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ABSTRACT

Most of Eastern Africa has arid and semi-arid climate with high space-time variability in 

rainfall. The droughts are very common in this region, and often persist for several years, 

preceded or followed by extreme floods. Most of the livelihoods and socio-economic 

activities however remain rain-dependent leading to severe negative impacts during the 

periods of occurrence of climate extremes. It has been noted that one extreme event was 

capable of reversing national economic growth made over a period of several years. Thus no 

sustainable development can be attained in eastern Africa without effective mainstreaming of 

climate information in the development policies, plans and programmes.

Many past studies in the region have focused on rainfall variability at seasonal, annual and 

decadal scales. Very little work has been done at intraseasonal timescale that is paramount to 

most agricultural applications. This study aims at filling this research gap, by investigating 

the structure of rainfall season in terms of the distribution of wet and dry spells and how this 

distribution varies in space and time at interannual time scale over Equatorial Eastern Africa. 

Prediction models for use in the early warning systems aimed at climate risk reduction were 

finally developed. The specific objectives of the study include to; delineate and diagnose 

some aspects of the distribution of the wet and dry spells at interannual timescale; investigate 

the linkages between the aspects of the distribution of wet and dry spells identified and 

dominant large scale climate fields that drive the global climate; and assess the predictability 

of the various aspects of wet and dry spells for the improvement of the use in the early 

warning systems of the region.

Several datasets spanning a period of 40 years (1961 -  2000) were used. The data included 

gauged daily rainfall amount for the three Eastern Africa countries namely Kenya, Uganda, 

and Tanzania; Hadley Centre Sea Surface Temperature (SST); re-analysis data and 

radiosonde observations from Nairobi (Kenya) and Bangui (Central Africa Republic) upper 

air stations. The indices of El Nino-Southern Oscillation (ENSO), Indian Ocean Dipole and 

SST gradients which constituted the predefined predictors were also used.

Missing data gaps were initially filled and the quality of rainfall data assessed. Less than 

seven percent of the data were estimated in all cases. The study region was then classified 

into few near-homogeneous spatial and temporal rainfall regimes using empirical orthogonal 

function approach. Several intraseasonal statistics of the wet / dry spells were computed at
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both local (station) and sub-regional (near-homogeneous zone) levels to provide baseline 

information on the various aspects of rainfall distribution during March-May (long rains) and 

October-December (short rains) rainfall seasons. The interannual variation in the above 

intraseasonal statistics at local and sub-regional levels was also assessed for any significant 

trend using the non-parametric Spearman rank correlation test. The linkages between the 

various intraseasonal statistics of the wet / dry spells including seasonal rainfall totals and 

large scale climate fields were assessed using the total and partial Pearson correlation 

analysis. Last but not least, the stepwise regression technique was used to develop 

multivariate linear regression models for predicting the various intraseasonal statistics of wet 

/ dry spells. The skill of these models was finally assessed using various statistical 

techniques.

The results obtained indicated that the gap-filled and quality controlled daily rainfall 

observations were of good quality and formed the foundation of all the analyses that were 

undertaken in this study. For the first time, this study delineated daily rainfall over Equatorial 

Eastern Africa into six near-homogeneous sub-regions for both the long and the short rainfall 

seasons. They are however significant spatial differences in the patterns of daily rainfall 

occurrences for the individual seasons which may be attributed to different climate 

mechanisms and systems which are in play during the specific rainfall seasons.

At interannual scale, positive (negative) relationship existed between the intraseasonal 

statistics of wet (dry) spells and the seasonal rainfall totals over most locations and sub- 

regions. The relationship with the intraseasonal statistics o f the wet spells was mainly 

significant (at 95% confidence level) while those of the dry spells were generally not 

statistically significant. The mean frequency of dry spells o f 5 days or more (the number of 

wet days within the season) had the least (strongest) association with the seasonal rainfall 

totals. The relationships were stronger during the short rainfall season compared to the long 

rainfall season.

For the first time, the study showed significant trends in all the intraseasonal statistics of the 

wet / dry spells though at few isolated locations. However, significant increasing trend in the 

occurrence of dry spells of 5 days or more showed organised patterns for the two seasons. 

Climate change is becoming a major development concern not only over the region but the 

world over. Further studies are therefore required to examine whether the trends observed in 

the daily rainfall spells in this study reflects any regional climate change signals.



Results from total and partial Pearson correlation analysis identified several large scale 

oceanic and atmospheric signals with robust physical/dynamical linkages with the sub

regional intraseasonal statistics of wet / dry spells (SRISS). The results further showed that 

the linkages between sub-regional intraseasonal statistics of wet spells and large scale signals 

were mainly from atmospheric fields o f zonal and meridional components of wind and the 

specific humidity during the long rainfall season. For the short rainfall season, stronger 

linkages with oceanic variables especially SST were noted. The atmosphere has less climatic 

memory when compared with the oceans. Past studies have indicated stronger predictability 

potentials for the short rainfall season. By identifying stronger linkages between intraseasonal 

characteristics of wet spells for long (short) rainfall season and the atmospheric (oceanic) 

variables, the study has for the first time provided some insights to the prediction challenges 

for the specific seasons. Thus future predictability efforts for the long rainfall season should 

ensure the inclusion of atmospheric variables in the prediction models.

