E Wirite results to file / Read from file
=] spline Wisualizer H
i Filename‘ || eronse.. | Logmisplay onty: TIErrors [Successes
‘WiorkBench H _
Label | # Samples \ Averane \ Min | [LEYS \ Std. Dev. | Errar % | Throughput \ KBiser \ Avg. Bytes
SIRP(SOAFY Re... | 10 73 43| 157 29.68| 0.00%)| 10.6/sec] 57.53] 5561.0
SlToTAL | 10 72 | 157 29.68| 0.00%| 10.6(zec| 5753 5561.0

["] Include group name in label? Save Table Data Save Table Header

(P — [I I
g start, [@2nm. -[T4, <[A4 - ©rkam., @ bn = s0a.. I o :ec@xe0T rom

FIGURE 4.11: SOAP THROUGHPUT MEASURING SCALABILITY BASED ON NUMBER OF USERS

Scalability being one of the main differences between REST and SOAP, SOAP services are
much harder to scale than RESTful services, which is, of course, one of the reasons that
REST is often chosen as the architecture for services that are exposed via the Internet (like

Facebook, MySpace, Twitter, and so on) (Jon, 2007).

The data below forms a sample data of the analysis that | did on scalability for both REST
and SOAP

USER SAMPLES
Sample (Users) 10 20| 30| 40| 50| 60| 70 80 90 | 100
REST Throughput 51| 224 29| 27| 27| 24| 24 23| 23.2 46
SOAP throughput 10| 181 | 14| 17| 19| 21| 23| 249| 26.2 27

TABLE 4.2: REST AND SOAP DATA THROUGHPUT BASED ON USERS

39

Scalability of SOAP and REST

Scalability Based on Users

50

45 f—
40

w
w

’J'—-. —g— Rest
4

Throu
ghput

/\ I et
/ =i
N~

-4

.

L—‘;Throghputaibps] w

10 20 30 40 50 60 70 80 90 100
NO. of Users

FIGURE 4.12: SCALABILITY OF REST AND SOAP MEASURED USING THROUGHPUT

Form the graph above its evident that REST scales very well with the increase in the number
of users as its information can be cached by intermediate proxy servers as its request uses

GET and also because it’s totally stateless operations compared to SOAP. (Rozlog, 2010)

4.1.5 Extensibility of REST and SOAP

Extensibility being the ability of the prototype system to allow and accept significant
extension of its capabilities, functionality, enhancement for the purpose of meeting future
needs and significantly changing requirements without major rewriting of code or changes in
its basic architecture.

Comparatively REST extents very well compared to SOAP and is able to have several
options to display data from the server e.g. JSON, HTML, XML.

Again REST has better extensibility as it able to present the same data in different formats
e.g. XML, HTML and JSON compared to SOAP which can only present data in format of
JSON.

The screen shots below show the various ways in which the two are able to present the same

data form a common database.

40

titled Document - Windows Internet Explorer

Gﬁg};v |H httpif localhost|RedgistarOf Parties Registr arofparties, himl V| ‘? A ‘ Yahoo! Search | D=

File Edit ‘View Favortes Tools Help

{2 Faworites | {5 £ | Free Hotmail @ Suggested Sites * € | Get more Add-ons

Untitled Document | | - [(- Page~ Safetyr Todk+ @+
Registrar Of Political Parties
A
Upload Partv =2¢ml version="1.0" encoding="utf-8" 7> =
- <xmlz
Upload Members - <tems 3
<id=4</id=
- <party_name>Kanu</party_name: L
View data In REST <party_patron>Gideon Moi</party_patronz
<party_secretary =Nick Salat</party_secretary>
Members ========= Parties <party_logo=Cock</party_logo=
<party_officeEldoret Kibet Plaza </party_office=
>>Html ==========">>Hml <dcreated=>2013-06-06 21:58:29</dcreated >
<fitamz
>>Json === >>Json - <tems
- - <id=5</id=
<party_name=NarC</party_name>
el P <party_patron=Martha Karua</party_patron=
<party_secretary=0le Mitito</party_secretary:
View data In SOAP <party_logo=Flower</party_logo>
<party_office=Kileleshawa Nole Rd </party_office:
===>>Parties <dcreated=2013-06-06 21:58:29</dcreated >
=fitem
==>>Members - <itemz
- <id=»10</id=
<party_name=Ford</party_name:
<party_patron>Moses Wetangula</party_patronz
<party_secretary >Wamalwa</party_secratary»
<party_logo=Umbrella</party_logo> 2

