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 ABSTRACT 

 

Premiums are payable to an insurance company for a cover against a certain risk. Credibility 

models are actuarial tools to distribute premiums fairly among a heterogeneous group of 

policyholders. The problem is usually to devise a way of combining the experience of the group 

with the experience of the individual risk the better to calculate the premium. Credibility theory 

gives the solution to this problem. Most papers and researches on this subject are difficult to 

follow through, especially without the basic knowledge of Credibility theory. They also involve 

fairly recondite mathematics. This study describes the basic concept of Credibility theory and the 

standard methods of finding the Credibility factor, which are the Limited Fluctuation, Greatest 

Accuracy, and Bayesian. This is basically giving the areas of study there are in credibility 

theory. Once we have the insurance claim experience with us, we need to fit mathematical 

regression models to it. Usually, the data is assumed to be normal, and so we are restricted. The 

solution to this problem is the use of Generalized Linear Models which is looked at herein in this 

study. The topics at hand are generally broad and therefore for deeper comprehensive study the 

reader is advised to look at the numerous original papers on the subject. 
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CHAPTER 1 

 

1.1:  INTRODUCTION 

 

Basically, individuals, corporates, businesses and countries are faced by risks every day, e.g., 

risks of fire, or accident. To avoid the downside of such risks, individuals protect themselves by 

transferring these risks to an insurance company which agrees to compensate the person or party 

for any losses or damages caused by the risks identified in the contract. The insured then is 

obliged to pay up some amount known as the premium, or “risk premium". The company, hereby 

the insurer, is the one who quotes the amount of premium that is to be paid. There are many 

factors that contribute to this amount. The company needs to consider these factors and find 

appropriate ways to estimate how much the premium will be. The risks can be grouped together 

according to their characteristics, assessed, and then estimation done for the premium. Accuracy 

and the degree of accuracy are imperative in this process. Therefore, ways have to be found to 

adjust the premium as claim experience is obtained. 

The basic idea in insurance is pooling of risks. Individuals who have the “same” exposure to a 

particular risk join together to form together a “community-at-risk” in order to bear the perceived 

risk. Consider an insurance company with a portfolio consisting of M insured risks numbered i = 

1, 2, . . . ,M. In a well-defined insurance period, the risk I produces: 

 a number of claims Ni, 

 with claim sizes𝑌𝑖
 𝑣 (𝑣 = 1,2,… ,𝑁𝑖), 

 which together give the aggregate claim amount 𝑋𝑖 =  𝑌𝑖
(𝑣)𝑁𝑖

𝑣=1 . 

We often refer to the premium payable by the insured to the insurer, for the bearing of the risk, 

as the gross premium. The premium volume is the sum, over the whole portfolio, of all gross 

premiums in the insurance period. The basic task underlying the rating of a risk is the 

determination of the so-called pure risk premium Pi = E [Xi]. Often, we use just the term “risk 
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premium”. The classical point of view assumes that, on the basis of some objectively 

quantifiable characteristics, the risks can be classified into homogeneous groups (risk classes), 

and that statistical data and theory (in particular, the Law of Large Numbers) then allow one to 

determine the risk premium to a high degree of accuracy. 

From the dictionary, the word Credibility simply means the quality of being believable or 

trustworthy. Credibleness and believability are the other words that can be used in its stead. In 

our case we mostly have data or experience to deal with. Therefore we look at whether the said 

data or experience is believable or credible such that it can be applied or used. The size in most 

cases matters. Basically, the larger the experience or data, the more credible it is said to be.  In 

many cases a body of data is too small to be fully credible but large enough to have some 

credibility. This is where the measurement of credibility comes in where we have a scale from 0 

credibility to 1, full credibility. 

The word credibility was originally introduced into actuarial science as a measure of the 

credence that the actuary believes should be attached to a particular body of experience for rate 

making purposes.To say that data is “fully credible” means that the data is sufficient for setting 

the premium rates based on it, while the data concerning loss experience is “too small to be 

credible” if we believe that the future experience may well be very different, and that we have 

more confidence in the knowledge prior to data collection.  Many actuarial papers have been 

written to discuss credibility. Actuaries use credibility when data is sparse and lacks statistical 

reliability. 

Credibility theory was first introduced in 1914 by a group of American actuaries.  At that time 

those actuaries had to define a premium for a new insurance product "workmen's" compensation 

- so they based the tariff on a previous kind of insurance which was substituted by this one. As 

new experience arrived, a way of including this information was formalized, mixing the new and 

the old experiences. This mixture is the basis of credibility theory, which searches for a 

credibility estimator that balances the new but volatile data, and the old but with a historical 

support. Most of the research until 1967 went in this direction, creating the branch of credibility 

theory called limited fluctuation. The turning point in this theory, and the reason why it is used 

nowadays, happened when actuaries realized that they could bring such a mixture idea inside a 

portfolio. This new branch searches for an individual estimator (or a class estimator), but still 
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using the experience for the whole portfolio. Such an estimator would consider the "own" 

experience on one side, but giving more confidence to it by also including a more "general" one 

on the other side. In a way, it formalizes the mutuality behind insurance, without the loss of the 

individual experience. There are many papers discussing this theory, but the one by Bühlmann 

(1967) is generally seen as a landmark. In this paper credibility theory was completely 

formalized, giving a basic formula and philosophy. Since then, many models have been 

developed. 

In the recent past, credibility theory has become a cornerstone and of great importance in 

Actuarial Science. It is very important as it helps to calculate premiums for a group of insurance 

contracts.Credibility theory has its core in Bayesian statistics.  

We later on introduce the Generalized Linear Models. In the process of regressing insurance 

claims data, we are usually restricted to normal data only. The problem arises when the data 

proves different from normal. This is where GLMs come in. they allow us to no longer be 

restricted but now to have regression extended to distributions form the exponential family. 

The framework of HierarchicalGeneralized Linear Models allows a more extensive range of 

models to be used thanstraightforward credibility theory.  Thus, this study contributes a 

furtherrange of models which may be useful in a wide range of actuarial applications, 

includingpremium rating. 

The aim of this study is to simplify as much as possible the topic of Credibility Theory and give 

a rather more straightforward approach to it, not forgetting to describes the basic concept of 

Credibility theory and the standard methods of finding the Credibility factor, which are the 

Limited Fluctuation, Greatest Accuracy, and Bayesian. Also, to introduce GLMs and connect to 

Credibility Theory.Chapter two gives the literature review of the study. Chapter three explains 

the basic credibility theory and the credibility factor. It also explains the standard methods of 

finding the credibility factor, which include the Limited Fluctuation method and the Greatest 

Accuracy method. It is usual to have the assumption that credibility theory is completely based 

on Bayesian statistics. This is what chapter four is about. Bayesian credibility is the third method 

of finding the credibility factor. Chapter five explains the Generalized Linear Models. 
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CHAPTER 2 

 

2.1: LITERATURE REVIEW 

 

  The study and writing of papers about Credibility theory began with the papers by Mowbray 

(1914) and Whitney (1918), whereby the emphasis was on deriving a premium which was a 

balance between the experience of an individual risk and of a class of risks. Bühlmann (1967) 

showed how a credibility formula can be derived in a distribution-free way, using a least squares 

criterion. Since then, a number of papers have shown how this approach can be extended. See 

particularly Bühlmann and Straub (1970), Hachemeister (1975), de Vylder (1976, 1986). The 

survey by Goovaerts and Hoogstad (1987) provides an excellent introduction to these papers. 

    The underlying assumption of credibility theory which sets it apart from formulae based on the 

individual risk alone is that the risk parameter is regarded as a random variable. This naturally 

leads to a Bayesian model, and there have been a large number of papers which adopt the 

Bayesian approach to credibility theory: for example Jewell (1974, 1975), Klugman (1987), 

Zehnwirth (1977) Klugman (1992) gives an introduction to the use of Bayesian methods, 

covering particularly aspects of credibility theory. A recent review of Bayesian methods in 

actuarial science and credibility theory is given by Makov et al (1996) 

    Developed in the early part of the 20th century, limited fluctuations credibility gives formulas 

to assign full or partial credibility to a policyholder's, or group of policyholders' experience. 

