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A b stra c t

Popular models such as Black-Scholes-Merton (BSM73) lack most of empirically found stylized 
features of financial data, such as volatility clustering, leptokurtic nature of log returns, joint 
covariance structure and aggregational Gaussianity, hence it may not consistently price all 
the European and exotic options that are quoted in one specific market. Such simplifying 
assumptions in real financial markets, translate to the implied volatility curves typically skewed, 
with smiley shapes or even more complex structures.

In this study, we model components of return distribution, assumed to be directed by a latent 
news process, in developed and emerging economies. We endeavor to identify stochastic pro
cesses that govern equity market indices as the underlying process, bearing in mind arithmetic 
Brownian motion of Louis Bachelier, geometric Brownian motion of Samuelson, exponential 
Levy, binomial trees, pentanoinial lattices, Duan GARCH model and AR-PARCH-Levy model 
as some of the formulas which could be implemented for use universally.

Daily log returns assets from both markets ( developed and emerging ) are found to exhibit 
positive autocorrelation and changing variances. Possibility of option pricing under linear 
autoregressive power ARCH type dynamics and conditional leptokurtic residuals of the un
derlying process is investigated and AR APARCH Levy filter model developed. Further, the 
unconditional variance of the AR APARCH Levy model under the local risk neutral valuation 
relationship equivalent measure is formulated.

Mean mixture distribution, here termed the generalized hyperbolic distribution and some of 
its subclasses, such as normal inverse Gaussian, hyperbolic and variance gamma distributions, 
are used to construct stochastic process for a strictly stationary filtered residuals. The need 
to study these distribution(s) is to accommodate certain frequently observed stylistic facts of 
daily log returns, ranging from temporal joint dependance structures to the presence of jumps.

W hile Brownian motion generates a normal innovations, a non-gaussian innovations can be 
generated by a pure jump Levy process. To capture changing volatility, we apply ARCH type 
model. A time changed Levy process as used in variance gamma process was used to draw 
comparison in both economies. Developed markets were observed to have a Luster business 
clock, less or no autoregressive mean and pronounced changing correlated volatilities as opposed 
to emerging markets.

A closed-form option pricing model, APARCH Levy filter, which nests BSM73 model, minimizes 
the consistent volatility smiles” and incorporates most of the stylized features observed in de
veloped and emerging economies is constructed and presented. An extensive empirical analysis



based on S&P500 index options and Nairobi stock NSE20 index is used to compare performance 
of proposed model against BSM73 and GARCH option pricing model of Duan 1995. We explore 
the application of APARCH Levy filter model to other types of exotic options such as lookback 
options and arithmetic Asian type options.
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Chapter 1

In tro d u c tio n

The whole thesis consists of six chapters apart from the introduction and conclusions chapter. 
Initially, each of these chapters were meant to be separate articles, as a result., there are many 
repetitions especially definitions, probability density functions and kernel densities which appear 
across the chapters.

Throughout this thesis we use the term asset to describe any financial object whose value is 
known at present but is liable to change in future. We further focus on shares or equities 
transacted in an emerging economy and developed stock markets respectively. At times the 
price of equities fluctuate, exposing the owner to a risk of loosing his or her financial position 
and vise versa. However such a negative drop in share prices could be minimized if call options 
were in place. Our main objective is to develop a valuation formulae for plain vanilla and exotic 
options. This will require knowledge of stochastic process such as Brownian motion and Levy 
process.

Let Cl be a given set, 3  a o--algebra on Cl, then the pair (Cl, 3) is called a measurable space, and 
the triple (Cl, 3, IP) is called a probability space.

1.1 S tochastic  process

A stochastic process is a parameterized collection of random variables {A(}tci defined on a 
probability space (Cl, 3, F). A stochastic process is said to be continuous in probability (stochas
tically continuous) if for every t > 0 and £ :

lini P (|X 5 -  X t \ > s ) = 0.s—



1.1.1 F i l t ra t io n

An increasing family of er-fields (T/)te[0,r] : Vf > s > 0,J,S C C J  is called a filtration 
or information flow on f2,T, P. We can interpret rJ t as the information known at time t. T/ 
increases as time progresses.

1.1.2 N o n -a n tic ip a t in g  P ro ce ss

A stochastic process (X£)te|0,r) is said to be non-anticipating (adapted) with respect to the 
filtration {3rt)te.[o.r\ or T/-adapted if the value of A'( is revealed at time t for each t G [0,71.

1.1.3 M a r tin g a le s

Consider a trend of a time series of a stochastic process. A stochastic process is said to be 
a martingale if its time series have no trend. A process with increasing trend is called a 
submartingale and a process with decreasing trend is called a supermartingale.

Definition 1.1.1. Consider a probability space (D,T,P) with a filtration (information flow) 

jFt. A cadlag process (Xt)t^\u,rr\ is said to be a martingale with respect to its filtration IT/ and 

the probability measure P if X  is nonanticipating (adapted to Tt), E[|Xt |’ is finite for any 

t G [0, T] and

Vs > t,E[Xs\Jt] = X t .

The best prediction of a martingale’s future value is its present value. The definition of mar
tingale makes sense only when the underlying probability measure P and the information flow 
(?t 'he[o,T] have been specified. Note that the stock price discounted by the risk free interest rate 

aS'/+a is not a martingale under P. But interestingly, non-martingales can be converted to 
martingales by changing the probability measure.

1.2 B row nian m otion

Definition 1.2.1 (Brownian motion). A stochastic process D = {Bt,t > 0} is a standard 

Biownian motion on some probability space (V./J, P) if



1 Bo = 0

ii) B lias independent and stationary increments

iii) Bt+S — Bt is normally distributed with mean 0 and variance s.

Brownian motion is the basic example of a Levy process, moreover we will always work with 

natural filtration rJ /’ = {3^,0 < t < T} of B. To this end, Brownian motion is adapted with 

respect to this filtration and that the increments Bt+S -  Bt are independent of cS t

1.2.1 L evy p ro cess

The term ’’Levy process” honors the work of the French mathematician Paid Levy who, al
though not alone in his contribution, played an instrumental role in bringing together an un
derstanding and characterization of process with independent increments.

Levy processes are defined as stochastically continuous processes with stationary and indepen
dent increments and can be viewed as analogues of random walks in continuous time. We state 
key notions and elementary properties of Levy processes.

Definition 1.2 .2 . A function /  : [0, T] —> R is said to be cadlag if it is right-continuous with 

left limits: for each t € [0, T] the

f ( t - ) =  l i m f(s) f ( t+ )=  bin f(s)
s— *t,s<t s—*t,s>t

exist and f(t)  = /(£+).

Remark 1.2.1. Any continuous function is cadlag but cadlag function can have discontinuities. 

A cadlag function /  can have at most a countable number of discontinuities '■ {t & [0, T], f(t) ^  

f ( t —)} is finite or countable.

D efinition 1.2.3. A cadlag stochastic process (Lt)t>o on (Q,T, P) with values in R such that

La — 0 is called a Levy process if it possesses the following properties,



i) independent increments: for every increasing sequence of times to, ...,tn the random vari

able Lto, Ltj -  Lt(J, Ltu — Ltj,_1 are independent,

ii) stationary increments: the law of Ll+h -  Lt does not depend on t.

iii) Stochastic continuity: Ve > 0, lim/l_o P(|£t+/i — Lt | > e) = 0

In particular. Levy processes include many important processes as special cases, e.g. Brownian 
motion, the Poisson process, stable and self-decomposable processes and subordinators. There
fore Levy processes provide powerful modeling tools which are applied in various fields like 
econometrics, finance, telecommunications and physics. For more general treatment of Levy 
processes see Sato (1999).

Definition 1.2.4. A stochastic process is said to be self-similar if there exists H > 0 such that 

for any scaling factor c > 0, the process (Xct)t>o and {cHX t)t>o have the same law

H is called the self similar exponent of the process X.  Browian motion (without drift) is an 

example of self similar process with self similarity exponent II — 1/2.

Choose c -  l/ t ,  Vf > 0, X t = t"  X So the distribution of X t for any t, is completely determined 
by the distribution X\

for any integer n > 2, there exist n i.i.d. random variables Y\ , ..., Yn such that Y\ + ... -I- Yn has 

the distribution F.

{Xct)t> o — {cH Xt)t> o ( 1.2 . 1)

Ft(x) = n t "  X i < x ) ( 1.2 .2 )

(1.2.3)

Definition 1.2.5. A probability distribution function F on M is said to be infinite divisible if

Thus, if X  -  {X(t)}t>o is a Levy process, for any t > 0 the distribution of X(t)  is infinitely 
divisible. In view of the above definition, one may establish whether a given random variable 
has infinitely divisible distribution via its characteristic exponent and the exponent is best 
expressed by Levy-Khintchine formula.

Theorem  1.2.1. A probability law // of a real valued random variable is infinitely divisible with 

characteristic exponent T

far 0 € R (1-2.4)



if and only if there exist a tr iple (a, a, II) where a G R, a > 0 ant/ n  is a measure concentrated 

on R\{0} satisfying fR min{l, :r2}II(d:r) < oo such that

— e + iOxl^xi<l))U(dx). (1.2.5)

Proof:
For an overview and furt her exposition of Levy processes we refer to Sato (1999). In conclusion, 
any Levy process has the property that for all t > 0

where 'L(^) := XV\(6) is the characteristic exponent of X\  which has an infinitely divisible 
distribution.

In this study, the density of Levy increments were captured by fitting Generalized hyperbolic 
distribution and its subclasses like Variance Gamma (VG) distribution.

1.2.2 T h e  G e n e ra liz e d  H y p e rb o lic  d is t r ib u t io n

In this section we provide definition of the Generalized Hyperbolic distribution (GH) along with 
its classical representation as a variance mean mixture of the normal with Generalized Inverse 
Gaussian (GIG) distribution.

Definition 1.2 .6 . A random variable W  is said to have a generalized inverse gaussian distri

bution if its probability density function is given by

E?{ei0Xt) = e~t<l,{0)

where K\  is a modified Bessel function of the third kind with the index A, i.e.,

( 1.2 .6)

and the parameters A 6 R,7  > 0, <5 > 0 such that 7 ^  6 if either of them takes the value 

AVe note that if 7 > 0 and S > 0 then

e zero.



Definition 1.2.7. (Normal Mean-Variance Mixture)

A random variable Y  is said to have a normal mean-variance distribution if

Y = fi + m  + a V W z

where Z  ~  A^O,1), IF is a positive random variable independent of Z; // , 0 and a > 0. From 

the definition, the conditional distribution of Y  given IF is normal with mean // + 0\V and 

variance a2IF.

Note that, if the mixture variable W  is GIG(A,7 ,<5) distributed, then Y  is a Generalized 
Hyperbolic distribution with the (A,a,0,S,ft) parametrization, where a 2 = y2 + 02.

The probability density function of the one-dimensional Generalized Hyperbolic distribution is 
given by the following:

fGH{y\ot,(3,6,n,\)
\Z2nK\(6y) (y/S2 + {y -  fi)2/a)?~x

(1.2.7)

According to Barndorff-Nielsen (1977), the parameters domain is given bv

a  > 0 a 2 > 02 S > 0 for A > 0,

a > 0 a 2 > 02 S > 0 for A = 0,

a > 0

CNAl
CN S > 0 for A < 0.

In all cases, ft is the location parameter and can take any real value, S is a scale parameter; cv 
and 0 determine the distribution shape and A defines the subclasses of GH and is related to 
the tail flatness.
Characteristic function of the GH is given by

<Pg h (u) = elu/J ( —
2 _ p2 \ A/ 2 K \  (̂ 6 y/or -  (0 + iu)2^

-  (0 + iu)2 J Rx

while mean and variance are given respectively by the followings

^A+l(0
£ 0 )  = , ,+  ^ - / P  /v, ( 0

and

Var(Y) = 62 I 4- — -
C^a(C) ct2 - 0 2

where C = Sy/a2 -  32, then

A'a+2(C) _ (  j^X+}{0\
a'a(0  V Aa(0  )

( 1.2.8)

(1.2.9)

( 1.2 . 10)

X  ~  G H ( - - , a , 0 ,  S, //) Normal-Inverse Gaussian distribution 

A” ~  GH(1, a, 0, S, ft) Hyperbolic distribution 

X  ~  GH(\,  o, 0 ,0, ft) Variance Gamma distribution.

( 1.2 .11)

( 1.2 .12)



Param eterizations

Although the parametrization (a,f3,6,n, A) is mostly used in literature we have other parame
terization like (x, £, <5, n) which is invariant under the transformation of the scale and location 
parameters with £ =  (1 4- Sy/a2 -  I32)~l/2 and x = £,(3/a. Hu (2005) and McNeil et al. (2005) 
used the following parameterizations (A, x, Vb/h <?, 7 ) where

A = A, (3 = A j, S = a^/x, a = y  Aj + (32 (1.2.13)

The parametrization (A, o, /.i, a, 7 ), is derived if we set

a = v/VOc, and . /A  ̂  A 11A—} 1 = 1, which implies , ^  = a  — , , \  = a — 
V A a

_ A'a+i (o) _ K\{a)
A'a(o) K\+i{a)

similar parametrization is used in ghyp R package.

The Variance Gam m a (VG) d istribution

The Variance Gamma VG(C,G,M) distribution (see Carr and Madan (1998), Carr et al. (2002) 
for more details) on R can be constructed as the difference of two gamma random variables. 
Suppose that X  ~  T(C, M) and Y  ~ T(C, G) are random variables and that they are indepen
dent of each other. Then

X  -  Y  ~  VG{C,G, M).

Note that the characteristic functions of X  and Y  are given by

<t>x{u) =  (1 -  iu/M)~c , (j)-y(u) =  (1 + iu/G)~c (1.2.14)

Summing the two independent random variables, the resulting characteristic function gives,

<Px - y {u) = (1 -  iu/M)~c ( 1 -I- iu/G)
GM

GM + (M -  G)iu + u2

E? exp[mV] =  4)v c (u:<t, l>,6)

r c (1.2.15)

(1.2.16)

variate with mean 0, and a
= l/u  and (3 = \/u. Applying
v, 0) distribution is given by

(1.2.17)
-\/u (1.2.18)

where

C

G

M

I/*.

> 0 ,

> 0.



G A R C H  m odels

Let £F*,P), where (?t)te[o,T]! be a filtered probability space. Assume that time series
(Xt)tez ls adapted to some filtration rJ t = <t({X.s : s < t}). The process (X t)tez is an
ARCH(p) process if it is strictly stationary and if it satisfies the equations

Xt =  otZt, Zt ~i.i.d(0,1),
p

af = Qo + ^ 2  a iXt-n  Qo > 0 ,a, > 0, i = 1, ...,p. (1.2.19)
t=i

for all t e Z and some strictly positive -valued process (<rt)tez

The process (Xt)teZ is a GARCH(p.q) process if it is strictly stationary and if it satisfies,

X t

Var(Xt\?t-i)
Var{Xt\3rt-i)

(ttZf , Zt ~  i.i.d(0,1)
p <i

ao + ^ 2  <*iXf_t + ^ 2  > 0, a, > 0, > 0. and
i=i j =l

of and Zt = X t/(Jt is i.i.d. (Strong GARCH),  (1.2.20) 

of (semi — Strong GARCH),

for all t. € Z and some strictly positive valued process (cq)tez and Yli=\ + Yl'j=\ 0j < 1

AR Asym m etric Power ARCH

The (Autoregressive Asymmetric Power ARC'H) AR(p)-APARCH(m,n) model of Ding et al. 
(1993) can be written as follows

p

Xt = £ t =(Tt.Zt, Zt ~  i.i.d(0,1)
k= 1

771 71

rrf =  Qf() + a*(|£ t-i| -  7i£«-i)<5 + (1.2.21)
t=i j =i

subject to Qo > 0, > 0, aj > 0, —1 < 7 < 1, for i = 1,..., <y ,fij > 0, forj  — 1,..., n. and

^ + * > < 1 .  w h e r e  k j  =  Q j ( \ £ t - j \  -  (1.2.22)
j  i

The model introduces a Box-Cox power transformation on the conditional standard deviation 
process and on the asymmetric innovations, ai(|£t_,| — 7t£t- i)S, adds flexibility of a varying 
exponent with an asymmetry coefficient to take the leverage effect into account. The properties 
of APARCH model have been studied ( see for example He and Terasvirta (1999) and Sebastien 
(2004)). The model nests seven other ARCH extensions as special cases, of which we list six 
models. i)

i) ARCH model of Engle (1982) when S = 2, 7, and = 0 V i&zj. 

fi) Bollerslev (1986) GARCH model when <5 = 2, and 7, = 0



iii) G.JR-GARCH Model of Glosten et al. (1993) when 8 = 2

iv) TARCH Model of Zakoian (1994) when 8 = 1

v) The Log-ARCH Model of Geweke (1986) and Pentula (1986) when d' —» 0

vi) The NARCH of Higgins and Bera (1992) when 7* = 0(?‘ — 1, ...,f/) and fij = 0(j = 1, ...,p)

Note that EP(X£\ 1 i - \ ) = pt denote the conditional mean given the information set. fS t- 1 avail
able at time t — 1. The innovation process for the conditional mean is then given by st — X t — pt 
with corresponding unconditional variance a2 and zero unconditional mean. The conditional 
variance is defined as Var(X*|T£_i) = Vart_i(X£) = at.

1.3 D ifferent T ypes of O ptions

Options are financial contracts that give the holder certain rights. As a holder you buy the 
rights stipulated in the contract. It can be the right to buy or sell financial contract, or else 
it can be the right to exchange one commodity for another. There are many different kinds of 
contracts on any underlying asset. Two of the simplest types of contracts that are traded are 
European options and American options. European call option gives the holder the right (but 
not the obligation) to purchase from the writer a prescribed asset for a prescribed price at a 
prescribed time in the future.

American options, gives the holder the right to buy/sell the underlying asset at any time before 
the time to maturity for a certain price.

There are numerous exotic options traded, like Asian, lookback, Parsian, Bermudan and so on. 
The buyer of the option pays the seller an amount C(t,s) (the premium) at time t = 0, in 
return for the right, but not the obligation to buy the stock at time t + T  at a price K  (the 
exercise price or strike) which is set when the contract is signed at time t = 0. The profit linked 
to a call is unlimited, and the losses are limited to C(t,s) where s = S(t) is the current stock 
price.

The valuation of an option, depends on determining the price C(t,s). BSM73 formula and its 
binomial counterpart are the most used probability model/tool in every day use. Literally tens 
of thousands of people, including traders, market makers, and salespeople, use option formulas 
as documented in Haug (2007), several times a day (see for example Figure 1.1) as they trade in 
derivatives. Moreover, we develop stochastic volatility valuation model that captures important 
features of equity return process commonly overlooked by BSM73 model.



1.4 Black Scholes and  M erton  (BSM 73) M odel

In 1973, Fischer Black and Myron Scholes derived a partial differential equation for option 
prices, when asset prices behave according to the geometric Brownian motion. The standard 
BSM73 model of the financial market consists of two assets; a bond 3  and a stock S-with 
dynamics given by

Here B is a Brownian process, r G M+ is the short rate of interest, o G E is the local mean 
of return of 5 and a G R is the volatility of S'. The stock price in a risk neutral world moves 
according to a geometric Brownian motion, that is

The stochastic process (1.4.3) is a specific case of a diffusive process. B(t) is a (Wiener) standard 
Brownian process defined by dB(t.) ~ N(0,dt) and the terms rS(t) and aS(t) are known as 
drift and diffusion of process. Technically, a stochastic process in continuous time S(t.),t < T  
is defined with respect to a filtered probability space (f2,T, Cft,P) where rJ t = a(S(u)\u < t) is 
the smallest a —field containing sets of the form {a < S(u) < 6},0 < u < t : more intuitively 

represents the amount of information available at time t.

The increasing er-fields {Tt} form a so called filtration:

To C r5\ C ... C 7 t :

Not only is the filtration increasing, but also contains all the events with zero measure and these 
are typically referred to as "the usual assumptions”. The increasing property corresponds to the 
fact that at least in financial applications the amount of information is continuously increasing 
as time elapses.

Clearly S(T) can be written in a more explicit form

d3(t) = r3{t)dt
d.S(t) = a(t, S(t))S(t)dt + cr(t, S(t))S(t)dB(t).

(1.4.1)

(1.4.2)

dS(t) = S(t)rdt + S{t)<rdB(t),S(0) /  0. (1.4.3)

In order to calculate the value of the option, we calculate the expected value of the payoff and 
discount it using a risk-free rate.

1-5 O ption  P ric ing

By the risk-neutral valuation, the price C{K,t) at a time t, of a contingent claim with payoff 
< u < T}) is given by

C{K, t) = exp ( -(T  -  t)r) EQ [G{{St, 0 < t < T } ) } ,  t e [0,T] (1.5.1)(1.5.1)

i n



If the payoff function depends on time T, value of the stock, i.e. G({St,0 < t < T}) = G(St ), 
then

C(K,t) = exp(—(T — t)r)E®G(ST),

= exp( - (T  -  t)r)EQG ( s 0 exp(r -  )(T -  t.) + aBt ĵ ,

= exp(—(T -  t)r) j + G ^ S 0ex p [ r - - ) ( T - t )  + aBt

(1.5.2)

(1.5.3)

fBt (x; 0, (T -  t))dx

A European call on a stock with strike I\ and maturity T

G({St)0 < t  <T})  =

C(K, T)

where d\ =

and d-2 =

G(St )

(St -  K )+

exp(-(T -  t)r) I (ST -  K )+f Bt(x)dx
J — OO

So$(di) -  I< exp(~r(T -  t))$(d2), 
log(S’0/A-) + ( r  + f X T - Q  

frv /r^T  
r/j — (t\JT — t

(1.5,1)

(1.5.5)

(1.5.6)

(1.5.7)

(1.5.8)

The pricing formulas obtained in Black and Scholes (1973) represented a major breakthrough 
in understanding financial derivatives, to such an extent that financial institutions and traders 
immediately adopted the new methodology.

We shall focus our attention on statistical modeling of data observed in stock markets (see for 
example Figurel.l), and analyze it with a view towards improving at-the-money bias of BSM73 
model.

1.6 Shortfalls of BSM 73 M odel

The influence of the BSM73 model is best shown by traders quoting option contracts using their 
implied volatilities. Yet its influence extends beyond the traditional use of hedging, arbitrage 
and speculation.

But, despite its popularity, BSM73 has some serious systematic biases. For example, when 
one plots implied volatilities of exchange-traded options against their exercise prices for a fixed 
maturity, the curve is typically convex and is known as the ”smile”, see Eberlein and Keller 
(1995), Carr and Madan (1998), Barndorff-Nielsen (1998), Carr et al. (2002) and references 
therein. While the theoretical prediction of the model suggests a horizontal line, the reality 
is far from it. If BSM73 model is a good description of market-pricing behavior, the implied
volatility for any exercise price, as a function of the option maturity, must also be a horizontal 
line.

While BSM73 model is the industry benchmark for options, empirical studies reveal that the
normality of the log-returns, as assumed by BSM73, cannot capture features like heavy tails and
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Figure 1.1: S&P500 European call option So=800.3, r=2.8%, T=81 days as on November 

21,2008

asymmetries observed in market-data log return densities. In addition, a numerical inversion 
of the BSM73 formula based on data from different strikes and fixed maturity resembles a skew 
or a smile (Carr et al. (2003), Schoutens (2003)).

In line with the above stated drawbacks of the model, the critical task is fitting the smile so 
that a continuum of a call option prices in the exercise price and maturity dimension can be 
generated. Let us consider basic properties of log returns of any underlying asset.

1-6.1 R e tu rn s

Let the daily log returns A' be defined as X t = InS(t) — ln5(< — 1). The skewness (measures 
the degree to which a distribution is asymmetric) is defined to be the ratio the third moment 
about the mean, to the third power of standard deviation

skewness
E (X - / / .x )3
Var(X)3/2

( 1.6 . 1)



The behavior and peakedness of the distribution are measured by kurtosis, which is defined by

kurtosis = ^  \ (1.6.2)
[Kar(X)]2  ̂ ^

for the normal distribution (mesokurtic), the kurtosis is 3. If daily log returns are normally 
distributed, we expect skewness and kurtosis to be 0 and 3 respectively. However, empirical 
evidence as reported in table 1.1 does not concur with the model assumption(s).

Table 1.1: Basic statistics, i.e. mean, standard deviation, skewness and kurtosis of daily log 

returns major indices in developed and emerging market (Kenya-NSE20)

Index Years n mean (A') st.dev (s) skewness kurtosis

S&P500 1990-2008 4763 0.0001 0.01112 -0.1928 12.7871

NDX100 1990-2008 1796 0.0003 0.01911 +0.0995 8.0454

DAX 1990-2008 1511 0.0002 0.01446 -0.1019 8.3366

CAC40 1990-2008 4729 0.0001 0.01392 -0.0658 7.9473

AEX 1990-2008 4101 0.0001 0.01418 -0.1767 9.9826

NSE20 1998-2007 2316 0.0001 0.00775 +0.0285 9.2279

RUT2000 1990-2008 4778 0.0002 0.01242 -0.5589 11.3834

1.6.2 Im p lied  v o la tility

Let C(t,s) be a European call option with strike K  and time to maturity T. We calculate a 
(volatility), the only free parameter a = a(K,T)  such that the theoretical price under BSM73 
model match the empirical one, sav Cmkt-

There is no closed formula to extract the implied volatility out of the call option price. One 
method to find numerically implied volatilities is the classical Newton-Rhapson iteration pro
cedure. Let Cm*.t be the market option price for a given strike K  and time to maturity T. Let 
a° = 6-2 be the initial value. If we denote an the value obtained after n iteration steps, and



the next value rrn+1 is given by

^Tl+l

where, C'(an) 

and d\

C(crn) -  Cmkkt
C'{an)

s 0Vfi>(d,)

( log(50/ / \ )  + (r + ^f)T 
\  (TnVr

where 6b is the current stock price, <I>(.r) is the cumulative probability distribution of standard 
normal random variable. Under the Black-Scholes model, all a's should be the same. It is 
clearlv observed that there is a huge variation in this volatility parameter both in strike and in 
time to maturity.

1.7 O bjectives

The objectives of this study are:-

(i) To identify the '’true” dynamics of the underlying asset process in developed and emerging 
economies.

(ii) To explore the dynamic response of volatilities of innovations.

(iii) To develop a pricing model that may be used to price financial derivatives in emerging 
and developed economies.

(iv) To minimize ( or eliminate or offer an explanation ) implied volatility smile or smirk.

1.8 L ite ra tu re  review

Option pricing theory has a long and illustrious history even before Bachelier (1900) publication. 
Thereafter, it underwent a revolutionary change in 1973. At that time, Black and Scholes 
(1973) presented the first complete satisfactory equilibrium option pricing model followed by 
Merton (1973) extending their model in several important ways. Later, Gox and Ross (1976) 
proposed jump process model as a special case of Black and Scholes model. Option valuation 
techniques have been extended to more realistic assumptions in a number of ways for the 
underlying stock processes (e.g. Rubinstein (1976), Cox et al. (1979), Carr and Wu (2004), 
Hull and White (1990), Derman and Kani (1994), Duan (1995), Eberlein and Keller (1995), 
Geman et al. (2001), Barndorff-Nielsen et al. (2002), Carr et al. (2003), Duan et al. (2006), 
Carr et al. (2007), Primbs et al. (2007) and many more).

A common assumption underlying most well known and widely used option pricing BSM73
niodel is that, the logarithm of stock price are normally distributed. An extensive empirical
iterature in finance has documented not only the presence of anomalies in BSM73 model, but



also the term structure of these anomalies (see for instance, the behavior of the volatility smile, 
riding on smile, and pricing with a smile which can be found in Dupire (1994). Duan (1996), 
Das and Sundaram (1999), Bringo and Mercurio (2000), Meziou (2004)).

Distributional assumptions concerning risky asset log returns play a key role in option pric
ing. According to research finding of Mandelbrot (1963), evidence indicates that the empirical 
distributions of daily stock returns differ significantly from the traditional Gaussian model. 
In search of satisfactory descriptive models for financial data, large number of distributions 
have been tried, see for example, Faina (1965), Press (1967), Praetz (1972), Clark (1973), 
Blattberg and Gonedes (1974), Bates (1983), Madan and Seneta (1990), Eberlein and Keller
(1995) , Hurst et al. (1997), Schoutens (2003), Lindberg (2008)), Barndorff-Nielsen (1997).

The deviations from normality become more severe when more frequent data are used to calcu
late stock returns. Various studies have shown that the normal distribution does not accurately 
describe observed stock return data. Over the past several decades, some stylized facts have 
emerged about the statistical behavior of speculative market returns such as aggregational 
Gaussianity, volatility clustering, etc see Rydberg (2000), Cont (2001), Tsay (2002). On the 
same note, most of the literature for example Eberlein and Keller (1995), Carr and Madan 
(1998), Barndorff-Nielsen (1998), Carr et al. (2002) and references therein, make a simplifying 
assumptions, that daily log returns can be modeled by exponential Levy processes, finding 
a number of explicit formulaes for pricing derivatives (see also Carr et al. (2003), Schoutens 
(2003), Carr and Wu (2004)) or modeling stock price process by a geometric Levy process 
(Chan (1999)) in exact analogy with the ubiquitous geometric Brownian motion model.

The presence of a greater degree of excess kurtosis (and possibly skewness) in unconditional 
returns distributions, and the presence of implied volatility smile in options data, confirm the 
presence of leptokurtie distribution inconsistent with assumed normality. Theoretical efforts in 
the literature addressing these anomalies have largely focused on two extensions of the BSM73 
model. Introducing jumps into the return process, and allowing volatility to be stochastic(see 
Merton (1976), Hull and White (1987), Stein and Stein (1991), Heston (1993), Bakshi et al. 
(1997), Duan et al. (2006)). The class of jump-diffusion models, augments BSM73 assumed 
risky asset with a Poisson-driven jump process.

There are two important directions in the literature regarding these type of stochastic volatil
ity models. Continuous-time stochastic volatility process represented in general by a bivariate 
diffusion process, and the discrete time autoregressive conditionally heteroscedastic (ARCH) 
model of Engle (1982) or its generalization (GARCH) as first defined by Bollerslev (1986). In 
the last few years, much interest has been given to the discrete-time GARCH option pricing 
models. The most important papers which study the empirical fitting of these model include 
Pagan and Schwert (1990), Glosten et al. (1993), Bollerslev et al. (1994). Option pricing in 
GARCH models has been typically done using the Local Risk Neutral Valuation Relationship 
(LRNYR.) pioneered by Duan (1995). The crucial assumptions in his construction are the con
ditional normality distribution of the asset returns under the underlying probability space and 
the invariance of the conditional volatility to the change of measure. The empirical performance 
of these normal option pricing models has been studied by many authors, for example Duan
(1996) , Hardle and Hafner (2000), Heston and Nandi (2000), Christoffersen and Jacobs (2004).

Lattices for option pricing were first introduced in 1979 in the pioneering work of Cox et al.



(1979). In particular, they used binomial lattice to model geometric Brownian motion and 
Rendleman and Bartter (1979) used binomial lattice to model exponential Poisson process. An 
attractive property of their model is that the binomial lattice for geometric Brownian motion 
is consistent with the standard Black and Scholes (1973) formula for European options. Due 
to simplicity and versatility of lattice models, a number of extensions to the basic model have 
been proposed, see Derman and Kani (1994), Ritchken and Trevor (1999), Yamada and Primbs 
(2001), Wu (2006) for example. Florescu and Viens (2008) use quadrinomial tree to model 
stochastic volatility in option pricing, while Primbs et al. (2007) price options with a pen- 
tanomial lattice. It is worthy noting that an efficient lattice method, may be signific antly faster 
than a Monte Carlo method for valuing some types of path dependent options.