Done q&.oca\ intranet v Bon v
".r’ start & t Search Desklop

FIGURE 4.13: XML DATA USING RES

41

e Bt how Mg ools Tk b
|ttt tapatefrmtin |

[4*1d":*1", *party wame®:"CON", "parcy parron®:"Bails Odiegs”, *party secrerary¥:"Fred Guen®, "party loge*:"Orangelt”, “perty office®: Karen)r®, "dereared:*2013-035

FIGURE 4.14: JSON DATA USING REST

{= Untitled Document - Windows Internet Explorer

6@7 ‘ http:/flocalhostiRegistar OFParties/Registrarafparties, himl V| 4 K ‘! Yahao! Search ‘ Pl

Fle Edt Wew Favorites Tools Help

7 Favorites ‘ 5% €] FreeHotmal @ Suggested Stes + | Get more Add-ons +

— 3

|Untitled Document | | ﬁ LA 5 IR | @ v Page = Safety v Tools = @v
Registnar Of Political Panties
A
Upload Party id partv_name party_patron party_secretary party_logo party_office dereated
Unload Members 4 Kam Gideon Moi Nick Salat ~ Cock Eldoret Kibet Plaza 2013-06-06 21:38:29
3 NarC Martha Karua ~ Ole Mitito Flower Kileleshawa Nole Rd 2013-06-06 21:38:29
Uitk DI 10 Ford Moses Wetanuls Wamalwa Unbrela Kakameza 2013-06-07 1042:50
Members ========= Parties 11 NarC Kenya Xooom Ywyy Sussan Mitito Maua Machakos 2013-06-07 10:42:50
12 888888 Mike Muli Member 2013-06-07 10:49:18
>>Himl ==========>>Hml
13 777777 Tvan Mbogo Member 2013-06-07 10:49:18
>>Json === >>]son 14 535535 Jack Kulwa Member 2013-06-07 10:49:18
>5Xad 5 Xnl 15 666660 Lavin Asembo Treasurer 2013-06-07 1049:18
16 Wiper Muthama Ndambuki ~ Mwavuli Makueni 2013-06-08 22:32:17
View data In SOAP 17 Sisi Kwa Sisi Wetangrla Hasasa Omar Umbrela Machakos 2013-06-08 22:52.17
——>Parties 18 DP Munyao Kamau Ndiba Taa Lavington 2013-06-08 22:52:17
. 19 Ford Moses Wetangula Wamalwa Umbrella Kakamega 2013-06-08 22:52:52
==>>Members
20 NarC Kenva Xooom Yvyy Sussan Mitito Maua Machakos 2013-06-08 22:52:52
21 Wiper Muthama Ndambuki ~ Mwavuli Makueni 2013-06-08 22:33.08
22 Sisi Kwa Sist - Wetangula Hasasa Omar Umbrella Machakos 2013-06-08 22:33.08 1
1 ne Auniran K aman Ndiha Taa T manatan MI1INANE 178318 A

& Local intranet fy v ®on -

(& Draft Search Deskiop

FIGURE 4.15: HTML DATA USING REST

42

Using SOAP the political parties data can only be viewed using JSON and data is presented

in the form of arrays.

2} Untitled Document - Mozilla Firefox

File Edit “ew History Bookmarks Tools Help

|Untitled Document I + |
6 lacalhost/RegistarOfParties|Registrarafparties. html < E" Googls
Regc O litceal 7
egistnar alctical Farnlies
Upload Party Parties
Upload Wembers Array
{
View data In REST [parties] =» Array
[
Members ========= Parties tol =(> Array
[pid] => 4
>>M7>>M [party name] => Kanu
[party patron] => Gideon Moi
>xJson ———">>J50n [party_secretary] => Nick 3Salat
[party_ logo] =»> Cock
=23m —o—— =3l [party office] => Eldoret Kikbet FPlaza

[doreated] => 2013-06-06 21:58:29
View data In SOAT J
[1] =» Array
=—==>=Tarties i
[pid] == 5
—>=>Members [party_name] => NarC
[party patron] => Martha Karua
[party secretary] => Cle Mitito
[party logo] =»> Flower
[party office] => Kileleshawa Nole Rd
[doreated] => 2013-06-06 21:58:29
1

[2] =» Array
[

— = —
's Start | @ mbox - Microsoft... | /= 5 Internet Expl... = | T Document? - Micr...) Unititled Documen. .. £

FIGURE 4.16: JSON DATA USING SOAP

4.1.6 Maintainability of REST and SOAP

REST is very lightweight, and relies upon the HTTP standard to do its work. It is great to get
a useful web service up and running quickly without developing the WSDL as REST doesn’t
need such features. REST essentially requires HTTP, and is format-agnostic meaning you can
use XML, JSON, and HTML.