Bühlmann (1967, 1969), Bühlmann and Straub (1970), Hachemeister (1975), Jewell (1975) and 

Frees (2003) give several credibility formulas. Goulet et al. (2006) gives a review of four 

different formulas. 

McCullagh and Nelder (1989) provide a detailed introduction to GLMs and also offer actuarial 

illustrations in their study. The books by Aitkin et al. (1989) and Dobson (1990) are also 
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excellent references with many examples of applications of GLMs. Haberman and Renshaw 

(1996) give a comprehensive review of the applications of GLMs to actuarial problems. 

McCulloch and Searle (2001) and Demindenko (2004) are useful references for details on 

GLMMs. Antonio and Beirlant (2006) give an application of GLMMs in actuarial statistics. 

Nelder and Verrall (1997) shows how credibility theory can be encompassed within the theory of 

GLMs. They set the relationship between credibility theory and generalized linear models by 

using Bühlmann model among credibility models and hierarchical generalized linear model in 

likelihood basis among statistical models. 
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CHAPTER 3 

 

3.1: METHODOLOGY 

3.1.1: THE BASIC CREDIBILITY THEORY 

 

Simply put, credibility theory is a technique that can be used to determine premiums or claim 

frequencies in general insurance. The word credibility was originally introduced into actuarial 

science as a measure of the acceptance that the actuary believes should be attached to a particular 

body of experience for rate making purposes. 

    The beginnings of credibility dates back to Whitney, who in 1918 addressed the problem of 

assessing the risk premium C, defined as the expected claims expenses per unit of risk exposed, 

for an individual risk selected from a portfolio (class) of similar risks. Recommending the 

combined use of individual risk experience and class risk experience, he proposed that the 

premium rate be a weighted average of the form 

𝐶 = 𝑧𝑋 + (1 − 𝑧)𝐶 

Where X is the observed mean claim amount per unit of risk exposed for the individual contract 

and  is the corresponding overall mean in the insurance portfolio. Whitney viewed the risk 

premium as a random variable. 

    Credibility is a technique for pricing insurance coverages that is widely used by health, group 

term life, and property and casualty actuaries. 

 Generally, Credibility theory provides tools to deal with the randomness of data that is used for 

predicting future events or costs. For example, an insurance company uses past loss information 

of an insured or group of insureds to estimate the cost to provide future insurance coverage. But, 

insurance losses arise from random occurrences. The average annual cost of paying insurance 

losses in the past few years may be a poor estimate of next year's costs. The expected accuracy of 



14 
 

this estimate is a function of the variability in the losses. This data by itself may not be 

acceptable for calculating insurance rates. 

    Rather than relying solely on recent observations, better estimates may be obtained by 

combining this data with other information. For example, suppose that recent experience 

indicates that Juakali Inc. should be charged a rate of Kshs.500 (per Kshs.10000 of payroll) for 

workers compensation insurance. Assume that the current rate is Ksh.1000. What should the new 

rate be? Should it be Kshs.500, Kshs.1000, or somewhere in between? Credibility is used to 

weight together these two estimates. 

    The basic formula 𝐶 = 𝑧𝑋 + (1− 𝑧)𝐶 for calculating credibility weighted estimates that we 

got earlier can be written as: 

             Estimate = Z× [Observation] +(1-Z)× [Other Information], 

                        0≤Z≤1 

where Z is the credibility assigned to the observation. 1-Z is generally referred to as the 

complement of credibility. If the body of observed data is large and not likely to vary much from 

one period to another, then Z will be closer to one. On the other hand, if the observation consists 

of limited data, then Z will be closer to zero and more weight will be given to other information. 

    The current rate of Ksh.1000 in the above example is the "Other Information." It represents an 

estimate or prior hypothesis of a rate to charge in the absence of the recent experience. As recent 

experience becomes available, then an updated estimate combining the recent experience and the 

prior hypothesis can be calculated. Thus, the use of credibility involves a linear estimate of the 

true expectation derived as a result of a compromise between observation and prior hypothesis. 

The JuakaliInc's rate for workers compensation insurance is 

              Z×Ksh.500+(1-Z)×Kshs.1000   under this model. 

    The general goal of credibility as used in Actuarial science is to improve statistical estimates, 

for example the premium estimates. The actuary uses observations of events that happened in the 

past to forecast future events or costs. For example, data that was collected over several years 

about the average cost to insure a selected risk, sometimes referred to as a policyholder or 
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insured, may be used to estimate the expected cost to insure the same risk in future years. 

Because insured losses arise from random occurrences, however, the actual costs of paying 

insurance losses in past years may be a poor estimator of future costs. 

    Consider a risk that is a member of a particular class of risks. Classes are groupings of risks 

with similar risk characteristics, and though similar, each risk is still unique and not quite the 

same as other risks in the class. In class rating, the insurance premium charged to each risk in a 

class is derived from a rate common to the class. Class rating is often supplemented with 

experience rating so that the insurance premium for an individual risk is based on both the class 

rate and actual past loss experience for the risk. The important question in this case is: How 

much should the class rate be modified by experience rating? That is, how much credibility 

should be given to the actual experience of the individual risk? Two factors are important in 

finding the right balance between class rating and individual rating. These are the two ways: one 

is when the portfolio is homogeneous, and the other when the portfolio is heterogeneous. When 

the portfolio given is homogeneous, then all of the risks in the class are identical and have the 

same expected value for losses. Here we therefore can charge the same premium to everyone in 

that particular portfolio. This is estimated by the overall mean X of the data. On the other hand, 

if the portfolio is not homogeneous, this method can be problematic as `'good" risk people will 

be overcharged and those considered as `'bad" risk people will be undercharged. Consequently, 

the `'good" risks will take their business elsewhere, leaving the insurer with only `'bad" risks. 

This is actually what is known as adverse selection. If the portfolio is heterogeneous, and the 

claim experience is fairly large, we can charge to each group j its own average claims, being X as 

premium charged to the insured. To compromise these two extreme positions, we take the 

weighted average of these two extremes: 

                   C=zjXj+(1-zj)Xj 

    If the group were completely homogeneous then it would be reasonable to set zj=0, while if 

the group were completely heterogeneous then it would be reasonable to set zj=1. Using 

intermediate values is reasonable to the extent that both individual and group history are useful 

in inferring future individual behavior. 
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    The following is a very simple example: 

    Suppose a bus company in Nairobi has run a fleet of ten buses for a number of years. The bus 

company wishes to insure this fleet for the coming year against claims arising from accidents 

involving these buses. The pure premium for this insurance needs to be calculated, i.e. the 

expected cost of claims in the coming year. The data for the past five years for this particular 

fleet of buses show that the average cost of claims per annum (for the ten buses) has been Ksh. 

224,000. Suppose that, in addition to this information, there is data relating to a large number of 

bus companies fleets from all over the country which show that the average cost of claims per 

annum per bus is Ksh. 35,000, so that the average cost of claims per annum for a fleet of ten 

buses is Ksh. 350,000. However, while this figure of Ksh. 350,000 is based on many more fleets 

of buses than the figure of Ksh. 224,000, some of the fleets of buses included in this large data 

set operate under very different conditions (which are thought to affect the number and/or size of 

claims, e.g. in large cities or in rural areas) from the particular fleet which is of concern here. 

    There are two extreme choices for the pure premium for the coming year: 

    1. Ksh. 224,000 could be chosen on the grounds that this estimate is based on the most 

appropriate data, whereas the estimate of Ksh. 350,000 is based on less relevant data, or, 

    2. Ksh. 350,000 could be chosen on the grounds that this is based on more data and so is, in 

some sense, a more reliable figure. 

    The credibility approach to this problem is to take a weighted average of these two extreme 

answers, i.e. to calculate the pure premium as: 

                Z × 224,000 + (1 - Z) × 350,000 

where Z is the credibility factor. We now need to find out the value of Z. 

