UNIVERSITY OF NAIROBI
SCHOOL OF COMPUTING &

INFORMATICS

Open Sour ce Spelling Checker for
Kimiir i Language

BY

Anondo, Timothy Kimathi
P56/P/7851/2004

Super visor
Mr. E. K. Miriti

2013
Submitted in partial fulfillment of the requirements of the Master of Science

in Information Systems




DECLARATION
This project as presented in this report is my original work and has not been submitted to

any other university.

Signed:

Name:

Reg. No:

Date:

This project has been submitted in fulfillment of the requirements of Master of Science in

Information Systems of University of Nairobi with my approval as the Supervisor.

Signed:

Name:

Date:




ABSTRACT
Computational Linguistics has been of extensive research interest in Europe, America,
South Africa, and other parts of the world. However, very few Human Language
Technology Projects have existed in Kenya, particularly for Bantu Languages because
Kiswahili and English are the dominant languages. Therefore there is a need to develop

tools to support electronic document preparation in resource-poor languages.

This work describes the development of an open source spellchecker for KimiirQ
language using the Hunspell language tools which examines the morphological analysis
of KimiirQ language, highlighting nouns and verbs derivation and also provides a

suggestion component used to generate probable suggestions for a misspelled word.

The focus of this project is the creation of two major Hunspell files namely; the affix file
(.aff) and the dictionary file (.dic). The affix file enables the creation of al the rules

involved in deriving the Kimiir( nouns and the verbs from the root words (stems). All the
stems plus the appended rules are stored in the dictionary file.

The developed spellchecker is the first spellchecker for KimiirQ language and it can
correctly classify Kimiird words with an accuracy rate of 80%, precision rate of 100%
and arecall rate of 78%. This Functional system isaimed at being adopted in mgor open-
source products such as Open Office, Mozilla products such as ThunderBird and FireFox,

Google Chrome.



ACKNOWLEDGEMENT
| would like to express my specia thanks of gratitude to my Project Supervisor Mr Evans
Miriti as well as members of the project panel who gave me the golden opportunity to do
this wonderful system on the Kimiird language. | am redly thankful to them.

Secondly, | would aso like to thank my parents, especialy my dear Dad, Jeremiah
Anondo who, not only provided the primary sources of my corpus but, also proof read the
word list. | thank Nancy Gakii who manually annotated the word list and all other friends
who helped me alot in finishing this project within the limited time.

| developed this project, not only for the award of marks, but to also increase my

knowledge.

THANKSAGAINTO ALL WHO HELPED ME.



TABLE OF CONTENTS

DECLARATION.......ouieeieececteeestesese s sesses s sesssssssssssss s s s sss s ssesssanssssssenssnsssnnessans i
ABSTRACT .....ooveieeeeeeteetes s tes st es st es st s s st n st an s s e s e san e s senssneenseneaees iii
ACKNOWLEDGEMENT .....oovvitieeieseessesieseesesstsssssssssssessssssssssssssssssssssssssssssssssssssssessssssnens iv
LIST OF FIGURES........oveveeceeeeeteseeses s sessesseseessssassassssssssss s s s ss s ssssasassssssssssssnsanenns viii
LIST OF TABLES.......oveteecectetietestsss s sesees s sesasssssssssssss s s s sss s sssssssnssssssssssnsssneseans iX
CHAPTER 1: INTRODUCTION .....ooiuiitiesieietseessess s tesessesssssesssessssssssssesesesssssssssssesnes 1
1.1 BACKGROUND........c.ooeueereieereisessesessseessessessesesssessss s sess s sss s sessssses s sassssnesssanes 1
1.2 STATEMENT OF THE PROBLEM .........oooeieiceceeieeeeetessees s sessesseseesess s sesssses s 2
1.3 PROJECT JUSTIFICATION .....oorvreceeeeseeesseseesessesesstesssssssssssssssssssssssssesesssssnssssssssssenns 3
1.4 PURPOSE OF THE PROJECT .....ovieieseeseeseeseesssssetesessssssssssssssessesssssssssesssssssnssnssseans 4
1.5 SPECIFIC OBJIECTIVES........ooiuiieieeseeiseseeseeseseessessss s sesssssssssssssss s s s sssessssnssseans 4
1.6 SCOPE AND LIMITATION .....ocuivreeceereeeeeseeseesestesesssessesssssssssssssssssssesssssssesssssssssssssenns 4
CHAPTER 2 : LITERATURE REVIEW........cooioieeeeeeeeeeeteeesesesses s sessesesssssssssss s 5
2.1 KIMITRU LANGUAGE .......ovvevceseeeeeeteee et ssessassstensssssssssssnsssssssssssnsssassssssansnnens 5
2. L1 KIMITRU ALPHABET ..ottt seetes et sstssessesssssssssssasssnessssssssssssssaneans 6
2.2 KIMITRU ORTHOGRAPHY.........cooveeiceeeeeseetssiesesssesssses s ssssssssssssssesss s sssassssssssssssssssneas 8
2.2 L KIMITRU TONES.....cooveictseeeeieteseeeetetssse e sssss s sesssss s ssssssessssssssssssssssssnansans 9
2.2.2 KIMITRU VOWELS.......ocviveeeieeeceeetsssessesessessestesessessssesssssssensasasssnsssenssssnsenes 10
2.2.3 DOUBLING OF KIMITRU VOWELS........ciieictireeiectseeeeseeeestsssessessseenessenes 11
2.2.4 KIMITRU DIPTHONGS........coiieeicereeeietseeesseiessesssessssssssssssssssssssasssssssssenes 11
2.2.5 KIMITRU SEMIVOWELS.........oueeceeeeieeseeiesestesessstessessssssesesssssssssssssssssssanes 11
2.3 KIMITRU MORPHOLOGY .......orviierreeseeesietssesesssssssssesssssssesssssssssassssssssssssssssssssassens 12
2.3.1 NOUN MORPHOLOGY .....coivreieeseeseesiesisssssssssssssssssssssssssssssssssssssssssssssssssnes 12
2.3.2 KIMITRU PRONOUNS..........ouiieerceeeeirtsee e sesessssesssses s sssssessssasssssssssenes 14
2.3.3KIMITRU VERBS......coveeeteeeeieteeeesssetssssesassessessssassessssss s ssssssssssssssasssssssenes 15
2.4 KIMITRU LANGUAGE TECHNOLOGY .....ovveveceereeeceseeeeeeteesesesssesssssssssssssessssnenes 16
2.5 RELATED WORKS.......ooiviiriieietiseseessess s sessssssssesessssssssssssssssssssessssssasssssssssssssssseneans 16

2.5.1 WORD PROCESSOR FOR GIKUYU LANGUAGE WITH SPELL CHECK...16



2.5.2 OPEN SOURCE SPELL-CHECKER FOR GIKUYU USING THE HUNSPELL

............................................................................................................................... 21
LANGUAGE TOOLS ..ottt sses s s sensss s ssess s ssssesssssssaneneans 21
2.5.30PEN SOURCE SPELL CHECKER FOR DHOLUO USING THE HUNSPELL
LANGUAGE TOOLS.......oucieeeseeeteeesessessssseesssssssssesssssssssssssessssssssssssssssssssssnssnnes 26
2.5.4 OPEN SOURCE KIPSIGISSPELL CHECKER AND LANGUAGE TOOL ....26
2.5.5 OPEN SOURCE SPELLCHECKER FOR LUHYA-LULOGOLI..........c.ccoou.ee. 27
2.5.6 SPELL CHECKERS........oouiuiieieeseeseeseessestesssssessssesssssssssssssssssessesssssssssssssssnenes 28
2.5.7 HUNSPELL LANGUAGE TOOLS......co.ovevereeeereseesseeeessesseossessssssssssssessesneans 34

CHAPTER 3: METHODOLOGY .....ovvrveeeeeeeeesissessessseseessessssssessssssssessnssnsssssssssssnsens 36
BLANALYSIS ...ttt ns ettt 36
B.LLSCOPE ANALYSIS ...ttt tesesssessesesssssssssssssss s sssssssssssssssanenes 36
3.1.2 PROBLEM ANALYSIS........oouiveieeeseerensesssseseessssesssssssssssssnsssssssssssssssssnsens 37
3.1.3DECISION ANALYSIS.......ooveieeeeeeeesesses s sssesssss s ssssssnssnssssesssnssssssnsens 37
B2 SYSTEM DESIGN ...ttt tessesesssesessssssssssssssssssesessssssanssnssssssssnsssaneans 37
3.3 MAJOR COMPONENTS OF THE DEVELOPED SPELL CHECKER SYSTEM........38
3.3.1 GRAPHICAL USER INTERFACE (GUI) .....covuveeveereseeeeeeseseeseesseseessensesssnnens 38
332 SPELL CHECKER........oooieireeee et seses st ssssssassssssssssssnssssssssansnssnsens 39
GRSV 0] =TI £ L 39
3.3.4 PERSONAL DICTIONARY. .......viierieesieneietesssssssssessssssses s sessssessesssnsanees 40
3.4 CORPUS COLLECTION ......coorveieseeieeseseesseseseseessesssssssssssssssesssssessssssssssnssssssssnssnsens 41
3.5 IMPLEMENTATION OF THE KIMITRU SPELLCHECKER.........cccocovveeeeeeveiereeeenens 41
3.6 HUNSPELL LANGUAGE SPECIFIC SETUP FORKIMITRU ......ccoovveeeeecrenieeens 42
3.6.1 SUGGESTIONS COMPONENT ........coovvreiereseessessesiesesesesessesssssessssesssssessneas 43
3.6.2 AFFIXATION COMPONENT .....ooovveirrreneeneesseeseeseisssssssssessssesssssesssssessesseans 45
3.6.3 NOUN COMPONENT .......oovvrvereeneeeeressesssssssesssssssssassssssssssssssssssssssssssssneens 46
3.6.4 VERB COMPONENT .....oouieieietieeseeseeseessesssssesssssssssssssssssssssssssssssssssssssssssnenes 48
CHAPTER 4 : TESTING AND RESULTS ......oviirieeeeeeeeeseteseseesseseesseseesesssesssssssessenenns 52
ALTESTING. ..ottt et eee s s sss st sssssass s s s ss s snss st s st ansanssessansnsens 52
4.2 EVALUATION. ......oooeeeeeseesesseessesessess s ssessssssssssssss s sssssssssssssassssssasssssssssanssnssssansesseans 57

Vi



4.2.1 MAJOR CHALLENGES..........cco i 59

CHAPTERS : DISCUSSON.......occiiiiiiiitiis e 60
S.L OVERVIEW.....oo e 60
S.2 ACHIEVEMENTS. ... .ot 60
S.3LIMITATIONS .. ..o s 61
5.4 RECOMMENDATIONS........oo s 61
5.5 CONCLUSION.....ciiiiiiit e et sn e 62
APPENDICES.........ooiii e 63
APPENDIX L ..o e 63
REFERENGCES....... .o 63

vii



Figurel:
Figure2:
Figure3:
Figure4:
Figure5:
Figure6:
Figure7:
Figure8:

LIST OF FIGURES

Spell checking operation in Gik{yt Language cited in Muriithi, 2008. .......... 18
Spell checking operation in Kimiir( Language...........ccooveeererienenseesiesieneens 40
Word found in the Main and/or Personal Dictionary. ..........cccceeveererceeseenieenn 52
Word not found in Main and/or Personal Dictionary...........cccocevevevvecveseesenenn. 53
Word found through AffiX removal ...........cccveeeveiecce e 54
Word not found in Main and/or Personal Dictionary using test corpus........... 55
Word not found in Main and/or Personal Dictionary using test corpus........... 56
Kimiird Spell Checker deployed in Open Office.org Writer .........ccceeveveeeneee. 57

viii



LIST OF TABLES
Table 1: Mfiiru clan (dialects) and their geographical regions cited in Ataya, 2012........... 5

Table 2 : Kimiir( aphabet and pronunciation cited in Ataya, 2012............ccoccvveerercenneenne 6
Table 3 : Instances of old and new KimiirG vowel graphscited in Ataya, 2012................ 8
Table 4 : Old Kimeru problem of future negative commands and future affirmative
statements cited in Ataya, 2012. ........cooceiieieeieseee e re e 9
Table5: New Kimiird with a high tone mark to indicate future negative commands and
no mark to indicate future affirmative statements cited in Ataya, 2012. ........c..ccceeveeenene 10
Table 6 : Tone mark for “if’ or conditional clause cited in Ataya, 2012. ........c..cceevveueenee. 10
Table 7 : Kimiird noun classes cited in Ataya, 2012 .........ccccceeveeeeneeieesieseese e 12
Table 8 : Kimiir( orthography set character count ............ccoveeiiienineeece e 44
Table 9 : Evaluation of test results based on four OULCOMES...........ccceveeinreenenienie e 58



CHAPTER 1: INTRODUCTION

1.1 BACKGROUND

Computational Linguistics has been of extensive research interest in Europe, America,
South Africa, and other parts of the world. However, very few Human Language
Technology Projects have existed in Kenya, particularly for Bantu Languages because
Kiswahili and English are the dominant languages (Wagacha 2007; DePauw 2007). This
means that most of all textual communication isin the two languages. Therefore thereisa
need to develop tools to support electronic document preparation in other resource-poor

languages.

