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Notations
H: Hilbert space over the complex scalars C

B(H): Banach algebra of bounded linear operators on H

<;>: Inner products

hx; yi: The inner product of x and y on the Hilbert space H

j T j : The square root of an operator T

k : k: The norm

k x k: The norm of vector x

kTk: The operators norm of T

x� y: The direct sum of x and y

M �N : The direct sum of subspaces M and N

R(T ): The range of an operator T

�(T ): The spectrum of an operator T

r(T ): The spectral radius of an operator T

W (T ): The numerical range of an operator T

w(T ): The numerical radius of an operator T

�(T ): The resolvent of an operator T

P�(T ): The point spectrum of an operator T

C�(T ): The continuous spectrum of T

�(T ): The approximate spectrum of T
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R�(T ): The residual spectrum of T

�(T ): Multiplicity of T

T ! 0: Operator T converges to strongly 0

T 9 0: Operator T does not converge to 0

w:r:t.: with respect to
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Abstract
This study is on the characterization of the numerical ranges of a bounded

linear operator T on a Hilbert space H.
In case of a bounded linear operator, the closure of the numerical range

apart from including the spectrum of the operator turns out to be a convex
subset of the complex plane. We provide essential expository material on
numerical ranges and then proceed towards investigation of some signi�cant
aspects described below which are the highlights of the study.
First, we give a set of su¢ cient conditions for the numerical range of an

operator to be closed.
For bounded linear operator T which is hyponormal we show that Conv

�(T ) � W (T ) and �(T ) � W (T ):
Secondly, we provide a proof to show that the numerical range of an

operator on a 2-dimensional complex Hilbert space is, in general, an ellipse.
Thirdly, We also consider some special points on the boundary of the

numerical range and in this connection shows that: If the numerical range is
closed and � 2 W (T ) such that the boundary of the numerical range is not
a di¤erentiable arc at �, then � belongs to the point spectrum; if � is just a
corner of the numerical range, then � belongs to the spectrum. If � 2 W (T )
is such that � 2 � D for a circular disc D of C and Dn W (T ) = f � g, then
� 2 P�(T )

In our study and pursuit of these investigations, we expose many minor
results and observations which are of interest in themselves.
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Chapter 1

Introduction

With mathematics analysts� interest shifting from �nite dimensional inner
product spaces to in�nite -dimensional Hilbert spaces and with consequent
shift of interest from matrices to linear operators, their focus of attention
changed from quadratic forms to numerical ranges of linear operators. In the
case of a bounded linear operator, the closure of the numerical range apart
from including the spectrum of the operator turns out to be a convex subset
of the complex plane. It is this aspect that makes the study of the numer-
ical range more appealing and worthy of the increasing attention currently
directed towards it.

We shall in this chapter introduce some essential results in the setting
of normal linear or inner product spaces, we are interested in complex Ba-
nach spaces and complex Hilbert spaces and we shall assume all fundamental
topological notions particularly with regard to the topology generated by the
norm of a normed linear space or by the norm obtained from the inner prod-
uct function in an inner product space. As is well known, a strongly complete
normed linear space (inner product space) is called a Banach (respectively,
Hilbert pace).

We discuss some essential results on the numerical ranges and numerical
radii of bounded operators in chapter 2 proving a simple proof to show that
the numerical range of an operator T 2 B (H) is a convex subset of C , this
result was �rst proved by Toeplitz and Hausdor¤ (Hausdor¤).
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A normal operator T 2 B (H) has been an object of much study in op-
erator theory and possesses many nice properties a few of which being that
conv� (T ) = W (T ); r (T ) = kTk = w (T ) : Analysts�have therefore tried
to classify operators by having classes of operators satisfying some of these
speci�c properties and such attempts have led to classes of non-normal op-
erators imitating normal operators as regards some speci�c properties only.
For example, we have quasinormal operators, subnormal operators, hyponor-
mal operators and so on. In fact, we have a hierarchical relation among some
of the classes so obtained.[ The works of Halmos (1967), Fillmore (1970) are
particular helpful in this connection]. Towards the end of the chapter we dis-
cuss a su¢ cient condition under which the numerical range W(T) is closed,
De Barra et all. (1972)

In chapter 3, we investigate some special points on the boundary ofW (T )
. We begin by discussing the numerical range of an operator T on a 2-
dimensional complex Hilbert space and the conclusions obtained are essential
in that they not only provide an alternative proof for the convexity of the
numerical range of a bounded T on an in�nite-dimensional Hilbert space but
also assist us to show some "special" points on the boundary of the numerical
range turn out to be eigenvalues.
We also discuss the subnormal and hyponormal operators to the extent

as is necessary for us to establish that
conv� (T ) =W (T ); and r (T ) = kTk :
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1.1 Objectives of the study

The main objectives is to study the characterization of the numerical range
of bounded linear operators.

speci�c objectives

1: To show that the closure of closure of the numerical range a part from
including the spectrum of the operator turns out to be a
complex subset of the complex plane.
2: To give a necessary and su¢ cient condition for the numerical range to

be closed.
3: To show that the numerical range of an operator on a 2-dimensional

complex plane is, in general an ellipse.
4: To show that some "special" points on the boundary of the numerical

range turn out to be eigenvalues.
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1.2 Convexity and Convex functionals

De�nition 1.2.1 A subset K of X is said to be convex if whenever x; y 2 K;
it follows that the segment connecting the vectors x; y 2 X given by

z = (1� �)x+ �y
Where 0 � � � 1; also belongs to K.

Theorem 1.2.2 Let X be a normed linear space and let K be a convex subset
of X , then K is convex

Proof. Let x; y 2 K and let � be an arbitrary positive real number. There
exists elements x1; y1 2 K such that

kx� x1k < �

and
ky � y1k < �

Let �; � � 0 and �+ � = 1 . Then

k�x+ �y � (�x1 + �y1)k � � kx� x1k+ � ky � y1k

� (�+ �) � =2
But

�x1 + �y1 2 K
Since K is convex. Thus, since � > 0 is arbitrary, it follows that

�x1 + �y1 2 K;

So K is convex also.

Theorem 1.2.3 The intersection of any number of convex subsets of the
vector space X is a convex subset.

De�nition 1.2.4 Let S be be a subset of the vector space X. The convex
hull of S is the intersection of all convex sets containing S:
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It is clear that the de�nition makes sense since there is a convex set
containing S that is X itself. For that matter, it is clear that every subspace
of X is a convex set. An alternate characterization of convex hull is given in
the next theorem.

Theorem 1.2.5 The convex hull of the subset S of the vector space X con-
sists of all vectors of the form

�1x1 + �2x2 + :::+ �nxn

where the xi 2 S , �i � 0; for � i = 1; � 2; :::; n
and

nX
i=1

�i = 1

Proof. Let K be a set of all vectors of the form given in the statement of the
theorem. K is clearly a convex set from its very de�nition. Moreover,

K � S

it follows that
K � Sc

the convex hull of S. However, it is clear that any convex set containing
S must contain K, in particular,

Sc � K

therefore
Sc = K

and this completes the proof.

De�nition 1.2.6 Let X be a normed linear space and let S be any subset of
X. The closure of the convex hull of S is called the closed convex hull of
S:

Theorem 1.2.7 Let E = \fKjK � S; K convex and closedg ;
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that is, E is the intersection of all closed and convex sets containing S.
Let Sc equal the convex hull of S. Then

E = Sc

the closed convex hull of S.
Proof. Since Sc is convex, Sc is convex and is of course, closed and
Sc � S: Therefore

E � Sc
however,

E � Sc
since Sc is the intersection of all convex sets containing S , where E is

just the intersection of the closed and convex sets containing S. But

E � Sc

implies that
E = E � Sc

this, combined with the preceding inclusion, gives

E = Sc

1.3 Important Concepts and De�nitions

De�nition 1.3.1 A linear transformation T of a normed linear space X into
a normed linear space Y is bounded below if there exists a constant � > 0
such that

� kxk � kTxk

for every x 2 X:
Note that T 2 B(X; Y ) actually means that T is bounded above.