    The following is another example also demonstrating how credibility can help produce better 

estimates: 

    In a large population of automobile drivers, the average driver has one accident every five 

years or, equivalently, an annual frequency of 0.20 accidents per year. A driver selected 

randomly from the population had three accidents during the last five years for a frequency of 
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0.60 accidents per year. What is your estimate of the expected future frequency rate for this 

driver? Is it 0.20, 0.60, or something in between? 

    Solution: If we had no information about the driver other than that he came from the 

population, we should go with the 0.20. However, we know that the driver's observed frequency 

was 0.60. Should this be our estimate for his future accident frequency?Probably not. There is a 

correlation between prior accident frequency and future accident frequency, but they are not 

perfectly correlated. Accidents occur randomly and even good drivers with low expected 

accident frequencies will have accidents. On the other hand, bad drivers can go several years 

without an accident. A better answer than either 0.20 or 0.60 is most likely something in 

between: this driver's Expected Future Accident Frequency = Z x 0.60+(1 x Z) x 0.20 

    The key to finishing the solution for this example is the calculation of Z. How much 

credibility should be assigned to the information known about the driver? 

    Before we look at the solution to this, let us note a few things about the credibility factor. 

 

3.1.2:  THE CREDIBILITY FACTOR 

 

    Z is a number between 0 and 1 and is called the credibility weight or credibility factor. It 

expresses how credible or acceptable an item or estimate is. In credibility of data, 0 credibility is 

given to data that is too small to be used for premium rate making. If some data has credibility of 

1, this means the data is fully credible. 

    Its value reflects how much "trust" is placed in the data from the risk itself (X) compared with 

the data from the larger group (µ). As an estimate of next year's expected aggregate claims or 

number of claims, the higher the value of Z, the more trust is placed in X compared with μ and 

vice versa. It can be seen that, in general terms, the credibility factor would be expected to 

behave as follows: 

    -- The more data there are from the risk itself, the higher should be the value of the credibility 

factor. 
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    -- The more relevant the collateral data, the lower should be the value of the credibility factor. 

    While the value of the credibility factor should reflect the amount of data available from the 

risk itself, its value should not depend on the actual data from the risk itself. 

    One final point to be made about the credibility factor is that, while its value should reflect the 

amount of data available from the risk itself, its value should not depend on the actual data from 

the risk itself, i.e. on the value of X. If Z were allowed to depend on X then any estimate of the 

aggregate claims/number of claims, say Φ, could be written in the form of ZX+(1-Z) by choosing 

Z to be equal to (Φ-µ)/(X-µ). 

    Because: 

𝑍𝑋 + (1− 𝑍)µ 

=  
ø− µ

𝑋 − µ
 𝑋 +  1−

ø− µ

𝑋 − µ
 µ 

=  
ø− µ

𝑋 − µ
 𝑋 +  

𝑋  − µ

𝑋 − µ
 µ 

=
ø𝑋  − øµ

𝑋 − µ
 

= ø 

 

 The problems remain of how to measure the relevance of collateral data and how to calculate the 

credibility factor Z. 

    There are three basic approaches to credibility theory: 

    1. Classical credibility (also known as limited fluctuation credibility), 

    2. Bühlmann credibility (also known as greatest accuracy credibility), and 
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    3. Bayesian credibility. 

    Bayesian credibility is the most accurate way to determine a credibility-weighted mortality 

assumption. But it's impractical to apply in practice because the distribution assumptions needed 

aren't straightforward and require a lot of judgment. It also can create occasional biases because 

subjectivity is required in the assumptions. 

Bühlmann credibility is more theoretically sound. But used in the traditional way, Bühlmann 

credibility is less practical to apply to mortality studies because mortality needs to be estimated 

for a given risk class, not for exposure with an unknown risk class. It's also often difficult to get 

enough experience for this method to be useful. 

    Classical credibility is much easier to use compared to the other methods because it uses a 

simple formula and gives reasonable results in almost all scenarios. It also handles the problem 

of having limited experience because it uses underlying assumptions to judge credibility and 

doesn't rely heavily on the experience. The only criterion that classical credibility may not satisfy 

is that it may not give unbiased results because some judgment is required to apply the method. 

    In most cases, classical credibility can be a good guide to assess the credibility of past 

mortality experience. In the case where a more accurate estimate of credibility may be warranted, 

Bayesian credibility should be applied because it's the most accurate technique. Regardless of 

which method is used, it should follow the four basic guidelines to be sound: 

    - Produce reasonable results; 

    - Be practical in its application; 

    - Provide results that are not materially biased; 

    - Balance the responsiveness of mortality expectation to experience while minimizing 

fluctuations in mortality expectations 
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3.2: LIMITED FLUCTUATION METHOD 

 

    The Limited Fluctuation method uses only the policy by policy experience study results of a 

single company. Consequently, each company can calculate their own estimate using the Limited 

Fluctuation method. It is referred to as limited fluctuation credibility because it attempts to limit 

the effect that random fluctuations in the observations will have on the estimates. The credibility 

Z is a function of the expected variance of the observations versus the selected variance to be 

allowed in the first term of the credibility formula, Z × [Observation]. 

    It provides a criterion for full credibility based on the size of the portfolio. Full credibility 

means it is appropriate to use only the portfolio's own experience and to ignore the entire 

industry data. In addition, it provides an ad hoc methodology for the determination of partial 

credibility, where there is a weighting of the portfolio's own experience and the industry 

experience. 

    The genealogy of the limited fluctuations approach takes us back to 1914, when Mowbray 

suggested how to determine the amount of individual risk exposure needed for X to a fully 

reliable estimate of X. He worked with annual claim amounts X₁,...,Xn, assumed to be i.i.d. 

(independent and identically distributed) selections from a probability distribution with density 

f(x|θ), mean m(θ), and variance s²(θ). The parameter θ was viewed as non-random. 

    Specifically, it was in the workers’ compensation insurance field where Mowbray was 

interested in finding the minimal number of employees covered by a plan such that the premium 

of the employer could be considered fully dependable, that is, fully credible. Assuming that the 

probability of an accident, , is known, Mowbray wanted to calculate the minimum number of 

employees, n, so that the number of accidents would lie within 100k percent of the average (or 

mode) with probability p. if N denotes the total number of accidents of an employer, Mowbray's 

problem can be written as: 

P[(1-k)E[N]≤N≤(1+k)E[N]]≥p, 

    Where N~binomial (n,θ), i.e., N is binomial with mean n and variance nθ(1-θ). Using the 

normal approximation for N eliminates the choice between the mean and the mode and yields: 
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𝑛 ≥  
𝜁1 − 𝜀/2

𝑘
 

2  1− 𝜃 

𝜃
 

 

    Where ε =1-p and ζαis the αth percentile of a standard normal distribution. 

    Mowbray's solution needed only a distribution for N, the total number of claims, in order to 

determine a full credibility level. Unfortunately, however, his solution provided just that, a level 

above which an individual premium is granted full credibility and zero credibility below that 

level. Thus, an insured with total number of claims just below the full credibility level may pay a 

significantly different premium. 

    The dichotomy between zero and full credibility paved way for the development of partial 

credibility. The first formal theory was developed by Albert W. Whitney. In his 1918 paper, 

Whitney refers to "the necessity, from the standpoint of equity to the individual risk, of striking a 

balance between class-experience on the one hand and risk-experience on the other." the 

objective of credibility theory is the calculation of this balance. Which principles should govern 

the calculation of this balance? According to Whitney (1918), the balance depends on four 

elements: 

 the exposure, 

 the hazard, 

 the credibility of the manual rate (collective premium), and 

 the degree of concentration within the class. 

    In this Classical Credibility, one determines how much data one needs before one will assign 

to it 100% credibility. This amount of data is what we referred to above as the Full Credibility 

Criterion or the Standard for Full Credibility. If one has this much data or more, then Z=1.00;if 

one has observed less than this amount of data then 0≤Z≤1. 
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    Exactly how to determine the amount of credibility assigned to different amounts of data is 

discussed in the following sections. 

    There are four basic concepts from Classical Credibility which will be covered: 

    1. How to determine the criterion for Full Credibility when estimating frequencies; 

    2. How to determine the criterion for Full Credibility when estimating severities; 

    3. How to determine the criterion for Full Credibility when estimating pure premiums (loss 

costs); 

    4. How to determine the amount of partial credibility to assign when one has less data than is 

needed for full credibility. 