1.9 P rob lem  form ulation

The premise that price movement in mature economies and associated emerging markets do 
not lend themselves easily to explanations currently offered by conventional capital theory. 
Standard models fail to reproduce observed prices of vanilla options because implied volatilities 
exhibit a term structure of smiles.

The presence of implied volatility, which is a moderately downward-sloping or U-shaped func
tion of the strike price, observed in international markets, suggests an inconsistency with 
Black and Scholes (1973) constant volatility assumption (see for example Constantinides et al. 
(2008)). According to BSM73 model, the behavior of a common stock is assumed to be de
scribed by the Geometric Brownian Motion. However in recent years, empirical evidence, has 
questioned the wisdom of such assumptions, particularly, in the context of emerging markets 
where stock returns are observed to exhibit non random walk behavior.

We seek to explore the dynamic response of volatilities of innovations, aimed at developing a 
model that may be used to construct pricing formulae for financial derivatives in emerging and 
developed economies. It is expected that the resulting model explains the significant deviation 
of observed European call values against BSM73 prices. See Figure 1.2 and Figure 1.4 for 
at-the-money problem and varying volatility respectively.

Moreover, our main focus will be on understanding the source of the ’’grimaced/smile of option" 
and endeavor to construct a. model as an alternative for option pricing in any economy (be it 
emerging or developed).

1.10 Significance of s tudy

be widely reported phenomena that the implied volatility is not constant as other parameters 
show that the BSM73 formulas fail to describe perfectly the option values that arise in the 
Market place. Many attempts have been made to ” fix” the nonconstant volatility discrepancy



in the Black-Scholes theory. A few of these have been successful to some degree, but none lead 
to the simple formulas and clear interpretations of the original work.

This study examines the evolution dynamics in emerging economies and developed economies 
as captured by stock markets index namely, Kenya (NSE20), Morroco (MASI), United States 
(S&P 500), United Kingdom(FTSElOO) and German (DAX 30).

For a newly established stock markets, the earning potential of a formerly state owned firm 
which has become listed as a result of privatization, cannot be measured or realized precisely. 
This is because the current price of the firm’s shares is generally different from its potential 
equilibrium value, so that in practice individuals buy and sell shares on the basis of estimates of 
the later. At any point in time, the price of the firm’s share represents the markets best guess 
of the equilibrium value in the new stock market. However, information on which to calculate 
estimates on new equilibrium value becomes more readily available as stock market matures.

To evaluate and understand non-random-walk behavior, we develop a stochastic price evolution 
model, namely APARCH-Levv Filter, which explains the randomness of the movements of stock 
prices slightly better. We further compare and contrast the prices of the proposed model and 
the Black and Scholes (1973) model and real market options data.

The role of a stock market in any economy may not be underestimated. Consequently, this 
study hopes to shed some light on the relationships between emerging and developed markets, 
especially to investors and policymakers. There has been a consistent flow of funds into these 
emerging financial markets as foreign participation in them continue to increase.
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Figuie 1.2: Black-Scholes-Merton model and GARCH model T  = 145 days, So = 800, r = 2.83
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Chapter 2

O ption  V aluation  in D eveloped

and E m erg ing  Econom ies:

E xponen tia l Levy m odel and  Fast

Fourier T ransform

Generalized Hyperbolic distribution, and some of it subclasses like normal, Hyperbolic and Vari
ance Gamma distributions are used to fit daily lay returns of eight listed companies in Nairobi 
Stock Exchange (NSE) and Montreal Exchange. EM-based ML estimation procedure is used 
to locate parameters of the model. Densities of simulated and empirical data and goodness of 
fit statistics of proposed distributions are compared to measure how well model fits the data. 
Lmpirical results show that Generalized Hyperbolic distribution seems to correct bias of DSM73 
normality assumption both in developed and emerging market. Doth markets seem to have dif
ferent stochastic times. However, there is no significant difference between BSM73 model and 
exponential Levy model using Fast Fourier Transform.

o n



2.1 In tro d u c tio n

The Black and Scholes (1973) and Merton (1973) methodology has become the dominant 
paradigm for valuing options and other derivatives. This method uses a delta hedging argument 
to value options based on the absence of arbitrage strategies that profit instantaneously.

Despite the success of the Black Scholes model on Brownian motion, there is a non negligible 
discrepancy between the model and the real market data. The model fails to reflect the stylized 
facts of equity log returns. In Cont (2001), an extended list of stylized features of financial 
data is given. Among the facts are: the asymmetric leptokurtic feature of financial data, i.e 
the returns distribution is not only skewed but heavy tailed: aggregational Gaussianity as time 
scale increases over returns; evidence of volatility clustering as opposed to the assumed constant 
volatility in the BSM73 model; and the presence of large fluctuations in price jumps and market 
crashes.

To incorporate the asymmetric leptokurtic features in asset pricing, Madan and Seneta (1990) 
studied time changed Brownian motion and Eberlein and Keller (1995) introduced Hyperbolic 
distribution to finance. Most of the Levy processes studied in literature attempt to explain asset 
returns behavior and correct the bias of the celebrated Black-Scholes model (see Carr and Wu 
(2004)). Among these models, we consider the generalized hyperbolic Levy motion and it 
subclasses; such as normal density, hyperbolic, variance gamma, skewed student t and normal 
inverse gaussian.

We focus our attention on the Generalized Hyperbolic (GH). Hyperbolic (HY) and Variance 
Gamma (VG) distributions. The Generalized Hyperbolic distribution was first introduced by 
Barndorff-Nielsen (1977) in the context of sand project, and later Eberlein and Keller (1995) 
applied the Hyperbolic distribution to price vanilla options based on German stocks using 
the Esscher transform. Asymmetric Variance Gamma process was introduced by Madan et al. 
(1998) as time-change Brownian motion.

In this chapter we fit generalized hyperbolic distributions and some of it subclasses like the 
hyperbolic and the variance gamma distributions of daily log returns of eight listed companies 
(four from each exchange) in M ontreal and Nairobi Stock Exchange. We will use kernel 
densities versus maximum likelihood parameter estimates of hypothesized normal, GH. HY, 
VG and QQ plot, frequency distributions and Kolmogorov distance to compare goodness of fit 
of the selected distributions. We apply Mean-Correcting Martingale measure (see for example 
Schoutens (2003)) as a risk neutral measure to price a European type option in the Montreal 
market and Nairobi Stock Exchange.

We note that, to the best of our knowledge Futures and Options Market Segment (FORMS) is 
not yet operational in NSE and no research of this type has been conducted in Kenyan market, 
apart from testing presence of random walks in African stock markets by Smith et al. (2002).

The rest of this chapter is organized as follows. Section 2 presents empirical evidence of imper
fections of Black Scholes model. In Section 3, the generalized hyperbolic distribution and some 
° its subclasses, Hyperbolic and variance gamma are defined. Data and details of estimation 
Methodology are presented. In section 4. Kolmogorov distance and frequency distribution are



used to test the normality assumption and proposed model fit. Section 5 connects Levy pro
cesses and option pricing using numerical results of previous sections and a risk neutral measure 
to value European options.

2.2 Im perfection  of BSM 73 m odel

In Black-Scholes world, the financial asset is modeled by geometric Brownian motion. For 
stocks, the model assumes that the price process S  = {St,t > 0} of an asset is given by 
St = 5()exp((/v -  )t -|- aBt ), where // is the drift, a is the assumed market constant volatility 
and B, is standard Brownian motion. The simplifying assumptions of the classical Black- 
Scholes model about the dynamics of the underlying such as stock prices, are on some occasions 
dotted with several shortcomings as pointed out in Sclioutens (2003). They include: normality 
assumption, continuous sample paths of Brownian motion and extreme events. Release of 
information, which is immediately absorbed by the market leads to jumps in the processes, 
hence prices are in reality driven by jumps. This is expected to be true in both markets.

As an illustration in Figure 2.1 and Figure 2.2, we use the kernel density versus maximum 
likelihood fit of the normal distribution of daily log returns for Barclays Bank of Kenya (BBK), 
Kenya Commercial Bank (KCB) listed in Nairobi Stock Market compared to Monterial listed 
Alcan Inc (Al) and Royal Bank of Canada (R.Y) Company’s daily log returns. Clearly the 
normal distribution does not reflect the empirical distribution. Similar results can be obtained 
by plotting QQ plots which deviates from straight line.

Em pirica l Density vs Fitted Normal Em pirica l Density vs Fitted Normal

Barclays Bank Kenya (BBK). Daily log return January 2000 10 August 2005 Kenya Commercial Bank (KCB) Daily log return January 2000 to August 2005

Figure 2.1: Maximum Likelihood Estimate of Normal distribution ~  — .5cr2, a) and Kernel

densities for BBK and KCB from Nairobi Stock Exchange
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Em pirica l Density vs Fitted Normal Em pirica l Density vs Fitted Normal

-0.05 000  005

Alcan Inc (AL). Dally log return January 2000 to August 2005

-0  04 -0  02 0 00 0 02 0 04

Royal Bank of Canada (RY). Daily log return January 2000 to August 2005

Figure 2.2: Maximum likelihood of Normal distribution ~  N(fi — .5a2, a) and Kernel density 

for AL and RY. Monterial Exchange

Skewness and K urtosis

Values of daily skewness and excess kurtosis are statistically far from that of the symmetric 
normal distribution. As an example, among the data we have studied, the daily skewness 
and excess kurtosis of BBK are —0.614181 and 13.327313 and for RY 0.187034 and 3.003643 
respectively. Therefore, the tails of the empirical distribution are heavier than those of the 
normal distribution from both markets.

Many modifications of the model have been proposed, especially for fitting log returns, among 
them is the Generalized hyperbolic (GH) distribution. The GH distributions possess a lot of 
attractive properties, such as asymmetry, skewness and presence of semi-heavy tails. Therefore, 
the class of GH distributions appears to be a good candidate for modeling log returns.

2.3 T he G eneralized  H yperbolic d is trib u tio n

In this section we discuss subclasses of the Generalized Hyperbolic distribution, parameter 
estimation and some empirical results.



2.3.1 Som e L im itin g  D is tr ib u tio n s  a n d  S u b c la sses

Many distributions are obtained as limiting distribution of the generalized hyperbolic distribu
tion and bv varying parameter A to obtain subclasses.

H yperbolic d istributions

When A = 1, using the fact that K i/ 2 (x ) = y j^x ~ x̂ 2e~x, we obtain the subclass of hyperbolic 
distribution with probability density function and characteristic function given respectively by 
the followings

f , ft £ \ \A*2 -  02f  HY (*r;ft, P, 5, H) = --------- 7----, exp -ol\J 5- + (x — /j.)~ + 3(x — fj.)

<t>HY(u) = elu»

2a5Ki (d \J<y~ — 32j

a2 _  p2 \ !/2 K \ ^  \/o2 -  (3 + il l)2^

o2 -  (3 + iu ) 2 )  Ki ^ q 2 _ 0 2 ^

,2 / A'i(0  , /52l a r (A ) =  d~ ( . r . t H— —
C^i(C) ft2 -/? 2

A'3(C) / at2(0
ATi(C) VATi(C)

E W = / /  + 35 A '2(C)
y/a 2 - 3 2 'K l ( 0

(2.3.1)

(2.3.2)

(2.3.3)

(2.3.4)

Variance Gam m a distribution

Madan et al. (1998) introduced Variance Gamma process to model asset returns by time- 
changing a drifted Brownian motion using a gamma process with unit mean. We make a 
slight modification in the definition of the process by adding a drift term ji by considering the 
process (Y(t))t>o defined for every nonnegative real number t. by Y(t) — 9t + aB(t), where 9 is 
a constant, a is positive real number and B a standard Brownian motion. Let ('y(t,u))t>0 be a 
unit mean gamma process independent of Y. The process (X(t))t>o defined for every t > 0 by

X(t; 9, a, v,/i) = /.it + u) + crlV(7(L c)), (2.3.5)

is the so-called the Variance Gamma process with drift.

Note that the parameters determining the Variance Gamma process are the drift term /1, 
volatility rr of the Brownian motion, 9 and the variance u of the gamma process. The variance 
gamma process does not have any continuous component, thus it is a pure jump process.

When = 0, using the fact that I\\(x) ~  r(A)2A_1x~A, as x —> 0, we obtain

/*. A) = • /  ------ <,«-*•>/TA_1/2 (a|x -  M|).

O A



If we take 0 — ^r, A = 1/v and a = \J02 4- (2A/<r2), we obtain the probability density function 
of the variance gamma process. The characteristic function of the drifted variance gamjna 
distribution is given by

( 2 \ - l  tv
1 -  iOvu +  j • (2.3.6)

The mean and variance of the Variance Gamma distributed random variate X are given respec
tively by E(A') = /i + 0 and Var(X) = a2 + uO2.

2.3.2 D a ta  D e sc rip tio n

A sample of eight listed companies (four from each exchange) were collected from Nairobi Stock 
Exchange (NSE) and the rest was downloaded from yahoo finance for Monterial exchange,i.e. 
Barclay’s Bank of Kenya (BBK), Kenya Commercial Bank (KCB), East Africa Breweries 
limited (EABL), Kenya Airways (KQ) for NSE and Angnico Eagle Mines limited (AEM), 
Alcan Inc (AL), Royal Bank of Cananda (RY)and Sun Life Financial (SLF) for Monterial.

Daily adjusted closing prices as from January 4, 2000 to August 30, 2005, were used to determine 
daily log returns. Let Py := P(tj) be the price on day t j , j  = 0,1,2, ...,n — 1. Sample increments 
of log returns is defined by Xj = log P3 -  logPj_i, j  — 1, 2, ...,n — 1. Moreover, we use the 
historical daily record of S&P500 index over the period January 03,1990 to November 21,2008 
to fit Variance Gamma model and there after use the estimated parameter to price European 
call option using Fast Fourier transform.

We make a simplifying assumption that the sequence (^j)o<j<n-i*s independent and identically 
distributed to model stock prices by continuous time Levy process S = (S,)t>o- The discrete 
financial time series data correspond to the value of the continuous time process S  at equidistant 
integer points. Therefore, to obtain a discrete time series from our continuous model, we shall 
consider

Sn = So exp

2.3 .3  P a ra m e te r  E s t im a tio n  a n d  E m p ir ic a l re su lts

Assume that the daily log returns x\, x-2 , ■■■, xn are i.i.d.s and the parameters to estimate are 
denoted by 0  = (A, a, /q cr, 7 ). We maximize

n

In L ^(0 ;X\,X2 , ...,xn) = In f x (xt\ 0 ).
1=1

The parameters of the mixture are found by introducing EM algorithm concept. It is assumed 
that log returns are the observed data and the incomplete data is generated by latent mixing 
variable u>i,u’2.....wn which is GIG distributed. Thus the joint log likelihood function

n ti
111 Lxw (® \2*1 * xn, W\ ,..., wn) = ^  In fx \w (X t \wi\ /i, <r, 7) + ^  In fw{w,\ A, d) (2.3.7)

7 =  71 2=1

o r



Calculate the conditional expectation (E-step) of the joint log likelihood given the data and 
the current estimates of the parameters followed by M-step Maximizing the objective function 
with respect to © to obtain an updated estimate. Repeating the E step and M step sequentially 
will obtain the maximum likelihood estimation of the parameter set 0  (see Madan and Seneta 
(1989) and Hu (2005) ).
E-step: Get the objective function

Q(0 : 0 |A';) = E(log Lw (©; X\, •••, xn, uq ,..., wn)\xi, xn; 0 [A|)

by conditioning (2.3.7) given the data x i,...,xn.
M -step: Maximize the objective function with respect to 0  to obtain the next set of estimates 
0 lfc+l!. Repeated steps yields maximum likelihood estimation of the parameter set 0  (see 
McNeil et, al. (2005) for elegant presentation of EM and MCECM estimation procedure.)

Em pirical Results

Variance gam ma subclass

Estimated parameters for the variance gamma distribution are set in Table 2.1. The variance 
gamma QQ-plots are in Figures 2.3 and 2.4. From Table 2.1. it is clear from both markets that 
the distributions are skewed. The value of 0 determine the nature of skewness for the Variance 
Gamma distribution. Most important, though we notice that both markets have different 
stochastic time. The value of u in developed market lies between (0.52,0.87) which implies 
higher frequency of business activity (time) compared to emerging market (1.5, 2.G) relatively 
lower business activity in NSE in comparison to Monterial. Note that, X t = // +0Tt + a\V(Tt), 
where the activity time (T)}, is a positive increasing random process with stationary differences. 
The parameter l/u  would measure the intensity of occurrence in business time scale.

BBK ltd Variance Gamma qq lo t KCB ltd Variance Gamma qq lo t

Figure 2.3: Variance Gamma Q-Q plots for BBK and KCB



Table 2.1: MLE parameters of Variance Gamma density fitted Monterial and NSE data

Co. (7 V e LLF

AEM 3.0731e-02 0.569706 4.0296e-03 -3.6020e-03 2960.673

AL 2.0313e-02 0.532999 1.2492e-03 — 1.2469e-03 3547.072

RY 1.3709e-02 0.582838 7.0330e-04 2.9993e-04 4110.377

SLF 1.8965e-02 0.873982 1.1115e-03 -2.6059e-06 3543.324

BBK 1.5454e-02 1.543812 —4.1409e-04 1.00995e-03 4075.327

KCB 2.7678e-02 2.150426 2.0188e-03 4.11348e-10 3227.641

KQ 2.6047e-02 2.571561 6.9144e-04 3.8438e-10 3722.603

EABL 2.1660e-02 1.705037 1.68104e-03 1.01118e-03 3542.802

H yperbolic subclass

From Table 2.2, we note that, the values of p are greater than zero from both markets. We 
observe that for all the samples from NSE, the value of the scale parameter 6 is very close to 
zero.

Generalized Hyperbolic d istribution

Table 2.3 gives the Generalized Hyperbolic parameters estimated. The QQ plots are given in 
Figure 2.7 and Figure 2.8. In most cases, the log likelihood value for the fitted Generalized 
Hyperbolic distribution is higher than those of Hyperbolic distribution and Variance Gamma. 
Therefore, the Generalized Hyperbolic distribution model which is a five parameters model 
seems to fit better the returns of asset prices from both markets than models with less param
eters like Hyperbolic, Variance Gamma and gaussian, result in agreement with Figure 2.5.

2.4 G oodness of F it Test and  F requency  d is trib u tio n

We analyze and compare the goodness of fit of the generalized hyperbolic distributions and
some of their subclasses, using Kolmogorov distance and frequency distribution.



AL ltd Variance Gamma qq lo t RY ltd Variance Gamma qqlo t

Figure 2.4: Variance Gamma Q-Q plots for AL and RY 

K o lm o g o ro v  D is ta n c e

Kolmogorov distance is the supremum over the absolute differences between two density func
tions. It’s expression is given by:

K S = sup |Femp(x) -  Fesl(x)\ (2.4.1)
x € R

where Femp and Fest are the empirical and the estimated CDFs respectively. Kolmogorov dis
tance is used because it pays more attention to the tails of distributions see Gyorfi et. al. (1996) 
and Prause (1999). The Kolmogorov distances of the normal, the Hyperbolic, the Variance 
Gamma and the Generalized Hyperbolic distributions are presented in Table 2.4.
We make inference based on the p-value being the measure of how much evidence one can have 
against the null hypothesis. The general rule is that a small p-value is evidence against the null 
hypothesis, while a large p-value means no evidence against the null hypothesis. At 1% level 
of significance, we accept the null hypothesis that the data fits the three models for all the log 
returns from Montreal exchange. Generalized hyperbolic appears to fit well the data in both 
markets. BBK and EABL of the Nairobi stock Exchange fit VG at 1% level of confidence. 
Moreover, of all the four stocks from NSE considered Hyperbolic distribution is rejected .

F req u en cy  d is tr ib u tio n s

Frequency distributions as in Eberlein and Keller (1995), in each column of the table, the 
relative frequencies of the returns in the intervals (—her, her) i.e P(\x\ < ka),k = 1,2,3,4,5. 
are compared with the probabilities of the fitted distributions. We observe from table 2.5 and 
table 2.6 that among the fitted distributions, the probabilities of the generalized hyperbolic 
distribution are closer to the empirical probabilities in most cases.



Table 2.2: MLE parameters of Hyperbolic distribution fitted for Montreal and NSE data

Co. a 0 S LLF

A EM 53.4421 4.30726 1.837152e-02 -3.634096e-03 2963.292

AL 81.7215 3.00987 1.310892e-02 — 1.241524e-03 3548.007

RY 118.0387 3.43599 7.72583e-03 3.571136e-04 4112.330

SLF 78.6708 3.53894 4.845935e-03 —1.421884e-04 3545.444

BBK 96.29101 -1.628226 9.984908e-08 9.5041e-08 4054.704

KCB 52.47160 0.457439 4.733096e-07 3.25479e-04 3171.505

KQ 74.35194 2.753337 2.399309c-07 5.6861 le-4 3688.820

EABL 69.75716 2.761331 3.247389e-07 5.840876e-04 3509.165

2.5 O ption  pricing

Many of the option pricing models assume that a stock price process {5^:0 < t < T} follows 
an exponential (geometric) Levy process: St = SoeLt where {Lt\ 0 < t < T} is a Levy process. 
In this section, we give the definition of Levy processes and some related results which can be 
found in Applebaum (2001).

2.5.1 Levy p ro cesses

Let (Q ,y ,(J t )t>0 , IP) be a filtered probability space satisfying the usual conditions. Classic 
Black and Scholes (1973) model chooses a Brownian motion with drift process which is the 
only continuous Levy process as their choice of a (risk-neutral) Levy process.

ST = S0eLt (2.5.1)
= S0e(r~ ^ 2)T+<jBt (2.5.2)

where {Bt\ 0 < t < T} is a standard Brownian motion process. Moreover, the European call 
puce can simply be calculated as the discounted value of the expected terminal payoff under

on



Em pirica l Density vs Fitted Normal,GH,HY,VG densities Em pirica l Density vs Fitted Normal,GH,HY,VG densities

Barclays Bank Kenya (BBK) daily log returns from January 2000 to August 2005 Kenya Commercial Bank (KCB) daily log returns from January 2000 to August 201

Figure 2.5: Kernel density vs Generalized Hyperbolic,Hyperbolic and Variance Gamma esti

mated maximum likelihood estimates for Barclays Bank Kenya(BBK) and Kenya Commercial 

Bank (KCB)

the risk-neutral measure Q.

C{S0,T) e-rTE«(Sr -  l<)+\%
/ -TOG

(Sr  -  K )+Q(Sr\%)dST
*oo

L  K) St V 2 ^ T
exp -

{111 sy -  (hi So + (r -  72)T )}
2<r 2 T

(2.5.3)

(2.5.4)

1 dSr

This implies that as far as a conditional risk-neutral density of terminal stock price is given, 
plain vanilla option pricing reduces to a closed form solution, however, for general exponential 
Levy models Q(SY|To) may not be expressed using special functions. Therefore to price plain 
vanilla options we use characteristic functions of general exponential Levy processes.

For simplicity, without loss of generality, from (2.5.3) we use change of variable technique from 
St to In St

= e~rTEQ(ST -  K)+\%

e- r T

e- r T

K )+Q(\nST\% )d\nST 

- e h' K) + Q(\nST\% )d\nST

C ( S o , T ) (2.5.5)

(2.5.6)



Em pirica l Density vs Fitted Normal,GH,HY,VG densities Em pirica l Density vs Fitted Normal,GH,HY,VG densities

Royal Bank of Cananda (RY) dally log returns (rom January 2000 to August 200f

Figure 2.G: Kernel density vs Generalized Hyperbolic.Hyperbolic and Variance Gamma esti

mated maximum likelihood estimates for AL and RY

The characteristic function of BSM73 log terminal stock price i.e. In St is easily obtained as

A„sT(u) = f°°  ei" 'nS-rQ(lnST)<ilnSr (2.5.7)
J — oo

where Q(ln.SY) =

ex p (i{ lnS b  + ( r - i . * ) T } U- ^ p j

1 /  {InST -  (InS0 + (r -  bv2)T ) }
7 S P ? exp( -------------- w T

(2.5.8)

(2.5.9)

2.5.2 F ast F o u rie r  t ra n s fo rm  (F F T )m e th o d

The fast Fourier transform is a powerful computational method which was first introduced by 
Walker (1996). In this subsection, we follow the work of Carr and Madan (1998) on option 
pricing using the Fourier transform when the characteristic function is explicitly known under 
the risk-neutral probability measure. European call option with time to maturity T and strike 
price K is given by

where

- a  111 A' r-Hoc
C(K, T) =  -----------  / e~tuU' K g(u)d.u

*  Jo

_rTEQexp(i[tt -  (o + l) t In St }) 
oi1 + a — u2 +  i(2a + 1)?/

— rT ^ ( w “  (tt +  1)0= 6 ------------- ;-----------------
a2 + a — u2 -F i(2a + 1 )u

(2.5.10)

(2.5.11)

(2.5.12)
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Barclays Bank Kenya GH qqlot
Kenya Commercial Bank GH qqlot

Figure 2.7: BBK and KCB Generalized Hyperbolic QQplot

AL Asymetric Generaized Hyperbolic QQ plot ROYAL BANK OF CANANDA GH qqlot

Figure 2.8: RY and AL Generalized Hyperbolic QQplot
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Barclays Bank Kenya GH qqlot
Kenya Commercial Bank GH qqlot

Figure 2.7: BBK and KCB Generalized Hyperbolic QQplot

AL Asymetric Generaized Hyperbolic QQ plot ROYAL BANK OF CANANDA GH qqlot

Figure 2.8: RY and AL Generalized Hyperbolic QQplot
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Table 2.3: Generalized Hyperbolic parameter estimates for Montreal and NSE data

Co. A a d <5 LogLik

AEM —1.4342 le-00 22.45251 3.182777 0.04385096 -3.10649e-03 2968.365

AL -4.47653e-02 66.30114 3.247621 0.0211068 — 1.34398e-03 3548.421

RY -3.90192e-01 90.85274 3.480525 0.01536024 4.77593e-04 4113.503

SLF —9.69996e-01 24.72129 1.517417 0.01800045 3.79528e-04 3555.739

BBK -5.81316e-01 20.63537 -1.00749 7.77159e-03 9.05012e-04 4109.781

KCB 3.75006e-02 22.39679 9.50887e-02 5.91669e-03 5.78596e-04 3222.247

KQ —4.91616e-01 6.32854 1.66513 7.37481e-03 1.01943e-03 3764.946

EABL — 1.75863e-01 23.86991 4.13654e-01 6.52984e-03 1.01915e-03 3559.446

An approximation for the integral in the Carr-Madan formula 

C _  e-«inA 'I / e~iuXnKg{u)du
* Jo

— or In  K 1 „ — iu I n  K e ~ r T (j)T {u -  ( a  +  1 ) t )= e 1 /7T •/() a  2 -f a  — u2 + t(2a + 1)?/

where, 0r ( ^ )  = exp 1 oi \ In 50 + r -  -a~ \T  } zu---- —
a2T  o

(2.5.13) 

du (2.5.14) 

(2.5.15)

Fast Fourier Transform(FFT) is an efficient algorithm for computing the following transforma
tion of a vector an, n = 1,..., N  into a vector bn, n = 1,..., N:

N

bn = eXP ( ~~
j = l

2tr(j -  l)(n -  1) 
N

thus, for the integral in the Car-Madan formula Carr and Madan (1998) 

- 1Cflog K, T) = exp(-o log A')— / exp( — iv log K)g(v)dv
n Jo

s o  l o g  K, I  V  e~iv*loR K e , /(^t ( ^ - ( q + 1)0 V /_ 1y
7r ^  ex2 + a  — v 2 + i,(2a  -(- 1)?;, 3 V

j =i 3 J

(2.5.16)

(2.5.17)

(2.5.18)

__ — a  log  K  n _J_ — iv j  l og  K u __ [______ l 'J I ( l 'j ( ( 1 C O  ?/ / ,
£
3=  1
N

ft' T oc — vj  + i(2at + l)vj 3t:(3 + (-1 )J) (2.5.19)

=  c-i.loiiK,. 1 y ^ c-.iA(n- l) ( i- l )c-.h,, '  O T ( V j  -  (« + 1)') ') ,3
7r 4 -  cv —  1)2 4 -  i19 /"v  4 -  1 Vm

J = 1 4- ot -  v2 + z(2cv + 1 )vj 3

2tx
where, log/\n = -  log6 + A(n -  1), V j = r ) { j - l ) ,  rjA = ^ «  n, j  =  1, ...,1V.
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Table 2.4: Kolmogorov distances

Normal Generalized II VGamma Hyperbolic

Koist p-value Koist p- value Koist p-value Koist p-value

A EM 0.0706 1.483e-06 0.0423 1.243e-02 0.0311 1.301e-01 0.0289 1.863e-01

AL 0.0459 5.143e-03 0.0261 2.888e-01 0.0282 2.088e-01 0.0233 4.258e-01

RY 0.0543 4.641e-04 0.0212 5.491e-01 0.0219 5.064e-01 0.0191 6.823e-01

SLF 0.0845 7.252e-09 0.0309 1.496e-01 0.0265 2.968e-01 0.0198 6.558e-01

BBK 0.1318 2.2e-16 0.0298 1.640e-01 0.0333 8.733e-02 0.0376 3.373e-02

KCB 0.1387 2.2e-16 0.0407 1.922e-02 0.0536 6.437e-04 0.0508 1.438e-03

KQ 0.1595 2.2e-16 0.0262 2.864e-01 0.0532 6.892e-04 0.0631 2.661e-05

EABL 0.1577 2.2e-16 0.0247 3.708e-01 0.0298 1.736e-01 0.0509 1.614e-03

In VG world the characteristic function of the log stock price log St.

St So exp((r + uj)T + X T), X  ~  VG(C, G, M) (2.5.20)

log ST — log(50) + T(r + u>) + X t (2.5.21)

log ST ~ log(50) + T(r + u) + VG(CT, G: M) (2.5.22)

<Pvg (u-,T)
( CM \ c 

exp(m(logA(, + (r + U)T)) ( OJtf + (M _ G)iu + ) (2.5.23)

Note that the result of figure 2.9, the following values were used

N = 4096, A := (1/N) log(2000/400) = 3.696601 x 10"4, 
2tvr) = —  = 4.149706
A N

Vj = 7/(0 : (N  — 1))

2-6 C oncluding R em arks

SUmniary, the role of building a Lev y process amounts to measuring returns in relation to 
e level of activity and news instead of calendar time.

9  A
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Iii the proceeding sections we have tried to present, in some detail, Levy process to model log 
returns of the terminal stock price SY, which allows us to capture more stylized facts from 
real data. We fitted four asset, prices coming from the Montreal exchange and four asset prices 
coining from the Nairobi Stock Exchange to three models based on generalized hyperbolic 
distribution and its subclasses. Empirical evidence suggest that the underlying distribution is 
heavy tailed in both marktets and not normal distribution. About 83-84% of empirical data 
from Nairobi Stock Exchange lies between the first standard deviation compared to 72-75 % 
from Monterial Exchange instead of 68% if log returns were to be normally distributed.

It is clear from our study that emerging market and developed market too are affected by 
shocks that produce diversity of jumps. Generalized Hyperbolic distribution, which is a five 
parameter model seems to explain better the behavior of empirical distribution of log returns 
from both markets.

One can argue that, from the estimated Kolmogorov distance in addition to calculated p-value, 
the Hyperbolic distribution is inferior when modeling returns from emerging market as opposed 
to developed market. The data used was not large enough to make a generalized observation. 
Empirically, both markets are not operating on the same business time.

