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ABSTRACT 

The purpose of this study was to model and forecast the stock market volatility at Nairobi 

Securities Exchange since modeling and forecasting stock market volatility has been the 

subject of vast theoretical and empirical inquiry. The NSE 20 Share Index was used to 

generate the daily returns for the market. The study covered ten years of stock market 

indices and the series of returns (Rt) were generated using the natural logarithm of (Pt/Pt-

1). The study used both symmetric and asymmetric GARCH family specifications to 

model volatility at NSE. The stock market is inefficient in its weak form. The NSE 20 

Share Index return was leptokurtosis and skewed to the left, hence it was not normally 

distributed. It also exhibited serial correlation. The unit root test showed that daily returns 

are integrated order of one, I(1), which implies that the daily returns are mean reverting 

in their first difference form. The study indicates that the variance of the returns was not 

constant. It was time varying, which can be specified as a process of conditional 

heteroskedasticity. From the parameters estimated using GARCH, GJR GARCH, 

EGARCH and GARCH M model the returns in stock market exhibit volatility persistency 

and clustering effect, leverage effect and asymmetric response to external shocks. Further 

the market is not efficient in pricing risk. Therefore, from the empirical evidence of this 

study it was possible to deduce that the NSE is not efficient in its weak form and exhibits 

the stylized facts of financial markets. 

Keywords: EMH, GARCH, NSE, Stock Market Volatility. 
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CHAPTER ONE 

INTRODUCTION 

1.1  Background of the Study 

Modeling and forecasting stock market volatility has been the subject of vast theoretical 

and empirical inquiry. Many of the applications of volatility require the estimation or 

forecast of a volatility parameter (Brooks, 2004). 

The stock returns volatility has generated heated debates and interests among economists, 

stock market analysts, government regulatory and policy makers. This interests and 

debates stem in part from the implication for market efficiency, stock market bubbling, 

market crash and recession in the financial sectors of the economy (Nyong, 2005). 

Volatility as a measure of the intensity of unpredictable changes in asset returns and it is 

commonly time varying as recognized by Poon and Granger (2003) among others, so that 

it is possible to think of volatility as a random variable that follows a stochastic process. 

The task of any volatility model is to describe the historical pattern of volatility and 

possibly use this to forecast future volatility. An important characteristic of financial 

stock markets is that the periods of high volatility tend to be more persistent than periods 

of lower volatilities. Another stylized fact in financial data is that the stock return series 

exhibit non-normality and excess of kurtosis (Knight and Satchell, 2007). 

Most of the traditional time series econometric tools are concerned with modeling the 

conditional mean of a random variable. However, many of interesting economic theories 

are designed to work with the conditional variance, or volatility, of a process. Some 

important empirical applications of the Autoregressive Conditional Heteroskedasticity 

(ARCH) model, introduced by Engle (1982) and generalized by Bollerslev (1986) in 

GARCH model and its various extensions are used to forecast volatility in stock return 

series Bollerslev, Chou and Kroner (1992), Bollerslev, Engle and Nelson (1994) and 

Kroner and Ng (1998). 

Therefore, volatility modeling, forecasting and correlation are the crucial factors in risk 

management and measurement of financial market vulnerability. Further, investor’s 
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ability to appropriately estimate the variability in the asset price movements and 

relationship among the assets greatly depends on forecasting volatility. 

1.1.1. Stock Market Volatility 

Volatility, as a measure of percentage change in stock returns is one of the central 

variables in mainstream financial economics. In fact, much empirical work has been done 

in this area. And the observed realized daily or monthly returns are not normally 

distributed as the theory assumes, rather they show fat tails (leptokurtosis) and excess 

skewedness, which a normal distribution cannot explain (Papa, 2004). Further it is well 

documented that stock market volatility is asymmetric, clustered, and persistent and has a 

long term memory.  

If the distribution or the variability of returns is known, then it would be possible to 

forecast returns with higher accuracy. But the question arises that how volatility of stock 

markets is known, is it constant over time or stochastic or more importantly are the daily 

or monthly stock returns are normally distributed? Practitioners of the investment 

industry are very astute, have a sense of the problematic aspects of returns predictability 

and spend much time and effort in forecasting returns. One of the main conclusions of 

this sector and also a consensus within the academia is that stock prices are not 

predictable in the short to medium term and a lot of variability and uncertainty persists. 

The first stochastic volatility models, where the market volatility is no longer a constant, 

but itself follows a stochastic process, normally an Orstein Uhlenbeck process, which 

excludes negative value and accounts for some mean reverting in the volatility process. 

Second is what is called the jump process (Poisson counting process). For the plain 

vanilla Black and Scholes model, the underlying price process is assumed to be a 

geometrical Brownian motion with constant drift and constant volatility. The jump 

diffusion process is a special case of the much more general Levy process. Both 

stochastic volatility and jump process, somewhat improve the pricing capability of the 

Black and Scholes formula, but empirical research reveals that they do not completely 

solve the volatility smile issue (Papa, 2004). In addition the relation between implied 

volatility and realized (historical) volatility is a keen area in finance. 
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1.1.2. Modeling and Forecasting Stock Market Volatility 

Over the last few years, modeling and forecasting volatility of financial time series (asset 

returns) has become a fertile area of research in finance, and has been receiving 

considerable attention from academics and practitioners (Knight and Satchell, 2007). This 

is because volatility is an important concept for many economic and financial 

applications, like portfolio optimization, risk management, asset pricing and serves as a 

measure of uncertainty about future price or return changes on assets  

A special feature of volatility, which according to Tsay (2010) is the conditional variance 

of the underlying asset returns, is not directly observable. Consequently, financial 

analysts are especially keen to obtain good estimates of this conditional variance in order 

to improve portfolio allocation, risk management or valuation of financial derivatives. 

Since the 1980s a number of models has been developed that are especially suited to 

estimate the conditional volatility of financial assets.   

To model conditional variance, ARCH model was introduced by Engle (1982). A useful 

univariant of ARCH model was proposed by Bollerslev (1986) through the Generalized 

ARCH (GARCH) models which provide a parsimonious alternative to a higher order 

ARCH model. Though, these models were not able to appropriately address the 

asymmetric effect often observed in the dynamic of financial variables. And to allow for 

the possibility to model the different impact on conditional variance of bad news and 

good news, Nelson (1991) introduced the Exponential GARCH (EGARCH) models. 

Since then, there have been a great number of empirical applications of modeling the 

conditional variance (volatility) of financial time series by employing different 

specifications of these models and their many extensions. 

1.1.3. Over View of Nairobi Securities Exchange 

In Kenya, dealing in shares and stocks started in the 1920's thought it was in 1954 the 

Nairobi Stock Exchange was constituted as a voluntary association of stockbrokers 

registered under the Societies Act. In 2001, basic reformation of the capital market took 

place and divides the market in to four independent market segments. And recently in 

July 2011, the Nairobi Stock Exchange Limited changed its name to the Nairobi 
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Securities Exchange Limited.  To incorporate and support the trading, clearing and 

settlement of equities, debt, derivatives and other associated instruments. 

The exchange has two main market indices. The NSE 20 Share Index which is based on a 

geometric mean of average prices of the twenty constituent companies which are equally 

weighted. And an all inclusive NSE All Share Index (NASI) which is market 

capitalization weighted.   

Currently, as of July 26
th

 2013 the NSE 20 Share Index closed at 4,801.63 with a market 

capitalization of Ksh 1,739.44 Billion and 8,723,200 shares traded since the beginning of 

the year. Since 2005 the participation of institutional investors in the capital market has 

increased from 38.89 percentages to 89.01 percentages at the end of the year 2012 living 

10.99 percentage to individual investors. On the other hand the participation of foreign 

investor increased from 3.17 percentages in 2006 to 49.17 percentage at the end of 2012 

(ASEA, 2013). 

In 2012 the exchange listed 60 companies with a market capitalization of USD 15.9 

billion which was 42.05 percent of the country’s GDP. The equity value traded for the 

year 2012 reached to USD 1.084 billion with 342, 235 number of transaction. The 

sectoral shares of Telecommunication and Technology, Banking and Insurance, Energy 

and Petroleum and Commercial and Commercial Services were the most active in the 

market (ASEA, 2013). 

1.1.4. Stock Market Volatility at Nairobi Securities Exchange 

The volatility pattern exhibited by the stock market during the years of 1998 and 2007 

exhibits a decline from a relative high value in 1998 to an all-time low which was 

experienced in late 2002. The market index from that point exhibits a steady growth to 

that of 2007 peak.  