The study has produced cross-validated multivariate linear regression (MLR) models for 

predicting some intraseasonal characteristics of wet spells that can be used to support the 

current generation of models being used by the IGAD Climate Prediction and Applications 

Centre and National Meteorological and Hydrological Services.

The results from this study have for the first time provided an in-depth knowledge on the 

intraseasonal modes of rainfall variability and improvement in the forecasting and early 

warning tools for the wet spells over the Equatorial Eastern Africa region. Better 

understanding and accurate prediction o f rainfall totals and intraseasonal statistics o f wet / 

dry spells is o f paramount importance in the planning, development and management of all 

rainfall-sensitive socio-economic sectors of the economy such as agricultural and water 

resources; and further contribute to national efforts towards achievements of the Millennium 

Development Goals.
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CHAPTER ONE 

INTRODUCTION

1.1 Background

The economies of East African countries largely depend on rain-fed agriculture. Over Kenya 

for example, the agricultural sector forms the main socio-economic activity accounting for up 

to 30% of the country's gross domestic product, 60% of the export earnings and the largest 

source of employment (ICPAC, 2006). Variation in the yields of many crops to a large extent 

is dependent on rainfall amounts and their distribution in space and time. Rainfall is therefore 

the most important weather factor in the region. There are however large variability of 

rainfall in the region in both spatio-temporal distribution and magnitudes. This has been 

witnessed by the recent droughts (1999 - 2001 and 2005 -  2006) that affected many parts of 

the Horn of Africa. Localized floods were however recorded at the onset of rains in some 

locations. The spatio-temporal variability of rainfall over Eastern Africa at different time 

scales are due to complex topographical features and existence of large water bodies 

(Kongoti, 1989; Ogallo, 1989; 1993; Mukabana and Pielke, 1996; Indeje et al., 2001; Oettli 

and Camberlin, 2005; Nyakwada, 2009).

The cummulation of the specific spatio-temporal variability of rainfall in both magnitudes 

and distribution is often having devastating socio-economic impacts. Impacts associated with 

climate extremes include floods and droughts resulting in loss of life and property, food 

insecurity, water scarcity, power and communication interruptions, poor infrastructure and 

other socio-economic disruptions. Detailed spatio-temporal information of rainfall on 

different temporal scales is therefore essential for effectively managing of all rainfall 

dependent socio-economic systems and for disaster risk reduction.

Many studies in the past have focused on understanding the rainfall variability at monthly, 

seasonal, and interannual time scales. These studies have included predictability studies using 

linkages between rainfall and large scale phenomena such as El Nino-Southern Oscillation.

Recent studies over the region that have concentrated on the understanding of atmospheric 

processes and prediction of rainfall at different timescales, especially at seasonal timescale 

based on SST and SST-derived variables include Mutai, 2000; Mutemi, 2003; Owiti, 2005; 

Owiti et al., 2008; Nyakwada, 2009. Upper tropospheric temperature and geopotential
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variables have also been used (Njau, 2006). These studies showed that over the Eastern 

Africa region, the short rainfall season (October to December) has higher predictability as 

compared to the long rainfall season (March to May). The long rainfall season has been 

associated with complex interactions between many regional and large scale mechanisms 

which generally induce large heterogeneities in the spatial rainfall distribution (Ogallo, 1982; 

Semazzi et al., 1996; Okoola, 1998; Indeje et al., 2000) and virtually negligible correlation 

with ENSO (Ogallo, 1988).

The higher predictability of rainfall during the October to December season is attributed to 

the strong linkage with the regional and global teleconnections (Mutemi, 2003; Black et al., 

2003; Black, 2005; Owiti, 2005; Owiti et al., 2008). However, studies to improve the 

understanding on the nature and characteristics of rainfall on intraseasonal timescales, 

particularly daily timescale are still lacking. Notwithstanding, a number of studies have 

investigated intraseasonal convective variability and pentad mean rainfall characteristics 

(Okoola, 1998; Mutai and Ward, 2000; Camberlin and Okoola, 2003).

The occurrence of wet and dry spells within the rainfall season determines the water 

availability for the rain-fed agriculture. Very limited efforts have been made in the region to 

understand their characteristics well and predict the interannual variability of the 

intraseasonal characteristics of the wet and dry spells in the region. There are many previous 

studies on the interannual rainfall variability at monthly, seasonal and annual timescales and 

few studies on the intraseasonal variability. However the linkage between the interannual 

rainfall variability and the intraseasonal wet and dry spells is still missing. This will be the 

focus of this research as outline in the objective of the study in section 1.3. Detailed 

justification for this study is provided later in this chapter.

1.2 Statem ent of the problem

East Africa is characterized by limited natural resources especially water, minerals and 

agricultural land. High population growth rate, poor agricultural practices, deforestation, 

abject poverty and high levels of unemployment are but some of the socio-economic 

challenges that face the region.