Theorem 1.3.2 Let X be a Banach space, Y a normed linear space and
T 2 B (X; Y ) : If T is bounded below, then its range RT is bounded in Y:

6



De�nition 1.3.3 Let T be a subset of X and consider a function F : T ! X;
an element x of T is a �xed point of F ( or F leaves x �xed) if F (x) = x. The
function J : T ! X de�ned by J (x) = x for every x 2 T is the inclusion
map (or the embedding, or the injection) of T into X (i.e. leaves each
point of T �xed)

the inclusion map of X into X is called the identity map on X.

De�nition 1.3.4 A function F : X ! Y from a set X into a set Y has an
inverse on its range RF if there exists a (unique) function F�1 : RF ! X
(called the inverse of F on RF ) such that F�1F = Ix where Ix stands for
the identity on X(identity map). Moreover, F has an inverse or its range if
and only if its injective.

If F is injective and surjective, then it is called invertible and F�1 :
Y ! X is the inverse of F furthermore F : X ! Y is invertible if and only
if there exists a unique function F�1 : Y ! X (the inverse of it) such that
F�1F = Ix and F�1F = Iy; where Iy stands for the identity on y.

Theorem 1.3.5 Suppose X and Y are normed linear spaces, and D be a
non-zero linear space of X and T : D ! Y a linear operator. Then T has a
bounded inverse on its range RT if and only if T is bounded below(Halmos).

Theorem 1.3.6 Let X be a Banach space and Y a normed linear space. Let
T 2 B (X;Y ) then T is invertible if and only if RT is dense in Y and T is
bounded.

De�nition 1.3.7 Let T be a linear transformation mapping the complex
Hilbert space X into itself, T is called positive if;

hTx; xi � 0

for all x 2 X:

Theorem 1.3.8 If T is a bounded linear transformation mapping the com-
plex Hilbert space X into the complex space Y , the adjoint operator of T; T �

always exists and is a bounded linear transformation de�ned everywhere on
Y . Moreover,

kTk = kT �k
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Proof. Let X; Y be complex Hilbert space, T 2 B (X; Y ) letting y be an
arbitrary �xed element of Y:
We de�ne;

fy : X ! C

x! hTx; yi fy is clearly a linear functional and the fact that it is bounded
follows from the cauchy-schwartz inequality. Applying the inequality also
yields

kfyk � kTk kyk
Using the Riesz representation theorem, we now assert the existence of a

unique vector z 2 X such that,

fy (x) = hx; zi for all x::::::::::::�

kfyk = kzk
rewriting equation � as

hTx; yi = hx; zi

we see that
y 2 DT � and T �y = z

since y was any vector in Y , we see thatDT � = Y;Moreover,

kT �yk = kzk = kfyk � kTk kyk

for any y 2 DT � = Y; which implies T � is a bounded linear transformation
and that

kT �k � kTk :
By exactly the same reasoning, it can also be shown that T �� is a bounded

linear transformation and that

kT ��k � T �

since T 2 B (x; y) ; T is closed, therefore T = T ��substituting T for T ��
and comparing the resulting inequality to conclude that

kTk = kT �k :
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De�nition 1.3.9 An operator T in B (H) is self-adjoint if and only if,

hTx; yi = hx; Tyi

for every x; y 2 H

De�nition 1.3.10 Let T be a linear transformation in a linear space X 6=
f0g, a scalar � 2 | (where | is the �eld over which X is de�ned is called
an eigenvalue of T if there exists a nonzero x 2 DT (domain of T ) such
that

Tx = �x

the vector x is then called an eigenvector of T corresponding to the
eigenvalue �:

De�nition 1.3.11 The spectrum � (T ) of an operator T is the set of all
complex numbers � such that �I � T has no inverse.

De�nition 1.3.12 The compliment (in C ) of � (T ) ; that is, the set of all
complex numbers � such that �I � T has an inverse in B (H) ; is called the
resolvent set of T denoted by � (T ) :

De�nition 1.3.13 A point spectrum P� (T ) is the set of all complex num-
bers for which �I � T does not have an inverse.

De�nition 1.3.14 A continuos spectrum C� (T ) is the set of all complex
numbers � for which �I �T has an unbounded inverse with domain dense in
X i.e.

R�I�T = X:

De�nition 1.3.15 Residual spectrum R� (T ) is the set of all complex
numbers � for which �I � T has an inverse ( bounded or unbounded ) whose
domain is not dense in X i.e.

R�I�T 6= X

9



De�nition 1.3.16 An approximate spectrum � (T ) is the set of all such
� 2 C for which �I � T is not bounded from below is called the approximate
point spectrum of T .

Theorem 1.3.17 r (T ) = lim
n!1

kT nk
1
n

Theorem 1.3.18 � (T ) � � (T )

Theorem 1.3.19 P� (T ) � � (T )

Proof. Let � 2 P� (T ) ; hence �T (�) 6=
�
0
	
and consequently there are

non-zero x 2 DT such that,

k(�I � T )xk = 0

This shows that for every realK > 0, there are elements x 2 DT for which

k(�I � T )xk < K kxk

thus there is a number K > 0 such that

k(�I � T ) yk � K kyk

for all y 2 DT i.e. �I � T is not bounded from below.
Thus � 2 � (T ) ; and

P� (T ) � � (T ) :

Theorem 1.3.20 Let T be a closed linear operator in a Banach space X.
Then,

C� (T ) � � (T )

Proof. Let � 2 C� (T ) ; then,

(�I � T )�1 exists for R�I�x = X

and
(�I � T )�1

is unbounded and
T : DT ! Y

(DT a nonzero linear subspace of X ).
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is a linear operator,then T has a bounded inverse on RT if and only if T
is bounded�I � T is not bounded from below i.e.

� 2 � (T ) :

Thus
C� (T ) � � (T )

Corollary 1.3.21 P� (T ) [ C� (T ) � � (T ) :

De�nition 1.3.22 The sequence fxng from the normed linear space X is

said to converge weakly to x 2 X, written as xn ! x if for every f 2
�
X; (

�
X

the conjugate space)

f (xn)! f (x)

De�nition 1.3.23 Let X and Y be normed spaces, an operator T : X ! Y
is called compact linear operator (completely continuos linear operator) if T
is linear and if for every bounded subset M of X; the image T (M) that is
the closure TM is compact.

De�nition 1.3.24 A vector space X is said to be the direct sum of two
subspaces Y and Z of X, written as

X = Y � Z

if each x 2 X has a unique representation

x = y � z

y 2 Y; z 2 Z:

De�nition 1.3.25 For any two subspaces Y and Z of a vector space X,
an orthogonal complement is the set of all vectors orthogonal to Y , such
that

Y ? = fz 2 H hy; xi = 0; z 2 Y g

11



De�nition 1.3.26 x is said to be orthogonal to y if

hx; yi = 0

and we write x ? y

Theorem 1.3.27 Let N be a closed subspace of H and let P be an orthogonal
projection onto N . Then

(i) P is linear
(ii) kPk = 1 (unless N = 0)
(iii) P 2 = P
(iv) P � = P

De�nition 1.3.28 An operator T 2 (B) is said to be

Normal if T �T = TT �

Unitary if T �T = TT � = I
Isometry if T �T = I

Theorem 1.3.29 T 2 B (H;K) is unitary if and only if

TT � = IK and T �T = IH

De�nition 1.3.30 Linear operators T 2 B (H) and S 2 B (K) are uni-
tarily equivalent (denoted by T �= S), if there exists a unitary operator
U 2 G(H;K) such that

UT = SU

i.e. T = U�SU or equivalently S = UTU�.

Theorem 1.3.31 Spectral mapping theorem

Let � (T ) be the spectrum of an operator T , and p (t) be any polynomial
of a complex number t. Then

� (p (T )) = p (� (T ))

12



Chapter 2

Numerical Range And
Consequences

2.1 De�nitions and consequences

We assume, unless otherwise stated, that H denotes a complex Hilbert space
with the inner product function

h; i : H �H ! C

De�nition 2.1.1 The numerical rangeW (T ) of an operator T on a Hilbert
space H is de�ned by;

W (T ) = fhTx; xi : x 2 H and kxk = 1g

De�nition 2.1.2 The numerical radius w (T ) of an operator T is de�ned
by

w (T ) = sup fj�j : � 2 W (T )g

De�nition 2.1.3 The spectral radius r (T ) of an operator T is de�ned by

rT = sup fj�j : � 2 � (T )g
Since T is bounded

kTxk � kTxk kxk

13



for all x 2 H:Now by the Cauchy-schwartz inequality,

jhTx; xij � kTxk kxk
Consequently, if � 2 W (T ) ; then

j�j � kTk

So W (T ) is a bounded subset of C and hence w (T ) is a non-negative real
numbers and satis�es

w (T ) � kTk for all T 2 B (H) :::::::::::::::::::(1:1)

If the bounded linear operator has its domain, the linear subspace D (T )
of H, then the numerical range W (T ) is just the set

fhTx; xi : x 2 D(H)g and kxk = 1:

Theorem 2.1.4 Let T be a bounded linear operator on a Hilbert space G.
Then the following properties hold.