    Below we look at the first two with interest in estimating frequencies and severities. 

 

3.2.1: FULL CREDIBILITY FOR FREQUENCY 

 

    Assume we have a Poisson process for claim frequency, with an average of 500 claims per 

year. Then, the observed numbers of claims will vary from year to year around the mean of 500. 

The variance of a Poisson process is equal to its mean, in this case 500. This Poisson process can 

be approximated by a Normal Distribution with a mean of 500 and a variance of 500. 

    The Normal Approximation can be used to estimate how often the observed results will be far 

from the mean. For example, how often can one expect to observe more than 550 claims? The 

standard deviation is √(500)=22.36. So 550 claims corresponds to about 50/22.36 = 2.24 

standard deviations greater than average. Since Φ(2.24)=0.9875, there is approximately a 1.25% 

chance of observing more than 550 claims. 

    Thus there is about a 1.25% chance that the observed number of claims will exceed the 

expected number of claims by 10% or more. Similarly, the chance of observing fewer than 450 

claims is approximately 1.25%. So the chance of observing a number of claims that is outside the 

range from -10% below to +10% above the mean number of claims is about 2.5%. In other 
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words, the chance of observing within ±10% of the expected number of claims is 97.5% in this 

case. 

    More generally, one can write this algebraically. The probability P that observation X is within 

±k of the mean µ is: 

                P =Prob[µ-µk≤X≤µ+kµ] 

                    =Prob [-k (µ/σ)≤(X-µ)/σ ≤ k (µ/σ)] 

    The last expression is derived by subtracting through by µ and then dividing through by 

standard deviation σ. Assuming the Normal Approximation, the quantity u=(X-µ)/σ is normally 

distributed. For a Poisson distribution with expected number of claims n, then µ=n and σ=√n. 

The probability that the observed number of claims N is within ±k% of the expected number µ=n 

is: 

P=Prob[-k√n≤µ≤k√n] 

    In terms of the cumulative distribution for the unit normal, Φ(u): 

       P= Φ (k√n)- Φ (-k√n)= Φ (k√n)-(1- Φ (k√n)) 

           =2 Φ (k√n)-1 

    Thus, for the Normal Approximation to the Poisson: 

                P=2 Φ (k√n)-1 

    Or, equivalently: 

Φ (k√n)=(1+P)/2 

    To use an example for illustration: 

    If the number of claims has a Poisson distribution, compute the probability of being within 

±5% of a mean of 100 claims using the Normal Approximation to the Poisson. 

    The solution should be: 2 Φ (0.05√(100))-1=38.29% 
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    Here is a table showing P, for k = 10%, 5%, 2.5%, 1%, and 0.5%, and for 10, 50, 100, 500, 

1,000, 5,000, and 10,000 claims: 

 

 

 

             Probability of being within ±k 

Expected # 

of claims 

k=10% k=5% k=2.5% k=1% k=0.5% 

10 24.82% 12.56% 6.30% 2.52% 1.26% 

50 52.05% 27.63% 14.03% 5.64% 2.82% 

100 68.27% 38.29% 19.74% 7.97% 3.99% 

500 97.47% 73.64% 42.39% 17.69% 8.90% 

1,000 99.84% 88.62% 57.08% 24.82% 12.56% 

5,000 100% 99.96% 92.29% 52.05% 27.63% 

10,000 100% 100% 98.76% 68.27% 38.29% 

 

 

 

    Turning things around, given values of P and k, then one can compute the number of expected 

claims n₀ such that the chance of being within ±k of the mean is P. n₀ can be calculated from the 

formula Φ(k√(n₀))=(1+P)/2. Let y be such that Φ(y)=(1+P)/2. Then given P, y is determined 

from a normal table. 
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    Solving for n₀ in the relationship k√(n₀)=y yields n₀=(y/k)². If the goal is to be within ±k of 

the mean frequency with a probability at least P, then the Standard for Full Credibility is 

                      n₀=y²/k² 

where y is such that 

Φ(y) = (1+P)/2 

    Here are values of y taken from a normal table corresponding to selected values of P: 

 

 

P (1+P)/2 y 

80.00% 90.00% 1.282 

90.00% 95.00% 1.645 

95.00% 97.50% 1.960 

99.00% 99.50% 2.576 

99.90% 99.95% 3.291 

99.99% 99.995% 3.891 
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3.2.2: FULL CREDIBILITY FOR SEVERITY 

 

    The Classical Credibility ideas also can be applied to estimating claim severity, the average 

size of a claim. 

    Suppose a sample of N claims, X₁,X₂,...XN, are each independently drawn from a loss 

distribution with mean µs and variance σs². 

    The severity, i.e. the mean of the distribution, can be estimated by (X₁+X₂+...+ XN)/N. The 

variance of the observed severity is Var (∑Xi/N)=(1/N²)∑ Var(Xi)= σs²/N. Therefore, the 

standard deviation for the observed severity is σs²/√N. 

    The probability that the observed severity S is within ±k of the mean µs is: 

                      P = Prob[µs - k µs≤S≤+k µs] 

    Subtracting through by the mean µs, dividing by the standard deviation σs²/√N, and 

substituting µ in for (S - µs)/( σs²/√N) yields: 

                      P=Prob[-k√N(µs/σs)≤u≤k√N(µs/σs)] 

    According to the Central Limit Theorem, the distribution of observed severity 

(X₁+X₂+...+XN)/N can be approximated by a normal distribution for large N. Assume that the 

Normal Approximation applies and, as before with frequency, define y such that Φ(y)=(1+P)/2. 

In order to have probability P that the observed severity will differ from the true severity by less 

than ±kµs, we want y=k√N(µs/σs). Solving for N: 

                      N=(y/k)²(σs/ µs)² 

    The ratio of the standard deviation to the mean, (σs/ µs) = CVs, is the coefficient of variation 

of the claim size distribution. Letting n₀ be the full credibility standard for frequency given P and 

k produces: 
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                            N=n₀CVs

²
 

    This is the Standard for Full Credibility for Severity. 

 

 

3.3: GREATEST ACCURACY 

 

    The greatest accuracy credibility theory method uses both the variance of observations within 

each company and the variance from one company to another. In order to make calculations 

using the greatest accuracy credibility theory method, the policy details of each company are 

needed. Since other company's data is confidential, a company would have to use a statistical 

agent to access the other company data needed for the greatest accuracy credibility theory 

method. It is also called the Least Squares or Bühlmann Credibility. 

    Greatest accuracy credibility theory originated from two seminal papers by Bailey (1945, 

1950). In his 1945 paper, Bailey obtains a credibility formula that seems to anticipate the 

nonparametric universe to be explored two decades later by Bühlmann. Unfortunately, the paper 

suffered due to a somewhat awkward notation that made it difficult to read. The 1950 paper, on 

the other hand, was better understood and is considered as the pioneering paper in greatest 

accuracy credibility. 

    The credibility is given by the formula: Z=N/(N+K). As the number of observations N 

increases, the credibility Z approaches 1. In order to apply Bühlmann Credibility to various real-

world situations, one is typically required to calculate or estimate the so-called Bühlmann 

Credibility Parameter K. This involves being able to apply analysis of variance: the calculation 

of the expected value of the process variance and the variance of the hypothetical means. 

    It is theoretically complete, and meets the criteria for a credibility method with one 

shortcoming. That shortcoming is that additional information about industry experience (beyond 

what is customarily collected and published) is required. Without these practical difficulties, 
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Greatest Accuracy Credibility Theory (GACT) would likely be the preferred credibility method 

to use in determining the expected valuation mortality assumption. 

    There are several versions of GACT. One of the simplest, the Bühlmann model, is discussed 

here,then the more complex model, the Bühlmann-Straub is outlined below that. 

 

 

3.3.1: BÜHLMANN MODEL 

 

 Assume for a particular policyholder or risk class, we know the past claim experience 

X={X₁,X₂,…,Xn} and that it is distributed with the same mean and variance, conditional on . For 

our purpose, assume that X is the experience of a particular company. The industry data 

comprises experience from many companies. 