The high population growth rate has led to people migrating into the arid and semi-arid land 

(ASAL) areas thereby affecting the ecosystems of the region and rendering them more 

vulnerable to hazards such as drought (Bryan and Southerland, 1989). The high population
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c) Assess the predictability of the aspects of wet and dry spells under (a) based on results 

from (b) for the improvement of the use in the early warning systems of the region.

1.4 Justification of the study

Most studies have addressed rainfall variability at seasonal, annual and decadal scales, but 

little work has been done at intraseasonal timescale. Although the total seasonal anomalies of 

rainfall and related variables indicate wet or dry seasons, there is often a demand from users 

(for example from the agricultural sector) for information about variability on intraseasonal 

timescales such as the active and break phases within the season (Jadadheesha et al., 2003). It 

is well known that a season with above average rainfall may not be better than a below 

average season over an agricultural region if the rainfall are not well distributed in space and 

time (Usman and Reason, 2004). Crops are likely to do well with evenly distributed ‘light’ 

rains than a few isolated ‘heavy’ rainfall interrupted by prolonged dry periods. For crop 

cultivation, the consistency with which minimally required rainfall is received is more 

important than the total rainfall received.

The rainfall time series during the wet seasons is marked by periods of wetness and dryness, 

which are often called the wet (rainy) spells and dry spells respectively. The transitions from 

the wet to dry periods and vice versa evolve slowly such that there are typically three or so 

wet/dry episodes in the course of the wet season (Mpeta and Jury, 2001).

Ogallo et al. (2000) have reviewed the potential applications of seasonal to inter-annual 

climate predictions in agricultural planning operations. Information and knowledge of wet 

and dry spells would enrich these applications and improve the general adaptations of 

ecosystems and land-use activities. Clear understanding o f the key intraseasonal rainfall 

variations over East Africa is crucial for planning and management purposes especially to 

farmers and water managers. Such advance information of forthcoming wet/dry spells could 

be used to strategize on agricultural and water management policies as well as mitigating the 

adverse effects of recurring extreme climate events while fully capitalizing when more 

abundant and evenly spread rainfall occurs.

This study was further motivated by previous studies done within and outside East Africa that 

have corroborated or revealed significant associations between rainfall season onsets, 

cessations and wet/dry spells on one hand and end-of-season agricultural yields on the other 

hand (Stewart and Harsh, 1982; Sivakumar, 1992; Oladipo and Kyari, 1993; Barrow et al.,
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2003; Barrow, 2004; Komutunga, 2006). For example, a 20-days delay in the onset of the 

long rainfall season at Katumani in Eastern Kenya whose mean seasonal rainfall is 300mm 

would reduce the maximum expected maize yield by 25 to 30% (Stewart and Harsh, 1982) 

while occurrence of a prolonged dry spell during the flowering phase has been shown to 

cause an estimated 72 -  75% reduction on maximum expected maize yield (Barron el al., 

2003). A major application of dry spell analysis is to predict extended drought durations 

during the growing season, which forms a basis for planning the crop production strategies 

(Sharma, 1996).

Better understanding and accurate prediction of rainfall totals and intraseasonal statistics of 

wet and dry spells is of paramount importance in the policy planning and implementation of 

early warning systems as well as development and management of agricultural, water 

resources and other rainfall-dependent sectors of the economy. This is in line with the 

Millennium Development Goals (MDGs) that were formulated in the year 2000 by the United 

Nations. One o f the millennium goals aimed at ensuring environmental sustainability through 

improved and sustainable access to safe drinking water most of which can be harvested from 

the rainfall. Timely availability of information on the distribution of wet and dry spells during 

the wet seasons which this study aims to derive may contribute significantly towards the 

achievement o f this millennium development goal.

In summary, the key in understanding the rainfall variability lies in the acquisition of 

information on intraseasonal characteristics of rainfall. Such intraseasonal characteristics of 

rainfall are the onset, duration and cessation of the wet season, seasonal rainfall totals, mean 

rainfall intensity, mean duration of the spell and others as summarized in Figure 1.1. It 

should be clarified that the various aspects in Figure 1.1 do not follow any order of 

importance whatever. The onset, cessation and duration o f the seasonal rainfall have been 

discussed by Alusa and Mushi (1974), Okoola (1998) and Camberlin and Okoola (2003). The 

rest of the intraseasonal aspects have rarely been studied over East Africa and formed the 

scope of this study. Better understanding of the behaviour o f the wet and dry spells could 

improve management of the excess water and promote more effective agricultural and 

environmental management activities by users of climate information.
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Figure 1.1: Various aspects of the rainfall received in a season
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1.5 Domain of the study

Three countries of the East Africa region namely Kenya, Tanzania and Uganda constituted 

the domain o f this study. This domain is located within the latitudes 5° N and 12° S and 

longitudes 29° E and 42° E. It is bounded by the Indian Ocean and Somalia to the East, 

Ethiopia and Sudan to the North. Burundi, Rwanda and the Democratic Republic of Congo 

(formerly Zaire) to the West, and Mozambique, Malawi and Zambia to the South. The 

Democratic Republic of Congo (DRC) is a tropical forested country with a small coastline 

along the south-eastern Atlantic Ocean to the west. This tropical rain forest, Atlantic and 

Indian Oceans are some of the main sources of moisture over the study region.