Through this period volatility was found to be persistent with long memory. Where a 

decline in the percentage return is followed by another percentage decline in return and 

vise versa. But it not clear whether the negative external shock is more persistent than the 

positive resulting asymmetric volatility trend. 
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Returns that are observed in the markets by Achia, Wangombe and Anyika (2012) are 

positive except between 1998 an 2001. And the result also reveals that the negative and 

positive skewness in the above markets explains that the returns from the market do not 

exhibit normal distribution. The non normal distribution assumption is also supported by 

the value of Kurtosis in each fragmented period and the return between 1998 and 2007 

which shows that the returns in the market exhibits Kurtosis greater than 3, this finding 

was also supported by Wagala, Nassiuma and Islam (2011). 

1.2. Research Problem 

Poon and Granger (2003) present a persuasive case for why the forecasting of volatility is 

a critical activity in financial markets; it has a very wide sphere of influence including 

investment, security valuation, risk management, and monetary policy making. 

Specifically, the emphasize is on the importance of volatility forecasting is in pricing of 

options, underlined by the massive growth in the trading of derivative securities in recent 

times and financial risk management in the global banking sector in particular and the 

financial sector in general. 

Volatility as a proxy for investment risk which exhibit persistency implies that the risk 

return trade off changes in a predictable way over the business cycle Shwert (1989). And 

if volatility on returns could be forecasted based on publicly available information this 

would have an important implication for portfolio selection and for the smooth 

functioning of the financial system. Further beyond having efficient estimator for the 

market dynamics it gives a means to handle potential shocks and variances. 

This begs the obvious question of how to effectively model and forecast volatility and is 

it possible to clearly identify a preferred technique? Various methods by which such 

forecasts can be achieved have been developed in the literature and applied in practice. 

Such techniques range from the extremely simplistic models that use random walk 

assumptions through to the relatively complex conditional heteroskedastic models of the 

ARCH family.  

In the finance literature of Kenya, generally the existing evidence concerning the 

modeling and forecasting of the volatility of the stock market is limited. Achia,  

Wangombe and  Anyika (2012) in their study to model the volatility of NSE 20 share 
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index with response to information change proxied by political conditions of the country 

between 1998 and 2007, divide the time series with election seasons. Sifunjo and 

Mwasaru (2012) and Nyamute (1998) studied the volatility of the Kenya stock market 

with response to foreign exchange rate and financial variables like interest rate, money 

supply, inflation rate and foreign exchange rate respectively. Further, Wagala, Nassiuma 

and Islam (2011) based there volatility model on weekly returns of selected listed firms 

which has less frequency than the daily returns and less statistically representative of the 

stock market. 

Notably, most of the papers in modeling volatility are relatively narrow and often 

restricted with exogenous variables. Their research did not include the investigation of 

financial time series data time clustering effects and volatility persistency, predictability 

and leverage effects. Hence, volatility modeling and forecasting has been under 

researched in the Kenya capital market in general and Nairobi Securities Exchange in 

particular living a room for further studies. 

Therefore, the research questions are: 

 What is the nature and degree of volatility at Nairobi Securities Exchange?  

 Is it possible to model and forecast stock market volatility at Nairobi Securities 

Exchange? And how to model it?  

 

1.3. Objective of the Study 

The objective of this study was to model and forecast the stock market volatility at 

Nairobi Securities Exchange. 

1.4. Value of the Study 

The study seeks to extend and supplement the existing empirical evidence on the 

characteristics of financial time series data at NSE. It will provide a base point to assess 

investment risk to practitioners, that is, brokers, dealers and specialists. It will be 

instrumental to individual and institutional investor’s decision making process so that 

they will trade their risk with informed judgment of the market.   
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It will be valuable to policy makers and executioners like the Capital Market Authority 

and Central Bank of Kenya and the NSE board in their endeavor to regulate and stabilize 

the market. It will enhance their understanding about the nature and degree of volatility 

of returns at the NSE.  

Last but not least the study will contributes to the financial literature on NSE volatility 

modeling and forecasting. It will also serve as a base for further rigorous studies and 

application of advanced econometric tools in finance academic research.   
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CHAPTER TWO 

LITERATURE REVIEW 

2.1. Introduction 

This chapter will discuss the various theoretical foundations and models that will provide 

explanation regarding the concept of volatility modeling and forecast with empirical 

studies that have been done. The chapter is organized in such a way that the fundamentals 

theories will be discussed first followed by stylized facts and empirical evidences from 

local and international perspective finally conclusion will be drawn.  

2.2. Theoretical Literature 

2.2.1. Random Walk Theory 

The idea of stock prices following a random walk is connected to that of the EMH. The 

premise is that investors react instantaneously to any informational advantages they have 

thereby eliminating profit opportunities. Dupernex (2007) cited in Lo and McKinley 

(1999) that prices always fully reflect the information available and no profit can be made 

from information based trading. And this leads to a random walk where the more 

efficient the market, the more random the sequence of price changes. However, it should 

be noted that the EMH and random walks do not amount to the same thing. A random 

walk of stock prices does not imply that the stock market is efficient with rational 

investors. 

A random walk is defined by the fact that price changes are independent of each other. Or 

if the safety in numbers is true, then today’s change in price is caused only by today’s 

unexpected news, that is yesterday’s news is no longer important, and today’s return is 

unrelated to yesterday’s return; the returns are independent. If then, returns are 

independent and then they are random variables and follow a random walk (Edgar E. 

1996).  Technically the Random Walk with a drift (δ) as an individual stochastic series Xt 

that behaves can be defined as: 

Xt = α + Xt-1 + εt+1   εt+1 ~ iid (0, δ
2

t) 
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The drift is a simple idea. It is merely a weighted average of the probabilities of each 

price the stock price could possibly move to in the next period (Brealey and Meyers, 

2005). 

However, even though it is useful, the model is quite restrictive as it assumes that there is 

no probabilistic independence between consecutive price increments. Market efficiency 

does not necessarily imply a random walk, but a random walk does imply market 

efficiency. Therefore, the assumption that returns are normally distributed is not 

necessarily implied by efficient markets. However, there is a very deeply rooted 

assumption of independence. Most tests of the EMH also test the random walk version. In 

addition, the EMH in any version says that past information does not affect market 

activity or return, once the information is generally known (Edgar, 1996).  

2.2.2. Chaos Theory 

Chaos is a bounded deterministic system with a positive Lyapunov exponent. A more 

intuitive definition came from the Royal Society of London in 1986, where chaos is 

stochastic behavior occurring in a deterministic system. A chaotic system will show 

random results to a repeated experiment on such a deterministic system. This may be 

counterintuitive to the common sense given that knowledge of a system’s current state 

and evolutionary path should lead to predictions of all future states in the absence of 

random variables (Kuchta, 2012).  

A defining characteristic of chaotic systems is that they have sensitive dependence to 

initial conditions. Any degree of uncertainty in the initial data, as often occurs in 

measuring, will grow as the system evolves (Kuchta, 2012). Moreover, the errors will 

propagate in unpredictable ways, making forecasting impossible. Therefore, a chaotic 

system has both local randomness and global determinism and these systems can be 

manmade or natural and can occur in social structures and in human beings (Cohen, 

1997). 

The independence of higher moments gives random walk theory the attribute that price 

movements will not follow any trends. In this specification, the independence of today’s 

information and tomorrow’s prices implies efficient markets. If the Efficient Market 

Hypothesis holds, then profits in asset markets exhibiting random properties can be 
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observed, and test for the randomness of chaos and nonlinearity can be conducted 

(Barnett and Apostolos, 1998). 

If there is nonlinearity or chaos, then the exciting possibility of forecasting asset prices 

exists. However, if we can predict next period’s prices, then it must not be independent of 

the current information set, and last period’s price was not the best estimate. 

Predictability will reject the Efficient Market Hypothesis which is how the test for chaos 

originally came (Persaran, 1992).  

2.2.3. Martingale Process 

It is a more flexible model than the random walk. It is devised to improve the random 

walk model as it can be generated within a reasonably broad class of optimizing models 

(LeRoy, 1989). Dupernex (2007) cited in (Elton et al, 2002) that a martingale is a 

stochastic variable Xt which has the property that given the information set Ωt, there is no 

way an investor can use Ωt to profit beyond the level which is consistent with the risk 

inherent in the security. The martingale is superior to the random walk because stock 

prices are known to go through periods of high and low turbulence. This behavior could 

be represented by a model in which successive conditional variances of stock prices (but 

not their successive levels) are positively auto correlated (LeRoy, 1989). This could be 

done with a martingale, but not with a random walk.  