SOAP is good though for the computers to understand the web service a WSDL is must as all
the methods need to be defined in it. SOAP (using WSDL) is a heavy-weight standard that is
centered on document passing. REST specifications are generally human-readable only
(Kekoa, 2009).

The implementation of SOAP requires a client and server components that needs to be
registered in the WSDL.

43

For more details on the SOAP implementation see Appendix B

4.2.0 Discussion

After the experiments were done on REST and SOAP for my research, it has proved that
REST consumes less amount of memory and time to fetch the same amount of data /
information from the same database source compared to SOAP.

In terms of scalability it has also proved that REST scales very well with addition / increase
in number of users who access the data in the server at the same time.

Form the experiments done in this chapter above; it’s evident that REST scales very well
with the increase in the number of users as its information can be cached by intermediate
proxy servers as its request uses GET and also because it’s totally stateless operations

compared to SOAP. (Rozlog, 2010)

With enterprise applications, think of speed and scalability—scalability being one of the main
differences between REST and SOAP. SOAP services are much harder to scale than RESTful
services, which is, of course, one of the reasons that REST is often chosen as the architecture

for services that are exposed via the Internet like Facebook, MySpace, Twitter, and so on

Inside enterprises, applications also often need to scale as well. Using REST means that you
can take advantage of HTTP caching and other features, like Conditional GET, that aid in
scaling services. Many of these techniques can't be used with SOAP because SOAP uses
POST only over HTTP (Jon, 2007)

With the load of the server, REST has a better performance because it bears minimal
overhead on top of HTTP. Usually SOAP brings with it a stack of different (generated)
handlers and parsers. Again RESTful service is easier to scale up since it doesn’t have any

server side sessions (wuher, 2010).

Form the experiments done in this chapter above; REST has proved to have the best
performance compared to SOAP in terms of Time and Memory required to access to access
the same amount of information. This is because REST is lighter than SOAP. SOAP requires
an XML wrapper around every request and response while in REST not a lot of extra xml
markup is needed. SOAP response could require more than 10 times as many bytes as would

the same response in REST (Rozlog, 2010).

44

Chapter 5: Conclusion and Recommendation

5.0 Conclusion

The usage of web service technologies will be of great assistance in providing sanity and a
solution to the registrar of political parties’ problems of registering genuine and legitimate
members to various political parties. Both SOAP and REST has proved to be very efficient in
data consolidation from different sources into a common database but data access from the
common database REST has better performance, extensibility and scalability.

Comparatively REST has proved to be the best and easy to maintain as it is an architecture
that needs very few lines of code to do any urgent changes required during maintenance or
modifications to solve a specific problem. In terms of performance, REST takes shorter time
to load similar amount of data as compared to SOAP and also it uses less resources e.g.
Memory and processing power.

REST has also demonstrated high degree of scalability with increasing number of users
accessing the system at the same time; this has been achieved by improved and better
throughput.

In terms of complexity REST API accesses data directly from the database tables while
SOAP requires a soap server, WSDL and a soap client to access the same data from the
database table.

Use of REST framework will help the registrar of political parties manage party’s

membership with computing resources that have better performance and maintainability

5.1 Recommendations

The two approaches, SOAP (Simple Object Access Protocol) and REST (Representational
State Transfer) have advantages and disadvantages to interfacing to web services, but it is up
to the web developer to make the decision of which approach may be best for each particular
case (Rozlog, 2010).

From the research results, out of the two prototypes REST show considerable efficiency and
effectiveness in managing the issues affecting the registrar of political parties e.g. political
party’s membership information. I therefore recommend REST as the preferred framework in
the development of a system that will help the registrar of political parties in managing
parties information and ensuring only legitimate members are registered to political parties
once and not double registrations as the system will check on the national id being upload to

the members table and ignore double registrations by rejecting them.

45

Most developers from the mainstream have at least, been exposed to the REST approach,
which uses a standard URI (Uniform Resource Identifier) that makes a call to a web service
very simple to understand and can be executed on really any client or server that has
HTTP/HTTPS support. Developers that use this approach, cite the ease of development, use
of the existing web infrastructure, and little learning overhead as key advantages to the style
(Rozlog, 2010).