(i) W (�I + �T ) = �+ �W (T ) for all �; � 2 C
Here the set

�+ �W (T ) (= �W (T ) + �)

is de�ned to be the set

f�+ �� : � 2 W (T )g

(ii) W (T �) = f� : � 2 W (T )g = W (T �)
(iii) jhTx; xij � W (T ) kxk2 for all x 2 H
(iv) W (U�TU) =W (T ) for all unitary operators U 2 B (H)

Theorem 2.1.5 Let T be a bounded linear operator on a Hilbert space H
then;

(i) � (T ) � W (T ) (The closure of the numerical range of an
operator includes the spectrum)

(ii) If
d = dist(�;W (T ))

14



where dist is the distance function derived from the modulus in C;then

�I � TM

has an inverse and(�I � T )�1 < 1

d

(iii) r(T ) � w (T ) � kTk
Proof. (i) If � =2 W (T ); then, of course,

dist(�;W (T )) > 0

that is d > 0; and by the de�nition of distance

d � jhTx; xi � �j

for all x 2 H, such that

kxk = 1
This implies

d kxk2 � jh(T � �I)x; xij
for all x 2 H
using cauchy-schwartz inequality,it is clear that

k(T � �I)xk � d kxk

since T � �I is bounded from below, (T � �I)�1 exists on R (T � �I) and is
bounded; moreover,(T � �I)�1 y � d�1 kyk for all y 2 R (T � �I) :::::::::::::::(1:6)
hence there are only two possibilities, either � 2 � (T ) or � 2 R� (T )

suppose
� 2 R� (T )

since n
R (T � �I)

o?
= fR (T � �I)g? = ker(T ? � �I)

If � 2 R� (T ) ;

15



then n
R (T � �I)

o?
6= f0g

i:e: ker(T ? � �I) 6= f0g
and hence � is an eigenvalue of T ?:

If x 2 H;

kxk = 1
and is such that

T ?x = �x

then

hTx; xi = hx; T ?xi =


x; �x

�
= �

which implies that
� 2 W (T )

a contradiction.
Hence � =2 W (T ) ; then � 2 � (T ) this shows that

� (T ) � W (T )

(ii) Next we show the �rst inequality of (ii) which will implies the second
inequality of (ii) by (i) above,we know that

1

d(�; �(T )
= sup

1

j�(T )� �j for any � =2 �(T )

now by the spectral mapping theorem,where we know that

�(P (T )) = P (�(T )):::::::::::::::::::::::: (�)

and also
�(T )�1 = f�(T )�1:::::::::::::::::::::::: (��)

we have that

1

d(�; �(T )
= sup

1

j�(T )� �j = sup
1

j�(T � �)j

16



by (�) = sup j�((T � �)�1)j by (��) = r((T � �)�1)
so that the �rst inequality of (ii) follows by equation(i) and

r((T � �)�1) �
(T � �)�1

by equation (iii) hence the proof is complete.
(iii) the proof follows easily from theorem(...........) of chapter 2

Lemma 2.1.6 Let T 2 B(H), then Re(T ) � 0 i¤ for all � < 0

(T � �I)�(T � �I) � �2I::::::::::::::::::::::::::::::::::::::::::::::::(1:7)

Proof. First we consider the following identity.

(T � �I)�(T � �I)� �2I = T �T � �(T + T �)

Suppose now that

(T � �I)�(T � �I) � �2I

then it is clear that

T + T � � 1

�
T �T for all � < 0

Let �! �1;then we get

T + T � � 0: i.e. Re(T ) � 0

Conversely,suppose that

T + T � � 1

�
T �T for all � < 0

the above identity implies the necessity.

Lemma 2.1.7 Let k� = f� : Re� � 0g if T 2 B(H) , then W (T ) � K� if
and only if

(T � �I)�(T � �I) � (Re�)2 I; � 2 K�

17



Proof. First we note that from

Re hTx; xi = h(ReT )x; xi for all x 2 H:::::::::::::::::(1:8)

it follows that
W (T ) � K�

if and only if ReT � 0 to see (1.8) ,
let

hTx; xi = a+ ib; where a; b 2 R
then

hTx; xi = a� ib
that is

hT �x; xi = a� ib
hence

h(T + T �)x; xi = 2a
that is

<
1

2
(T + T �)x; x >= a

but
1

2
(T + T �) = ReT

thus (1:8) is established. Now if � = a1 + ib1; where a1; b1 2 R and

� =2 K�T � �I = (T � ib)� a1I
thus

Re(T ) =
1

2
(T + T �) =

(T � ib) + (T � ib)�
2

= Re(T � ib)

and from lemma 2 we obtain

(T � �I)�(T � �I) � a2I

if and only if
Re(T � ib) � 0

which is equivalent to ReT � 0 and the lemma is proved.
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Theorem 2.1.8 If K is a closed half-plane, then K � W (T ) if and only
if

(T � �I)�(T � �I) � [ dist (�;K)]2 I

Proof. First we note that lemma 3 is exactly this lemma for K = K�:If we
consider the function

f (�) = a�+ b; kak = 1
which transforms K onto K�(for some a and b) and

f(T ) = aT + bT

Then we have
f(W (T )) = ff(�) : � 2 W (T )g

and thus W (T ) � K if and only if f (W (T )) � K�
Now since

f(T )� f(�)I = a(T � �I)
and

[f(T )� f(�)I]� [f(T )� f(�)I] = (T � �I)�(T � �I)
using lemma 3 and the fact that

dist(f(�); K�) = dist(f(�); f(K)) = dist(�;K)

The assertion of the theorem follows.

Theorem 2.1.9 Let T 2 B(H); then

p�(T ) � W (T ) and �(T ) � W (T )
This theorem may be included and proved immediately following theorem

2
Proof. If � 2 P�(T ); then there exists x 2 H such that

kxk = 1 and Tx = �x

then
hTx; xi = h�x; xi = � kxk2 = �
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thus, � 2 W (T ); so � 2 P�(T ) and

� 2 W (T )) P�(T ) � W (T )

and since �(T ) � �(T ) and �(T ) � W (T ) ( see theorem 1). We have

�(T ) � W (T )

Alternatively, � 2 �(T ); implies that there is a sequence (xn) of unit
vectors in H such that

lim
n!1 k(�I � T )k = 0

since, for such

xn j�� hTxn; xij = jh(�I � T )xn; xnij � k(�I � T )xnk
we see at once that

� 2 W (T ):

2.2 Toeplitz-Hausdor¤ Theorem(T-H)

The most important property of the numerical range is given by so called
Toeplitz-Hausdor¤ Theorem which is a historical monument.

Theorem 2.2.1 The numerical range W (T ) of an operator T is a convex
set in the complex plane.

Remark 2.2.2 We found a lot of proofs of theorem T-H. We cite the follow-
ing nice proofs of this famous theorem: [Gustafson 1970] ; [Goldberg-straus 1979]
and [Li 1994] ; for the sake of convenience.

