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ABSTRACT 

This study gives a solution for automatic reading of meters by taking digital images of the meters and 

using machine learning techniques to automatically read the meters. A dataset of positive examples, 

negative examples and test digital images  is collected and used to train a classifier using the Adaboost 

learning algorithm. Positive examples are digital images of meters collected randomly from manually 

read meters and negative examples are any digital images without meters taken randomly using a digital 

camera, collected from past images or harvested on the internet. The test data is a subset of the positive 

and negative examples, and is not used in the algorithm training process. The positive and test images 

are manually labelled with the regions that contain meters on those images and a description file is 

created with the coordinates of meters in the images. The study uses OpenCV libraries for the classifier 

training and validation. The results of the the best performance test  on the test data from the Adaboost 

training sessions is 75.4% recall with 19.4% false positive rate. This classifier is then used in a 

prototype that reads meters from digital images.  Once the meter region is detected on an image, 

template matching techniques are used to locate the meter reading. The meter reading region is then 

binarized and presented to an OCR engine for text reading. It is this reading that can then be 

transmitted to utility providers for customer billing. Various integrity checks are proposed to ensure the 

transmitted data is accurate to avoid losses to utility providers and customers. The study presents this 

prototype to demostrate the ability to use current technologies to solve common problems within 

society.  
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CHAPTER 1:  INTRODUCTION  

1.1  Background 

Automated reading of meters, for example, electricity, water and gas meters, is a problem area where 

new solutions are required as utility providers seek to reduce cost and improve services to their 

customers. Recent advances in wireless communication networks such as GSM has also created a great 

opportunity for developing applications with wide geographic coverage. Furthermore, with the ready 

availability of digital cameras, many people now have access to large databases of digital images 

leading to interest in research in applications that can manipulate these images to extract useful 

information. Research has focused on developing efficient machine learning algorithms to detect 

objects of interest in digital images. One of the objects of interest in digital images is text.  Research 

has therefore also focussed on developing ways of reading text in digital images, an area popularly 

known as text information extraction (Jung, Kim and Jain, 2004). This area of research has led to the 

development of useful applications such as systems for assisting the blind by reading street signs, 

reading of vehicle number plates, mining of text in large databases of digital images such as the 

internet, etc. Another useful application of text information extraction is the problem of reading of 

meters, such as electricity and water meters, from digital images of the meters. The reading of meters 

from realtime digital images of the meters is the focus of this research paper.  

1.2  Problem Statement 

Meters are used by utility providers for recording utility consumption in many households and 

premises, distributed over a wide geographical area.  In order to bill their clients, attendants of the 

utility provider are dispatched to manually read and record meter readings. Because of the large number 

of clients, this is a time consuming exercise. Conventional meter reading can also pose problems both 

for the customer and the utility provider  when, for example, inadvertent reading of meters increase or 

decrease the customer bill. [Cabioc, Gerardo and Byun, 2011, p. 230].  In addition to possible errors in 

meter reading, there is also the problem of manual data entry of the readings into utility provider’s 

systems which can also lead to more errors. There is need therefore for a solution that can automate the 

capturing of meter readings and send the data to the utility provider’s systems. This can reduce the 

inefficiencies of the manual process.  
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1.3  Justification 

Most utility providers are faced with the need to reduce operating expenses and increase profitablity by 

adopting automated meter reading systems (AMR) (Galle, 2010). These are systems that  automate the 

task of meter reading by using smart meters with existing network infrastructures such as GSM 

networks, Bluetooth, Radio Frequencies, Wireless networks, to automatically transmit meter readings 

from the customer site to the utility provider servers. This whole infrastructure is refered to as 

Advanced Metering Infrastructure (AMI) and has the key benefits of reducing costs and improving 

quality of service to the customer. (Galle, 2010). AMRs are becoming popular because of the inherent 

problems with traditional manual meter reading process. Some of  the drawbacks of the the manual 

process are: firstly, the introduction of human errors which may lead to overcharging or undercharging 

the customer, secondly,  the practise by meter personnel of simply estimating consumption, which is 

not acceptable and the huge amount of time consumed by the utility provider personnel moving from 

house to house. (Sharef et al, 2013).  

AMRs are however expensive to implement. This is because implementation of AMRs involves 

replacing the existing meters with smart meters, in addition to rolling out a network infrastructure for 

transmitting the readings.  Thus, most utility providers cannot afford them. This is a motivation for 

exploring technologies that can achieve similar benefits, but in a cost effective manner for the utility 

providers. This study is aimed at contributing to the solution of the problems outlined. It proposes a 

system where customers, by use of readily available digital cameras on mobile phones or other 

handheld electronic devices, and by use of existing mobile and wireless networks can be able to point 

their cameras at the meters and the system reads and trasmits the meter readings to the utility provider. 

The proposed system will not require replacement of existing meters or acquisition of a network 

infrastructure for transmitting the meter readings.  

1.4  Objectives 

The main goal of this study is to develop and test a prototype that can be used to read meters and 

transmit the readings to a utility provider.  

The objectives of the study are to:  

1. Design, develop and test a prototype that can use machine learning techniques to accurately 

read meters.  

2. Design, develop and test a prototype that can transmit meter readings from a handheld device to 

the utility provider systems using a suitable communication infrastructure.  

3.  Evaluate various techniques that can be used to automatically read meters using machine 

learning algorithms.  
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1.5  Research outcomes and their significance to key audiences 

The main output of this study will be a prototype that can be used to read meters and transmit those 

readings to the utility provider’s systems using a suitable communication infrastructure. Such a 

prototype can be used to design a complete system that can be used to automatically read meters 

without the intervention of utility provider personnel. This can further bring cost savings to the utility 

provider due to the time saved and increased accuracy of meter readings. Customers of the utility 

provider will also benefit from the efficiency and accuracy of the system.  

1.6  Research Questions 

1. How can we develop a system that can automatically read meters? 

2. What kind of hardware, software, and network communication infrastructure can be used to  

transmit the readings to a utility provider’s systems? 

3. What are the suitable machine learning techniques that can be used to automatically read meters 

from digital images of the meters?  

1.7  Scope 

This study will cover the problem of taking meter readings from digital images of meters using machine 

learning techniques. It will also cover the problem of how to transmit those readings to the utility 

provider’s servers in a remote location. In both cases the study will develop a prototype to address the 

problem. 

1.8 Assumptions of the research 

Some of the assumptions of the study are: 

1. Customers of the utility provider have handheld devices such as smartphones with cameras 

connected to GSM networks.  

2. Customers will be willing to use the proposed system  to take photos of the meters at regular 

intervals. The system will then use GSM network to send information to the utility provider. 

3. Utility providers trust the data sent by their customers for use in billing the customers. 
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1.9 Definition of Key Terms 

Automated Meter Reading – reading electric, gas or water meters automatically from a remote place 

without any human intervention. 

Bluetooth - A wireless technology standard for exchanging data over short distances. (Wikipedia, 

2013) 

False Positive Rate – The percentage of false regions detected as true objects in an image by the 

classifier. 

GPRS - A packet oriented mobile data service on the 2G and 3G cellular communication system's GSM  

(Wikipedia, 2013). 

Machine Learning – field of study that gives computers the ability to learn without being explicitly 

programmed (Arthur Samuel, 1957 quoted in Wikipedia, 2013). 

Precision – This is a measure of how much the classifier detects objects correctly without making 

mistakes. It is measured by FPR.  A lower FPR means that the classifier is more precise, while a higher 

FPR means the algorithm is not as precise and will make more mistakes by classifying false objects as 

true objects.  

Recall – This is a measure of how much the classifier detects objects correctly, without any misses. It 

is measured by TPR.  A higher TPR means the classifier has better recall and will detect many objects 

correctly without missing the objects in an image. 

Text Detection – the process of determining if a digital image contains text or not. 

Text Localization – the process of determining the actual location of text in a digital image and 

generating bounding boxes to enclose the pixels in an image with the text.  

Text Recognition – the actual reading of text from a digital image by a computer. This results in the 

read text being stored within the computer as text, separate from the digital image where the text was 

contained.  

True Positive Rate – The percentage of regions correctly detected as true objects in an image by the 

trained algorithm. 

WiFi - A popular technology that allows an electronic device to exchange data wirelessly using radio 

waves (Wikipedia, 2013). 

ZigBee - A specification for a suite of high level communication protocols using small, low-power 

digital radios based on an IEEE 802 standard for personal area networks. (Wikipedia, 2013) 
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1.10 Report Organization 

The rest of this report is organized as follows: 

Chapter 2 gives a review of current literature on the research area. The current meter reading solutions 

are discussed to justify the need for other solutions. Various topics are then discussed including digital 

image processing and machine learning techniques. The Adaboost learning algorithm is then presented, 

and past work that has used the algorithm for solving problems in object detection is then given.  

Chapter 3 gives the methodology followed in this study. The methodologies for text recognition, data 

collection and preparation, classifier feature selection and software development life cycle are 

presented.  

Chapter 4 presents the analysis and design work done during the study. The current meter solutions are 

discussed at length, and a justification for a new solution is given. The proposed solution is then 

described using functional requirements and use case diagrams. This section ends by giving how the 

algorithm will be evaluated.  

Chapter 5 presents the tools used in implementing the proposed solution. It shows how the algorithm 

training was conducted and how the results are used in a prototype to give the desired solution. The 

performance results of the algorithm are then presented and discussed.  

Chapter 6 gives the recommendations for future work, assumptions and limitations.  
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CHAPTER 2:  LITERATURE REVIEW 

2.1 Overview 

There is a push by most utility providers to adopt Automated Meter Reading (AMR) systems in the 

process of reading utility meters such as electricity, water and gas. This is due to the benefits that 

utility providers and customers reap from such systems. Accoding to Galle (2010), the main reason for 

this push is the need to reduce costs and maximize profits by utility providers. Even though AMRs are 

more advantageous and are expected to gain more ground in the future, traditional meters are still 

dominant (Abdollahi, Dehghani and Zamanzadeh, 2012). In Kenya for example, there has been an 

attempt to install prepaid electricity meters alongside the conventional analogue meter readers. While 

there are prepaid meter solutions in the market, in places like Nairobi, manually read meters are 

commonly in use.  

Utility providers can therefore benefit from research in the automation of meter reading. While there 

are AMR solutions coming from research in this area, new technologies are still required. This study 

proposes such an automated system. The system will allow customers with a suitable handheld devices 

such as a smartphone, connected to a GSM network, to take digital images of the meter, use machine 

learning techniques to take the current meter reading from the images and transmit the readings to the 

utility provider.  

Advances in the field of Information Technology and the ditigal revolution in general has not only led 

to a drop in the cost of consumer digital devices such as smartphones, but it has also led to widespread 

use of communicaton networks such as  internet and GSM which enable fast, secure and accurate 

information exchange  (Bala and Babu, 2012).  This means that customers of utility providers have 

access to smartphones and communication platforms to enable them transmit meter readings to utility 

providers.  

Existing research in the area of extraction of useful information from digital images and videos can 

contribute to a solution to the problem of automating the reading of meters. While most research 

traditionally focused on analysis and processing of scanned documents, present research has extended 

to detecting and extracting objects in digital images (Viola and Jones, 2004). Text is one of the 

common object of interest in digital images. With the wide use of digital image capture devices such as 

digital cameras, mobile phones and PDAs, research in the extraction of text from images has been 

receiving more attention (Pan, Hou and Liu, 2008) .  
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2.2 Types of Meters 

Meters can either be digital meters or analog meters. They can however, be classified in various ways, 

depending on how they operate and how the customer pays for the utility. The following types of 

meters can be identified in the literature: 

Conventional Meters 

Conventional metering is where the utility providers install meters at the consumer site and send 

monthly bills based on actual or projected consumption (Zyl, 2011). Utility providers employ staff to 

take meter readings at monthly or more intervals at the customer sites. This method is prone to errors 

and sometimes the staff may not get access to the customer site. McNabb (2011) has documented other 

methods used to circumvent the difficulty of accessing the customer site. One of them  is to connect the 

meter to an electronic  unit outside the customer site where meter reading staff can read the meters 

using handheld devices. Another method is to connect the meter to a radio frequency transmitter and 

the meter reading staff drive by the customer site and automatically take the meter readings using a 

handheld device.  

Prepaid Meters 

Accordign to Zyl (2010), prepaid meters have builtin processing units that can automatically disconnect 

a consumer’s supply. Consumers purchase utility in advance, and by use of a token or  electronic 

signal, the amount purchased is fed into the meter. The meter automatically shuts off once the amount 

purchased is exhausted. There is therefore no need for employing staff to manually read meters or 

handle debt collection as in conventional meters. However, Zyl (2010), the main disadvantage of 

prepaid meters is the cost of the meters due to addional gadgets that must be incorporated for the meter 

to work. These meters also have more components that can fail and thus require regular maintenance 

and care. 

Automated Meters 

Automatic Meters take advantage of existing technologies such as wireless networks to deliver a 

solution that can allow for continuous meter readings from a remote location without any human 

intervention (McNabb, 2011). This system uses smart meters, which are composed of a two-way 

communication between the meter and utility provider, allowing the provider to obtain meter readings 

on demand and even command the meter remotely. The smart meters are usually components in a 

communication network, which is also connected to the utility providers billing sytem. 
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2.3  Automated Meter Reading 

Automatic Meter Reading (AMR) is a state-of-the- art technology for taking electric, gas or water 

meter readings automatically from a remote place without any human intervention (Bala and Babu, 

2012).  

Cabioc, Gerardo and Byun (2011), propose an SMS- based automatic billing system for reading 

household meters. The system is composed of a remote site and a base station (Figure 1). The remote 

site, which is the customer site, has a customized meter reader with a GSM modem. The GSM modem 

can send SMS messages containing the meter identification and current reading. The base station at the 

utility provider contains a GSM modem, main server software for the utility provider and an SMS 

messaging server. The base station can request a remote site to send it the current reading. Once the 

reading is sent, the server at the base station can then generate customer bills which are sent back to the 

customer using SMS.  