2.3. Empirical Literature 

2.3.1. Volatility in Financial Time Series: Stylized Facts 

Financial time series is concerned with a sequence of observations on financial data 

obtained in a fixed period of time. According to Tsay financial time series data analysis is 

different from other time series analysis because the financial theory and its empirical 

time series contain an element of complex dynamic system with a high volatility and a 

great amount of noise (Tsay, 2010). Yonis cited in Cont (2000) that the uncertainty and 

noise makes the series to exhibit some statistical regularity, which is known as stylized 

facts. Stylized facts are empirical observations that are so consistence and have been 

made in so many contexts that they are accepted as truth. Stylized facts are obtained by 



11 
 

taking a common denominator among the properties observed in studies of different 

markets and instruments. 

Therefore, the patters that the financial time series follows and which are also crucial for 

correct model specification, estimation and forecast are: 

1. Fat Tails: The distribution of financial time series like stock returns, 

exhibit fatter tails than those of normal distribution, that is, they exhibit excess 

kurtosis.  

2. Volatility Clustering: The second stylized fact is the clustering of periods 

of volatility, that is, large movements followed by further large movements and 

vise versa. This is an indication of shock persistence. Correlograms and 

corresponding Box-Ljung statistics show significant correlation which exist at 

extended lag length (Knight and Satchell, 2007). 

3. Leverage Effects: Price movements are negatively correlated with 

volatility. Knight and Sachell (2007) cited in Black (1976) this is true for stock 

returns however Black argued that the measured effect of stock price changes on 

volatility was too large to be explained solely by leverage effect. Nelson (1991) 

also suggested that volatility does not keep constant and returns stay closer.  

4. Long Memory: Especially in high frequency data. Volatility is highly 

persistent. And there is evidence of near unit root behavior in the conditional 

variance process. This observations lead to two propositions for modeling 

persistence: the unit root or the long memory process. The ARCH and Stochastic 

Volatility (SV) models use the latter idea for modeling persistence (Knight and 

Satchell, 2007). 

5. Co-movement in Volatility: When financial time series is looked across 

different markets like exchange rates for different currencies, it is observed that 

big movements in one currency being matched by big movements in another. 

This suggests the importance of multivariate models in modeling cross 

correlations in different markets (Nelson, 1991). 

6.  Skewness: The effect of skewness may be positive or negative, which 

describes their departure from symmetry. 
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7. Long-range dependence in the data: Sample autocorrelations of the data 

are small whereas the sample autocorrelations of the absolute and squared values 

are significantly different from zero even for large lags. This behavior suggests 

that there is some kind of long range dependence in the data. 

Therefore, to get reliable forecasts of future volatilities it is crucial to account for the 

stylized facts. 

2.3.2. Stock Market Volatility Modeling and Forecast 

For market performance, the stability of stock returns ought to be a major concern. This 

of course is linked to the efficiency of the market. In Austria, Spain, Italy and Japan, 

Cheung and Lai (1995) established empirically strong evidence of market inefficiency in 

their stock returns. In a similar manner, Forgha (2012) provided empirical evidence on 

the efficiency and volatility of stock returns in five stock markets in Africa namely, 

Cameroon, Nigeria, South Africa, Egypt and Kenya. And he established that markets are 

proven to be inefficient based on GARCH-M, ADF and the Variance Ratio tests. And 

Nyong (2005) based on stock returns in three emerging markets: Nigeria, South Africa 

and Brazil reject the random walk hypothesis designed to explain markets efficiency.  

Forecasting stock market return volatility has great importance for both investors, traders 

and researchers, because predicting volatility might enable one to take risk minimized 

decisions including portfolio selection and option pricing. Recent financial turbulence 

once again proved the importance of reasonable measurement of uncertainty in financial 

markets. This uncertainty is usually known as volatility which has crucial significance to 

financial decision makers as well as policy makers (Asarkaya, 2005).  

Forecasting volatility has attracted the interest of many academicians; hence various 

models ranging from simplest models such as random walk to the more complex 

conditional heteroskedastic models of the ARCH family have been used to forecast 

volatility. Over the past two decades, there have been many applications of ARCH and 

GARCH models to stock indices returns. More recently, asymmetric volatility models 

have been proposed to incorporate more effect.  Through the years different variations of 

the GARCH model has been used to forecast  volatility.   These   models   include   E-
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GARCH,   GJR-GARCH,   GARCH-M, T-GARCH, VS-GARCH, QGARCH and many 

more. 

Therefore, there is the general consensus that the appropriate approach to examine the 

efficiency and the volatility of stock returns is the ARCH developed by Engel (1982). 

The ARCH approach and its various modifications have been shown to provide a good fit 

to many financial return time series than other forecasting methods such as Random 

Walk (RW), Historical Mean (HM), Moving Average (MA) and Exponential Smoothing 

(ES) (Poon and Granger 2003; Taylor 1992; Engel and Bollersler 1986; Nelson 1991). 

This is because changes in the variability of returns over time are expected to impact on 

the risk or profit of an investment (Nyong, 2005). 

The empirical successes and acceptance of the GARCH models in fitting volatility of 

stock returns notwithstanding, Udo (2000) warned that one should not be over optimistic 

about its forecasting results especially regarding the out of sample forecasting 

performance. This assertion seems to agree with empirical evidence by Zivot (2008) that 

the GARCH models do not forecast very well. Udo (2000) and Zivot (2008) conjectures 

provide an indication that no single model is clearly superior. The above recognition, 

perhaps, may have constrained the likes of Engel (1982) and Gujarati (2004) to admit that 

modeling is a probabilistic process. Consequently, some models tend to perform better in 

some periods and worse in other periods  

2.3.3. Stock Market Volatility and Forecast at Nairobi Securities 

Exchange 

For emerging African markets, Ogum, Beer and Nouyrigat (2005) investigate the market 

volatility using Nigeria and Kenya stock return series. Results of the exponential 

GARCH model indicate that asymmetric volatility found in developed markets are also 

present in Nigerian Stock Exchange, but Kenya shows evidence of significant and 

positive asymmetric volatility. Also, they show that while the Nairobi Stock Exchange 

return series indicate negative and insignificant risk-premium parameters, the Nigerian 

Stock Exchange return series exhibit a significant and positive time-varying risk 

premium.  
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By using asymmetric GARCH models Alagidede and Panagiotidis (2009) investigate the 

extent of volatility on the largest African stock markets (namely Egypt, Morocco, 

Nigeria, Kenya, South Africa, Tunisia and Zimbabwe). They find that these markets are 

highly volatile; however investors are usually compensated by a higher risk premium. 

Surprisingly, a higher level of volatility is found in markets that are less liberalized and 

less open to foreign investors.  

Achia, Wangombe and Anyika (2012) measured the volatility NSE 20 share index 

between 1998 and 2007 by the absolute change in the rate of return and showed the 

positive serial correlation in the markets as expected. While imposing exogenous variable 

they also tested the market for EMH and their results indicate that the hypothesis is not 

satisfied as in their paper both the ARIMA (1, 1, 1) and the GARCH (1, 1) models are fit 

to the data. The random walk process that holds EMH is rejected.  

By using NSE 20 share index from 1992 to 2003 to generate the daily returns, Muriu 

(2003) showed that the equity returns exhibit negative skewness, excess kurtosis and 

deviation from normality hence returns are predictable and therefore rejecting the weak 

form efficiency. And the asymmetric GARCH test showed leverage effect with volatility 

clustering. Persistence of conditional volatility as measured by the sum of alpha and beta 

is less than unity, an indication that it is stationary (mean reverting) and therefore not 

explosive. Stochastic process was also indicated by the ARCH-LM test than the chaos 

process. While Muriu (2003) volatility modeling was rigorous her study did not include 

volatility forecast estimation and evaluation for the market index.  

Wagala, Nassiuma and Islam (2011) used the weekly average prices of three selected 

firms and the NSE 20 share index weekly average raging from 1996 and 2010 to 

determine the most efficient model from the symmetric and the asymmetric models. And 

their results show that the Integrated GARCH (IGARCH) models with student’s t 

distribution are the best models for modeling volatility in the Nairobi Stock Market data. 

Since their study base on weekly average index while the daily return can be observed, 

given that high frequency data are preferable for such type of financial time series 

analysis. Therefore, the weekly index imposes unnecessary generalization over the daily 
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returns. Further the study of individual asset along market aggregate index like NSE 20 

share index may require multivariate analysis rather than univariate analysis. 

Other studies which have been done by Sifunjo and Mwasaru (2012) and Nyamute 

(1998) can also be considered as volatility modeling with exogenously imposed variables.  

Causal relationship between the stock market and the currency market in was observed 

by Sifunjo and Mwasaru (2012) by concluding volatility spill over from the currency 

market to the stock exchange market. 

2.4. Summary of the Literature Review 

The classical EMH which followed the random walk assumption has been empirically 

tested for both developed and developing countries financial markets and the evidence 

failed to accept EMH. From the rejection of EMH the test for Chaos and non linearity in 

returns in the financial market give the possibility of forecasting asset prices. Further the 

Martingale process allowed for the financial time series data to be modeled in a 

successive conditional variance of the asset prices.  