According to Wikipedia, a spell checker is a computer application that identifies possible
misspellings in a text by referring to the accepted spellings in a database. Most
spellcheckers function as part of a larger program, such as a word processor or search
engine. Having a spell checker is not quite a replacement for a real human editor, but it
can help users catch basic spelling mistakes so that their communications are more
presentable. The earliest spell check programs simply scanned documents for words they
didn't recognize, and alerted users to the fact that something was spelled incorrectly,
without providing any suggestions for alternate spellings. These systems were eventually
replaced by spell checkers which generated a list of possible words for the user to select
from, to replace the misspelled word. Recently, research has focused on developing
algorithms which are capable of recognizing a misspelled word, even if the word itself is
in the vocabulary, based on the context of the surrounding words. This mitigates the

detrimental effect of enlarging dictionaries, allowing more words to be recognized.

KimiirQ, as a Kenyan Bantu language, can be classified as a resource scarce language
(RSL) with respect to language technology resources, tools and applications (Wagacha
2010; De Pauw, 2010). Again, Kimiira orthography contains two diacritically marked
characters (i and 0) that require extra keystrokes to generate, a situation which often

makes users opt for the diacritically unmarked equivalents, resulting in non-standard



KimiirQ texts. These extra characters also pose a challenge for automated corpus
collection methods, such as those using optical character recognition (OCR).

There is an urgent need for language technology support for the Kimiird language due to
its current commercialization as evidenced in the emergence of Broadcast and Print
Media. Currently, the language boasts of six FM stations and, the Kimiir( Bible (2010)
which utilizes the two diacritically marked characters (i and ), both spoken and written.
This will encourage the growth and usage of the language. This developed system will
make a positive contribution to this need, because it will enhance creation of correctly

spelled Kimiira texts.

1.2STATEMENT OF THE PROBLEM

In the modern world, there is need for tools that cater for various language speakers due
to the current climate of multilingual localisation, internationalism of software, the spread
of information through the World Wide Web and other resources, and the genera
recognition that speakers of other languages other than English have an equal right to
access this information explosion. Indeed, Dhonnchadha et a., (2003) asserts that
languages must endeavour to keep up with and avail of language technology advances if

they are to prosper in the modern world.

So-called ‘resource poor’ languages are largely ignored in the development of
Information and Communication Technologies. This may be mainly due to lack of
comprehensive documentation, lack of interest from developers, lack of political will and
lack of funds to finance such an enterprise (Wagacha 2010; De Pauw 2010). The majority
of these languages are from the least developed countries as presented by Berment
(2004).

Kimiir( language is one such example of aresource poor language as some of the readily
available documentation is the Holy Bible (1964, 2010), hymnals (2000, 2007) Kimeru
proverbs (1995), and children story books. Interestingly, a book about Meru foods



entitled “Mantu ja Biakuria” was written by Agnes R. Fraser, a member of the United
Missions, in 1963.

As stated earlier, KimiirQ orthography contains two diacritically marked characters (i and

0) that require extra keystrokes to generate, a situation which often makes users opt for

the diacritically unmarked equivalents, resulting in non-standard KimiirQ texts. Thus, A

A AA A

Kimiird spell checking system will enhance creation of correctly spelled KimiirG texts.

1.3 PROJECT JUSTIFICATION

The development of the system was one way of formalizing linguistic knowledge,
and thus can be considered as a form of documentation for poorly investigated
languages.

Academically, the spelling checker may be of use to Kimiir( and related language
authors, editors and publishers when producing books and journals in the
language.

Prevention of Culture Breakdown because languages represent the culture and
diversity of different people around the world. Unavailability of language
resources eventually leads to extinction. Failing to salvage the language will lead

A A~ A

to extinction of the KimiirQ culture and consequently the people.

Enhanced Testing: Due to the morphological complexity of under-resourced
languages, the KimiirG language provided a good ground for testing of the
Hunspell Language Toolkit.

Spur economica development: The Government of Kenya through the pillars of
Vison 2030 has identified computer technologies as the main engine for
development. Thus, there was an urgent need to develop software in an

indigenous language like KimiirQ.



= Reduction of the language technology divide created between the languages of the
developed nations and those of the less developed. According to Dhonnchadha et
al., (2003), “languages must endeavour to keep up with and avail of language

technology advances if they are to prosper in the modern world”

1.4 PURPOSE OF THE PROJECT
The overal am of this project was to develop an open source spelling checker for

Kimiird language using the Hunspell Language Tools.

1.5 SPECIFIC OBJECTIVES

= Understand the fundamental principles and morphological composition of KimiirQ
nouns and verbs.

= Anayze how verb and noun prefixes and suffixes can be appended to stems in
order to produce all the possible Kimiird words.

= Design agorithms on how prefixes and suffixes can be appended to stems.

= Implement the rulesin the affix file.

= Generate verbs and nounsin the dictionary file.

1.6 SCOPE AND LIMITATION

The system should be able to perform a morphological analysis of Kimiirl language
highlighting nouns and verbs derivation and also provide a suggestion component used to
generate probable suggestions for a misspelled word. The system will neither include a
grammar checking facility nor a thesaurus. The Spellchecker will also be limited in scope
to focus on the Kiimenti dialect and hence will not cover any of the eight (8) other sub-
groups in the larger MiirG community. This is because Kiimenti is the dominant dialect
with over 500,000 speakers. Again, it is the same dialect which has attained
standardization through the development of literature for teaching, and learning the

vernacular of the same and thus recognized as an official diaect of the MTiru people.



CHAPTER 2: LITERATURE REVIEW

2.1KIMITRU LANGUAGE

According to Ethnologue, the Kimiira language is spoken by roughly 1.3 million people
in the Meru district around Mt. Kenya, in the central Kenya highlands. Linguistically, itis
a Bantu language of the Niger-Congo family of languages. The language has nine main
dialects that are located within a geographical continuum as depicted in Table 1. And, by
comparison, Kimiir( has overall roughly 60% similarity to other important languages in
the region which are Kikuyu, Kiembu, and Kikamba. They share a certain amount of
common vocabulary across the especially in basic items like, “cook”, “farm”, “see”,
“tree”, “class of domestic animals” among many others.

The following table depicts the Miiru diaects and the geographical distribution on the

nine (9) clans.

Tablel: Miiru clan (dialects) and their geographical regionscited in Ataya, 2012.

Miiru clan (dialects) | Geographical Region
1 | Kiigembe Meru North
2 | Gitigania (Gitiania) Meru North
3 | Kiimenti Meru Central
4 | Kiigoji Meru Centra
5 | Kimiitiine Meru South
6 | Kimwimbi Meru South
7 | KimGthambi Meru South
8 | Gichuka Meru South
9 | Kitharaka Meru South




2.1.1KIMITRU ALPHABET
The following table depicts the full Kimiirl Alphabet and respective pronunciation.
Table2: KimiirG alphabet and pronunciation cited in Ataya, 2012.

Alphabetical Letter | Pronunciation

aa

mbii

Cii

= @O m O @ >

eemu

P eemu napii

Z ZZ ) X @

eeni

Z
O

eeni nandii

00

adra

eesi
tii

uu

ad
ndabiri

~

wal

<l gl o c| 4 »w WO




The English consonantsf, q, s, v, x and z are not found in the Kimiir( language.
Moreover if aword iswritten in any of these letters, then the word is borrowed.

Examples are:

a) Sabat(i >> Sabbath
b) Zakaria>> Zakariah

The words start with the letters not found in the KimiirQ alphabet. The final syllable will

always end with avowel.

Like in other Bantu languages some consonants are paired because they cannot stand
alone. For example the consonants ‘h’ and ‘d” do not normally appear alone except in
borrowed proper names but are preceded by other consonants in the initia position.

Examples are:

a) ndawa>> medicine
b) thaani >>plate

c) chai >>tea

In the above example ‘d’ is preceded by ‘n” while *h’ is preceded by ‘t’ and ‘c’.

Kimiira words can also undergo full or partial reduplication, depending on the number of
syllables in a word. Words with two syllables or less undergo full reduplication, while
words with more than two syllables undergo partial reduplication, with only the first two

syllables being reduplicated. Examples are:

a) mmaamia>> make me sleep.

b) nnaania>>make me feel cherished.
c) baiiribaiiri >>two by two (people).
d) bifribifri >>two by two (things).

e) OmQnene >> big(person).



KimiirQ is highly inflectional, with a phonological structure based on c-v (consonant
followed by verb) system. It is tonal because it is more spoken than written hence
introducing ambiguity. It is aso agglutinative because words are formed from a battery of

affixes.

22 KIMITRU ORTHOGRAPHY

Ataya (2012) contended that orthography is the writing and spelling system of a
language. Reading and spelling can be hampered by or made easier by the orthography
chosen to write documents in that language. He further argued that languages differ in
their sound and spelling systems thus creating the important realization that it is not
often the case that a writing system reflects exactly the spoken message or that al the
sounds in alanguage have a graph that represents them.

Previously only five vowels were used in the KimiirG (Latin-based) orthography; a, €, i,
0, U. Because some spoken Kimiird language sounds were not represented by those
vowels, reading translated text was difficult. Target users (Miiru) have to read what they
know, not what they see written. Solution to the inadequate vowel sounds was solved by
the addition of two vowels; 1, 0. The use of diacritic marks to provide differences of
vowel graphs that represent more than one sound is a common practice in creating new
orthographies (Ashby 2005; Maidment 2005). Thus the new KimiirG Orthography
contains seven vowel graphs, namely: a, €, i, 0, u, i, 0. Below is an illustration of the

different sounds by the Old and New Kimiir( vowel graphs.

Table 3 : Instances of old and new KimiirG vowel graphscited in Ataya, 2012

Old Orthography New Orthography
1 | Kuura(torain) K0Odra (to get lost)
2 | Mukuru (blunt machete) | MUkarG (old man)
3 | Matu (clouds) Matl (ears)
4 | Kiuru (nest) Kidra (temple)
5

Kuuma (come out of) Kadma (to dry)

8



When words are marked clearly with diacritic marks, for instance, in the word kuura,
ambiguity isremoved. Kuura here would mean to rain or to get lost depending on context
or the first meaning coming into the user’s mind. After providing a diacritic mark on the
vowel ‘u’ asin theword kldra (to get lost), the word is restricted to one meaning only.

Like all other Bantu languages KimiirQ is highly tonal with every syllable having its own

tone which should be written or somehow represented in written form.

221 KIMITRU TONES

Ataya (2012) asserted that assigning diacritic marks to existing vowel graphs to produce
new semantic value alone is not enough to deal with the Kimiir( language orthographical
problems. This is occasioned by the theoretica advancement that every syllable in the
Kimiird language should have a tonal mark. Achieving such a literal feat would alter the
look of the text making it unappealing to the user’s eye. However lack of tonal marks

creates confusion asillustrated in the following table.

Table4 : Old Kimeru problem of future negative commands and future affirmative
statements cited in Ataya, 2012.

Old Kimeru | Future Negative Command | Future Affirmative

1% meaning 2" Meaning

Ukoragana | You shall not kill Y ou shall kill
Ukathungira | You shall not commit adultery | Y ou shall commit adultery
Ukaiya Y ou shall not steal Y ou shall steal

The problem of different semantic values can be resolved by using atone mark over the
future negative commands while the future affirmative remains unmarked.