It is worthy noting that implementing Fast Fourier Transform (EFT) method to price options, 
there is no significant change (say, interms of price improvement at the money for all options 
at different maturities) in comparison to Black-Scholes model.



Table 2.5: Frequency distribution of log returns from Monterial Exchange

Co. Density \x\ < a < 2a < 3 a < 4(7 < 5(7 |x| > 5(7

A EM EMP 0.7558 0.9569 0.9894 0.9950 0.9971 1.07268e-01

NM 0.6826 0.9544 0.9973 0.9999 0.9999 5.7334e-07

HY 0.7493 0.9499 0.9902 0.9981 0.9996 3.7232e-04

VG 0.7465 0.9497 0.9907 0.9983 0.9997 2.8439e-04

gHY 0.7560 0.9468 0.9869 0.9962 0.9988 1.1885e-03

AL EMP 0.7374 0.9484 0.9915 0.9957 0.9978 3.0345e-02

NM 0.6826 0.9544 0.9972 0.9999 0.9999 5.7406e-07

HY 0.7376 0.9462 0.9894 0.9979 0.9996 3.9088e-04

VG 0.7348 0.9461 0.9901 0.9982 0.9997 2.8777e-04

GH 0.7418 0.9479 0.9893 0.9977 0.9996 4.9973e-04

RY EMP 0.7459 0.9470 0.9872 0.9964 0.9985 7.0571e-03

NM 0.6816 0.9540 0.9972 0.9999 0.9999 6.0508e-07

HY 0.7426 0.9464 0.9892 0.9978 0.9995 4.235 le-04

VG 0.7395 0.9461 0.9897 0.9981 0.9996 3.2644e-04

GH 0.7518 0.9516 0.9901 0.9978 0.9995 4.7676e-04

SLF EMP 0.7972 0.9456 0.9779 0.9955 0.9977 3.6737e-02

NM 0.6821 0.9542 0.9972 0.9999 0.9999 5.8953e-07

HY 0.7647 0.9487 0.9888 0.9975 0.9994 5.3066e-01

VG 0.7627 0.9469 0.9883 0.9974 0.9994 5.5580e-04

GH 0.7793 0.9447 0.9820 0.9931 0.9971 2.8843e-03



Table 2.6: Frequency distribution of log returns from Nairobi Stock Exchange

Co. Density |x| < a < 2(7 < 3(7 < 4(7 < 5(7 |x| > 5(7

BBK EMP 0.8454 0.9553 0.9787 0.9879 0.9929 2.5513e-02

NM 0.6825 0.9544 0.9972 0.9999 0.9999 5.7815e-07

HY 0.8153 0.9660 0.9937 0.9988 0.9997 2.1305e-Q4

VG 0.8141 0.9565 0.9892 0.9972 0.9993 6.9737e-04

GH 0.8410 0.9501 0.9790 0.9899 0.9947 5.2044e-03

EABL EMP 0.8364 0.9534 0.9811 0.9920 0.9934 5.0145e-02

NM 0.6818 0.9541 0.9972 0.9999 0.9999 5.9781(3-07

HY 0.8204 0.9676 0.9941 0.9989 0.9998 1.9446e-04

- VG 0.8169 0.9551 0.9882 0.9967 0.9991 8.9893e-04

GH 0.8324 0.9465 0.9792 0.9912 0.9960 3.9322e-03

KCB EMP 0.8255 0.9406 0.9771 0.9899 0.9964 9.5067(3-02

NM 0.6826 0.9544 0.9972 0.9999 0.9999 5.7349e-07

HY 0.8094 0.9636 0.9930 0.9986 0.9997 2.5145e-04

VG 0.8272 0.9543 0.9868 0.9960 0.9987 1.2368e-03

GH 0.8191 0.9424 0.9787 0.9915 0.9965 3.4884e-03

KQ EMP 0.8454 0.9376 0.9666 0.9900 0.9971 5.8114e-02

NM 0.6819 0.9541 0.9972 0.9999 0.9999 5.965 le-07

HY 0.8201 0.9675 0.9941 0.9989 0.9998 1.9516(3-04

VG 0.7759 0.9208 0.9695 0.9878 0.9949 5.0005e-03

GH 0.8298 0.9270 0.9588 0.9739 0.9822 1.7734e-02
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Table 2.7: Comparison of option prices on RY and BBK for 10 and 20 days to maturity under

the mean-reverting martingale measure.

Days RY BBK

H 11 O I< BS VG HY GH BS VG HY GH

94 6.3277 7.1861 7.1852 7.2718 6.5227 6.9045 6.8616 7.0669

97 3.7751 4.4870 4.4861 4.5461 4.1405 4.3255 4.2549 4.5159

98.5 2.7204 3.3210 3.3201 3.3613 3.1503 3.2273 3.1469 3.4189

100 1.8570 2.339 2.3329 2.3554 2.3165 2.3020 2.2172 2.4894

101.5 1.1950 1.5508 1.5501 1.5571 1.6428 1.5674 1.4840 1.7495

103 0.7222 0.9722 0.9720 0.9690 1.1219 1.0200 0.9431 1.1966

106 0.2163 0.3216 0.3223 0.3144 0.4652 0.3828 0.3289 0.5380

T=20 K BS VG HY GH BS VG HY GH

94 6.8246 8.4537 8.4514 8.6169 7.2296 7.9102 7.8297 8.1928

97 4.5005 5.8783 5.8764 6.0037 5.0672 5.5029 5.3912 5.8273

98.5 3.5226 4.74090 4.7393 4.8432 4.1436 4.4566 4.3333 4.7922

100 2.6843 3.7302 3.7289 3.8087 3.3328 3.5336 3.4033 3.8733

101.5 1.9889 2.8592 2.8582 2.9151 2.6353 2.7413 2.6092 3.0779

103 1.4312 2.1327 2.1321 2.1690 2.0479 2.0800 1.9515 2.4074

106 0.6772 1.0914 1.0916 1.1010 1.1726 1.1216 1.0132 1.4140

on



C hapter 3

On evolu tion  D ynam ics and

E qu ity  M arke t R isk in D eveloped

and E m erg ing  M arkets

Evolution dynamics that govern developed and emerging stock markets daily index log returns 
are investigated in view of computing Value, at Risk. A R-A PARCH models conditioned on 
student t. and Ga ussian distribution, are used to filter first and second momen t serial correlation 
of log returns. The i.i.d. white, noise residuals are calibrated using Generalized Hyperbolic 
distribution. We identify appropriate models for estimating and forecasting daily volatility for 
four stock indices, SP500, D AX. M A S I and NSE20. Estimated parameters of the proposed 
densities of residuals, are used to calculate Value at Risk in all markets. Univariate daily log 
returns decompose into three components: (semi martingale) object analogous to drift (ARMA 
filter) time dependent, (GARCH filter) similar to Brownian part and jump density of Levy 
increments).

3*1 In tro d u c tio n

cent financial disasters have emphasized the need for accurate risk measures for financial
nstitutions. The Value at risk (VaR), has established itself as the most prominent measure
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of market risk and an essential management tool in investment decisions. Owing to Basle 
Committee’s (1995,1996) internal model approach, which allows banks to implement in-house 
VaR models for calculating capital requirements, the number of methods continues to increase 
(see Dowd and Blake (2006) and Hartz et al. (2006)).

Despite VaR’s conceptual simplicity its measuring is a very challenging statistical problem and 
none of the methodologies developed so far gives a satisfying solution to the problem (see 
Sebastien (2004), Engle and Manganelli (2004) McMillan and Speight (2007) and references 
therein). The existing models for VaR estimation are classified into three broad categories 
namely Parametric (Riskmetrics, GARCH); Nonparametric (Historical simulation and the Hy
brid Model) and semi parametric (Extreme Value Theory, Quasi-Maximum likelihood GARCH). 
We follow the parametric approach in developing our model. Before we embark on modeling 
the problem, we state some of the stylized facts of financial times series.

S ty lized  F ac ts

(i) The time series of log return of share price S = (SQtez process and other basic financial 
instruments are not stationary, but instead possess at least a local trend.

(ii) We define the returns of the index for given time interval At eg one day as X t — log St -  
log St-At- It is well noted that as we progressively increase the interval of the returns by 
moving from daily to weekly, monthly, quarterly and yearly data, the volatility phenomena 
decreases and log returns tend to be i.i.d. and less heavy tailed. Without loss of generality 
we take At = 1 day in all our analysis.

(iii) That log returns X t have a leptokurtic distribution, i.e. empirically estimated kurtosis is 
most cases grater than 3.

It is quite evident from Figure 3.1 that daily log returns and the square of filtered returns, are 
not i.i.d. they show strong correlation of second moment, see for example McNeil et al. (2005) 
when more than 5% of the estimated correlations lie outside the dashed blue lines. We observe 
that extreme returns seem to appear in clusters. A good candidate for modeling financial time 
series should therefore represent the properties of stochastic processes and stylized facts.

To capture these facts, ARCH models introduced by Engle (1982) and generalized as GARCH by 
Bollerslev (1986) are widely used in financial econometrics. It is worthy noting that volatility 
is modeled as the conditional standard deviation of returns given historical information, i.e 
natural filtration (37t)te[o1T)- The presence of volatility clustering suggests that the conditional 
expected returns are consistently changing partly due to predictable component and market
excitement.

To explain our specific concerns and contributions, let (fl, T, (35)te[o,T), P) he a filtered probabil- 
space. Define a process X  = (X t)t£\o,T] such that {X t}J=0 denote the time series of portfolio 

returns and T denote the sample size. We want to find VaRt such that Pr[Xt < — VaRt |35] = c* 
where is natural filtration. It is interesting to extract and find an appropriate model for com
puting VaR. Let X \, X ? ,..., X t denote the observed returns at times 1,2, ...,7\ The GARCH
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models currently in literature decompose X t at time t into the form

X t = fit + <TtZt, Zt ~  i.i.d.(0, 1). (3.1.1)

Here Ht represents an expected (or structural) component and atZt represent an error (or 
random ) component. It is assumed that /q and at are at most functions of past returns 
X \ , X 2 , • ••, X t- \  while Z 1, Z2, ..., Zr  are independent random variables with common cumulative 
distribution function say G. Given the observed returns X \, Xo, ..., X t  the expected components 
HT+1 and the volatility &t + 1 of the next return are predictable but the innovation component 
Zt+1 is uncertain, which can be measured as risk due to innovations. As a result, the structure 
of the model simplifies to

Xt — Ht +  at Zt +  £t (3.1.2)

Where Zt is the random component from a known or assumed cumulative distribution function 
and £t is the random component related to Levy process. Maximum likelihood estimates of 
parameters of proposed densities G /at. are determined by fitting daily log return data from 
SP500 index of New York Stock Exchange, DAX index of Frankfurt Stock Exchange, 
MASI of Casablanca Exchange and NSE20 of Nairobi Stock Exchange. The ever over
looked and assumed nonsignificant non Gaussian residuals, are carefully studied and calibrated 
and thereafter used to compute VaR in comparison to classical Riskmetrics of JPMorgan.

3.2 A R C H  ty p e  M odels 

IG A R C H

The process X  = (X’t)t6[o)7’] is said to be IGARCH(1,1) process when

X t = (TtZt, zt ~  1)
af  =  +  0crf_lt a  +  (3 =  l (3.2.1)

The exponential Weighted Moving Average (EWMA) model used in RiskM etrics1 A/(1995) 
in their VaR methodology for daily data is a special case of (3.2.1) with zero intercept and 
(3 = 0.94. Using rt- \  = one can rewrite the volatility equation (3.2.1) as

aa~_ 1 +  ( 1 -  <*)r2t- 1 1 >  Ot >  0

<yaf_ 1 +  ( ! - a ) K 2- 1c l  1)
2

-  o t - 1 + 1 +  (1 -  <x)°l 2
\ £ t - \

*7-1 +  ( 1 - Q )(Jt2_ i( c )

° ? + i - - 1  +  (1 ~  a ) < r ' 7+ i - 1 (£?+< - i - l ) Vi  =
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3.2.1 T h e  A R C H  F ram ew o rk  o f E s tim a tin g  V o la tility

The common methodology used for ARCH estimation is the maximum Likelihood. Under 
the assumption of i.i.d. innovations and for D(zt:v) denoting their density function, the Log- 
likelihood function of {z*(#)} for a sample of T observations is given by

T  r

\og Lr ({zt}:0) = Y
t=1 L

1u(D(2,(#);j/)) -  -  In(<r?(9)) (3.2.3)

where 6 is the vector of the parameters that have to be estimated for the conditional mean 
and conditional variance and the density function, while zt(0) = The maximum estima
tor 6 maximizes (3.2.3). Under normality assumption the likelihood GARCH(p.q) process is 
conditionally Gaussian, in the sense that for given values of {zs,s = t — l , t  — 2,...,t -  p}, zt 
is Gaussian with known distribution. The likelihood of zp+i , ..., zt conditional on {zi,...,2p} 
is formulated and maximized numerically to obtain maximum likelihood estimates. Let 0  =
( O q , . . . ,  Otp, . ,  • ) ,

LT(zt,G) =
t= P + 1  y j 2 n { a 0  +  E t = i  a \ - i  +  E J L i

where a\ = a0 + /W -* + Y =i ^ ji^ t- jZ t- j)2

exp - j L \
2 a\)

log Lr {{zt}\G) = - -
T  r

T  1i i ( 27t) 4 - Y  z ‘f  +  ln(a ?)
i —p + i t= p + l

(3.2.4)

(3.2.5)

while in some applications it is more appropriate to assume that zt follows a heavy tailed 
distribution such as a standardized student t distribution. Let xv be a student t distribution 
with v degrees of freedom. Then Var(xu) = is/(v -  2) for u > 2 and use zt = xwf \Jv/v  -  2. 
The probability density function of zt is

f {z t \v) I >  +  l ) / 2
-  9b

2 \ -(v+l)/2
1 + , ^ > 2 (3.2.6)

where r(t>) = f  ̂  exx v ldx the gamma function and u is the parameter which describes the 
thickness of the distribution tails. The maximum likelihood estimation for t distribution is

log/T({zt};0) T l n G ^ L L )  - l i , r ( ^ ) - i l n ( 7 r ( t, - 2 ) )

<=1
ln(of) 4- (1 + u) In (3.2.7)

GARCH maximum optimization of mean corrected observations {z<}, are estimated by numer
ically maximizing the likelihood of zt = zt -  p zp+ i,..., zn conditional on the known values 
Z'li ...,zp and with assumed values 0 for each Zt,t < 0, and a1 for each at ,t < 0 where a~ is



the sample variance of z\, ...,zn. We maximize

T T  >  t  (  Z t^

v \ a t ^ 2

j ,  v t { c ‘o + i ™ i k j + z u 0 > ° ! - i )
-s

t—[)+1

(
X  f„

s / v ^ 2

Z t s j v \

\  ( a 0 +  X ]" L i L  +  X ] j = i  V " -  2 J

(3.2.8)

where Aj = aj(|£t_j| -  77£t_j)<5, <5 > 0 and -1  < 7, < 1 which adds flexibility of a varying 
exponent with an asymmetry coefficient to take the leverage effect into account. The objective 
function is maximized subject to following constraints ay > 0, cv 1 + ... + dp 4- 0\ + ... + /3q < 1. 
Note: If Qo — 0 and > 1» then the residues are not covariance stationary.

3.3 Log R e tu rn s  M odel

Under Black and Scholes (1973) model,

dSt = St(iidt + adBt),So > 0,/r G R, a > 0 (3.3.1)

the stochastic differential equation for the log price d log St = {fi — ^-)d,t + adBt. To account 
for the fact that volatility change over time, we look for a stochastic process a2 — {<77, f >0} 
describing the nervousness of market through time. Of particular interest is the model for which 
a2 is an Ornstein-Uhlenbeck (OU) processes in the context of Barndorff-Nielsen et, al. (2002) 
models. In this case the daf = —Aafdt + dz\t where 2 = {zt,t > 0} is a Levy process with 
positive increments(a subordinator). The resulting log-stock price process follows the dynamics

dXt = (// -  )jVJ.)dt + atdBt + pdz\t , X0 = x (3.3.2)

where p is a non-positive real parameter which accounts for the positive leverage effect. The 
Brownian motion and the Background Driving Levy Process are independent, and filtration 
Or) is generated by the pair (B ,z ), see Schoutens (2003).

In the same way, we model most of the stylized facts of volatility embedded in financial data 
(discrete case), by AR filtering log returns and using appropriate ARCH type model to remove 
volatility, then calibrate the residual which is heavy tailed and leptokurtic. In literature, the 
residuals are assumed to be non-significant. In view of this, it seems therefore that there is no 
obvious reason why one should ignore the AR-APARCH Levy filtered residuals while calibrating 
stock market log returns data. A more general class of model which explains dynamics of daily 
returns in developed and emerging markets is hereby proposed.

The general structure is as follows, Let (Q, 3r, (9rt)t€[0,T]> P) be a stochastic basis and X  — 
(^t)t€[o,T] be the stochastic process (daily log returns) where a(t,uj) = pt,b(t, uj) — rrL is

a a



adapted to the natural filtration driven by Brownian motion Z = {Bt)tt\o,T} and Levy 
process Y  = (V),e|o.T]- continuous time economy it seems that the process (St)t>o can be 
broken into three components; namely, drift, Brownian part and Levy part ie,

dSt = a(t, St)dt + cr(t, S,)dZt + cr2(i, St)dYt (3.3.3)

a(t, St), <r(£, S,),(r2(t, St) are adapted to rJ t . As a simplifying assumption let a(t, St) = a2(f, St) = 
at and a(t, St) =  //, and the structure of the model reduces to

dSt = SttHdt +  St(xt(dZt + dYt)

Without loss of generality we assume the discrete version of the solution is of the form

log St -  logS,.! =  AR(s) + AP ARCH  (p, q) + (Yt -  Yt- i)
AR(s), t, s G Z

APARCH(p,q) p , q e Z  (3.3.4)

where Yt -  Yt~ 1 ~  GH. This leads to a brief review of Levy processes and assumed densities 
of proposed models for residual calibration as outlined in chapter 1.

3.3.1 L evy P ro c e sse s

A cadlag adapted real valued stochastic process L - (Lt)t>o with L() = 0 a.s. is called a Levy 
process if the following conditions are satisfied.

(LI) L has independent increments, i.e. L, — L.s is independent of Ts for any 0 < s < t < T

(L2) L has stationary increments ie for any Lt > 0 the distribution of L,+s — Lt does not 
depend on t.

(L3) L is stochastically continuous ie for every t > 0 and e. : lim.s_*t P(|L, — Ls\ > c) = 0.

The class of infinitely divisible distributions and the class of Levy processes are in a one-to-one 
relationship. Therefore if a specific infinitely divisible distribution is characterized by a few pa
rameters the same holds for the corresponding Levy process. We use this fact while estimating 
parameters of the residuals which are assumed to be driven by Levy process. As an example 
Brownian motion is characterized by the parameters of Normal distribution p and a2. We fit 
residuals of the APARCH type model to five different infinitely divisible distributions, Gener
alized Hyperbolic distribution, Hyperbolic distribution, Normal Inverse Gaussian, Generalized 
Skew t distribution and Variance Gamma.

3-3.2 H y p e rb o lic  a n d  N IG  L evy p ro cess

>peibolic distributions which generate hyperbolic Levy process X  = (X t)t>o constitute a 
°Ur Para.meter class of distributions. Their Lebesgue density is given by taking A = 1 in



Emp. Density vs Fitted Nm.GH E m p . D e n s ity  v s  F itte d  N m ,G H

Figure 3.3: Kernel densities of empirical data Left: NSE20 index AR-GARCH filtered Levy 

increments calibrated, Right: DAX index APARCH Levy increments calibrated

Generalized hyperbolic density. Similarly, for A = —1/2 we get a special case of the GH called 
normal inverse Gaussian NIG distribution. It was introduced to finance by Barndorff-Nielsen
(1997). Note that K - \ /2(uj) =  A'1/2(u;) = \Jn / (2ui)e~UJ . The density is

I k ic {z ) = -  exp(<5\A*2 -  32 + (3{x -  /x))
K\ (a6y/l +  x)

v / m 3

The characteristic function of NIG is

$ n ig {u) =  exp(ii//x)exp(5\/a2 -  (32) exp(-<5 \Jot -  (3 + in)2)

[3.3.5]

(3.3.6)

EX = //. +
S3

^ a 2 -  32

The skewness and kurtosis are given by

,/?  1

and Var(X)  =
da4

{a2 -  32Y/2

k = 3 ( 1 + 4 ( - ' 2

(3.3.7)

(3.3.8)
a S  i / 2 ( 0r2 _  /52) i /4  ’ " 1 * 'Q '  )  s { a 2 -  0 2 ) 1/ 2

It follows that the kurtosis-skewness pairs must satisfy |s| <

The four parameter of the NIG distribution have natural interpretations relating to the overall 
shape of the density. The a parameter controls the steepness of the density, in the sense that 
Ihe steepness of the density increases monotonically with increasing a. Skewness is represented 
y the parameter 3, while // is a centrality or translation parameter. S is a scale parameter. 

This subclass is closed under convolution for fixed parameters a and /?,i.e. by expanding (3.3.6) 
I  P°wer one g e t s  t jje same form of equation with parameters tS and £/x.



3.3 .3  G H  skew  T

The GH skew student’s t-distribution may be represented as a normal variance-mean mixture 
with the generalized inverse mean mixture GIG distribution as a mixing distribution see Blaesild 
(1981) and Barndorff-Nielsen (1977). Letting A = —v/2 and a —> \fi\ in (7.3.4) we obtain the 
GH skew Student’s t-distribution. Its density is given by

f o s t i x )  =
__ 2 ^ S ‘'\ 0 \ l¥ - K ^ 1 ( s/ W W  (X  - l*))2)) exp(/3(x - / i ) )

and

f s t ( x )  =

r < f ) v ^ ( \ / ^  +  ( ^ - / ' ) 2)

1 + 13 = 0

, 0 *  0, (3.3.9)

(3.3.10)
\ /2ttT(u/2)  V  ti2

is a limiting case of the GH distribution. The mean and variance of GH skew student t 
distributed random variable are

EPO =  fi +
/V

u - 2 ' V a r l X ) =
2 f3~a2 —A a-2

[u — 2)2(i/ — 4) u - 2 ' u > 4 (3.3.11)

3.3.4 V arian ce  G a m m a  d is tr ib u tio n

Carr and Madan (1998) introduced the Variance Gamma process to model asset returns by 
time-changing a drifted Brownian motion using a gamma process with unit mean. We define 
this model by considering the process (Y(t))t>o defined for every nonnegative real number t by 
Y(t) = Ot 4- aW(t), where 0 is a constant, a is positive real number and W a Wiener process. 
Let (7 (t, u))l>0 be a unit mean gamma process independent of Y. The process (Y(t))i>0 defined 
for every t > 0 by

Y(t) = y ( , t , e , a ^ ) )  = fd + e 1 ( t , u )  + y / W y i ^ v ( i ) ,  W(1) ~yv(0,i). (3 .3.12)

is the Variance Gamma process 
The PDF of Yt is given by

u ^ (u \  = 2 oxp (7(.v -  a0 /^~) f  1 y -  fA \
av/2^A -AF(A) ^ ^ 2 ^ \  + a* J 

The characteristic function of Yt is

A—0.5

k  A—1/2
\ x  —  f.i\\ /2 (7 2A 4-  O'1 (3.3.13)

E  4>vg{v)  = ^1 -  i j u  + ^ u 2^ (3.3.14)

The mean and variance of the Variance Gamma distributed random variate Y  are given respec
tively by E(K) = fi -t- 0 and Var(Y ) = a1 + u02.

^•4 Risk M anagem ent

alue at risk is a statistical estimate of the worst expected loss over a given horizon at a given 
n ^ence level. Value at Risk (VaR) has become the standard measure that financial analysts

a n



use to quantify market risk. It is defined as the potential change in value of a portfolio of 
financial instruments with a given probability over a certain horizon. We restrict our attention 
to univariate methodologies. From a statistical point of view VaR entails the estimation of a 
quantile for a given (assumed) distribution of returns.

Riskmetrics

In (3.2.1), we show that Riskmetrics model is equivalent to normal integrated GARCH (IGARCH) 
model, where the autoregressive parameter is a set of pre-specified value A and the coefficient 
of £jr_ i is equal to 1 — A. In the specification of daily data A = .94 and £ = aLZt where zt is 
i.i.d N(0,1) and of is defined as of = (1 -  A)tf_! + Aof_j. The one step ahead VaR computed 
in f — 1 for long trading position is given by /q + zltat while for short trading positions is given 
by Ut + zi - n(Tt with zQ being the left quantile at a% for the normal distribution and z \ -a is 
the right quantile at o%. This approach underestimates the value at risk especially in emerging 
economies.

Proposed VaR M odel

In line with the AR-APARCH model, let S = (S,)tG[0j-j be observed financial time series, then

log -A-t + /q /i T

T
Y  (log\St -  logSt-\)
t=l

AG — /q + o’t(Zt +  Vt), Zt ~  i.i.d.(0, 1),

= (ao + — l \£ t - i )6 + fa f - i ) '  (3.4.1)

Note that Vj is the non normal residual term calibrated as increments of Levy process. VaR at 
confidence level a e (0 ,1) for loss L of a security or portfolio is defined to be

VaR(t(X) = in f{x  G R : F^(x) > a}

= A + fit +  (?t dF :z +  dFy^J

= il + ,l,+<it ( F - 1(a) + F ; '(a ) )  (3.4.2)

where Fz and Fy are cumulative density function of the variable Z and Y  respectively. As 
an Example, if L is normal distribution N ( f i , a 2 ) then V a R a = /i +  <7<I>-1(o) where 4>-1(a) 
,s a  quantile of standard normal. While If L is a student t distribution t(v, //,, a2), then 
VdRn = // + (jt~1 (o) where t~'(a) is the o quintile of standard t with degree of freedom v.

Student and Norm al APARCII

The normal APARGH one-step-ahead VaR is computed as the conditional standard deviation 
t evaluated at its MLE, while the Student APARCH the VaR for long and short positions is

rn



given by /q + st.a>vat and /q + s t \ - nat with sta>v being the left quantile at Q% |ov the student 
t distribution with (estimated degrees ) of freedom u. Note that because _  2v_ft for the 
normal distribution and sta,v = - s t X- a.u for the forecasted long and short VaR wiHbe equal 
in both cases.

3.5 D ata  sets

The indices are based on the most liquid shares of blue chip companies traded on stock market.

• SP500 index New York Stock Exchange May 8,1998 to July 11,2007; USA 
n = 2307 observations.

• DAX index Frankfurt Stock Exchange November 26.1990 to October 20,2007; Germany. 
n = 4265 observations.

• NSE20 index Nairobi Stock Exchange March 2,1998 to July 11,2007; Kenya 
n = 2328 observations.

• MASI index Casablanca Stock Exchange. February 4,1998 to August 28,2007; Morocco 
n =  2383 observations.

3.5.1 P a ra m e te r  E s tim a tio n s  a n d  k e rn e l d e n s itie s

The Ljung-Box Q statistics of order 10 on the squared series indicate a high serial correlation in 
the second moment or variance. All returns distributions exhibits fat tails. See Figures (3.5), 
(3.8), (3.7) and (3.6).

P o r tm a n te a u  T est

Financial applications often require that joint tests about several autocorrelations of logS, -  
k>giq_i, V ( g {1,...,T} are zero. Box and Pierce (1970) propose the Portmanteau statistic 
Q*(m) = T \ pf as a test statistic for null hypothesis Ho : P\ = ... =  pm = 0 against the 
alternative hypothesis Ha : p /  0 for some i £ {l,...,m} against the alternative hypothesis 

: pi #  0 under the assumption that {log5, -  logSt_i} is an i.i.d. sequence with certain 
moment conditions, Q*(rn) is asymptotically a chi-squared random variable with m degrees of 
freedom. Ljung and Box (1978) modified the Q*{rn) statistic to increase the power of the test 
hi finite samples

m

Q(m) = T(T + 2 ) ' £ Y in  t3'5' 1)

' time series X t is called a white noise if {Ah} is a sequence of independent and identically
H pibu ted  variable with finite mean and variance. Empirical evidence show that the filtered



GARCH residues are not serially correlated in second moment. See results in table(3.1) which 
implies no serial correlation to the centered and normalized residuals. Moreover, One can argue 
that they fit increments of Levy process as driven by Generalized hyperbolic distribution and 
some of its subclasses such as NIG, HY, VG and GH-student densities.

Table 3.1: Maximum likelihood parameter estimates of the AR(p)APARCH(l,l) model for four 

indices, using Gaussian and student t distributions appropriately._____ ________________

NSE20 DAX SP500 MASI

n 2317 4265 2306 2382

<Pi 0.2740(.0210) 0 0 0.3435(.0192)

<t> 2 0.1634(.0211) 0 0 0

03 0.0440(.0208) 0 0 0

Q() x 104.1036(.02476) 0.0313(.()053) 0.0313(.0053) 0.0101(.0031) 1.0993(.0314)

a i 0.3175(.0525) 0.07808(.0089) 0.0659(.0100) 0.2754(.0223)

/i 0.5352(.0725) 0.9029(.01064) 0.9265(.0109) 0.7308(.0183)

<5 2 2 2 1.2986(.0199)

7 0 0 0 0.0114(.0372)

Q2(10) 6.943(.539) 1.248(.996) 9.534(.299) 6.856(.552)

Oi(|c| -  'ye)6 + 0 0.8437 0.9875 0.9923 0.9584

fz(z) 2 ~  f3.97(.38) * ~ N{0, 1) z ~  iV(0, 1) 2 ~  N(0, 1)

log L 8528 12881 7345 8833

3.5.2 M o d el(s) re s id u a l c a lib ra tio n

NSE20 Index student A R (3 )G A R C H (1,1) model

* be the mean centered process. Within a class of heteroscedastic variances we try to
find reas°nable models of {Xt}. From Table 3.1 the process { Xt} is represented as AR-GARCH



Normal Q-Q Plot

Emp. Density vs Fitted Nm,GH

Theoretical Quantiles MASI index density 1998-2007

Figure 3.4: Casablanca, MASI share index daily log return GARCH Levy filtered residuals 

calibrated.

noise of order (1,1) for t = 0, ±1, ±2, ±3,...

X t = /z+ (p\Xt- \  +  (f>2 X t-2 + (p:i X t-a +  £t +

et = °tZt, zt ~  0, 1)
a'f = o0 + ai£f_l +

6  =  <rtYt, Yt - Y t-i  ~  GH
(3.5.2)

The Ljung-Box statistics of the standardized residuals {if2} gives Q(10) = 6.97429 and p- 
value 0.5394087. Thus the fitted GARCH(1,1) model with t-distribution is adequate. The 
unconditional variance is 6.74683 x 10~5.

MASI Index

The AR(1)APARCH(1,1) model can be written as

Xt = + st 4- ft

£t = otZt
&t ~ ao + Q'ld^t-il —

where rt' > 0 and — 1 < 7 < 1. This model was introduced by Ding et al. (1993) which was 
eant to add flexibility of varying exponent and asymmetry leverage effect into account. A 

stationary solution exists if c*o > 0 and Q\kj + Q\ < 1  where k\ = (|z| + 712)A

unilarly, other models can be extracted from table 3.1.



3.5.3 R es id u e  c a lib ra t io n

The standard procedure E.M. algorithm was used to find maximum likelihood parameters. See 
Hu (2005), McNeil et al. (2005) and references there in, for detailed exposition of the model.