Proof. Suppose � = hTx; xi and � = hTy; yi ; where x and y are unit vectors
in H. Our task is to prove every point of the segment joining � and � is in
W (T ).
If � = �; the problem is trivial. if � 6= �; then there exists complex

numbers � and � such that

��+ � = 1 and ��+ � = 0::::::::::::::::::(�)
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it is su¢ cient to prove that the unit interval [0; 1] is included in

W (�T + �I) = (= �W (T ) + �)

this is because if
� hTZ;Zi = t

then
� hTZ;Zi+ � = t(��+ �) + (1� t)(��+ �)

by
= �(t�+ (1� t)�) + �

as a consequence, we may assume without loss of generality that � = 1
and � = 0 in the �rst place. Write

T = s1 + is2 with s1; s2 self adjoint;

since
hTx; xi (= 1) and hTy; yi (= 0)

are real, it follows that

hs2x; xi and hs2y; yi

varnish x is replaced by �x where j�j = 1, then hTx; xi remains unaltered
and

hs2x; yi becomes � hs2x; yi
hence there is no loss of generality in assuming that hs2x; yi is purely

imaginary. Put
h(t) = tx+ (1� t)y; 0 � t � 1

now h(t) is never 0, infact the vectors x and y are linearly independent.
This is a consequence of

hTx; xi 6= hTy; yi :
If fx; yg were linearly dependent, then since they are unit vectors, one of

them could be written as a multiple of the other. Since moreover, the factor
would have to have absolute value 1, it would follow that

hTx; xi = hTy; yi ;
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a contradiction since

hs2h(t); h(t)i = t2 hs2x; xi+ t(1� t)(hs2x; yi+ hs2x; yi) + (1� t)2 hs2y; yi ;

the relations

hs2x; xi = hs2y; yi = 0 and Re hs2x; yi = 0

imply that
hs2h(t); h(t)i = 0 for all t

and hence that
hTh(t); h(t)i is real for all t

the function

t! hTh(t); h(t)i
kh(t)k2

Is real-valued and continuos on the closed interval [0; 1] since its value at
t = 0 and t = 1 are 0 and 1 respectively, hence the range of the function con-
tains every number in the unit interval [0; 1] i.e. we obtain

[0; 1] � W (T )

Remark 2.2.3 Note that it follows that the closure W (T ) is also convex by
theorem 2. Since W (T ) is convex and contains �(T ); it contains the convex
hull of �(T ): Thus we have

Theorem 2.2.4 Let T 2 B(H); then

con�(T ) � W (T )

Now, for T 2 B(H) the spectrum �(T ) is compact subset of C, a non
trivial fact of �nite dimension Euclidian geometry is that the convex hull of a
compact set is closed. The most useful formulation of this fact for the plane
C is that the convex hull of a compact set is the intersection of all the closed
half-planes that include it. [ see Valentine convex sets MC Graw Hill,1964] :
The question now is: can the closure of the numerical range be very much

larger than the spectrum?
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2.3 Some results on the numerical radius

In this section we introduce numerical radius of T associated with the nu-
merical range which is equivalent to the operator norm kTk : We �rst prove
some basic results on the numerical radius w(T ) of a bounded linear operator
T 2 B(H):

Theorem 2.3.1 The function de�ned on B(H) by

T ! w(T )

is a norm which is equivalent to the standard norm

T ! kTk ofB(H)

(i) For any T 2 B(H); w(T ) = w(T �)
(ii) For any T 2 B(H); w(T �T ) = kTk2
(iii) For any T 2 B(H); r(T ) � w(T )

Proof. The properties

w(T + S) � w(T ) + w(S) and w(�T ) = j�jw(T )

for any S; T 2 B(H) and for all � 2 C; are obvious. We had already seen
that

w(T ) � kTk
Now for all x; y 2 H

hTx; yi = 1

4
[hT (x+ y); x+ yi�hT (x� y); x� yi+ i hT (x+ iy); x+ iyi�i hT (x� iy); x� iyi]::::(2:10)

Using theorem 1(iii) on the right hand side of (2:10) we have

hTx; yi � 1

4
w(T )[kx+ yk2 + kx� yk2 kx+ iyk2 kx� yk2]

Hence using the parallelogram law in H, we have

jhTx; yij � 1

4
w (T ) f4(kxk2 + kyk2)g = w(T )fkxk2 + kyk2g

= w(T )(1 + 1)
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Now
kTk = supfjhTx; yij : x; y 2 H

and
kxk = kyk = 1

Hence
kTk � 2w(T ); i.e.1

2
kTk � w(T )

Thus
1

2
kTk � w(T ) � kTk ::::::::::::::(2:11)

and the constant 1
2
on the

left side is the best possible constant. Hence we have proved(i).
(ii) w(T �) = supfjhT �x; xij : x 2 H and kxk = 1g

= supfjhx; Txij : x 2 H and kxk = 1g
= supf

���hTx; xi��� : x 2 H and kxk = 1g

= supfjhTx; xij : x 2 H and kxk = 1 = w(T )g

(iii) w(T �T ) = supfjhT �x; xij : x 2 H and kxk = 1g
= supfjhT �Tx; xij : x 2 H and kxk = 1g
= supfkTxk2 : x 2 H and kxk = 1g

= [supfkTxkx 2 H and kxk = 1g]2 = kTk2

(iv) Since �(T ) � W (T ); by theorem 2 it is obvious that

r(T ) � W (T ):

Remark 2.3.2 The existence of quasinilpotent (or nilpotent) operators i.e.
operators T 2 B(H) for which

lim kT nk
n!1

1
n = 0 or T n = 0

for some n 2 N; respectively shows that nothing like the reverse inequality
could be true.
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Theorem 2.3.3 Let T 2 B(H):

(a) if w(I � T ) < 1, then T is invertible
(b) if w(T ) = kTk ; then r(T ) = kTk

Proof. (a) If T is not invertible, then

0 2 �(T )

so 1 2 �(I � T ); then follows from (2.12) that

1 � r(I � T ) � w(I � T )

by taking the contrapositive of this, we obtain

w(I � T ) < 1) T

is invertible.
(b) We may assume without loss of generality that

kTk = 1

(All we have to do is to multiply by a suitable positive constant.)the
hypothesis

w(T ) = kTk
Then assumes the existence of a sequence (xn) of unit vectors such

that
jhTx; xnij ! 1asn!1

Proof. Again, assume without loss of generality that

hTxn; xni ! 1 as n!1

(All we have to do is to multiply by a suitable constant of modulus
1).

if hTxn; xni ! ei� as n!1;
(take e�i�T instead of T ). since

jhTxn; xnij � kTxnk � 1

and
hTxn; xni ! 1
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It follows that
kTxnk ! 1 as n!1

then

kTxn� xnk2 = kTxnk2 � 2Re hTxn; xni+ 1! 0 as n!1

and consequently
1 2 �(T ):

Now
�(T ) � �(T ):so 1 2 �(T )

thus
r(T ) � 1

but
r(T ) � kTk = 1 i.e. r(T ) � 1

this shows that
r(T ) = 1

2.4 Further properties of the numerical range

The numerical range W (T ) of an operator T is not generally closed. In the
�nite dimensional case, however, the numerical range of an operator is a
continuos image of a compact set. The unit sphere

S(H) = fx : kxk = 1g

and hence is necessarily a compact subset of C and is therefor closed. The
next theorem is useful in that it helps us to construct examples of operators
whose numerical range is not closed.

Theorem 2.4.1 If T 2 B(H) and � is a complex number such that j�j =
kTk and � 2 W (T ); then � is an eigenvalue of T .
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Proof. Let T 2 B(H); so there is an x 2 H with kxk = 1 such that

� = hTx; xi

then since
j�j = kTk

kTk = j�j = jhTx; xij � kTxk kxk = kTxk � kTk :
hence equality holds throughout in the last line and we have,

jhTx; xij = kTxk kxk

In the Cauchy-shwarz Inequality, therefore the set fTx; xg must be lin-
early dependent,
that is

Tx = ��x for some �� 2 C
This in turn implies that

�� = �� hx; xi = h��x; xi = hTx; xi = �

And thus � is an eigenvalue of T .

Remark 2.4.2 It follows from the theorem that if � 2 W (T ) such that j�j =
kTk and if � is not an eigenvalue of T , (and in particular if T has no eigen
values) then � does not belong to W (T ). In view of this remark it easy to
construct examples of operators whose numerical range is not closed.

Example 1 By theorem 4 we see that the eigenvalue of every operator T 2
B(H) belong to W (T ). And if T is normal, then

kTk = w(T )

( a consequence of lemma 7)

Hence since
supfj�j : � 2 W (T )g = w(T )

There always exists a � 2 W (T ) such that

j�j = kTk
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It follows that if a normal operator has su¢ ciently many eigenvalues to
approximate its norm, but does not have one whose modulus is as large as
the norm, then its numerical range will not be closed. A concrete example is
provided by a diagonal operator such that the modulus of the diagonal term
does not attain its supremum.