1.5.1 Physical features of the study region

Figure 1.2 shows the domain of the current study and some of its physical features. East 

Africa has large diversity o f topographic features. These include the eastern and western 

highlands that run north-south, parallel to the Great Rift Valley. On the highlands are snow

capped mountains; Mt Kilimanjaro and Mt Kenya whose altitudes are about 5892 metres and 

5202 metres above sea level respectively. Other mountain features include Mt Elgon (4321 

metres) on the Kenya/Uganda boundary, Ruwenzori Mountain in western Uganda, Mt Meru 

in northeastern Tanzania and Kipengere ranges in southwestern Tanzania. The eastern and 

western highlands make up the eastern and western escarpments of the Great Rift Valley 

respectively. To the north o f these highlands are the Ethiopian Highlands with a low level 

valley region between these highlands called the Turkana channel (Kinuthia and Asnani, 

1982).

Empirical and theoretical studies have shown that orography plays a leading role in the 

formation o f local perturbations, in the creation of vertical components of wind speeds, etc, 

which promotes the formation and development of clouds, precipitation and thunderstorms 

(Kongoti, 1989; Mukabana, 1992; Mukabana and Pielke, 1996; Indeje et al., 2000, 2001; 

Oettli and Camberlin, 2005).

The study region has large inland water bodies in form of deep vault lakes along the Great 

Rift Valley. These include Lakes Rudolf (Turkana), Baringo, Kyoga, Naivasha, Eyasi, 

Manyara and Tanganyika among many others. Lake Victoria is at the centre and shared by 

the three countries. It is the largest fresh water lake in Africa and second in the world, with an 

area of about 68,000km2. It generates strong mesoscale circulation.
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1.5.2 Rainfall climatology of the study region

East Africa has some of the most varied topography in the world including large lakes. Rift 

Valley and snow-capped mountains. As a result of this heterogeneity, there exist significant 

variations in climatological mean rainfall totals. High mean monthly rainfall amounts are 

mainly concentrated over the highlands and near large water bodies. Eastern and northern 

Kenya, parts o f eastern Uganda and central Tanzania receive low rainfall amounts.

Nearer to the equator, two rainfall and two dry seasons are observed within the year (bimodal 

regime). The rainfall seasons are locally referred to as long and short rainfall seasons. The 

long rainfall period occurs within March-April-May while the short rainfall season is 

concentrated within October to December, with higher amounts mostly received during the 

long rainfall season as represented by Kabale station over southwestern Uganda and Musoma 

over northern Tanzania in Figure 1.3a and 1.3b respectively. The southern part of Tanzania 

was excluded from this study since it exhibits rainfall variations that are quite dissimilar to 

those of the other parts of East Africa (Camberlin and Philippon, 2002). The two rainfall 

seasons tend to merge together into a single season (unimodal regime) that spans from 

November to April as represented by Dodoma station over central Tanzania as shown by 

Figure 1.3c. Studies have further showed that the central and southern parts of Tanzania have 

an opposite signal to the rest o f East Africa when the ENSO phenomenon is considered 

(Indeje et al., 2000). The northern coast of Kenya represented by Lamu receives rainfall 

mainly during the long rainfall season as shown by figure 1.3d.

Parts of the Rift Valley, Lake Victoria basin and most parts of Uganda exhibit the trimodal 

regime with the third rainfall peak being observed in July and August (Figure 1.3e and 1.3f). 

Over Soroti in western Uganda, the main rainfall peak is observed during the long rainfall 

season as shown by Figure 1.3e while Nyahururu in Central Kenya, the highest peak was 

observed during the July-August period (Figure 1.31). It is worthy to note from Figures 

1.3a—f that though different locations may have unimodal, bimodal or trimodal nature of 

rainfall distribution, the time of occurrence and its peak are observed at different times of the 

year. This alludes to the complexity of the systems that influence rainfall over the location in 

question which are discussed in section 2.3. Detailed discussion on rainfall distribution over 

the East Africa region can be found in Ogallo (1980) and Ininda (1995) among others. A brief 

outline on the organization of this research thesis is provided in the next section.
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Figure 1.3: Patterns of annual cycle of rainfall distribution (1961 -  1990 average) for 
some selected stations over East Africa. Details of these stations are provided in Figure 
3.1 and Table 3.1

1.6 Overview of the thesis

This thesis is organized into five major chapters, which are briefly outlined below. Chapter 

one provides the general introduction as well as the key objectives that were pursued in this 

study. The problem statement and justification of the study are also given. Also discussed are 

the physical features and rainfall climatology of the study domain. In the second chapter, all 

literatures that were relevant for the study are reviewed. The chapter also elaborates on the 

key climatic systems that influence the spatio-temporal distribution of the rainfall over the
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study area.

In the third chapter, we present the datasets that were used and the methodology for analysis 

adopted to achieve each specific objective. Daily rainfall observations, Sea Surface 

Temperature (SST) and re-analysis data were the main datasets used in this study. Other 

datasets used include the radiosonde data and previously published SST indices. Statistical 

methods were mainly used to analyse the above datasets. Rotated Principal Component 

Analysis was used to sub-divide the study region into few near-homogeneous sub-regions. 