The empirical evidence generated from the financial markets suggested for stylizes of the 

behavior of the financial time series data’s.  This stylized facts established excess 

skewness and leptokurtosis distribution. Further the volatility of stock market returns 

have a tendency to cluster, persist and generate a leverage effect.  

In modeling and forecasting stock market volatility the ARCH family models has been 

used by various studies. Empirical evidences generated from the developed capital 

markets used both symmetric and asymmetric GARCH extensions while the existing 

literature on developing countries volatility modeling and forecasting has not yet 

implemented those models and lack rigorous empirical evidences. 

In conclusion, the developing countries financial market in general and African countries 

in particular has been under researched as far as volatility modeling is concerned. From 

the available literature, the NSE just like other African equity markets has been under 

researched which leaves a gap to be filled. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

3.1.  Introduction 

The following chapter discusses the research design which will be implemented, the 

population, sample size and the type of data which will be used. Further this chapter 

explains how the data will be analyzed and conclusion will be derived.  

3.2. Research Design 

Empirical research design was applied in this research since it is the most relevant form 

for time series data analysis. It also allows the behavior of the time series data, which will 

be sampled at a regular interval, to be studied before a particular model can be applied to 

analyze the data.  

Therefore, the empirical methodology helps to avoid the possibility of generating wrong 

results and conclusions. Further the nature of the data analysis will be determined by the 

actual behavior of the financial data rather than a preconceived notion. 

3.3. Population and Sample Design 

In order to measure the daily returns of the Nairobi Securities Exchange the daily index 

of the stock market proxied by NSE 20 share index were observed. And from the 

observed index the financial time series data for the exchange will be generated on a 

daily basis. The index is useful in determining the performance of the NSE by measuring 

the general price movement in the major 20 shares of listed firms of the stock exchange. 

The daily NSE 20 share index was obtained from NSE covering for the period nine years 

from July 1
st
 2004 to June 30

th
 2013. 

And the daily returns, Rt, was calculated as:  

Rt= ln (Pt/Pt-1) 

Given that Pt will be observed as the daily NSE 20 share index. 
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3.4. Data Analysis 

In order to model and forecast the volatility of the NSE 20 share index various tests and 

advanced econometric tools were employed on the daily returns by using Eviews 5 

statistical software. Further the research will include descriptive analysis of the daily 

returns which will be presented by explaining all moments (Mean, Std. Div., Skewness 

and Kurtosis) of the distribution and graphical representation of volatility in the market. 

The specific tests which will be engaged in this study are presented below. 

3.4.1. Stock Market Analysis 

The market efficiency was analyzed using the parametric tests since there use are tied 

with the assumption of a correctly specified model. Therefore, these tests were used to 

estimate the parameters and for testing hypotheses about the parameters on the 

assumption that the models are correctly specified. Then if the EMH is rejected it could 

be the case that the market is truly inefficient not due to a miss specified equilibrium 

model. 

3.4.1.1. Test for Normality 

The EMH implies that returns are normally distributed with zero Skewness and Kurtosis 

three. But financial time series dates exhibit Skewness different from zero and Kurtosis 

greater than three. Therefore, Jarque Bera (JB) test of normality was employed. The JB 

test of normality is an asymptotic, or it is a test of goodness to fit to normal distribution 

for a large sample size, test. It is also based on the OLS residuals and uses the chi-square 

distribution with 2 degree of freedom Gugarati (2004). 

H0: The error terms are normally distributed. 

H1: The error terms are not normally distributed. 

If the Null hypothesis is rejected, then the market is not efficient in its weak form and the 

returns are not normally distributed. 

 

 



18 
 

3.4.1.2. Test for Serial Correlation 

The most common problem with a time series data’s and specifically with financial time 

series data is serial correlation. Serial correlation violets Guass Markov assumption that 

the error terms are not correlated with each other across time. And the error terms are not 

correlated with the independent variables. For an OLS to be best linear unbiased estimate 

the serial correlation must be corrected. 

Following Gujarati (2004) to avoid some of the pitfalls of the DurbinWatson d test of 

autocorrelation, the Breusch and Godfrey (BG) test of autocorrelation was used. Which 

allow a sense for nonstochastic regressors, such as the lagged values of the regressand 

and higher order autoregressive scheme. 

3.4.1.3. Stationary Test 

Rejecting normality and detecting serial correlation in the error term suggests the 

presence of a trend in the data. A unit root test can be used to check whether trending 

data should be first differenced or regressed on deterministic function of time to achieve 

stationarity in the data.  

Since the error terms are correlated the Augmented Dickey Fuller (ADF) test was used 

than the Dickey Fuller test itself. 

Gujarati (2004) ADF follows the process of: 

∆Rt = β1 + β2t + δRt−1 + αi∑∆Rt-i  + εt 

The Summation (∑) runs from i=1 to m. 

If δ = 0, Rt is stationary around the deterministic trend β1 that is evidence for efficient 

market but if δ ≠ 0, then Rt is non stationary, hence shows no tendency to return to the 

equilibrium value of the random shock in the market.  
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3.4.1.4. Test for ARCH Effect 

A model that can capture the conditional heteroskedasticity of financial time series was 

developed by Engle in 1982 for the first time. The model is called Autoregressive 

Conditional Heteroskedasticity ARCH (Engle, 1982). 

δ
2

t = α0 + Σα1ε
2
t-1

 
+ ut 

The Summation (Σ) runs from t=1 to q. 

(t – q)*R
2 
~ χ

2
p

 
(Chi square) 

H0: α0, α1, and αq = 0 

H1: α0 ≠ 0, α1 ≠ 0, or αq ≠  0  

If the value of the test statistics is greater than the critical value from chi square 

distribution, then the joint null hypothesis will be rejected hence the data displays 

ARCH effect.  

3.4.2. Volatility Analysis 

In order to model and forecast volatility in stock market the symmetric GARCH and the 

asymmetric GJR GARCH, E GARCH and GARCH-M were estimated.  

3.4.2.1. GARCH 

Following Brooks (2008) the GARCH model which allow the conditional variance to be 

dependent upon previous own lags, so that the conditional variance equation in the 

simplest case can be estimated as: 

δ
2

t = α0 + α1ε
2
t-1

 
+ β δ

2
t-1

 

This is a GARCH (1, 1) model.  δ
2

t is known as the conditional variance since it is a one 

period ahead estimate for the variance calculated based on any past information thought 

relevant. Using the GARCH model it is possible to interpret the current fitted variance, ht, 

as a weighted function of a long-term average value (dependent on α0), information about 

volatility during the previous period (α1ε
2

t-1) and the fitted variance from the model 

during the previous period (β δ
2

t-1). 
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And The GARCH (1,1) model can be extended to a GARCH (p,q) formulation, where the 

current conditional variance is parameterised to depend upon q lags of the squared error 

and p lags of the conditional variance as follows. 

δ
2

t = α0 + ∑αtε
2
t-1

 
+ ∑βt δ

2
t-1

 
+ Ƞt 

The first summation (∑) runs from t =1 to p while the second summation runs from t =1 

to q. 

3.4.2.2. GJR GARCH 

Following Brooks (2008) the GJR model is a simple extension of GARCH with an 

additional term added to account for possible asymmetries. The conditional variance is 

now given by: 

δ
2

t = α0 + α1ε
2
t-1

 
+ β δ

2
t-1

 
+ γ ε

2
t-1It-1 

Where It−1 = 1 if εt-1 < 0 

                  = 0 otherwise 

For a leverage effect, we would see γ > 0. Notice now that the condition for no 

negativity will be α0 > 0, α1 > 0, β ≥ 0, and α1 + γ ≥ 0. That is, the model is still 

admissible, even if γ < 0, provided that α1 + γ ≥ 0. 

3.4.2.3. E GARCH 

Brook (2008) cited the exponential GARCH model which was proposed by Nelson 

(1991) and according to Nelson proposition there are various ways to express the 

conditional variance equation, but one possible specification can be given by: 

 

Ln(δ
2

t) = Ѡ+βLn(δ
2

t-1) + γ[(εt-1)/(√( δ
2
t-1)]  

     + α {[│εt-1│/ √( δ
2
t-1)] – [√(2/π)]} 
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The model has several advantages over the pure GARCH specification. First, since the 

log (δ
2

t) is modeled, then even if the parameters are negative, δ
2

t will be positive. There is 

thus no need to artificially impose non negativity constraints on the model parameters. 

Second, asymmetries are allowed for under the EGARCH formulation, since if the 

relationship between volatility and returns is negative, γ, will be negative. 