Example 2 Consider the operator T : L2(N)! L2(N) de�ned by

Tx = (x1;
1

2
x2;
1

3
x3; ::::)

for x = (x1; x2; x3; ::::) 2 L2(N): Now T � 0 and ker (T ) = f0g, and kTk = 1
indeed, we note that

kTxk = kxk
for all x 2 L2(N); thus kTk � 1: If we take x = (1; 0; 0; ::::); then

Tx = (1; 0; 0; 0:::)

so kTxk = 1 and kxk = 1: Thus

kTk = 1

Since W (T ) � R+(for all hTy; yi � 0 for all y 2 H) and w(T ) � kTk we
note that

W (T ) � [0; 1]
for x = (1; 0; 0; :::), we have

hTx; xi = 1
and hence 1 2 W (T ): let 2 be any arbitrary positive number less than 1,
that is , 0 < 2 < 1: Choose a k 2 N such that 1

k
<2 :Let x = (xn); where

xk = 1; and xn = 0 if n 6= k:Then

kxk = 1 and < Tx; x >=
1X
n=1

1

n
jxnj2 =

1

k
jxkj2 =

1

k
<2

thus 22W (T ): It therefore follows using the fact that W (T ) is convex,

W (T ) = (0; 1]

this example shows that W (T ) may fail to be closed even for compact op-
erators in B(H)
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Example 3 Consider the unilateral shift U : L2 ! L2de�ned by;

U(x�; x1; x2; :::) = (0; x�; x1; x2; :::)

then
U�(x�; x1; x2) = (x1; x2; :::)

suppose � is an eigenvalue of U�,

i.e.
U�x = �x

for any x 6= 0(x 2 L2): Let

X = (x�; x1; x2; :::)

then
(x1; x2; :::) = (�x�; �x1; �2; :::)

henceXn+1 = �xn;that is
Xn+1 = �

nx�

for all n 2 N
Now if x� = 0; then x = 0, otherwise, a neccesary and su¢ cient condition

that the resulting X 0
ns be the coordinates of a vector (that is, they may be

square summable and hence x 2 L2) is j�j < 1: So each � in the open disc
of C is a simple eigenvalue of U�, that is each eigenvalue is of multiplicity
1. It therefore follows that the open unit disc f� : j�j < 1g is contained in
W (U�): Since W (U�) is always

W (U�)(= � : � 2 W (U)

It follows that the open unit disc is contained in W (U).
Since U has no eigenvalues, theorem 12 (proved above) implies thatW (U)

cannot. It is contain any number of modulus 1. HenceW (U) equals the open
unit disc, we note that the number 0 plays a special role with respect to the
spectrum of a compact operator. It is remarkable that it also plays a special
role in regard to the numerical range of a compact operator,
the next theorem gives a su¢ cient condition for an operator to have a

closed numerical range.

Theorem 2.4.3 If T 2 B(H) is a compact operator and 0 2 W (T ); then
W (T ) is a closed set.
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Proof. If � 2 W (T ); then there exists a sequence (xn) of elements of H
such that

kxk = 1
for all n 2 N and

lim
n!1

hTxn; xni = �

We now use a result known in Hilbert space theorem: every bounded
sequence (xn) of elements of H contains a weekly convergent subsequence.
In fact, the closed unit discN(0; 1) ofH has the property that; every sequence
of elements of N(0; 1) converges weakly to a point in N(0; 1): From this fact,
we can choose a weak convergent subsequence and may assume, without loss
of generality, that (xn) is weakly convergent to x. Then by compactness of
T

Txn
s! x

since

jhTxn; xni � hTx; xij � jhTxn; xni � hTx; xnij+ jhTx; xni � hTx; xij

� kTxn � Txk kxnk+ jh(xn � x); Txij :
We see that from the observations that
(i) The �rst summand tends to 0 as n!1 since Txn

s! Tx
(ii) The second summand tends to 0 as n ! 1 since xn

w! x and that
/x 2 N(0; 1):
Thus

� = lim
n!1

hTxn; xni = hTx; xi

Now if 0 2 W (T ); then

hTy; yi 2W (T )

for every y 2 N(0; 1) indeed,
if kzk = 1 and 0 � t � 1 so that z 2 N(0; 1):
then;

hT (tz); tzi = t2 hTz; zi = t2 hTz; zi+ (1� t2):0 2 W (T )
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by convexity, note that this particular argument does not need T to be
copmact infact it holds for any operator T . Thus the element x 2 N(0; 1)
obtained in the earlier part of the proof being such that

hTx; xi = �

proves that
� 2 W (T ) if � = 0

the assertion of the theorem is clear thus W (T ) is closed. Note: this result
is due to G.De Barva,J.R.icircles,B.sins.on the numerical range of compact
operators on a Hilbert space.(J.London math soc.5(1972) pg 704-706.
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Chapter 3

Some special points on the
Boundary of the Numerical
Range of an Operator

3.1 Introduction

Besides giving a set inside which the point spectrum must lie, the numerical
range can be used to prove that certain points are eigenvalues of the operator
in the context. Hence we prove a useful general lemma about W (T ) where
T is any two-by-two matrix.

Lemma 3.1.1 Let T be a linear operator on a two-dimensional Hilbert space
H2: If the matrix of T (which is obviously a 2�2 matrix. Has distinct eigen-
values �1 and �2 and the corresponding eigenvectors x1 and x2 so normalized
that

kx1k = kx2k = 1

ThenW (T ) is a closed elliptical disc with foci at �1and �2, if r = jhx1; x2ij
and � =

p
1� r2; then the minor axis is rj�1��2j

�
and major axis is j�1��2j

�

If T has only one eigenvalue �; then W (T ) is the (circular) disc with
center � and radius.

1

2
kT � �Ik :

Proof. Since H2 has the unit disc fx : kxk = 1g as a compact set and the
function

x! hTx; xi
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is continuos it follows that W (T ) is a compact set. Suppose that T has only
one eigenvalue �: In this case

T1 = T � �I

has the property that
�(T1) = f0g

and also T 21 = 0: For the characteristic polynomial of the matrix of T is

P (t) = �(t� �)2

for a non-zero � 2 C: Hence

�(T � �I)2 � 0

i.e. T
2

1 = 0) if T1 = 0; we have W (T1) = (0) and thus

T (T ) = f�g

This clearly a circle with center � and radii 0. If T1 6= 0; then there exists
an orthogonal basis fe1; e2g of H2 such that T1e1 = ae2 and T1e2 = 0 and
kT1k = jaj : To compute W (T ), we proceed in the same way and we obtain
it as a circular closed disc centered at 0 with radius jaj

2
: This implies that

W (T ) is the closed circular disc with center � and radius

=
jaj
2
=
kTk
2
=
1

2
kT � �Ik

Now if T has distinct eigenvalues �1; �2; the operator.

T1 =
1

�1 � �2
(T � �I)

has eigenvalue 0 and 1. Also from the de�nition of the numerical range,
the set W (T1) is obtained from w (T ) by a rigid motion and homothetic
transformation and conversely. Let fe1; e2g be an orthonormal basis of H2
such that T1e1 = 0 and we may choose these such that

T1u = u; kuk = 1:

where
u = (cos�) e1 + (sin�) e2
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and � is the angle between u and e,
i.e.

cos� = jhe; uij ; 0 � � � �

2

now since T1 = u we have

T1 ((cos�) e1 + (sin�) e2) = (cos�) e1 + (sin�) e2

that is
T1e2 = (cot�) e1 + e2

take any x = ae1 + be2; kxk = 1 ( that is, jaj2 + jbj2 = 1) then

hT1x; xi = ab cot�+ jbj2 = jbj2 + jaj jbj eiw cot�

if w varies with jaj ; jbj ;�xed and jaj2+ jbj2 = 1;then the scalars hT1x; xi trace
a circle with center at (t; 0) and with radius

t (1� t)] 12 cot�

where t = jbj2 and W (T ) is the union of all the circles.