The intraseasonal statistics derived at these sub-regions were assessed for any relationship 

with the seasonal rainfall totals and their trend variation over time also determined. 

Correlation and regression analyses were used to identify the additional potential predictor 

indices and develop prediction models respectively. The limitations and major assumptions 

made are finally highlighted

Results and discussions are dedicated to the fourth chapter of this thesis. The results of data 

quality control are presented first, followed by those of the delineation of the study area into 

near-homogenous sub-regions. The baseline information of the intraseasonal statistics of the 

wet and dry spells at local (station) and sub-regional (near-homogeneous zones) is then 

presented. Results of spatial coherence and potential predictability assessment are then 

presented. The additional potential predictor indices are derived and discussed in this chapter. 

The final section of chapter four was dedicated to the development of prediction models for 

the sub-regional intraseasonal statistics o f wet and dry spells.

In the final chapter, a summary of the thesis and the major conclusions drawn from the 

various analyses are highlighted, together with the recommendations that could be adopted 

and possibly explored further in future.
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CHAPTER TWO 

LITERATURE REVIEW

2.0 Introduction

Several studies have been carried out in an effort to understand the processes and systems 

associated with the spatio-temporal variability of rainfall at different timescales over the East 

Africa region. The recent past has seen an upsurge in studies aimed at assessment of the 

potential predictability of rainfall variability at different timescales. This literature review 

considered the above two aspects from previous studies dedicated to East Africa as well as 

other studies that are relevant to the current study.

As stated above, most of the studies have addressed monthly, seasonal, annual and longer 

timescales, with very little work at intraseasonal timescale.

2.1 Studies to understand the processes and systems

In this section, the literature highlighting studies dedicated to the intraseasonal variability of 

the rains over the region and their organization into wet / dry spells are reviewed first, 

followed by those at the interannual timescales. Those studies which analyses how 

intraseasonal characteristics of the rainfall vary at interannual timescales and how they have 

evolved overtime are finally reviewed.

Washington and Todd (1999) have studied the variability o f daily rainfall derived from 

satellite over Southern African-Southwest Indian Ocean from November to March. This 

study showed the leading mode of daily rainfall variability to be a tropical-temperate link 

spanning the latitudinal domain of the study. The study further indicated that these links have 

a parallel structure such that enhanced (suppressed) activity over Southern Africa in bands off 

the east coast are associated with suppressed (enhanced) activity over Southern Africa.

Mutai and Ward (2000) have indicated that the wet spells in East Africa are often associated 

with synoptic disturbances that migrate eastwards into Eastern Africa region in association 

with westerly near-surface wind anomalies.

Numerous studies have also used the Outgoing Longwave Radiation (OLR) as a surrogate for 

tropical rainfall (Nyakwada, 1991; Nogues-Paele and Mo, 1997; Okoola, 1998; Jagadheesha 

et al., 2003; Okoola and Camberlin, 2003). This is based on an average of single morning and
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evening passes o f the satellite (Washington and Todd, 1999), Over East Africa which is 

within the tropics, the observed rainfall is dominantly from deep convective clouds. Some of 

these clouds extend as high as the tropopause levels and can therefore be seen by satellites as 

regions of cold temperatures and low OLR. The fact that spatial variations o f temperature in 

the tropics are small makes it easier to interpret OLR data in the tropics.

Nyakwada (1991) studied the relationship between satellite derived outgoing longwave 

radiation (OLR) and some meteorological parameters. The study showed significant 

correlation between OLR and rainfall, with areal records giving better results as compared to 

the point records. Results from Principal Component Analysis (PCA) showed some 

similarities in the spatial and temporal characteristics of OLR and rainfall. Though the study 

confirmed that there exists a significant association between the OLR and rainfall and further 

developed regression equations, no attempt was made to forecast the rainfall using the 

developed regression equations.

The pattern and evolution of intraseasonal rainfall over East Africa and its teleconnections 

with the regional circulation have been studied by Mpeta and Jury (2001). Time-longitude 

Hovmoller plots o f filtered anomalies o f OLR and zonal winds at 850hpa level in the 7.5° to 

10° S latitude band was used to reveal the nature of propagation and coupling o f local 

circulation and convection. Time-longitude diagrams revealed eastward propagating and 

quasi-stationary features in the 7.5° to 10° S latitude band. Westward propagating features 

were found to be generally weak and short-lived. Many intraseasonal convective systems 

were found to pass across the Africa continent with small amplitude and propagate eastward 

into the Indian Ocean with increasing amplitude. Stronger equatorial convection and MJO 

activity were found to favour rainy conditions over East Africa and the adjacent west India 

Ocean, yet there was drier weather over much of sub-tropical Africa.

Okoola and Camberlin (2003) studied the intraseasonal oscillations associated with March - 

May rainfall in East Africa using pentad rainfall, OLR and NCEP global re-analysis datasets. 