Table5: New Kimiira with a high tone mark to indicate futur e negative commands

and no mark to indicate future affirmative statements cited in Ataya, 2012.

New Kimiird | 1% Meaning New Kimiira | 2" Meaning

Ukooragana | You shall not kill Ukooragana | You shall kill

Ukathddngira | You shall not commit UkathGdngira | You shall commit
adultery adultery

Ukaiya Y ou shall not steal Ukaiya Y ou shall steal

A AR A

Theuseof adieressismark () isaso utilized in the new KimiirQ to represent the “if” or
conditional clause tone mark.

Table 6 : Tone mark for “if” or conditional clause cited in Ataya, 2012.

New KimiirG ‘if’ clause mark | Meaning

Ukdoragana If you kill
Ukéathodngira If you commit adultery
Ukéiya If you steal

Like all other Bantu languages Kimiir( is atonal language and ideally, every syllable has
its own tone which should be written or somehow represented in written form.

222 KIMITRU VOWELS

a antd >> people

e eekard >> women

iraat( >> shoes

o] nyomba >> house
u yuku >> book

i tu >> cloud

a ata>> bow

10




2.2.3DOUBLING OF KIM1TRU VOWELS

In Kimiir( language some vowel s automatically double. Examples are:

a) aakdire (the first ‘a’ refers to the third person singular pronoun he/she or him/her
while the second ‘a’ indicates past tense. The inclusion of the verb root ‘kuire’ is
tranglated as he/she died).

b) ageeta (the initial “a’ is for the personal pronominal form, the ‘ga’ indicates the future

tense. The verb root is “Tta” whose inclusion translates to he/she will go).

c) biaawe (is apossessive word meaning belonging to him/her)

224 KIMITRU DIPTHONGS
Dipthongs are a new combination of vowel sounds created when vowels are sounded

together. Examples are:

a ata=aa (ara+anda = araanda >> he/she planted)
b) ate=aeoree (ara+ ena=araenaor arena>>he/she breathed)

c) ato=aooroo (ara+ona=araonaor aroona>>he/she saw)

225 KIMITRU SEMIVOWELS

The vowels ‘1" and ‘0’ tend to become semi — vowels when preceding others and change
when followed by another vowel. ‘w’ and ‘y’ form vowel sounds especially when certain
vowel sounds coalesce. Examples are:

a) w - U+ aawe becomes waawe >> his/hers(person)

b) y -1+ uku becomes yuku >> book

11



2.3KIMITRU MORPHOLOGY

2.3.1NOUN MORPHOLOGY

Morphology is concerned with the internal structure of words. Inflectional morphology of
bantu languages is encoded in nouns and verbs (Mutonyi, 2000).

Kimiird noun consists of a stem and a prefix whereby the stem may have two syllables.
Ataya (2012), identifies nine classes of Kimiir( nouns. These classes are distinguished by
the prefixes affixed to a noun stem. The stem may have or may not have their originin a
verb root. He further points out that there are inflections inherent in the noun, verb,

adverb and adjective which have no genders or cases but possess number distinctions.

Table 7 : Kimiird noun classes cited in Ataya, 2012

1. ‘MU’-‘A” CLASS’: Class of the human beings
SINGULAR PLURAL

munt( — person | ant - persons

mUOkard — man | akard - men

mika—woman | aka—women

2. ‘MU’-*M 1’ CLASS: Class of inanimate things

mti — tree miti — trees

mUtaratare - | mitaratare — strawberries

strawberry

mwari — door miari — doors

3. ‘KI’, “GI’-“I’, ‘BI’ CLASS: Classof non personal things which can be seen
or handled

kiara— finger biara- fingers

Kieni - field bieni —fields

gikwa— yam ikwa— yams

4. ‘RU’-‘N’, ‘M’ CLASS: Class of things, inanimate things, abstract things and

concretethings

ragoji — horn

ngoji — horns

12




rdguma

wound

ngdma-— wounds

rabungdro — key

mbungdro — keys

5D, ‘RI’-“MA’ CLASS: Singular in thisclassstart with 7 or r and plural start with
m

gita— period magiita - periods

riitho - eye meetho — eyes

riitwa - name mariitwa— names

6. ‘N’ CLASS: Class where the word in singular issame asin plural

nyomba - house

nyomba - houses

nyongu - pot

nyonga - pots

nkoro - heart

nkoro — hearts

7. ‘KA, ‘GA’-TU’, “TWA’ CLASS: any noun from any class can be inflected to fit

into

thisclass. It comparesthe size of the object.

kanyua - mouth

tinyua - mouths

kaana - child

twana— children

kagit0j 0 — rabbit

t0gitQja — rabbits

8. ‘U’, ‘"W’ - ‘MO’, ‘MA’ CLASS: All abstract and non-abstract nouns are grouped.

Plurals areformed by prefixing into the singular noun root.

(tombo - brain

mootombo — brains

00me - wisdom

maildme — wisdom

antd - thing

mantQ — things

9. ‘KU’, ‘GU’, -“‘MA’, ‘MO’ CLASS: a collection of concrete nouns

kGglrG - leg magard — legs
guoko - hand mooko - hands
gatd — ear matQ - ears

13




2.3.2KIMITRU PRONOUNS

The KimiirG pronoun has number and person where number refers to either singular or
plural, while person refersto the first, second or third person. The exception of thisruleis
the demonstrative and relative pronouns which have a number and follow the noun
classes.

Examples are:

2.3.2.1 PERSONAL PRONOUNS
a) 1% Person - Ni >>l.
b) 2" Person — Gwe >>Y ou.
c) 3" Person — We >>He/She.

2.3.2.2EMPHATIC PRONOUNS
a) 1% Person— Udni >>I, Myself.
b) 2" Person — Uligwe >>Y ou, yourself.
c) 3" Person — We, wengwa >>He, himself, her, herself.

2.3.2.3 POSSESSIVE PRONOUNS
a) 1% Person — Gilaskwa >>Mine,
b) 2" Person — Giaaku >>Y ours.
¢) 3" Person - Yaakio >>lts,

2.3.2.4 REFLEXIVE PRONOUNS
a) 1% Person — ningwa >>myself.
b) 2" Person — gwengwa >>yourself.
¢) 3" Person — wengwa >>himself/herself.

2.3.2.5DEMONSTRATIVE PRONOUNS

a) UQj0/ad >>This (person).

c) Giki/kii >>This(big).
14



2.3.2.6 RELATIVE PRONOUNS
a) Uria>>who.
b) Tria>> which, that.
¢) Riria>> which, that.

2.3.3KIMITRU VERBS

The KimiirQ verb is mostly expressed by the imperative and the infinitive and is marked
by the particle *kd’ or ‘gwa’ or ‘gwi’. The particles can be described as the equivalent of
the English infinitive ‘to’. Examples are:

a) gwata>> catch, hold.

b) ita>>go.

¢) kdrima>>to cultivate/weed.

2.3.3.1TRANSITIVE AND INTRANSITIVE VERBS
Transitive verbs are distinguished from intransitive verbs because the former has a direct

object while the latter does not possess the same. Examples are:

233.1L1TRANSITIVITY
a) Gankdgera>>| throw/am throwing.
b) Nkdj0kia>>| have taken.

233.1L2INTRANSITIVITY
a) Ni nkdthGgaania>>| am thinking.
b) RiGani rikwara>>The sun is shining.

2.3.3.2 CAUSATION
Infinitive Verbs in KimiirQ often end in *-a-’. Addition of the affix ‘i’ or ‘ithi’ before the
final “a’ brings out the idea of causation. Examples are:

a) -ita>>go -ftithia >>make to go.

b) -menya>>know -menyithia >>make to know.

15



2.3.3.3APPLICATION
The suffix “fra’ or ‘era’ added to the verb root gives the idea of an application. Examples
are:

a) -ita>>go. -itira >> go for.

b) -aka>> build. -akira>> build for.

2.3.3.4 RECIPROCATION
The suffix “eeni’ or “ieni’ is added to a root verb. Examples are:
a) -ona>>see . -onaneeni >>see each other.
b) -teethia>>help. -teethanieni >>help each other.

2.3.35PASSIVE FORM
The consonant “‘w’ or ‘U’ is inserted between the stem and the final ‘a’. Examples are:
a) -ona>>see -onwa >>be seen

b) -onia>>show -onua >>be shown

2.4 KIMITRU LANGUAGE TECHNOLOGY
At the time of developing this project there did not exist any language technology
research efforts on KimiirQ. Thisisthe first effort towards development of a spellchecker

in Kimiir( language.

25RELATED WORKS
2.5.1 WORD PROCESSOR FOR GIKUYU LANGUAGE WITH SPELL CHECK.
This prototype system was developed by Brian Kingori Muriithi (2008), a former MSc.

Information Systems student of the University of Nairobi.

The main aim of this project was to develop atool that could be used to spell check text
written in the Gikly(l language. Due to the unique orthography of the language, this tool
was implemented as a feature of a basic word processor. As an extension to the project,
the interface of the word processor was also in Gikiyt. A secondary aim was to develop
the application in such a way that it was platform independent and could be used on any

system that supported the Unicode character set.
16



Each word in a given text was searched for in adictionary created from a compiled list of
valid words. Words that were not found were highlighted and if considered to be
incorrectly spelled, sensible aternatives were offered, from which the user chose a
replacement. On selection of a replacement, the system automatically atered the text. If
no suggestions were available, the user of the system had the option of either

permanently adding the word to the dictionary or ignoring it.

The system utilized the Rapid Application Development technique and the spell checking
component operated at the user’s request, checking an entire document at once, notifying
the user when an error was encountered. The developer selected Rapid Application
Development (RAD) techniques because it emphasized extensive user involvement in the
rapid and evolutionary construction of working prototypes of a system to accelerate the
system development process. RAD is aso called a spiral approach because one
repeatedly spirals through the phases to construct a system in various degrees of
completeness and complexity.

Due to the unique orthography of the language, this tool was implemented as a feature of
a basis word processor. As an extension to the project, the interface of the word processor
was aso in Giklyd. The application was developed in such a way that it was platform
independent and could be used on any system that supported the Unicode character set.
The dependent spell checking method using a dictionary-look-up program used the

Levenshtein distance algorithm to generate suggestions for replacement.

The inclusion of shortcut keys to enable the typing of characters, used in the language but
not found on the standard keyboard, reduced the number of spelling errors committed by
users typing in Gik{yd, making text easier to read and understand. With respect to ease of
use, it was found that the standard keyboard does not cater for the additional vowels, ‘0’
and T’ used in Gikiiyd. This led the developer to add shortcut keys to enable easy access

to these vowels to the user. These keys were as follows:

17



= Ctrl-Q

= Alt-Q = ;
= Ctrl-Zz = g
» Alt-Zz = U

These key combinations were selected for the following reasons:
= The letters ‘Q” and ‘Z’ do not exist in the Gikilyl language, therefore, these

assignments, other than others, may serve to mitigate confusion.

= They were easy to remember and additionally they provided viable suggestions for

phrases and terms that may be used in localizing software to this language.

2.5.1.2 OPERATION OF THE PROTOTYPE SYSTEM
This particular spell checking system operated at the user's request, checking an entire

document at once, notifying the user when an error was encountered. The figure below
illustrated its functions.

WORDLIST/ VOCABULARY

A

Wordlist Add Word

A 4

» SPELLCHECKER

Text for Checking

WORD PROCESSOR
; Replace Word

A

A
Action

Input Text Corrected Text Suggestions Selected

v \ 4

USER

Figure 1: Spell checking operation in Giklyl Language cited in Muriithi, 2008.

25.1.3DESIGN OF THE DICTIONARY/VOCABULARY
The dependent spell checking method used a dictionary-look-up program which at that
time was the most accurate approach. This involved the maintenance of a word list of

correctly spelled words. The spell checker simply checked to see if the words in the text
18



file being checked appeared in this word list. Any word it failed to find was then tagged

and sensible alternatives offered. This approach was selected for the following two main

reasons.

= This method was vastly more accurate than those based on independent spell
checking methods

= In the future the application would be extended to include a grammar checking tool.
This would require not only storage of awordlist but also part-of-speech information

for each word.