 

A similar SMS-based system is proposed by Abdollahi, Dehghani and Zamanzadeh (2012). The system 

contains additional security features and sends more complex messages to the base station. The remote 

site must first identify itself to the base station by sending an acknowledgement SMS before it is 

admitted as a remote site. The system thus rejects any SMS received from unidentified sources.  

Figure 1: A reproduction of the Cabioc, Gerardo and Byun (2011) System Architecture.  
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Sharef et al (2013) on the other hand designed an AMR system which uses short radio frequency (RF). 

The system comprises an analog meter connected to a radio frequency transmitter at the customer site, 

and a receiver RF device which can be able to receive readings from the transmitter. The system, 

however, can only operate within a 300 feet radius. Such a system would therefore be semi-manual 

since the utility provider attendants would still have to go round with the receiver modules to take the 

meter readings.  

Instead of using SMS, Sun and Zheng (2009) propose the use of a sensor network using ZigBee 

technology. Zigbee works like WiFi and Bluetooth, but costs much less and has low power 

consumption. Their system architecture includes meters connected to a ZigBee wireless sensor network. 

The ZigBee network is then connected to the centralized server using GPRS.  Meter readings are sent to 

the centralized server via GPRS.  

One common feature of these AMR systems is that they require additional devices to be installed in 

addition to changing some of the conventional meters. This can come at a high cost to the utility 

providers and therefore they might shy away from investing in the new technology. There is therefore a 

need for an AMR system which does not require the utility provider to make changes to the meters at 

the client site. This study proposes a system where the utility provider does not need to change the 

meters. There is need only for an investment in the infrastructure to receive the data sent by customers 

using their handheld devices. The utility providers will thus incur minimal costs compared to the other 

methods.  

2.4 Digital Image Processing 

Gonzalez and Woods (2004) define a digital image as a two-dimensional function, f(x,y), where x and y 

are spatial coordinates. The value of f at any pair of coordinate (x,y) is called the intensity. The 

intensity values for a monochrome image is called a grayscale and is normally between 0 (black) and 

255 (white). Color images are formed by a combination of individual 2-D images. For example, RGB 

images are represented by three individual component images for red, green and blue. An image can 

therefore be easily represented as a matrix of dots with corresponding discrete intensities. Each dot is 

referred to as a picture element (pixel). 

One can perform operations on pixels individually without any regard to other pixels in the image. This 

is known as point operation. It is also possible to operate on a pixel based on the neighbors of the pixel 

in a process known as spatial filtering. The idea is to operate on a small neighborhood, for example, 

3X3 neighborhood and change the pixel based on the intensity values of its neighbors.  
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Figure 2: A Greyscale Image Of A Water Meter, 160x160 Pixels 

 

Point Operations on Pixels 

Point operations are important for digital image processing as they can be used for pre-processing to 

make the images more suitable for use with other applications, such as machine learning algorithms. 

They are also used in image enhancement. Gonzalez and Woods (2004) represent point operations as a 

transformation function T, such that,  

g(x,y) = T[f(x,y)], where g is the new pixel value after the transformation.  

Several transformations can be performed on a pixel, such as addition, subtraction, multiplication and 

finding the complement of the pixel. The complement of an image is the photographic negative of the 

image. Other point operations on images are thresholding and logarithmic functions.  

Spatial Filters 

When transformations on a pixel take into account the neighborhood, then the process is known as 

spatial filtering. According to Gonzalez and Woods (2004), spatial filtering consists of (1) defining a 

center point (x,y), (2) performing an operation that involves only the pixels in a predefined 

neighborhood about that center point, (3) letting the result of the operation be the response at that 

point, and (4) repeating the process for every point in the image. The filters are linear spatial filters or 

non-linear spatial filters depending on whether the operations themselves are linear or not. 

While there are many kinds of operations that can be performed in filters, in this study we are 

especially interested in filters that can be used for edge detection in an image. Such filters perform first 

order and second order derivative operations on the neighborhood. Examples given by Gonzalez and 

Woods (2004) include the Laplacian filters and Sobel filters. These can be used to enhance the edges in 

an image, making objects in an image easier to detect.  
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Figure 3, shows an example of a Sobel filter applied to the image in Figure 2. It is easy to see that the 

Sobel filter enhances the edges in an image, making objects in the image easier to detect. Other 

important edge detection techniques include Canny edge detectors and Hough transform.  

 

Figure 3: Water Meter Image After a Sobel Filter Operation 

2.5 Machine Learning Techniques 

Alpaydin (2010) defines machine learning as programming computers to optimize a performance 

criterion using example data or past experience.  

For example, the problem of handwriting recognition can be considered a machine learning task 

(Mitchell, 1997). In this case the task is to recognize handwritten words in a digital image. A database 

of handwritten words with their given classifications can be used to provide past experience and the 

performance of the learning can be measured by the percentage of words correctly classified. 

Machine learning can either be supervised learning or unsupervised learning. In supervised learning, 

labeled training examples are provided to the learning algorithm by the supervisor in addition to the 

input data. Instead in unsupervised learning there are no training examples but only the input data.  

Supervised Learning 

Alpaydin (2010) gives an example of supervised learning that can give clarity to the basis of this study. 

This is because the problem of reading meters from digital images of meters can also be considered a 

supervised learning problem.  

 

Let us say we have a class C of a family car that we want to learn, a set of examples of cars and a group 
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of people to whom we show the cars. This group of people look at the cars and categorize them as 

either family cars (positive examples) or not (negative examples). Class learning therefore involves 

finding a description that is shared by all positive examples and none of the negative examples. From 

this, given a car we have not seen before, by checking with the description learned, we can classify it as 

a family car or not.  

From all the attributes of a family car, we have to decide, with the help of experts, which attributes can 

describe whether a car is a family car or not. In our example, it is the price of the car and engine 

capacity of the car. These two attributes form the input to the class recognizer and once decided all 

other attributes are irrelevant for our example.  

 

 

Figure 4: Training Set For The Family Car Class. (Alpaydin, 2010, P. 22) 

 

The training set can be plotted as shown in Figure 4. Each point represents a single car, with the x 

attribute representing the price, y attribute the engine power and t is used to show that this is a training 

example. At each point, ‘+’ denotes a positive example and ‘-’ denotes a negative example.  

From discussion with the experts, the range of or price and engine power can be: price is between p1 

and p2 and engine power between e1 and e2. This sets the hypothesis class, H, from which C is drawn, 

i.e., a rectangle in the price-engine power space as shown in Figure 5.  

The goal of the learning algorithm is then to find the particular hypothesis h H∈ to approximate C as 
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closely as possible.  

Since our training set X is only a small subset of the set of all possible x, there can be empirical error 

which is the proportion of training examples instances where predictions of h do not match the required 

values given in X.  

 
Figure 5: Hypothesis Class Example. (Alpaydin, 2010, P. 23) 

 

We can also find the most specific hypothesis, S, which is the tightest rectangle that includes all the 

positive examples and none of the negative ones. The most general hypothesis, G, is the largest 

rectangle we can draw that includes all the positive examples and none of the negative ones. Any 

h H∈ between S and G is a valid hypothesis and is said to be consistent with the training set, and such 

h make up the version space.  

Given another training set, S, G, the version space, the parameters and the hypothesis, h, can be 

different. While in this example there is only one class, we can have multiple classes. For example we 

can have another class of luxury cars, sports utility vehicles, etc.  

A learning problem can be considered ill-posed, because the training set normally contains only a small 

subset of all possible instances and the data is never sufficient to find a unique solution. Because of 

this we always have to make some extra assumptions to have the unique solution with the data we have. 

The set of assumptions we make to have learning possible is called inductive bias of the learning 

algorithm. We have to choose the correct bias for the learning algorithm to be correct and this is known 

as model selection, which is choosing between possible H.  
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How well a model trained on the training set predicts the right output for new instances is called 

generalization. For best generalization we must match the complexity of the class H with the 

complexity of the function underlying the data. If H is less complex than the function, this is known as 

underfitting. If H is too complex, or there is noise in the data, we may learn not only the data, but also 

the noise, and end up with a bad hypothesis h H∈ which may lead to a bad fit. This is known as 

overfitting.  

We can measure how well our generalization of the hypothesis is, and thus the quality of our inductive 

bias, by dividing the training set between the training set and the validation set. Given a large enough 

training set and validation set, the hypothesis that is most accurate on the validation set, given a large 

training and validation set is the best one.  

The Naive Bayes Classifier 

The Naive Bayes Classifier draws its generalizations from Bayes Theorem. The theorem can be defined 

as follows (Murty and Devi, 2011): 

P(H i|X) = P(X| Hi)P(Hi) /P(X) 

P(H i|X) is the posterior probability of Hi, conditioned on X.  

P(H i) is the prior probability of Hi, i.e., the probability of the hypothesis regardless of the value of  X, 

obtained before observing X.  

P(X| Hi) is the probability of X conditioned on Hi. 

In this case, X is the pattern whose class label is unknown, and Hi is a hypothesis which indicates the 

class to which X belongs. For example, Hi can be the hypothesis that a pattern belongs to class C i.  

A Naive Bayes Classifier is a simple probabilistic classifier based on applying Bayes theorem where 

every feature is assumed to be class conditionally independent (Murty and Devi, 2011).  

When the objects we are classifying have a large number of classes and features, classification is 

difficult because a lot of data will be required to estimate the probabilities. The Naive Bayes Classifier 

assumption eliminates this difficulty by assuming that the effect of a variable value on a given class is 

independent of values of other variables (class conditional independence). 

Murty and Devi (2011) give a definition of the Naive Bayes Classifier as follows: 

The probability model for classifier is a conditional model p(C|F1, F2, ..., Fn) over a dependent class 

variable C with a small number of outcomes or classes, conditional on several feature variables F1 to 

Fn.  

Because of the class conditional independence, the conditional distribution over the class variable C 

can be expressed as: 
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p(C|F1, ..., Fn) = (1/Z)(p(C)) ∏
=

n

i 1

p(FiC) 

Where Z is a scaling factor dependent only on F1, ..., Fn, i.e., a constant if the value of the feature 

variable are known, p(C) are the prior probabilities of the classes and p(F iC) are the independent 

probability distributions.  

If there are k classes, and if a model for p(Fi) can be expressed in terms of r parameters then the 

corresponding naive Bayes model has (k-1) + nrk parameters. In most cases, k =2 (binary classification) 

and r=1 are common.  

The naive Bayes Classifier is one of the simplest and most popular classifiers because of its naive 

assumption: features are assumed to be independent given the class. Even though this is an unrealistic, 

hence naive, assumption, it has been found to provide very good results (Casacuberta et al, 2005). This 

classifier has been used successfully in pattern recognition and human language processing. For 

example, Casacuberta et al (2005) have given successful performance results for its use in optical 

character recognition (OCR), speech recognition, word disambiguation and text classification.  

Adaboost Learning Algorithm 

Adaboost algorithm is a method of combining a set of weak classifiers to make a strong classifier (Chen 

and Youlle, 2004). It was formulated in 1995 by Freund and Schapire. The algorithm is described well 

in the introduction paper by Freund and Schapire (1999), where the pseudocode is also given as in 

Figure 6.  

The algorithm takes as input a training set (x1, y1), ..., (xm, ym) where each xi belongs to some domain or 

instance space X, and each label yi is in some label set Y. We assume for this case that Y = {-1, +1}.  

Adaboost calls a given weak learning algorithm repeatedly in a series of rounds t=1, ..., T. The 

algorithm maintains a distribution or set of weights over the training set, denoted by D(ti) for a training 

example on round t.  

Initially all weights are set equally but on each round, the weights of incorrectly classified examples 

are increased so that the weak learner is forced to focus on the hard examples in the training set.  

The weak learner must find a weak hypothesis ht :  X →{-1,+1} appropriate for the distribution Dt. The 

goodness of a weak hypothesis is measured by its error εt as per the formula in Figure 6.  

Once the weak hypothesis ht has been received, Adaboost chooses a parameter αt, which measures the 

importance assigned to ht. From the pseudocode, it is clear αt gets larger as εt gets smaller.  

Dt is then updated as shown in the rule in the pseudocode. This rule increases the weight of examples 

misclassified by ht and decreases the weights of correctly classified examples. The weight thus tends to 
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concentrate on hard examples.  

 

Figure 6: Adaboost Learning Algorithm Pseudocode. (Freund And Schapire, 1999, P. 2) 

 

The final hypothesis H is a majority vote of the T weak hypotheses where αt is  the weight assigned to 

ht.  

This algorithm has been used extensively in the area of detection of objects in images and videos. The 

first such work was for face detection by Viola and Jones (2004), which obtained very good results. 

Their method inspired Chen and Youlle (2004) to apply the algorithm to detection of text in natural 

scene images.  

According to Chen and Youlle (2004), Adaboost is the most effective algorithm for detecting objects of 

interest in images. Guida, Comanduci and Colombo (2011) have also used Adaboost algorithm in an 

application that reads bus numbers for the visually impaired using smartphones. 
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Text Detection in Digital Images 

Detection of objects in digital images and videos has become an interesting area of research because of 

the wide use of digital image capture devices such as digital cameras, mobile phones and PDAs (Pan, 

Hou and Liu, 2008). Text is one of the objects of interest in digital images because there are a lot of 

applications that can be developed that uses text in images. Some of the applications in the literature 

include Pan, Hou and Liu’s (2008) work to detect and localize text in natural scene images such as 

highways, shopping centers and billboards. Another work in this area is the one for reading bus 

numbers for the visually impaired using mobile phones by Guida, Comanducci and Colombo (2011). 

Chen and Youlle’s (2004) important work in this area must also be mentioned as they were the first to 

adapt Adaboost learning to text detection in natural scenes. Escalera et al (2009) have also given us 

their work on text detection in urban scenes.  