The study depicted intraseasonal oscillations across equatorial East Africa with a 40 - 50 day 

periodicity that had large interannual variability. The cross-sectional analyses of the raw OLR 

showed eastward moving perturbations across equatorial Africa. The 20 - 75 day filtered 

OLR anomalies showed clearer eastward propagation. The study further noted that two or 

more active convection events were observed for most seasons while seasons with deficit 

rainfall had only one event. Space-lagged relationships in the convection between Gulf of
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Guinea and Equatorial East Africa showed that convection over the Gulf of Guinea leads that 

over the Equatorial East Africa by 1 to 2 pentads, indicating that convection over Gulf of 

Guinea may be used in monitoring the start and subsequent performance in the Equatorial 

East Africa wet/dry events, especially when above normal seasonal rainfall are anticipated.

A study by Ngigi et al. (2005) over Laikipia district in upper Ewaso Ng'iro river basin of 

Kenya revealed that there is 80% probability of occurrence of dry spells exceeding 10 and 12 

days during the long and short rainfall seasons respectively. The off-season dry spells, which 

occur after rainfall cessation, were longer and more severe than intraseasonal dry spells. The 

occurrence of off-season dry spells coincides with the critical crop growth stage especially 

the flowering and grain-filling stages.

Gitau (2005) studied the characteristics of wet and dry spells during the wet seasons over 

Kenya. The study using the wavelet method of analysis identified three wavelet bands in the 

occurrence of daily rainfall events. The wavelet bands identified were less than 10 days, 10 to 

20 days and 20 to 32 days. The latter was associated with the lower modes of Madden-Julian 

Oscillation which have been noted in other parts of the world (Krishnamurti and Ardunay, 

1980; Sikka and Gadgil, 1980; Kripalani et al., 2004).

Other studies on the occurrence of the wet / dry spells over Eastern Africa include the works 

of Alusa and Gwage (1978), Ogallo and Chillambo (1982), Otengi and Ogallo (1984), Bazira 

and Ogallo (1985), Sharma (1996), Camberlin and Wairoto (1997) and Barrow et a l  (2003) 

among others. A detailed review on other studies related with the occurrence of wet and dry 

spells over Kenya can be found in Gitau (2005), over Tanzania in Tilya (2006), and over 

Uganda in Bamanya (2007).

Besides the studies dedicated to the intraseasonal variability o f the rains in the region and 

their organization into wet / dry spells, studies on the interannual timescale have been many. 

Studies by Ogallo (1988), Ogallo et al. (1988), Indeje (2000), Mutemi (2003), Owiti (2005) 

and Njau (2006) have clearly showed strong teleconnection between the seasonal rainfall 

totals on one hand and oceanic and atmospheric fields on the other hand.

Zorita and Tilya (2002) studied the rainfall variability in northern Tanzania in the March- 

May season and its links to large scale climate forcing. Monthly rainfall totals from 22 

stations and spanning a period of 36 years (1963 -  1998) were used. The study used the sea- 

level pressure, air temperature, zonal and meridional wind components near the surface,
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vertical velocity at 850mb level and winds at 200mb level all from the National Centre for 

Environmental prediction / National Centre for Atmospheric Research (NCEP/NCAR) re- 

analysis (Kalnay et al. 1996). Principal component analysis was undertaken on the monthly 

rainfall totals. Concurrent correlation analysis was used to analyse the association of the two 

leading principal components with the large scale climate forcing. The results indicated that 

the March and April rainfall anomalies are linked to zonal thermal contrast between the 

Indian Ocean and the Eastern African land mass, to zonal surface winds anomalies and to 

vertical velocity anomalies. On the other hand. May rainfall anomalies are associated with a 

meridional surface temperature contrast between the Indian Ocean and the Asian continent 

and meridional surface winds anomalies, indicating a relationship with the Indian Monsoon.

However, few studies considered the interannual variability o f the characteristics o f the rains 

apart from the seasonal rainfall totals. Ambenje et al. (2001) have analysed the trend in the 

seasonal precipitation and frequency o f days with precipitation above some thresholds over 

19 countries in eastern and southern Africa for the four standard seasons. The frequency of 

days with precipitation above 1mm, 12.5mm, 25.4mm, 50.8mm and 100mm were 

determined. Linear trend of the time series of the seasonal precipitation and frequency were 

then determined by linear regression. Results showed that there was a general tendency for 

trends of opposite signs to occur between the tropical (0° -  20° N/S) and subtropical 

latitudinal belts. Over equatorial eastern Africa, the results indicated that the seasonal 

precipitation and the associated frequency of days with precipitation above the various 

thresholds have decreased in the humid western parts and increased over the coastal and 

semi-arid regions to the east. The increase in seasonal precipitation over the coastal region 

and semi-arid zones were more pronounced during the September to November, and 

December to February seasons. This was associated with the warm phase of the El Nino / 

Southern Oscillation (ENSO) cycle which has occurred more frequently in the recent 

decades. Decreasing trend in the frequency of days with precipitation above 50.8mm was 

significant at 95% confidence levels during the March to May rainfall season over Equatorial 

Eastern Africa region. Trend in the frequency of days with precipitation above the moderate 

thresholds categories were however small in magnitude.