251.4WORD LIST

The dictionary was created from a wordlist compiled and saved as a text document in
UTF-8 format. This format was necessary as the Gikilyl language contains vowels that
use the tilde as a diacritic. This wordlist ideally provided as accurate a representation of
the language as possible.

The size of the wordlist was very important; a word list which is too small would lack
vital words that are in everyday use in the language. In practice, however, an optimal size
has to be a limited one. A larger number than the optimum would lead to misspellings

being skipped as they would be mistaken for other words.

Sources for the words used to populate the wordlist were:
= Giklyl - English Dictionary, edited by T.G. Benson: The developer had to manually
input words from this text.

= Maitli ni ma It (Our Mother is our Truth): A website dedicated to the development
of the Gik{iyi language by Gatua wa Mbiigwa.

= Gikiyd kia Migikiyl: A website dedicated to the development of the Gikiyl

language through stories, poems and song by Charuthi Ng’ang’a Wairia.

= Kirira Kia Ugikilyd: A book by Mathew Njoroge Kabeti.

19



= Kaguraru naWaithita: A book by Mathew Njoroge Kabetd.

= A text file provided by the developer’s supervisor, Prof. P.W. Waiganjo. This
required cleaning of the datain order to extract valid Giklyd words.

Due to the format used (UTF-8), in order to read in the wordlist for the creation of the

dictionary, the developer had to use an InputStreamReader enclosed within a

BufferedReader, thus allowing for its specification. Likewise, in order to add a word to

the dictionary, he had to use an OutputStreamWriter within a Buffered writer.

2515 COMPILATION OF THE WORDLIST

Some of the texts used were downloaded from the internet and stored as text files (.txt
extension). All the work was then done in notepad. The texts were read through one by
one and numbers, English words or anything else that was judged inappropriate for the
wordlist was deleted. The words were then arranged in a list and sorted alphabetically.
Duplicate words were removed and all remaining words were combined to form a single

wordlist.

The books were first scanned and Optical Character Recognition (OCR) software was
used to make the text available for editing.

The outcome was a single wordlist containing over 13,000 unique words, stored in

alphabetical order, on separate lines, separated only by the carriage return character.

25.1.6 DICTIONARY STRUCTURE

Hash Tables were chosen by the developer because not only were they fast, efficient and
accurate, the structure suited the suggestion mechanism (Levenshtein Distance) used.
They were also efficient in storage space making it ideal for use in situations where
memory was limited.

The developed system was a fairly robust basic work processor, providing most of the
functionality found in other word processors commonly in use. Based on tests carried out,

the accuracy of the spellchecker was calculated to be 67.4%.
20



252 OPEN SOURCE SPELL-CHECKER FOR GIKUYU USING THE
HUNSPELL LANGUAGE TOOLS

The development of this spellchecker was based on previous works on a Gikiyd
dictionary-based system, incorporated in atext editor (Chege, 2007).

Gikiyl can be classified as a resource scarce language with respect to language
technology resources, tools and applications. This situation can be attributed to different
factors:

First, Kiswahili and English are the dominant languages in Kenya, meaning that most of
al textual communication is in these languages. Second, Gikiiyli orthography contains
two diacritically marked characters (i and {) that require extra keystrokes to generate, a
situation which often makes users opt for the diacriticaly unmarked equivalents,
resulting in non-standard Gikiiyll texts. These extra characters also pose a challenge for
automated corpus collection methods, such as those using optical character recognition
(OCR).

However, despite such an unfavorable backdrop, Gikiyd, together with a few other
Kenyan languages, are steadily becoming commercial languages as evidenced by their
increased

use in broadcast media, publishing and advertising. These developments pointed to a
need for the development of an open source spell-checker for Giklyl using the Hunspell
Toolkit. The closest effort towards Giklyi spell checking is a dictionary-based system,
incorporated in a Gikiyl text editor (Chege, 2007). This system worked well, but for
only a limited number of words, as contained in the dictionary. This spellchecker
overcame this limitation by using a rule-based approach for determining the correct

spelling of any Giklyd word.

2.5.2.1 NOUN MORPHOLOGY
Gikiyd nouns can be grouped into two categories, namely, derived and underived nouns.

Underived nouns consist of named entities, while derived nouns can be formed in one of

21



two ways: by affixing diminutive, augmentative or collective prefixes to an underived
noun, or through verba nominalization.

The following examples illustrate these processes:

= nylimba - Ki-nylimba (abig house)

*= imondo - ti-mondo (many nice handbags)
= thaaka - mi-thaak-i (player)

= hooya - i-ho-ero (Place of prayer)

= getha - i-geth-a (harvesting occasion)

» thooma - ga-thom-i (the small one who reads)

Membership to a noun class is determined by a concord system with agreement enforced
on other sentence components, such as adjectives and verbs. All Giklyd nouns, derived
or underived, can also be optionally affixed with the locative suffix -inl, which changes

the meaning from areferential entity to alocation, as shown in the following examples:

= methaini (on the table)

= miti- inT (on the tree)

252.2VERB MORPHOLOGY

A typical Giklyi verb consists of a combination of zero or more dependent morphemes,
a mandatory dependent morpheme and a mandatory final vowel. The simplest verb
consists of a verb root and a fina vowel. These are usually commands or directives.
Subjunctive verb formations, i.e. commands, can optionally take a plural marker -i or —ni.

Examplesinclude:

»  ma-thaak-e (so that they play)

* in-ai (sing)

= ni-ci-mi-hat-agir-a (they usually sweep for him/her)
= reh-e-ni (bring)

22



Gikiyd verbs can also undergo full or partial reduplication, depending on the number of
syllables in a word. Words with two syllables or less undergo full reduplication, while
words with more than two syllables undergo partial reduplication, with only the first two
syllables being reduplicated.
Examples are:

* negena - nega-negena (make noise alittle more)

= tiga - tigatiga(leave alittle more)

Gikilyd verbs are also affected by consonantal and vowel phonemics. Meinhof’s Law
involves consonants b, ¢, r, t,g, k being replaced with NC composites in verbs obeying
first person singular, noun classes 1, 8 and 9 concord systems. Dahl’s Law is a
consonantal mutation that involves the cause sound k appearing before trigger voiceless

sounds ¢,k,t, being replaced with its equivalent voiced sound g. Examples include:

rathima — ndathima

=  uma - nyumia
kii-theka - glitheka
ki-ka-thira - gigathira

Vowel mutation includes vowel lengthening before prenasalized stops and vowel
assimilation when some vowel combinations appear in the neighborhood of each other
(Mugane, 1997).

2523 CORPUSCOLLECTION

The primary development corpus was from a collection of a set of 19,000 words from
previous works on Gikiyl at the School of Computing and Informatics, University of
Nairobi (Wagacha et a., 2006a; Wagacha et al., 2006b; De Pauw et a., 2007; De Pauw
and Wagacha, 2007).

23



Though the corpus had a bias on religious material it aso included poems, short stories,
novels and Internet sources. The corpus was pre-processed manually to eliminate non-
Gikilyd words, and to correct diacritics, where necessary. The corpus was then manually
annotated where words were categorized into corresponding parts of speech, in line with
Hunspell’s defined continuation classes. Perl scripts were used for generic annotation and
marking. The test corpus was acquired from two sources. a popular Gikliyl blog “Maitii
ni ma itl (Our Mother is our truth)” was chosen as it contains diacritically-marked texts
on a variety of contemporary topics and Nglgi wa Thiong’o’s novel “Mirogi wa
Kagogo”, which was not diacritically marked and represented how a normal user would

type on a standard keyboard.

2.52.4HUNSPELL LANGUAGE SETUP FOR GIKUYU
The spellchecker was implemented using the concept of continuation classes, where a

word is represented as a composition of one or more morphemes.

To handle Gikiyi diacritics, it was important to set character support to Unicode (UTF-
8). In addition, since Gikliyl verbs generated many affix rules, Flag is set to a number so
as to handle the numerous affix rules. The Gikilyi alphabet includes the apostrophe and
hyphen, as in ng’ombe and iria-ini, and the orthography set was therefore extended with
these characters. This was important as it helped Hunspell determine word stops. Since
Gikilyd has more than one level of prefixes and suffixes, support for complex prefixes, as

well as circumfixation, had to be enabled in Hunspell.

2.5.25 SUGGESTIONS COMPONENT

The suggestions component was used to generate probable suggestions for a misspelled
word. It was implemented in the affix file. Hunspell used two sections in the affix file
when generating suggestions for misspelled words. The first is the TRY command. This
listed the language’s orthography set in order of frequency. A more frequently used

character has more weight during suggestions.

24



The TRY command is shown below:
TRY ei"1anrtocduu™gmhbykw’jNRTCGDMHBEAUU™ YOII"'KWJ

The second command used in the suggestion component is the REPLACE command. The
command listed the most commonly misspelled n-grams and their replacements. The
major n-grams are a result of influence from different dialects, foreign languages and also
by differences in spoken versus written Gikiyl. Examples of Gikiyi replace suggestions
included:

REP 35
REPsc
REPshc
REP sh ch
REP c ch
REPfDb
REPvV b
REPI r

The developed Gikilyl spellchecker and ‘“suggester” engine was incorporated into
OpenOffice Writer and evaluated using the test corpus. The spell checker had a fairly
representative Gikdyd lexicon, 19,000 words, and achieved an acceptable realization of a
Gikiyu spellchecker. When tested on a test corpus, the spell checker attained a precision
of 82%, recall of 84% and an accuracy of 75%.

Given that the devel oped Gikiiyi spellchecker and the Hunspell tools are open source, the

spell checking function developed could be adopted in major open-source products such

as Mozillaand OpenOffice products.

25



253 OPEN SOURCE SPELL CHECKER FOR DHOLUO USING THE
HUNSPELL LANGUAGE TOOLS

This Spell Checker was developed by Agola Joshua Otieno (2010) a former MSc.
Computer Science Student of University of Nairobi.

The Hunspell tool was used to develop an open source Spellchecker in Dholuo and to
create two files namely the affix and the dictionary files. The affix file enabled the
creation of al the rulesinvolved in deriving the nouns and the verbs from the root words.
All the root words (stems) plus the appended rules were stored in the dictionary file.

This spellchecker was the first for Dholuo and the Hunspell tool was used to develop an

open source Spellchecker in the language.

253.1 HUNSPELL LANGUAGE SPECIFIC SETUP

Character support was set to Unicode (UTF-8). This was necessary to handle diacritics.
Flag was set to a number (Flag Num) because Dholuo verbs generated many affix rules.
Due to the presence of extra characters; the hyphen and the apostrophe, the orthography
set was extended with these characters (WORDCHARS - ). Support for complex
prefixes, as well as circumfixation, had to be enabled in Hunspell (COMPLEX
PREFIXES; CIRCUMFIX 001).

The suggestions component was implemented in the affix file and the commands TRY
and REPLACE were used to generate suggestions for misspelled words.

The devel oped Dholuo spellchecker was incorporated into the OpenOffice Writer then
tested against atest corpus. The system developed achieved an acceptabl e representation
of Dholuo morphology. It correctly classified Dholuo words with an accuracy rate of
0.814, precision rate of 0.917, recall rate of 0.800 and coverage of 0.820.

2.5.4 OPEN SOURCE KIPSIGISSPELL CHECKER AND LANGUAGE TOOL

This Spell Checker was developed by Ronoh Wycliffe (2011) a former MSc. Computer

Science Student of University of Nairobi.

26



This project entailed the morphology of the various parts of speech of the Kipsigis
language, the development of corpus preparation and analysis tool using Jython and a
description of the development of an open source Kipsigis spell checker using the
Hunspell language tools. Kipsigis is considered to be a resource scarce language whose
print and digital usage is low. The development of the spelling recognition system
required a lot of manual effort on corpus preparation and analysis. Therefore, this project
described the development of a tool that helped to automate and thus speed up this

procedure.

Hunspell requires two files to define the language that it is spell checking, the first fileis
an affix file that defines the meaning of flags, the second file is a dictionary file which
contains words alongside flags.

The spell checker tested on four data sets ranging from 460 to 540 words achieved an
average accuracy rate of 96%, an average precision rate of 100%, an average recall rate
of 95% and an average coverage rate of 94%. The spell checker developed sought to be
adopted by leading open source systems such as Open Office, Mozilla and Google

chrome.