     The policyholder has been categorized by underwriting characteristics and we have a 

"manual" rate μ that reflects these underwriting characteristics. The rating class is viewed as 

homogeneous with respect to the underwriting characteristics, but even within this rating class 

there is some heterogeneity (good risks and bad risks) since no rating classification can be 

detailed enough to capture all information. 

    Assume that this residual variation in the risk level of each policyholder in the portfolio may 

be characterized by a parameter θ (possibly a vector), but that θ for a given policyholder cannot 

be known. 

    Assume further that the cumulative distribution function B(θ)=Pr{Θ≤θ} is known. B(θ) 

represents the probability that a policyholder picked at random from the rating class has a risk 

parameter less than or equal to θ. 

    Assume that the claims experience of a policyholder can be expressed as the following 

conditional distribution: 
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fXj| Θ(xj|θ),j=1,2,...,n,n+1. Assume that the past claims experience X={X₁,X₂,…,Xn} is 

distributed with the same mean and variance, conditional on a risk parameter which is not known 

for a particular policyholder. 

    Define 

µ(θ)=E(Xj|Θ = θ)      (hypothetical mean) 

v(θ)=Var(Xj|Θ = θ)      (hypothetical variance) 

          u=E{u(θ)}            (pure premium) 

          v=E{v(θ)}            (expected value of process variance [or variability within company]) 

          a=Var{u(θ)}         (variance of hypothetical means [or variability between companies]) 

    It can be shown that the credibility factor is of the form: 

                Z=n/(n+k) 

where 

  

𝑘 =
𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 h𝑦𝑝𝑜𝑡h𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛
=
𝑣

𝑎
 

 

As 𝑎 (the variance of means across companies) decreases, k increases, and credibility factor Z 

decreases (if there is little difference between companies, more weight would be given to the 

industry experience, which will be less subject to random fluctuation). 

    As v (the expected value of the variability within the company) decreases, k decreases, and Z 

increases (if there is little fluctuation within the company, its own experience is more 

representative of the expected future experience). 

 For example, if {Xj|Θ;j=1,2,3,…,n] are independently and identically Poisson with given mean, 

and  is Gamma with parameters a and b, then Z=(n/(n+1/b)) 

    The amounts v and a may be estimated using non-parametric estimators of the form: 
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v=
1

𝑛−1
  𝑋𝑖𝑗 − 𝑋𝑖 ²𝑛
𝑗=1  

 

v=
1

𝑟(𝑛−1)
{   𝑋𝑖𝑗 − 𝑋𝑖 ²𝑛

𝑗=1
𝑟
𝑖=1 } 

 

v=
1

𝑟−1
{  𝑋𝑖 − X 2𝑟

𝑖=1 −
𝑣

𝑛
} 

 

 

3.3.2: BÜHLMANN -STRAUB 

 

The Bühlmann model provides a simple, theoretically consistent formula but does not allow for 

variations in exposure or claim size. Bühlmann-Straub is a generalization of Bühlmann model 

that allows for variations in exposure or size. 

   Introduce the amount mj, a known constant that measures exposure i.e. mj is expected claims. 

   Assume X₁,X₂,…,Xn are independent conditional on  with common mean (as before). Then the 

hypothetical mean is given by 

µ(θ) = E(Xj|Θ = θ) 

as before, but the conditional variances are 

v(θ) = Var(Xj|Θ = θ) = v(θ)/mj 

and 
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          Z=m/(m+k) 

Where k is same as under the Bühlmann model above and m = sum of all exposure amounts mj 

   This formula reflects variations in exposure and allows for between company effect and within 

company effect. 
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CHAPTER 4 

 

 

BAYESIAN CREDIBILITY 

 

 

4.1.1: INTRODUCTION 

 

The relationship between Bayes theorem and credibility was first noticed by Arthur Bailey 

(1950) who showed that the formula ZX+(1-Z) can be derived from Bayes theorem, either by 

assuming that the number of claims follow a Bernoulli process, with a Beta prior distribution on 

the unknown parameter p, or by assuming that the number of claims follow a Poisson process, 

with a Gamma prior distribution on the unknown parameter m. (The formula for Z differs, 

however, depending on whether a Bernoulli or a Poisson process is assumed.) 

    The Bayesian approach to credibility involves the following steps: 

    -- Prior parameter distribution 

    -- Likelihood function 

    -- Posterior parameter distribution 

    -- Loss function 

    -- Parameter estimate 

    General advantages of Bayesian Approach 

    • Bayesian approach conforms to the mathematical theory. 
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    • All of the assumptions made are set forth explicitly. 

    Disadvantages of Bayesian Approach 

    • All models require the actuary to make assumptions. So, some actuaries might prefer to 

employ a different type of prior distribution and/or to use a different set of prior parameters. 

    - However, when actuaries are updating premium rates, Bayesian approach should be natural. 

    - Another difficulty is whether a Bayesian approach to the problem is acceptable, and, if so, 

what values to assign to the parameters of the prior distribution. 

    - The last difficulty is that even if the problem fits into a Bayesian framework, the Bayesian 

approach may not work in the sense that it may not produce an estimate which can readily be 

rearranged to be in the form of a credibility estimate. 

 

    This study of the Bayesian approach to credibility theory is illustrated by considering two 

models: 

    -- the Poisson/gamma model which looks at claim frequencies. 

    -- the normal/normal model which looks at claim amounts. 

 

4.1.2: THE POISSON/GAMMA MODEL 

 

The Gamma-Poisson model has two components:  

(1) a Poisson distribution which models the number of claims for an insuredwith a given claims 

frequency, and  

(2) a Gamma distributionto model the distribution of claim frequencies withina population of 

insureds. As in previous sections the goal isto use observations about an insured to infer future 

expectations. 
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 Suppose the claim frequency for a risk, i.e. the expected number of claims in the coming year, 

needs to be estimated. 

We’ll assume that the number of claims for an insured isPoisson distributed and that the average 

number of claims ina year is µ. The probability of having n claims in a year is given 

by: 

 𝑃[𝑛|µ] = µ𝑛𝑒−µ /𝑛! 

µ is the mean annual number of claims, i.e. E[n] = µ. Any particular insured within the 

population is assumed to have a µ that remains constant over the time period of interest. 

However, the estimation of µ is the challenge since µ’s may vary from risk to risk. You do not 

know µ for a risk selected at random. 

The mean claim frequencies for insureds within the populationare assumed to be Gamma 

distributed with probabilitydensity function: 

𝑓 𝜇 = 𝜆𝛼𝜇𝛼−1𝑒−𝜆𝜇 / (𝛼)  ,                          for µ > 0   and   α, λ > 0 

The random variable is µ and the parameters that determinethe shape and scale of the distribution 

are α and λ. The mean ofthe distribution is α / λ. So, the average claims frequency acrossall 

insureds in the population is α / λ. The variance is α / λ2 

𝑓 𝜇 defines the prior distribution of the mean claim frequencies. 

Now, the random variable X represents the number of claims in the coming year from a risk. 

    The distribution of X depends on the fixed, but unknown, value of a parameter λ,  

    The conditional distribution of X given λ is Poisson(λ). 

    The prior distribution of λ is gamma(α,β). 

x₁,x₂,...,xn are past observed values of X, which will be denoted x. 

    The problem is to estimate  given the data x, and the estimate wanted is the Bayes estimate 

with respect to quadratic loss, i.e. E(λ|x). 
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    The estimate with respect to a quadratic loss function is the mean of the posterior distribution. 