3.4.2.4. GARCH M 

Most models used in finance suppose that investors should be rewarded for taking 

additional risk by obtaining a higher return. One way to operationalize this concept is to 

let the return of a security be partly determined by its risk. Brook (2008) cited in Engle, 

Lilien and Robins (1987) suggestion of the ARCH-M specification, where the conditional 

variance of asset returns enters into the conditional mean equation. Since GARCH 

models are now considerably more popular than ARCH, it is more common to estimate a 

GARCH-M model. The GARCH-M model can be in specified as: 

Rt = Ƞ + βδt-1 + εt,  Ƞ ~ N (0, δ
2

t) 

δ
2

t = α0 + α1ε
2
t-1

 
+ βδ

2
t-1 

If δ is positive and statistically significant, then increased risk, given by an increase in the 

conditional variance, leads to a rise in the mean return. Thus δ can be interpreted as a risk 

premium. In some empirical applications, the conditional variance term, δ
2

t-1, appears 

directly in the conditional mean equation, rather than in square root form, δt-1. Also, in 

some applications the term is contemporaneous, δ
2

t, rather than lagged. 

3.4.3. Forecast Evaluation 

For the symmetric loss functions the root mean squared error (RMSE), mean absolute 

error (MAE), mean absolute percentage error (MAPE) and Theil inequality coefficient 

(TIC) were employed to measure the accuracy of the forecasting models.  
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CHAPTER FOUR 

DATA ANALYSIS, RESULTS AND DISCUSSIONS 

4.1. Introduction 

In this study, the sets of data consisting of the daily NSE 20 Share Index were used. The 

data was obtained from the NSE for the period raging between 1
st
 July 2003 and June 28

th
 

2013. This chapter presents the results of data analysis and discussion of the findings. 

The general description of NSE 20 share index is presented in section 4.2 followed by 

section 4.3 which presented the results of the analysis of stock market efficiency tests and 

section 4.4 examined the results of volatility. 

4.2. Brief Description of NSE 20 Share index  

The NSE 20 Share Index is a weighted mean with 1966 as the base year at 100 bases 

point. It is based on 20 companies calculated on a daily basis. The index is useful in 

determining the performance of the NSE by measuring the general price movement in the 

listed shares of the stock exchange. 

Figure 4.1.NSE 20 Share Index Histogram covering from July 2003 to June 2013. 
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From Figure 4.1, the NSE 20 Share Index achieved all high value in 2007 with 6161.46 

bases point while the lowest was 1917.10 bases point which was at the beginning of the 
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period. The market has rather tin tail and slightly skewed to the right, that show slow rate 

of growth. Further the market exhibit high standard deviation from its mean value for the 

period. The standard deviation observed from the data indicates the presence of high 

volatility in market and risky nature of the stock market.  

Further by using graphical representation of the market index for the period covered it is 

possible to identify patterns that exist in the NSE 20 Share Index series. Figure 4.2 shows 

that persistent increase since 2003 to the mid of 2007 followed by persistent decline until 

mid of 2008. Since 2009 the market exhibited short term surge in both directions and 

change in trajectory was common. 

Figure 4.2.NSE 20 Share Index Series from July 2003 to June 2013. 

 

By observing the Quantile-Quantile normal probability distribution pattern it was also 

possible to assess whether the NSE 20 Share Index distribution are linearly related with 

standard normal distribution. Figure 4.3 showed that the two lines are close to each other, 

therefore, the distribution of NSE 20 Share Index is normally distributed. 
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Figure 4.3.NSE 20 Share Index Quantile-Quantile Distributions. 
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After generating a series for the daily rate of return of the market by using the daily NSE 

20 Share Index it was possible to capture the unique nature and characteristics of the NSE 

at preliminary state. 

Figure 4.4.Histogram for the Daily Returns of NSE 20 Share Index series. 
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The market has a mean return of 0.00357 with standard deviation of 0.01525 with the fat 

tail. Observing Figure 4.4 showed that the rate of return is concentrated around the mean 

with slight negative skeweness. The excess kurtosis and negative skeweness observed are 

consistent with previous studies done on earlier time periods.  

Further from the series generated in Figure 4.5 shows that volatility clustering and 

persistence mainly between 2006 and 2008 and beyond 2012 were current. Along with 

the highest pick of the NSE 20 Share index in 2007 it was also observed that there was 

high volatility during this period magnifying the external shock which was exerted in the 

stock market. 

Figure 4.5.Series generated for NSE 20 Share Index rate of return. 
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4.3. Results of Stock Market Analysis 

This section presents the results of testing the EMH at NSE. The focus of the EMH was 

on the assumption of normally distributed error term of the returns, absence of serial 

correlation in the error term and a constant risk premium. The first steps of the analysis 

were to examine the time series characteristics of the data set and run various tests. 



26 
 

4.3.1. Result of Test for Normality 

One reason for the rejection of market efficiency is the presence of non-normally 

distributed error terms. In this study the JB test of goodness of fit to the normal 

distribution was implemented. The test was applied to the daily returns of the NSE 20 

Share Index. The result is summarized in Figure 4.6. For normal distribution the sample 

skewness and kurtosis should be close to zero and three respectively while the data set 

shows fat tails and skewed to the left. The JB test shows that the sample skewness and 

kurtosis are significantly different from their mean values as measured by chi square 

distribution. Since the error terms of the daily returns are not normally distributed, a 

kurtosis of 119.2944 and skewness of -1.1129. Therefore, the assumption that the daily 

returns are normally distributed is rejected. 

Figure 4.6.Test for Normality. 
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4.3.2. Result of Test for Serial Correlation 

The result of the serial correlation test using Breusch-Godfrey Serial Correlation LM Test 

is presented in Table 4.1 and Appendix A. Another reason for the rejection of the EMH 

of the stock market is the presence of serial correlation in the error term. 
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Table 4.1.Breusch-Godfrey Serial Correlation LM Test. 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 9.89E-05 0.000299 0.331349 0.7404 

NSE_RETURN(-1) -0.277153 0.107128 -2.587118 0.0097 

RESID(-1) 0.286566 0.108932 2.630679 0.0086 

     
     
The results indicate that there is statistically significant negative serial correlation in the 

error terms of the daily returns. Therefore, from this evidence the returns from NSE 20 

Share Index are serially correlated and violet the assumption of EMH. 

4.3.3. Result of Stationary Test 

Rejecting normality and detecting serial correlation in the error terms suggested the 

presence of trend in the data hence ADF test was conducted to examine the presence 

trend in data. The stationary test results are summarized in Table 4.2 and Appendix A. 

Table 4.2.Unit Root Test. 

     
   t-Statistic   Prob. 

     
     Augmented Dickey-Fuller test statistic -52.57125  0.0000 

Test critical values: 1% level  -3.961630  

 5% level  -3.411564  

 10% level  -3.127648  

     
     
The computed t-statistics in absolute terms was found to be higher than the t-statistics 

critical level for 1 and 5 percent significance level which are 2.326 and 1.645 

respectively. Therefore, the returns are stationary in their first difference form and this 

implies that returns may deviate from their mean in the short run due to exogenous 

shocks but in the long run they tend to revert to their mean value in their first difference. 

 

 



28 
 

4.3.4. Result of Test for ARCH Effect 

The ARCH(1) model was estimated to the daily returns of NSE 20 Share Index and the 

results are shown in Table 4.3 and Appendix A. The daily returns of the market were on 

average 0.3937 times dependent on their own lag. Further the error terms of today were 

also statistically significantly dependent on its own lag.  

Table 4.3.ARCH parameter estimation.  

     
      Coefficient Std. Error z-Statistic Prob.   

     
     C -5.08E-05 0.000223 -0.227949 0.8197 

NSE_RETURN(-1) 0.393709 0.027257 14.44444 0.0000 

     
      Variance Equation   

     
     C 0.000123 3.72E-07 330.7720 0.0000 

RESID(-1)^2 0.336162 0.024367 13.79567 0.0000 

     

Figure 4.7.The Residual of the ARCH model with the Actual and Fitted. 
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Graphically it was clear to observe the autoregressive nature of the residuals with non 

constant variance. Figure 4.7 shows that the fitted, which are, the estimated errors closely 

fit the actual observed errors. Both the estimated and the actual returns follow the same 

patter and this was statistically significant. 

From Table 4.4 the ARCH-LM test indicate that the calculated F-statistics is greater than 

the F-statistics critical level, which rejected the Null Hypothesis, which was, No-ARCH. 

Therefore, the NSE 20 Share Index daily return exhibit ARCH effect.  