2.5.5 OPEN SOURCE SPELLCHECKER FOR LUHYA-LULOGOLI
This Spell Checker was developed by Aseyo, John Orege (2011) a former MSc.

Computer Science Student of University of Nairobi.

This project entailed the development of spell checking software and described the
process of constructing a spell checker for the Lulogoli language and its implementation
for the Hunspell spell checker engine. The word list was an adaptation of word roots
coming from Hymn books, story books and spoken language. Recognition of
morphologicaly complex words, which are common in Lulogoli due to its agglutinative
nature, was made possible by the affix file which had been built based on ready made

morpheme segmentation of word derivations appearing in the corpus. Rules derived in

27



the affix file were improved by semantic classification of al involved roots, for which a
system had been created based on corpus anaysis in combination with knowledge on the

capability of each affix to accept roots from different semantic classes.

The developed spellchecker for Lulogoli language using Hunspell language tools was
composed of 13,943 root words and more than 600 affix rules that were used to generate
words in the order of more than 100,000 Lulogoli words. Results obtained in applying the
developed spellchecker in OpenOffice Writer exhibited a fairly acceptable performance
that had practical use in spell checking documents in the Lulogoli but were used with
high acceptability for Lutiriki, Lunyole, Lukisa, Luwanga, Luisukha and Luidakho. This
tool can aso be used for correction and collation of more language corpus for Lulogoli
thus bridging the digital divide between Lulogoli and other developed languages. The
resulting spellchecker was a working proof of concept, to be further improved and

integrated in the Free open source software.

256 SPELL CHECKERS

2.5.6.1 DEFINITION

A spell checker or spelling checker in computing terms is defined as a design feature or a
software program designed to verify the spelling of words in a document, helping a user
to ensure correct spelling. A spell checker may be implemented as a stand-alone
application capable of operating on a block of text; however, spelling checkers are more
often implemented as a feature of a larger document-related application e.g. a word

processor or email client, electronic dictionary or search engine.

25.6.2HISTORY OF SPELL CHECKERS

The area of spell checker programs has been researched since 1957. The first spell
checker application became commercially available in 1971. This program was
developed by Raph Gorin at Stanford University in the United States. SPELL was
originally developed for the DEC-10 and revised versions of this program were still in
use more than twenty years later (McGettigan, 1997).

28



25.6.3 SPELL CHECKER OPERATION

The first spelling checkers were "verifiers' instead of "correctors,” offering no
suggestions for incorrectly spelled words. This was helpful for typographical errors but it
was not so helpful for logical or phonetic errors. The challenge faced by developers was
the difficulty in offering useful suggestions for misspelled words. This requires reducing
words to a skeletal form and applying pattern-matching algorithms. An important feature
of the latest word processor programsiis that they have this capability.

A spelling checker is programmed on how to evaluate the distance between a misspelled
word and the words in its vocabulary. Words whose evaluated distance is the smallest are
offered as candidates for replacement.

A spelling checker customarily consists of two parts:

a) A set of routines for scanning text and extracting words.

b) A wordlist which isthe vocabulary and often referred to as a dictionary against which
the words found in the text are compared.

The scanning routines sometimes include language-dependent algorithms for handling

morphology. Even for a lightly inflected language like English, word extraction routines

will need to handle such phenomena as contractions and possessives. It is unclear

whether morphological analysis provides a significant benefit.

The wordlist might ssimply be a list of words, or it might aso contain additional
information, such as hyphenation points or lexical and grammatical attributes. As an
adjunct to these two components, the program's user interface will allow users to approve

suggested replacements and modify the program's operation.

One exception to the above paradigm is spelling checkers which use solely statistics, such
as n-grams. In some cases spell checkers use a fixed list of misspellings and suggestions
for those misspellings; this less flexible approach is often used in paper-based correction

methods, such as the “see also” entries of encyclopedias.

29



Recently, research has focused on developing algorithms which are capable of
recognizing a misspelled word, even if the word itself is in the vocabulary, based on the
context of the surrounding words. Not only does this allow non-sensical errors to be
caught, but it mitigates the detrimental effect of enlarging dictionaries.

2.5.6.4 DESIGN

A basic spell checker carries out the following processes:

a) It scansthe text and extracts the words contained in it.

b) It then compares each word with a known list of correctly spelled words (i.e. a
dictionary). This might contain just alist of words, or it might also contain additional
information, such as hyphenation points or lexical and grammatical attributes.

c) An additional step is alanguage-dependent algorithm for handling morphology. Even
for a lightly inflected language like English, the spell-checker will need to consider
different forms of the same word, such as plurals, verba forms, contractions, and
possessives. For many other languages, such as those featuring agglutination and
more complex declension and conjugation, this part of the process is more
complicated.

2.5.6.5SPELL CHECKING METHODS

Spell checking methods can be divided into two broad categories;
a) Independent Spell Checking Methods

b) Dependent Spell Checking Methods

2.5.6.5.1 INDEPENDENT SPELL CHECKING METHODS

Independent spell checking methods do not utilize a wordlist or vocabulary. Instead they
use statistical means to detect misspelled words, thus the term independent.

30



256511 TOKENLISTS

This type of method identifies al the distinct words in a file of text and stores the
frequency (number of occurrences) of each word. Words with lower frequencies are
identified as being potentially misspelled.

2.5.6.5.1.2 DI-GRAMSAND TRI-GRAMS

This method extends the token list concept by using a large corpus of text from the
desired language. The frequency of all two-letter pairs (di-grams) or three-letter triplets
(tri-grams) is calculated. A peculiarity measurement is then given to each word in the text
file being spell checked based on the frequency of the di-grams or tri-grams found in the
word. Words with a high peculiarity measurement are tagged as being potentialy
erroneous. This techniqgue was very popular in the development of spell checking

programs.

2.5.6.5.2 DEPENDENT SPELL CHECKING METHODS
Dependent spell checking methods involve the use of a vocabulary or wordlist. This
greatly increases the accuracy of spell checking systems, in comparison to those designed

based on independent spell checking methods.

2.5.6.5.2.1 DICTIONARY LOOK-UP
Here, awordlist of correctly spelled words is maintained by the system. The spell checker
simply runs through this list to see if the words in the text file being checked appear. It

then tags as incorrect any words not found.

256,522 ADVANTAGES AND DISADVANTAGES OF THE ABOVE
METHODS

The main advantage of the independent spell checking methods is related to storage
gpace. The fact that no wordlist/vocabulary is maintained means that less space is
required for this functionality to be available. This was particularly important in earlier

spell checkers as they were used on machines where memory was limited.

31



Author ignorance exposes the main disadvantage in the use of the Token List method.
Misspellings due to author ignorance could go undetected, as this type of error will
probably occur consistently and therefore have a high frequency. For example, a user
may believe that the correct spelling of the word “friend’ is ‘freind’. As the author will
always spell the word incorrectly, the spell checker will not tag this as an error. This
further implies that the accuracy of a spell checking system developed using this method
IS questionable.

Another weakness with this method is that rarely used words, by their description will
have a low frequency and thus could be highlighted as being potentially incorrect. Since
there is no reference besides the actual text being checked, it follows that larger texts will

produce more accurate frequency lists and therefore more accurate error detection.

The Di-gram and Tri-gram method proves to be much more accurate, as the peculiarity
measurements are collected from a single large corpus of text from the desired language.
This eliminates the problem of consistent misspellings by an author going undetected.
The popularity of dependent spell checking methods grew in tandem with the increase in
available computer memory. While increasing accuracy, they are not infallible. The
accuracy of a spell checking method based on a dictionary-look-up program is directly
related to the accuracy of the dictionary; it must be both valid and contemporary. The
actual size of the dictionary can aso cause problems of a grammatical nature. Up to 20%
of errors can go undetected because they match other words in the dictionary (Mitton,
1987).

Even with an increase in accuracy, human proof reading is still necessary as the ‘Holy

Grail’ of spell checking systems is yet to be achieved.

2.5.6.6 SUGGESTION ALGORITHMS

2.5.6.6.1 USING NEAR-MISS STRATEGY TO FIND SUGGESTIONS

The first algorithm implemented by a Spell Checker for building a suggestion list is a near
miss strategy. It was developed by Geoff Kuenning for 1Spell, and makes an assumption

32



that the word is not necessarily misspelled, but rather mistyped. The misspelled word is
changed by altering a letter, deleting or adding it, inserting a blank space, or
interchanging two adjacent letters. If these steps result in a word contained in the
dictionary, then an estimate of how far from the original word is computed. To measure

the proximity of words, the modified Levenshtein distance notion is used.

2.5.6.6.2USING PHONETIC COMPARISON TO FIND SUGGESTIONS

The phonetic suggestion algorithm takes into account the pronunciation of a word. The
SpellChecker component utilizes the implementation of the Double Metaphone search
algorithm. Two phonetic codes (primary and secondary) are calculated for each word.
The calculation rules are different for different languages. They are based on the set of
pronunciation rules for that language.

Then, the phonetic strategy compares the phonetic code of the misspelled word to all the
words in the word list. If the phonetic codes match, then the word is added to the
suggestion list.

2.5.6.6.3 SUGGESTION RANKING

After the list of suggestions is composed, it should be ordered so that the user doesn't
have to scroll through it, searching for a perfect match. The implemented solution makes
use of the Levenshtein algorithm to calculate the word distance. This distance becomes a
parameter for list ordering. Additional assumptions on the nature of a spelling error may
help modify the algorithm.

The user makes his’her choice from the list of suggestions. The misspelled word can be
replaced with a word from the suggestion list, ignored, or edited by the user. The last
possibility indicates a spell checker miss, and provides an option for appending the

corrected word to an auxiliary user dictionary.

33



25 7HUNSPELL LANGUAGE TOOLS
Developing a spell checker requires a method of determining the set of valid words in a
given language, against which the words to be checked are compared. Therefore a spell
checker customarily consists of two parts:
= A set of routines for scanning text and extracting words. These scanning routi nes
must include language dependent algorithms for handling morphology, in this
case for the KimiirG language.
= An agorithm for comparing the extracted words against a known list of correctly
spelled words.
Therefore this system utilized the Hunspell tools (N"emeth, 2010), which facilitated the

definition of the valid words in alanguage, as well asthe likely suggestions.

Hunspell is a spell checker and morphological analyzer library and program designed for
languages with rich morphology and complex word compounding or character encoding.
It was originally designed for the Hungarian language, based on MySpell and is
backward compatible with MySpell dictionaries.

Hunspell requires two files to define the way a language is being spell checked: a
dictionary file containing words and applicable flags, and an affix file that specifies how

these flags will control spell checking. An optiona fileisthe personal dictionary file.

2571 MAIN FEATURES OF HUNSPEL L
The Main features of Hunspell spell checker and morphological analyzer are;

= Unicode support where affix rules work only with the first 65535 Unicode characters.

= Morphological anaysisin custom item and arrangement style and stemming.

= Contains a maximum of 65535 affix classes and twofold affix stripping for
agglutinative languages, like Azeri, Basgue, Estonian, Finnish, Hungarian and
Turkish.

= Support complex compoundings in languages like Hungarian and German.



Support language specific features (for example, specia casing of Azeri and Turkish
dotted i, or German sharp s.

Handle conditional affixes, circumfixes, fogemorphemes, forbidden words,
pseudoroots and homonyms.
Free software of the varieties of LGPL, GPL, MPL tri-license.

35



CHAPTER 3: METHODOLOGY

3.1ANALYSIS
The methodology utilized to develop this system was the Structured System Analysis and
Design (SSAD). SSADM is an integrated set of standards and guides for the analysis and

design of computer systems consisting of:

Structural standards which define the structure of a development project in the form
of explicitly defined tasks, with clearly defined interfaces between them, and clearly
defined tangible products.

Technique guides which provide a set of proven usable techniques and tools, and
detailed rules and guidelines on when and how to use them.

Documentation standards which provide the means of recording the products of

development activity at a detailed level.

This methodol ogy was adopted mainly for the following reasons:

It is a linear sequential model where all requirements are clearly understood and
stated upfront.

It provided a systematic step by step approach in development of the spellchecker.
Economic feasibility: hardware and software resources are readily available.
Technological feasibility: current software technology will easily support the
implementation of the system.

Operational feasibility: intended users will have basic computer knowledge.