    The posterior distribution ofλ given x is gamma(α + ∑ xi, β+n). 

and 

 

𝐸 𝜆 𝑥  =
𝛼 +  𝑥𝑗

𝑛
𝑖=1

𝛽 + 𝑛
 

=
 𝑥𝑗
𝑛
𝑖=1

𝛽 + 𝑛
+

𝛼

𝛽 + 𝑛
 

=
𝑛

𝛽 + 𝑛
×
 𝑥𝑗
𝑛
𝑖=1

𝑛
+

𝛽

𝛽 + 𝑛
×
𝛼

𝛽
 

=
𝑛

𝛽 + 𝑛

 𝑥𝑗
𝑛
𝑖=1

𝑛
+  1−

𝑛

𝛽 + 𝑛
 
𝛼

𝛽
 

= 𝑍  
 𝑥𝑗
𝑛
𝑖=1

𝑛
 +  1− 𝑍 

𝛼

𝛽
 

Where,  

𝑍 =
𝑛

𝛽 + 𝑛
 

 

    The observed mean number of claims is (∑ Xi/n). 

    The mean number based on prior beliefs is the mean of the prior gamma distribution, α/β. 

    Suppose n=0→Z=0→E(λ|β) = α/β 

    Z=1→E(λ|x)=(∑ Xi /n). 
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    The value of Z depends on the amount of data available for the risk, n, and the collateral 

information, through β. 

As n increases the sampling error of (∑ Xi /n) as an estimate for λ decreases. 

β reflects the variance of the prior distribution for . 

    Thus Z reflects the relative reliability of the two alternative estimates of. 

 

4.1.3: THE NORMAL/NORMAL MODEL 

 

    In this section we will estimate the pure premium, i.e. the expected aggregate claims, for a 

risk. 

    Let X be a random variable representing the aggregate claims in the coming year for this risk 

and the following assumptions are made: 

    -- The distribution of X depends on the fixed, but unknown, value of a parameter θ,  

    -- The conditional distribution of X given θ is N(θ, σ₁²). 

    -- The uncertainty about the value of θ is modelled in the usual Bayesian way by regarding it 

as a random variable. 

    -- The prior distribution of θ is N(θ, σ₂²). 

    -- The values of μ ,σ₁² and σ₂² are known. 

    -- n past values of X have been observed, which will be denoted x. 

    If the value of were known, the correct pure premium for this risk would be 

E(X|θ)= θ 

    The problem then is to estimate E(X|θ) given x. 
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𝐸 𝐸 𝑋|𝜃 |𝑥 = 𝐸 𝜃|𝑥  

=
𝜇𝜎1

2 + 𝑛𝜎2
2

𝜎1
2 + 𝑛𝜎2

2  

=
𝜎1

2

𝜎1
2 + 𝑛𝜎2

2 𝜇 +
𝑛𝜎2

2

𝜎1
2 + 𝑛𝜎2

2 𝑋
  

𝑍𝑥 + (1− 𝑍)𝜇 

Where, 

𝑍 =
𝑛

𝑛 + 𝜎1
2 𝜎2

2 
 

 

    This is a credibility estimate of E(θ|x). 

    There are some further points to be made about the credibility factor Z. 

       -- It is always between zero and one. 

       -- It is an increasing function of n, the amount of data available. 

       -- It is an increasing function of σ₂, the standard deviation of the prior distribution. 

    These features are all exactly what would be expected for a credibility factor. 
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4.2: DISCUSSION OF THE BAYESIAN APPROACH TO CREDIBILITY 

 

    The approach used in the Poisson/gamma and normal/normal models was essentially the same. 

    This approach can be summarized as follows: 

    -- The problem is stated, e.g. to determine a claim size or claim number distribution. In each 

case the aim is to estimate some quantity which characterizes this distribution, e.g. the mean 

number of claims or the mean claim size. 

    -- Some model assumptions are then made within a Bayesian framework, e.g. it is assumed 

that the claim number distribution is Poisson and that the unknown parameter of the Poisson 

distribution has a gamma distribution with specified parameters. 

    -- A (Bayesian) estimate of the particular quantity is derived. 

    -- This estimate is then shown to be in the form of a credibility estimate. 

 

    This approach has been very successful in these two cases. It has made the notion of collateral 

data very precise (by interpreting it in terms of a prior distribution) and has given formulae for 

the calculation of the credibility factor. 

    The two drawbacks of this approach are: 

    -- The first difficulty is whether a Bayesian approach to the problem is acceptable, and, if so, 

what values to assign to the parameters of the prior distribution. 

    -- The second difficulty is that even if the problem fits into a Bayesian framework, the 

Bayesian approach may not work in the sense that it may not produce an estimate which can 

readily be rearranged to be in the form of a credibility estimate. 
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CHAPTER 5 

 

GENERALIZED LINEAR MODELS 

 

5.1: INTRODUCTION 

 

Regression models are used in fitting of insurance claims data. The interest is usually to 

look at the relationship between random variables. In the regression analysis, an appropriate 

model is chosen and fitted with a view to exploiting the relationship between the variables to 

help estimate the expected responses for given values of the explanatory variables. A generalized 

linear model (GLM) may be regarded as an extension of a linear model. 

The essential difference for GLMs is that we now allow the distribution of the data to be 

non-normal. This is particularly important in actuarial work where the data very often do not 

have a normal distribution. For example, in mortality, the Poisson distribution is used in 

modelling the force of mortality, µx, and the binomial distribution for the initial rate of mortality, 

qx. In general insurance, the Poisson distribution is often used for modelling the claim frequency 

and the gamma or lognormal distribution for the claim severity. 

The main merits of GLMs are twofold. Firstly, regression is no longer restricted to 

normal data, but extended to distributions from the exponential family. This enables appropriate 

modelling of, for instance, frequency counts, skewed or binary data. Secondly, a GLM models 

the additive effect of explanatory variables on a transformation of the mean, instead of the mean 

itself. 

The aims of a data analysis exercise are usually to decide which variables or factors are 

important predictors for the risk being considered, and then to quantify the relationship between 

the predictors and the risk in order to assess appropriate premium levels. Our objective covers 

the basic theory of GLMswhich is necessary for applications together with credibility theory. 
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GLMs relate a variable (called the response variable) which you want to predict, to 

variables or factors (called predictors, covariates or independent variables)about which you have 

information. In order to do this, it is necessary first to define the distribution of the response. 

Then the covariates can be related to the response allowing for the random variation of the data. 

Thus, the first step is to consider the general form of distributions (known as exponential 

families) which are used in GLMs. 

 

5.2: METHODOLOGY 

 

  The basis of GLMs is the assumption that the data are sampled from a one parameter 

exponential family of distributions. Consider a single observation y. A one-parameter 

exponential family of distributions has a log-likelihood of the form: 

 

𝑦𝜃 − 𝑏(𝜃)

∅
+ 𝑐(𝑦,𝜑) 

 

where  θ is the canonical parameter 

and𝜑 is the dispersion parameter, assumed known 

Though there could be several ways of defining the exponential family, the more popular way 

shows that the distribution for a random variable Y belongs to an exponential family if its density 

has the following form:  

 

𝑓𝑌 𝑦;𝜃,∅ = 𝑒𝑥𝑝  
 𝑦𝜃 − 𝑏 𝜃  

𝑎 ∅ 
+ 𝑐(𝑦,∅)  

Where a, b and c are functions. 
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Haberrnan and Renshaw (1996) review the application of Generalized Linear Models in actuarial 

science, and include a section on loss distributions. In actuarial applications, many distributions 

belonging to one-parameter exponential families are useful. 

However, Haberman and Renshaw (1996) show how it is also possible to fit certain heavy-tailed 

distributions using Generalized Linear Models 

Some examples of such families are given below: 

𝜇 = 𝐸 𝑌 =
𝑑𝑏 𝜃 

𝑑𝜃
 

And    𝑉𝑎𝑟 𝑌 =
𝑑2𝑏(𝜃)

𝑑𝜃2
𝜑 

 

Note that Var(Y) is the product of two quantities 
𝑑2𝑏(𝜃)

𝑑𝜃2 𝜑 is called the variance function and 

depends on the canonical parameter (and hence on the mean). We can write this as V(µ), since 

the first equation above shows that θ is a function of µ. 