Table 3.2: Generalized Hyperbolic Distribution Maximum likelihood estimation.

GH NSE20 DAX SP500 MASI

A -1.846700 3.14556 3.052334 -1.793393

a 0.070542 2.15818 2.279172 0.013714

3 -0.057946 -0.26470 -0.224353 0.012858

S 1.935255 0.016210 0.215735 1.628145

V 0.074937 0.33469 0.259252 0.018427

log / -3967.591 -6723.702 -3469.757 -3721.059

Table 3.3: Maximum likelihood estimates of Hyperbolic distribution.

HY NSE20 DAX SP500 MASI

A 1.000000 1.000000 1.000000 1.000000

a 1.068512 1.79988 1.938602 1.211495

3 -0.080233 -0.2838095 -0.241376 0.033726

S 0.462694 1.520427 1.462422 0.323587

0.109201 0.358756 0.278058 -0.010359

log / -3986.997 -6718.59 -3469.808 -3738.791

3.5.4 T es tin g  g o o d n ess  o f fit

nce the maximum likelihood estimators have been calculated, the next step is to judge the 
quality of the fit obtained. One approach is to plot the fitted density <7(2, 0 ) and empirical 
r uon parametric density estimate on the same graph, or Q-Q plot in addition to calculation 

0 f e Kolmogorov distance which is the supremum over the absolute differences between two



Table* 3.1: Normal Inverse Gaussian.

NIG NSE20 DAX SP500 MASI

A -0.500000 -0.500000 -0.500000 -0.500000

a 0.596943 1.466975 1.650328 0.666512

0 -0.065622 -0.2744828 -0.247784 0.019438

6 1.241263 1.968419 1.943713 1.042988

0.085814 0.346604 0.285681 0.009591

log / -3974.308 -6715.163 -3469.501 -3726.955

Table 3.5: Variance Gamma Maximum likelihood of parameters.

VG NSE20 DAX SP500 MASI

A = \ fu 1.272183 3.14992 3.118843 1.185112

a 1.420518 1.17045 1.094472 1.229365

y -0.154469 -0.3630732 -0.267364 0.058057

0.103105 0.191216 0.3347879 -0.018108

log / -3991.336 -6623.703 -3469.728 -3741.387

density functions whose expression is given by:

Dn = sup |Femp(x) -  Fest{x)| (3.5.3)
x 6 R

where n is the sample size, Femp and Feat are the empirical and the estimated CDFs respec
tively. Kolmogorov distance is used because it pays more attention to the tails of distributions 
see Gyorfi et al. (1996) and Prause (1999). The Kolmogorov distances of the normal, the hy
perbolic, the variance gamma, normal inverse Gaussian, generalized skew t and the generalized 
hyperbolic distributions are presented in Table 3.8

3-6 C onclusions

n this chapter we have proposed a formal procedure of estimating VaR in emerging and de- 
VeloPed markets. This was made possible by fitting an A R-A PARCH model first by maximum



Table 3.6: t distribution maximum likelihood estimates.

T-uv NSE20 DAX SP500 MASI

A -1.853741 -4.589006 -5.051762 -1.793984

a 0.882379 2.318619 2.628921 0.975141

/3 -0.057144 -0.2751691 -0.267519 0.012596

S 1.939159 3.117849 3.098538 1.628585

A* 0.073945 0.3463958 0.307584 0.018830

log / -3967.600 -6702.904 -3467.620 -3721.059

likelihood, and estimating drift term /o and the varying volatility at appropriately. In developed 
market, fit was found to be non significant unlike the case of emerging market. The residu
als are then calibrated using distributions of Levy increments and the parameters tabulated. 
Graphical procedures and Kolmogorov Smirnoff distance was used to determine adequacy of 
fit.

The actual return distributions appear fat tailed and skewed compared to the assumed normal. 
In both markets volatility appears time varying and clustered where else returns are serially 
uncorrelated in fully developed market but correlated in emerging markets. VaR answers the 
basic concerns of risk management about the potential loss of the portfolio value.

There is need for further investigations about the exact solution of the proposed dynamics (AR 
APARCH Levy filter) of the underlying asset, which seems to capture most of the stylized 
features of financial time series data.

In future it will be interesting to decompose covariance non-stationary residuals observed in 
emerging markets into poisson part and pure white noise part (semi-martingale).
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Figure 3.5: Nairobi Stock Exchange NSE20 share index daily time series plot and its market risk 

analysis using AR(3)-GARCH(1,1) conditioned on scaled t-distribution and residuals calibrated 

using Generalized hyperbolic distribution as from March 2,1998 to July 11, 2007.
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Figure 3.6: SP500 share index daily time series plot and its market risk analysis using

GARCH(U) conditioned on Gaussian distribution and residuals calibrated using Generalized 

Hyperbolic and its subclasses as from May 8,1998 to July 11, 2007.
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figure 3.7: MASI share index of Casablanca Stock exchange Morocco daily time series plot 

analysis using AR(2)-APARCH(1,1) conditioned on Gaussian distribution and residuals cali- 

rated using a Leptokurtic distribution as from February 04,1998 to August 28, 2007.
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figure 3.8: DAX share index of Frankfurt Stock exchange German daily time series plot and its 

market risk analysis GARCH(1,1) conditioned on Gaussian distribution and residuals calibrated 

Ushig a Levy process as from November 2d,1990 to October 20, 2007.



Table 3.7: One day VaR results for NSE20 PAX SP50Q and MAS! (in-sample).

Index Long position 5% 2.5% 1% 0.5% 0.25%

N SE 20(A R (3)-G A R C H (1,1)) 0 .0 2 9 9 8 0 .0 3 7 6 9 0 .0 4 8 3 2 0 .0 5 6 9 9 0 .0 6 6 3 9

Riskmetrics 0.01293 0.01537 0.01821 0.02015 0.02194

D A X (G A R C H (1.1)) 0 .0 4 4 8 7 8 0 .0 5 4 1 5 2 0 .06541 0 .0 7 3 3 8 0 .0 8 1 0

Riskmetrics 0.027108 0.02275 0.03217 0.03562 0.03882

SP500(G A R C H (1,1)) 0 .0 3 8 7 0 0 .0 4 6 8 4 0 .0 5 6 7 2 0 .0 6371 0 .0 7 0 4 0

Riskmetrics 0.01871 0.02229 0.02646 0.02931 0.03193

M A SI(A R (3)A PA R C H (1,1)) 0 .0 6 1 7 6 0 .0 7 6 2 9 0 .0 9 4 9 8 0 .10881 0 .1 2 2 6

Riskmetrics 0.01294 0.01533 0.01812 0.02001 0.02177

Table 3.8: Kolmogorov distances.

NSE20 SP500 MASI DAX

p- value K o i s t p-value K [ ) i s t p-value K o i s t p-value

NM 0.355 2.2e — 06 0.261 2.2e-06 0.3212 2.2e—16 0.2746 2.2e—16

GH 0.0241 0.135 0.0230 0.1749 0.0185 0.3906 0.0138 0.3879

HY 0.0176 0.4654 0.0178 0.4596 0.0181 0.1307 0.0098 0.8025

NIG 0.0275 0.0592 0.0165 0.5582 0.0252 0.4194 0.0185 0.1071

VG 0.0215 0.2329 0.0178 0.4596 0.0239 0.1307 0.0192 0.8537

ST 0.0228 0.1787 0.0204 0.2935 0.0235 0.1437 0.0117 0.6008



Chapter 4

E u ro p ean  Call O p tion  P ric ing  

under A R -A PA R C H  Levy F ilte r

In order to minimize mispricing due to heteivscedastic nature of the underlying, flexible volatil
ity models are required. In this chapter we develop option pricing model when the dynamics of 
the. underlying process is driven by AR-APARCH Levy process. Arguably, empirical evidence 
of daily log returns of financial assets in emerging and parts of developed economies, can be 
characterized by the proposed underlying process. Conditional variance in risk neutral, world of 
different conditional heteroscedastic models are derived. The proposed model is used to price 
European call options in developed and emerging economies. Pricing such quantities require 
knowledge of risk neutral cumulative return distribution which is generally unknown. Numeri
cal analysis suggest that AR-APARCH-Levy model may be able to explain some well documented 
systematic biases associated with BSM73 model.

4.1 In tro d u c tio n

h* recent years more attention has been given to stochastic models of financial markets which 
depart from the traditional Black and Scholes (1973) model. Some of the most popular and 
*̂11 tractable models are the Levy models. For an introduction to these models applied to 

finance we refer to Eberlein and Keller (1995), Prause (1999), Sato (1999), Raible (2000b), 
anidorfi-Xielsen et al. (2002), Schoutens (2003), Eberlein and Ozkan (2003), Shoutens (2006), 

jpoiitens (2006) and references therein.

£?0



It is well known that the stock prices do not follow a pure random walk as documented by 
Lo and Mack inlay (1988). Price changes are neither independent nor identically distributed. 
There are linear and nonlinear dependencies between successive price changes. Maheu and Mccurdy 
(2004) for example, study news arrival and jump dynamics of asset returns as components of 
returns distributions. In view of this we focus on the variation of higher order moments as used 
in econometrics and time series techniques.

Following the work of Engle (1982) and Bollerslev (1986), a voluminous econometric literature 
has been developed on volatility estimation and forecasting. There is a general consensus that 
asset returns exhibit variances that change through time. GARCH models are a popular choice 
to model these changing variances.

Motivated by the successes of G ARCI1 models in fitting asset returns; researchers have extended 
the GARCH model in the domain of option valuation. Duan (1995) characterizes the transition 
between the physical and risk neutral probability distributions if the underlying security is 
given by GARCH processes, and thus establishes the foundation for the valuation of European 
options. A common feature of all the tests to date is the assumption that the volatility of asset 
return is equal to volatility of the pricing process. That is, a risk neutral investor prices the 
option as if the distribution of its return had a different drift but unchanged volatility. This is 
certainly a tribute to the pervasive intellectual influence of the Black and Scholes (1973) model 
on option pricing. However, Black and Scholes derived the above property under very special 
assumptions, (perfect complete markets, continuous time and price processes and constant 
volatility). Changing volatility in real markets makes perfect replication argument of Black- 
Scholes invalid. Markets are then incomplete in the sense that perfect replication of contingent 
claims using only the underlying assets and riskless bond is impossible.

Several papers have investigated certain aspects of the empirical performance of GARCH op
tion pricing models heteroscedastic nature of volatility see for example Bauwens and Lubrano 
(2002) and Christoffersen and Jacobs (2004). In most studies, volatility of the pricing process 
is considered. It. is well known fact that volatility of pricing process is different from volatility 
of asset process. This will occur because investors will set state prices to reflect their aggre
gate preferences. Pricing distribution will then be different from the return distribution see 
Hardle and Hafner (2000), Hafner and Herwartz (2001), Barone-Adesi et al. (2007).

In this chapter we develop a pricing model for options on asset whose continuously compounded 
returns follow linear autoregressive asymmetric power autoregressive conditional heteroscedas
tic Levy (AR-APARCH-Levy) Alter, which nests GARCH process of Bollerslev (1986) audits 
variants. We link the robust model to the contingent pricing literature in developed and emerg
ing economies. In option pricing literature, the underlying process of asset value is assumed to 
follow a diffusion process, which leads to a well documented biases associated to Black-Scholes 
m°del. Moreover, concerning AR-APARCH-Levy filter, it can be argued empirically that it 
explains most of the BSM73 model biases (underpricing of short maturity in the money options 
88 Well as long maturity at and in the money in relation to strike price).

The remainder of this chapter is organized as follows. The next section, outlines the estimation
Methodology and option valuation using Monte Carlo simulation. Numerical examples from
developed and emerging economies are presented in Section 5.
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Figure 4.1: Empirical density of daily NSE20 AR-GARCII filtered Levy increments calibrated

Vs-density of fitted infinitely divisible distributions and normal distributions. The ordinate axis 

ls on a log scale in order to exhibit the tails clearly.
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4.2 T he A R -A PA R C H -L evy op tion  pricing  m odel

4.2.1 A R C H  ty p e  m o d e ls

ARCH type models are discrete-time models used to estimate volatility of financial time series 
such as stock returns, interest rates and foreign exchange rates see Bollerslev et al. (1992) and 
Bollerslev et al. (1991) and references therein for overview and empirical evidence.

Consider a discrete-time economy and let St be the asset price at time t. A general time series 
model for financial returns would be

with fit = v 4- where 4> is the coefficient of the conditional autoregressive part, at
standard deviation conditional on the past and Lt Levy process, ct, can be stochastic itself or 
determined by past history of the time series. Its one period rate of return is assumed to be 
conditionally distributed under physical probability measure IP.

(1993) and Hentschel (1995) provide a general specifications of volatility dynamic that nest most 
existing work. In this connection volatility dynamics can be written as

Different GARCH models are mainly characterized by differences in the innovation function 
/(Z t_!). Consider the following specifications of /

log(S,f/5'/i_i) X t — 4- at(Zt + Lt), Zt ~ Ar(0 ,1), (4.2.1)

We note general specifications of aj in (4.2.1) common in most of ARCH type models. Ding et al.

V,.2 u + c\Zt_ i af_ j + [3af_ 1 

u  + + aoi_x(Z'f_y), W.l.o.g.,

( Z t - , - f f ) 2,
f ( z l- , ) = l  {| -  6\ -  k-S)2},

Simple ; 
Leverage;
News;
Power;
News and power;

(4.2.2)

These models can be generalized to allow nonlinearity of volatility dynamics by using Box-Cox 
transformation as follows

which implies modeling news and power, will nest most of the proposed GARCH models in lit- 
ature. Note that the leverage parameter 6 shifts the innovation function, the news parameter

* tilts the innovation, and the power parameters p and ip flatten or steepen the innovation func- 
l0n‘ Smdi a model (4.2.3) is the Asymmetric Power Autoregressive Conditional Heteroscedastic

• el i.e. APARoh * m n  o on -i^k neutral probability measureY measure



4.2 .2  R isk  n e u tra l iz a t io n  in c o m p le te  m a rk e t

First we estimate the parameters of (4.2.1) under the physical probability measure P from asset 
returns. Then, the parameters are converted to conform to a risk neutral measure <Q>.

In order to develop the option pricing model, the conventional risk neutral valuation has to 
be generalized to accommodate heteroscedasticity of the asset return process. Duan (1995) 
introduced the GARCH option pricing model by generalizing the traditional risk neutral valua
tion methodology to the case of conditional heteroscedasticity, the so called Local Risk Neutral 
Valuation Relationship (LRNVR).

Definition 4.2.1. A pricing measure Q is said to satisfy the locally risk-neutral valuation 

relationship (LRNVR) if measure Q is equivalent to P, and

almost surely with respect to measure P.

For some commonly used assumptions concerning utility functions and distributions of change 
of consumption, Duan (1995) shows that a representative agent maximizes his expected utility 
using the LRNVR measure Q. Risk neutralization should leave the variance unchanged and 
should transform the conditional expectation so that the discounted expected price of the 
underlying asset becomes a martingale. It is worth noting that in the case of homoscedasticity 
process, (p = 0, q =  0), the conditional variances become the same constant and the LRNVR 
reduces to conventional risk neutral valuation relationship.

Consider the general model of daily log returns under the data generating probability measure

where the parameters u> > 0, a  > 0 and > 0 and 1 -  (5 -  a > 0 and given cr0. The sequence 
{ t̂} and {£t } are conditionally independent, while 35_i is the past information set. /q 
represents the conditional expectation of returns.

The pricing measure Q shifts the error term st by some measurable function A*, so that the 
conditional expectation of X t becomes equal to r. In the case of AR(1)APARCH(1,1)- Levy 
filter, we follow the Hafner and Herwartz (2001) argument. Therefore under the equivalent

r (4.2.4)

VarQ(V ,|J (_1) = VariP(A'i|Tf_ 1)

(4.2.6)



martingale measure Q the model (4.2.6) translates to

X t Rt + £ lt + S2t\

Rt +  crt ( Z t  — A n )  +  at{Lt — A  2 t),

Rt — v 4- 4>Xt-1;
I An = (fit -  r)/a t\

A r>t = ELt;
, trf =  f(a'l, Z„  A,.,; -oc  < s < ():

(4.2.7)

(4.2.8)

The LRNVR implies that under the risk neutral measure Q the return process evolves as

Xt — r + (Tt{Zt + Lt -  ELt),
Zt ~ N {0,l) ,L t ~  NIG(Q)\
0  = {OLNIG,  0 N I G ,  H N I G , 8 n I g )',

a t =  u> +  C k ( Z t - \  — X t - i ) 2cr^_ l +

At-1 = (/2t_i -  r ) / a t- i ,

//.,_! = V + 0Xt_2,

(4.2.9)

(4.2.10)

(4.2.11)

(4.2.12)

It follows quite easily that

Eq[.Y,|7,_1] = 7' and Varp(X(|? ,- i)  = Var°(.Yt|3i-i)
= a{(l +  VarQI ,)  (4.2.13)

The following propositions provide the unconditional variance for the process X t under Q

Proposition 4.2.1. Consider AR(3) APARCH(U) Levy filter, with 6 = 2  and k = 0 which 

implies AR(3)GARCH(1,1) Levy model, the unconditional variance of X, under the LRNVR

equivalent measure Q is

Var QX, =
(1 +  V a rL ,)  f ui -\~ ot r (1 -  E j =i <i>j )1 + 2r E'Uj

1 -  a[l + (1 + VarLt)(J2j=i <t>])] ~ ft

Proof of proposition 4.2.1
Given Xt = r + (ft{Zt + Lt — EL*); At = (pi — r)/(?t\ Rt — v A- Ej=i ^jVt-j ^Ve note that 
EvArt = r and

E Q [ X 2 ] = EQ(r2 + 2rotZt(L, -  ELt) + a fZ f(L  -  EL,)2) 

= r2 + E % 2(1 + VarL,)

EQ[a2] = w + aEQ(Zt_! -  At-x)2^  + /3Eq<t2- i

=  u> +  a ( E Q [ a 2_ , ]  +  E 9 ( / z t -  r ) 2 ) +  0 E Q a 2- i

aher rearranging and simple algebra

EQ[/h-i -  r]2 = v2 + (r2 + Eq<x2- i (1 + VarLt))(]T  <t>)) ~  2vr(l -  ]T  ftj) + r2(l -  ^ 4>j) + -
j =  1 3=  1 3=1

3 3 3
= v2 + {r2 + EQ<r2_x(l + VarL,)) ( ^  (j>j) + r(l -  2u)(l -  ^  <f>j) + 2r2

j  =  l  > = 1

<2 0



Thus under stationarity, the unconditional expectations are independent of t

E Qr 21 =  u  +  r ~ ( S = i  +  r (1 ~  ^ X 1 ~  <f>j) +  2r2 <j>j<t>k
1 -  a[l + (1 + VarLt) 4%] ~ 0

Therefore the unconditional variance of AR(3)GARCH(l,l)Levy filter model under LRNVR 
equivalent martingale measure is

(1 + VarLt) (u  + a v2 -  2vr{l -  £ j =1 d>j) + r2( 1 - 2  ^ =1 0, + £  <t>]) + 2 m  £ ^ fc 
VaryXt = ------------------------- -—

l - Q [ l  + (l + VarLt) (E ;« i0 i) ) - /3
T 2

1 + VarLf) + or |v -  r(l -  £ >=1 0j)J + 2or £ t/ j  0^0, 

1 -  a[l +  (1 + VarLt) (£ ^ =1 4>j)] ~ 0

. □

Proposition 4.2.2. A special case of AR(l)GARCH(l,l)Levy filter the unconditional variance 

under the LRNVR equivalent measure Q is given by

Q _ (1 + VarLt)[tJ + a(v -  r(l -  0 ))2]
1 1 — o(l + 02(1 + VarLt)) -  0

Proof of proposition 4-2.2

This is a special case of (4-2.1) with 0i = 0 and 0o = 03 — ().□

Example 4.2.1. In case of Hyperbolic distribution we substitute mean and variance respec

tively into (4-2.14)- Where the parameters used maximize the likelihood function of Hyperbolic 

distribution, i.e. Let (hp =  ^HPy/oifjp ~ Php them,

E  Lt — pup  + P h p &h p  R 'z i C n p )

V a2H P  -  0 H P  ^ i (Cw p )

0.0073397

and

VarLt = S2HP
(  A  i> ( Q / p  ) , 0 %  p

■
A '3  (C /y  p  ) (  K 2 {Ch p  ) \ 2

yO/pXi(C//p) o~Hp - 0 - HP A'i(C//p) 

1.713026

K \ ( ( , h i

(4.2.14)

(4.2.15)

(4.2.16)

(4.2.17)

Consider a discrete time economy, where interest rates and returns are paid after each time 
interval of equispaced length. Suppose there is a price for risk, measured in terms of a risk 
Premium that is added to the risk free interest rate r to build the expected next period return. 
As in Duan (1995), we adopt and extend the ARCH-M model of Engle et al. (1987) with the 
risk premium being linear functional of the conditional standard deviation, hence the following

pn



model under P,

Xt — r + X(T i + Ei where <
£t\3t-\  —  vt {Zt  +  L t),
Zt ~ N (  0, 1),
CT? = U + (Q(Ti_iZt_i)2 + /3(72_ j ,

Lt infinitely divisible density:
Zt Standard normal; (4.2.18) 
GARCH(l.l);

The parameters uj,q , and (3 are constant parameters satisfying stationarity and positivity con
ditions, while the constant parameter A may be interpreted as the unit price for risk, if we 
change the function a'{ in (4.2.18) to model news impact, we get threshold GARCH model of 
Glosten et al. (1993) where

()(x) — u> + a ix 2lx<0 + a 2X2Ix>o (4.2.19)

hence the resulting TGARCH Levy filter model

f Ei\CJ t- \  — (Tt(Zt + Lt),
Xt =  r + \(Tt + Et where < Zt ~  N(0, 1),

[ = f lK - 1 Z,- i ) + 1,

Lt infinitely divisible density:
Zt Standard normal; (4.2.20)
TGARCH(1,1);

Proposition 4.2.3. The unconditional variance of the TGARCH-M Levy filter model under

equivalent martingale measure Q is

y.irQ x  = _________ ^(1 + VarLt)_________
‘ l - o 10 ( A ) - o 2(l + A2 - t / ; (A)) - /3

where

if{u) exp ( - - m2) + (1 + u2)$(u]

(4.2.21)

(4.2.22)

and 4?(u) denoting the cumulative standard normal distribution function.

Proof:

Under measure Q

A t — r + Et
= r + <71( A + Zt + Lt — E Lt)

where A is the risk premium and

at — u  +  a\(Tt_1(Zt-i  — A)2 + {Zt-i*t-i<u < 0



Var'J X, = E ^ - r 2 

= r2 + Eaj_, (1 + VarLt ) -  r2

E v <t(j  — w +  + 0 2 (1  +  A2 -  ^ ( A J J E ^ o f . j  +  0E^<rf_1
UJ

thus VarQ(Xt) =

1 -  ttiV'(^) -  0:2(1 +  A2 -  ip(X)) -  (3 
w( 1 + Var Lt)

1 -  cn-ip(X ) -  a 2 { 1 + A2 -  1>{A)) -  (3

where, V’(w) = - 7 =  e x p (- iu 2) + (1 +  u2)$(u)
v 27r 2

and <p(u) denoting the cumulative standard normal distribution. Note that Z[_x ~  
and

E[Z'?IZi<o|J«-i] = - 1 = /  Z2exp(-(Z + A)2
V 27T •/ — 00

/2)d:

-7= =  /  ( «  -  A)2 e x p ( - u 2 /2 )d u
V  27T —00

1 2A /■* A2 /■*
- 7=  / u2 exp(—u2/2)du---- 7=  / uexp(-u2/ 2)dw +  - ^ =  / exp(-u2/2
V 7T »/ — oc V ^ «/ — 00 V ^ 7T ,/ — qq

— A 2 A
-7=  <*p(-A2/2) + t>(A) + - =  exp(-A 2/2) + A2$(A)
V27T V27T

—== exp ( -  — ) + (1 + A")0(A) 
v 27T ^
V’(A)

Proposition 4.2.4. The unconditional variance of the GARCH-M Levy filter model under the 

LRNVR equivalent, martingale measure Q is

q o;(l + VarLfVarvXt =
1 - q(1 + A2) - /? (4.2.23)

Proof of proposition 4.2.4
It is a special case of proposition 4.2.3 when we take c*i = « and a2 = O.D

4.3 A pplication  to  op tion  valuation

4.3.1 T h e  B lack -S cho les a n d  M e r to n  (B S M 73) m o d e l

n its simplest form, the Black and Scholes (1973) and Merton (1973) model involves only two 
underlying assets, a riskless asset cash bond and a risky asset stock. It is assumed that a cash 
°nd appreciates at a short rate r, while the share price St of a risky asset at time t is assumed 

follow a geometric differential equation of the form d.St = fiStdt + aStdWt where (lVt}t>o is



a standard Brownian motion, while /< and a are constants. The price of a European call option 
at. time t for a give strike price K  is given bv

CB5(St ,T  -  t,o, K)

d\

d.2

e - r ( T - t )E Q [m a x ( 5 r  _  f t  0)]

5t<E>(di) -  K e -r(T- l)$>(d2) 
\w(St/K )  + (r + a2/2) (T -  t) 

a\JT -  t 
d\ -  a \jT  — t

(4.3.1)

(4.3.2)

(4.3.3)

(4.3.4)

Note: As stated in Duan (1995), the Black-Scholes option price in the GARCH framework and 
for our case AR-GARCH-Levy process respectively should be interpreted as an incorrect ho- 
moscedasticity and hence an incorrect unconditional standard deviation for the risk neutralized 
asset return process. Specifically we substitute a in (4.3.3) with

c?g = u(l -  a -  P) 1 , and a f  = w(l 4- VarLt)(l -  a  — P)

— x t u - W

- l

a 2 = 4.3.5)
j =i

To compute respective differences in option prices under BS73 model and observed market 
option prices as strike price /.• varies, Cmrkt(St, T  — t, k), we define and compute the following 
functions

fBM(k) = C BS( S , , T - t , a , k ) - C " " l“(St , T - t , k ) ,  (4.3.6)

/ gmW  = CBS(S,, T - t ,  <7g, k)-  C (4.3.7)
fi .n(k)  = Cu s (S,, T - t ,  a , , k ) -  C k).(4.3.8)

where k represents strike price k 6 (St -  A/, St + M), M  € M. The corresponding results are 
presented graphically in Figures(4.3) and (4.4).

4.3.2 T h e  G A R C H  o p tio n  p r ic in g  m o d e l (D u an 9 5 )

According to Duan (1995), pricing contingent payoffs requires temporally aggregating one pe
riod asset returns to arrive at a random terminal asset price at some future point in time 
T.

St

9

CD 95(St ,T  -  t'CTt, K)

St exp ( T - t ) r - \  Y ,  + Y .  &
s = t + l s = t + 1

6134-1 ~N
c * o  +  — A c q _ i ) -  +  P&t-\

e - r ( T - t ) E Q [m a x ( 5 r  _  f t  0)|3Tt]

(4.3.9)

(4.3.10)

Because there is no analytic expression for the expectation in (7.3.12), we use numerical tech- 
ques to simulate the option price. That is the distribution of the payoff function max(SY -  
>0) at the terminal date is simulated by generating m stock price processes and taking their

averages.

1 m
CD9!i(St lT -  t, at . K) = e- r(T- ‘)— V  max(5^) -  K, 0)m ' (4.3.11)



We define and study the following differences

9d m( S , , T -  t ,a „ k ) = Ct”*(S„ T -t ,< r„ k)  -  Cmrk'(S ,,T  -  t,k)
9 d b ( S u T  -  t , o t , k )  = C D05(St, T - t , a t, k ) - C BS(4.3.12)

Im pa ct o f  L ’evy part in  BS73 m odel

Stock Price

Impact of L’evy part in BS73 model

0 8 0.9 1 0 1.1 1 2

Stock Price

Figure 4.3: Differences between Black and Scholes prices, BS73 unconditional GARCH(l.l) 

variance model and unconditional GARCH-Levy variance model for S&P500 index log returns 

compared for 10 days and 40 days respectively to maturity. The X-axis represent the moneyness 

(St/ K ) of the option.

4.3.3 A R -A P A R C H -L e v y  filte r m o d e l

The price of a European call option with strike price K  and time to maturity T days, is 
computed by simulating (4.2.9)-(4.2.12) under risk neutral measure Q. We apply Monte Carlo 
simulation which was introduced in finance several decades ago, (see Boyle (1977). Boyle et al. 
(1997), McLeish (2005)) to price options using AR-APARCH-Levy filter model. We draw 
(T + 1) independent standard normal random variables and Normal Inverse Gaussian NIG(Q)  
or any other infinitely divisible distribution such as Generalized hyperbolic and Variance gamma 
densities which fit the standardized residuals as shown in figure 5.1 and figure 4.2.

W e  simulate (Xj ,  < J ,) j= o ......t  and compute

T

S!jn) =  S0exp(Tr + y  Ar. j ) , n =
3= 0



where

Xj = <7 j(zj + Lj -  ELj), UJ + a(cTjZ$ -  2z0(v -  r) + (v -  r)2) + 

uj + a(<xj2z(2 -  2zu(v -  r) + (v -  r)2) + 0<r(2

VarQ(A'<),

Then we compute the discounted call option payoff

C(n) = exp(-rT) max(0, S j l} -  K).

Iterating the procedure N  times gives the Monte Carlo estimate for a call option price

N

Cmc(K,T)-.= N - l Y t C{n).
n= 1

To reduce the variance of the Monte Carlo estimate for the call option price, we calibrate 
the mean as in the empirical martingale simulation proposed by Duan and Simonato (1998). 
Scaling the simulated values S j  \  n = 1, ...,N  by a multiplicative factor, the method ensures 
that the risk neutral expectation of the underlying asset is equal to the forward price.

n=  1

S j =  S q exp(rT) where (4.3.13)

q(n)
° T )\ tc to X S <

: i

ii

to

1

(4.3.14)

We compute option prices using S j l\  i.e.

CArL{St,T ,a t ,k) = exp(-rT) max(0, S)"’ -  K).c(n) 4.3.15)

4.4 E m pirical d a ta

For simplicity we focus on daily closing indices {St} as reported in Nairobi stock exchange for 
NSE20 share index and S&P500 index in New-York Stock Exchange. Daily log-returns X t of 
S&P500 index are computed from January 03,1990 to January 18, 2008 for a total of 4550 daily 
observations. While for NSE20 share index are computed from March 02,1998 to July 11, 2007 
for a total of 2317 daily observations.

All return series exhibit strong conditional heteroscedasticity. The Ljung and Box test, rejects 
the hypothesis of homoscedasticity at all common levels both for returns in S&P500 index and 
AR(3)residuals of linear regression in NSE20 share index. We estimate GARCH type models 
burning conditional normality. With respect to the absolute value of parameter estimates, we 
hud that (0 < a  -f /3 < 1) but different for both indices (NSE20 (0 < a  -I- (5 = 0.924238 < 1) 
’ S&P50G (0 < a  + 0 = 0.994097 < 1)), indicating the typical higher persistence of shocks in 
volatility in New York Stock exchange compared to Nairobi Stock exchange.

*7  A



where

Xj  — (jj (Zj -f- Lj ELj ),

a2o

uj + a{(TjZ% -  2z0(v -  r) +  (v -  r)2) + (3a2 _x, 
u) + a((7,2z(2 -  22q(u -  r) + (v -  r)2) + (3(Tq 

VarQ(Xt),

Then we compute the discounted call option payoff

C(n) = exp(-rT) max(0, 5^n) -  K ).