A number of steps involved in the process of extracting text from digital images have been proposed. In 

their text information extraction survey, Jung, Kim and Jain(2004) propose four important steps for 

extracting text from digital images (Figure 7): 

The first step in this process is text detection, which refers to the determination of the presence of text 

in a given image. The second step, text localization,  is the the process of determining the location of 

text in the image and generating bounding boxes around the text. There is an intermediate step known 

as text tracking, which is performed to reduce the processing time for text localization and to maintain 

the integrity of position across adjacent frames. The third step is text extraction and enhancement 

which is used to segment the text from the background to facilitate its recognition. Finally in the fourth 

step, the extracted text image is converted into a binary image and enhanced, before being fed into an 

OCR engine for transformation into plain text. Text detection, text localization and text extraction are 

used interchangeably in the literature.  
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Figure 7: Architecture of a Text Information Extraction System (Jung Kim and Jain, 2004) 

 

There are two classes of methods that have been proposed to solve the text detection and localization 

problem (Pan, Hou and Liu, 2009): connected component based methods and region based methods.  

In connected component based methods, text in images are seen as sets of separating connected 

components, each with distinct intensity or color distributions and linked edge contours. Text detection 

and extraction in this case has three steps: firstly, extraction of connected components from images, 

secondly analysis of connected components is done to determine if they are to text components and 

finally, post processing to group components into text regions. However, this method has two 

disadvantages: the difficulty in extracting connected components, and the difficulty in designing an 

algorithm that can take care of the many text-like components in digital images (noise).  

Region based methods on the other hand are based on the fact that text regions in images have distinct 

characteristics from non-text regions. Such distinctions include high density gradient distribution and 

distinctive texture and structure. Text detection is done by extracting features of sampled regional 

windows to determine if they contain text. Window grouping or clustering methods are then used to 

generate candidate text lines in the text localization step.  
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Region based methods have the same accuracy as component based methods but are less sensitive to 

noise in images that contain text-like features but are not text. However, computational cost is high in 

region based methods. The work of Chen and Youlle (2004) have proposed a method using Adaboost 

algorithm which has solved the problem of computational cost, making region based methods much 

better than component based methods.   

Text recognition is done using an Optical Character Recognition (OCR) engine, which mostly accept 

grey scale images as input. However, in addition to binarization, the text regions identified must be 

extended for better performance [Chen and Youlle, 2004]. The extension is due to the fact that most 

text regions sometimes miss letters or digits at the start and end of the text.  

In the literature different variants of these methods have been used in solving some of these problem. 

Here we consider a few of the works and the various methods that were used.  

Firstly we consider the important work of Chen and Youlle (2004)  on detection and reading of text in 

city scenes. This work was based on another great work by Viola and Jones (2004)  on rapid object 

detection using Adaboost learning algorithm. Features for text detection are selected using the principle 

of informative features, which are good for distinguishing text from non-text. Other features used are 

Haar features, histogram of intensities, gradient direction and intensity gradient. Joint probability 

distributions are then calculated based on these feature responses on text regions and non-text regions 

to obtain weak classifiers as log-likelihood ratio tests. By use of Adaboost training methods with a 

training set consisting of positive and negative images, the weak classifiers can be used to build a 

strong classifier. The strong classifier can then be used to localize the text regions. The localized text 

regions are then binarized using adaptive binarization and connected component analysis to make them 

suitable for reading by OCR applicatins.  

Pan, Hou and Liu (2009) have also proposed a robust method to detect and localize text in natural scene 

images. In their method the images are first preprocessed by transforming RGB to grayscale images. 

The grayscale image is then re-scaled to form an image pyramid using nearest neighbour interpolation 

to take care of texts of different sizes in the image. Feauture selection is done using histogram of 

oriented gradients and multiscale local binary pattern. Adaboost learning algorithm is used to build a 

strong classifier using these features from the weak learning algorithm. In the text localization process, 

text lines are then generated from the candidate regions detected as text by grouping overlapping 

windows. Local binarization and connected component analysis are then used to prepare the text to be 

read by an OCR engine.  
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The work of Guida, Comanducci and Colombo (2011) on reading of bus line numbers using a 

smartphone for the visually impaired can also be cited in this study. The system allows for a visually 

impaired person to direct their smartphone at an approaching bus and acquire the bus number from 

images of the bus. The oncoming bus is localized inside the image to generate a region of interest 

which is the bus, eliminating unnecessary detail. Localization is done using  the Adaboost algorithm by 

exploiting a cascade of weak classifiers and boosting training method. To train the classifier, several 

images of the bus (positive examples) and other images (negative examples) were used. The next step 

was to perform the line number localization to locate the bus number on the image. This was done using 

a template bus facade description to geometrically rectify  the projective distortions arising from image 

projection. The template was built by selecting some distinct features of the bus. A robust geometric 

matching and other classic image analysis techniques like Canny edge detectors and Hough transform 

were used to localize the bus number.  Binarization is then done to make the bus numbers easier to read 

using OCR software. As an alternative to OCR software, a classifier was trained to recognize the bus 

numbers. To make the algorithm more accurate, several consecutive images are taken, processed and 

the most frequent result is the one returned to the user using voice synthesis.  
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CHAPTER 3: RESEARCH METHODOLOGY 

3.1 Introduction  

Machine learning techniques are an established way of solving complex problems that require computer 

applications to make intelligent decisions based on past experience. Important to machine learning 

techniques is the data required to train and validate the classifier. Data collection and clean-up is for 

this reason an important part of the methodology of solving the problem of automatic reading of water 

meters. Since the machine learning algorithm is simply intelligent software, it is also important to 

consider what software development methodologies are used to build the final software prototype.  

3.2 Text Detection and Recognition Methodology 

The method that closely fits this study is the method proposed by Guida, Comanducci and Colombo 

(2011) for reading bus line numbers using a smartphone for the visually impaired. Adapting this 

methodology for our study, the following steps will be followed: 

1. The first step after pre-processing the image will be to localize the meter region and make it 

our region of interest. This will be done using the  Adaboost algorithm by exploiting a cascade 

of weak classifiers and boosting training method. To train the classifier, several photos of the 

meters (positive examples) and other photos (negative photos) will be used.  

2. The next step will be to perform the meter reading localization. This will be done using 

geometric matching, template matching and classic image analysis techniques.  

3. Binarization will then be done and the binarized image presented to an OCR engine.   

4. The resulting number will be the meter reading that can be transmitted to the utility provider.  

To increase accuracy several images of the meter can be taken in succession, read by the 

system and the reading that is most frequent can be used as the correct reading.  

3.3 Data Collection 

The data required for the learning algorithm falls into the following categories: 

1. Positive examples 

2. Negative examples 

3. Test Data 

 



22 

 

Positive Examples 

Several digital photos of meters were taken with a 5 megapixel camera of a smart phone and a 10.1 

megapixel digital camera to form the positive examples. These were taken under different light 

conditions, scales and angles. While focusing the camera on the meter, the most important thing was to 

ensure the whole meter face and the meter reading is visible on the camera. The whole face of the meter 

was captured to enable the system to detect whether a meter is present in the captured image or not. 

Negative Examples  

The negative examples were digital images of objects and sceneries that do not contain meters. Some of 

these images were harvested by different entities (Fergus, 2010) and are available on the internet. The 

harvesting was done using automated tools which collect images with particular keywords on internet 

search engines. Other images in this category were randomly taken with a digital camera to capture 

different scenes and objects.  

Test Data 

The test data is a subset of the positive examples and negative examples. The test dataset contains 

images used for testing the learning algorithm after training with positive and negative examples. 

Positive test dataset is a subset of the positive examples and contains images with meters. Negative test 

dataset on the other hand is a subset of the negative examples and contains images without meters.   

The test data is therefore used to evaluate the learning algorithm and determine its effectiveness.  

3.4 Data Clean-up 

Images harvested from the internet did not need any clean-up. This is because they were already used in 

other machine learning algorithms (Fergus, 2010) and were of reasonable pixel sizes ranging from 100 

by 100 pixels to 500 by 500 pixels. 

However, the dataset collected manually required some clean-up. The following data clean-up activities 

were carried out on the manually collected dataset: 

• The images were first rotated to ensure they were upright.  

• Images were resized to 600 X 400 pixels. This was to ensure that the training algoirthm, which is a memory 

intensive program, works on smaller images. The images however did not lose their visual content and the 

meter readings could easily be seen on the positive images. Similarly negative images did not lose the 

scenery and various objects they contained.  
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• Positive images contained meters which was our object of interest. To prepare the positive images for 

training, a tool was used to draw a boundary of the meter within the image. This was to ensure the learning 

algorithm only concentrates on learning the meter region for detection, ignoring other objects near the 

meter in the digital image. This is shown in Figure (8) below.  

 

 

 

 

Figure 8: Positive Example Image Without Bounds (Left), With Bounds (Right) 

 

• The tool for drawing the boundary of the meter also creates a description file containing the name of the 

image,  the number of objects of interest present in the image,  top left and top right coordinates of the 

bounding frame, and the width and height of the bounding frame.  This is shown  in Figure 9. 

• The positive and negative examples were also renamed to make them more meaningful. A description file 

for the negative examples, similar to Figure 9, was also created.  

• Similar to the description file created for positive examples as shown in Figure 9,  for the test images, a 

description file containing the region of the meter  in each test image was also created.  



24 

 

 

Figure 9: Positive Examples Description List 

 

3.5 Adaboost Classifier Features Selection 

The features used by the Adaboost training algorithm on the positive and negative examples are Haar-

basis functions. These are faster and easily encode ad-hoc domain based knowledge which would be 

difficult to learn working directly with pixels (Viola and Jones, 2004).  

Three types of features are used: 

• Two-rectangle feature (Figure 10  A, B),  whose value is the difference between the sum of the pixels 

between two rectangular regions.  

• Three-rectangle feature (Figure 10 C), where the value of the feature is the difference between the sum sum 

of pixels at the center and the two outside reactangle regions.  
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• Four-rectangle feature ((Figure 10 D), whose value is the difference between the sum of diagonal pairs of 

rectangles.  

 

Figure 10. Rectangle Features. (Viola And Jones, 2004, P. 2) 

The set of rectangle features in a positive or negative example image is quite large. For example, in a 

24x24 image window, there are over 180, 000 features. This can make calculations quite slow. To solve 

this hurdle a different representation of the image referred to as an integral image is used.  An integral 

image (Viola and Jones, 2004) at a location is the sum of the pixels above and to the left of that point. 

In Figure 11, the integral image at location 1 is the sum of pixels at A, and at location 3 is (A+C) and at 

4 is (A+B+C+D). A quick way to calculate the integral image at location 4 is ((4+1) –(2+3)).    

  

Figure 11: Integral Image. (Viola And Jones, 2004, P. 3). 

Given the feature set, the Adaboost learning algorithm is used to learn a classification function, by 

creating a strong classifier from weak classifiers. 
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The weak learning algorithm selects the single rectangle feature that best separates the positive and 

negative examples. For each feature, the weak learner determines the optimal threshold classification 

function, such that the minimum number of examples is misclassified.  

According to Viola and Jones (2004),   a weak classifier hj(x) consists of a feature fj, a threshold θj and 

a parity pj, indicating the direction of the inequality sign, i.e.: 

hj(x) is 1 if pj fj(x) < pj θj or 0 otherwise. 

Where x is a 24x24 pixel sub-window of a positive or negative example image.  

In order to increase performance and accuracy of the classification function, a cascade of classifiers is 

also used (Viola and Jones, 2004). The cascades are arranged such that simpler classifiers are used to 

discard majority of the image sub-windows which are negative, before more complex classifiers are 

called upon to achieve low false positive rates. This is shown in Figure 12.  

 

Figure 12: Cascade Of Classifiers. (Viola And Jones, 2004, P. 5) 

 

Each stage in the cascade reduces the false positive rate and decreases the detection rate. A target is 

selected for the minimum reduction in false positives and the maximum decrease in detection. Each 

stage is trained by adding features until the target detection and false positives rates are met. 

3.6 Software Development Life Cycle 

The waterfall lifecycle was used as the software development methodology, since the software to be 

developed required a thorough understanding of the requirements before the prototype could be 

developed. The software development process therefore followed a simple requirements analysis, 

design, coding, testing and implementation.  
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CHAPTER 4: ANALYSIS AND DESIGN 

The problem of billing customers by utility providers is a recurrent one. Utility providers will therefore 

continue to look for new solutions to make the process efficient and cost effective. Various methods are 

currently being used to provide this solution as documented in the literature review. It is important to 

list some of these methods in order to compare them with the solution proposed in this study.  

4.1 Current Techniques for Billing Customers 

Conventional Metering 

One such method is the use of conventional meters, where the utility providers install meters at each 

customer site. Staff of the utility provider then visit each customer site at regular intervals to manually 

take the meter readings and submit them to the utility provider for entry into the billing system. Utility 

providers can also estimate the consumption rate in case the meter readings are not taken regularly. 

Customers are then sent their bills through snail mail and are required to pay their bills by a stipulated 

date. While it is still the most common method employed by utility providers, it has its disadvantages 

which among others include: the need to have a huge workforce to take meter readings, inability to 

access the customer premises, inaccuracy of manual readings, which may lead to loss of cash both to 

the consumer and the utility provider. This method is therefore generally inefficient.  

Conventional Metering with Radio Frequency 

Another method which complements the conventional metering is where the meter at the customer site 

is fixed with a radio frequency transmitter. Staff of the utility provider still need to visit each customer 

site, but they do not need to access the site. With a handheld radio frequency device, they can 

automatically take meter readings within a short distance from the customer sites. This data can then be 

downloaded to the billing system when the utility reading staff returns to the utility providers premises. 

This method however requires addional gadgets to be mounted on the meters. This may be expensive to 

implement since additional gadgets have to be installed at each customer site, and the gadgets will also 

require a power source. Depending on the existing meters, they may also have to be changed in order to 

install compatible meters.  