Thus, 𝑉 𝜇 =
𝑑2𝑏(𝜃)

𝑑𝜃2
 

In actuarial applications, it is possible to include deterministic volume measures m the definition 

of Var(Y). A GLM may be defined by specifying a distribution, as above, together with a link 

function and a linear predictor. The link function defines the relationship between the linear 

predictor and the mean. The linear predictor takes the form: 

𝜂 = 𝑋𝛽 

Where, 𝛽 is the parameter vector 

and     X is defined by the design 

    GLM's are a natural generalization of classical linear models that allow the mean of a 

population to depend on the linear predictor through a (possibly even non-linear) link function. 
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    The generalized linear mixed model is an extension of the GLM, complicated by random 

effects. 

    GLMMs allow the inclusion of normally distributed random effects and have been applied to a 

wide variety of statistical problems. 

    Hierarchical GLM's (HGLM) also allow the inclusion of random effects, but these are not 

restricted to be normally distributed. 

As mentioned earlier, one of the advantages of GLMs is that regression is no longer restricted to 

normal data, but extended to distributions from the exponential family. This property enables 

appropriate modeling of e.g. frequency counting, skewed data and binary data. Furthermore, a 

GLM models the additive effect of explanatory variables on a transformation of the mean, 

instead of the mean itself. 

    A GLM consists of the following components: 

    1. The response Y has a distribution in the Exponential Function, taking the form: 

 

𝑓 𝑦;𝜃,∅ = 𝑒𝑥𝑝   
 𝑦 − 𝜇 𝜃  

∅𝑉 𝜇 
𝑑𝜇 𝜃 + 𝑐(𝑦,∅)  

 

Where θ is called the natural parameter, 

ø is a known dispersion parameter, 

          μ=μ(θ)=E(Y) and 

          V(Y)=øV(μ), for a given variance function V and known bivariate  function c. The 

Exponential Function is very flexible and can model continuous, binary, or count data. 

    2. For a random sample Y₁,...,Yn, the linear component is defined as 

ηi=Xi′β,             i=1,....,n, 
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for some vector of parameters β =(β₁,..., βp)′ and covariates Xi= ( xi1,...,xip)′ 

    3. A monotonic differentiable link function g describes how the expected response μi=E(Yi) is 

related to the linear predictor ηi 

g(µi)=ηi,   i=1,...,n. 

 

    A GLMM consists of the following components: 

    1. for cluster data Yij,i=1,...,n and j=1,...,ni assumed conditionally independent, given the 

random effects U₁,...,Un, consider the following Exponential Function distribution: 

 

 

𝑓 𝑦𝑖𝑗 |𝜇𝑖 ,𝜃,∅ = 𝑒𝑥𝑝   
 𝑦𝑖𝑗 − 𝑏 𝜃𝑖𝑗   

∅
+ 𝑐(𝑦𝑖𝑗 ,∅)  

 

Where ui= (ui1,...,uik) are variates from normally distributed k-dimensional random vectors 

Ui∼N(0,D),where D is the variance-covariance matrix and uij= E[Yij|Ui] 

    2. The linear mixed effects model id defined as: 

ηij = Xij′β +Tij′ui,        i=1,...,n,   j= 1,...,ni 

for the fixed effects parameter vector β =(β₁,..., βp)′ and random effects vector  

ui= (ui1,...,uik)′. 

    Here Xij= (xij1},...,xijp)′ and Tij= (tij1,...,tijk)′ are both covariates. 

    3. A link function g, 

g(µij)=ηij,         i=1,...,n,   j =1,...,ni 
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completes the model. 

    For GLM, the Iog-likelihoods for some common distributions are given below 

 

 

5.2.1: NORMAL 

 

    The log-likelihood is  

 

𝜇𝑣 −½𝜇2

𝜎2
−
𝑦2

2𝜎2
−

1

2
log(2𝜋𝜎2) 

 

Thus, θ = µ and the canonical link function is the identity function. 

b(θ)=1 and φ =σ² 

 

5.2.2: POISSON 

 

The log-likelihood is 𝑦𝑙𝑜𝑔𝜇 − 𝜇 − 𝑙𝑜𝑔𝑦! 

OR, it can be written in the form, 

𝑓𝑌 𝑦;𝜃,𝜑 = exp[𝑦𝑙𝑜𝑔𝜇 − 𝜇 − 𝑙𝑜𝑔𝑦!] 

θ =log µ and the canonical link is the log function 

b(θ)=e
θ
 and c(y,φ)= - log y′ 

V(µ)= µ and φ =1 
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Thus, the natural parameter for the Poisson distribution is logµ, the mean is 

E(Y) = b′(θ) = eθ = μ 

and the variance function is  

V(μ) = b′′(θ) = eθ = μ.  

The variance function tells us that the variance is proportional to the mean. We can see that the 

variance is actually equal to the mean since a(ϕ) = 1. 

 

5.2.3: BINOMIAL 

 

This is slightly more awkward to deal with, since we have to first divide the binomial random 

variable by n. 

Thus, suppose R∼Binomial(m,µ). Define Y=(R/m).  

The distribution of R is  

𝑓𝑅 𝑅;𝜃,𝜑 =  
𝑚

𝑅
 𝜇𝑅(1− 𝜇)𝑚−𝑅  

And by substituting for R, the distribution of Y is 

𝑓𝑌 𝑦;𝜃,𝜑 =  
𝑚

𝑚𝑦
 𝜇𝑚𝑦 (1− 𝜇)𝑚−𝑚𝑦  

= exp 𝑚 𝑦𝑙𝑜𝑔𝜇 +  1− 𝑦 log 1− 𝜇  + 𝑙𝑜𝑔  
𝑚

𝑚𝑦
   

= exp 𝑚  𝑦𝑙𝑜𝑔  
𝜇

1− 𝜇
 + log 1− 𝜇  + 𝑙𝑜𝑔  

𝑚

𝑚𝑦
   

 

Then the log-likelihood is 
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y log µ
1−µ

−log  1−µ  

1
m

+ log m
mv
  

    Hence, 

𝜃 = 𝑙𝑜𝑔  
𝜇

1−𝜇
 ,  

and the canonical link function is the log function 

b(θ)≈log(1+e
θ
) and c(y,φ)=𝑙𝑜𝑔 =   

𝑚
𝑚𝑦  

 

V(µ)= µ(1- µ) and φ =(1/m). 

Thus, the natural parameter for the binomial distribution is 𝑙𝑜𝑔  
𝜇

1−𝜇
  the mean is: 

𝐸 𝑌 = 𝑏′ 𝜃 =
𝑒𝜃

1 + 𝑒𝜃
= 𝜇 

And the variance function is: 

𝑉 𝜇 = 𝑏"(𝜃) =
𝑒𝜃

(1 + 𝑒𝜃)2
= 𝜇(1− 𝜇) 

We can get the second derivative of 𝑏(𝜃) most easily by writing 𝑏′ 𝜃 = 1 −  1 + 𝑒𝜃 
−1

 

 

 

5.2.4: GAMMA 

 

The best way to consider the Gamma distribution is to change the parameters from α and λ to α 

and 𝜇 =
𝛼

𝜆
, ie 𝜆 =

𝛼

𝜇
. This means that we ensure that 𝜇 =

𝛼

𝜆
 appears in the PDF formula. We can 

do this by replacing the λ: 



47 
 

𝑓𝑌 𝑦;𝜃,𝜑 =
𝜆𝛼

ᴦ(𝛼)
𝑦𝛼−1𝑒−𝜆𝑦  

=
𝛼𝛼

𝜇𝛼ᴦ(𝛼)
𝑦𝛼−1𝑒−𝑦𝛼 /𝜇  

= 𝑒𝑥𝑝   −
𝑦

𝜇
− 𝑙𝑜𝑔𝜇 𝛼 +  𝛼 − 1 𝑙𝑜𝑔𝑦 + 𝛼𝑙𝑜𝑔𝛼 − logᴦ(𝛼)  

 

 

        The log-likelihood is  

−𝑦

µ
+𝑙𝑜𝑔 1

µ

1

𝑣

+ 𝑣𝑙𝑜𝑔𝑦 + 𝑣𝑙𝑜𝑔𝑣 − 𝑙𝑜𝑔⎾ (𝑣)   

 

 𝜃 =  −
1

𝜇
 

and the canonical link as the reciprocal function. 