3.1.1 SCOPE ANALYSIS
The system should be able to perform a morphological analysis of Kimiir( language

highlighting nouns and verbs derivation and aso provide a suggestion component used to

generate probable suggestions for a misspelled word. The system did not include a

grammar checking facility or a thesaraus. The Spellchecker was aso limited in scope to

36



focus on the Kiimenti dialect and hence did not cover any of the eight (8) other sub-

groups in the larger MiirG community.

3.1.2 PROBLEM ANALYSIS
Development of this Kimiir( spellchecker system was necessitated by
= Lack of a Kimiir( spell checking system in both proprietary and open source
platforms.
= KimiirQ’s classification as a resource scarce language (RSL).

= Scanty digital documentation on Kimiir( language.

3.1.3DECISION ANALYSIS
The developer prescribed the following recommended course of actions during the
development of the spellchecker:

= Inclusion of diacritic marks for high tones within the wordlist.

=  Omission of diacritic marks for low and falling tones.

= Bias in incluson of religious materia (Bible verses) for populating the test

COrpus.
= Exclusion of CorpusCatcher tool during corpus collection because of little digital

documentation on Kimiir( language.

3.2SYSTEM DESIGN

According to Paggio and Music (1998), valid words are words that are part of the
language, or which are sanctioned by the language system, in contrast to invalid words,
which are not part of the lexicon or language system. When the spelling checker claims a
word isinvalid, it isflagging that word, while accepting a word means treating it as valid.
Accordingly, aflag is an indication that a word has been tagged as invalid (regardless if
the word really was invalid or not). Suggestions are alternative valid words that are
offered to the user to replace a flagged word with. Therefore the goal of a spelling
checker is to flag al invalid words and to accept al valid words. If this is the case, all

invalid words are correctly flagged.

37



Therefore a user to this system will have three choices:
= |Ignore the suggested words.
= Replace theincorrectly spelt word with an option from the suggestion list.
= Addanew (flagged) word to the personal dictionary.

After selecting an action the necessary changes, if any will be effected to the document.

3.3MAJOR COMPONENTSOF THE DEVELOPED SPELL CHECKER
SYSTEM

3.3.1 GRAPHICAL USER INTERFACE (GUI)

A GUI isatype of user interface which allows people to interact with a computer and/or
computer-controlled devices that employ graphica icons, visual indicators or special
graphical elements (Galitz, 2010).

An effective GUI includes text, labels or text navigation to clearly present the
information and actions available to a user. The actions are usualy performed through
direct manipulation of the graphical elements. The functionality of an application can be
programmed perfectly, but if the GUI is hard to interpret or annoying to use, then the
program ultimately will be a failure and the end user will likely choose something easier
or more convenient. Creating a simple, easy to use GUI is vita to the success of a
software project.

The process for developing useful GUIs includes several key steps including:

= Creating aGUI Design and Development Plan.

= Understanding the Key Elementsin GUI Design.
= Modeling System Interactions.

= Designing Screen Layout and User Interaction.

= Effectively Presenting the Data.

= Reviewing and Verifying the Design

38



In regards to ease of learning the developer decided to adopt the windows ‘look and feel’
as this is the most widely encountered by users and would present the most “natural”

interface.

3.3.2SPELL CHECKER

A spell checker or spelling checker in computing terms is defined as a design feature or a
software program designed to verify the spelling of words in a document, helping a user
to ensure correct spelling. A spell checker may be implemented as a stand-alone
application capable of operating on a block of text; however, spelling checkers are more
often implemented as a feature of a larger document-related application e.g. a word

processor or email client, electronic dictionary or search engine.

3.3.3WORDLIST

The maintained wordlist contains a comprehensive collection of approximately 4000
correctly spelt words from the KimiirQ vocabulary. The same wordlist also contains flags
that correspond with stemming rules defined within the affix file. This flags are used to
determine the type of affixation required for a given word.

The following figure illustrates the spellchecking operation:

39



WORDLIST PERSONAL

Ji DICTIONARY
Word Query |—Wordlist Wordlist Wor@Query
\L Add new word
SPELL
CHECKER 2
Check Text Suggestion List  Add New Word
GUI
Word Processor/
Web Browser/
Email Client
Input Text Add new word Select Action
(Personal Dictionary) (ignore suggestion/
accept suggestion/
add fInged word)
USER

Figure 2 : Spell checking operation in Kimiir Language

3.3.4 PERSONAL DICTIONARY

A personal dictionary is a component that stores words not captured in the primary word
list and yet are perceived to be correct by the user. Hence, new words are appended in the
personal dictionary after a user opts to include a word that has been flagged as erroneous

by the system.

40



3.4 CORPUSCOLLECTION

The primary source of KimiirQ words were obtained from bible verses of the KimiirQ
bible (2010) and Internet Resources, specifically a podcast of 100 KimiirG words by
Wahome Kaburu (2005). The bible was first scanned and Optical Character Recognition
(OCR) software was used to make the text available for editing. The word list was then
manually cleaned to get rid of non - Kimiir( words and also diacritic restoration was
performed where possible. The outcome was a single wordlist containing approximately
4,000 unique words. By this time, the Hunspell affix file was aimost fully developed and

it was used for applying rules to the wordlist in the Hunspell dictionary file.

35IMPLEMENTATION OF THE KIMITTRU SPELLCHECKER

The system was fully developed using Hunspell language tools. Cygwin which is a
Linux-like environment for Windows was used as the main development and deployment
platform because a UNIX/ LINUX environment is mandatory for deploying hunspell
tools.

Cygwin consists of a DLL (cygwinl.dll), which acts as an emulation layer providing
substantial POSIX (Portable Operating System Interface), system call functionality, and a

collection of tools, which provide a Linux look and feel.

Two primary files were defined using Hunspell tools during the development phase; The
Affix file defines the meaning of special flags in the dictionary. An affix file (*.aff) may
contain a lot of optional attributes. For example, SET is used for setting the character
encodings of affixes and dictionary files. TRY sets the change characters for suggestions.
REP sets a replacement table for multiple character corrections in suggestion mode. PFX
and SFX defines prefix and suffix classes named with affix flags. (N"emeth, 2010).

A dictionary file (*.dic) contains a list of words, one per line. The first line of the
dictionaries (except persona dictionaries) contains the approximate word count (for
optimal hash memory size). Each word may optionally be followed by a slash ("/") and

one or more flags, which represents affixes or special attributes. Dictionary words can

41



contain al'so slashes with the """ syntax. Default flag format is asingle (usually a phabetic)
character. In a Hunspell dictionary file, there are also optiona fields separated by

tabulators or spaces.

Hunspell tools are used to satisfy user requirements and are executed within the Cygwin
bash shell and test restricted to checking one input string at atime.

After development phase the system was deployed in an Open Source Word processing
application called OpenOffice.org Writer 3.4.1. This provided an interface from which
end users could input blocks of text that were to be checked for spelling errors. At this
stage the Test corpus was extracted from printed religious literature, specifically bible

verses from the KimiirG bible (2010) and the Kimeru bible (1964). These verses were not

previously used in the Training corpus.

3.6 HUNSPELL LANGUAGE SPECIFIC SETUP FOR KIMITRU

As with al Bantu languages, KimiirG exhibits an SVO word order, agglutinative verb
structure, and is highly tonal. In addition, circumfixation is prevalent in Kimiird where a
certain suffix can only co-occur with agiven prefix or set of prefixes. Therefore to handle
the KimiirQ diacritics it is important to set character support to Unicode (UTF-8). The
Kimiird aphabet includes the apostrophe and hyphen as in Ing'anagia (I get
satisfied/enough) and O-jimwe (just one) and therefore the orthography set is extended
with these characters. The importance of this cannot be overemphasized because it helps
Hunspell determine word stops. Also Kimiir( supports a battery of affixes at different
levels hence support for complex prefixes as well as circumfixation has to be enabled in

Hunspell.

Once downloaded and installed the following optional commands (attributes) in Hunspell
were enabled to support the Kimiira language
= SET UTF-8

This attribute is enabled to handle the Kimiird diacritic marks.

42



FLAG NUM

The ‘num’ sets the decimal number flag type. Decimal flags numbered from 1 to
65000, and in flag, fields are separated by commas. For Kimiir( the Prefixes were
allocated the range 1-199 while Suffixes started from 201 onwards.

COMPLEXPREFIXES

This attribute is enabled to support a battery of KimiirG affixes at different levels.
NEEDAFFIX 001

This flag signs virtual stems in the dictionary. Only affixed forms of these words
will be accepted by Hunspell hence this command will facilitate circumfixation

for Kimiird language.

CIRCUMFIX 002
Circumfixation is prevalent in Kimiir( language where a certain suffix can only
co-occur with a given prefix or set of prefixes hence when this command is

enabled it would support the same.

WORDCHARS

The Kimiir( al phabet includes the apostrophe and hyphen therefore the
orthography set is extended with these characters.

3.6.1 SUGGESTIONS COMPONENT
In Hunspell the suggestions component is used to generate probable suggestions for a

misspelled word. It is implemented in the affix file that employs both independent and

dependent spellchecking methods; dictionary look up and n-grams respectively.

Dictionary look-up is done by Levenshtein Distance. Levenshtein distance is a measure

of the dissimilarity between two strings, refered to as the source string (s) and the target

string (t). The distance is the number of deletions, insertions, or substitutions required to

transform sinto t. The greater the Levenshtein distance, the more different the strings are.

43



For example:

If sis "test" and t is "test”, then LD(st) = 0, because no transformations are
needed. The strings are aready identical.
If sis"test" and tis"tent”, then LD(s;t) = 1, because one substitution (change "s"

to "n") issufficient to transform sinto t.

The Levenshtein distance algorithm has previously been used in:
Spell checking
Speech recognition
DNA analysis

Plagiarism detection

Hunspell uses two sections in the affix file when generating suggestions for misspelled

words. The first isthe TRY command. This lists the language’s orthography set in order

of frequency. A more frequently used character has more weight during suggestions. A

script was used to rank characters within the set according to their frequency within the

developed wordlist. The following table illustrates the frequency of each character.

Table8: KimiirG orthography set character count

a b c d e flg h i j k I | m n o] p r S t u
1817 | 322 | 126 | 118 | 527 | 1 | 770 | 329 | 1007 | 257 | 851 | 9 | 663 | 1056 | 664 | 19 1131 | 21 | 818 | 642
w X y z a 1 A B C D|E F G H |1 J K L | M N (0]
476 | O 206 | 3 580 | 815 | 194 | 128 | 53 |2 |16 | O 151 | 2 | 164 | 95 | 362 | 1 | 344 | 439 | 25
Q R [S T U Vv w | X Yy |z |0 |1

0 140 | 11 114 |39 | 4 3% |0 46 | 0 | 99 | 137

Therefore the resultant output for TRY command is as shown below;
TRY < arniktigomiuewhbjycdsplvzi'NKMAITGRIBUJCY UWOESVDHLP>

The Second command used in the suggestion component is the REPLACE (REP)
command which is a fixed list of the most common misspelled n-grams and their

A AA A

replacements within the KimiirG vocabulary. Magjor n-grams are a result of influence

44




from different dialects, foreign languages and also by differences in written from spoken
Kimiira word. N-grams are derived from the test corpus and references from the spoken
word. Magjority of the n-grams extracted from the test corpus resulted from a consistent
omission of diacritic markings. The remaining n-grams were a representation of the
disparity between written and spoken Kimiird words e.g. ¢ - written, ch — spoken.

A A~ A

Examples of Kimiir( replace suggestions include:

REP 47
REPsc
REPshc
REP sh ch
REPchc
REP c ch
REPfDb
REPvV b
REPI r
REP d nd
REP g ng
REP ng g
REP ng ng'

3.6.2 AFFIXATION COMPONENT

An affix is either a prefix or a suffix attached to root words to make other words. Affix
classes were defined with an arbitrary number affix rules. Affix classes are signed with
affix flags. The first line of an affix class definition is the header. The fields of an affix

class header are:

= Option name (PFX or SFX).

= Flag (name of the affix class); could be a character or a decimal number.

45



Cross product (permission to combine prefixes and suffixes). Possible values are
either Y (yes) or N (no).

Line count of the following rules or the sequence of entries needed to properly
store the affix information.

Accepted example would be: PFX 1Y 6

The Fields of affix ruleswill contain the following

Option name (PFX or SFX).