Prepaid Metering 

Prepaid metering has gained traction as an efficient alternative to conventional metering. These meters 

are installed at each customer site. Consumers purchase utility in advance, and by use of a token or  

electronic signal, the amount purchased is fed into the meter.  
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When the token is exhausted, the prepaid meters automatically disconnect a consumer’s supply. Utility 

providers therefore avoid the cost of employing meter reading staff and debt collection staff, since 

customers pay for their utilities in advance. The meter automatically shuts off once the amount 

purchased is exhausted. There is therefore no need for employing staff to manually read meters or 

handle debt collection as in conventional meters. However, the movement from conventional meters to 

prepaid meters still come at an additional cost to the utility providers, in which they have to invest. The 

meters have additional gadgets for recognizing the tokens and shutting off supply. These meters also 

have more components that can fail and thus require regular maintenance. Utility providers also need to 

rollout an efficient mechanism for selling meter tokens.  

Automated Metering 

In automated metering, utility providers implement smart meters connected to wireless networks, 

allowing them to take meter readings on demand without any human intervention. The smart meters are 

equipped with wireless transmission devices with a two-way communication link with the utility 

provider. The utility providers implement a base station from where all the meters can be controlled. In 

the literature cited, there are different implementations of automated metering including the use of SMS 

applications to send meter readings to the utility provider and to receive bills from the utility provider. 

Automated metering also gives utility providers functionalities beyond the basic taking of meter 

readings. These include advising customers on how to cut consumption rates and detection of any leaks 

on the system.  

Automated metering is therefore the most advanced way of implementing meters. However, it also 

comes at the greatest cost to the utility providers and customers. Utility providers will need to replace 

all the conventional meters at the customer sites with expensive smart meters. They also have to 

implement the wireless communication network to connect all the consumer meters to the base station.  

4.2 The Proposed Solution 

The challenges encountered in the various methods of metering employed by utility providers is a 

motivation to seek alternative solutions to overcome those challenges. One of the major challenges is 

the high cost of rolling out a new metering infrastructure to replace conventional meters.  Since the 

conventional meters are still commonly in use, this solution proposes to use handheld devices to take 

digital images of the consumer meter, have the meter reading extracted from the digital image and sent 

to the utility provider servers for billing. This can eliminate the need for replacing existing meters. 

Utility providers can also employ fewer meter reading staff to confirm, once in a while, the meter self-

readings sent by the cutomers.  
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The idea of self-reading of meters is not strange to utility providers. In conventional meter 

implementations, utility providers allow customer to perform self reading of the meters and use these 

readings to prepare customer bills. The utility provider staff then take meter readings only once in a 

while to confirm the self-readings and make adjustments to the customer accounts accordingly.  

The proposed solution can ride on this arrangement, only with additional security and data integrity 

requirements which will be better than manual self-readings.  

Functional Requirements 

The following are the functional requirements of the proposed solution 

1. The system should be able to record details of the customer such as name and account number 

on the handheld device.   

2. The system should be able to store customer details, customer location, current and previous 

readings at the utility provider’s database.   

3. Using a handheld device with a camera and wireless or GSM network, a user should be able to 

point their camera to the water meter and click a button.  

4. When the button is clicked, the system should be able to take a digital image of the meter, 

process the digital image to obtain an accurate meter reading and send the reading to the utiliy 

provider database, making reference to the customer account number and name stored on the 

handheld device.  

5. The system should be able to query the utility provider database for the last reading in order to 

perform data integrity checks. This will ensure the system does not send any incorrect readings 

to the utility provider database. 

6. If the handheld device is equipped with GPS, the system should be able to use the current 

location information to approximately determine the location of the customer device and use it 

to verify that the reading has been sent by the respective customer. 

Security and trust of the information sent by the customer to the utility provider is an important 

consideration in the proposed system. This is to ensure that utility providers can rely on the data to 

collect money from customers without any losses. The following requirements will ensure that the 

system can be trusted by the utility providers: 

1. The system shall only process real-time images of the meters, and shall not allow images taken 

earlier to be processed.  
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2. The sytem shall communicate with the utility providers databases to compare values read from 

the meters and previous meter readings. Business rules can then be used to ensure data 

integrity.  

3. The communication between the handheld device and the utility providers database will be 

through a secure channel and data will be encrypted.  

4. The use of GPS to confirm customer location. This can later be a mandatory requirement as 

more and more devices are integrated with GPS.  

5. The registering of the handheld devices with utility providers, to identity a device with a 

particular customer account.  

The following is the context diagram for the proposed system, showing how external entities will 

interact with the system: 

 

 

Figure 13: Meter Reading System Context Diagram 

Data Requirements  

The proposed solution has the following data requirements: 
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Customer Accounts Details at the Utility Provider 

This is the sample data of customer accounts details held by the utility provider. This data does not 

have to be the actual data for the purposes of evaluating the prototype and can be generated as test data.  

Data for Training and Validating the Learning Algorithm 

This data will be used to train and validate the machine learning algorithm for extracting meter 

readings from digital images. This data will be made up of positive and negative examples for the 

learning algorithm. Positive examples are the digital images of meters, while negative examples are 

digital images that do not contain meters. Positive examples will be collected by taking real digital 

images of existing meters. Negative examples on the other hand can be obtained from existing images.  

System Design 

Use Case Diagram 

Below is the use case diagram showing how various users will interact with the proposed system: 

 

 

Figure 14: Meter Reading System Use Case Diagram 
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Entity Relationship Diagrams 

The following is the entity relationship diagram for the utility provider database: 

 

 

Figure 15: Utility Provider Entity Relationship Diagram 

 

The following is the entity relationship diagram for the customer device database. This database will 

reside on the customer device: 

 

 

Figure 16: Entity Relationship Diagram for Customer Device Database 
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Component Diagram 

The following is a component diagram showing the various subsystems of the proposed system. The 

system interfaces with the utility provider customer billing system.  

 

 

 

Figure 17: Meter Reading System Component Diagram 

 

Types of Meters used in the study 

Meters can either be analog or digital. However, for the purpose of this study, this distinction is not 

critical since in most cases the meter reading is a number on the face of the meter, whether the meter is 

analog or digital.  

Meters are also made by different manufacturers. This means that the shape of the meter and the 

information on the face of the meter are not standardized. This study focused on conventional meters 

with a round face commonly used for reading water meters. Since this study uses machine learning 

techniques, extending them to other meter types would involve training on those other meter types 

before the system can be able to read them.  
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Evaluation of the Learning Algorithm 

For evaluating the performance of the object detection algorithm, we use the evaluation method 

proposed by Agarwal, Awan and Roth (2004) which suggests the use of a Receiver Operating 

Characteritics (ROC) curve. The ROC curve plots true positive rate (TPR) versus the false positive rate 

(FPR) under different threshold settings in the learning algorithm.  

True Positive Rate (TPR) = TP / nP,  

where TP is the number of true positives and nP is the total number of positives in the dataset.   

False Positive Rate (FPR) = FP / nN,  

where FP is the number of false positives and nN is the total number of negatives in the dataset.   

Agarwal, Awan and Roth (2004) also suggest a variation of the recall precision curve, where the 

interest is in the trade-off between  the number of objects detected (recall) and how often the detections 

made are false (precision). This is represented as: 

 

Recall = TP / nP. 

Precision = TP / TP + FP. 

1-Precision = FP / TP + FP. 

 

The proportion of objects that are detected is given by recall, which is equivalent to the TPR. The 

number of false detections, relative to the total number of detections by the classifiers is 1-Precision 

quantity.  

Recall versus 1-Precision curves therefore can also be plotted to show the tradeoff between recall and 

precision.  
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CHAPTER 5: SYSTEM IMPLEMENTATION AND RESULTS 

5.1 Adaboost Learning Algorithm Implementation 

The learning algorithm for detecting and reading meters was implemented using the OpenCV library 

version 2.4.9. OpenCV is an extensive open source library developed by Intel, with over 2500 

optimized machine learning and computer vision algorithms. Of importance to this study is that the 

library can be used to recognize and detect objects and provides libraries for classifier training in 

object detection. OpenCV also offers many functions for manipulation of digital images, which is also 

useful when detecting objects in digital images.  

Another major advantage of OpenCV is that it is a cross-platform application interface. It is available 

in various programming languages such as Java, C++, C and Python. In addition, there are several other 

libraries that have been writen for other programming languages such as Microsoft Visual Studio C#. 

The OpenCV libraries can also be  ported to handheld devices such as smartphones and have versions 

for both Android platform and iPhone smartphone. This means that while the prototype has been 

created on a computer desktop, it can easily be ported to a smartphone.  

 After performing data cleanup and preparation on the positive and negative example images, the 

OpenCV tool for creating samples was used to create a vector file with all the positive images. This is 

shown in the Figure 18. 

The image width and height of 48X48 pixels is the sub-window size of the Adaboost Haar training 

algorithm, which is slided across an image during the training process to calculate the image features. 

The image size of 48x48 is also the smallest image that the classifier can detect once training is done 

and its choice is therefore important. This size was chosen as a compromise between the time for 

training and the reasonable size of a meter head.  A higer value will be slower to train and detect, but 

may also offer better rates of recall. Other window sizes were also used during the training sessions for 

performance comparison. These include 54x54 pixels and 24x24 pixels. 
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Figure 18: Creating Positive Samples Vector File 

 

The OpenCV tool for Adaboost training was then used to train the learning algorithm. The training 

process was initiated as shown in Figure 19. 

In the training instance in Figure 19, the number of positive training examples was 238. A lower figure 

of 215  ie, 0.9 times the number of positive examples was used in the training session. This gives room 

for the training algorithm to pick other positive images, if a positive image is excluded during the 

training session.  The number of negative examples was slightly less than half of the positive examples.  

The number of stages for the training is 10, corresponding to the cascades in the classifier as shown in 

Figure 12. We also note that the type of features are Haar basis functions and the boosting type is 

Gentle Adaboost. The training process will select a maximum of 100 features from the many features 

available in the training examples. These are the features that can correctly classify an image as 

containing the meter or not. When the algorithm reaches a False Positve Rate of 0.5, the training 

algorithm stops. For example,  in Figure 19, the false positive rate (also known as false alarm rate) at 

stage 0 is 0.0181818. This means that the training process will proceed to stage 1.  The training process 

in this case was exhausted at stage 4 and thus the learning algorithm will perform its detection in a 

cascade of 5 stages.  
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Figure 19: Algorithm Training Process 

 

The result of the training process is a classifier configuration file with the thresholds at every stage in 

the training process. The configuration file had to be modified by changing one of the elements to make 

it usable with the application. The third level element, <cascade> had to be changed to make it 

<output type_id="opencv-haar-classifier">.  The configuration file was then converted using the tool 

shown in Figure 20:  
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Figure 20: Converting the Cascade File 

 

A sample of the file for the training process in Figure 19 is given in Appendix II, showing two of the 

five stages. This is the file used by the detection function to detect the presence of a meter on a new 

image. During the implementation, different sizes of the training dataset were used to provide 

performance measures. However, training the algorithm takes time. For example, training  on a sample 

of 520 positive examples and 230 negative examples took over 24 hours on a 3GB RAM, 2.4 GHz 2 

Core Intel processor.  

 

  

Figure 21: The Training Data Set, Positive And Negative 

Examples 
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5.2 Meter Reading Prototype 

The classifier configuration file was used to detect meters in an application created in the Microsoft 

Visual Studio C# programming language. The database was implemented in MySql. Because OpenCV is 

not originally availble in C#, the Emgu project wrapper tool, version 2.4.9.187,  was used. This project 

contains a wrapper application which uses OpenCV libraries to provide native machine learning 

programming in C#. A screenshot of the application is shown in Figure 22.  

 

Figure 22: Screen Shot Showing Customers 

Figure 23 shows a screenshot of the application with a detected meter. The first step is to open a test 

image by clicking the Detect button. The meter region is detected using the trained algorithm 

configuration file. The red bound shows a meter region that has been detected.  

 

Figure 23: Screen shot with Meter Detection 
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The second step is to use template matching to focus on the meter reading, by clicking the Read 

Number button. This results in the meter reading region being detected as shown in Figure 24.  

 

 

Figure 24: Meter Reading Detection 

Binarization is done using a combination of image processing techniques including histogram 

equalization, Canny edge detection and binary thresholding. The binarized image, shown in Figure 25,  

was then presented to the Tesseract open source OCR engine for character recognition.  

 

Figure 25: Binarized Image Of The Meter Reading For OCR Detection 
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5. 3 Results 

The performance of the trained classifier on test data was determined using the OpenCV performance 

tool and can be presented, showing how the settings of the various training sessions affected the 

performance achieved.   

Adaboost Algorithm Performance Results 

Several training sessions of the Adaboost algorithm were conducted to determine its optimal 

performance on test data. The distinction between one training session and another was in the training 

dataset, i.e., the number of positive and negative examples, the scanning window size and the type of 

features selected, whether Haar features or local binary pattern (LBP) features.  

Performance was measured using the OpenCV tool for evaluating performance on the test data. Figure 

26 shows a performance test run for the resulting  classifier configuration file of an Adaboost training 

session. The scanning window is of size 48x48 pixels, the number of ROC curve points is 40 and the 

number of stages is 5. 

 

 

Figure 26: OpenCV Performance Measure Tool 

 

This resulted in the performance results shown in Figure 27. 
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Figure 27: Results Of Opencv Performance Tool Run 

 

The number of Haar basis features selected for this classifier as shown is 13 out of the many features in 

the training examples.  These are the weak classifiers (features) which are combined to create a strong 

classifier,  and that can partition the positive and negative examples to enable the classifier to detect 

meters and reject other objects.  

The OpenCV performance tool (Figure 26) takes as input the description file with the exact location of 

meters in the test images and the classifier configuration file from Adaboost training session. An 

example description file is shown in Figure 28, and Appendix II has an example classifier configuration 

file.    
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Figure 28: Description File For Test Data With Meter Coordinates. 

 

The first column in the description file in Figure 28 has the test image, the second column contains the 

number of meter objects within the image, which in this case is 1. The third and fourth columns are the 

top left X and Y coordinates of the meter region, and lastly the fifth and sixth columns are the width 

and height of the meter region. The description file therefore gives the exact location of the meter 

object within the test image.  