Iterating the procedure Ar times gives the Monte Carlo estimate for a call option price

N

Cmc(K,T)  := ;V -‘ ^ C < " ) .
n =  1

To reduce the variance of the Monte Carlo estimate for the call option price, we calibrate 
the mean as in the empirical martingale simulation proposed by Duan and Simonato (1998). 
Scaling the simulated values S j L\  n = 1, N  by a multiplicative factor, the method ensures 
that the risk neutral expectation of the underlying asset is equal to the forward price.

N
N ~ l ^  Srl'.l'> = .Soexp(/-T) where

71=  1

We compute option prices using S-/1'1. i.e.

CAPL (St,T ,a t, k) =  exp(—rT) max(0, -  I\).

(4.3.13)

(4.3.14)

(4.3.15)

4.4 E m pirical d a ta

For simplicity we focus on daily closing indices {5(} as reported in Nairobi stock exchange for 
NSE20 share index and S&P500 index in New-York Stock Exchange. Daily log-returns X t of 
S&P500 index are computed from January 03,1990 to January 18, 2008 for a total of 4550 daily 
observations. While for NSE20 share index are computed from March 02.1998 to July 11, 2007 
for a total of 2317 daily observations.

All return series exhibit strong conditional heteroscedasticity. The Ljung and Box test rejects 
the hypothesis of homoscedasticity at all common levels both for returns in S&P500 index and 
AR(3)residuals of linear regression in NSE20 share index. We estimate GARCTl type models 
assuming conditional normality. With respect to the absolute value of parameter estimates, we 
find that (0 < a + (3 < 1) but different for both indices (NSE20 (0 < a + (3 = 0.924238 < 1) 
, S&P500 (0 < a  + (3 = 0.994097 < 1)), indicating the typical higher persistence of shocks in 
volatility in New York Stock exchange compared to Nairobi Stock exchange.



Model (5.3.14) is estimated using Pseudo Maximum Likelihood estimator based on the assump
tion of conditional normal innovations. The parameter estimates are reported in Table 5.4. For 
more on derivations of conditional likelihoods and GARCH models see Hamilton (1994), Tsay 
(2002).

Since the standard benchmark model in option pricing is Black and Scholes (1973), we compare 
simulated GARCH model (7.3.13) and AR-APARCH Levy model. We therefore estimate two 
models and compare the resulting option price differences graphically as days to maturity vary. 
The results are shown in figure(4.5) and figure(4.4)

Table 4.1: GARCH and G.JR model estimates for the indices.

Xt — (f)\Xt-\ -|- (f>2Xt-2 +  f o X t s  +  £ t=crtZti Z t ~ N ( 0,1 ),

7ii n

a 't =  <*0 +  -  H i£ t - i ) 5 +
j = 1

' NSE20 S&P500

Parameter GARCH 'MIIo

GARCH GJR((i = 2)

0 l 0.18915(.024496) 0.18136(0.02424)

02 0.16451 (.023785) 0.16245(0.02352)

tf>3 0.11388(.023413) 0.11516(0.02308)

uj * 104 0.03549(.006902) 0.03458(0.00647) 0.006577(.001645) 0.01088(0.00204)

Q 0.15023(.017978) 0.18578(0.02528) 0.056461 (.0067528) 0.00322(0.00512)

0 0.78763(.024753) 0.79045(0.02373) 0.937566(.0074845) 0.93202(0.0079)

GJR(7) -0.07332(0.02592) 0.10558(0.0123)

Q(io) 9.3468(0.2287) 8.8337(0.2648) 16.5309(0.08541) 15.2862(0.1220)

Q2(io) 7.1689(0.5739) 8.46159(0.38973) 6.8918(0.54835) 5.9298(0.6551)

lgl -8363.5 -8367.7 -15090.9 -15090.9

n 2316 2316 4549 4549

^°tes: Standard errors are in parenthesis, lgl is the log likelihood.



Table 4.2: Calibration of AR-GARCH(1,1) residuals to GH and its subclasses.

f GH{x:ot,0,S, //,, A) 

/a)

j^/S)* K x - t{ a \ /6 2 + (j  -  /Q2)
T - a

, p { x ~ n )

\Z2nK\(S'y) {\Jb'1 + (.r -  /a)2/q) 2

a  / x /  2---- ^  , /a/ .. A b ( ^ V l  + x 2 ;-  exp(<5 v/a2 -  /52 + /3(x -  /i))------  —
7T v l + x 2

NSE20 GH HY NIG S&P500 GH HY NIG

A -1.79233 1.0000 -0.5000 A 2.38336 1.0000 -0.500

a 0.98225 1.15813 0.66862 a 0.14671 1.68640 1.33977

(3 -0.05226 -0.06604 -0.05864 -0.14279 -0.14976 -0.15755

6 1.79373 0.45207 1.18530 S 0.04052 1.04004 1.59588

A 0.12296 0.13923 0.13014 A 0.14292 0.15130 0.16032

4.5 C onclusions

This chapter develops an AR APARCH Levy filter option pricing model using a local risk neu
tralization. The proposed pricing model may be computationally demanding, but the rewards 
are enormous.

Our method delivers predictive distribution of the payoff function for a given econometric model. 
This probability distribution could be useful to market participants who wish to compare the 
model predictions to potential prices on the market or other participants who wish to compare 
the model predictions in developed and emerging markets.

The paper shows that we can price options from developed and emerging economies using 
AR-APARCH-Levy filter. Analytically approximating the distribution function of the terminal 
asset price under locally neutralized pricing measure can be done by calculating AR-APARC’H 
Levy parameters from market data and applying Monte Carlo simulation.

Option prices crucially depends on volatility estimates. The presence of autoregressive dynamics 
affects prices directly, especially in developing economies as evidenced by NSE20 share index. 
To account for stylized facts of stock returns in both economies, we evaluate option prices under 
risk neutral pricing measure using Monte Carlo simulation. Our results may be summarized as 
follows:

a) Developed market and emerging economies may not have the same underlying dynamics 
as universally assumed in literature, AR-GARCH effects imply U-shaped differences of



Market data less Black-Scholes, T=45 days Market data less Black-Scholes, T=105 days

:

Model Differences
-- f_BM

*  f_GM
• f_LM

200 400 600 800 1000 1200 1400 500 1000 1500 2000

Strike Prices Strike Prices

Figure 4.4: Investigating the difference between BSM73 model when a is replaced with different 

unconditional risk-neutral variance from AR APARC’H Levy Filter.

options to BSM73 price viewed as function of moneyness.

b) The presence of linear autoregressive dynamics AR(3) effects in NSE20 index affects the 
unconditional variance in risk neutral world and the computed option prices. The U- 
shaped differences are relatively smaller in magnitude compared to the S&P500 case in 
all maturities viewed as function of moneyness.

c) The option prices differences by both models (BSM73 and AR-APARCH Levy filter) from 
both markets for longer maturities say 120 days, is highest for all values of moneyness. One 
can conjecture that the proposed model may have superior predictive power as opposed 
to BSM73 model.

d) Both models, sparingly agree on short term maturities say 10 days, far out of money and 
in the money but not at the money viewed as function of moneyness.

Overall, we find that AR-APARCH-Levy filter deliver promising empirical performance and 
we hope to provide additional empirical support in future work. Casting the option pricing 
problem in incomplete market allows for more flexibility in calibration of market prices. It may 
be interesting to study continuous autoregressive moving average (C’ARMA) and COGARCH 
model driven by any class of Levy process. Further refinements and extensions are left for 
future research.
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Figure 4.5: Investigating the difference between BSM73 model and simulated AR APARCH 

Levy filter option prices model when applied to NSE20 data and SP500 index data. The x-axis 

represent the Strike price K  of the option.



Chapter 5

A sian and  Lookback O ption  

P ric ing  u n d er A R -A P A R C H  

Levy F ilte r

This chapter examines the pricing of Asian and lookback options, when the underlying asset 
is assumed to follow an AR-APARCH-Levy process in any economy (developed or emerging). 
We show how one can price such exotic options whose value depends on the price path of 
the underlying asset. Empirical results, reveal that decomposition of log returns into three 
components, improves pricing performance compared to Black Scholes and Mer ton (BSM73) 
model. Numerical illustrations and comparisons are presented.

^•1 In tro d u c tio n

European and American calls and puts are by far the most popular financial options. However, 
the development of financial markets has spawned many other types of options, eg exotic 
°Ptions; marketed as part of financial package. In the last two decades, interest in exotic 
Ptions have been growing, especially in the over the counter (OTC) market. Most of these 

contingent claims are path dependent.
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An option is called path-dependent if its price depends on the path followed by the underlying 
asset since the inception of the contract, in addition to the underlying asset price and the 
remaining time to maturity. Usually there exists one sufficient statistic describing the past. 
For example for an average rate (Asian) currency option, which is popular with the firms that 
have a streams of cashflow in a foreign currency, this statistic is the average of past values. We 
confine our study to Asian and lookback options.

Popular models such as the Black and Scholes (1973) model, based on the geometric Brownian 
motion, have very nice mathematical properties which have been extensively used to price 
options. The value of a European call option for example, is derived as a result of calculating 
the expectation

C — e~rTE®[(ST -  K )+],

with respect to a risk neutral measure. Most of the published research on path dependent 
options assumes that the underlying asset is driven by geometric Brownian motion (GBM),- 
see Vecer and Xu (2004), Albrecher et al. (2008). These models, however, lack most of the 
empirically found features of financial data (see Cont (2001), Maheu and Mccurdy (2004)). 
More elaborate models can therefore be found in the literature which try to encompass these 
empirical findings.

Empirical studies of late have shown that the daily increments of asset prices are generally 
unlikely to be lognormally distributed. In this connection, more attention has been given 
to stochastic models which depart from the inspiring classical Black and Scholes (1973) model. 
Some of the most popular and still tractable models are the exponential Levy models, advanced 
stochastic Levy models etc. For an introduction on these models applied to finance we refer to 
Eberlein and Keller (1995), Prause (1999), Sato (1999), Raible (2000b), Barndorff-Nielsen et al. 
(2002), Schoutens (2003), Eberlein and Ozkan (2003), Shoutens (2006) and references therein.

It is widely accepted that financial time series of different assets share a common set of well 
established stylized features. Models with jump processes are thought to be more representative 
of actual market behavior (see Cont and Tankov (2004)). Daily log returns are known to 
display heavy tailed distributions, aggregational gaussianity, quasi long-range dependency in 
higher order central moments as documented by Duan (1995) and Rydberg (2000). To explain 
time series data and variation in option prices across strike price and maturity date, advanced 
stochastic volatility models of Ornstein-Uhlenbeck type proposed in literature employ six to 
ten parameters (Nicolato and Venardos (2003), Carr et al. (2003), Carr et al. (2007)), which is 
a far cry from a single parameter model originally proposed by Black and Scholes (1973) and 
Merton (1973) model.

In recent years it has been observed that distributions of log returns can be fitted to a class 
of Levy motions like normal inverse Gaussian, hyperbolic and Variance Gamma distributions 
«unong others. These distributions are infinitely divisible and generates a Levy process which 
gives rise to exponential Levy model proposed in literature to describe the dynamics of stock 
Price. The exponential Levy model St = SoeXt, where {Xf} is a Levy process, assumes that log 
returns log(5t+s/5 t) increments of length s generate a stochastic process which is stationary and 
independent in all its central moments, which is not empirically observed. This approach fails 
10 consider dependencies inherent in second and higher central moments. AR-APARCH-Levy 

ter has been proposed in literature to improve on this assumption.
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The outline of this chapter is as follows. In Section 2 AR-APAROH-Levy filter and infinitely 
divisible distributions are reviewed. Option pricing of Asian and lookback options using pro
posed model are documented in Section 3. Numerical demonstration is carried out in Section 
4. Data sets from Nairobi stock exchange and Paris exchange are used to price exotic options, 
using Monte Carlo simulations. Discussions and concluding remarks are presented in Section

Let (fl, T, (Tf)te[o,r|) P) be a stochastic basis and S = (5f)te|o,T] he the stochastic process. In 
continuous time economy, we assume that the price process of the stock S = (S(t)) is defined 
on a filtered probability space (D, T, (T, )o<t<T, P) and is given by the exponential exp(Xt) with 
A” = (Xt) satisfying

where os{t, St), cry(t, St) and St) are adapted to the filtration (£Ft)t€lo,T]- Note that 
{Z?de[0,T] denotes Brownian motion, while {Vt}te[o,r] is a Levy process and {-Ahc-foT] is a 
jump innovation. Note that Bt,Yt and J, are assumed to be contemporaneously independent 
of each other. Analogously, in discrete time, the model is described by

where cTB{t,St) is taken to be equal to (Ty(t,St) = (Tj(t,St). Without loss of generality, in 
discrete time economy, (5.2.1) is expressed in the form

5.2 Review of A PA R C H -Levy filter

dXt = Ht + crBdBt + oydYt + crjdJt (5.2.1)

Xt — Ht + &t{Zt + Pt), Zt ~  i.i.d.(0, 1), Zo — 0, Vq — 0,

fit — AR(s) :— ^  ̂<j)jXt—j , t , s € Zj,<Pj g R

crt = APABCH(p,q) p,q & Z. (5.2.2)

See Glosten et al. (1993), Seneta (2001), for more details about APARCH model.

5.2.1 In f in ite ly  d iv is ib le  d is tr ib u tio n s

Suppose 0(u) is the characteristic function of a distribution. If for every positive integer n,(p(u) 
is the nlh power of a characteristic function, we say that the distribution is infinitely divisible. 
Dne can define for every such an infinitely divisible distribution a stochastic process Y  = {Yt,t > 
0} called a Levy process, which starts at zero, with independent and stationary increments. 
The distribution of an increment over [s, s + 1], s, t > 0 has (<fi(u))4 as its characteristic function.

consider Hyperbolic (HY), Variance Gamma (VG) and Normal Inverse Gaussian (NIG) 
distribution(s) which are special cases of Generalized Hyperbolic distribution(GH) as earlier 
defined in chapter one.



Variance Gam m a distribution

The VG process is defined by time changing the arithmetic Brownian motion with drift 7 
and volatility a by an independent gamma process with unit mean rate and variance rate 
1/A. Let G(t; A) be the gamma process, then the Variance Gamma process may be written 
as YvG(t;(T,\,'y) = yG(t; A) + aB(G(t: \)) where B(t) is an independent standard Brownian 
motion. Carr and Madan (1998) show that the VG process can be expressed as the difference 
of two independent gamma process. The PDF of Yt is given by

f v c i v )
2 e x p ( 7 ( y - / Q A t2) (  \ y - n \  V  ° ' 5 r . ( l r / - / * | > /2<72A +  fl2

(T \/ 27 rA _ A r ( A )  y  >/2 7 2 A  +  a 2 )  A -1 / 2  ^  <j2

The characteristic function of Yt is

(5.2.3)

«Vc(>0 = em>‘ ( \  -  i l u  + . (5.2.4)

The mean and variance of the Variance Gamma distributed random variate Y are given respec
tively by E(Y) = // -F 7 and Var(Y) = a2 -1- A_172.

As stated earlier, a VG process is interpreted as the difference of two independent gamma 
processes, due to possible factorization of characteristic function, i.e.

where

1
1 -  ir/pU )  \1  -  iVnU

Vp Vn = i / K VpVn ~
_ a 2/ \

2 (5.2.5)

1 72 <T2 7
(5.2.6)rb V 1A2

+
2A + 2A

/ a2 7 (5.2.7)Vn V4A2 + 2A _ 2A
(5.2.8)

This leads to parametrization of CGMY process where VG process is a special case, with 
parameters C, G, M as expressed in (5.2.9)

C = A = 1/V, G = (v S 2*/2/4 -l- a2v/2 -  7^/2) 1 (5.2.9)

M  = (v/72‘' 2/4 + <xV 2  +  7J'/2)~1

for more information, see Carr et al. (2002)

^‘3 O ption  pricing

In this section, we value Asian and lookback options using APARCH Levy filter model. Consider 
°ptions on oil, which commonly tie the exercise price of the option to the average price of the 
barrel of oil, in the month before the exercise date. Such an option is useful to a company, which 

uys oil on monthly basis and wants to protect itself from loosing money during periods of high 
Price volatility. A11 average is less volatile that the underlying asset itself. Such contingent 
bairns, should be of interest for thinly traded assets in any market.



5.3.1 A sian  o p tio n s

Asian call option gives the owner the right to buy (or sell, if it is an Asian put) a share of stock 
for an average price using some period between the beginning of the contract and the exercise 
date of the option. We consider pricing of a European style arithmetic average call option with 
strike price A', maturity T  and tn averaging days where 0 = to < t\ < ... < tn = T.

Let Atri be the arithmetic average over the interval [toAn]- We express the payoff of the option 
as (Atn -  A')+. At  is assumed to be

The price of arithmetic mean Asian option (.4.4*), under risk neutral pricing measure Q at time 
t is given by

where {Gr  =  (Y\k=i s tk)1/n}, A' denotes the strike price. Taking the logarithm of GY, we 
get

Note that if the input process (Xt)t^z+ is AR-APARCH filtered, the resulting process,say 
(b)tez+ is a Levy process. The distribution of stationary daily increments is estimated and 
the resulting parameters are used to price exotic options. However, no analytical expression for

Period, see Boyle and Tian (1999), Bjork (2005), Musiela, M. et al (2004) for more contracts

(5.3.1)

where {3A 0 < t < T j  denotes the natural filtration of S.

(5.3.2)

The geometric average option price GAt is given by

GAt = e"(7’" t)EQ[(GT -  K )+\?t] (5.3.3)

In So +  —  ( n In — 4- (n —  1) In ^  +  ... +  In
T l y So S i Sn_ i

(5.3.4)

(5.3.5)

(5.3.G)
n n

(5.3.2) is available. Monte Carlo simulation technique is used to obtain numerical estimates in 
BSM73 world and APARCH-Levy world.

5.3.2 L ookback  o p tio n s

Lookback options are contracts which at delivery time T allow the holder to take advantage 
°f the realized maximum or minimum of the underlying price process over the entire contract

Priced in Black-Scholes world. In this article we price the following European type lookback



options numerically assuming APARCH Levy model.

Clkbc.all 

C l kbput 

C flk b c a ll 

C flkb p u t

e~rTEQ

e - rTEQ

e"rTEQ

e-rTEQ

S(T ) -  min(S'(0)
t < T

max(5(0) -  S(T)

max ( (max(S(0) -  K),0

max ( (K  -  nwx(5(f))), 0

, lookback call, (5.3.7)

, lookback put, (5.3.8)

, forward lookback call, (5.3.9)

, forward lookback put, (5.3.10)

It can be shown (see Bjork (2003) Proposition 18.28) in Black Scholes world that the price at 
t = 0 of the lookback put is given by

2 2
c BSlkhl,,„(0) = - s $ ( -d )  + se~ '1 $ ( - d  + a V f )  + s?—$(d) -  se~rI ^ -$ ( - d  + a V f )

2r 2r
. , r T  + \ ( j 2T  j ^ ,

where a = --------—  and is the cumulative standard normal distribution
a \ J T

Numerical comparison of European lookback option prices using BSM73 model and APARCH 
Levy model respectively are presented in Table 5.3.

5.3.3 R isk  n e u tra l iz a t io n  in  in c o m p le te  m a rk e t

Risk neutralization should leave the variance unchanged while transforming the conditional 
expectation so that the discounted expected price of the underlying asset follows a martingale. 
We follow Duan (1995) general method for option pricing approach while assuming returns are 
predictable. He introduced the local risk neutral valuation relationship (LRNVR) which leaves 
the marginal variance unchanged.

Let
{S t ~ S f _ i ) / S t _ i  «  \n(St / S t - i )  : =  X t

£t\9t-\ ~  Ar(0, at);
crj = uj + c\£2 + (3a2_x; a, (3, u  > 0.

(5.3.11)

The starting value is treated as a known constant, and the {tt} sequence is conditionally 
independent, and pt represents the conditional expectation of returns.

The Pricing measure Q shifts the error term et so that the conditional expectation of yt becomes 
equal to r. The new error term is vt — Pt + c t — r

Xt — Ht + vt{Zt — A (),

Zt ~ i.i.d. N(0,1);
<*t = f ( p h £s; -oo < s < t;0); 
£t = Zt — A t;
A< t‘>-r ■ 

a t ’

(5.3.12)
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Similarly in the case of APARCH Levy filter we follow the Hafner and Herwartz (2001) argu
ment. Under the equivalent martingale measure Q the model translates to

A t  — fit +  £ 11 +  £2t fit +  <7t(Zt — A k ) +  <7t(Pt — A-2t), <

fk =  v +  0i2/t_i;
Ait =  {fit -  r)/ot\ 
A2t =  EYt;

(5.3.

, of =  f { o 2s\Zt, A u ,-oo  < s < t\9).

The LRNVR implies that under the risk neutral measure Q the return process evolves as

r Zt ~  N{Q,l),Yt ~  JV/G(0);

5.3.4 M o n te  C arlo  s im u la tio n s

In this subsection we use Monte Carlo simulations (see Boyle (1977), Glasserman et al. (1998), 
McLeish (2005) for more information), to compute the required arithmetic Asian option price.

Asian option based on BSM73 model

It is well known that if log returns are assumed to be normally distributed, then 

St = S’o exp(At), t = 1,..., T  where

The following steps are implemented. First we create M price paths using the above equation
(5.3.15) appropriately, and for each path we compute the value

At — r + at{Zt + Yt — KYt), (-) =  ( o i h i g , 0 N I G ,  H n i g , & n i g )',

V2t = w + a(Z t- 1 -  At_ i)2(T“_! -f /3of_i;
At—i = {fit-1 -  r)/at- i ,  f i t - 1 =  v + (pxt - 2

(5.3.14)

fit + o\Vt , with fi = r — a2/2, \Vt ~  N(0,t) (5.3.15)

Cj = e~rT{AT -  K )+ j  = 1,..., M.

where Cj is a payoff function and A-f is as defined in (5.3.1). After which we calculate the 
average Asian option value

Asian option APARCH-Levy model

implement the following steps. Draw (T -I- 1) random variables from standard normal 
distribution, and normal inverse Gaussian NIG {a^io , 0n ig , fiNiG^Nic) (or from hyperbolic 
or Variance Gamma) densities. In particular, if the market follows AR(1)-GARCH(1,1) process



then, simulate (xt , at) t = 0, T  to compute S[n\  n = 1, N, for all t, t = 1, T. i.e.

SjU ■ = 5(>exp : £ * * )  + ?>
t=0

, n = l , . . . ,N  where

Xt — vt{Zt + Yt — EVi), (tj =

RarQA'( =

+ or(rr‘-_J 2,2_! -  22t_ 1̂ _ 1(v -  r) + (v -  r)2 + 0a2_1) 

u; + a(<To2o -  220a()(n -  /•) + (v -  r j2 + /foj')
Kar%Y,)
(1 + VarYt )[uj + a(i» -  r(l -  0))2] 

l - a ( l + ( P 2(l + VarYt)) -  3

and {Mtez+ is a Levy process. Discounted call option payoff is computed by simulating 
A\u)(defined in (5.3.1)) N  times, which gives the Monte Carlo estimate average Asian call 
option price.

A\n) = j i J 2 S (tn\ n  = 1,...,AT
t = i

say A' := 10000 simulations (5.3.16)

A V < n = exp(-rT) max(0, —A') (5.3.17)

Asianmc == 7? E  Avrn> (5.3.18)
n =  1

In particular, if the process follow AR(3)-GARC’H(1,1) Levy process. The unconditional vari
ance under stationarity conditions (See Mwaniki (2007)) is finite if the denominator is greater 
than zero is given as

Var<*Xt =
(1 +  VarYt) f U + a |t/ -  r( l -  £ i= i 07)J + 2r  0^0, 

1 -  a[l +  (1 + VarYt)(^23j=l 02)] ~ 0
(5.3.19)

We price Asian option when the underlying follow AR(3)-GARCH(1,1) Levy process. Simulate 
(Xu<rt)j=o, . . . j  and compute

Sj- = So exp : Y . x t) + Tr
1=0

, n = 1,..., N  where X t = a(Zt + Y, -  EYt] ;5.3.20)

and

Gl = Var^Xt (5.3.21)

ai — u  + a (^ozo ~ 2zo(Mo -  r)(To + (//(, -  r)2) + 3cr2), where /i0 = 0 i*_i + 02*-2 + 03*-3 

— W + o((7i Zj — 2zi(f.l\ — r)(Ti + (/z 1 — r)2) -f /3<J2, /O = 01*0 + 02* -l + 03*-2
. o

^  + a((T(̂ 2Q — 2Zq(iIq — r)<T2 + (;/2 — ’̂)2) + /^o, /*2 = 01*1 + 02*0 + 03*- 1, (5.3.22)
at =  u> + -  2zt_i(//£_i -  r)f7£_! + (//,_! -  r )2) + 0a2_ 1

/zt- 1 = 01 *t —2 + 02*1-3 + 03*1-4 (5.3.23)

general it can be shown that

3t = 01 /O — 1 + 02/0-2 + 03/O —3> / — 4, T. . • , -I- (5.3.24)

/O = 01*0+ 02*-l + 03*-2 (5.3.25)

R2 = 01/O + 02*0 + 03*-1 (5.3.26)

/Ol = 01/̂ 2 + 02/O + 03*0 (5.3.27)

oc



iii summary, the model becomes

Ah

So exp
-  T

( £ x , )  +  r r  ,
.  t = 0

n = 1, N  where, X t = at(zt +

u  + a (cr?_l z?_1 — 2zt- i(nt - i  -r)crt- \  +  ( A h - i  —r)2)+/3af_ j ,  

0 i A h - i  +  <£2Ah- 2  +  0 3 / h - 3 ,  t =  4 , T ,  <7 q =  Var®Xt.

- e  r t )

a = i , . . . , r .

(5.3.28)

5.4 D a ta  and  E stim a tio n  m ethodology

The data used to facilitate the discussion in this chapter are daily indices, namely NSE20 share 
index of Nairobi stock exchange and CAC40 index of Paris stock exchange. NSE20 share index 
run from March 2, 1998 to .July 11, 2007, while CAC40 share index runs from March 1,1990 
to September 1,2008. As stated earlier, we let {S£}£>o denote the stock price process and 
Xt  = log St — logS£_i denote the logarithmic increase (returns) of S over the interval (t — 1,A]. 
Autocorrelation function (ACE) of squared log returns and APARCH-Levy filtered residuals in 
addition to fitting kernel densities (see Sheather and Jones (1991)) of NSE20 and CAC40 share 
indices are shown in Figure 5.1 and Figure 5.2 respectively.

Parameters of Variance Gamma (VG) distribution, Normal Inverse Gaussian (NIG) and Hyper
bolic Distributions (HY) are estimated using maximum likelihood methods, see Seneta (2004), 
Blaesild and Sorensen (1992), and Hu (2005). Once the parameters have been estimated, the 
next step is to judge the quality of fit obtained. Our approach is to plot the fitted density and 
empirical or non-parametric density estimate on the same graph and same density estimation 
with log-vertical scale to compare their closeness (see Figure 5.1 and Figure 5.2). Computed 
prices are as shown in Figure 5.3 and Table 5.3.

Notes: Standard errors are in parentheses, lgd is the loglikelihood. n is the number of obser
vations

5.5 C onclusions

In this chapter, we have described most of the features that characterize financial data, such 
88 fat tail problem, volatility clustering, aggregational Gaussianity and quasi long range de
pendence in second central moment. In addition, the pricing of exotic path dependent options 
when the underlying can be characterized by APARCH-Levy filter is examined. In connection 
0 that, we have proposed two formal procedures for pricing Asian option and lookback type 

°Pbons using filter model. As claimed in literature, about exponential Levy model, we have 
rgued that NIG, VG and HY Levy increments fit filtered daily log return residuals of financial 

“Ine series. This implies that the proposed model improves in characterizing distribution of 
dailv log returns.



It was argued that the filtered stochastic process of daily log returns, in addition to calibrated 
residuals under Monte Carlo simulation, generates improved future asset path dynamics. There
fore, path depended options can be priced appropriately.

It is widely recognized today that there is a non-negligible discrepancy between the Black- 
Scholes model and real market behavior, which appears as the ” smile effect” or ” implied 
volatility smile” in options markets. With empirical evidence that implied volatility increases 
for in-the-money or out-of-the money options, our results seem to confirm the effect while the 
proposed model improve on the smile effect as shown in Figure 5.3.

Empirical evidence demonstrate that the prices of the exotic options (Asian and lookback) 
significantly deviates from those of the lognormal processes. One can infer that the accuracy 
of volatility estimation is most critical as it applies to pricing standard options with path 
dependent options. For contingent claims that depend on the extremum of the process, the 
prices are quite sensitive to the specification of the process.

Black-Schole’s prices differ significantly from APARCH-Levy model in that they tend to be 
lower if the option is in and out of the money. These differences indicate that an appropriate 
choice of the model is of great importance for the issue of option pricing.

We cannot underestimate the repercussions of misspecified models, which may lead to mispric
ing of derivatives. This gives an idea why constructing a realistic model which explains real 
time stochastic phenomena will always be a challenging project, however we believe APARCH- 
Levy model takes care of observed stylistic features of stock market indices from developed and 
emerging economies.

It seems interesting to extend present investigation to pricing American type exotic options 
using multinomial lattices.
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Figure 5.1: Plot of the autocorrelation function (ACF) of the squared NSE20 share index 

daily log returns in the period March 2, 1998 to July 11, 2007. The dashed lines indicate 

il-96 /y /7i. 2500 lags are shown and each observation correspond to a business day. Long 

range dependence in second central moment is AR-GARCH filtered. The resulting residuals 

are calibrated to Normal Inverse Gaussian (NIG), Variance Gamma (VG) and Hyperbolic (HY) 

densities. Plot of the empirical densities(EMP) (rescaled histograms) and the estimated normal 

density(NM) are plotted. Note the ordinate axis is on log scale in order to exhibit tail decay.
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Figure 5.2: Plot of the autocorrelation function (ACF)of the squared CAC40 share index log 

returns in the period March 1. 1990 to September 1, 2008. The dashed lines indicate ±1.96/ \/n. 

2500 lag s are shown and each observation correspond to a business day. Long range dependence 

in second central moment is AR-GARCH filtered. The resulting residuals are calibrated to nor

mal inverse gaussian (NIG), Variance Gamma (VG) and hyperbolic (HY) densities. Plot of the 

empirical densities(EMP) (see Silverman (1986) and Sheather and Jones (1991) for detailed in

formation about kernel densities) (rescaled histograms) and the estimated normal density(NM) 

e plotted. Note the ordinate axis is on log scale in order to exhibit tail decay.
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Table 5.1: Parameter estimates of AR(p)-GARCH(l,l) model for two indices, NSE20 (p = 3) 

and CAC40 (p — 0) respectively assuming normal innovations. X t =  0 ]A' t_ 1 + (p2X t- 2 + 

<f>$Xt-z + vt(Zt + Yt), aj = u) + a^_l (aZ[ + /3), Zt ~  N (0,1). Q2(10) are the modified 

Ljung-Box portmanteau test, for serial correlation in the squared standardized residuals with 

10 lags while Q(10) are the same test for serial correlation in the log returns, p-values are in 

the square brackets.______________________________________________

Parameters

NSE

GARCH

CAC40

GARCH

0 i 0.18915(0.024496)

02 0.16451(0.023785)

03 0.11388(0.023413)

uj * 104 0.03549(.006902) 0.031451 (.00624)

0 0.15023(0.017978) 0.08249 (0.00907)

0 0.78763(0.024753) 0.899377(.010933)

Q(io) 9.3468 [0.2287] 18.789[0.04302]

<32(io) 7.1689[0.5185] 10.041 [0.26215]

lgd -8363 -14082.8

n 2316 4669



Table 5.2: Calibration of AR-GARCH(1,1) residuals to a class of infinitely divisible distri

butions. We present maximum likelihood estimates of subclasses of Generalized Hyperbolic 

distribution (7.3.4), i.e. Hyperbolic distribution (HY) when A = 1, Normal Inverse Gaussian 

(NIG) A = 0.5 (1.2.7) and Variance Gamma (VG) (5.2.3). NSE20 share index of Nairobi stock 

exchange cover a period March 2, 1998 to July 11, 2007, while CAC40 share index of Paris 

exchange March 1,1990 to September 1,2008.