Flag (name of the affix class).

Stripping characters from beginning (at prefix rules) or end (at suffix rules)
of the word.

Affix (optionally with flags of continuation classes, separated by a slash)
Conditions to be met before an affix can be applied.

Zero stripping or affix isindicated by zero. Zero condition isindicated by
dot. Condition isasimplified, regular expression-like pattern, which must be
met before the affix can be applied.

Accepted example would be: SFX 1y ied [*aeiou]y or SFX 10 ed [ey]

3.6.3 NOUN COMPONENT

The noun component is implemented in two parts, namely the derived nouns and the

underived nouns. Underived nouns have a class that consists of optional diminutive,

augmentative, locative and collective prefixes.
PFX1Y 6

PFX 1 muamu

PFX 1 mdami

PFX 1 mw amw

PFX 1 ma G ma

PFX 1 mw e mw[€e]

PFX 1m0 n md[t]

46



PFX2Y 8

PFX 2ma mi ma
PFX 2 mu mi mu
PFEX 2 mw mi mw
PFX 2 mw mi mw
PFX 2 m0 ki mQ[gr]
PFX 2 mi mama[gr]
PFEX 2 mGi mi mai
PFEX 2 mwi mi mwi
#lnside the Dictionary File
mUcoore/1
mUctnkd/1
m0gambo/1,2,203
mQgate/2,203
mageni/1,2
magiro/1,2,203

Accepted words with this example: acoore, migambo, ageni, Kigeni

Derived nouns are formed through circumfixation. The CIRCUMFIX and NEEDAFFIX
are used to enforce circumfixation. Examples of circumfixation include:

PFX 18Y 9

PFX 18 0 mw/002 [€]
PFX 18 0 giko/002 [0]
PFX 18 0ico/002 [0]
PFX 18 01tio/002 [o]
PFX 18 0 m{/002 [r]
PFX 18 o0 jwono/002 [0]
PFX 18 0 aro/002 [ 0]
PFX 18 o wo/002 [0o]

PFX 18 0 yo/002 [0]
47



SFX 210Y 5

SFX 210iai0/18,002

SFX 210 a €/18,002

SFX 210 0 gwa/18,002

SFX 210 aia/18,002

SFX 210iai/18,002

#lnside the Dictionary File
oral5,6,12,13,18,201,202,203,204,205,210
riithia/5,6,12,18,201,203,204,210

Accepted words with this example : jwonore, aroragwa, marfithi

3.6.4VERB COMPONENT

The KimiirQ verb is mostly expressed by the imperative and the infinitive and is marked
by the particle ‘“k(’ or ‘gwa’ or “‘gwi’. The particles can be described as the equivalent of
the English infinitive ‘to’. Infinitive verbs often end in —a while irregular onesend in -ya
(Ataya, 2012).

The KimiirQ spellchecker is implemented using the concept of continuation classes,
where a word is represented as a composition of one or more morphemes as shown
below:

Foc + Subj + Neg + Cond + Tense + Obj + Redup + Verb + DvbEXxt + Asp + FVwl

The continuation classes for verbs cater for the focus marker, concord subject, negation,
conditional, tense, object classes, deverbal extensions, aspectual markers and final
vowels. From the foregoing, verbs can have up to seven prefixes and four suffixes but
Hunspell only supports a maximum of three prefixes and three suffixes. To overcome this
hurdle all prefixes were combined into one complex prefix. The singular complex prefix
approach that was adopted is as shown below in the following verb component definition.

#Class of nonpersonal things, size-ki-,-gi,-i-,-bi-,

48



PEX4Y 7
PFX 4 0 ara[magkc]
PFX 4 0 a[enmgkcertd]["]

PFX5Y 7

PFX 5 0 k{ [Gaecgritkbmnot] [*tgm]

PFX 5 0 td [mrgcknotd][~0]

PFX6Y 8

PFX 6 0 ba [uegaciimknrtd] [Mgsvxzt]

PFX 6 0 b( [emgnoabkritud] [*fngsvxzgk]

#Transitive verbs,-gan-,-nka-
PFX12Y 11

PFX 12 0 ya[abcgkmrtd]
PFX 12 0 nka [egajtimnoird]

#V erb inflections,causative form,-ia-,-ithia-
SFX 201Y 9
SFX 201 aithia[bmnktygdru][*rk]a

#Verb applicative form,-ira-,-era-,
SFX 202Y 9

SFX 202 a’ira[bhmdntkrgjyu][*n]a
SFX 202 a’irwa [tgrkmdwbn]a

#Verb reciprocative,locative form,-eeni-,-ieni-
SFX 203Y 12

SFX 203 a eeni [mkndgwryhjbut]a

SFX 203 0 ga[ymudtnbjrgiiehk]a

49



#Verb passive form,-wa-,-ua-
SFX 204 awa [kndtgmrhbyuj]a
SFX 204 0 gwa [ghrikmnbudjyteu][*d]a

# In the Dictionary File

glral4,5,6,12,16,201,202,203,204

kworotal/4,5,6,12,201,202,203,204

Accepted words with this example: aglra, kidgdra, baglra, nkdgdra, garithia, glrirwa,
glrira, glreeni, giraga, glrwa, glragwa, akworota, takworota, bakworota, yakworota,
kworotia, kworotira, kworotaga, kworotwa.

Hence, the derivation of new verbs in Kimiir( language occurs when a case extension is
suffixed to an existing verb base. The first method involves suffixing a thematic
extension after the verb base or stem and before the verbs final vowel, while the second
method occurs when a verbalizing extension attaches to a noun.

Thematic extensions mark special relationships between verbs and their subject or object

noun phrases and include causative, applicative, reciprocative and passive forms.

# Causative Form

SFX 201Y 2

SFX 201 aithia[bmnktygdru][*rk]a
SFX 201 aia[bdmnkgyrt][*r]a

# In the Dictionary File

ta(go)/201

ona (see)/201

Accepted words with this example: itithia(make to go), onia(make to see).

50



# Applicative Form

SFX 202Y 2

SFX 202 a’ira[bhmdntkrgjyu][*n]a
SFX 202 aera[kntygmrb]a

# In the Dictionary File
ita (go)/202
ona (see)/202

Accepted words with this example: itira(go for), onera(see for).

#Reciprocative Form
SFX 203Y 2
SFX 203 a eeni [mkndgwryhjbuti]a

# Inthe Dictionary File

ona (see)/203

teethania (help)/203

Accepted words with this example: oneeni (see each other), tethanieeni (help each
other).

#Passive form

SFX 204Y 2

SFX 204 awa [kndtgmrhbyuj]a
SFX 204 iaua[khnrgy]ia

# In the Dictionary File
ona (see)/204
oria (heal)/204

Accepted words with this example: onwa (be seen), orua(be healed)

51



CHAPTER 4: TESTING AND RESULTS

41TESTING

Testing of the KimiirG spellchecker was done in two phases. The First phase involved the
use of the Hunspell tools operated from the Cygwin Bash Shell to establish the various
user requirements of the spell checker and this was performed iteratively. In this phase

testing was limited to one input string at atime.

= Jrygdrive/d/dictionarics/mes_<F = 1=

fop At

imethy@imathi /cygdrive/d
cd dictionaries

i me 0y 1ithi fcygdrive/d/dicticnaries
cd mer_KE

i y@Kima Jcygdrive/d/dictionaries/mer_KE
hunspell -d mer_KE

Hunspell 1.3.2

ciara

Figure 3: Word found in the Main and/or Personal Dictionary.

For each input line, a single line is written to the standard output for each word checked
for spelling on the line. If the word is found in the main dictionary, or personal
dictionary, then the line contains only a’*’. In this case the word ciara (give birth) was
found in the main dictionary.

52



C Srygdrive/d/dictionaries fmer_<F

fop At

imethy@imathi /cygdrive/d
cd dictiocnaries
i me 0y 1ithi fcygdrive/d/dicticnaries
cd mer_KE
i y@Kima Jcygdrive/d/dictionaries
hunspell -d mer_KE
Hunspell 1.3.2

: romba

Figure4: Word not found in Main and/or Personal Dictionary

If the word is not in the dictionary, but there are near misses, then the line contains the
symbol ’&’, a space, the misspelled word, a space, the number of near misses, the
number of characters between the beginning of the line and the beginning of the
misspelled word, a colon, another space, and a list of the near misses separated by
commas and spaces.

In this case the misspelled word is roba, the number of near misses are one (1), the

character offset is zero (0) and the correct spelling is romba (pray).

53

- o R




C Jrygdrive/d/dirticnaries/mer <F - o

fop At

imethy@imathi /cygdrive/d
cd dictionaries

i me 0y 1ithi fcygdrive/d/dicticnaries
cd mer_KE

i y@Kima Jcygdrive/d/dictionaries/mer_KE
hunspell -d mer_KE

Hunspell 1.3.2

methoone

+ metho

Figure5: Word found through Affix removal

If the word was found through affix removal, then the line containsa ’+’, a space, and the

root word. In this case metho (eyes) is the root word of methoone (in my eyes).

Finally, if the word does not appear in the dictionary, and there are no near misses, then
the line contains a ’#’, a space, the misspelled word, a space, and the character offset
from the beginning of the line. Each sentence of text input is terminated with an

additional blank line, indicating that Hunspell has completed processing the input line.



These output lines can be summarized as follows:
= OK: *
= Root: + <root>
= Compound: -
= Miss & <origina> <count> <offset>: <miss>, <miss>, ...
= None # <original> <offset>
Below are two illustrations depicting the use of words from the test corpus. The words

were derived from the Kimeru bible (1964).

C Jrygdrive/d/dirticnaries/mer <F - o

$ cd dr

i me 0 ithi /fcygdrive/d
$ cd mer_KE . .
-bash: cd: mer_ke: No such file or directory

imothy@Kimathi /cygdrive/d
$ cd dictionaries

i y@Kima Jcygdrive/d/dictionaries
3 cd mer_kE

i 2K, ma Jeygdrive/d/dictionaries/mer_KE
$ hunspell -d mer_ke

Hunspell 1.3.2

ki rundu

& kirundu 1 0: kiruundu

Figure6: Word not found in Main and/or Personal Dictionary using test corpus

In this illustration the misspelled word kirundu is corrected to Kiruundu (Holy Ghost)
complete with diacritic restoration and doubling of the vowel “u’.

55



C Jrygdrive/d/dirticnaries/mer <F - o

fop At

imethy@imathi /cygdrive/d
cd dictionaries

i me 0y 1ithi fcygdrive/d/dicticnaries
cd mer_KE

i y@Kima Jcygdrive/d/dictionaries/mer_KE
hunspell -d mer_KE

Hunspell 1.3.2

meyia . i

& meyia 2 0: meeyia, meria

Figure7: Word not found in Main and/or Personal Dictionary using test corpus

In this instance the misspelled word meyia has two misses. The first miss meeyia (sins)
gives the correct spelling while the second miss is a suggestion for replacement of the
character ‘y” with ‘r’.

The Second Phase of testing involved integrating the Kimiird Spell Checker in the
OpenOffice.org Writer version 3.4.1, and using it to check blocks of text within the test
corpus. The OpenOffice.org Writer enables dictionaries to be added as extensions.

Below is a screenshot of the functiona KimiirG spellchecker deployed within the
OpenOffice.org Writer Application.

56



e Edt Yew ns=rt Fomrat Table Toos Wincow Hep dE X
BEEa PEER VEKat-¢ - @B v HOME Y& @ [ Mée|

-E-E_Imhc-d*,r - "|E|I|'i'irresléewﬂ:l-r;an. ]||12 [«| B I Ufz £z & A"?'Q'—ﬁ-; .