Moron et al. (2007) have examined the spatial coherence characteristics of daily station 

observations o f rainfall over five tropical regions during the principal rainfall season(s). 

These regions were Senegal in West Africa, northern Queensland in Australia, northwestern
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India, Nordeste in northern Brazil and Kenya in East Africa. This study considered three 

aspects of the rainfall which are seasonal rainfall total, daily rainfall frequency (number of 

wet days) and mean rainfall intensity (mean rainfall per rainy day). The study noted that 

mean rainfall frequency is the most coherent variable, followed closely by the seasonal total 

while the daily intensity was a distant third. Similar results had been obtained by Moron et al. 

(2006) over Senegal using 13 stations. It should be noted at this point that Kenya was 

represented by nine stations only during the two main seasons of long and short rains. 

Further, no attempt was made to identify regional subdivisions within the country.

2.2 Predictability studies and Forecast model development

Several studies have fitted the Markov chain models to the occurrence of the wet and dry 

spells over East Africa. These include the work of Ogallo and Chillambo (1982), Mungai 

(1984), Otengi and Ogallo (1984), Bazira and Ogallo (1985), Gitau (2005), Tilya (2006) and 

Bamanya (2007). These studies have shown that the first-order Markov chain models 

adequately describe the occurrence of the wet and dry spells over the eastern Africa region.

Ochola and Kerkides (2003) have used the concepts of conditional probability, Poisson 

probability distribution function and chi-square testing to develop a first-order Markov chain 

model that predicts the critical wet/dry spells over Kano plains in western Kenya. They found 

that the length o f critical dry (wet) spell was 14(12) days for the long rainfall season and 12 

(8) days for the short rainfall season over Ahero Irrigation Scheme.

For India, Xavier (2002) showed that the evolution of intraseasonal oscillation of rainfall (dry 

and wet spells) is spatially and temporally coherent with that of circulation during the India 

summer monsoon. The study established potential predictability of the dry and wet spells 

from the 850mb relative vorticity. A forward stepwise multivariate linear regression model 

was developed and the skill of the predictions assessed at every step. The rainfall anomalies 

predicted by the empirical model were compared with the intraseasonally filtered rainfall 

anomalies and the model captured the extreme events with sufficient skill. Examination of 

these predictions indicated that predictions initiated from some initial conditions had more 

skill than others. It was found that 15-day predictions made from active or break conditions 

agreed much better with observations than those made from the transition initial conditions. 

Over Eastern Africa however, no such study on the predictability of the wet and dry spells is 

available.
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At seasonal timescale and using ENSO index, an energy gradient from the East African 

highlands, 500-hPa geopotential height anomalies over the Near East and westerly winds 

from the Congo basin, Camberlin and Philippon (2002) developed seasonal multivariate 

linear regression prediction models for the March-May season over Kenya-Uganda with a 

multiple correlation coefficient of 0.66 in cross-validation mode. The multivariate linear 

regression (MLR) prediction model used the February predictors only due to the poor inter

monthly persistence of atmospheric and oceanic anomalies. The models main shortcoming 

was the absence o f long lead-time for operational applications and practice.

Building on earlier results by Mutai et al. (1998) which identified SST predictors o f the East 

Africa short rainfall season, Philippon et al. (2002) developed a prediction model for the 

seasonal rainfall totals during this season.

Hastenrath (2007) has shown strong concurrent correlation (-0.85) of short rains at the 

equatorial East Africa coast and the westerlies over the central equatorial Indian ocean. The 

equatorial westerlies drive the Wyrtki jet (Wyrtki, 1973) in the upper ocean and enhance the 

westward temperature gradient, a surface manifestation of powerful zonal-vertical circulation 

cell along the Equatorial Indian Ocean. Using the September values of a number o f surface 

and upper air indices from equatorial zonal circulation cell as predictors, stepwise regression 

models were developed for the entire period (1958 -  1997) and separately for 1958 -  1977 

(training period) and 1978 -  1997 (verification period). The evaluation of the results obtained 

showed that the correlations between the predictors and October-November rainfall series 

(the predictand) deteriorated although the equatorial zonal circulation cell remains strong 

throughout the entire period. The relation between the predictors and the predictand became 

very weak during the verification period.

Jury et al. (2009) found that the East African rainfall and zonal winds over the equatorial east 

Atlantic and West Indian Ocean which found an in-phase relationship. The strongest signal is 

a 2 to 2.3-year cycle from 1961 to 1968 and again in the late 1990s. The winds led rainfall by 

about 3 months from 1960 to 1970. However rainfall led wind by more than 3 months from 

1970 to 1998. Further consideration of the East Indian Ocean zonal winds found a more 

robust teleconnection while cross-wavelet analysis revealed 2 to 4-year cycles and the time 

delay indicated that winds lead rainfall up to 8 months from 1982 to 1998. A model for OND 

seasonal rainfall developed using the central Indian Ocean zonal winds averaged over three 

months (JAS) was found to adequately hit 60% of the target categories but under-predicts the
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intensity of big events.