5.2 Suggestions for Further Improvement
Future research may address security and the analytical bit of the captured data, comparing
REST and SOAP; including automatic alerts if the system encounters a member who is

registered more than once across different political parties.

The registrar of political party’s data being very sensitive and a concern in Kenya, a
combination of several techniques need to be used to secure the Web service systems. The
Security should encompass any of the following which may form part the overall security

plan:-

i. Equipment deployment - this concerns where the web servers should be placed i.e.
internally or off site. Web service for the registrar of political parties will be
publicly accessed and will need to expose as little of its internal infrastructure as
necessary, database machines should be behind a firewall within demilitarized
zone (DM2).

ii. Authenticating users — all the users of the registrar of political party’s web service
system will need to be authenticated with their identities to use the system. The
identity information should be used to make sure a person have access to the Web
service. The same should also be used to track the user's activities.

iii. Guarding data — the authentication mechanisms need to have Access Control Lists to
guard files and SQL-based security to guard data in your database from un-trusted
public members.

iv. Tracking user activity — as the public users are using those resources, you will want to

be able to see what was done on the web service.

46

References

1.

10.

11.

12.

13.

14.

15.

Chappell, D. (2009). SOAP vs. REST:Complements or Competitors? San Francisco,
California: Chappell & Associates.

Elkstein, M. (n.d.). Learn REST: A Tutorial. Retrieved February 1, 2013, from Learn
REST: A Tutorial: http://rest.elkstein.org/

Francia, S. (2010, January 15). SOAP vs. REST. Retrieved March 15, 2013, from
SOAP vs. REST: http://spf13.com/post/soap-vs-rest/

Gavin, D. G. (2009). A Comparison of SOAP and REST implementations of a service
based interaction independence middleware framework. Proceedings of the 2009
Winter Simulation Conference , 3-6.

IEBC. (n.d.). Retrieved February 5, 2013, from
http://www.iebc.or.ke/rpp/?keyword=20846558&submit=&check=set

Kishor, R. T. (2012). A Comparative Study of SOAP Vs REST Web Services
Provisioning. Journal of Information Engineering and Applications , 2-4.

Kothari, C. (2004). Research Methodology Methods and Techniques (Second Revised
Edition). Jaipur (India): New Age International (P) Limited Publishers.

Marston, T. (2004, May 2nd). The Model-View-Controller (MVC) Design Pattern for
PHP. Retrieved May 14, 2013, from Rapid Application Development toolkit for
building Administrative Web Applications: http://www.tonymarston.net/php-
mysql/model-view-controller.html

Maven. (2011). Lightweight REST framework. Retrieved June 4, 2013, from
Lightweight REST framework:
http://essentialsource.sourceforge.net/documentation/rest.ntml

Nahon, J. (2011). A Comparative Analysis of REST and SOAP. Leeds: School of
Computing University of Leeds.

Pavan, S. A. (2012). Comparing Performance of Web Service Interaction Styles:
SOAP vs. REST. Proceedings of the Conference on Information Systems Applied
Research (pp. 2-5). New Orleans Louisiana, USA: University of North Florida.

Potti, P. K. (2011). On The Design Of Web Services: SOAP vs. REST. Florida:
University Of North Florida School Of Computing.

Singh, T. (2009, August 24). REST vs. SOAP — The Right WebService. Retrieved
January 28, 2013, from REST vs. SOAP — The Right WebService:
http://geeknizer.com/rest-vs-soap-using-http-choosing-the-right-webservice-
protocol/#ixzz21cJgJ2yO

Jon, F. (2007, July). Which is better, REST or SOAP? Retrieved July 11, 2013, from
SOAP, REST, and More: http://msdn.microsoft.com/en-us/magazine/dd942839.aspx

wuher. (2010, November 12). Rest vs. Soap. Has REST a better performance?
Retrieved July 11, 2013, from web services - Rest vs. Soap. Has REST a better
performance? - Stack Overflow: http://stackoverflow.com/questions/4163066/rest-vs-
soap-has-rest-a-better-performance

47

http://geeknizer.com/rest-vs-soap-using-http-choosing-the-right-webservice-protocol/#ixzz2IcJgJ2yO
http://geeknizer.com/rest-vs-soap-using-http-choosing-the-right-webservice-protocol/#ixzz2IcJgJ2yO
http://msdn.microsoft.com/en-us/magazine/dd942839.aspx
http://stackoverflow.com/questions/4163066/rest-vs-soap-has-rest-a-better-performance
http://stackoverflow.com/questions/4163066/rest-vs-soap-has-rest-a-better-performance