NSE20 HY NIG VG CAC40 HY NIG VG

A 1.0000 -0.5000 C =1.344094 A 1.0000 -0.500 C=4.78872

a 1.15813 0.66862 G =l.030136 a 2.13751 1.8523 G =1.89652

0 -0.06604 -0.05864 M =l.130045 0 -0.33904 -0.15755 M -2.30262

6 0.45207 1.18530 S 2.05553 2.42002

/' 0.13923 0.13014 0.42889 0.41876

lgd -3809.9 -3801.8 -3814.0 lgd -7323.6 -7322.4 -7326.6

n o



Table 5.3: Comparison of simulated prices of exotic options (Arithmetic Asian call, lookback

put, lookback call forward lookback put and call respectively when the underlying price process 

is assumed to follow AR-GARCH(1,1) NIG process) against Black Scholes and Merton lookback 

put option (lastcolunm). We used r = 5%p.a.,So = 80 : 120, A' (Strike price) = 100, and 

T  = 50 days to maturity. Daily CAC40 share index of Paris exchange in the period March 1, 

1990 to September 1, 2008 was used as the underlying process

Moneyness AsianCall lkbPut lkbCall FlkbCall FlkbPut BSM731kbPut

1 0.80000 0.25736 9.60941 12.64613 2.52036 30.33528 5.70686

3 0.82000 0.37196 9.84964 12.96228 3.16402 28.61854 5.84953

5 0.84000 0.53006 10.08988 13.27843 3.91713 26.90180 5.99221

7 0.86000 0.74455 10.33011 13.59459 4.79401 25.18505 6.13488

9 0.88000 1.02855 10.57035 13.91074 5.80243 23.46831 6.27755

10 0.89000 1.20440 10.69047 14.06882 6.35833 22.60994 6.34888

12 0.91000 1.62502 10.93070 14.38497 7.57338 20.89329 6.49156

15 0.94000 2.46925 11.29105 14.85920 9.67640 18.32075 6.70556

18 0.97000 3.58286 11.65141 15.33343 12.15860 15.77296 6.91957

40 1.19000 19.22031 14.29400 18.81112 36.24631 3.49536 8.48896

n o



P r ic in g  E x o tic  o p t io n s P r ic in g  E x o tic  o p t io n s

Figure 5.3: Arithmetic Asian option when the underlying asset, process is assumed to be CAC40

share index covering the period March 1, 1990 to September 1, 2008. Note the significant 

difference between the proposed model and Geometric Brownian motion assumed in BSM73 

model as we vary days to maturity. This might alluded to long range dependence in second 

entral moment. Similarly, lookback options are priced.

n \



Chapter 6

O ption  P ric ing  w ith  A R  G A R C H

P en tan o m ia l L a ttice

This chapter develops a GARCH pentanomial option pricing model that incorporates the first, 
four moments of daily log returns AR-GARCH filtered residual distribution. The lattice is 
constructed using a moment matching procedure. We discuss the statistical properties of the 
proposed model, apply minimal entropy martingale measure (MEMM) to value European call 
option. An example illustrates some of the features of this model incoiporat.ing conditional 
heteroscedasticity of the underlying. One can observe that for long term options, i.e above say 
300 days to maturity, Dlack-Scholes models seem to be close to the market data as opposed to 
proposed models, while for short term options, the reverse is quite evident.

6.1 In tro d u c tio n

A common assumption underlying most option pricing models are that the logarithm of stock 
price is normally distributed. The well known Black and Scholes (1973) option pricing model 
Was derived under such assumption. Various studies have shown that the normal distribu- 
hon does not accurately describe observed stock return data see for example (Cont (2001), 
Barndorff-Nielsen (1998), Carr and Madan (1998), Eberlein and Keller (1995), Tsay (2002), 
Carr et al. (2002)). The deviations from normality become more severe when more frequent 
data are used to calculate stock returns.

(\ r



Evidence from the financial markets suggest that the empirical returns distribution, both his
torical and implied do not arise from a diffusion process. On the same note, most of the 
literature for example Carr and Madan (1998), Rydberg (2000) and references therein, assume 
that daily log returns can be modeled by exponential Levy processes, finding a number of ex
plicit formulaes for pricing derivatives (see Carr et al. (2003), Schoutens (2003), Carr and Wu 
(2004)).

M o d elin g  th e  u n d e rly in g

Option pricing theory has a long and illustrious history even before Bachelier (1900) publication, 
but it also underwent a revolutionary change in 1973. At that time, Black and Scholes (1973) 
presented the first complete satisfactory equilibrium option pricing model followed by Merton 
(1973) extending their model in several important ways. Later, Cox and Ross (1976) proposed 
jump process model as a special case of BSM73 model. Option valuation techniques have been 
extended to more realistic assumptions in number of ways for the underlying stock processes 
(e.g. Rubinstein (1976), Cox et al. (1979), Barndorff-Nielsen et al. (2002), Carr and Wu (2004), 
Hull and White (1990), Derman and Kani (1994), Duan (1995), Eberlein and Keller (1995), 
Geman et al. (2001), Carr et al. (2003), Duan et al. (2006), Carr et al. (2007), Primbs et al. 
(2007) and many.more).

Most empirical studies on equities, foreign exchange rate log returns exhibit leptokurtic behav
ior and clusters of high and low volatility, but not significant serial correlation especially in 
developed economies as opposed to emerging markets. These stylized facts can be reproduced 
by means of autoregressive conditional heteroscedasticity (ARCH) introduced by Engle (1982), 
later his student Bollerslev (1986) extended it to generalized autoregressive heteroscedasticity 
(GARCH). During the past decade, researchers have began to study generalized autoregressive 
(GARCH) models for option pricing because of their superior performance in describing asset 
returns. Duan (1995) developed a theory with which options can be priced when the evolution 
of asset returns follow a GARCH process. Heston and Nandi (2000), Christoffersen and Jacobs 
(2004), Hardle and Hafner (2000) show how GARCH models can be used to capture the pric
ing behavior of exchange traded options. Analytically, pricing European option requires the 
knowledge of the risk neutral distribution of the cumulative return with respect to a given 
model.

Lattices for option pricing were first introduced in 1979 in the pioneering work of Cox et al. 
(1979). In particular, they used binomial lattice to model geometric Brownian motion and 
Rcndleman and Bartter (1979) used binomial lattice to model exponential Poisson process. An 
attractive property of their model is that the binomial lattice for geometric Brownian motion 
is consistent with the standard Black and Scholes (1973) formula for European options. Due 
6) simplicity and versatility of lattice models, a number of extensions to the basic model have 
keen proposed, see Derman and Kani (1994), Ritchken and Trevor (1999), Yarnada and Primbs 
(2001), Wu (2006) for example. Florescu and Viens (2008) use quadrinomial tree to model 
stochastic volatility in option pricing, while Primbs et al. (2007) price options with a pen- 
tanomial lattice. It is worthy noting that an efficient lattice method, may be significantly faster 
than a Monte Carlo method for valuing some types of path dependent options.



Consider the stochastic distribution of the price of non-divided paying stock in a risk-neutral 
economy. Let the stock price be S(t) at time t in a period [t,T]. An option pricing model is 
generally based on assumed process of the stock price or return. The Black and Scholes (1973), 
for example assume that the stock price movement is governed by the following process

dS(t) =  rS(t)dt +  aS(t)dBt (6.1.1)

where r is the risk free rate and a is the instantaneous volatility rate of the stock return dis
tribution. This is equivalent to assuming daily log returns are normally distributed with mean 
(r -  a2/2){T -  t) and variance cr2(T -  t). However such a process cannot incorporate nonlinear 
dependence in second moments and leptokurtic fat tails of ARCH type filtered standardized 
residuals, which are typically associated with empirical stock returns.

The objective of this chapter is to develop an option pricing model which combine the lep
tokurtic and heteroscedastic nature of daily log returns under an alternative distributional 
assumption, that is consistent with empirical stock returns. Minimal entropy martingale mea
sure (MEMM) is used to change probability measure P to risk neutral economy, ARCH type 
pentanomial lattice is developed which incorporates the first four moments of the GARCH fil
tered residuals. Parameters of the model can be chosen to match the first four central moments 
of the residuals. Such a model thus has the potential of producing option prices that are more 
consistent with empirically observed stock return distributions.

The chapter proceeds as follows. In the second section, we establish the dynamics of the asset 
price over a time interval At. In section 3, a brief review of binomial, trinomial and pentanomial 
lattice is outlined. In section 4, option pricing formulaes are derived in pentanomial framework, 
considering three cases as a simplifying assumptions and minimal entropy martingale measure is 
applied to change measure P to risk neutral world Q. Section 5 introduces numerical procedures 
in relation to derived formulaes using real market data. European call option is priced and 
numerical results compared. Section 6 draws conclusions showing its essential role in valuation 
by arbitrage methods.

6.2 Basic m odel se tup

We consider a discrete time economy for a period of [0, T] where the trading takes place at any 
of the n -(- 1 trading nodes 0, At, 2Af,..., nAt where At = Suppose (0,T, T t,P) is a given 
probability space, where P is the statistical or data generating probability measure. Here, the 
sample space P represents the uncertainty in our financial model. Let T be the time index 
set {0, At, 2At, ..., nAt} of our financial model such that all economic activities take place at 
each time point t £ T. We equip our probability space (U,T, P) with the information structure 
** := {TV}reT- That is, for each r  G T, TV represents the information set of all market 
^formation up to and including time r, where To contains all P-null sets in T. The asset price 

is assumed to follow the process

5’lAt
^ ( t - l ) A t

= exp ^// 4- ^ 2  0* ln ^
S(i-k)At

A', (AO

+ ^lAt Z,+ Y i (6.2.1)

j= 1

n*7



are sequences of independent Poisson random variables with parameter AAt. The

Changes of daily log returns are known to be leptokurtic laced with Poisson mixture of normal 
distributions as it is shown in Figure 6.1. For more detailed exposition on modeling the dynam
ics of the underlying risky asset see Hsieh (1989), Nieuwland et. al. (1994), Chan and Maheu 
(2002), Duan et al. (2006) etc.

6.2.1 G A R C H  p ro cesses

Let (Zt)t€z be a N(0, 1). The process (Xt)tez is a GARCH(p, q) process if it is strictly stationary 
and if it satisfies, for all 1 G Z, and some strict positive valued process {(Tt)teZ, the equations

Numerous extensions and refinements of the GARCH model have been proposed to mimic 
additional stylized facts observed in financial markets. These extensions recognize that there 
may be important nonlinearity, asymmetry and long memory properties in the volatility process. 
Many of these are surveyed in Bollerslev et al. (1992). Bollerslev et al. (1994) and Engle (2004). 
In practice, low order GARCH processes are most widely used, however, we restrict ourselves 
to the GARCH(1,1) and GARCH(2,1) model(s).

6.2.2 S p e c tra l d e n s ity

Suppose that {AT} is a zero mean stationary time series with auto covariance function />(.) 
satisfying X^=-rx; IT(A*)I < oo. The spectral density of {AT} is the function /(.) defined by

random variables Xt(j) are independent for j  = 0,1,2,..., and z = 1,2,..., n. For i. = 1,2,..., n,

( 6 .2 .2)

v q
(6.2.3)

where ij > 0, a t > 0 , i =  1, ...,p, and (3j >  0, j  =  1,..., q. It follows from (6.2.3) that

of = u! + (6.2.4)
oo i

(6.2.5)

^°te that, If {AT} ~ WN(0,<j 2) then y(0) = a1 and 7 (k) = 0 for all \k\ > 0. (VVN stands for 
^ 't e  noise). The process has a flat spectral density (see Figure 6.1)

/(A) = ^ ,  -  7T < A < 7T (6.2.7)

n o



A process with this spectral density is called a white noise, since each frequency in the spectrum 
contributes equally to the variance of the process. In case of Xk = <f>Xk- 1 + Zk where {Zk} ~ 
\VN(0,a-2), then {A'/,.} has a spectral density

500 sample autocorrelations of the daily GARCH(l.l) filtered residuals, on GAC-10 index (Paris 
Stock Exchange) from March 1,1990 through September 1,2008. Quick check of its spectral den
sity differs significantly from similar check form daily covariance stationary AR(3)GARCH(1,1) 
filtered residuals on NSE20 share index (Nairobi Stock Exchange) from March 2,1998 to July 
11,2007.

Our main focus is on developing lattice methods for the underlying process

where /z mean of daily log returns and X t := \og(SiAt/S(i-i)At), ? = E <x,At removes
heteroscedastic nature of the data. Z, ~  N { ( ) , 1) Vz. Y t are assumed to be i.i.d random 
variable whose first four moments are known from the market data. The main challenge is to 
construct branching probabilities in the lattice. Our approach would be using moment matching 
technique.

In BSM73 world for example, the value of a stock is a function of the values of a standard 
Brownian motion Zj,

where ^cr2 is the compensator. Given a lattice for Zj,  payoff options on S can be computed and

of the underlying, see Cox and Ross (1976), Cox et al. (1979) for example. To incorporate most 
of these factors appropriately, is a subject of ongoing research e.g. Kellezi and Webber (2004) 
values bermudan option using Levy lattice when the underlying processes is driven by Levy 
processes.

In the subsequent section we consider the following proposed dynamics

/(A) = ^ ( 1  -  2 4 >\ + 02) " 1 (6.2.8)

For more information about spectral analysis see Brockwell and Davis (2002).

In order to motivate the empirical relevance of these ideas, Figure 6.1 plots the lag 1 through

X t — // -f aiAt (Z lAt + Yt). (6.2.9)

B SM 73 m odel

(6 .2 . 10)

discounted back. In this line of approach one does not factor the impact of skewness and kurtosis

Sj m  =  S{ j_1)Atexp{fi +  (Tj A t ( Z j + Y j ) ) ( 6 .2 . 11)

(6 .2.12)

where Z7 ~  AT(0, 1) Vj

(6.2.13)

no



One of the most important joint distributions is the multinomial distribution, which arises 
when a sequence of n independent and identical experiments are performed. Suppose that 
each experiment can result in any one of m possible outcomes, with respective probabilities

6.2.3 M ultinom ial Lattices

whenever ni = n-

In multinomial lattice model, we need to determine the up and down rates u and d, and 
the probabilities P \ , . . . , P l  to fit the actual market data as closely as possible. This can be 
done by moment matching or directly from density function, see Kellezi and Webber (2001) for 
different ways of constructing branching probabilities in the lattice. Note that u and d may 
be thought of up and down factors at each step. Also it can be shown that the multinomial 
lattice still recombines even if a and d are time dependent when un/dn =  c is satisfied for some 
constant c > 1 where un and dn n — 0, 1,..., N — l are up and down factors in each time step, 
see Yainada and Primbs (2001), Yamada and Primps (2006) for more details. Let the up and 
down rates, // and <7, be given as

where m is the number of branches, and Xj = log(5JAt/5'(J-i)At) and a > 0 are real numbers.

objective to value options, in consideration to heteroscedastic nature of the process in discrete 
time. It is assumed that, trades occur only at discrete dates indexed by {() < 1A/1,..., < nAt.}, 
and the stock price at date jA t  can take on values only in a discrete set specified exogenously

with probabilities pi, l = l,...,m , satisfying p\ + ... + pm = 1. In this case, the stock may 
achieve k(m — 1) + 1 possible prices at time t = kAt, k = 0,..., n given by

PiiP2 i •••»Pm) X^7=i P> = 1- ^  we Xj denote the number of the n experiments that result 
in outcome number j, then

(6.2.14)

(6.2.15)

Let the mean, variance, skewness and excess kurtosis of X : be given as px,

We first develop the basic theoretical set up to model the dynamics of the underlying with an

by
S(kAt,i), 1= l,...,(m  -  1) P + 1, k = 0,..., n.

The variables kAt and / index time and state respectively, while m is the possible number of 
future states for S(k+i)£t from Sk±t, i.e.

(6.2.17)

m
Pi = E [(AT -  EXky] = W(m -  2/ + 1 )*, j  > 2. (6.2.18)

briefly illu.st rate moment matching methodology, by considering the binomial, trinomial 
Pentanomial models for a two time steps in the following subsection.

i n n



B inom ial L attices

There are several approaches to the problem of option pricing based on different assumptions 
about the market, the dynamics of stock price behavior and individual preferences. We focus 
on no arbitrage theory which can be applied when the dynamics of the underlying stock takes 
certain forms as shown by the figure below.

The binomial option pricing model is an iterative solution that models the price evolution 
over the whole option validity period [0,Af]. It represents the price evolution of the options 
underlying as the binomial lattices of all possible prices at equally spaced time steps from today 
under the assumption that at each step, the price can move up and down at fixed rates and 
with respective pseudo-probabilities pu and pd.. A standard Cox et al. (1979) binomial tree, 
consists of a set of nodes, representing possible future stock prices, with a constant logarithmic 
spacing between these nodes.

Consider the assumed dynamics of the underlying

Where Y3 : =  Z 3 + L 3 is an i.i.d. random variable. The random variable Y j  has the following 
distribution

(6.2.19)

OA t l At 2 At

X j  — p  + <J,At { Z j  +  L j )  — p. + & j± iY j ( 6 .2 .20)

U  = In u, with probability pu; 
D = lnd, With probability pd-

( 6 .2 .21)

where u and d are two parameters chosen in such a way that u > 1 + r > d to avoid arbitrage 
(>f in risk neutral world), on assumption that the interest rate is constant. Individuals may 
borrow or lend as much as they wish at this rate and that there are no taxes, transaction costs, 
°r margin requirements.

The necessary equations for the binomial lattice are pu + Pd — 1,
2

Pu -  Pd = o. (6 .2.22)

/G {u.tZ }

these two equations, we obtain several possibilities of solutions e.g. pu = pd f  • or

1 Al



In addition, suppose that the variance of X n is given by an2 =  <r2, Vn. This condition implies 
that a = a. Therefore,

u = eEXJ+° and d = eEXj~a. (6.2.23)

Once the relevant parameters are estimated in risk neutral world, we get the binomial model 
(even though not the same as), see Cox et al. (1979) model. It can be deduced from the 
trinomial model of Kamrad and Ritchken (1991) by setting the probability of the middle jump 
equal to zero. A European call option with exercise price K  and date n will have payoff in 
state [n, j] given by

n i
C(Sn,K ) = Y ^ pU 1 -  Pu)n~3--u (max [S0uj dn~j -  K ,0]), pd,Pu e Q (6.2.24)

j=o *7*' 3*’

See Hulle (1988), Boyle (1988), for numerical examples, eg Benninga and Wiener (1997) prices 
European option in binomial lattice model using mathematica, when the underlying is log- 
normally distributed.

Trinomial Lattices

Trinomial lattices provide another discrete representation of stock price movement, analogous 
to binomial lattices. It is characterized by the following five parameters.

a) the probability of an up move pu

b) the probability of down move pa

c) the multiplier on the stock price for an up move u

d) the multiplier on the stock price for an middle move rri

e) the multiplier on the stock price for a down move d

1 A O



OAf l At 2 At
A recombining tree is computationally more efficient so we require ud = rn. Figure above 
illustrates a two step in a trinomial lattice. The stock price at the beginning of the time step is 
So. During this time step the stock price can move to one of three nodes: with probability pu to 
the up node,value uSo: with probability p,i to the down node, value dSo; and with probability pm 
to the middle node, value dSo- At the end of the time step, there are five unknown parameters: 
the probabilities pu, p m , pd ,  u  and d constants.

Boyle (1988) for example, used a multiperiod trinomial procedure to approximate a risk neutral
ized Geometric Wiener process. In Boyle’s model the lattice jump probabilities were obtained 
by equating the first two moments of the underlying normal distributions of those approx
imating distributions. To ensure all jump probabilities were non negative, he introduced a 
stretch parameter, that had to be constrained. In a trinomial lattice, for any random variable 
Y assumed to be distributed as

Y  =
EY  4- 2a, with probability pu := p i; 
ET with probability pm := p-2 ',
EY — 2a, with probability pa '■= Ps',

(6.2.25)

One can form a system of equations like binomial case and solve for parameters pu, pm, pd- 
i-e. using the relation

3
^  ([2/ -  4} a ) 3 pi = pj,
i=l

^ h j  = 1,2,3. is the central moment for the random variable Y

Pu  + Pm  + Pd —  1
-2  p u + 0pm + 2pd  = 0

a2
4 Pu  +  0 p m + 4/?3 =

i  n o



On solving these three equations we get

{P\ i P2i Ps) ( —  1 - —  ^ - ]
U o 2’ 4a2’ 8a 2 /

where a must be greater than ^ in order that pu, pm and pd be strictly positive. e.g. Let a  = <7 , 
then (pi> P21 P's) — (1/8,3/4,1/8). The corresponding jump amplitudes are given as follows:

/  fll ^ /  e n v + 2 a  \

CL 2 = e ^ y

V / ^  g/i v — 2a j

where EY = py. For more information about multinomial approximating models see Kamrad and Ritchken 
(1991), Kargin (2005) e.t.c.

6.3 P en tanom ial la ttice

We take state space for risky stock price dynamics over two periods. The figure below, defines 
the state space for the stock price distribution over the first two trading dates. At each date kAt, 
the stock price can take on values in an exogenously specified discrete set indexed by j. The 
price S(kA t,j)  denotes the stock price in state j  at date kAt. Denoting by SkAt,k =  1, 
the original (known) underlying prices, and j  = 1 , 4A: + 1.

1  n  a



OAf l At 2A t

6.3.1 P e n ta n o m ia l o p tio n  p ric in g

Consider the dynamics of the underlying

log ( 77———  j := = n + i)±t + crAt(- î + L,
)At /

then the first four moments of X, are estimated, let 0 = 0.

A, — /j. +  Oi&t{Zi  +  Li )

EX, = fi + a2±t{ ELi) = nx (6.3.3)
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6.3 .2  D iffe ren t C ases:

C haracteristic exponent

A characteristic exponent of a random variable A' is defined as a log of a characteristic function
<Px(u)

= 111 (j)x{u) (6.3.4)

The nth cumulant is defined as

cumulantn = 1 dn'I'x(u>) 
in dun u/=0 (6.3.5)

Mean, variance, skewness and excess kurtosis of a random variable A' can be obtained from 
cumulant as follows

E(X) = cumulant\ (6.3.6)

E (X  -  E(Ar ))2 = cumulant2 (6.3.7)
E (X -  E(A ))3 cumulant3 (6.3.8)

\Je {X -  E(A') )2
3 cumulant2 ~

case I-cr, % a V i

Let a2 = w /(l -  a — 0) while

Var(Xt) = E(A, — EA\ ) 2

Skew(Xi)
E(A.t -  EA',)3 

Var{ A ,)3/2

Kurt( X,) E(Z( + L,)4
( l + 0-2)4/2

<rJ (1 + VarLi),
<r2 ( l  +  CT])  =  vx
a:iE(Z + Lt -  EL,)3
(<x2)3/2(l + <r£)3/2

EL3 {<tI )3/2Sl 
(1 +  crj;)3/ 2 (1 +  07 )3/2

EZ4 + 6 VarLl + EL4 -
------ ( T T ^ ------ ’
3 + 6cr2 + cr4 (3 + KurtLx) _ ;
-----------------------  — 77    77777  —  rCr

(6.3.9)

(6.3.10)

(6.3.11)

(6.3.12)

To construct a pentanomial model of stock prices, we need to examine the behavior of the stock 
price in a small interval [0, Afj. As assumed earlier, log returns X, := log(S(iAt)/S(i -  1)A£) 
can be modeled as

A', (At)

A', = M + - W Z .+  E  Wl ^
3 = 1

= // + &iAt{Zi + Lt) (6.3.13)

where Z, ~  jV(0,1) for all t e [0,7] and L\s are assumed to be identically and independently
distributed random variable. The discrete distribution of Z, + L, over the interval [0, At] can

1  f\ a



be approximated by pentanomial lattice. To model the stock price movement as deterministic 
part in addition to pentanomial process, the interval [0, T] is divided into n equal subintervals 
of length At = T/n, where T  is the maturity date of an option. The relation (6.3.14) is used 
to form system of linear equations.

£ ( [ 2 / - 6 ] a ) * p ,  = w , ,* =  1,2,3,4. (6.3.14)
/=1

where

Pk = E { X j - E  X j)k

-  t c n wj=i
(6.3.15)

To calibrate the pentanomial lattice, we need to solve the following five equations

Pi + Pl +P3 + P4 + Ps = 1,
- 2pi -  p-2 + p4 + 2ps = 0,
16pi + ip2 + 4/;4 + 16p5 = vx/ a ‘2,
-61 pi -  8p2 + Sp4 + 64p5 = sxvi/2/a '1, 
256pi + 16p_> + 1 6p4 + 256pr, = kxvx/ a 4,

1 1 1 1 1 Pi 1

2 1 0 - 1 -2 P'2 0

16 4 0 4 16 P.i = &
64 8 0 - 8 64 P4

SrV3/ 2
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(6.3.16)

(6.3.17)

(6.3.18)

The third and fourth equations arise from matching the third and fourth central moments of 
the approximating distribution to the third and fourth central moments respectively of the 
empirical distribution. The relationship of these central moments are related to skewness and 
excess kurtosis as described in equation (6.3.14). On solving these five equations, we get 
equation 6.3.20. Define

A = vx/o 2, B = sxv'x 2/ q3 , C = kxv2/ot4 (6.3.19)

’ Pi —AA - 4 B + C "

P'2 64A + 8B -  AC

Pa
1

" 384 384 -  120,4 + 6C

P4 -64.4 - S B  -  AC

. Ps . -4.4 + 45 + C .

1



where a  must be chosen in order to ensure positivity of probabilities P i,P 2 ,P 3 ,P 4  and prj. It so 
happens that if nx > 3.sj  -  3 and kx > then, there exists a range of values of a (which

includes a  = \J- k‘ ) which will ensure that all the probabilities are strictly positive
(see Yamada and Primbs (2001, 2004); Yamada and Primps (2006).) For this choice of a, we 
have the following jump amplitudes for the pentanomial lattice.

a i 
«2 
«3
a4
as

exp (p x — 4 \ J - -■■■1 ̂ /jM , with probability p\ ;

exp (p x -  2 y^ - (l4jv, a' L) j , with probability p2; 

< exp(px), with probability pa;

exp f p x + 2 \Jr' - 1+l\ arL  ̂ j , with probability p4;

exp ( p x -f + l a’ L‘ J , with probability pr,.

(6.3.21)

case U-ajAt = / ( a (j_i)Ai), V j  = 1 ,...,n

In this case we assume given

Xj — p +crj&t(Zj + Lj) (6.3.22)

ajst — v  + + 0)<Tj_ iAt (6.3.23)

where W'j_i is a y2(l) and Zj  ~  N ( 0 ,1) for all j  = 1, ..., 7? and Ly is assumed to be identically 
and independently distributed random variable for all j, while the updating process varies as 
we vary j. Let //, be the ith central moment of discrete random variable X For each single 
step, we calculate p7 G IP and corresponding risk neutral probability q̂  G Q, In this case the 
first four moment can be computed for every step j  as follows;

Vai'Xj\j_i

SkewXj\j_i

KurtXj\j_ ,

// 4- j — i (E L j) :— pjx

a “At(l + VL) := cTjX, VL = Var(L3), V j

E[Xj  -  p j x f  -  Pl )S
y ^ /2 ”  ^ b- i ( i  + ^ ) 3/2

3 + 6IY + P^(3 + kl) ,
1 > Kxl + a t

(6.3.24)

(6.3.25)

Sl (Vl )3/2
(1 + Vl)3/ 2

(6.3.26)

(6.3.27)

Note that := KurtL — 3 excess kurtosis of random variable L3. To calibrate the pentanomial 
lattice, we need to solve the following four equations in addition to having p \ j  + p2j + p3j -f
P4,j + Pr>,j = 1 V j  = 1.....n. as well as four other equations as a result of the relation (6.3.28)
to form system of linear equations.

^  ([2 /- 6]o)A p(/J) = , pk ,k=  1,2,3,4., j  = l,...,n . (6.3.28)
i = \

—4pl,j -  P 2 , j  +  P 4 , j +  2P s j  =  0
IGpi'j + 4p2 j  + 4p4J + 16p5j =  a'jX/aj, a3x := y/\ + a \  
-64pitj -  8p2iJ + 8p4.j + 64p5j = .SjXcrJ 
256pij + 16p2,j + 16p4)j + 256p5tj = kx(rjx/a‘j,
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The third and fourth equations arise from matching the third and fourth central moments of the 
approximating distribution to the third and fourth central moments of the empirical distribution 
for each step j  respectively. The relationships of these central moments are related to skewness 
and excess kurtosis as described in equation (6.3.29). On solving these five equations, we get 
equation 6.3.31. Define

Aj = Vjx/o] , Dj = sxVj/2x/aij, Cj = kxVjX/a4j (6.3.30)

1--------

51
i_____

- A A j  -  A B j  +  C j

P'2 ,j QAA j  T  8 i3 j  —  A C  j

P 3 J
1

~ 384
384  -  1 2 (L 4 j +  6 C j

P 4 J - 6 4  A ,  -  S B j  -  A C j

. P o J  . — 4 .4 j  T  A B j  -t- C j

where aj = (Jj&t\j- i y ^  ^ 1 ̂  ^ must be chosen in order to ensure positivity of probabilities
mid p5j .  (see Yamada and Primbs (2001, 2004); Yamada and Primps (2006)) 

which will ensure that all the probabilities are strictly positive for each j. For this choice of a,-, 
we have the following jump amplitudes

1------

1____
=  <

-----1

-----1

' e x p ^ - 4 < T jA1| 

exp U jX  -  2trjA,|J_lv/ s I <iy ,'"r'-)<) ,

exp (/l,x  + l+| .̂ “1'-) j  ,

exp L  + ^ ,

with probability p\yJ;

with probability pi,/. 

with probability p̂ .j', 

with probability pij;

with probability p^,3.

(6.3.32)

case III-ajAt =  V j  = 1,..., n AR(1)-GARCI1(1,1)

Consider the following model, given

X j

X n

<f>Xj-i + <7j&.t{Zj + Yj)
k—1

4>k X i - k  +  ^2 +  Y { j - i ) ) 0 { j - i ) b t
i=0

J -  !

<fA X o 4- ^  +  Y(Ji_ t))(T (J _ 1)A t

i= 0  
n — 1

4>nXo + ^  0l(Z(n_t) + Y(n_i))<7(n_j)At
i=()

(6.3.33)

(6.3.34)

(6.3.35)

follow the same procedure as in case II and match the moments to find the corresponding 
Probabilities in P. With correct selection of a} it will be possible to find jump amplitudes for
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m —each step j. It is assumed that at time step j, we know the previous estimates of a

The first two moment of the assumed process are

j- i
E A j — f t  Xq-\-

t=0
j- i

f t X q +  p l  }  P l  := EL(j_,)
1=0 

j -1
\  u j  \ j  ^  '  1 Q r  1) T  ^ ( j — i ]

1=0 

j - 1
=  X I f t l(JU-i)*t [1 + Var{Lj_,)]

1=0
j-1

= (1 + ^ i ) H ^ 2t^o-oAt

(6.3.36)

(6.3.37)

6.3.3 M in im a l e n tro p y  m a r tin g a le  m e a su re

One of the important economic insight underlying the preference free option pricing result 
is the concept of perfect replication of contingent claims. This is by continuously adjusting 
a self-financing portfolio under the no-arbitrage principle. Cox et. al. (1979) provided further 
insight in this concept by introducing the notion of risk-neutral valuation and establishing its 
relationship with no-arbitrage principle in a transparent way under a discrete-time binomial 
setting.