(x� t)2 + y2 =
�
t� t2

�
cot2 �:::::::::::::::: (2:17)

The envelop of this family of circles is obtained by treating 2.17 as a
quadratic equation in t and equating its discriminant to 0. Doing this, we
obtain �

2x+ cot2 �
�2 � 4 �cos ec2�� �x2 + y2� = 0:::::::::::::: (2:18)

which can be simpli�ed to�
x� 1

2

�2�
1
2
cos ec�

�2 + y2�
cot�
2

�2 = 1
which is an ellipse with foci at (0; 0) and (1; 0) and with eccentricity sin�:

the center of this ellipse is the point
�
1
2
; 0
�
and its major and minor axes are

of lenghts cosec� and cot�; respectively. Consider the closed elliptic disc
whose boundary is the elliptic (2.19). We show that W (T ) contains all the
interior points of this elliptic disc, clearly, all points of the ellipse (2.19) It
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being the envelop of the family of circles (2.17)) belong to w(T ) to prove that
any interior point �� of the elliptic disc whose boundary is the ellipse (2.19)
is in w (T ) we remark that there exists a circle Ct� containing �� which is
tangent to the ellipse at the foot of the perpendicular from (t�; 0) the center
of the circle Ct� is (t�; 0) to the ellipse and it is exterior to one of the circles
C� and C1:Since these circles vary continuously, with it, it follows that there
is a circle through �� and this proves thatW (T1) and henceW (T ) is a closed
elliptic disc, using the relation see theorem1(i)

W (T1) =W

�
T � �1I
�2 � �1

�
= W

�
1

�2 � �1
T � �1

�2 � �1

�
=

1

�2 � �1
W (T )� �1

�2 � �1

i.e.

W (T ) = (�2 � �1)fW (T1) +
�1

�2 � �1
g

the foci (0; 0) and (0; 1) of w(T1) are transformed to �1 and �2 respectively
forW (T ) : Other conclusions stated in statement of the theorem are obvious,
the proof is complete.

Remark 3.1.2 From this lemma, we can prove theorem 5 of chapter 1 in
the following alternative fashion a and b are distinct points in w (T ) then
there exists x and y 2 H such that

a = hTx; xi ; b = hTy; yi ; kxk = kyk = 1

Let M be the subspace [fx; yg] spanned by x and y. Hence M is a closed
linear subspace of H of dimension 2 over C. assume the contrary that fx; yg
is linearly dependent over C .Then

x = �y

for some � 2 C with j�j = 1; we then have

hTx; xi = hT (�y); �yi = j�j2 hTy; yi = hTy; yi

i.e. a = b, a contradiction, hence fx; yg must be linearly independent
over C let Px;y be the orthogonal projector of H onto M take a z 2M with
kzk = 1: We have

Px;yz = z
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thus
TPx;yz = Tz

Now Tz need not be in M ,however,

Px;yTz 2M

Consequently,
Px;yTPx;yz = Px;yTz:

Thus

hPx;yTPx;yz; zi = hPx;yTz; zi = hTz; Px;yzi = hTz; zi
Now hTz; zi 2W (T ) and we thus obtain

W (Px;yTPx;y)

is an elliptic(or circular disc,it follows that W (T ) is convex, hence the proof.

Theorem 3.1.3 Let T 2 B (H) and W (T ) be a closed set, every point � in
the boundary of w(T ) at which the boundary is not a di¤erential arc is an
eigenvalue for T:

Proof. It is well known that the boundary w (T ) being a convex function,
is di¤erentiable except perhaps at an utmost countable set of points. Let �
be a point of non-di¤erentiability and x, kxk = 1; such that

� = hTx; xi

also, at � there exists a left and right tangents such that the angle between
these tangents is smaller than �: Let Y be arbitrary in H and Px;y be the
orthogonal projector on H onto the linear subspace [fx; yg]. The operator

T1 = Px;yTPx;y

has a closed elliptical disc as its numerical range,and since no circle contained
in w (T ) can pass through �; it follows that the ellipse w (T1) is a line segment
or a point, thus � is an eigenvalue with x as an eigenvector.
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3.2 Higher Dimensional Numerical Range

The numerical range of an operator T can be regarded as the one-dimensional
course of a multi-dimensional concept. To see how that goes we see that an
orthogonal projector P of rank 1 can be expressed in terms of a unit vector
x in its range:

Py = hy; xix
for all y 2 H; x 2 Rp and kxk = 1: If T 2 B (H) ; then PTP is an

operator of rank 1, and therefore a �nite-dimensional concept such as trace
makes sense for it. The trace of PTP can be computed by �nding the one-
by-one matrix of the restriction of PTP to the range of P , with respect to the
one-element basis fxg, since px = x, the value of that trace is

hPTPx; xi = hTPx; Pxi = hTx; xi

These remarks can be summarized as follows: W (T ) is equal to the
set of all complex numbers of the form trPTP , where P varies over all
projections of rank 1, replace 1 by an arbitrary positive integer k, and obtain
the k�numerical range of T , in symbols Wk (T ) ; the ordinary numerical
range W (T ) is the k�numerical range with k = 1

Theorem 3.2.1 For every operator A 2 B (H) and for every positive integer
k, the k�numerical range Wk (A) is convex.

Proof. Suppose M and N are k� dimensional Hilbert space and

T :M ! N

is a linear transformation. There is a useful sense in which T and T � from
N into M can be simultaneously diagonalized. The assertion is that there
exists orthornomal basis fx1; :::; xng for M and fy1 ; :::; yng for N , and there
exists positive ( � 0)scalars �1; :::; �k such that

Txi = �iyi

and
T �yi = �ixi; i = 1; :::; k:
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To prove this, let UP be the polar decomposition of T , and diagonalize
P , that is: �nd an orthonormal basis fx1; :::; xkg for M , and �nd positive
scalars �1; :::; �k such that

Pxi = �ixi

If the partial isometry U is not an isometry fromM ontoN , it can be replaced
by one since dimM = dimN = k. Assume that has been done. Then put
yi = Uxi; i = 1; :::; k: We then have the consequence:

Txi = UPxi = U (�ixi) = �iyi

and
T �yi = PU

�yi = Pxi = �ixi; i = 1; :::; k:

So far, it is a lemma, now we go to the theorem, suppose that P and Q are
projections of rank k, with respective ranges M and N if T is the restriction
of QP toM , then the proceeding lemma is applicable. For each i(= 1; :::; k);
let Li be the span of xi and yi we now assert that the subspaces Li are pair
wise orthogonal. Suppose, indeed that i 6= j; since xi ? xj and yi ? yj,it is
su¢ cient to prove that

xi ? yj
for then xj ? yj follows by symmetry.
Now

hxi; yji = hPxi;Qyji = hQPxi; yji = h�iyi; yji
Next we go to the proof of the convexity, if o � t � 1; we use the classical

Toeplitz-Hausdor¤ Theorem k�times to obtain a unit vector zi 2 Li; so
that

hAzi; zii = t hAxi; xii+ (1� t) hAyi; yii
since fh1; :::; hkg is an orthogonal set, the projection R onto its span has

rank k, and

ttrPAP + (1� t)trQAQ = t
X
i

hAxi; xii+ (1� t)
X
i

hAyi; yii

=
X
i

hAhi; hii = trRAR
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3.3 Continuity of the Numerical Range

Consider the Hausdor¤ metric for compact subsets of the plane. To de�ne
this metric, we write

M + (2) = fz + � : z 2M; j�j <2g

For each set M of complex numbers and each positive number 2 :If M
and N are compact sets, the Hausdor¤ distance d(M;N) between them is
the in�mum of all positive numbers 2 such that both

M � N + (2) and N �M + (2)

Since the Hausdor¤ metric is de�ned for compact sets, we use W and
not W . In what sense is the numerical range a continuous function of its
argument? This question however has many interpretations as there are
topologies for operators.
Is W weakly continuous? Strongly? Uniformly?.
The only thing that is immediate obvious is that if W is continuous with

respect to any topology, then so is W , and, consequently, if W is discontin-
uous, then so is W:

Theorem 3.3.1 The functionW is continuous with respect to uniform (norm)
topology; if the underlying Hilbert space is in�nite-dimensional, then the func-
tion W is discontinuous with respect to the strong topology and hence with
respect to the weak topology.