The OpenCV performance tool measures the number of hits, misses and false detections for each test 

image as shown in Figure 26. The tool does this by performing an actual meter detection on the test 

image. It then compares the detected regions with the description file. If the detected region lies within 

the given meter region as in the description file, it is counted as a hit. If other regions within the test 

image are detected as meters, this is recorded as a false detection or false alarm. Finally, if there is a 

meter in the test image, but the the algorithm does not detect it, this is considered a miss. A false 

detection can be made at the same time as a hit and a miss.  

The OpenCV performance tool then summarises the peformance results as shown in Figure 27. The first 

column shows the true positives (hits), the second column shows the false positives(false alarms), while 

the third and fourth columns show the true positive rates and false positive rates respectively. It is this 

information that can be used to plot a ROC curve and calculate other measures such as 1-Precision. 

From Figure 26, the ROC curve size is 40, which means that the summarized results will have 40 points 

or rows as shown in Table 1 – Table 6.  

Performance Comparison based on Training DataSet 

The first training was conducted with 238 positive examples and 110 negative examples, 48x48 pixels 

scanning window size and Haar features. This resulted in a 5-stage classifer with 13 weak classifers and 

the detection for all the 118 test images took 16.8 seconds. The results of the first training achieved 

89.8 % true positive rate and 249.1% false positive rate as shown in the last row of Table 1: 



44 

 

Hits  

(TP) 

Missed 

 (FP) 

True  

Positives Rate  

(TPR) 

False Positives 

 Rate  

(FPR) 

1-Precision 

(FP/(TP+FP)) 

51 4 0.432203 0.033898 0.072727 

51 4 0.432203 0.033898 0.072727 

50 4 0.423729 0.033898 0.074074 

51 5 0.432203 0.042373 0.089286 

53 6 0.449153 0.050847 0.101695 

53 7 0.449153 0.059322 0.116667 

53 8 0.449153 0.067797 0.131148 

55 9 0.466102 0.076271 0.140625 

55 9 0.466102 0.076271 0.140625 

57 11 0.483051 0.09322 0.161765 

61 13 0.516949 0.110169 0.175676 

58 13 0.491525 0.110169 0.183099 

61 14 0.516949 0.118644 0.186667 

62 15 0.525424 0.127119 0.194805 

64 16 0.542373 0.135593 0.2 

65 18 0.550847 0.152542 0.216867 

66 20 0.559322 0.169492 0.232558 

66 23 0.559322 0.194915 0.258427 

68 27 0.576271 0.228814 0.284211 

68 30 0.576271 0.254237 0.306122 

69 32 0.584746 0.271186 0.316832 

72 36 0.610169 0.305085 0.333333 

70 36 0.59322 0.305085 0.339623 

74 37 0.627119 0.313559 0.333333 

76 40 0.644068 0.338983 0.344828 

78 41 0.661017 0.347458 0.344538 

78 42 0.661017 0.355932 0.35 

79 46 0.669492 0.38983 0.368 

81 49 0.686441 0.415254 0.376923 

82 51 0.694915 0.432203 0.383459 

83 59 0.70339 0.5 0.415493 

85 67 0.720339 0.567797 0.440789 

88 84 0.745763 0.711864 0.488372 

91 108 0.771186 0.915254 0.542714 

94 132 0.79661 1.118644 0.584071 

98 168 0.830508 1.423729 0.631579 

100 216 0.847458 1.830508 0.683544 

106 294 0.898305 2.491525 0.735 
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106 294 0.898305 2.491525 0.735 

106 294 0.898305 2.491525 0.735 
Table 1: Performance Results Of The First Training Session On Test Data. 

The second training session was conducted with 513 positive examples and 230  negative examples, 

48x48 pixels scanning window size and Haar features. This resulted in a 10-stage classifer with 42 

weak classifiers classifers and the detection for all the 118 test images took 19.0 seconds. This training 

session achieved 75.4 % true positive rate and 19.4% false positive rate as shown in Table 2: 

Hits (TP) 

Missed 

(FP) 

True Positives 

Rate (TPR) 

False Positives 

Rate (FPR) 

1-Precision 

(FP/(TP+FP)) 

0 0 0 0 0 

0 0 0 0 0 

1 0 0.008475 0 0 

4 0 0.033898 0 0 

5 0 0.042373 0 0 

6 0 0.050847 0 0 

9 0 0.076271 0 0 

11 0 0.09322 0 0 

14 0 0.118644 0 0 

19 0 0.161017 0 0 

26 0 0.220339 0 0 

33 1 0.279661 0.008475 0.029412 

39 1 0.330508 0.008475 0.025 

47 1 0.398305 0.008475 0.020833 

54 1 0.457627 0.008475 0.018182 

61 1 0.516949 0.008475 0.016129 

66 1 0.559322 0.008475 0.014925 

72 1 0.610169 0.008475 0.013699 

78 1 0.661017 0.008475 0.012658 

79 1 0.669492 0.008475 0.0125 

81 1 0.686441 0.008475 0.012195 

82 1 0.694915 0.008475 0.012048 

84 2 0.711864 0.016949 0.023256 

84 1 0.711864 0.008475 0.011765 

85 3 0.720339 0.025424 0.034091 

88 8 0.745763 0.067797 0.083333 

89 23 0.754237 0.194915 0.205357 

89 23 0.754237 0.194915 0.205357 

89 23 0.754237 0.194915 0.205357 
Table 2: Performance Results Of The Second Training Session On Test Data 
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The third training session had 485 positive examples and 835 negative examples, 48x48 pixels scanning 

window size and Haar features. This resulted in a 4-stage classifer with 13 weak classifiers classifers 

and the detection for all the 118 images took 19.7 seconds. A 65.2 % true positive rate and 22.8% false 

positive rate was achieved as shown in Table 3: 

Hits (TP) 

Missed 

(FP) 

True Positives 

Rate (TPR) 

False Positives 

Rate (FPR) 

1-Precision 

(FP/(TP+FP)) 

0 0 0 0 0 

0 0 0 0 0 

1 0 0.008475 0 0 

1 0 0.008475 0 0 

4 0 0.033898 0 0 

5 0 0.042373 0 0 

6 0 0.050847 0 0 

7 0 0.059322 0 0 

8 0 0.067797 0 0 

12 0 0.101695 0 0 

15 0 0.127119 0 0 

18 0 0.152542 0 0 

22 0 0.186441 0 0 

27 0 0.228814 0 0 

31 0 0.262712 0 0 

34 0 0.288136 0 0 

36 0 0.305085 0 0 

38 0 0.322034 0 0 

38 0 0.322034 0 0 

42 0 0.355932 0 0 

43 0 0.364407 0 0 

44 0 0.372881 0 0 

47 1 0.398305 0.008475 0.020833 

47 1 0.398305 0.008475 0.020833 

48 1 0.40678 0.008475 0.020408 

48 1 0.40678 0.008475 0.020408 

51 1 0.432203 0.008475 0.019231 

54 1 0.457627 0.008475 0.018182 

56 1 0.474576 0.008475 0.017544 

59 1 0.5 0.008475 0.016667 

62 2 0.525424 0.016949 0.03125 

65 3 0.550847 0.025424 0.044118 
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Hits (TP) 

Missed 

(FP) 

True Positives 

Rate (TPR) 

False Positives 

Rate (FPR) 

1-Precision 

(FP/(TP+FP)) 

69 7 0.584746 0.059322 0.092105 

73 15 0.618644 0.127119 0.170455 

77 27 0.652542 0.228814 0.259615 

77 27 0.652542 0.228814 0.259615 

77 27 0.652542 0.228814 0.259615 
Table 3: Performance Results Of The Third Training Session On Test Data 

 

The fourth training session had 323 positive examples and 600 negative examples, 54x54 pixels 

scanning window size and Haar features. This resulted in a 5-stage classifer with 12 weak classifiers 

and the detection for all the 118 test images took 14.4 seconds.  

A 62.7 % true positive rate and 83.8% false positive rate was achieved as shown in Table 4: 

Hits (TP) 

Missed 

(FP) 

True Positives 

Rate (TPR) 

False Positives 

Rate (FPR) 

1-Precision 

(FP/(TP+FP)) 

1 0 0.008475 0 0 

1 0 0.008475 0 0 

1 0 0.008475 0 0 

1 0 0.008475 0 0 

1 0 0.008475 0 0 

1 0 0.008475 0 0 

1 0 0.008475 0 0 

1 0 0.008475 0 0 

2 0 0.016949 0 0 

2 0 0.016949 0 0 

2 0 0.016949 0 0 

3 0 0.025424 0 0 

3 0 0.025424 0 0 

3 0 0.025424 0 0 

3 0 0.025424 0 0 

4 0 0.033898 0 0 

5 0 0.042373 0 0 

5 0 0.042373 0 0 

7 0 0.059322 0 0 

8 0 0.067797 0 0 

9 0 0.076271 0 0 

9 0 0.076271 0 0 

13 1 0.110169 0.008475 0.071429 

13 1 0.110169 0.008475 0.071429 
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Hits (TP) 

Missed 

(FP) 

True Positives 

Rate (TPR) 

False Positives 

Rate (FPR) 

1-Precision 

(FP/(TP+FP)) 

14 2 0.118644 0.016949 0.125 

18 4 0.152542 0.033898 0.181818 

20 4 0.169492 0.033898 0.166667 

22 7 0.186441 0.059322 0.241379 

24 10 0.20339 0.084746 0.294118 

27 15 0.228814 0.127119 0.357143 

32 23 0.271186 0.194915 0.418182 

38 32 0.322034 0.271186 0.457143 

45 37 0.381356 0.313559 0.45122 

48 42 0.40678 0.355932 0.466667 

55 52 0.466102 0.440678 0.485981 

61 59 0.516949 0.5 0.491667 

65 77 0.550847 0.652542 0.542254 

74 99 0.627119 0.838983 0.572254 

74 99 0.627119 0.838983 0.572254 

74 99 0.627119 0.838983 0.572254 
Table 4: Performance Results Of The Fourth Training Session On Test Data 

 

The fifth training session was conducted with 530 positive examples and 944 negative examples, 54x54 

pixels scanning window size and Haar features. This resulted in a 4-stage classifer with 9 weak 

classifiers and the detection for all the 118 test images took 14.1 seconds. This training achieved 75.4% 

true positive rate and 18.6% false positive rate as shown in Table 5: 

Hits (TP) 

Missed 

(FP) 

True Positives 

Rate (TPR) 

False Positives 

Rate (FPR) 

1-Precision 

(FP/(TP+FP)) 

0 0 0 0 0 

0 0 0 0 0 

1 0 0.008475 0 0 

1 0 0.008475 0 0 

1 0 0.008475 0 0 

2 0 0.016949 0 0 

4 0 0.033898 0 0 

4 0 0.033898 0 0 

5 0 0.042373 0 0 

6 0 0.050847 0 0 

8 0 0.067797 0 0 

10 0 0.084746 0 0 

14 0 0.118644 0 0 
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Hits (TP) 

Missed 

(FP) 

True Positives 

Rate (TPR) 

False Positives 

Rate (FPR) 

1-Precision 

(FP/(TP+FP)) 

17 0 0.144068 0 0 

19 0 0.161017 0 0 

19 0 0.161017 0 0 

24 0 0.20339 0 0 

24 0 0.20339 0 0 

27 0 0.228814 0 0 

30 0 0.254237 0 0 

34 0 0.288136 0 0 

36 0 0.305085 0 0 

39 1 0.330508 0.008475 0.025 

47 1 0.398305 0.008475 0.020833 

49 1 0.415254 0.008475 0.02 

53 1 0.449153 0.008475 0.018519 

65 1 0.550847 0.008475 0.015152 

71 1 0.601695 0.008475 0.013889 

79 3 0.669492 0.025424 0.036585 

83 9 0.70339 0.076271 0.097826 

89 22 0.754237 0.186441 0.198198 

89 22 0.754237 0.186441 0.198198 

89 22 0.754237 0.186441 0.198198 
Table 5: Performance Results Of The Fifth Training Session On Test Data. 

 

The sixth training session was conducted with 530 positive examples and 600 negative examples, 48x48 

pixels scanning window size and Haar features. This resulted in a 6-stage classifer with 16 weak 

classifiers and the detection for all the 118 test images took 14.8 seconds, achieving a 72.8% true 

positive rate and 12.7% false positive rate as shown in Table 6: 

Hits (TP) 

Missed 

(FP) 

True Positives 

Rate (TPR) 

False Positives 

Rate (FPR) 

1-Precision 

(FP/(TP+FP)) 

0 0 0 0 0 

0 0 0 0 0 

1 0 0.008475 0 0 

3 0 0.025424 0 0 

4 0 0.033898 0 0 

5 0 0.042373 0 0 

7 0 0.059322 0 0 

7 0 0.059322 0 0 

8 0 0.067797 0 0 
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Hits (TP) 

Missed 

(FP) 

True Positives 

Rate (TPR) 

False Positives 

Rate (FPR) 

1-Precision 

(FP/(TP+FP)) 

8 0 0.067797 0 0 

8 0 0.067797 0 0 

8 0 0.067797 0 0 

9 1 0.076271 0 0 

9 1 0.076271 0 0 

9 0 0.076271 0 0 

9 0 0.076271 0 0 

9 0 0.076271 0.008475 0.1 

9 0 0.076271 0.008475 0.1 

11 1 0.09322 0.008475 0.083333 

14 1 0.118644 0.008475 0.066667 

20 1 0.169492 0.008475 0.047619 

22 1 0.186441 0.008475 0.043478 

25 1 0.211864 0.008475 0.038462 

28 1 0.237288 0.008475 0.034483 

32 1 0.271186 0.008475 0.030303 

34 1 0.288136 0.008475 0.028571 

38 1 0.322034 0.008475 0.025641 

41 1 0.347458 0.008475 0.02381 

45 1 0.381356 0.008475 0.021739 

52 1 0.440678 0.008475 0.018868 

61 2 0.516949 0.016949 0.031746 

71 3 0.601695 0.025424 0.040541 

77 7 0.652542 0.059322 0.083333 

86 15 0.728814 0.127119 0.148515 

86 15 0.728814 0.127119 0.148515 

86 15 0.728814 0.127119 0.148515 
Table 6: Results Of Sixth Training Session 

 

The seventh training session was conducted with 530 positive examples and 600 negative examples, 

24x24 pixels scanning window size and Haar features in order to see the effect of halving the window 

size. This resulted in a 5-stage classifer with 12 weak classifiers and the detection for all the 118 test 

images took 5.8 seconds, achieving a 57.6% true positive rate and 25.4 % false positive rate as shown 

in Table 7: 
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Hits (TP) 

Missed 

(FP) 

True Positives 

Rate (TPR) 

False Positives 

Rate (FPR) 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

0 0 0 0 

1 0 0.008475 0 

3 0 0.025424 0 

7 0 0.059322 0 

17 0 0.144068 0 

30 1 0.254237 0.008475 

49 1 0.415254 0.008475 

61 6 0.516949 0.050847 

68 30 0.576271 0.254237 

68 30 0.576271 0.254237 

68 30 0.576271 0.254237 

Table 7: Results of Seventh Training Session With 24x24 Window Size 

Comparing Lower and higher Stages of Training.  