Table 4.4.ARCH-LM Test 

ARCH Test:    

     
     
F-statistic 723.2225     Probability 0.000000 

Obs*R-squared 564.3045     Probability 0.000000 

     
     
 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000119 4.29E-05 2.783688 0.0054 

RESID^2(-1) 0.469410 0.017455 26.89280 0.0000 

     
     
4.4. Result of Volatility Analysis 

4.4.1. Result of GARCH Analysis 

The GARCH(1,1) model representation was employed to determine the presence of 

GARCH effect on the daily returns of NSE 20 Share Index. The results shown in Table 

4.5 signify that the daily returns exhibit GARCH effect in the data set. The coefficients 

for the lagged conditional variance in the GARCH estimation show that 0.34 daily returns 

volatility is carried over the next day. These results indicate the presence of volatility 

clustering effect in returns of NSE 20 Share Index. 
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Table 4.5.GARCH parameter estimation.  

     
 Coefficient Std. Error z-Statistic Prob.   

     
     C 0.000228 0.000553 0.412337 0.6801 

NSE_RETURN(-1) 0.337858 0.041803 8.082236 0.0000 

     
      Variance Equation   

     
     C 0.000328 9.15E-08 3587.362 0.0000 

RESID(-1)^2 0.223344 0.024319 9.183866 0.0000 

GARCH(-1) -0.078552 0.005179 -15.16628 0.0000 

     
     
The GARCH model can be specified as follows: 

NSE_RETURN = 0.0002278216325 + 0.3378580761*NSE_RETURN(-1) 

GARCH = 0.0003281262441 + 0.2233435819*RESID(-1)^2 - 0.07855207626*GARCH(-1) 

4.4.2. Result of GJR GARCH Analysis 

The leverage effect, the relationship between stock market volatility and returns, was 

tested using GJR GARCH model and Table 4.6 summarized the results. 

The GJR GARCH model can be represents as follows: 

NSE_RETURN = -2.019401878e-007 + 0.3574811848*NSE_RETURN(-1) 

GARCH = 0.0003051586246 + 0.1425137993*RESID(-1)^2 + 0.1713614897*RESID(-

1)^2*(RESID(-1)<0) - 0.04523492343*GARCH(-1) 

The presence of leverage effect was detected by analyzing γ, which is 0.171361 which is 

greater than zero and statistically significant. Therefore, the null hypothesis was accepted, 

in compliance the existence of leverage effect. This indicate that the higher the volatility 

rate at NSE the lower the return of the stock market and this concurs with the stylized 

facts of financial markets. 
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Table 4.6.GJR GARCH parameter estimation. 

     
      Coefficient Std. Error z-Statistic Prob.   

     
     C -2.02E-07 0.000632 -0.000319 0.9997 

NSE_RETURN(-1) 0.357481 0.044080 8.109743 0.0000 

     
      Variance Equation   

     
     C 0.000305 1.87E-06 163.0909 0.0000 

RESID(-1)^2 0.142514 0.023323 6.110319 0.0000 

RESID(-1)^2*(RESID(-

1)<0) 0.171361 0.055025 3.114241 0.0018 

GARCH(-1) -0.045235 7.03E-06 -6434.036 0.0000 

     
     
4.4.3. Result of E GARCH Analysis 

To allow for asymmetries and avoid the artificial impositions of negative constraints the 

E GARCH model was used on the daily returns of the stock market. The summary of the 

result are shown in Table 4.7.  

Table 4.7.EGARCH parameter estimation.  

     
      Coefficient Std. Error z-Statistic Prob.   

     
     C 0.000227 0.000209 1.089041 0.2761 

NSE_RETURN(-1) 0.395548 0.023024 17.17963 0.0000 

     
      Variance Equation   

     
     C(3) -7.058622 0.224303 -31.46916 0.0000 

C(4) 0.481970 0.026918 17.90515 0.0000 

C(5) -0.040260 0.021324 -1.888014 0.0590 

C(6) 0.227899 0.024553 9.282028 0.0000 
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And the E GARCH model representation can be captured by:  

NSE_RETURN = 0.0002273840563 + 0.3955477524*NSE_RETURN(-1) 

LOG(GARCH) = -7.058622096 + 0.4819701642*ABS(RESID(-1)/@SQRT(GARCH(-1))) - 

0.04026021347*RESID(-1)/@SQRT(GARCH(-1)) + 0.227899202*LOG(GARCH(-1)) 

From the study model specification parameter γ, which is C(5), is negative and 

statistically significant. This entails that, positive shocks to the market contribute to 

smaller increase in volatility in the stock market than a negative shock equal in 

magnitude on a daily base. And this is consistent with the previous established stylized 

facts. 

4.4.4. Result of GARCH M Analysis 

The GARCH M was estimated for the daily returns. The results are displayed in Table 

4.8 shows that the market is likely to respond to volatility asymmetrically. 

Table 4.8.GARCH M parameter estimation. 

     
      Coefficient Std. Error z-Statistic Prob.   

     
     GARCH 5.239183 1.419228 3.691573 0.0002 

C -0.001689 0.000764 -2.209808 0.0271 

NSE_RETURN(-1) 0.336715 0.042713 7.883168 0.0000 

     
      Variance Equation   

     
     C 0.000299 1.44E-05 20.70744 0.0000 

RESID(-1)^2 0.242780 0.032821 7.397173 0.0000 

GARCH(-1) -0.052156 0.050649 -1.029757 0.3031 

     
     
The coefficient of the variance term, that is, GARCH parameter is negative and it is not 

statistically significant. But it is true that the market is likely to increase return as risk 

increase or vise versa. And in general this model shows that the market does not price 

risk efficiently.  
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4.4.5. Result of Forecast Evaluation  

The main emphasis of this study was on modeling volatility albeit forecasting is also the 

prime objective of modeling. Therefore, the volatility forecasts of the series based on the 

models chosen by the prescribed forecasting performance error functions are generated in 

Graph 4.8 below. This forecast was generated using Eviews 5 statistical software. 

Figure 4.8.Stock Market Volatility Forecast Analysis. 
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The results of volatility forecasts performance and evaluations are also incorporated in 

Graph 8. The statistics for accomplishing this are already enumerated in section 3.4.3 of 

this study. They include Root Mean Squared Error (RMSE) of 0.015118, Mean Absolute 

Error (MAE) of 0.00672, Mean Absolute Percentage Error (MAPE) of 179.4555 and 

Theli Inequality Coefficient of 0.977477.  
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CHAPTER FIVE 

SUMMARY, CONCLUSION AND RECOMMENDATIONS 

5.1. Introduction 

This chapter presents the summary of the results of the study and the main conclusion 

drawn. The organization of this chapter follows that section 5.2 summarize the findings 

of the study, section 5.3 presents the derived conclusions while recommendation is 

presented in section 5.4 followed by suggestion for further research in section 5.5 and 

limitation of the study in section 5.6. 

5.2. Summary of the Findings  

This study analyzes the nature and degree of volatility at NSE using the NSE 20 Share 

Index from July 1
st
 2003 to June 28

th
 2013. The Index were used to generate the daily 

returns (Rt) for the stock market by calculating the natural log of (Pt/Pt-1), where Pt 

captures the daily NSE 20 Share Index at time t. The study used varies market efficiency 

tests whether returns are normally distributed and unit root test. To analyze the volatility 

persistency, clustering effect, leverage effect and risk return trade off at NSE by using 

both types of symmetric and asymmetric GARCH family model specifications. 

In summary, the empirical evidence about NSE 20 Share Index presented above indicates 

that the variance of the returns was not constant. It was time varying, which entail that the 

volatility at NSE can be specified as a process of conditional heteroskedasticity. Further 

the results violet many of the general assumptions of EMH that the variance of the error 

terms are constant, are normally distributed and mean reverting.  The term structure of 

the risk prima also contains information that can be used to improve prediction of returns.  

There were two main results from the analysis of the data employed in this study. One the 

stock market is inefficient in its weak form. The NSE 20 Share Index return has a fat tail 

and it was skewed to the left, hence it was not normally distributed. The daily returns also 

exhibited serial correlation. The unit root test showed that daily returns are integrated 

order of one, I(1), which implies that the daily returns are mean reverting in their first 

difference form. 
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Second the stock market returns are non linear and they were well described by using 

GARCH family estimation. The positive and statistically significant ARCH coefficients 

implied that volatility persistence and clustering effect of the market. The assessment of 

the predictability to the variance, indicate that stock returns are not random walk rather 

martingale process, future changes of daily stock returns at NSE are dependent on the 

past information and therefore significant in explaining expected volatility. 

From the parameters estimated using GARCH model the of returns in stock market 

exhibit volatility clustering effect, which was, higher volatility followed by another 

higher volatility and vise versa. The leverage effect which higher returns corresponds to 

lower volatility rates in the market were detected in the GJR GARCH estimation. And the 

EGARCH model for asymmetric volatility showed that the market responses to the same 

magnitude of positive and negative external shocks differently. Further the market is not 

efficient in pricing risk. Therefore, from the empirical evidence of previous section it is 

possible to deduce that the NSE is not efficient in its weak form and exhibits the stylized 

facts of financial markets. 