16. Rozlog, M. (2010, April 01). REST and SOAP: When Should | Use Each (or Both)? .
Retrieved August 06, 2013, from REST and SOAP: When Should I Use Each (or
Both)? : http://www.infog.com/articles/rest-soap-when-to-use-each

48

Appendix A: Systems Specifications
All the experiments in this research were done in the same environment having the
specifications shown below:
a. Hardware Specifications
System Manufacturer: Dell Inc.
System Model: Latitude E6400
Memory: 4 GB RAM
Processor: Intel(R) Core(TM) 2 Duo CPU P8600 @ 2.40GHz (2 CPUs)

b. Software Specifications
Operating System: Windows XP Professional (5.1, Build 2600) Service Pack 3
(2600.xpsp_sp3_qfe.130704-0421)

c. Running Applications / service

At time the experiments were being done, there were no other applications running and the

background process were at machine level (no user processes running or started).

49

Appendix B: SOAP Implementation code snippet
a. The code snippets below shows the SOAP server methods that needs to be registered
in the WSDL

$server = new soap_server();
$server->configureWSDL("partylist”, "urn:partylist™);
$server->register(getMembers",

array(“category" => "xsd:string"),

array("return™ => "xsd:string"),

"urn:partylist",

"urn:partylist#getMembers",

“rpc”,

"encoded”,

"Get a listing of all the political party members");

$server->register(*getParties",
array(“category" => "xsd:string"),
array("return™ => "xsd:string"),
"urn:partylist”,
"urn:partylist#getParties”,
"rpc",
"encoded",

"Get a listing of all the political parties™);

$server->register("getParty”,
array("category" => "xsd:string", "pid" => "xsd:int"),
array(“return™ => "xsd:string"),
"urn:partylist”,
"urn:partylist#getParty"”,
“rpc”,
"encoded",

"Get a political party given the party ID");

50

b. The code below show the WSDL required by SOAP in the implementation of the
prototype.

<?xml version="1.0" encoding="1S0-8859-1"7>
<definitions xmIns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlins:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"” xmIns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:tns="urn:partylist"
xmlins:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmins:wsdl="http://schemas.xmlsoap.org/wsdl/" xmIns="http://schemas.xmlsoap.org/wsdl/"
targetNamespace="urn:partylist">
<types>
<xsd:schema targetNamespace="urn:partylist"
>
<xsd:import namespace="http://schemas.xmlsoap.org/soap/encoding/" />
<xsd:import namespace="http://schemas.xmlsoap.org/wsdl/" />
</xsd:schema>
</types>
<message name="getMembersRequest">
<part name="category" type="xsd:string" /></message>
<message name="getMembersResponse">
<part name="return" type="xsd:string" /></message>
<message name="getPartiesRequest">
<part name="category" type="xsd:string" /></message>
<message name="getPartiesResponse">
<part name="return" type="xsd:string" /></message>
<message name="getPartyRequest">
<part name="category" type="xsd:string" />
<part name="pid" type="xsd:int" /></message>
<message name="getPartyResponse">
<part name="return" type="xsd:string" /></message>
<portType name="partylistPortType">
<operation name="getMembers">
<documentation>Get a listing of all the political party members</documentation>
<input message="tns:getMembersRequest"/>
<output message="tns:getMembersResponse"/>
</operation>
<operation name="getParties">
<documentation>Get a listing of all the political parties</documentation>
<input message="tns:getPartiesRequest"/>
<output message="tns:getPartiesResponse"/>
</operation>
<operation name="getParty">
<documentation>Get a political party given the party ID</documentation>
<input message="tns:getPartyRequest"/>
<output message="tns:getPartyResponse"/>
</operation>
</portType>
<binding name="partylistBinding" type="tns:partylistPortType">

51

<soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getMembers">
<soap:operation soapAction="urn:partylist#tgetMembers" style="rpc"/>
<input><soap:body use="encoded" namespace="urn:partylist"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"'/></input>
<output><soap:body use="encoded" namespace="urn:partylist"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/></output>
</operation>
<operation name="getParties">
<soap:operation soapAction="urn:partylist#getParties" style="rpc"/>
<input><soap:body use="encoded" namespace="urn:partylist"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/></input>
<output><soap:body use="encoded" namespace="urn:partylist"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"'/></output>
</operation>
<operation name="getParty">
<soap:operation soapAction="urn:partylist#getParty" style="rpc"/>
<input><soap:body use="encoded" namespace="urn:partylist"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"'/></input>
<output><soap:body use="encoded" namespace="urn:partylist"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/></output>
</operation>
</binding>
<service name="partylist">
<port name="partylistPort" binding="tns:partylistBinding">
<soap:address location="http://localhost/rpsoap/rpserver.php"/>
</port>
</service>
</definitions>