For every training algorithm lower stages show higher recalls, but also lower precision. This is shown 

in the last row of Table 8, which shows the 9-stage classifier results for the 10-stage classifier in Table 

2. The classifier selects 36 weak features.  

Hits (TP) 

Missed 

(FP) 

True Positives 

Rate (TPR) 

False Positives 

Rate (FPR) 

0 0 0 0 

0 0 0 0 

1 0 0.008475 0 

1 0 0.008475 0 

3 0 0.025424 0 

4 1 0.033898 0.008475 

7 1 0.059322 0.008475 

10 1 0.084746 0.008475 

11 1 0.09322 0.008475 

11 1 0.09322 0.008475 

13 2 0.110169 0.016949 

16 2 0.135593 0.016949 

21 2 0.177966 0.016949 

25 2 0.211864 0.016949 
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28 2 0.237288 0.016949 

39 3 0.330508 0.025424 

43 5 0.364407 0.042373 

48 6 0.40678 0.050847 

57 6 0.483051 0.050847 

63 7 0.533898 0.059322 

69 8 0.584746 0.067797 

72 8 0.610169 0.067797 

75 9 0.635593 0.076271 

77 10 0.652542 0.084746 

79 10 0.669492 0.084746 

81 12 0.686441 0.101695 

83 12 0.70339 0.101695 

83 12 0.70339 0.101695 

84 13 0.711864 0.110169 

85 16 0.720339 0.135593 

86 20 0.728814 0.169492 

88 32 0.745763 0.271186 

89 89 0.754237 0.754237 

89 89 0.754237 0.754237 

89 89 0.754237 0.754237 
Table 8: Results For 9-Stage Classifier For The Classifier In Table 2. 

 

In Table 9, the 8-stage classifier results for the 10-stage classifier in Table 2 are shown. This selects 31 

weak classifiers. Even though the training session achieves a 76.2% recall, compared to the 75.4% of 

both the 9-stage and 10-stage, the classifier has a very high false positive rate of 136%. 

 

Hits (TP) 

Missed 

(FP) 

True Positives 

Rate (TPR) 

False Positives 

Rate (FPR) 

65 13 0.550847 0.110169 
69 14 0.584746 0.118644 
72 15 0.610169 0.127119 
75 15 0.635593 0.127119 
77 15 0.652542 0.127119 
79 15 0.669492 0.127119 
81 15 0.686441 0.127119 
83 15 0.70339 0.127119 
83 15 0.70339 0.127119 
85 17 0.720339 0.144068 
87 25 0.737288 0.211864 
88 39 0.745763 0.330508 
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89 75 0.754237 0.635593 
90 161 0.762712 1.364407 
90 161 0.762712 1.364407 
90 161 0.762712 1.364407 
Table 9: Results For 8-Stage Classifier For The Classifier In Table 2. 

Comparing Haar Features and LBP Features 

Table 10 shows the false positives count for the performance test results shown in Table 1 for the first 

10 test images. The results are for Adaboost training with Haar features.  

 

Test Image File Name Hits Missed False Positives 

testdatall/test-014.JPG 1 0 0 

testdatall/test-015.JPG 1 0 0 

testdatall/test-017.JPG 1 0 1 

testdatall/test-019.JPG 1 0 1 

testdatall/test-023.JPG 1 0 1 

testdatall/test-027.JPG 0 1 1 

testdatall/test-029.JPG 1 0 0 

testdatall/test-031.JPG 1 0 3 

testdatall/test-033.JPG 1 0 2 

testdatall/test-034.JPG 1 0 1 

Total 9 1 10 

Table 10: False Positives for Haar Training 

A training session was also conducted with 238 positives and 110 negatives, with similar training 

settings as in the first training session (Table 1), but with the feature type as LBP. Table 11 shows the 

false positives count for the performance test results for this Adaboost training with LBP features for 

the first 10 test images. 

Test Image File Name Hits Missed False Positives 

testdatall/test-014.JPG 1 0 12 

testdatall/test-015.JPG 0 1 10 

testdatall/test-017.JPG 1 0 5 

testdatall/test-019.JPG 1 0 7 

testdatall/test-023.JPG 0 1 9 

testdatall/test-027.JPG 0 1 7 

testdatall/test-029.JPG 1 0 9 

testdatall/test-031.JPG 1 0 8 

testdatall/test-033.JPG 1 0 12 

testdatall/test-034.JPG 1 0 10 
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Test Image File Name Hits Missed False Positives 

Total 7 3 89 

Table 11: False Positives For LBP Training 

 

Training with 530  positive images and 600 negative images, 48x48 window size with LBP features 

achieved much better results. The training session had the same parameters as in Table 6, but with LBP 

as the feature type. Because OpenCV does not come with a performance measure tool for LBP 

classifiers, it was not possible to plot the ROC curves for comparison. A tool was built based on the 

Haar performance tool to compare the results as shown in the source code, Appendix I. However, it did 

not work as expected, since the latest LBP object detection module in OpenCV does not return 

sensitivity data as in the Haar object detection. However, using the tool to compare the results from  the 

Haar algorithm in Table 6, the LBP results were better.   LBP achieved 88% recall and very low false 

positive rate, as compared to 72.8% recall for the Haar training in Table 6, which had similar sample 

sizes.   

Visualization of Results  

The results can be visualized in two ways as mentioned in section 4.2. Firstly, visualization using ROC 

curves, which plots false positive rate against true positive rate. A second way of visualizing the data is 

using 1-Precision curves which plot 1-Precision against true positive rate.  The graphs were plotted 

with Gnuplot version 4.6.  

The ROC curve in Figure 29 compares the results of the first three training sessions, showing 

performance of the classifier with the different training sample sizes. The results show that the best 

classifier was achieved with the 513 positives and 230 negatives. This is because of the high rate of 

recall and precision (low false positives). This can be shown more clearly in the ROC curve in Figure 

30, which has plotted only the two best training sessions from Figure 29, i.e., the one with 513 

positives and 230 negatives and the other with 485 positives and 835 negatives. The 485 positives 

training session has both a lower true positive rate (lower recall), but also a slightly higher false 

positive rate (less precision).  
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Figure 29: ROC Curve Comparing Performance Based On Training Sample Size. 

 

 

Figure 30: ROC Curve Comparing Performance of  Best Two Training Sessions.  
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Figure 31: ROC Curve Comparing Performance Based On Scanning Pixel Window Size. 

 

 

Figure 32: ROC Curve For A 10-Stage Classifier And 9-Stage Classifier. 
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The ROC curve in Figure 31 on the other hand compares the performance of the best training session 

with 48x48 pixel window size and the best training session with 54x54 pixel window size. It shows that 

there is no much diffence between the two window sizes and training with either window sizes can 

achieve good results. However, training with a higher window size is slower than with a smaller 

window size. 

The ROC curve in Figure 32 compares the lower stages and higher stages of object detection. While 

lower stages may have equal or higher performance rates as higher stages, they have much less 

precision than higher stages.  

Figure 33 shows a 1-Precision Curve for the first 3 results, showing how the 3 trained classifiers 

compare. This is consistent with the ROC curves in Figure 29 and Figure 30 and shows the best training 

session with the best performance to be the session with 513 positive and 230 negative examples.   

Figure 34 shows a ROC curve comparing the training sessions with 48x48 pixels window size (Table 6) 

and 24x24 pixels window size (Table 7). Both training sesions were conducted with the same sample 

sizes and the only difference was in the window size.  

 

 

Figure 33: 1-Precision Curve For The First Three Training Sessions. 
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Figure 34: ROC Curve Comparing 24x24 and 48x48 Window Size 
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Discussion of Results 

The following conclusions can be drawn from the presented results: 

1. Good performance can be achieved with Adaboost training both when the positives examples 

are more than negative examples and vice versa. This is shown in Figure 33, where the 

performance for both cases have been presented. While in most cases training examples are in 

the range of 5,000 to 10,000 to get more accurate results, with Adaboost training, a lower 

number of positive and negative examples can still be used to achieve good detection rates. In 

this study 500 positive examples were used to achieve good results, both with 200 negative 

examples (half the positive size) and 944 negative examples (almost double the positive 

examples count). The sixth training session shown in Table 6 also tried to compare performance 

based on an almost equal number of positive examples and negative examples (530 positive and 

600 negative examples). This performance was also relatively good with a true positive rate of 

72.8% and a false positive rate of 12.7%. This false positive rate was the lowest achieved in the 

study (highest precision).  

2. A trade-off has to be struck between the false positive rate and true positive rate. For example 

while the results in Table1 show a performance of 89.8% recall, it has a very high false positive 

rate of 249.1%. This means that this training session cannot be considered as the best. The best 

session is where there is relatively high recall and very low false positives as in Table 2, which 

achieved a recall of 75.4% and false positive rate of 19.4%. This is depicted by the 1-Precision 

curve in Figure 33, which shows that the curve for the training with 230 positives and 110 

negatives does not follow the standard curve of 1-Precision and ROC curves. The other two 

curves on the other hand follow the pattern of ROC curves and 1-Precision curves. This couuld 

be attributed to the low training samples, making the training algorithm less realistic since the 

sample size used did not closely match the real world.  

3. In comparing the performance of the training sessions on different scanning window sizes, 

there was not much difference in performance between the 48x48 pixels window size and 54x54 

pixels window size. As shown in Figure 31, both training sessions resulted in similar curves, 

and finally the two curves met at the same point. This can be ascertained by the fact that apart 

from having a larger scanning window size of 54x54 pixels, the training sample size was also 

higher, making the effect of the window size, if any, negligible. This is important to note since 

the time required to train with a higher window size is greater than that of a lower size. As long 

as the window size selected represents the aspect ratio of the object to be detected and does not 

make the object too stretched, a lower window size can be chosen to improve the training time. 

Figure 34 shows, however, that halving the window size to 24x24 pixels reduced the recall 

from 72.8% to 57.6%, and doubled the false positive rate from 12.7% to 25.4%. In terms of 
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detection speeds, the 24x24 window size was almost 3 times faster (5.8 seconds) as compared 

to 14.8 seconds for the 48x48 window size. A trade-off can therefore be achieved between the 

window size and the speed of detection, versus the window size and recall and precision values. 

4. Within the same training session, lower stages may have higher true positive rates, but also 

lower precision as shown in Table 8 and Table 9 compared to Table 2. The ROC curve in 

Figure 32 also depicts this difference. While the 10-stage classifier achieved a false positive 

rate of 19.4%, the 9-stage classifier has a false positive rate of 75.4%, and the 8-stage classifier 

had a false positive rate of 136.4%. This can be attributed to the fact that in Adaboost learning, 

higher stages are more complex and will reject more false positive regions, while maximizing 

the recall of the classifier.  This is consistent with the description of Adaboost classifiers 

described by Viola and Jones (2004). Each successive stage in the cascade reduces the false 

positive rate and decresases detection rates. A trade-off target has to be selected, where the 

there is minimum reduction in positives and maximum decrease in detection. However, an 

algorithm can have lower number of stages and perform well. The difference is between one 

stage of the cascade classifier and the next.  

5. A comparison of the use of Haar features and LBP features in meter detection can also be 

presented. From the results shown in Table 10 and Table 11, the number of false detections in 

LBP for the test data was 89 compared to 10 for Haar features, when training was done with 

very low sample size. However, with higher sample sizes, LBP performed just as well as Haar 

training. The results show that for meter detection, both Haar featuers and LBP features can 

achieve good recall and false positive rates.  

6. Just as with the performance tool, the Adaboost configuration files from the training sessions 

were also able to effectively detect new meters during the tests on the prototype. In addition, 

the prototype was able to locate the meter reading and binarize the cropped image containing 

the meter reading. This was then presented to an open source OCR software, Tesseract, for 

recognition. As shown in Figure 25, the binarized image has some noise near the meter reading 

area. Testing with Tesseract OCR engine showed that the noise can be challenging to OCR 

readers, and therefore requires more accurate OCR software, common with commercial OCR 

software. However, it could also be possible to build a classifier just for the meter reading 

numbers, which will then read the numbers without presenting them to OCR software. This can 

also be more accurate. 
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CHAPTER 6: CONCLUSION 

6.1  Achievements 

The main goal of this study was to develop a prototype that can intelligently read meters, as a way of 

offering an alternative solution to the problem of automated meters. This goal has been achieved in the 

following ways: 

1. The study has identified the machine learning algorithms that one can use for solving the 

problem of reading meters automatically, without the need for manual reading of meters. The 

study has compared techniques that have been used in related problems and identified the 

stuitable algorithm, Adaboost learning,  for use in the problem of reading of meters.  

2. Using Adaboost learning algorithm a classifier was trained on previous examples. In the 

experiments conducted, the system was able to achieve 75.4% accuracy. This is significant in 

this first attempt to solve the problem of reading of meters. The study also compared what 

results were achieved with different parameters of the learning algorithms.  