𝜑 = 𝛼 

𝑎 𝜑 =
1

𝜑
 

𝑏(𝜃)  =  − 𝑙𝑜𝑔(−𝜃) 

and c(y,φ)=vlog y+vlog v – log (𝑣) . 

V(µ)= µ² and φ =v⁻¹. 

Thus, the natural parameter for the gamma distribution is 
1

𝜇
, ignoring the minus 

sign.  

The mean is: 
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𝐸 𝑌  𝑏′ 𝜃  = −
1

𝜃
= 𝜇  

The variance function is: 

𝑉 𝜇 =  𝑏" (𝜃 ) =
1

𝜃2
= 𝜇2 

And so the variance is 
𝜇2

𝛼
. 

 

5.3: HGLMS AND BÜHLMANN-STRAUB CREDIBILITY MODEL 

 

Nelder and Verrall (1997) showed how credibility theory takes part in HGLMs by the help of 

Bühlmann credibility theory. Basically, when positive weights stemming from difference in 

model assumptions are taken into consideration, a credibility formula like that in Buhlmann 

model can be formed by using HGLM for Buhlmann-Straub. 

We have data for i=1,2,…,n; let t=1,2,…,Ti be described as 𝑦𝑖𝑡  and assume that Ti=s for every i. 

thus i index the risks within the collective. In credibility theory, it is assumed that each risk has a 

risk parameter and this parameter for risk i is defined as θi.  

Let it be assumed that 𝑦𝑖𝑡 |𝜃𝑖  is distributed according to an exponential family.  

Define 𝜇 𝜃𝑖 = 𝐸 𝑦𝑖𝑡  𝜃𝑖 . Note that 𝐸 𝑦𝑖𝑡  𝜃𝑖  does not depend on t. in this case, the canonical 

parameter for observation yit will not depend on t. so, let it be assumed that the statement can be 

written as follows: 

∅′ 𝑖 = ∅ 𝜇 𝜃𝑖  = ∅ 𝛼𝑖  

Here, ∅ is the canonical link function and 𝛼𝑖  is a random effect for i
th

 group or insured. Thus, it 

is 𝜇 𝜃𝑖 = 𝛼𝑖  for standard credibility model. If it is defined that 𝑣𝑖 = ∅ 𝛼𝑖 , then the following 

equation is obtained:  

∅𝑖
′ = 𝑣𝑖  
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As we can see clearly, it also does not depend on this also means that 𝑣𝑎𝑟[𝑦𝑖𝑡 |𝜃𝑖] does not 

depend on t too. 

The expressions in the two subsequent equations above have defined the distribution of random 

variable in each risk under the condition of risk parameter 𝜃𝑖 . At the same time, it is also 

necessary to define the structure of the collective the distribution of {𝜃𝑖    𝑖 = 1,2,… , 𝑛}. For this, 

a “hierarchic likelihood”,  is described and this  is maximized. HGLM is defined by defining 

the kernel of the log-likelihood for ∅(𝛼𝑖) as below: 

𝑎1∅𝑖
′ − 𝑎2𝜑(∅𝑖 ′) 

In the actuarial literature, the distribution of the random effects is known as the structure of the 

collective. Besides, log-likelihood of 𝜃𝑖  is described on the statement of ∅(𝜇(𝜃𝑖)). The condition 

on 𝜃𝑖  is originated by 𝜇 𝜃𝑖 = 𝛼𝑖 . This statement described in the equation above is the latter that 

we wish to estimate. From the above equation and the distribution of  𝑦𝑖𝑡 |𝜃𝑖  we may define a 

hierarchical log-likelihood as follows:  

 =  𝑙 ∅𝑖 ′𝑦𝑖𝑡 |𝑣𝑖 + 𝑙(𝑣𝑖)

𝑖𝑖 ,𝑡

 

when the above equation is re-arranged according to assumptions of Bühlmann-Straub model, it 

is obtained as follows:  

 =   
𝑦𝑖𝑡∅𝑖 − 𝜑 ∅𝑖 

𝜑

𝑚 𝑡

 

𝑖 ,𝑡

+ 𝑐  𝑦𝑖𝑡 ,
𝜑

𝑚𝑡
 + 𝑎1∅𝑖

′ − 𝑎2𝜑 ∅𝑖
′   

Where mt is a known constant representing the amount of exposure during the t
th

 policy period. 

In this case, an estimate of 𝜇 𝜃𝑖 = 𝛼𝑖  is required. The mean random effects {𝛼𝑖 :   𝑖 = 1,2,… ,𝑛} 

are estimated by maximizing the hierarchical likelihood, as follows. During this process, with a 

difference from Bühlmann model, resulting weights from difference in assumptions of 

Bühlmann-Straub model will be taken into consideration. These weights are shown as mt in the 

immediate above equation. 

Therefore we have: 
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𝜕𝜑 (∅(𝛼𝑖))

𝜕𝑣𝑖
= 𝛼𝑖  𝑖 = 1,2,… ,𝑛 

Thus, 
𝜕

𝜕𝑣𝑖
=   

𝑦 𝑖𝑡−𝛼𝑖

𝜑/𝑚 𝑡
 +𝑠

𝑡=1 𝑎1 − 𝑎2𝛼𝑖  is stated. Equating 
𝜕

𝜕𝑣𝑖
 to zero gives  

 𝑚𝑡  
𝑦 𝑖𝑡−𝛼 𝑖

𝜑
 +𝑠

𝑡=1 𝑎1 − 𝑎2𝛼 𝑖 = 0 𝑖 = 1,2,… , 𝑛 

 𝑚𝑡𝑦𝑖𝑡 −𝑚

𝑠

𝑡=1

𝛼 1 + 𝜑𝑎1 − 𝜑𝑎2𝛼 𝑖 = 0 

Where, 𝑚 =  𝑚𝑡
𝑠
𝑡=1 . After necessary computations are done by using equation above, it is 

obtained as follows: 

𝛼 𝑖 =
 𝑚 𝑡𝑦 𝑖𝑡+𝑠
𝑡=1 𝜑𝑎1

𝑚+𝜑𝑎2
  𝑖 = 1,2,… ,𝑛 

=
𝑚

𝑚 + 𝜑𝑎2

 𝑚𝑡𝑦𝑖𝑡
𝑠
𝑡=1

𝑚
+

𝜑𝑎2

𝑚 + 𝜑𝑎2

𝑎1

𝑎2
 

𝑍𝑦 𝑖 + (1− 𝑍)𝜇 

Where, 𝑦 𝑖 =
1

𝑚
 𝑚𝑡𝑦𝑖𝑡
𝑠
𝑡=1 , 

𝑍 =
𝑚

𝑚 + 𝜑𝑎2
 

and 𝜇 =
𝑎1

𝑎2
.  

Z is called the Bühlmann-Straub credibility factor and m is the total exposure for all policy 

periods. 

Thus, estimation of 𝛼𝑖 , by choosing distribution described by the equation,  

𝑎1∅𝑖
′ − 𝑎2𝜑(∅𝑖 ′), for random effects and by using canonical link function, is in the form of a 

credibility estimation providing 𝐸 𝜇 𝜃𝑖  =
𝑎1

𝑎2
. This obtained form corresponds to Bühlmann-

Straub model from known credibility models. Thus credibility formula of Bühlmann-Straub 

model is derived by the using of GLMs.  
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CHAPTER 6 

 

CONCLUSIONS AND RECOMMENDATIONS 

 

The idea of credibility theory is to up-date the premium charged according to the experience 

of the insured entity and the size of the experience. The basic concept of Credibility Theory 

has been described, together with the standard methods of finding the Credibility factor. The 

connection between Generalized Linear Models and Credibility Theory has been looked at. 

The area of Credibility Theory is a backbone of Actuarial studies and so should be 

emphasized in the industry especially in dealing with claims experience. Data is not usually 

just normal and therefore GLMs are a very important tool in dealing with Credibility Theory. 

One major reason of bringing in GLMs into this study is that they give or contribute a further 

range of models which may be useful in a wide range of actuarial applications. In summary, 

the findings of this study are that Credibility theory is an excellent method to devising a way 

of combining the experience of a group with the experience of the individual the better to 

calculate the premium. 
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