Harrison and Kreps (1979) and Harrison and Pliska (1981) established a solid mathematical 
foundation for the relationship between no-arbitrage principal and the notion of risk-neutral 
valuation using the modern language of probability theory. They proposed the ” Fundamental 
theorem for asset pricing” which states that the absence of arbitrage opportunities is equivalent 
to the existence of an equivalent martingale measure. If the securities market is complete, there 
is a unique martingale measure and hence the unique price of any contingent claim is given by its 
discounted payoff at expiry. However, the assumption of market completeness is questionable in 
the real world securities market. Under an incomplete market, there is more than one equivalent 
martingale measure and hence a range of no-arbitrage prices for a contingent claim. One crucial 
issue is to identify an equivalent martingale measure which gives an economically consistent 
and justifiable price for the contingent claim.

Let n > 2 be the cardinality of 1), /? = 1 + r (where r denotes single period interest rate) 
and S =  (5oa<, *S'iAt) be the price process of the risky asset. Assuming that Soa< = 1 and the 
random variable Si At takes n different positive values a i,...,an with the probability F(Siaj =  
ai) ~ pt > 0 ,Vi = 1 ,...,n, pi -|- ... + pn = 1, then the minimal entropy martingale measure
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Q o  =  ( 9 1 , • ••, Qn) is the solution to the problem

It. is evident that Qo is given by

Qi =

= min (
<?€!".<?>0 \ (6.3.38)

n n

= 1, Y qjaJ = R (6.3.39)
j=i j =1

P i^ ai , i = 1,..., n, (6.3.40)
E U  P i# a*

where 7 € R is the unique real solution that always exists under the assumption of no-arbitrage 
opportunities of the following equation

n
Y  P i ( a j  -  /? )e ^ a ' =  0

t=i
(6.3.41)

This part of lemma is due to Frittelli (2000) in which, he links the existence and uniqueness of 
7 to no arbitrage assumption. The minimal entropy martingale measure for the pentanomial 
lattice is given by Q0 = (<71, 92,93,94,9s) where

<h =
Pje

E U  Pi&a
■, J =  1.......5 (6.3.42)

and 7 is the unique solution to the equation E1=\ Qiai = 1 + r - See Ssebungenyi (2008) for more 
application(s) of minimal entropy martingale measure and Miyahara (2001), Fujiwara and Miyahara 
(2003), Esche and Schweizer (2005), Choulli and Striker (2006) for more literature about min
imal entropy martingale measure.

6.4 A pplication  to  Stock m arket d a ta

6.4.1 E m p ir ic a l re s u lts

Our data set covers eight-year period, running from January 2000, to October 2008 on daily 
basis. These sets consist of daily adjusted closing index of Nairobi Stock exchange NSE20 
(March 03,1998 to July 11,2007), Paris Stock exchange index CAC40, SP500 (Jan 04,2000 to 
Oct 03, 2008) index and IBM Inc (Jan 03,2000 to Sept 26,2008) company daily adjusted stock 
price. Over the entire period, we have the daily closing (adjusted) values of the indices which 
we use in our estimation of volatility process.

Option data of IBM Inc. as of October 31,2008 were used with expiry dates, November 21,2008, 
December 19.2008, January 16,2009, April 17,2009, January 15,2010. Due to economy of space, 
numerical results of CAC40 index are not tabulated, but referred to in second section. As 
Pertains option data we present only shortest period before expiry and the longest duration 
before expiry.
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In this subsection, we present empirical results from the estimation procedures outlined in the 
previous section especially case one model. Maximum likelihood estimates of the parameters 
and their heteroscedasticity consistent asymptotic error were obtained and reported in table 
6.1.

The Ljung -Box test statistic Q(.), Q2(-) for the standardized residuals and the standardized 
squared residuals respectively, from AR(3)-GARCH(1.1), GARCH(1,2) and AR(1)-GARCH(1,1) 
models take different values (see Table 6.1) and do not indicate any further first or second order 
serial dependence. The estimates of the conditional kurtosis(not tabulated) differs significantly 
from the normal value of three. Note that the estimated values for a  + [3\ + /32 are close to 
one for the three indices. Moreover, daily log returns of NSE20 index is AR(3) correlated 
with GAR.CH(1,1) noise and leptokurtic standardized residual, similar to SP500 adjusted daily 
index.

As discussed earlier, specifications of binomial and pentanomial lattices are developed using the 
numerical procedure outlined in the previous section. Table 6.2 gives risk neutral probabilities 
for IBM Inc. company case. Of the proposed model, we took case I to demonstrate our results. 
The rest which can be done in a similar way was left for future research.

Once the parameters of discrete distributions are specified, pentanomial lattice building proce
dure is analogous to that of binomial and trinomial latt ices. Option values are obtained through 
a recursive procedure, see Figure 6.2.

6.4.2 E u ro p e a n  call o p tio n  p rices

A call option gives the owner the right, but not the obligation, to buy a particular security at 
a pre-specified price within a pre-specified time period. The value of such an option will be 
intimately related to the distribution of the price of the underlying instrument at the time of 
maturity. Specifically the more volatile the underlying price process is, the more valuable the 
option. The standard approach for pricing options rely on risk neutral valuation methods. In 
this risk-neutralized probability measure, the price of a call option, that does not allow for early 
exercise and pays no dividends, will be qual to the discounted expected value of the payoffs 
at the maturity date. Our analysis is meant to illustrate a possibility of modeling volatility 
dependency when calculating option prices.

To that end, we compare the performance of three lattice models for short time and long 
term maturity level at the money and out of the money European call options priced in 
Black and Scholes (1973) world,i.e.

CBS(t, K) = S<f>(dO -  K e - r{T~t)^{d2)
, In (St /K e * T-» )  i

<iI = --------7 ^ = 7 ----I = > » ( * / * g r >> _
<ry/T=t 2

Where we let t refer to the time that the option is written, i.e. October 31,2008 in the analysis 
^•ported figure6.2. The maturity time r = T  — t of the options in days. An option is said to be



at the money if the exercise price, K, equals the current value of the underlying security; i.e. 
here St  = 92.97. Lattices calibrated in data generating process P and transformed to Q minimal 
entropy martingale measure. In all the models, same parameters are used and results plotted 
against real market data. Here we recall the classic Cox et al. (1979) scheme (CRR), which has 
a constant logarithmic spacing between nodes on the same level. The following parameters are 
used

u

~ O(J~

exp((7\/A7), d = 1/w, p =

1
N  -  1 £ In

% -l)A t/

1/2 + (p/2(j)\/~At,
1 2

E Xj

q = 1/2 -  {p/2a)\/~At G Q,

(6.4.1)

Moreover, we use transition probabilities as in Derman and Kani (1994) for constructing trino
mial lattices, where the middle transition probability is equal to 1 — p — q provided that

P

q

u

/  e r A l /'2 -  e a y / A f / 2  \

y e*y/Ztj2 _ e„ ^ f j 2 j

/  e a  A t /2  _  e r A t / 2 \ -’ 

y eff>/ A t / 2  _  e a v / A £ /2  J

1 l<i=R°VJSi

(6.4.2)

(6.4.3)

(6.4.4)

Adjusted pentanomial was arrived at, by adjusting the dynamics of the proposed underlying 
model (6.2.1), here

StAt 
S(t-l)A t

= exp ^// + w{iAt)
1- a2

2
i At

d
^ 2  $k ln
k=l

(  S(i-k)A t \
\ S ( i - k - l ) A t  J + &iAt Zi+  £  lvi ( A t)

3=1

where Zt ~  N{0,1) and lTf<7)(At) ~  N (p(A t),^2(At)), for j  = 1,2,..., and Nt(At),i = 
1,2, ...,n are sequences of independent Poisson random variables with parameter A A t. The 
random variables \ \rj J  ̂ are independent for j  = 0, 1, 2,..., and i = 1, 2,..., n.

Note that we could estimate the value of w(nAt) by adjusting the present market value of the 
stock S™rkt

S™rkt + h = S™rkt exp(tu(nA0), 0 < h e  R., n = 1, 2,..., (6.4.5)

6.5 C onclusion

hi this chapter, the asset dynamics under the physical probability measure P in incomplete 
Markets is not only established, but also applied to minimal entropy martingale measure, to 
change dynamics to risk neutral. The residuals of GARCH filtered daily log stock returns, con
ditioned on normal distributions, showed excess kurtosis and skewed positively and negatively. 
This occurrence, violates the normality assumption.

The valuation of contingent claims whose value depend on multiple sources of uncertainty is an 
11T1Portant problem in financial economics. Since numerical methods for valuing such claims can
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be computationally expensive, the need for an efficient algorithm is clear. We made simplifying 
assumptions in that direction, even though there is more to be refined.

Although the pentanomial lattice provided in this chapter is as tractable as the standard bino
mial and trinomial lattices and may be extended to the multinomial case, the computational 
effort might increase exponentially with respect to dimension, similar to other lattice models. 
However pentanomial lattices can be considered useful for relatively short term contracts which 
can be used to solve problems related American type options.

The relatively GARCH(l,l)-normal model removes second order serial dependance in both 
markets in line with what is in the literature. The empirical evidence about spectral den
sity of standardized GARCH(l,l)-normal filtered from other financial markets deserves further 
investigation.

Since option prices may react sensitively to changes in volatility, a proper specification of the 
conditional means at each step may play a crucial role in the proposed pentanomial model. It 
is well documented in literature, out-of-the money options with short times to maturity react 
strongly to volatility changes when measuring this sensitivity in relative terms (regarding the 
elasticity of option price with respect to volatility).

Under the proposed framework, the market is in general incomplete, which is challenging to 
handle for .the implication is a multitude of equivalent martingale measures and thus, a multi
tude of no-arbitrage prices.

We note that under the proposed underlying dynamics, far in the money, at the money and 
out of the money options are valued slightly higher than the binomial and Black and Scholes 
(1973) model and in most cases can be adjusted to match market prices especially if prices are 
not highly volatile. We leave model refinement and extensions for future research.
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Figure 6.1: Left: The GARCH(l.l) filtered residuals of CAC40 daily share index(from March 

1, 1990 to September 1,2008) and NSE20 share index (from March 2,1998 to July 1 l,2007)log re

turns. The residual distribution as in general skewed, leptokurtic, and more peaked at its mean 

than the distribution of a comparable normal variate see Mwaniki (2007). Right: Spectral 

density of such a distribution do strongly suggest that it is a form white noise for NSE20 index 

and kind of Poisson mixture of normal distributions for CAC40 index. The 95% confidence 

hands for no serial dependence are indicated in the figure.



Table 6.1: AR(3)GARCH(2,1) models for daily returns.

Ai — A,_i 4- 02>Ai_2 + (p-jXt-s + Ei, E i — Vi^tZi, Z, ~  Ar(0,1)

2
ai + lAt = 2 v2 ,^0 + O c \ ( T l ± t Z l + y 0 j r f i ~ j + i ) A t

3=1

NSE20 IBM Inc. S&P500

Parameter AR(3)GARCH (1,1) GARCH(1,2) AR(1)GARCH(1,1)

0 i 0.18915(.024496) -0.06623(0.02234)

02 0.16451(.023785)

03 0.11388(.023413)

u; * 104 0.03549(.006902) 0.047289(0.014958) 0.009854(0.003105)

a 0.15023(.017978) 0.125707(0.025539) 0.072821 (.01073)

0 i 0.78763(.024753) 0.619592(0.14557) 0.92185(.0074845)

02 0.245621(0.13237)

Q{ io) 9.3468(0.2287) 8.8337(0.2648) 14.00(0.0816)

Q2(io) 7.1689(0.5739) 5.97965(0.542128) 17.56(0.1747)

igi -8363.5 -6057.773 -6692.37

n 2316 2316 2201

Notes: Standard errors are in parenthesis, lgl is the log likelihood.



Fable 6.2: Probabilities P and risk-neutral probabilities Q of IBM Inc. Company daily log

returns. We assume case /  model to price options, r = 5%p.a.

mm
<76K 5 ,</ > ( )

= Y.qj<h = I + ('-/250),
\*=1 V̂ l / /  3= 1 j=l

PjeyaJ
<b = ^ T ---- — . J =  1........5

2_/i=l P it1 '

p Q a

7 =0.82552183419466

Pi 0.06549397748689899 <7i 0.06161617410166113 al 0.9258510638937044

P'2 0.10136302169003963 <72 0.09822320397549678 a2 0.9616683145198932

P i 0.65147353500424354 <73 0.65098245271220745 a3 0.9988711826524486

P a 0.13098795497379800 <74 0.13513187777678223 a4 1.0375132719555373

P5 0.05068151084501980 95 0.05404629143385248 a5 1.0776502597917310



IBM Option Pricing T=15 days IBM Option Pricing T=320 days

0>fl!
Q.

Strike Price, So=92.97

Figure 6.2: Left: IBM European call options price comparison between Black Sclioles model, 

proposed pentanomial lattice, market data. Expiry date was on 21 November 2008 as of 31st 

October 2008. Daily adjusted share price from January 03,2000 to October 31.2008 were used. 

So = 92.97, v = 2.45% p.a., r  = 15. For the proposed pentanomial lattice model case I, 

we varied Sq E (92.97,98.97) as strike price was fixed as it appears in the graph. Right: In 

the second figure, sketch comparison of two model and volatile market for European option 

due 15th of January 2010, were calculated using proposed model and Black and Sclioles (1973) 

model.
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Chapter 7

O n A PA R C H  Levy F ilte r: A

C losed-form  O ption  P ric ing  

M odel

Popular models such as Dlack-Scholes-Merton(BSM73) lack most of empirically found, stylized 
features of financial data, such as volatility clustering, leptokurtic in nature of log returns, joint- 
covariance structure, aggregational Gaussianity, e.tc., hence it. may not. consistently price all 
European and exotic options that are quoted in one specific market.. This could be as a result 
of assuming a stochastic process which do not describe the underlying asset price dynamics. 
Moreover, such simplifying assumptions in real financial markets, may translate to the implied 
volatility curves typically skewed, with smiley shapes or even more complex structures. A closed- 
form option pricing model, APARCH Levy filter, which nests BSM73 model, minimizes the 
”consistent: volatility smiles ' and incoiporat.es most, of the stylized features observed in developed 
and emerging economies is presented. An extensive empirical analysis based on S&.P500 index 
options and Nairobi stock index NSE20 index is used to compare performance of proposed model 
against BSM73 and GARCH option pricing model of Duan(1995).
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7.1 In tro d u c tio n

Exotic options are often hedged with European options. This hedging is called static repli
cation. To improve the hedging performance, exotic and standard options need to be valued 
consistently. This is done by first assuming stochastic process which describes the underlying 
asset dynamics. The process is calibrated to the observed market prices of exchange-traded 
options. Then, the resulting process is used to price over the counter options. The need to 
minimize (or even eliminate) persistent smiles in options data, hence consistent valuation and 
hedging of exotic options with the prices of standard European contingent claims in developed 
and emerging markets is the aim of this chapter.

A common assumption underlying most option pricing models are that the logarithm of stock 
price are normally distributed. The well known and widely used in industry i.e. Black and Scholes 
(1973) and Merton (1973) option pricing model was derived under such an assumption. An 
extensive empirical literature in finance has documented not only the presence of anomalies in 
Black-Scholes model, but also the term structure of these anomalies (for instance, the behav
ior of the volatility smile or the unconditional returns at different maturities, riding on smile 
Derman and Kani (1994), pricing with a smile Dupire (1994), Dnan (1996) cracking the smile, 
Das and Sundaram (1999), Bringo and Mercurio (2000), Meziou (2001) on adaptive mixture 
for a controlled smile). Our main focus will be to understand the source of the ’’grimaced or 
smile of option” and propose APARCH Levy filter as an alternative for option pricing in any 
economy (be it emerging or developed).

The deviations from normality become more severe when more frequent data are used to calcu
late stock returns. Various studies have shown that the normal distribution does not accurately 
describe observed stock return data. Over the past several decades, some stylized facts have 
emerged about the statistical behavior of speculative market returns such as aggregational 
Gaussianity, volatility clustering, etc see Rydberg (2000), Cont (2001), Tsay (2002). On the 
same note, most of the literature for example Eberlein and Keller (1995), Carr and Madan 
(1998), Barndorff-Nielsen (1998), Carr et al. (2002) and references therein, make a simplifying 
assumptions, that daily log returns can be modeled by exponential Levy processes, finding 
a number of explicit formulaes for pricing derivatives (see also Carr et al. (2003), Schoutens 
(2003), Carr and Wu (2004)) or modeling stock price process by a geometric Levy process (see, 
Chan (1999)) in exact analogy with the ubiquitous geometric Brownian motion model.

There are two important directions in the literature regarding these type of stochastic volatil
ity models. Continuous-time stochastic volatility process represented in general by a bivariate 
diffusion process, and the discrete time autoregressive conditionally heteroscedastic (ARCH) 
model of Engle (1982) or its generalization (GARCH) as first defined by Bollerslev (1986). In 
the last few years, much interest has been given to the discrete-time GARCH option pricing 
models. The most important papers which study the empirical fitting of these model include 
Pagan and Schwert (1990), Glosten et al. (1993), Bollerslev et al. (1994). Option pricing in 
GARCH models has been typically done using the local risk neutral valuation relationship 
(LRNVR) pioneered by Duan (1995). The crucial assumptions in his construction are the con
ditional, normality distribution of the asset returns under the underlying probability space and 
Hie invariance of the conditional volatility to the change of measure. The empirical performance 
°f these normal option pricing models has been studied by many authors, for example Duan
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(1996), Hardle and Hafner (2000), Heston and Nandi (2000), Christoffersen and Jacobs (2004).

This chapter presents two main contributions: a new closed form APARCH Levy filter option 
model and an in-depth empirical study in developed and emerging market. We undertake an 
extensive empirical analysis using European options on the S&P500 index from December 2008 
to December 2009. We compare the pricing performance of our approach, GARCH option 
pricing model of Duan (1995), and the classical Black and Scholes (1973) model. Interestingly, 
our APARCH Levy filter outperforms all other pricing models, in all comparisons. In our 
pricing model, all parameters are estimated from historical data, i.e. for S&P500 index from 
January 03,1990 to November 21,2008 and NSE20 index from March 02. 1998 to July 11, 2007.

The chapter is organized as follows. In Section 2, a review of suggested models for pricing 
options is outlined, from the arithmetic Brownian motion of Bachelier, through geometric 
Brownian motion hence BSM73 model, Bates model and Barndorff-Nielson and Shephard model 
(BNS). In Section 3 the proposed model is presented after a brief introduction of the model 
building blocks. Empirical findings are summarized in Section 4. We draw conclusions and 
suggest directions for future research in section 5.

7.2 M odeling th e  underly ing

In this section, an incomplete chronological review of modeling the dynamics of the underlying 
risky asset is outlined.

7.2.1 B a c h e lie r’s m o d e l

It is the pride of mathematical finance that Louis Bachelier was the first to analyze Brownian 
motion mathematically and he did so to develop a theory of option pricing. In his doctoral 
dissertation, Louis Bachelier (1900) introduced arithmetic Brownian motion i.e.

dS(t) = fidt +  a dB(t)

to model the evolution of a risky asset 5(f), say stock. This implied that

St — 5o(l + <r Bt)

is normally distributed with mean So and variance S^a2T. The price of the European call 
option at time t — 0

C(0,5o) Eq [ (5 | -  K)+] (7.2.1)

1 (S0 + x  A) e 
JSo-K S0oV2irT

dx (7.2.2)

(So A)4>  ̂  ̂ + f  So — K  \
\S o o s /T )

(7.2.3)

(So A )<f> ^ ^  av/ j )  + S0ay/f<f>
( S o - K \  
\  Sqo y /r  )

(7.2.4)



where

(7.2.5)

(j)'{x) = —X(p{x). (7.2.6)

denotes the standard density of a normal distribution. Sixty five years later, Samuelson (1965) 
proposed classical model, commonly known as geometric Brownian motion (GBM)

where So >  0  is the initial value of the asset, D  =  { D t : t  >  0} is the standard Brownian 
motion, <j  > 0 and // G R. Empirical evidence show squared returns as a measure of volatility, 
displaying positive autocorrelation over several days which contradict the constant volatility 
assumption. Non constant volatility can be observed as well in the options market where smiles 
in implied volatility decrease across strikes. Black and Scholes (1973) model is based on the

7.2.2 M e r to n  J u m p  D iffusion  M o d e l

Three years after 1973, Merton (1976) proposed a model(Merton Jump Diffusion Model,hereafter 
M.JD76) that allows discontinuous trajectories of asset prices. The model was to cope with the 
unusual random information at random times whose impact on the stock price may be treated 
as a random variable. It was an extension to GBM model by adding jumps to the stock price 
dynamics

where ,o, is the instantaneous expected return on the asset, a is the instantaneous volatility of 
the asset return, Bt is a standard Brownian motion process, Nt is a Poisson process with inten
sity A. Standard assumption is that and (Yj) are independent, Yt -  1 is lognormally
distributed with mean

The relative jump size is assumed to be Yt — 1. Note that there are two sources of randomness 
in the jump-diffusion process. The first source is the Poisson process dNt which causes the 
asset price to jump randomly. The other source is the Wiener process. It follow that

The expected relative price change E(dSt/S t) from the jump part dNt in the time interval dt 
is Akdt. This is the prediction part of the jump, since

dS(t) = rS(t)dt + crS(t)dBt (7.2.7)

which, applying Ito’s lemma can be written as

(7.2.8)

GBM.

E[Yi -  1] = -  1 := k.

lnE(Yt — 1) = E(ln Yt).

E[(Yt - l ) d N t] = E[Yt - l]E d N t

1 OO

kXdt.

(7.2.10)

(7.2.11)



This is why the instantaneous expected return on asset adt is adjusted by -A kdt in the drift 
term of the jump diffusion process to make the jump part an unpredictable innovation.

= E[{a-\k)dt]+E[cTdBt} + E[(Yt-l)dNt}  (7.2.12)St
= (a -  Ak)dt + 0 + k\dt 
= adt

Note that if the asset price does not jump in small time interval dt (i.e dNt = 0) then the jump 
diffusion process is simply a Brownian motion with a drift process. To find explicit solution to 
the proposed dynamic one would apply Ito formula for a jump diffusion process i.e.

df(Xt ,t) — ~ ( X t ,t) + bt—̂ ( X t,t)dt + -X t)dt

+ a , ^ t ( X t,t)dB, + + AA') -  /(A ,.)] (7.2.13)

therefore,

r t  f t  N t

X t  =  A 0 + bsds +  crsBs +  'y " A A

d In St = d In St . _ d In St 2 In St— d, + iQ - X k )i t — + a f S l - w -

+ crSt—— -—dBt + [InYtSt -  In St] 
oSt

d In St — (a -  \k)dt — —dt + (rtdBt + In Y

St = So exp I (a — -—  Ak)t -  atBt j exp ^  In Yj
J =i

Nt
So exp | (a — -—  \k)t  + aBt + ^  In Yj

(7.2.14)

(7.2.15)

(7.2.16)

7.2.1'

This means that the asset price process { ,  0 < t < T} is modeled as an exponential Levy 
process of the form

St =  Soex ',

where A* is a a Levy process which is categorized as a Brownian motion with drift(continuous 
part) plus a compound Poisson process(jump part). The probability density of log return 
xt = \n(St/So) is obtained as a series of the following form

when

P(x, € A )  = £ > ( * ,  e =
j= U

— A/r)t + jn, cr t + jS 1 -
s/ m ^ T T W )

■—  exp

(7.2.18)

P(zt) = ----- ( x t; (a -  -  Ak)t + jfx ,a2t + i s A  (7.2.
j=o J- \  1 *

19)

 ̂ * t - { ( a - £ - A * ) t  + jn
2{cr'-t + jS-)
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The characteristic function of the Merton log -return density function is calculated as

4>{u ) /-foe 

-oo
exp{iujxt)F(xt)dxt (7.2.20)

= exp ^Atexp j^u;(2i/x-  a 2u;)j -  A£(l + iuk) -  ^tcu { - 2 j u  + a2(i + ta)} . 

After simplification
4>(v) = expft^M]

with the curnulant generating function

V’ M  =  A  |exp  ( ^ j u j f i  -  ^ ^ -  1 J +  j u>  -  y  -  A A r^  -  ( 7 . 2 . 2 1 )

This generates the following cumulants
2 0

K l =  a  ~ y  “  A -  l )  + //A

Kj = it” -I- A<52 +  A/i“

DC 3  =  A ( 3 c r 2 / i  +  / / ' * )

K 4  =  A ( 3 c r 4  4 - 6 ^ r S 2 +  / / 4 ) .

(7.2.22)

(7.2.23)
(7.2.24)

(7.2.25)

Annualized (per unit of time) mean variance skewness and excess kurtosis of the log return 
density are computed as follows

l E [ l o g ( S 'T /S o ) j

j v a r  [log(5r/50)] 

i skewness [log(6>/50)|

—excess kurtosis

K,

K2

k 3

(7.2.26)

(7.2.27)

(7.2.28)

(7.2.29)

Using the hist, four cumulants of the distribution, parameters can be estimated by curnulant 
matching (see Press (1967) for detailed parameter estimation of compound poisson model). The 
jumps follow a homogeneous Poisson process Nt with intensity A, which is independent of B(t). 
We note that jump components add mass to the tails of the returns distribution. Increasing S 
adds more mass to both tails.

The only difference between the BSM73 model and the Merton jump diffusion is the addition 
of the term j l \  Yj- A compound Poisson jump process Yl'jli T? contains two sources of 
randomness. The first is Poisson process dNt with intensity A(i.e. average number of jumps 
per unit time) which causes the price to jump randomly. It is assumed that these two sources 
of randomness are independent of each other. By introducing three extra parameters to the 
original BSM73 model, M.JD76 model tries to capture the (negative) skewness and excess 
kurtosis of the log return density P [ln(St/So)] , which deviates from BSM73 lognormal return 
density.



7.2.3 H e s to n  M o d el

In BSM73 model, a contingent, claim is dependent on one or more tradable assets. The ran
domness in the option is solely due to the randomness of these assets. Since the assets are 
tradable, the option can be hedged by continuously trading the underlyings, lienee every con
tingent claim can be replicated. In a stochastic volatility model a contingent claim is dependent 
on the randomness of the asset {St}t>Q and the randomness associated with volatility of the 
assets returns ({V^ji^o) and the randomness associated with the volatility is not a traded asset.

Heston (1993) model assumes that the underlying asset S(t), evolves according to

dS{t) = pSdt + y/vifjSitjdBx (t ) (7.2.30)

and volatility ,v(t), evolves according to

dv(t) = n[ti -  v(t)]dt + a \fv(t)dB2{t) (7.2.31)

where the two Wiener process innovations dB\(t) and elB2(t) are allowed to be p correlated.

For a risk neutral valuation in this model, there is need to change measure from real world to 
empirical martingale measure. This can be achieved by Girsanov’s theorem. In particular

dB\(t) .= dB\{t) + i)tdt 

dB2{t) = dB2(t) + A(S, V, t)dt 
dQ

(7.2.32)

(7.2.33)

r/P

=

exp j-i J {ifs + A(S, V, s)2)ds -  j  ddB\(s) -  J A(S, Vr, .s)d£2(.s) j
p - r (7.2.34)

where the volatility A(V,S,t) is not constant for any asset F. The closed-form solution of a 
European call on a non dividend paying asset for the Heston model is

C(S„ Vt,t ,T )  =  5 ,P, -

where

P j ( x , V t , T , K )  =
* * •/() 
ln(St)

e-t4>\u{K)
Re [ -— —---- fj(x, Vt ,T, <p) ) do

fj  {x, Vt , T, 0)

C(T-t,4>)

= exp {C(T — t,(j>) + D(T -  t, (j))Vt + icf)x}

r(pir H— - + (bj -  paepi -F d)T — 2 In 1 -  ge
1 - 9

dr

D (T-t,(p )  =

9 =

d =

bj — paepi + d f  1 — êdr
a *  \  1 —  a e dr

bj — paepi + d 
bj — paepi — d

y j(paepi -  bj)2 -  a'2(2ujef>i -  ef>2)

(7.2.35)

(7.2.36)

(7.2.37)

(7.2.38)

(7.2.39)

(7.2.40)

(7.2.41)

for j  =  1,2 where u\ =  0.5, u2 =  — iti, a =  k0

b2 = K A, 6j = b2 -  pa.
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The integral (7.2.35) cannot be evaluated exactly, but can be approximated by using some 
numerical integration technique or fast Fourier transform method of Carr and Madan (1998).

Note that Hull and White (1987) had earlier proposed a GBM for modeling volatility which 
might increase exponentially. Stein and Stein (1991) suggested the use of an Ornstein-Uhlenbeck 
type process (which might admit negative values for the variance)

These deficiencies were eliminated in the Heston (1993) model.

7.2.4 B a te s  M o d el

The Merton (1976) and Heston (1993) models, were combined by Bates (1996), who proposed 
a model with stochastic volatility and jumps:

Where J(t) is a compound Poisson process with intensity 7 and log-normal distribution of jump 
sizes independent of B\(t) and j?2(t). Under the risk neutral probability an equation for the 
logarithm of the asset price is obtained.

Since the jumps are independent of the diffusion part, the characteristic function for the log 
prices can be obtained as

is the characteristic function of the jump part. Where xq and Vq are the initial values for the 
long price process and the volatility process respectively. Option pricing can be done using fast 
Fourier transform (FFT) as suggested by Carr and Madan (1998) and Nicolat.o and Venardos 
(2003).

dv(t) = k{6 — v(t))dt -I- fldB{t) (7.2.42)

dS(t)

dvt

rS(t)dt + y/vtS(t)dB\(t) + S(t)dJt
k(6 -  vt)dt + crty/vldB2(t)
pdt

(7.2.43)

(7.2.44)

(7.2.45)Co v{dBi(t),dB2{t))

(7.2.46)

where ./ is a compound poisson process with normal distribution of jump magnitudes.

4>xt{z) = <t>xt (z)<t>xt(z)

where

2 k  0

(cosh^  + ^ p s i n h ^ ) ^ 7 coth y  + h. -  ipaz
{z2 + iz)vo (7.2.47)

is the characteristic function of the diffusion part and

(7.2.48)
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7.2 .5  B a rn d o rff-N ie lse n  a n d  S h e p h a rd  M o d el (B N S )

Under exponential Levy model, the stock price dynamics are assumed to be driven by Levy 
processes instead of Brownian process. Note all Levy processes except for Brownian motion 
have jumps. Familiar special cases of Levy processes are Brownian motion and the compound 
Poisson process (see for example Sato (1999), Bertoin (1996),Raible (2000a), Cont and Tankov 
(2004) for theoretical and numerics of Levy processes). Most of the proposed exponential 
Levy model miss the changing volatility in time. In view of this, Barndorff-Nielsen, Shephard 
and co-workers in their article Barndorff-Nielsen and Shepard (2001), introduced Non-Gaussian 
processes of Ornstein-Uhlenbeck type or OU processes which the background driving Levy 
process (BDLP) is a subordinator.