Proof. If kS � Tk <2 and if x is a unit vector, thenjh(S � T )x; xij <2 and
hence

hSx; xi = hBx; xi+ h(S � T )x; xi 2W (T ) + (2)
it follows that

W (S) � W (T ) + (2)
symmetrically,

W (T ) � W (S) + (2)
This proves the �rst assertion, as for the second assertion, consider the

unilateral shift U, the sequence (U�n) tends to 0 in the strong topology more
and more Fourier Coe¢ cients get lost as n increases but

W (U�n) = 1

for all n.
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3.4 Bare points, Semi Bare points and the
Corner of the Numerical range.

De�nition 3.4.1 For a closed subset F of C a point � is called a bare point
if

1) � 2 F and
2) � is on the boundary of a circular disc containing F

De�nition 3.4.2 A point � of a closed set F in Cis called a semi-bare
point if

1) � is on the boundary of a circular disc C
2) The circular disc C contains no there points of F

De�nition 3.4.3 If C is a closed convex subset of the complex plane, then
C has a corner with vertex � if

1) � 2 C
2) if C is contained in an angle with vertex at � and magnitude less than

� radians

Lemma 3.4.4 Let T 2 B (T ) and

(i) 1 2 W (T )
(ii) w (T ) = 1
Then

1 2 P� (Re (T ))
Proof.

W (ReT ) =

��
1

2
(T + T �)x; x

�
: kxk = 1

�
= W (ReT ) =

�
1

2
hTx; xi+ 1

2
hT �x; xi : kxk = 1

�

=

�
1

2
hTx; xi+ 1

2
hx; Txi : kxk = 1

�
= fRe hTx; xi : kxk = 1g = Re(W (T ))
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i.e.
W (ReT ) = Re(W (T ))

hence
1 2 W (T ) =) 1 2 ReW (T ) =W (ReT )

Consequently,
1 = hReTx; xi

for some x 2 H with kxk = 1 this shows that

kReTx� xk2 = kReTxk2 � hReTx; xi � hx;ReTxi+ kxk2

= kReTxk2 � 1� 1 + 1

= kReTxk2 � 1

� kReTk2 kxk2 � 1 = kReTk2 � 1::::::::::::::::::: (2:20)
since

w (T ) = 1sup fj< Ty; y >: y 2 H and kyk = 1jg = 1

hence
j hTy; yij � 1

for all y 2 H satisfying kyk = 1 therefore,

j Re hTy; yij � 1

for all y 2 H satisfying
kyk = 1:

Since
h(ReT ) y; yi = Re hTy; yi

we get w (ReT ) = w (T ) hence

w (T ) = 1 =) w(ReT ) = 1
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Since ReT is a self-adjoint element in B (H) ;

kReTk = sup fh(ReT ) y; yi : y 2 H and kyk = 1g

= w (ReT ) = 1

Substituting in equation (2:20), we get

kReTx� xk = 0

that is,
ReTx = x

and this proves that 1 is an eigenvalue of ReT ,
i.e.

1 2 P� (ReT ) :

Theorem 3.4.5 If T 2 B (H) and � 2 W (T ) is a bare point of W (T );
then �

e�i�T + ei�T �
�
x =

�
e�i��+ ei��

�
x

for some x 2 H; kxk = 1 and 0 � � � 2�
Proof. Since � is a bare point of W (T ), we can �nd an r > 0 such that

W (T ) � fz : jz � ��j � rg

for some �� and
� 2 W (T ) \ jz � ��j = r

Let�� �� = rei�with 0 � � � 2� and

T1 = r
�1e�i� (T � ��I)

In this case, we see that W (T1) is contained in the closed unit disc,and if
x 2 H ,kxk = 1and� = hTx; xi ; we obtain

1 = hTx; xi 2W (T1)

and by lemma 10
1

2
(T1 + T

�
1 )x = x
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i.e. ReTx = x from the form of T1 it follows that

1

2
[r�1e�i� (T � ��I) + r�1ei� (T � ��I)�]x = x

and
1

2
[e�i�T + ei�T �]x =

1

2
[e�i��x+ ei��x]x

and the theorem is proved. An interesting result was proved by D.F Donoghue
Jr.(1957)

Theorem 3.4.6 If T 2 B (T ) and � 2 W (T ) and is a vertex of a corner
of W (T ); then � is an eigenvalue of T . if � is just a vertex of the corner of
W (T ) ; then � 2 � (T )

Proof. By theorem 1 (i) we may suppose that � = 0 and that there exists
a � > 0 such that

Re(W
�
ei�
�
) � R+ (�� � � � �) :::::::::::::: (2:21)

since
hSx; xi = 2Re hTx; xi

It follows that from 2.21 that W (S) � R+and hence S � 0 since 0 2 W (T ),
there exists a sequence (xn) of unit vectors such that

limn!1 hTxn; xni = 0

by lemma 1 (see (2.21)), we have

kSxnk2 � w (S) hSxn; xni

and hence s� limSxn = 0, that is

s� lim (T + T �)xn = 0

by lemma (2.21), we may replace T by ei�T with �� � � � � and so,

s� lim
n!1

�
ei�T + e�i� T �

�
xn = 0
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for all such � therefore s� lim
n!1

Txn = 0 thus

0 2 � (T ) � � (T )

if also 0 2 W (T ) ; the sequence (xn) is replaced by x with kxk = 1 and
hTx; xi = 0. Then we get

sx = 0

and hence Tx = 0 therefore this shows that

0 2 P� (T )

alternatively, if � is the vertex of a corner of W (T ); then � is a bare point
of this set, hence we can �nd positive numbers r1 and r2 and two complex
numbers a� and b� such that

a� 6= b�
and

W (T ) � fz : jz � a�j � r1g = Dr1

W (T ) � fz : jz � b�j � r2g = Dr2
� 2 W (T ) \Dr1 \Dr2 as in the proof of theorem 15, we �nd �1 and �2

such that �1, �2 2 (0; 2�) ;

j�1 � �2j < �
1

2
[e�i�jT + ei�jT �] =

1

2
[e�i�j�+ ei�j�]x (j = 1; 2)

which gives
1

2
[e�2i�1 � e�2i�2 ]Tx = 1

2
[e�2i�1 � e�2i�2 ]�x

and since�1 6= �2; it follows that Tx = �x:

Theorem 3.4.7 If T 2 B (H) is a compact operator and 0 2 W (T ) is the
vertex of a corner of W (T ), then 0 2 P� (T )

Proof. Since 0 2 W (T ) and T is compact, by theorem 13 we see that it was
shown that if T 2 B (T ) and is a compact operator and 0 2 W (T ) ; then
W (T ) is a closed set. So our W (T ) here is closed, theorem 17 showed that
if � 2 W (T ) and is a vertex of a corner of W (T ) ; then � is an eigenvalue.
Thus in this case our � is 0 hence 0 is an eigenvalue of T

=) 0 2 P� (T ) :
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Corollary 3.4.8 Let T 2 B (H) and W (T ) be a closed polygonal region,
then

conv� (T ) =W (T )

Proof. If f�ig are the vertices of the convex polygonal region, the �i are
eigenvalues and thus

conv� (T ) � W (T ) =W (T )

since the reverse inclusion is true for all operators, the corollary follows.
In the next corollary, we give a necessary and su¢ cient condition for a closed
polygonal region to be the numerical range of a bounded linear operator on
�nite dimensional space.

Corollary 3.4.9 If C is a closed polygonal region with M vertices, then C
is the numerical range of an operator on a �nite dimensional Hilbert space
H of dimension n if and only if M � n:

Proof. If C is the numerical range which is a closed polygonal region with
vertices �1; :::; �m; then from theorem 16, it was shown that if � 2 W (T ) and
is a vertex of the corner of W (T ); then � is an eigenvalue of T . This implies
that in our case, each �i is an eigenvalue for T and this clearly implies

M � n

for T can have at most n distinct eigenvalues. Conversely, if �1; :::; �m are
the vertices of a polygonal region C, then the normal operator with the n�n
matrix [aij]; where

aij =

(
�i�ij; 1 � i �M

0 ,M < i � n

)
has the property that W (T ) = C:Here �ij is the Kronecker delta.
We can obtain an extension of these results using the notion of semi-bare

point. It is easy to see that every barepoint is a semibare point.
We extend theorem 15 to the case of a semibare.