3. The study was also able to come up with a design that can be used to solve the problem of 

automated reading of water meters and transmission of the readings to a utility provider. By 

using a system that interacts with the utility provider’s existing data, the system is able to 

ensure that the data submitted from the automatic reading process is accurate. This can help to 

solve the problem of trust. In addition the study proposes a way of using GPS technology to 

verify the customer’s location.  

4. By interacting with existing work on machine learning techniques to solve the problem of 

reading meters, this study was also able to identify the modern tools that are being used to 

solve problems of learning in the computer field. One of the major fields in machine learning is 

in the area of computer vision. By identifying these current technologies, this study has given a 

pointer to those who are interested in this area of study.  

5. The study only considered cases where the meters are upright. There is need to look for ways of 

detecting meters in any orientation or rotating the meter to an upright positition before 

detection.  
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6.2  Research Contributions 

The major contribution of this study is to solve a problem that affects many people, which, if 

implemented, can improve service delivery to citizens. By designing a prototype that can automatically 

read meters and send the readings to a utility provider, the study has shown how common problems can 

be solved by use of new technologies. The fact that this study uses machine learning techniques is also 

a major contribution to what can only be seen as the future of computing as such, i.e., the use of 

machine learning techniques in solving problems that would be difficult to solve otherwise.   

6.3  Recommendation / Future Work 

This study recommends the following areas for future work: 

1. While this study achieved a 75.4% accuracy of the learning algorithm, object detection 

techniques such as face recognition have achieved much better results (Chen and Youlle, 2004). 

It is therefore necessary to seek ways of improving the algorithm.  

2. OpenCV also offers other machine learning techniques that can be used to solve the problem of 

object detection. The study concentrated on only one of the algorithms, ie, Adaboost learning. 

A comparison was also made between different feature types used by Adaboost. These include 

Haar features and LBP features. Future work can explore other algorithms and how they 

compare with Adaboost learning.  

3. This study proposed a way of transmitting the meter readings to the utility providers using 

techniques such as GPRS and GPS location settings on a smart phone. However, while the 

study has shown that this can be done since the platform used supports porting to smart phones, 

future study will have to actually port the prototype to a smartphone.  

4. One challenge with meter readings is the noise around the meter reading region. This makes 

OCR detection  challenging. More accurate OCR software such as commercial OCR software 

can, however, be used to achieve better  performance. Future work can look at how to achieve 

better results with the actual reading of the binarized image. This may include building a 

classifier to recognize the meter numbers, instead of using OCR software.  

5. The study was also not able to comprehensively compare performance between LBP features 

and Haar features. This is because the OpenCV LBP object detection module does not return 

sensitivity data, which is useful for generating the ROC curves data. The study was however 

able to come up with a simple performance measure for LBP. Future work can expand on this to 

create a complete performance measure tool for LBP.  
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6.4  Assumptions and Limitations 

While this study has achieved good results in meter reading, this was achieved by taking various 

assumptions: 

1. The utility providers and users are willing to use the technology to take meter readings.  

2. Utility providers will incorporate the backend infrastructure to support the technology.  

3. Utility providers use standard meters. However, in future, to achieve results with different 

kinds of meters, the algorithm will have to be trained on those meters.  

The study also had the following limitations: 

1. Due to time and budget restrictions, the dataset collected was lower than the ideal dataset of 

thousands of training samples. The use of a larger training sample dataset may have led to a 

higher recall than what was achieved.  

2.  The prototype could not be run on an actual device, even though the study shows that this is 

possible with the tools that have been used.  
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Appendix I: Code 

using System; 

using System.Collections.Generic; 

using System.ComponentModel; 

using System.Data; 

using System.Drawing; 

using System.Linq; 

using System.Text; 

using System.Windows.Forms; 

using MySql.Data.MySqlClient; 

using System.Diagnostics; 

using Emgu.CV; 

using Emgu.Util; 

using Emgu.CV.Structure; 

using Emgu.CV.UI; 

using Emgu.CV.GPU; 

namespace AutoMeterReader 

{ 

    public partial class MeterReadingDetectForm : Form    { 

        Image<Bgr, Byte> imageDetect; 

        Image<Bgr, Byte> detectedImage; 

        Image<Bgr, Byte> imageDetCopy; 

        Image<Gray, byte> binarizedReading; 

        Rectangle detectedRect; 

        Rectangle meterReadingRect; 

        private static MeterReadingDetectForm sForm = null; 

        private OCRReader _ocrDetect; 

        bool gray_in_use = false; 

        public MeterReadingDetectForm() 

        { 

            InitializeComponent(); 

            _ocrDetect = new OCRReader("tessdata/"); 

        } 

        public static MeterReadingDetectForm Instance()        { 

            if (sForm == null) 

            { 

                sForm = new MeterReadingDetectForm(); 

            } 

            return sForm; 

        } 

        private void detectBtn_Click(object sender, EventArgs e)        { 

            int meterAcNum =0; 

            decimal meterRed = 0; 

            int largestRect = -1; 

            cmdReadNumber.Enabled = false; 

            if (Int32.TryParse(acNumTxtBox.Text, out meterAcNum) == false) 

            { 

                clsVariables.isTextMsg("Enter your Account Number with the Water 

Company"); 

                acNumTxtBox.Focus(); return; 

            } 

            if (accountExists(meterAcNum) == false) 
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            { 

                clsVariables.isTextMsg("The Account number entered does not exist. 

Kindly confirm that the number is correct"); 

                acNumTxtBox.Focus(); return; 

            } 

            OpenFileDialog Openfile = new OpenFileDialog(); 

            if (Openfile.ShowDialog() == DialogResult.OK) 

            { 

                //Load the image  

                imageDetect = new Image<Bgr, Byte>(Openfile.FileName); 

                imageDetCopy = imageDetect.Copy(); 

                //Display the Image 

                imgPictBx.Image = imageDetCopy; 

                imgPictBx.Update(); 

                 

                long detectionTime; 

                 

                lblTime.Text = string.Empty; 

                List<Rectangle> meters = new List<Rectangle>(); 

                DetectMeter.Detect(imageDetect, "cascade_test.xml", meters, out 

detectionTime); 

                //get the largest rectangle.  

                if (meters.Count > 0) 

                { 

                    int[] rectArray = new int[meters.Count]; 

                    int curCount = 0; 

                    foreach (Rectangle meter in meters) 

                    { 

                        rectArray[curCount] = meter.Width * meter.Height; 

                        curCount += 1; 

                    } 

                    largestRect = rectArray.ToList().IndexOf(rectArray.Max()); 

                } 

                if (largestRect != -1)  

                { 

                    imageDetect.Draw(meters[largestRect], new Bgr(Color.Red), 2); 

                    detectedRect = meters[largestRect]; 

                    cmdReadNumber.Enabled = true; 

                } 

                imgPictBx.Image = imageDetect; 

                imgPictBx.Update(); 

                lblTime.Text = detectionTime.ToString() + " ms"; 

                if (validateMeterReading(meterAcNum,meterRed)==true )  

                { 

                    transmitMeterReading(meterAcNum,meterRed); 

                } 

            } 

        } 

        public bool accountExists(int intAcNumber)        { 

            int result = 0; 

            string sql = ""; 

            DBUtils oado; 

            try 

            { 

                oado = new DBUtils(); 
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                sql = "select acct_number from customers " + 

                    " where acct_number=" + intAcNumber.ToString(); 

                DataTable myDT = oado.ExecuteTable(sql); 

                if (myDT.Rows.Count > 0) 

                { 

                    //get the only row in the table 

                    DataRow myRow = myDT.Rows[0]; 

                    Int32.TryParse(myRow["acct_number"].ToString(),out result); 

                } 

            } 

            catch (MySqlException) { throw; } //handles connection open & close, 

ExecuteNonQuery 

            catch (InvalidOperationException) { throw; } 

            return result == 0 ? false : true; 

        } 

        public bool validateMeterReading(int intAcNumber, decimal meterReading) 

        { 

            decimal dbReading = 0; 

            bool result =false; 

            string sql = ""; 

            DBUtils oado; 

            try 

            { 

                oado = new DBUtils(); 

                sql = "select cur_reading from meters " + 

                    " where act_number=" + intAcNumber.ToString() + " order by 

reading_date desc"; 

                    DataTable myDT = oado.ExecuteTable(sql); 

                    if (myDT.Rows.Count > 0) 

                    { 

                        //get the only row in the table 

                        DataRow myRow = myDT.Rows[0]; 

                        dbReading = (decimal)myRow["cur_reading"]; 

                    } 

                if (meterReading > dbReading) 

                { 

                    result = false; 

                } 

                else 

                { 

                    result = false; 

                } 

            } 

            catch (MySqlException ex) { MessageBox.Show(ex.Message); ; } //handles 

connection open & close, ExecuteNonQuery 

            catch (InvalidOperationException ex) { MessageBox.Show(ex.Message); ; } 

            return result; 

        } 

        public bool transmitMeterReading(int intAcNumber, decimal meterReading) 

        { 

            SmartSQL ssql = new SmartSQL(); 

            DBUtils oado = null; 

            string sql = ""; 

            bool result=false;  

            try 
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            { 

                oado = new DBUtils(); 

                ssql.StatementType = SmartSQL.STATEMENT_TYPE.TYPE_INSERT; 

                ssql.AddTable("meters"); 

                ssql.AddFields("ACT_NUMBER", "CUR_READING", "READING_DATE"); 

                ssql.AddValues(intAcNumber, meterReading, 

DateTime.Today.ToString(clsVariables.PREF_DT_FORMAT_DB)); 

                sql = ssql.SQL; 

                ssql.Reset(); 

                oado.ExecuteNonQuery(sql); 

                result = true; 

            } 

            catch (MySqlException seE) 

            { 

                //handles connection open & close, ExecuteNonQuery 

                clsVariables.isTextMsg(seE.Message, MessageBoxIcon.Error); 

            } 

            catch (InvalidOperationException iopE) 

            { 

                //handles connection open  

                clsVariables.isTextMsg(iopE.Message, MessageBoxIcon.Error); 

            } 

            catch (Exception ex) { clsVariables.isTextMsg(ex.Message, 

MessageBoxIcon.Error); } 

            finally 

            { 

                oado.Close(); 

            } 

            return result; 

        } 

        private void cmdReadNumber_Click(object sender, EventArgs e)        { 

            imgPictBx.Image = imageDetCopy; 

            imgPictBx.Update(); 

            detectedImage = imageDetCopy.Copy(detectedRect); 

            imgPictBx.Image = detectedImage; 

            imgPictBx.Update(); 

            Image<Bgr, byte> template = new Image<Bgr, byte>("tempimage11.jpg"); 

            Image<Bgr, byte> imageToShow = detectedImage.Copy(); 

            using (Image<Gray, float> result = detectedImage.MatchTemplate(template, 

Emgu.CV.CvEnum.TM_TYPE.CV_TM_CCOEFF_NORMED)) 

            { 

                double[] minValues, maxValues; 

                Point[] minLocations, maxLocations; 

                result.MinMax(out minValues, out maxValues, out minLocations, out 

maxLocations); 

                if (maxValues[0] > 0.5) 

                { 

                    Rectangle match = new Rectangle(maxLocations[0], template.Size); 

                    Rectangle meterRect = new Rectangle(match.X + match.Width + 9, 

match.Y+7, match.Width * 7, 35); 

                    imageToShow.Draw(meterRect, new Bgr(Color.Red), 1); 

                    meterReadingRect = meterRect; 

                    imgPictBx.Image = imageToShow; 

                    imgPictBx.Update(); 

                } 
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            } 

        } 

        private void cmdOCRRead_Click(object sender, EventArgs e)        { 

            Image<Bgr, byte> tmpImage = imageDetCopy.Clone(); 

            Image<Bgr, byte> myImage = tmpImage.Copy(detectedRect); 

            Image<Bgr, byte> img = myImage.Copy(meterReadingRect); 

            ProcessImage(img.Convert<Gray, Byte>()); 

            imgPictBx.Image = binarizedReading; 

        } 

        private void ProcessImage(Image<Gray, byte> image)        { 

            Stopwatch watch = Stopwatch.StartNew(); // time the detection process 

            List<String> metreadings = new List<String>(); 

            List<string> words = _ocrDetect.FindMeterReading(image, metreadings, out 

binarizedReading); 

            watch.Stop(); //stop the timer 

            lblTime.Text = 

String.Format(watch.Elapsed.TotalMilliseconds.ToString()); 

            Point startPoint = new Point(10, 10); 

            for (int i = 0; i < words.Count; i++) 

            { 

                Debug.Print(String.Format("Meter Reading: {0}", words[i])); 

            } 

        } 

    } 

} 

 

using System; 

using System.Collections.Generic; 

using System.Diagnostics; 

using System.Drawing; 

using Emgu.CV; 

using Emgu.CV.Structure; 

using Emgu.CV.GPU; 

namespace AutoMeterReader 

{ 

   public static class DetectMeter   { 

      public static void Detect(Image<Bgr, Byte> image, String meterFileName, 

List<Rectangle> meters, out long detectionTime) 

      { 

         Stopwatch watch; 

         //Read the HaarCascade objects 

         using (CascadeClassifier meter = new CascadeClassifier(meterFileName)) 

         { 

             watch = Stopwatch.StartNew(); 

             using (Image<Gray, Byte> gray = image.Clone().Convert<Gray, Byte>()) 

//Convert it to Grayscale 

             { 

                 //normalizes brightness and increases contrast of the image 

                 try 

                 { 

                     gray._EqualizeHist(); 

                 } 

                 catch (AccessViolationException ex) 

                 { 

                     Debug.Print(ex.Message); 
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                 } 

                 catch (Exception ex) 

                 { 

                     Debug.Print(ex.Message); 

                 } 

                 Rectangle[] meterDetected = meter.DetectMultiScale( 

                    gray, 

                    1.1, 

                    3, 

                    new Size(48, 48), 

                    Size.Empty); 

                 meters.AddRange(meterDetected); 

             } 

             watch.Stop(); 

         } 

         detectionTime = watch.ElapsedMilliseconds; 