Barndorff-Nielsen et al. (2002) show that the dynamics of the log price under such an equivalent 
martingale measure Q are given by,

dX{t) = (r - q -  r)n{-p) -  \a j)d t  + otdB{t) + pdZ,lt,X 0 = log So (7.2.49) 

daf = -T)o\dt + dZrjt (7.2.50)

where B = {B(t),t > 0} is a Brownian motion under Q independent of background driving 
Levy process (BDLP) Z  = {Zt,t > 0}. The Brownian process and the BDLP Z are independent 
and (T/) is assumed to be the usual augmentation of the filtration generated by the pair (I F, Z). 
Note that the

(i) instantaneous variance of the log returns is given by

r j ( rvar(dXt) =  var (r — q — qK(—p) -  ^(T2)dt -I- atdB(t) + pdZvl

= { c t J  + p2r)var(Zxj)dt,

(ii) integrated variance (rf*T over the time period [t,T] is

°f,T =  J t ai ds

= J *  (e~Xs<r* + J l e-W -^dZxs^jds

+ x ~ ' f ( ( l  -  e -A(T“s)) dZr,_  ± | i _ c-A(T-t)
A

(7.2.51)

(7.2.52)

(7.2.53)

(7.2.54)

A European style contract with payoff h ( X t ) can be valued according to the fundamental 
theorem of asset pricing. Therefore it’s arbitrage free price at time t < T  is given by

Ct = Eq \e~r(T~t^h(Xr)\3t

Note that the expectation is taken with respect to Q G M, where M is an equivalent martingale 
measure. Typically, financial markets where investors can only trade in a riskless asset is an 
underlying stock with stochastic volatility are incomplete and BN-S models are no exception. 
An alternative representation of derivative price can be obtained as an exception of the BSM73 
formula with respect to particular functionals of the BDLP.



Define the effective spot log-price and volatility by

Xeff = X t + p{Z\T -  Z \ t) -  \kp(T -  t) (7.2.55)

(7.2.56)

Let C ^ s (x,v) denote the Black-Scholes price at time t of the claim Ii (Xt ) when the spot log 
price is x and the volatility is v. Due to independence between the Brownian motion and BDLP.
Z in the Q dynamics of X  and a2, the arbitrage free price at t < T  can be computed

C, = E<3 [C,b s (X 'H, K„)\X. (7.2.57)

If tl»e BSM73 price C , (x, v) is known in closed form, as in tire case of European options, ex- 
pression (7.2.57) can be evaluated as a sample average across simulations of the pair (A'eff, V e f f ) .

A self contained exposition of the required result, the reader is referred to Barndorff-Nielsen and Shepard 
(2001), Nicolato and Venardos (2003). Moreover, for more information about Levy models with 
stochastic volatility see Barndorff-Nielsen et al. (2002). and Schoutens (2003).

left = g ?,T

T - t

7.3 M odel construc tion

Consider a frictionless financial market where a riskless asset with constant return rate r and a 
risky asset (a stock) are traded upto a fixed horizon date T. We assume that the price process 
of the stock S = (St) is defined on some filtered probability space

( f t ,y ,( j t)0 < t< T ,n

We state selected basic tools required to construct the closed form valuation formula.

7.3.1 A R C H  ty p e  m o d e ls

Two of the most common empirical findings in the finance literature are that the distributions of 
asset returns display tails heavier than those of the normal distribution and the squared returns 
are highly correlated. The aforemention stylized empirical regularities led to some econometri
cians to develop models which can accommodate and account for these phenomena. The ARCH 
model have excess kurtosis accommodating the empirical findings. Furthermore, they show 
some persistence in the squared autocorrelations. Engle (1982) introduced the Autoregressive 
Conditional Heteroscedasticity (ARCH) model and Bollerslev (1986) generalized the ARC'H 
to GARCH model (see Engle and Bollerslev (1986), Bollerslev et al. (1992), Bollerslev et al. 
(2002), Karanasos (1999))

q p

£t ~ N (0 ,a f) ,  a\ =  (7.3.1)
i= i j—i

Neither the ARCH nor the GARCH models take the asymmetry into account. Volatility is
negatively correlated with changes in stock returns in the sense that "bad news" tend to give
an increase in volatility and ’’good news” a decrease in volatility.
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7.3.2 C o m p o u n d  P o isso n  p ro cess

It. is assumed ./(£) is a process of stationary and independent increments whose basic mechanism 
is composed of a compound Poisson process augmented by Wiener process. Specifically

{Y\ ,..., Yjt,...) is a sequence of mutually independent random variables obeying the common 
law N(t) is a poisson counting process with parameter r/£, which represents the
number of random events occurring in time t\ {N(t),t > 0} is independent of the Yk and 
V/v(o) ~  N(0,(rjt) . For detailed exposition on Poisson intensity estimation, see Press (1907), 
Simar (1976), Vlaar,P. and Palm.F. (1993), Chan and Maheu (2002).

7.3 .3  Levy p ro cesses

A Levy process X  = (Xt)t>o is a process with stationary and independent increments. Un
derlying is a filtered probability space (Q, J, (Ti)t>o, P) to which the process is adapted. The 
distribution of a Levy process is completely determined by any of its marginal distributions say 
generalized hyperbolic (GH) i.e. X t — X s ~  GH , 0 < s < t.

7.3.4 G e n e ra liz e d  H y p e rb o lic  d is t r ib u tio n

The method of modeling stock prices by subordinated processes generalizes the classical log
normal asset price model in continuous time. The physical time is substituted by an intrinsic 
time which provides a long tail effect observed in the market. A random variable W  is said to 
have a generalized inverse gaussian distribution if its probability density function is given by

The parameters A G R, 7 > 0, > 0 are such that 7 ^  S if either of the them takes the value
zero. We note that if 7 > 0 and S > 0 then

Suppose B — {Bt,t > 0} is a Brownian process and W  = {W(t),t > 0} is a nonnegative 
stochastic process, then the new process {Bwt V ^ tZ ,  Z ~  N(0, 1), t > 0} is said to be 
subordinated to B by intrinsic time process W.

(Normal Mean-Variance Mixture) A random variable X  is said to have a normal mean-variance 
distribution if

N (t)

(7.3.2)

where I \ \  is a modified Bessel function of the third kind with the index A.

X  = 11 + 0W  + (T\/WZ
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where Z ~  N(0 ,1), W  is a positive random variable independent of Z; //, 0  and a > 0. From 
the definition, we can see that the conditional distribution of X  given W  is normal with mean 
// + 0U and variance o2W . Note that if the mixture variable W  is GIG(A,7 ,(5) distributed, 
then X  is a Generalized Hyperbolic distribution with the (A,a ,0 ,8 ,n)  parametrization, where 
or = 72 -f 02.

The probability density function of the one-dimensional Generalized Hyperbolic distribution is 
given by the following:

Jgh{x \ c*, 0, &, /*, A)
(V*)* K x_ i (nyAS2 + (x -  ;Q2)

\ / 2 ttK \ ( 8 ' ) )  { ^ / 8 2 +  (* -  /0 2/« )^ “ A g
(7.3.4)

According to Barndorff-Nielsen (1977), the parameters domain is given by

o > 0 00 “ > 0~ 8 > 0 for A > 0,

0  > 0 0 “ > 0- <5 > 0 for A = 0,

a > 0 Al£ <5 > 0 for A < 0.

In all cases, // is the location parameter and can take any real value, 6 is a scale parameter; a 
and 0 determine the distribution shape and A defines the subclasses of GH and is related to 
the tail flatness.
Characteristic function of the GH is given by

<Pgh{u) =
a 2 _ ^2 \ V2 Kx \/ot2 -  (0 + iu)2)

n 2 -  (/3 + iu )2 )  ^

while mean and variance are given respectively by the following

08 K x+1(0E(X) = /i +
y/ot2 -  02 K X(0

and

Var(Ar) = 82 A ' a + i (C) , 02+(K x(0  a2 - 0 2
I<\+2 (C) (  A" a + i (C)
Kx{Q Kx(0

where (  = 8\s/o i2 -  02. Note that, if A' ~ G//(A, a, 0,8, u), then

X  ~  GH( — ~, a , 0,8, f.i) has Normal-Inverse Gaussian distribution 

X  ~  GH(l, a, 0 , 8, /i) Hyperbolic distribution

X ~ GH (A, a, /?, 0, /*) Variance Gamma distribution

(7.3.5)

(7.3.6)

(7.3.7)

(7.3.8)

(7.3.9)

7.3.5 O p tio n  p ric in g  m o d e ls

The Black-Scholes-Merton option pricing formula

The most celebrated of all models used in finance is probably the Black-Merton-Scholes model,
suggested by Black and Scholes (1973), and Merton (1973)(hereafter BMS73). In BMS73 model
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under risk neutral probability measure Q, stock simply follows a geometric Brownian motion,

dS(t) = rS(t)dt + (rS(t)dB(t),

which implies that log returns k)g( S(t'-i)) are normally distributed with mean r -  and 
variance a2.

A European call option is an asset which gives the buyer the right, but not the obligation, to 
purchase the stock 5(f) at a prenegotiated price K  at time T. The value of the European call 
option, at time of maturity, is given bv

C(f, K) =  max(0, S(T) -  K)

The price of this derivative is given by the BMS73 option pricing formula which is

C (t ,K )  =  S(f)'I>(d1) - /< -6 - rlT- ' )'I>(rf2)
In( S ( t ) / K e ' l T -V)  , 1 

di = ------asJTr-t + - a V T ^ l

d-2 =
— -------- 2a '/ T ^

GARCII option pricing model

According to Duan (1995), pricing contingent payoffs requires temporally aggregating one pe
riod asset returns to arrive at a random terminal asset price at some future point in time T. 
He provided sufficient conditions to apply a locally risk-neutral valuation methodology which 
is applied in the following theorem;

Theorem  7.3.1. Under the locally risk-neutral probability measure Q, the process for asset 

price is

log 5(f) -  log 5(f -  1) = r -  iff? + a tit (7.3.10)

where i t \<f>t-i ~  N{Q,at) and a j = u  + ai (&-j ~ Actt f  + £ J =1 &ai-i

Proof: One can refer to the proof of Theorem 2.2 of Duan (1995). 
Then from Theorem 2.2we have the following corollary

5(T) 5(() exp < r - 0 r - i  t
s —t - f-1

T

+ Y  &
s = t + 1

then (7.3.11)

CD95(f, K) = e- r (T-t)EQ[max(5T - /C 0 ) |T t] (7.3.12)

Because there are no analytic expression for the expectation in (7.3.12), we use numerical 
techniques to simulate the option price C£>95(f, K).

1 m
CD95(t,K) = e- r(T- t)— V  m ax(5^ -  AT, 0)

j =i
(7.3.13)
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7.3.0 T h e  A P A R C H  L evy filte r  o p tio n  p r ic in g  fo rm u la

Asymmetric Power Autoregressive Conditional Heteroscedasticity
APARCH(p,q) model can be defined as;

log 5(0  -  log S(t -  1) - U + C£, f — 1,..., T

Zt = atZt , Zt ~  i.i.d.N(0,1),V t,
<7 P

U! + Q1k(£,£_,)‘S +  fivi-j
1=1 ji= 1

K(£t-i) = |et_i| -  7i££_lwhere

U,w > 0, 7t, a , ( l , .., q), 13j,(j = l,...,p)are parameters
S > 0 Box-Cox transformation 7,(i = 1,..., q)leverage effect

Under the historical measure P, the asymmetric G.1R GARCH model is

log 5(0 -  \ogS(t -  1) =  u + c£

at — w + + ot£l_x +  'ylt-ief-i

where £t = (JtZt, zt ~  / ( 0 ,1) and It-i = 1 when £t~\ < 0 and It~i = 0 otherwise. When 
7 > 0, the model accounts for the leverage effect, i.e., bad news (£t-\ < 0) raises the future 
volatility more than good news £t-\ > 0. In this chapter, we focus on a single lag version 
of the APARCH specification where p = q =  1, k = 0 and 5 = 2, for GARCH(l.l) and 
p = q = 1, k /  0, s = 2 for GJR-GARCH(1,1) while for GJR-GARCH model, the process, is 
covariance stationary provided

i > i  + i r )  +  < 1. (7.3.14)
)=1 j=l

For more information on GARCH families nesting on both symmetric and asymmetric GARCH 
models see Hentsehel (1995) and Sebastien (2004).

Proposition  7.3.2. (Dynamics under IP) The dynamics of the stochastic process S (T ) is given 

by

S{T) = 5(t) ex p (6 + r]i))a + u -  - a 2(l + vjtp) ( T - t )  + ay/ 1 4- xvtpy/T -  tZ  ) (7.3.15)

Proof:



log ■ = u + Ej + noise, Ej ~  i.i.d(0, a~)

= u + (Tj

=  U +  CTj

= U + (Jj

Z ^  + A',

z j^  + ^L JZ a + ^ l ,  Zft ~  N (0,er2), iP(L) = J2*Pj Lj

dR i.i.dN(0, 1), for all j  = 1,..., jV.

Z]1}+ v/fKarPV>(I)Za){zj2)+ ^ } ]  where X j ~ G H ,  Yk ~ N {d ,a \
=  U +  l)i)(Tj +

^ 2 Z f  +  y/[Varpip(L)Za , z (2) +
J

Y N o Z f  +
/  *<0  

Varp ■ £

\ \ k  = N u  ,)+1
r ( 4 )

••• a  log SO’) = (u 4- T)d(Tj )Af + Cj [a z j °  + >/7arPV'(L)Za {a z ]2) + (<rjAZf > + q(<rj+ 02)AZj4)) }] 

Note that L is a back-shift operator say, Z; _4 = L4Z7.

An important application of the stochastic volatility model is the pricing of option. The large 
standard errors of the volatility estimates do not necessary carry over to option prices (see 
Malden and Schotman (1998)). Option prices depend on the average expected volatility over 
the length of the option contract and this averaging should reduce standard errors. In the 
limit, the average volatility over a long horizon converges to the unconditional variance, which 
is known without error when conditioning on the parameters of the process, hence the uncon
ditional variance for GARCH(p, <7) is given by

-1 p q
(7.3.16)

(7.3.17)

The mean and variance of daily increment can be estimated by

S (j) S (j)E log ——:— = u + T)\)a Var log ——-— = ct"(1 + zzap)
SU -1)

where

= Var X
r2 (  K\+l(C)= + 32

CA'a(C) 02-/52

S(j-D

A'a+2(C) _ /  A'a+ i (Q 
A'a(C) V A'a(0

(7.3.18)

and ip € R can be easily estimated from historical data set, preferably at least 15 years of daily 
increments. For simplicity, let //* := W  log s;S(j^ and a* = ^/(Var log |^ 1 )  Let 0 < h < t  < T  
such that u =  t — h V m 6 R then

log S(h + u) -  logS'(u) = fi*u + o*(Z(h +  u) -  Z(h)), Z(u) ~  N(0, u) 

w.l.o.g. let Z(h) := D(h) such that Ep[jB2(/i)|3r/l] = h

(7.3.19)

lim (log S’(/i + u) -  log S(u)) = //* lim u + a* lim (B(h + u) — B(h)) (7.3.20)
u —0 u —>0 u —>0

dS(t) = fi*dt + a*dB(t)S(t)
dS(t) = n*S(t)dt + a* S{t)dB(t)

1 99

(7.3.21)

(7.3.22)



Ill our model, the coefficients //* and a* being constants, we know that the process has a 
Lognormal law. Here if the initial time point is t, then the logarithm of S(t) is distributed 
under IP according to

N[\ogS(t) + (p* -  - ( ct*)2)(T -  t), ( O 2(T -  0] 

For clarity, use the notation S(t) := St

.'. St = St exp (u + pda) -  -(T-(l + zvip) (T -  t) + a^/l  + m<py/T - t Z , Z ~ N (  0, 1)

Proposition 7.3.3. (Tfasfc neutral valuation Q) The implicit value of contingent claim g(S(T)) 

is given by

Eq e r ( T - t ) ff(Sr)lrJ't (7.3.23)

where <Q> is the risk-neutral measure.

Proof:
Under Q the risky asset’s price satisfies

dSt = (r -  agd -  ~{a*)2)Stdt 4- a*StdBt

This implies that

e q

Eq[St |3,
e- r(T-t)a(Sr ) |? ;

= St exp(r)

= e - '', r -'>E«[.9(ST)]

= e r(T- l) r  fl(e“)/T-»(
J —o o

(/)du

(7.3.24)

(7.3.25)

(7.3.26)

(7.3.27)

where fT-t{u) is the probability density function of the normal distribution with mean

log -  agd -  i(cr*)2^ (T -  t)

and variance

( O 2( r - o
When g has an explicit form say European option,

g{u) = (u -  K )+,

we can develop the explicit formulaes.

Example 7.3.1 (European Call option). Let g{u) = max(0, u -  K). 

Using the symmetric property of normal distribution, let

<t>(u)
1

\/27r
1

\Z2rr

~u2/2du 

e~u *2du

(7.3.28)

(7.3.29)
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therefore

I g(eu)fT- tdu = I  euf T- t(u)du -  K [  f T- t(u)du (7.3.30)
J-oo J{u>Uih'} J{u>\uK}

Let. C1’2([0, T] x R+,R) be the set of functions f  from ([0,7] x R+) into R, and of class C 1

with respect to t and C2 with respect to x.

C(t,x) = x(p

^ e-( r-^a)(T -t)^
O \/l + u7ip y/(T — t) 

Theorem  7.3.4. The price of a European call is given by

{ ln ( A7) + ~ ( r “  aT̂  ~ T 1̂ + wtp))

C{t,x) = x<f>(gi(t)) -  Ke r(T l)(j>{Q2{t)). (7.3.31)

where

ei (t)  =  a V(1:+ mp) {*" (#) + ( T - 0 (r - ■+ yd + «V>) }.
P2(0 = »1 -  <T\/(1 + vjip)y/{T -  0 (7.3.32)

Remark 7.3.1. For purposes of fitting historical data set, one can vary index by some powers, 

for brevity i.e. Let h(j, <p) = y/{ 1 + mj <p), j  = 0, ±1, ±2, ±3,... then

- l (0  =

Q2(t) = Qx -0 \Z h{] ,v )s f{T  -  t) (7.3.33)

Example 7.3.2. (Lookback put) Lookback options provide opportunities for the holders to real

ize attractive gains in the event, of substantial movements of the under lying process dunng the 

life of the options. Let {S(t), 0 < t < oc} continuous stochastic process, say APARCH Levy 

motion under IP, i.e.

dS(t) = S(t)(p + (TtT]ti)dt + g(at, h(j, v))dB{t), S{t) = s (7.3.34)

then the price of a lookback put,

LB (x ,t) = maxS(£) — S(T)

1 o r



option is

LB(t,s) = s ($  [ -g  +  ah(j, <p)VT -  t -  a2h2(j,^)<p - g  + ah(j, <p)VT -  t ) 

<*2h2{j, tp)+ 5 2(r -  yd a— 0(g) - (f>(o) (7.3.35)

where

o _  [(r -  M a )(T -  i) +  ±a'2h ( j , y ) ( r  - 1)] 3 ^
S < rh (j,v )V (T  -  t)

Remark 7.3.2. For different markets one can vary level of variation accounted by w. i.e. Let 

h(j, if) := f ( l  + j  = 0, ±1, ±2, ±3,... then

e ' {tJ) = ^ y { 1« ( f )  + ( r - i ) ( r - ^  + i / !0 ^ )) } ,

Q2(t,j) = Qi ~ a \ /h ( j , v?) y/(T -  t)

7.4 E m pirical exam ple

P ric e s  o f O p tio n s  o n  th e  S & P 5 0 0  In d e x

We use European options on the S&P500 index (symbol: SPX) to test our model. The market 
for these standard (European) vanilla call options is one of the most active index option market 
in the world. Consequently, these options have been the focus of many empirical investigations. 
The data set consists of bid and ask price at the close of the market as at 21 November 2008. 
On this day the S&P500 closed at 800.3. Historical daily adjusted closing index as recorded 
from 03 January 1990 to 21 November 2008 was used. The option prices consist of options 
corresponding to options expiring in December 2008, January 2009, March 2009, June 2009, 
September 2009 and December 2009 and the following days to maturity 20,36,81,145,276,302 
and 430 respectively. We consider closing prices of the out-of-the money (OTM)call options. It 
is well known that OTM options are actively traded than in-the-money options. Options data 
are downloaded from Market Watch webpage. The average of bid and ask prices are taken as 
options prices, while options with time to maturity less than 10 days or more than 430 days 
are discarded.

Options data is divided into two categories, according to either time to maturity, or moneyness, 
defined as the ratio of the strike price over the asset price,K / S .  A call option is said to be 
out-of-the money if 1 < K / S  < 1.15; and deep out-of-the-money if K / S  > 1.15. An option 
contract can be classified by the time to maturity: short (< 60 days), median (60- 160 days),



or long maturity (> 160 days). It is worthy noting that by the time we were collecting these 
data sets, the markets world over were very nervous, following financial meltdown of one of the 
leading banks (LeeMan Brothers Inc.) in U.S.

Historical data was collected from Yahoo finance. Surprisingly, all necessary information about 
options market is retrieved from historical data, especially for more than 30 days to maturity. 
At such a time, the market dictates that there is a fixed interest rate r > 0. We can borrow 
and deposit money on this same continuously compounded interest rate of r = 2.83%p.a.. 
Interestingly, the proposed model can be adjusted to follow the market price options, by varying 
the parameter zv accordingly see for example Figure 7.1 and Figure 7.3. Once the model price 
corresponds to the market price the parameters can be of use especially for pricing derivatives, 
such as OTC options, whose prices are not available in the market.

S & P 5 0 0  in d e x  E u r o p .  C a ll o p t i o n  2 0  d a y s ,  S o = 8 0 0 .3 M o d e l v s .  M rk t p r i c e  S & P 5 0 0  in d e x  T = 8 1  d a y s ,  S o = 8 0 0 .3

Figure 7.1: European call option

7.5 C onclusions

We use spectral analysis in frequency domain to study distributions of variance across the 
entire spectrum, which is most effective way of studying variance in any market(developed or 
emerging). Since options are derivative assets, the key to the success of any option pricing model 
is whether or not the process assumed is consistent with distributional and time series properties 
underlying asset. The proposed model takes care of most of the observed stylistic facts about 
financial time series data i.e. skewness and leptokurtic nature of log returns, aggregational 
Gaussianity, and presence of jumps.

Over the last decades, a major challenge for the equity derivative business, has been to build



a model consistent with European option prices and able to handle exotic products. Presence 
of persistent smile across strikes has been a drawback in pricing consistently many exotic 
derivatives. To minimize or even overcome this problem an arbitrage free model has been 
constructed that seems to explain a significant portion of the persistent smile or smirks in 
benchmarks options pricing model(s). As it is stated in literature, the presence of volatility 
smile/smirk in the market should not be regarded as an abnormality; rather, it should be viewed 
as an indication of the failure of the standard model. The APARCH Levy filter is very tractable 
compared to other jump-diffusion or stochastic volatility models. It addresses the drawbacks 
of local volatilities. Once calibrated, the model can be used to price European options, other 
vanilla options and standard exotic derivatives. It offers a convenient framework to observe 
and control volatility surface evolution.

The results have an important practical implication. Many exotic options, such ms barrier and 
average price, are either traded over the counter or embedded in structured financial products. 
In pricing these exotic options, using the right model to describe the underlying process is 
critically important. Unlike the traded European style options, pricing exotic options can be 
conducted as a simple interpolation exercise. An inconsistent application of a pricing model 
can lead to unpredictable consequences.

Practitioners do not apply the BMS73 model mechanically in its original form. Volatilities 
are adjusted for moneyness and maturity combinations. For comparison purposes we used 
(GARCH(1,1) option pricing model. BMS73 model, and the constructed APARCH Levy filter) 
whereby they all drew information from historical data. In other words they fix (erroneously 
though) the shape of volatility smile/smirk but permit the curve to go up or down, depending 
on how well they fit the out-of-the sample option prices. The constructed model can be quite 
robust if more option data are used for more finetuning. The S&P500 example give some 
insights into how flexible and robust the model can be as illustrated in figures 7.7, 7.8, 7.6, etc.

We find that AR-APARCH Levy filter deliver promising empirical performance and hope to 
provide additional empirical support in future work.
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C hapter 8

C onclusions a*id

R eco m m en d a t ions

8.1 C onclusions

The Black-Scholes formula; one of t l i^  rnajor breakthroughs of modern finance allows for an 
easy and fast computation of option Pl*jces but some of its assumptions, like constant volatility 
or lognormal distribution of asset p ric ^ s  j() not find justification in the market. In view of this 
we set out in this study to investigate ^ent features of the underlying asset prices observed 
in developed and emerging markets ir x x-eUxtiont0 BSM73 model.

Moreover, it is widely recognized in l i t e ra t vire and from our study, that there is a non-negligible 
discrepancy between the BSM73 m o d ^ j r(?a|market behavior, which appears as the ”smile
effect” or ’’implied volatility smile” ix x options market and the assumed dynamics of the un
derlying asset. With empirical evide* xa .(, that implied volatility increases for in-the-money or 
out-of-the money options. Several m c^cjejs were investigated before arriving to the conclusion 
that the proposed APARCH Levy f i l t ^ r lai® partly the presence of smile effect.

For complex models such exponential Geometric Levy which take into account some
of the the empirical stylistic facts o f   ̂ retujiis, often lead to more computations and thus 
time burden can become a severe p ro t* ^  wj,encomputation of many option prices is required. 
Luckily, Car and Madan developed a poliriertransform method to compute a whole range
of strikes. Such model(s) were proper ̂  ^ and investigated. Numerical results were compared



contemporaneously with other bench mark models such as BSM73, and Duan GARC’H (here
after DG95 ) option pricing model. Exponential Levy model which was assumed to incorporate 
leptokurtic nature of log returns, in comparison with BSM73 and DG95, seemed not to have 
any significant difference, especially, explaining at-the-money deviation from the observed (bid- 
ask-spread) market values.

Although the class of Levy processes, say for example exponential Levy model, is quite rich, 
it is sometimes insufficient for multiperiod modeling due to the stationarity of increments. 
The stock price returns for a fixed time horizon always have the same law. It is therefore 
impossible to incorporate any kind of new market information into the distribution. Secondly, 
for a Levy process, the law of X t for a given time horizon is completely determined by the law 
of X\. Therefore; moments and eumulants depend on a well defined manner which does not 
coincide with the empirically observed time dependence of these quantities. Bearing this in 
mind, we thought of removing any second moments dependency while investigating the nature 
of residuals left after removing varying volatility. To this end, it was necessary to investigate 
the true dynamics of the underlying asset, say index.

Dynamics that govern developed and emerging stock markets daily index log returns are inves
tigated in view of valuing financial instruments and computing Value at Risk. AR-APARCH 
models conditioned on Student t and Gaussian distribution, are used to filter first and second 
moment serial correlation of log returns. The white independent noise residuals are calibrated 
using Generalized Hyperbolic distribution. We identify appropriate models for estimating and 
forecasting daily volatility for four stock indices, SP500. DAX, MASI and NSE20. Uni
variate daily log returns turns out decompose into three components namely, ARM A filter (an 
object analogous to drift), GARCH filter (time dependent related to Brownian motion part) 
and compound poisson process closely related to jump density of Levy increments.

One can infer that the accuracy of volatility estimation is most critical as it applies to pricing 
standard options with path dependent options. For contingent claims that depend on the 
extremum of the process, the prices are quite sensitive to the specification of the process. 
BSM73 prices differ significantly from APARCH-Levy model in that they tend to be lower if 
the option is in and out of the money. These differences indicate that an appropriate choice of 
the model is of great importance.

Although the pentanomial lattice investigated in this study is as tractable as the standard 
binomial and trinomial lattices, the computational effort might increase exponentially with 
respect to dimension, similar to other lattice models. However pentanomial lattices can be 
considered useful for relatively short term contracts which can be used to solve American 
options problems GARCH(l.l) conditioned on normal distribution removes second order serial 
dependance in both markets in line with what is in the literature. The empirical evidence about 
spectral density of standardized GARCH(l,l)-normal filtered residuals from different financial 
markets deserves further investigation. However, since option prices may react sensitively to 
changes in volatility, a proper specification of the conditional means at each step may play a 
crucial role in the proposed pentanomial model. It is well documented in literature, out-of-the 
money options with short times to maturity react strongly to volatility changes when measuring 
this sensitivity in relative terms.

Presence of persistent smile across strikes has been a drawback in pricing consistently many



exotic derivatives. To minimize or even overcome this problem an arbitrage free model has 
been constructed that seems to explain a significant portion of the persistent smile or smirks 
of benchmarks options pricing model(s). As it is stated in literature, the presence of volatility 
smile/smirk in the market should not be regarded as an abnormality; rather, it should be 
viewed as an indication of weakness of the standard BSM73 model, which can be extended to 
AR-APARCH-Levy filter model as we have successfully shown in this study.

The APARCH Levy Filter is very tractable compared to other jump-diffusion or stochastic 
volatility models. It addresses the drawbacks of local volatilities. Once calibrated, the model 
can be used to price European options, other plain vanilla options and standard exotic deriva
tives. It offers a convenient framework to observe and control volatility surface evolution.

8.2 F u tu re  R esearch

Over the last three decades, a major challenge for the equity derivative business has been to 
build a model consistent with European options prices and able to handle exotic products 
such as compound options. In this study we have tried to address the problem by constructing 
APARCH Levy filter model. My approach is based on assuming an alternative explicit dynamics 
for the stock-price process which could match volatility smile and its implied smile. Moreover 
there is need for further research especially for high frequency data or real time data.

The valuation and hedging of ever increasing number of exotic and vanilla options is a topic 
of interest to many practitioners. One can price most function of plain vanilla options in a 
univariate case setting under APARCH Levy Filter. Exotic options or path dependent options 
whose payoffs depends on the behavior of the price of the underlying process between time 
t — 0 to t = T  (maturity) can be priced accordingly. APARCH Levy Filter can applied to 
foreign exchange market and it’s related derivatives say Quanto products, etc, bond market, 
interest rate derivatives, credit markets, and weather derivatives to say the least.

It would be interesting to study discrete and continuous multivariate APARCH Levy Filter, 
hidden Markov chain processes in relation to Bond market derivatives.

The process governing the arrival of jumps may be heterogeneous with respect to the type of 
news. Therefore, jump dynamics may differ across different types of news events. The infrequent 
occurrence of jumps makes this identification of different jump dynamics a challenging area of 
study.

Abandoning the normality assumption for multidimensional problems is a more involved issue. 
The massive use of derivatives in asset management, in particular from hedge funds, has made 
the non-normality of returns an investment tool rather than a mere statistical problem. It is 
interesting to extend the APARCH Levy filter as a tool to solve credit risk related instruments 
in both univariate and multivariate setting.

Up to this point, we have seen that the three main frontier problems in derivative pricing are the
departure from normality, emerging from the smile effect, market incompleteness, corresponding



to hedging error, linked to the bivariate relationship in Over-The-Counter (OTC) transactions. 
It will be interesting to apply APARCH Levy Filter and copula functions to address these 
problems.

Option pricing under market incompleteness is an equally interesting topic. In recent years 
there is a considerable interest in the application of regime switching models driven by a hidden 
Markov chain process to various financial problems. It would be encouraging to use Esscher 
transform for option valuation under incomplete markets induced by APARCH Levy type 
process. There is a relatively less amount of work on the use of the Esscher transform for 
option valuation under incomplete markets generated bv other asset price dynamics such as 
regime switching process.

We may explore the application of our model to other types of exotic or hybrid financial products 
such as barrier option, passport option and option-embedded insurance products.
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