Theorem 3.4.10 If T 2 B (T ) and � 2 W (T ) is a semibare point ofW (T ) ;
then

[e�i�T + ei�T �]x = [e�i��+ ei��]x

for some x 2 H and � 2 [0; 2�]:
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Proof. Since � is a semibare point of W (T ), there exists r > 0 and a� 2 C
such that

dist (a�;W (T )) = r

and
W (T ) \ fz\ : jz � a�j = rg = f�g

Let �� a� = rei� and consider the operator T

1 = r
�1e�i� (T � a�I)

In this case
W (T1) =

�
r�1e�i�[hTx; xi � a�] : kxk = 1

	
which shows that W (T1)is contained in the unit disc. also, for

� = hTx; xi ; 1 2 W (T1)

and lemma 10 implies that.

2 ReT1x = x

as in theorem 15;we obtain our assertion.
using this result we can generalize the result obtained in theorem 16.

Theorem 3.4.11 Let T 2 B (H) and � 2 W (T ) be a semibare point of
W (T ) ; then � is an eigenvalue of T

Proof. Since � is a semibare point of W (T ), we can �nd positive numbers
r1 and r2 and two complex numbers a� and b� such that

W (T ) \ fz : jz � a�j < r1g = f�g

W (T ) \ fz : jz � b�j < r2g = f�g
we can �nd �i 2 [0; 2�] such that

1

2
[e�i�jT + ei�jT �]x =

1

2
[e�i�j�+ ei�j�]x; (j = 1; 2)

and since �1 6= �2; we obtain

Tx = �x: =) �

is an eigenvalue of T .
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Chapter 4

Conclusion and summary

The conclusions made about the Numerical range are arrived at from the
illustrations and the characterization of the research carried out. In the �rst
place the main goal was to study the characterization of the numerical range
of bounded linear operators. The closure of closure of the numerical range a
part from including the spectrum of the operator turns out to be a complex
subset of the complex plane. This is a result that was done by Toeplitz
Hausdor¤.

Theorem 4.0.12 Toeplitz-Hausdor¤ :The numerical range W (T ) of an
operator T is a convex set in the complex plane.

This shows that apart from including the spectrum of the operator, the
closure of the numerical range turns out to be a convex subset of the complex
plane.
Now, for T 2 B(H) the spectrum �(T ) is compact subset of C, a non

trivial fact of �nite dimension Euclidian geometry is that the convex hull of a
compact set is closed. The most useful formulation of this fact for the plane
C is that the convex hull of a compact set is the intersection of all the closed
half-planes that include it.

Also the inclusion of the origin is a necessary and su¢ cient condition
for the numerical range to be closed. The numerical range W (T ) of an
operator T is not generally closed. In the �nite dimensional case, however,
the numerical range of an operator is a continuos image of a compact set.
The unit sphere

S(H) = fx : kxk = 1g
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thus it is necessarily a compact subset of C and is therefor closed. The
theorem used to arrive at is:

Theorem 4.0.13 If T 2 B(H) is a compact operator and 0 2 W (T ); then
W (T ) is a closed set.

It follows from the theorem that if � 2 W (T ) such that j�j = kTk and
if � is not an eigenvalue of T , and in particular if T has no eigen values
then � does not belong to W (T ). In view of this remark it easy to construct
examples of operators whose numerical range is not closed.
It follows that if a normal operator has su¢ ciently many eigenvalues to

approximate its norm, but does not have one whose modulus is as large as
the norm, then its numerical range will not be closed. A concrete example is
provided by a diagonal operator such that the modulus of the diagonal term
does not attain its supremum.
Now if x� = 0; then x = 0, otherwise, a neccesary and su¢ cient condition

that the resulting X 0
ns be the coordinates of a vector that is, they may be

square summable and hence x 2 L2 is j�j < 1: So each � in the open disc of
C is a simple eigenvalue of U�, that is each eigenvalue is of multiplicity 1. It
therefore follows that the open unit disc f� : j�j < 1g is contained inW (U�):
Since W (U�) is always

W (U�)(= � : � 2 W (U)

It follows that the open unit disc is contained in W (U).
Since U has no eigenvalues, implies thatW (U) cannot have. It is contains

any number of modulus 1. Hence W (U) equals the open unit disc, we note
that the number 0 plays a special role with respect to the spectrum of a
compact operator. It is remarkable that it also plays a special role in regard
to the numerical range of a compact operator, that is why it gives a su¢ cient
condition for an operator to have a closed numerical range.

One of the other major task is to show that the numerical range of an
operator on a 2-dimensional complex plane is, in general an ellipse. Besides
giving a set inside which the point spectrum must lie, the numerical range
can be used to prove that certain points are eigenvalues of the operator in
the context. Hence we proved a useful general lemma about W (T ) where T
is any two-by-two matrix.
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Lemma 4.0.14 Let T be a linear operator on a two-dimensional Hilbert
space H2: If the matrix of T (which is obviously a 2 � 2 matrix. Has dis-
tinct eigenvalues �1 and �2 and the corresponding eigenvectors x1 and x2 so
normalized that

kx1k = kx2k = 1

ThenW (T ) is a closed elliptical disc with foci at �1and �2, if r = jhx1; x2ij
and � =

p
1� r2; then the minor axis is rj�1��2j

�
and major axis is j�1��2j

�

If T has only one eigenvalue �; then W (T ) is the (circular) disc with
center � and radius.

1

2
kT � �Ik :

It is well known that the boundary w (T ) being a convex function, is
di¤erentiable except perhaps at an utmost countable set of points. Let � be
a point of non-di¤erentiability and x, kxk = 1; such that

� = hTx; xi

also, at � there exists a left and right tangents such that the angle between
these tangents is smaller than �: Let Y be arbitrary in H and Px;y be the
orthogonal projector on H onto the linear subspace [fx; yg]. The operator

T1 = Px;yTPx;y

has a closed elliptical disc as its numerical range,and since no circle contained
in w (T ) can pass through �; it follows that the ellipse w (T1) is a line segment
or a point, thus � is an eigenvalue with x as an eigenvector. This is actually
a proof to the result:

Theorem 4.0.15 Let T 2 B (H) and W (T ) be a closed set, every point �
in the boundary of w(T ) at which the boundary is not a di¤erential arc is an
eigenvalue for T:

The numerical range of an operator T can be regarded as the one-dimensional
course of a multi-dimensional concept. To see how that goes we see that an
orthogonal projector P of rank 1 can be expressed in terms of a unit vector
x in its range:

Py = hy; xix
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for all y 2 H; x 2 Rp and kxk = 1: If T 2 B (H) ; then PTP is an
operator of rank 1, and therefore a �nite-dimensional concept such as trace
makes sense for it. The trace of PTP can be computed by �nding the one-
by-one matrix of the restriction of PTP to the range of P , with respect to the
one-element basis fxg, since px = x, the value of that trace is

hPTPx; xi = hTPx; Pxi = hTx; xi

These remarks can be summarized as follows: W (T ) is equal to the
set of all complex numbers of the form trPTP , where P varies over all
projections of rank 1, replace 1 by an arbitrary positive integer k, and obtain
the k�numerical range of T , in symbols Wk (T ) ; the ordinary numerical
range W (T ) is the k�numerical range with k = 1
For each set M of complex numbers and each positive number 2 :If M

and N are compact sets, the Hausdor¤ distance d(M;N) between them is
the in�mum of all positive numbers 2 such that both

M � N + (2) and N �M + (2)

Since the Hausdor¤ metric is de�ned for compact sets, we use W and
not W . In what sense is the numerical range a continuous function of its
argument? This question however has many interpretations as there are
topologies for operators.
Is W weakly continuous? Strongly? Uniformly?.
The only thing that is immediate obvious is that if W is continuous with

respect to any topology, then so is W , and, consequently, if W is discontin-
uous, then so is W:

Theorem 4.0.16 The function W is continuous with respect to uniform
(norm) topology; if the underlying Hilbert space is in�nite-dimensional, then
the function W is discontinuous with respect to the strong topology and hence
with respect to the weak topology.

Lastly it is shown that some "special" points on the boundary of the
numerical range turn out to be eigenvalues. This is realized by the result
that:

Theorem 4.0.17 Let T 2 B (H) and � 2 W (T ) be a semibare point of
W (T ) ; then � is an eigenvalue of T
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So all our goals and objectives of the study are achieved and even some
more interesting questions came up which opens up this area for further
research work in operator theory. So this area generally is rich with many
sections of further research work to be done.
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