5.3. Conclusion  

Several conclusions can be drawn from the findings of this study about the nature and 

characteristics of NSE. First the series of returns generated using NSE 20 Share Index 

suggested that NSE is not efficient in its weak form. Second the stylized facts of financial 

time series data, such as negative skewness, leptokurtosis, volatility persistency, and 

clustering effect were observed. The nonlinear data generating process, serial dependence 

and leverage effects which are common observations in stock markets were also detected. 

5.4. Recommendations 

The most significant recommendation to the parties involved with NSE directly or 

indirectly falls in the realm of the positive relationship between stock market volatility 

and expected market return, volatility persistence for external shocks and their mean 

reverting characteristics. To improve the degree of the market efficiency of NSE and 

reduce volatility thereon the timing and efficiency of information assimilation and 

dissemination to interested parties is important. Further the introduction of shock 
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absorbers in the market will reduce the impact of exogenous shocks rather than 

exploding. 

5.5. Limitation of the study 

The study was very limited in time and budget but most importantly the availability of 

data and advanced econometric analysis tools and software’s were hard to come by.  

5.6. Suggestion for Further Research 

It is left to future research to study in more detail the nature and character of the stock 

market volatility at NSE by using neural network and multi variate GARCH models. The 

analysis of the causes of the structural break in market time series and how it can be 

taken into account in the volatility equations could be paramount to the understanding of 

the stock market. Furthermore, it might be interesting to study the extent of volatility 

forecasts based on the present models that can be useful in the context of risk 

management for the stock markets considered.  
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APPENDICES 

APPENDEX A: Market Efficiency Analysis 

Histogram NSE 20 Share Index 
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NSE Return 
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Test for Normality  
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Serial Correlation Test 

 

Breusch-Godfrey Serial Correlation LM Test:  

     
     F-statistic 6.920470     Probability 0.008573 

Obs*R-squared 6.909896     Probability 0.008572 

     
          

Test Equation:   

Dependent Variable: RESID   

Method: Least Squares   

Date: 10/01/13   Time: 14:56   

Presample missing value lagged residuals set to zero. 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 9.89E-05 0.000299 0.331349 0.7404 

NSE_RETURN(-1) -0.277153 0.107128 -2.587118 0.0097 

RESID(-1) 0.286566 0.108932 2.630679 0.0086 

     
     R-squared 0.002697     Mean dependent var 8.77E-19 

Adjusted R-squared 0.001918     S.D. dependent var 0.015003 
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S.E. of regression 0.014989     Akaike info criterion 

-

5.561830 

Sum squared resid 0.574931     Schwarz criterion 

-

5.554981 

Log likelihood 7127.704     F-statistic 3.460235 

Durbin-Watson stat 2.004814     Prob(F-statistic) 0.031569 

     
          

 

 

 

 

 

 

 

 

 

Unit Root Test 

Exogenous: Constant, Linear Trend  

Lag Length: 2 (Automatic based on SIC, MAXLAG=2) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -52.57125  0.0000 

Test critical values: 1% level  -3.961630  

 5% level  -3.411564  

 10% level  -3.127648  

     
     *MacKinnon (1996) one-sided p-values.  

     

     

Augmented Dickey-Fuller Test Equation  

Dependent Variable: D(NSE_RETURN,2)  

Method: Least Squares   

Date: 10/01/13   Time: 14:17   

Sample (adjusted): 7/07/2003 4/25/2013  

Included observations: 2559 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   
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     D(NSE_RETURN(-1)) -2.789392 0.053059 -52.57125 0.0000 

D(NSE_RETURN(-1),2) 0.849693 0.039450 21.53848 0.0000 

D(NSE_RETURN(-2),2) 0.256122 0.019128 13.39011 0.0000 

C 3.48E-06 0.000659 0.005285 0.9958 

@TREND(7/01/2003) 6.78E-10 4.45E-07 0.001524 0.9988 

     
     R-squared 0.844540     Mean dependent var 1.21E-06 

Adjusted R-squared 0.844296     S.D. dependent var 0.042127 

S.E. of regression 0.016623     Akaike info criterion 

-

5.354122 

Sum squared resid 0.705721     Schwarz criterion 

-

5.342697 

Log likelihood 6855.599     F-statistic 3468.658 

Durbin-Watson stat 2.092782     Prob(F-statistic) 0.000000 

     
          

 

 

 

 

ARCH 

Estimation Command: 

===================== 

ARCH(1,0,DERIV=AA) NSE_RETURN C NSE_RETURN(-1) 

 

Estimation Equation: 

===================== 

NSE_RETURN = C(1) + C(2)*NSE_RETURN(-1) 

 

GARCH = C(3) + C(4)*RESID(-1)^2 

 

Substituted Coefficients: 

===================== 

NSE_RETURN = -5.083645896e-005 + 0.3937089858*NSE_RETURN(-1) 

 

GARCH = 0.0001231505563 + 0.3361617075*RESID(-1)^2 

 

Dependent Variable: NSE_RETURN  

Method: ML - ARCH   

Date: 10/01/13   Time: 15:07   

Sample (adjusted): 7/02/2003 4/25/2013  
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Included observations: 2562 after adjustments 

Convergence achieved after 310 iterations  

Variance backcast: ON   

GARCH = C(3) + C(4)*RESID(-1)^2  

     
      Coefficient Std. Error z-Statistic Prob.   

     
     C -5.08E-05 0.000223 -0.227949 0.8197 

NSE_RETURN(-1) 0.393709 0.027257 14.44444 0.0000 

     
      Variance Equation   

     
     C 0.000123 3.72E-07 330.7720 0.0000 

RESID(-1)^2 0.336162 0.024367 13.79567 0.0000 

     
     R-squared -0.298016     Mean dependent var 0.000357 

Adjusted R-squared -0.299538     S.D. dependent var 0.015256 

S.E. of regression 0.017391     Akaike info criterion -6.004679 

Sum squared resid 0.773699     Schwarz criterion -5.995547 

Log likelihood 7695.993     Durbin-Watson stat 2.979078 
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ARCH Test    

     
     F-statistic 723.2225     Probability 0.000000 

Obs*R-squared 564.3045     Probability 0.000000 

     
          

Test Equation:   

Dependent Variable: RESID^2   

Method: Least Squares   

Date: 10/01/13   Time: 14:55   

Sample (adjusted): 7/03/2003 4/25/2013  

Included observations: 2561 after adjustments 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     C 0.000119 4.29E-05 2.783688 0.0054 

RESID^2(-1) 0.469410 0.017455 26.89280 0.0000 
     
     R-squared 0.220345     Mean dependent var 0.000225 

Adjusted R-squared 0.220041     S.D. dependent var 0.002448 

S.E. of regression 0.002162     Akaike info criterion -9.434597 

Sum squared resid 0.011964     Schwarz criterion -9.430030 

Log likelihood 12083.00     F-statistic 723.2225 

Durbin-Watson stat 1.758996     Prob(F-statistic) 0.000000 
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APPENDEX B: Volatility Analysis 

GARCH 

Estimation Command: 

===================== 

ARCH(DERIV=AA) NSE_RETURN C NSE_RETURN(-1) 

 

Estimation Equation: 

===================== 

NSE_RETURN = C(1) + C(2)*NSE_RETURN(-1) 

 

GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1) 

 

Substituted Coefficients: 

===================== 

NSE_RETURN = 0.0002278216325 + 0.3378580761*NSE_RETURN(-1) 

 

GARCH = 0.0003281262441 + 0.2233435819*RESID(-1)^2 - 

0.07855207626*GARCH(-1) 

 

Dependent Variable: NSE_RETURN  

Method: ML - ARCH   

Date: 10/01/13   Time: 15:09   

Sample (adjusted): 7/02/2003 4/25/2013  

Included observations: 2562 after adjustments 
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Convergence achieved after 10 iterations  

Variance backcast: ON   

GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1) 

     
      Coefficient Std. Error z-Statistic Prob.   