C. The code snippets below shows the SOAP client that uses the methods defined in the
SOAP server. The code pulls data from the MYSQL database to the browser

<?php if (defined('BASEPATH?)) exit('No direct script access allowed');
require_once "lib/nusoap.php";
class rpclient extends CI_Controller

{

function __construct(){

parent::__construct();

// load model

52

$this->load->helper(url);
$this->output->enable_profiler(TRUE);
}

function index()

/I load the client
$client = new nusoap_client("http://localhost/rpsoap/rpserver.php™);
//$client = new nusoap_client("rpsoap.wsdl", true); -- using the existing wdsl
location: /wdsl/rpsoap.wsdl
$error = $client->getError();
if ($error) {
echo "<h2>Constructor error</h2><pre>" . $error . "</pre>";
}
$result = $client->call("getParties”, array(*category"” => "parties™));
/luse the ?url to get the parties var and display
if ($client->fault) {
echo "<h2>Fault</h2><pre>";
print_r($result);
echo "</pre>";
}
else {
$error = $client->getError();
if ($error) {
echo "<h2>Error</h2><pre>" . $error . "</pre>";
}
else {
echo "<h2>Parties</h2>";
echo "<pre>";
Ilecho $result;
print_r(json_decode($result, true));

echo "</pre>";

53

"</pre>";

echo "<h2>Request</h2>";

echo "<pre>" . htmlspecialchars($client->request, ENT_QUOTES) . "</pre>";
echo "<h2>Response</h2>";

echo "<pre>" . htmlspecialchars($client->response, ENT_QUOTES)

}/ end of index func

function members(){

/' load the client
$client = new nusoap_client("http://localhost/rpsoap/rpserver.php™);

//$client = new nusoap_client("rpsoap.wsdl”, true); -- using the existing wdsl

location: /wdsl/rpsoap.wsdl

$error = $client->getError();
if ($error) {
echo "<h2>Constructor error</h2><pre>" .$error. "</pre>";
}
$result = $client->call("getMembers", array(*category” => "members"));
/luse the ?url to get the members var and display
if ($client->fault) {
echo "<h2>Fault</h2><pre>";
print_r($result);
echo "</pre>";
}
else {
$error = $client->getError();
if ($error) {
echo "<h2>Error</h2><pre>" . $error . "</pre>";
}
else {
echo "<h2>Members</h2>";
echo "<pre>";
/lecho $result;
print_r(json_decode($result, true));

echo "</pre>";

54

"</pre>";

}
echo "<h2>Request</h2>";

echo "<pre>" . htmlspecialchars($client->request, ENT_QUOTES) . "</pre>";
echo "<h2>Response</h2>";

echo "<pre>" . htmlspecialchars($client->response, ENT_QUOTES)

}/ end of members func

function party(){

$ret_id));

/lget the id
$ret_id = $this->uri->segment(3, 0);
/' load the client
$client = new nusoap_client("http://localhost/rpsoap/rpserver.php™);
$error = $client->getError();
if ($error) {
echo "<h2>Constructor error</h2><pre>" . $error . "</pre>";

ky

$result = S$client->call("getParty”, array(“'category” => "party”, "pid" =>

/luse the ?url to get the authors var and display
if (Sclient->fault) {
echo "<h2>Fault</h2><pre>";
print_r($result);
echo "</pre>";
}
else {
$error = $client->getError();
if ($error) {
echo "<h2>Error</h2><pre>" . $error . "</pre>";
}
else {
echo "<h2>Party</h2>";
echo "<pre>";
/lecho $result;

print_r(json_decode($result, true));

55

echo "</pre>";

¥

echo "<h2>Request</h2>";

echo "<pre>" . htmlspecialchars($client->request, ENT_QUOTES) . "</pre>";

echo "<h2>Response</h2>";

echo "<pre>" . htmlspecialchars($client->response, ENT_QUOTES)
"</pre>";

}/ end of index func

}/end of rpsoap class

7>

56

	UNIVERSITY OF NAIROBI.pdf
	Romans pages
	Chris Kiama -TOC
	Romans pages 2 cont
	Chris Kiama - Project Final part 2