      } 

   } 

} 

using System; 

using System.Collections.Generic; 

using System.Linq; 

using System.Text; 

using System.Diagnostics; 

using System.Drawing; 

using Emgu.CV; 

using Emgu.CV.OCR; 

using Emgu.CV.Structure; 

using Emgu.CV.UI; 

using Emgu.Util; 

namespace AutoMeterReader     { 

    public class OCRReader : DisposableObject    { 

      /// The OCR engine 

      private Tesseract _ocr; 

      public OCRReader(String dataPath)      { 

         //create OCR engine 

         _ocr = new Tesseract(dataPath, "eng", 

Tesseract.OcrEngineMode.OEM_TESSERACT_ONLY   ); 

         _ocr.SetVariable("tessedit_char_whitelist", "1234567890"); 

      } 

      public List<String> FindMeterReading(Image<Gray, Byte> gray, List<String> 

strmeterreadings, out Image<Gray, Byte> binarizedImage) 

      { 

          Image<Gray, Byte> filteredReadingShow; 

          using (Image<Gray, Byte> tmp1 = gray.Copy()) 

          { 

              //Resize. This size of front results in better accuracy from tesseract 

              using (Image<Gray, Byte> tmp2 = tmp1.Resize(1000, 800, 

Emgu.CV.CvEnum.INTER.CV_INTER_CUBIC,true)) 

              {              

                  //removes some pixels from the edge 

                  int edgePixelSize = 2; 

                  tmp2.ROI = new Rectangle(new Point(edgePixelSize, edgePixelSize), 

tmp2.Size - new Size(2 * edgePixelSize, 2 * edgePixelSize)); 

                  Image<Gray, Byte> mrdImg = tmp2.Copy(); 
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                  Image<Gray, Byte> filteredReading = FilterMeterReading(mrdImg); 

                  filteredReadingShow = filteredReading.Copy(); 

                  Tesseract.Charactor[] words; 

                  StringBuilder strBuilder = new StringBuilder(); 

              

                  using (Image<Gray, Byte> tmp = filteredReading.Clone()) 

                  { 

                      _ocr.Recognize(tmp); 

                      words = _ocr.GetCharactors(); 

                      for (int i = 0; i < words.Length; i++) 

                      { 

                          strBuilder.Append(words[i].Text); 

                      } 

                  } 

                  strmeterreadings.Add(strBuilder.ToString()); 

              } 

          } 

          binarizedImage = filteredReadingShow.Clone(); 

          return strmeterreadings; 

      } 

 

      private static Image<Gray, Byte> FilterMeterReading(Image<Gray, Byte> 

mreadImg) 

      { 

          mreadImg._EqualizeHist(); 

          //smoothed 

          Image<Gray, byte> smoothedGrayFrame = mreadImg.PyrDown(); 

          smoothedGrayFrame = smoothedGrayFrame.PyrUp(); 

          //canny 

          Image<Gray, byte> cannyFrame = null; 

          cannyFrame = smoothedGrayFrame.Canny(50,50); 

          //smoothing 

          mreadImg = smoothedGrayFrame;     

          

          //binarize 

          Image<Gray, Byte> thresh = mreadImg.ThresholdBinaryInv(new Gray(50), new 

Gray(255)); 

          thresh._Not(); 

          thresh._Or(cannyFrame);  

         return thresh; 

      } 

      protected override void DisposeObject()      { 

         _ocr.Dispose(); 

      } 

    } 

} 

 

// Test LBP Performance 

namespace AutoMeterReader 

{ 

    public partial class TestPerfForm : Form 

    { 

        public TestPerfForm() 
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        { 

            InitializeComponent(); 

        } 

        private void lbpTestBtn_Click(object sender, EventArgs e) 

        { 

            //read file and store details in 

            int counter = 0; 

            string line; double scale_factor = 1.1; 

            float maxSizeDiff = 1.5F; float maxPosDiff = 0.3F; 

            int minNeighbors = 3; double distance; 

            bool found = false; int rocsize = 40; 

            int hits=0; int missed=0; 

            int falseAlarms = 0; int totalHits =0; 

            int totalMissed =0; int totalFalseAlarms =0; 

            long totalDetectionTime = 0; 

            //118 is the number of test images 

            TestDataDetails [] testDataAll = new TestDataDetails[118]; 

            int[] pos = new int [rocsize]; int[] neg = new int [rocsize]; 

                   

            // Read the file and display it line by line. 

            System.IO.StreamReader file = new 

System.IO.StreamReader("testdatall.dat"); 

            TextWriterTraceListener myWriter = new 

TextWriterTraceListener(System.Console.Out); 

            Debug.Listeners.Add(myWriter); 

            while ((line = file.ReadLine()) != null) 

            { 

                //split string 

               string[] lineDataS = line.Split(' '); 

               if (lineDataS.Length == 6) 

               { 

                   testDataAll[counter].filename = lineDataS[0]; 

                   int.TryParse(lineDataS[1], out testDataAll[counter].refcount); 

                   int.TryParse(lineDataS[2], out testDataAll[counter].x); 

                   int.TryParse(lineDataS[3], out testDataAll[counter].y); 

                   double.TryParse(lineDataS[4], out testDataAll[counter].width); 

                   double.TryParse(lineDataS[5], out testDataAll[counter].height); 

                   testDataAll[counter].calcx = 0.5F * testDataAll[counter].width + 

testDataAll[counter].x; 

                   testDataAll[counter].calcy = 0.5F * testDataAll[counter].height + 

testDataAll[counter].y; 

                   testDataAll[counter].calcWidth = Math.Sqrt( 0.5F * 

(testDataAll[counter].width *  testDataAll[counter].width + 

                                                               

testDataAll[counter].height * testDataAll[counter].height)); 

               } 

 

                counter++; 

            } 

            file.Close(); 

            //now we can detect the loaded files 

            //Load the image   

            Image<Bgr, Byte> imageDetect; long detectionTime; 

            Debug.WriteLine 

(string.Format("+================================+======+======+======+\n")); 
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            Debug.WriteLine (string.Format("|            File Name           | Hits 

|Missed| False|\n")); 

            Debug.WriteLine 

(string.Format("+================================+======+======+======+\n")); 

            for (int i = 0; i < 118; i++)             { 

                imageDetect = new Image<Bgr, Byte>(testDataAll[i].filename); 

                List<Rectangle> meters = new List<Rectangle>(); 

                //DetectMeter.Detect2(imageDetect, "cascade_test03.xml", meters, 

scale_factor, minNeighbors, out detectionTime); 

                DetectMeter.Detect(imageDetect, "cascade_test03.xml", meters, out 

detectionTime); 

                totalDetectionTime += detectionTime; 

                missed = 0; hits = 0; falseAlarms = 0; 

                if (meters.Count > 0) 

                { 

                    counter = 0; 

                    TestDataDetails[] detectedDat = new 

TestDataDetails[meters.Count]; 

                    foreach (Rectangle meter in meters)                    { 

                        detectedDat[counter].x = meter.X; 

                        detectedDat[counter].y = meter.Y; 

                        detectedDat[counter].calcx = 0.5F * meter.Width + meter.X; 

                        detectedDat[counter].calcy = 0.5F * meter.Height + meter.Y; 

                        detectedDat[counter].calcWidth = Math.Sqrt(0.5F * 

(meter.Width * meter.Width + meter.Height * meter.Height)); 

                        detectedDat[counter].neibors = meters.Count; counter++; 

                    } 

                    found = false; 

                    for (int j = 0; j < detectedDat.Length; j++) 

                    { 

                        distance = Math.Sqrt(0.5F * ((detectedDat[j].calcx - 

testDataAll[i].calcx) * (detectedDat[j].calcx - testDataAll[i].calcx) + 

                                                      (detectedDat[j].calcy - 

testDataAll[i].calcy) * (detectedDat[j].calcy - testDataAll[i].calcy))); 

                        if ((distance < testDataAll[i].calcWidth * maxPosDiff) && 

                            (detectedDat[j].calcWidth > testDataAll[i].calcWidth / 

maxSizeDiff) && (detectedDat[j].calcWidth < testDataAll[i].calcWidth * maxSizeDiff)) 

                        { 

                            testDataAll[i].found = 1; 

                            testDataAll[i].neibors = Math.Max(1, 

detectedDat.Length); 

                            found = true; 

                        } 

                        Else                         { 

                            falseAlarms++; 

                            neg[Math.Min(detectedDat[j].neibors, rocsize - 1)]++; 

                        } 

                    } 

                } 

                if (testDataAll[i].found == 1)                 { 

                    hits++; pos[Math.Min(1, rocsize - 1)]++; 

                } 

                Else                 { 

                    missed++; 

                } 
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                totalFalseAlarms+= falseAlarms ; totalHits+=hits; 

                totalMissed += missed; 

                Debug.WriteLine(string.Format("|{0}\t|{1:0}\t|{2:0}\t|{3:0}\t|\n", 

testDataAll[i].filename, hits, missed, falseAlarms)); 

                Debug.WriteLine (string.Format("+--------------------------------+--

----+------+------+\n" )); Debug.Flush(); 

        } 

        

Debug.WriteLine(string.Format("|\t\t\t\t\t\t\t\t\t|{0:0}\t|{1:0}\t|{2:0}\t|\n", 

totalHits, totalMissed, totalFalseAlarms)); 

        Debug.WriteLine (string.Format( 

"+================================+======+======+======+\n")); 

        for( int k = rocsize - 1; k > 0; k-- )         { 

            pos[k-1] += pos[k]; neg[k-1] += neg[k]; 

        } 

        for( int k = 0; k < rocsize; k++ )         { 

            

Debug.WriteLine(string.Format("\t|{0:0}\t|{1:0}\t|{2:0.000000}\t|{3:0.000000}\t|\n", 

pos[k], neg[k], 

                ((float)pos[k]) / (totalHits + totalMissed), 

                ((float)neg[k]) / (totalHits + totalMissed) )); 

        } 

        Debug.WriteLine(string.Format("Detection Time: 

{0:0}\n",totalDetectionTime)); 

    } 

        public struct TestDataDetails         { 

            public string filename; 

            public int refcount; public int x; 

            public int y; public double width; 

            public double height; public double calcWidth; 

            public double calcx; public double calcy; 

            public int found;  public int neibors; 

        } 

    } 

} 
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Appendix II: Training Cascade File 

<?xml version="1.0"?> 

<opencv_storage> 

<!-- Automatically converted from trainout\cascade.xml, window size = 48x48 --> 

<cascade_test type_id="opencv-haar-classifier"> 

  <size> 

    48 48</size> 

  <stages> 

    <_> 

      <!-- stage 0 --> 

      <trees> 

        <_> 

          <!-- tree 0 --> 

          <_> 

            <!-- root node --> 

            <feature> 

              <rects> 

                <_> 

                  0 0 45 30 -1.</_> 

                <_> 

                  15 10 15 10 9.</_></rects> 

              <tilted>0</tilted></feature> 

            <threshold>4.7469174861907959e-001</threshold> 

            <left_val>-9.8198199272155762e-001</left_val> 

            <right_val>1.</right_val></_></_> 

        <_> 

          <!-- tree 1 --> 

          <_> 

            <!-- root node --> 

            <feature> 

              <rects> 

                <_> 

                  0 0 45 33 -1.</_> 

                <_> 

                  15 11 15 11 9.</_></rects> 

              <tilted>0</tilted></feature> 

            <threshold>5.8714973926544189e-001</threshold> 

            <left_val>-9.8230087757110596e-001</left_val> 

            <right_val>1.</right_val></_></_></trees> 

      <stage_threshold>1.7699124291539192e-002</stage_threshold> 

      <parent>-1</parent> 

      <next>-1</next></_> 

    <_> 

      <!-- stage 1 --> 

      <trees> 

        <_> 

          <!-- tree 0 --> 

          <_> 

            <!-- root node --> 

            <feature> 

              <rects> 

                <_> 
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                  1 0 42 33 -1.</_> 

                <_> 

                  15 11 14 11 9.</_></rects> 

              <tilted>0</tilted></feature> 

            <threshold>7.9169398546218872e-001</threshold> 

            <left_val>-7.3109245300292969e-001</left_val> 

            <right_val>9.3203884363174438e-001</right_val></_></_> 

        <_> 

          <!-- tree 1 --> 

          <_> 

            <!-- root node --> 

            <feature> 

              <rects> 

                <_> 

                  44 35 4 9 -1.</_> 

                <_> 

                  44 35 2 9 2.</_></rects> 

              <tilted>1</tilted></feature> 

            <threshold>5.8609610423445702e-003</threshold> 

            <left_val>-7.6618534326553345e-001</left_val> 

            <right_val>9.6327316761016846e-001</right_val></_></_></trees> 

      <stage_threshold>1.6585347056388855e-001</stage_threshold> 

      <parent>0</parent> 

      <next>-1</next></_> 

</stages></cascade_test> 

</opencv_storage> 
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Appendix III Installation Of OpenCV And Other Tools 

1. To install OpenCV, download the latest compiled version for the Windows platform from 

http://opencv.org/downloads.html and install on your computer. When you install OpenCV, it 

comes with libraries already compiled. 

2. Download Microsoft Visual Studio Express redistributable from http://www.microsoft.com. If 

you are interested in development, you can also download the Express edition.  

3. To code in Microsoft Visual Studio C#, you need to also download the Emgu library and install 

from http://www.emgu.com/wiki/index.php/Download_And_Installation.  

4. You need to decide which Windows platform you will use, whether it is 32-bit or 64-bit. You 

cannot mix the two platforms, and the 32-bit is an easier platform to work to begin with, before 

exploring 64-bit.  

5. When you install the precompiled version of OpenCV, it comes with all the libraries required to 

execute OpenCV applications. You can easily get things working by copying the libraries from 

the bin folder in the OpenCV installation folder to the Windows system folder in 

C:\Windows\System32. The libraries can also be copied to the application folder.  

6. The precompiled OpenCV installation also comes with source files which can be compiled 

using Visual Studio Express edition. Most of the training tools and examples are not available 

until compiled. This can easily be done by opening the ALL_BUILD project file and compiling 

the tool you want. 