     
     C 0.000228 0.000553 0.412337 0.6801 

NSE_RETURN(-1) 0.337858 0.041803 8.082236 0.0000 

     
      Variance Equation   

     
     C 0.000328 9.15E-08 3587.362 0.0000 

RESID(-1)^2 0.223344 0.024319 9.183866 0.0000 

GARCH(-1) -0.078552 0.005179 -15.16628 0.0000 

     
     R-squared -0.236607     Mean dependent var 0.000357 

Adjusted R-squared -0.238542     S.D. dependent var 0.015256 

S.E. of regression 0.016978     Akaike info criterion -5.737330 

Sum squared resid 0.737096     Schwarz criterion -5.725916 

Log likelihood 7354.519     Durbin-Watson stat 2.918385 

     
     

GJR GARCH 

Estimation Command: 

===================== 

ARCH(THRSH=1,DERIV=AA) NSE_RETURN C NSE_RETURN(-1) 

 

Estimation Equation: 

===================== 

NSE_RETURN = C(1) + C(2)*NSE_RETURN(-1) 

 

GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*RESID(-1)^2*(RESID(-1)<0) + 

C(6)*GARCH(-1) 

 

Substituted Coefficients: 

===================== 

NSE_RETURN = -2.019401878e-007 + 0.3574811848*NSE_RETURN(-1) 

 

GARCH = 0.0003051586246 + 0.1425137993*RESID(-1)^2 + 0.1713614897*RESID(-

1)^2*(RESID(-1)<0) - 0.04523492343*GARCH(-1) 

 

Dependent Variable: NSE_RETURN  

Method: ML – ARCH   

Date: 10/01/13   Time: 15:10   

Sample (adjusted): 7/02/2003 4/25/2013  

Included observations: 2562 after adjustments 

Convergence achieved after 15 iterations  
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Variance backcast: ON   

GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*RESID(-1)^2*(RESID(-1)<0) 

        + C(6)*GARCH(-1)   

     
      Coefficient Std. Error z-Statistic Prob.   

     
     C -2.02E-07 0.000632 -0.000319 0.9997 

NSE_RETURN(-1) 0.357481 0.044080 8.109743 0.0000 

     
      Variance Equation   

     
     C 0.000305 1.87E-06 163.0909 0.0000 

RESID(-1)^2 0.142514 0.023323 6.110319 0.0000 

RESID(-1)^2*(RESID(-

1)<0) 0.171361 0.055025 3.114241 0.0018 

GARCH(-1) -0.045235 7.03E-06 -6434.036 0.0000 

     
     R-squared -0.257591     Mean dependent var 0.000357 

Adjusted R-squared -0.260051     S.D. dependent var 0.015256 

S.E. of regression 0.017125     Akaike info criterion -5.758354 

Sum squared resid 0.749603     Schwarz criterion -5.744657 

Log likelihood 7382.451     Durbin-Watson stat 2.940434 

     
     

 

E GARCH 

Estimation Command: 

===================== 

ARCH(EGARCH,DERIV=AA) NSE_RETURN C NSE_RETURN(-1) 

 

Estimation Equation: 

===================== 

NSE_RETURN = C(1) + C(2)*NSE_RETURN(-1) 

 

LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(5)*RESID(-

1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1)) 

 

Substituted Coefficients: 

===================== 

NSE_RETURN = 0.0002273840563 + 0.3955477524*NSE_RETURN(-1) 

 

LOG(GARCH) = -7.058622096 + 0.4819701642*ABS(RESID(-1)/@SQRT(GARCH(-

1))) - 0.04026021347*RESID(-1)/@SQRT(GARCH(-1)) + 

0.227899202*LOG(GARCH(-1)) 

Dependent Variable: NSE_RETURN  

Method: ML – ARCH   
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Date: 10/01/13   Time: 15:17   

Sample (adjusted): 7/02/2003 4/25/2013  

Included observations: 2562 after adjustments 

Convergence achieved after 500 iterations  

Variance backcast: ON   

LOG(GARCH) = C(3) + C(4)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + 

        C(5)*RESID(-1)/@SQRT(GARCH(-1)) + C(6)*LOG(GARCH(-1)) 

     
      Coefficient Std. Error z-Statistic Prob.   

     
     C 0.000227 0.000209 1.089041 0.2761 

NSE_RETURN(-1) 0.395548 0.023024 17.17963 0.0000 

     
      Variance Equation   

     
     C(3) -7.058622 0.224303 -31.46916 0.0000 

C(4) 0.481970 0.026918 17.90515 0.0000 

C(5) -0.040260 0.021324 -1.888014 0.0590 

C(6) 0.227899 0.024553 9.282028 0.0000 

     
     R-squared -0.299828     Mean dependent var 0.000357 

Adjusted R-squared -0.302370     S.D. dependent var 0.015256 

S.E. of regression 0.017410     Akaike info criterion -5.992358 

Sum squared resid 0.774779     Schwarz criterion -5.978661 

Log likelihood 7682.211     Durbin-Watson stat 2.981654 

     
     

 

 

GARCH M 

Estimation Command: 

===================== 

ARCH(ARCHM=VAR,DERIV=AA) NSE_RETURN C NSE_RETURN(-1) 

 

Estimation Equation: 

===================== 

NSE_RETURN = C(1)*GARCH + C(2) + C(3)*NSE_RETURN(-1) 

 

GARCH = C(4) + C(5)*RESID(-1)^2 + C(6)*GARCH(-1) 

 

Substituted Coefficients: 

===================== 

NSE_RETURN = 5.239183243*GARCH - 0.001688713735 + 

0.3367145424*NSE_RETURN(-1) 
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GARCH = 0.0002992198784 + 0.2427798551*RESID(-1)^2 - 

0.05215645767*GARCH(-1) 

 

 

Dependent Variable: NSE_RETURN  

Method: ML - ARCH   

Date: 10/01/13   Time: 15:15   

Sample (adjusted): 7/02/2003 4/25/2013  

Included observations: 2562 after adjustments 

Convergence achieved after 31 iterations  

Variance backcast: OFF   

GARCH = C(4) + C(5)*RESID(-1)^2 + C(6)*GARCH(-1) 

     
      Coefficient Std. Error z-Statistic Prob.   

     
     GARCH 5.239183 1.419228 3.691573 0.0002 

C -0.001689 0.000764 -2.209808 0.0271 

NSE_RETURN(-1) 0.336715 0.042713 7.883168 0.0000 

     
      Variance Equation   

     
     C 0.000299 1.44E-05 20.70744 0.0000 

RESID(-1)^2 0.242780 0.032821 7.397173 0.0000 

GARCH(-1) -0.052156 0.050649 -1.029757 0.3031 

     
     R-squared -0.199467     Mean dependent var 0.000357 

Adjusted R-squared -0.201813     S.D. dependent var 0.015256 

S.E. of regression 0.016725     Akaike info criterion -5.770860 

Sum squared resid 0.714958     Schwarz criterion -5.757163 

Log likelihood 7398.471     Durbin-Watson stat 2.785667 

     
     

 

Forecast 

Estimation Command: 

===================== 

ARCH(DERIV=AA) NSE_RETURN C NSE_RETURN(-1) 

 

Estimation Equation: 

===================== 

NSE_RETURN = C(1) + C(2)*NSE_RETURN(-1) 

 

GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1) 

 

Substituted Coefficients: 

===================== 
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NSE_RETURN = 0.0002278216325 + 0.3378580761*NSE_RETURN(-1) 

 

GARCH = 0.0003281262441 + 0.2233435819*RESID(-1)^2 - 

0.07855207626*GARCH(-1) 

 

Dependent Variable: NSE_RETURN  

Method: ML - ARCH   

Date: 10/01/13   Time: 15:09   

Sample (adjusted): 7/02/2003 4/25/2013  

Included observations: 2562 after adjustments 

Convergence achieved after 10 iterations  

Variance backcast: ON   

GARCH = C(3) + C(4)*RESID(-1)^2 + C(5)*GARCH(-1) 

     
      Coefficient Std. Error z-Statistic Prob.   

     
     C 0.000228 0.000553 0.412337 0.6801 

NSE_RETURN(-1) 0.337858 0.041803 8.082236 0.0000 

     
      Variance Equation   

     
     C 0.000328 9.15E-08 3587.362 0.0000 

RESID(-1)^2 0.223344 0.024319 9.183866 0.0000 

GARCH(-1) -0.078552 0.005179 -15.16628 0.0000 

     
     R-squared -0.236607     Mean dependent var 0.000357 

Adjusted R-squared -0.238542     S.D. dependent var 0.015256 

S.E. of regression 0.016978     Akaike info criterion -5.737330 

Sum squared resid 0.737096     Schwarz criterion -5.725916 

Log likelihood 7354.519     Durbin-Watson stat 2.918385 
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Forecast: NSE_RETURNF

Actual: NSE_RETURN

Forecast sample: 7/01/2003 6/28/2013

Adjusted sample: 7/02/2003 6/28/2013

Included observations: 2608

Root Mean Squared Error 0.015118

Mean Absolute Error      0.006720

Mean Abs. Percent Error 179.4555

Theil Inequality Coefficient  0.977477

     Bias Proportion         0.000001

     Variance Proportion  0.999702

     Covariance Proportion  0.000297

.00032

.00033

.00034

.00035

.00036

.00037

.00038

.00039

03 04 05 06 07 08 09 10 11 12 13

Forecast of Variance

 

 