L e e e

|

Antil ha Israeli pitarwa riz mbere|

MWATHANI ni zartirie Musa ki nribch va mbere, va mwerd jwafir, mwakesnz jwz iid kuuma rida
anti ba [srzeli beanmire athizariine va Misri. Musa an i=meene ria ghtirimarira kiip Bwarde rwa
Sinai, MWATHANI oi eamwirire atiri, “Tara antd bonthe ba kiithirano kiogthz kia anti ta Israeli
iiringanz pa miiriga yaao nz wicil yeag. Wazndlke mariitwa jo arime ba Isrecll bonthe, iz lowa
imwe. Ulgwe ga Aaroni bitere arime ba [srazli torthe, baria bari ga ik bwa miske mirongo fifi ra

nkdrik:, b};g bromba gwita ndweene. Baterws kirin gena na ikundi bia njiiid. Mingi bwithirwe biri
namuntl iemwe kuuma o myirigeeme, ra eethinve arfi mitongzeria wa éq] fwagwe dkenda
ahuteell:ﬁem Nao ja mejo mariitwa jg eriime taria bakabitethereria. mier

ek

zerua ni Blizuri miltaana wa Shedewi. Xiima mwirigzene
'\]aha%hml ik wa Amiradatn Konmma muirigeene fwa Zehuloni, h

mciai

mikid
mitaznz wa Hzloni. Kuuma Inn_g achiarwa cia Jos=fu cia Mwm_ag jwal Click tne worc to replace the

Gamalieli mitaana wa Pedahazuri. Kiuma mwirigesn= jwa Berjamin:, lgnere | hgnlightze ward, Use the
mittaznz wa Gidecni. Kiuma mvirigeene jwa Dani, biganteethereerua;  lancre All | AutoCemrect submenu for
Amishada: Kmma mwirigeene waAsheri tiigasteethereervani Pagiel  Add PETLE SEplaceTEn:
mwirigzene jwa Gedi, bligaarzethereema rj Elizsaft mitaana wa Deuel: AutoComect 3
Nafutali, tizaateethersemna ni Ahire mitaana we Enan: Bau ribo arim.
kit thitranc kia anti ba [srzeli; bari storgeeria ba mitiza yeac naba arn:

5 Soellirg anc Grammar

Sck Language for Sdeckon v

Musa iz Aaroni amwe pa ant baw maribwe jeao jagwet:, ni boothirad
o o = o Szt Lancuace for Paragraph »

ba lsraeli ki etuloh ya mbere ya mwerd jwa firl. Mabe baraandilea mard

ikhri tbwa miaka mirongo 1irf na ekiild, o muntd kiriagana ra micf {waao na mwirige juaac. Musa

arzbatarz bani Rwanda rwa Sinai, ¢ ta iria MTWATHAN. aemwirite.

Eumma Kifi nchiarwa cia Eobeni iria waari miteara wa mbere wa Jaxuou, amme bonthe taria caan pa
ﬁlcurn bwa rmakmmrongo 1111 13! nkuruh banabarun,l gwua ndweanP m,g baan&lnrwe ma:utwa g@

a | o -

Fage1/1 | Zefault | English (US4) |MsT sto | || [3350 |@——6——@ |10

oA il

Figure 8 : Kimiir Spell Checker deployed in Open Office.org Writer

42 EVALUATION

The developed KimiirQ spellchecker and suggester component was incorporated into
OpenOffice Writer 3.4.1 and evaluated using the test corpus derived from two sources;
the Kimeru bible (1964) and the KimiirQ bible (2010). The Kimeru bible (1964) lacks the
two diacritically marked characters (i and () in the KimiirQ orthography that require

extra keystrokes to generate.

In this project, the evaluation of test results was based on the following four basic
outcomes:

57



= True Positives (TP) represents those correctly spelled words that are recognized
as such by the spell checker.

= Fase Positives (FP) will represent misspelled words that are not flagged as such.

=  True Negatives (TN) will represent misspelled words that are flagged as such.

= False Negatives (FN) will represent correctly spelled KimiirG words that are
flagged as misspelled.

The results obtained are shown in the following table and they represent the evaluation

metrics.

Table 9 : Evaluation of test results based on four outcomes

RESULTS| TP |FP | TN |FN | TOTAL
Coverage | 1554 |0 | 197|450 | 2201
Precision | TP/(TP + FP) = 100

Recall TP/I(TP+ FN) = 0.78

Accuracy | (TP+ TN)/TOTAL =0.80

Precision is a measure of the exactness of the spellchecker’s responses. It basically
confirms how much one should trust the spellchecker when it accepts a given word as
correct.

Recall is a measure of the completeness of the spellchecker. It tells how much of the
language the spellchecker covers, the lower the value the more likely it is that the

spellchecker will complain about correct words.

Accuracy is derived from both precision and recall and is a general measure of the quality

of the spellchecker.

58



421 MAJOR CHALLENGES

On analysis of the results some challenges were noted. Mainly, there was an abundant
over-generation of suggestions. Previous spell checker developers have cited this
phenomenon which refers to the uncontrolled combination of prefixes leading to
generation of numerous words that are not semantically correct in a given language’s
grammar. Over-generation can be reduced through the use of separate definition of affix

rules, as opposed to clustering several related rules together.

There was a high prevalence of False Negatives (FN). The test corpus relied on the
Kimeru bible (1964) and the Kimiira bible (2010). The former source lacks the two
diacritically marked characters (i and Q) in the KimiirG orthography that require extra
keystrokes to generate while the latter source’s majority of nouns possessed doubling of
vowels especialy ‘a’ and ‘u’. The different KimiirG morphologica compositions of the
two bibles therefore led to correct words being flagged as incorrect. Another cause of this
phenomenon was the absence of some word stems in the dictionary file, including but not
limited to names of people and places. The accuracy of this spellchecker can be greatly

improved by having a corpus containing substantial Kimiira words to rival those of the

Dholuo, Luhya-lulogoli and ofcourse the Gikiiyd, just to mention a few.

During the spellchecking process there was a high generation of True Negatives (TN)
especially when spellchecking diacritically marked texts. The suggestion component
comfortably provided suggestions for the same and therefore the misspelled words were
easy to correct. However the suggestion component did not cope suitably with situations
where texts were missing the diacritic marks or a combination of a diacritic and one or

more characters.

59



CHAPTER 5: DISCUSSION

5.1 OVERVIEW
The overal aim of this project was to develop an Open Source Spellchecker for KimiirQ

Language. The previous chapters in this report detailed the research, design and

implementation of this system. This final chapter contains an evaluation of all aspects of

the project; the achievements of the project, the limitations of the system and

recommendations for future enhancements are herein discussed.

5.2ACHIEVEMENTS

The achievements of this project evaluate the objectives set forth on the onset:

A AA A

This project has demonstrated the development of a Kimiirh spelling checker with an
acceptable performance of an accuracy of 80%, a precision of 100% and a recall of
78%. Therefore this resulting spellchecker is aworking proof of concept, to be further
improved and integrated in the free open source software.

Recognition of morphologically complex words, which are common in KimiirQ
language due to its agglutinative nature, was made possible by the affix file.

Rules derived in the affix file were improved by semantic classification of all
involved roots. This was made possible by adopting the singular complex prefix
approach.

The developed spellchecker for Kimiirh language using Hunspell language tools was
composed of 4000 root words and more than 400 affix rules that were used to
generate nouns and verbs in the order of more than 40,000 Kimiird words. This
further enhanced the understanding of the fundamental principles and morphological

composition of Kimiir nouns and verbs.

60



53LIMITATIONS
The limitations of the developed Open Source Kimiir( Spell checker are:
= The system is only able to perform nouns and verbs derivation neglecting
pronouns, adverbs, adjectives and prepositions which also form the bulk of
Kimiird language.
= The system does not include agrammar checking facility nor athesaurus.
=  Word sense disambiguation is not achieved, meaning that semantic errors are not
caught. This would need the inclusion of other complex tools that check not only
the spelling of aword, but also its propriety in relation to context.
= The spellchecker’s focus is only on the Kiimenti dialect and does not cover any of
the eight (8) other sub-groupsin the larger MiirG community.
= Tone marking of the words in the vocabulary is not present. This is one major
limitation when reading and understanding text in the language since KimiirG is a

tonal language.

54 RECOMMENDATIONS
Recommendations for improvement and further work are closely related to the limitations
outlined above. They include the following:
= Theinclusion of grammar checking or context sensitive spellchecking component.
Addition of graphemic information to the system will go along way in achieving
this.
= Tone marking of words in the vocabulary would greatly enhance ease of reading
text written in the language.
= Theinclusion of a wider scope of KimiirQ part of speech (POS) to increase the
accuracy of creation of KimiirQ texts.
= Developing a spellchecker to cover the other eight (8) sub-groups of the larger
MiirG community. This will involve standardization of the said dialects through
the development of literature for teaching, and learning the vernacular of the
same. The Kitharaka dialect would be a good starting point because the diaect

recently attained standardization through translation of the Bible.

61



5.5 CONCLUSION

The major focus of this important project was the development of an open source
spellchecker for Kimiird language using the Hunspell language tools. The results
obtained in deploying the developed spellchecker in OpenOffice Writer version 3.4.1,
have shown an acceptable performance with an accuracy of 80%, a precision of 100%
and arecall of 78%. The developed spellchecker will be very useful in the collation and
correction of additional KimiirQ texts during corpus compilation. While the provided
dictionary comprising over 4,000 unique words may not have al words currently used in
KimiirQ, it is presented in such a way that users of the system can add to it, enabling its

growth and a more accurate documentation of the language.

As mentioned earlier the developed system may not only be of use in the development of
similar systems for the other eight (8) Kimiirl subgroups, but to also other loca
languages that are closaly related to Kimiir(; for instance, Kiembu, which has a lexical
similarity of 73% and Kikamba, with a similarity of 67%.

As Dhonnchadha et al., (2003) aptly put it “all languages must endeavour to keep up with

and avail of language technology advancesiif they are to prosper in the modern world”.

62



APPENDICES

APPENDIX 1
REFERENCES

1.

Agola, J. O., (2010). Open source spell checker for Dholuo using the Hunspell
Language Tools. MSc. University of Nairobi.

Aseye, J. O., (2011). Open source spellchecker for Luhya-Lulogoli. MSc. University
of Nairobi.

3. Ataya, J. K., (2012). Advanced Kimiira Grama. QBS Publications.
4. Banski, P. and B. Wojtowicz., (2009). A Repository of Free Lexical Resources for

10.

11.

African Languages. The Project and the Method. De Pauw, G. et al. (Eds.). 2009: 89-
95.

Bwayo, J., (2011). Open source spellchecker for Bukusu dialect. MSc. University of
Nairobi.

Chege, K.et al., (2010). Developing an open source spell checker for GikOyQ. In
Proceedings of the Second Workshop on African Language Technology (AfLAT,
2010).

De Pauw, G and Wagacha P.W., (2007). Bootstrapping Morphological Analysis of
Gikuyu Using Unsupervised Maximum Entropy Learning. Proceedings Eighth
INTERSPEECH Conference.

De Pauw, G. and Wagacha, P.W., (2007). Bootstrapping morphological analysis of
Gikiyd using unsupervised maximum entropy learning. In H. Van hamme & R. van
Son (Eds.), Proceedings of the Eighth Annual Conference of the International Speech
Communication Association. Antwerp, Belgium.

Fridah , E. K., (2011). Meru Dialects: The Linguistic Evidence. Nordic Journa of
African Studies 20(4): 300-327.

Muriithi, B. K., (2008). Word processor for Giklyl language with spell check. MSc.
University of Nairobi.

N emeth, L., (2010). Hunspell. [Online]. Available: http://hunspell.sourceforge.net
(accessed: July 2012).

63



12. Ronoh, W., (2011). Open source Kipsigis spell checker and language tool. MSc.
University of Nairobi.

13. Wagacha, P. W., Guy, D. P., and Gilles-Maurice, D. S., (2007). Automatic diacritic
restoration for resource scarce languages. [e-book]. Springer. [Accessed 9 June
2013].

14. Wagacha, P.W., De Pauw, G. & Getao, K., (2006)a. Development of a corpus for
Gikiyil using machine learning techniques. In J.C. Roux (Ed.), Proceedings of LREC
workshop - Networking the development of language resourcesfor African languages.
Genoa, Italy: European Language Resources Association, pp. 27-30.

15. Wagacha, P.W., De Pauw, G. & Githinji, P.W., (2006)b. A grapheme-based approach
for accent restoration in Gikdyd. In Proceedings of the Fifth International Conference
on Language Resources and Evaluation. Genoa, Italy: European Language Resources
Association, pp. 1937-1940.

16. Wamberia, K., (1993). Kitharaka Segmental Morphophonology with Special
Reference to the Noun and the Verb. Unpublished PhD Dissertation, University of
Nairobi.