From the foregoing discussions on previous studies, it has been observed that;

a. Most o f the studies have concentrated on understanding the processes and systems 

based on the observed historical rainfall data. However other studies have used the 

outgoing long wave radiation as a surrogate of the observed rainfall. These studies 

cover both the interannual and intraseasonal timescales, but little work which 

combines the two timescales is available.

b. Some studies have made an effort to assess the predictability of the seasonal rainfall 

anomalies most based on the development of linear regression models. However, 

there is virtually no previous work available on the predictability of the intraseasonal 

statistics of the wet and dry spells. There is therefore the need to further our 

understanding on the intraseasonal statistics of the wet and dry spells in order to 

provide a more comprehensive picture on the evolution of rainfall activity within the 

season and assess its predictability.

c. The studies aiming at the prediction of seasonal rainfall anomalies have mainly 

concentrated on predictors with a one month lag which may be too soon for the users 

of such models. The monthly predictors that have been used are mostly released on 

13/14 day of the next month which means that the models outputs will be available 

when the season have already started. There is therefore the need to consider 

predictors with longer time lags for the models outputs to be meaningful to the users. 

Alternatively, the variables/predictors which can be forecasted by the Global 

Circulation Models (GCMs) with a good skill could be used.

d. The few studies which have attempted to develop seasonal rainfall regression models 

have tended to concentrate mainly on the Indian Ocean and its circulation patterns 

without much consideration for other parts of the tropics. Other studies have also 

concentrated on the Central Pacific Ocean due to the influence of the ENSO 

phenomenon on the tropical climate. This study is aimed at considering the tropical 

region and parts of middle latitude in search for the predictors for seasonal rainfall 

and intraseasonal statistics of the wet and dry spells prediction. Apart from SSTs that 

are normally used in predictability studies, large-scale atmospheric predictors were 

also looked for. Despite the lower internal memory o f the atmosphere as compared
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to the ocean, previous studies have demonstrated the utility o f these predictors, 

which also have the potential to be simulated by GCMs.

2.3 Systems that influence rainfall over the study domain

The spatio-temporal variability of rainfall over East Africa is controlled by a number of 

global, regional and local processes/systems. The variability results from complex 

interactions o f these processes at various temporal scales. Observational studies have shown 

that the diurnal variation o f precipitation in East Africa is largely determined by the 

mesoscale flows, the synoptic scale flows, and the interaction between the mesoscale and the 

synoptic scale flows (Asnani and Kinuthia, 1979; Mukabana and Pielke, 1996). The synoptic 

scale and higher scale circulations which affect weather and climate over East Africa include 

systems such as the monsoons, tropical cyclones, subtropical anticyclones, easterly and 

westerly wave perturbations, jet streams, global and regional modes of variability. These as 

well as the mesoscale systems are briefly discussed in the next sub-sections.

2.3.1 Inter-Tropical Convergence Zone

The Inter-Tropical Convergence Zone (ITCZ) may be defined as a narrow zone into which 

low-level tropical equatorward moving air masses from both hemispheres generally converge 

(Okoola. 1999a). It may be summarised as a zone marked with maximum cloudiness, 

humidity and precipitation; and minimum wind and pressure.

Over the East Africa region, the ITCZ has a rather complex structure consisting o f zonal and 

meridional arms. The ITCZ is diffuse and thus difficult to locate at low levels but is 

detectable in the wind field near 700mb (Kiangi et al., 1981). The structural complexity has 

been attributed to the geography of the Rift valley and the mountain chains of East Africa and 

the associated thermally-induced mesoscale circulations which makes the ITCZ patterns near 

the surface much diffused (Mukabana and Pielke, 1996). The zonal (conventional) arm has 

east-west orientation and oscillates in the north-south direction with the overhead sun. The 

double passage of the zonal arm of ITCZ over Eastern Africa region lagging behind the 

overhead sun is associated with the two rainfall seasons namely the long and the short rainfall 

seasons during which a large portion o f the annual rainfall is received over Eastern Africa. 

The meridional arm which has a north-south orientation is formed by the convergence 

between the easterly winds from the Indian Ocean and moist westerlies from the Atlantic 

Ocean. This arm fluctuates from east to west and vice versa, with the easternmost extent
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observed in July-August. The July/August rainfall received over most parts o f Uganda, 

western Kenya and parts of Rift valley has been associated with the eastward extent of the 

westerlies from the Atlantic Ocean.

Over the East Africa, the ITCZ is the major synoptic-scale system that controls seasonal 

rainfall (Asnani, 1993; 2005). The fluctuations in the rainfall amounts and distribution have 

been attributed to the anomalies in the large scale factors that influence the characteristics of 

the ITCZ over East Africa region. The location of the ITCZ together with its overall 

horizontal and vertical structures largely depends on the intensity of the north-easterly and 

south-easterly winds which are in turn driven by the subtropical anticyclones. Comprehensive 

details of the ITCZ over East Africa region can be found in Ogallo (1993), Ininda (1995) and 

Okoola (1996) among others.

2.3.2 Monsoons

A monsoon is a wind in low-latitude climates that seasonally changes direction between 

winter and summer. Monsoons usually blow from the land in winter (called the dry phase, 

because the wind is composed of cool, dry air), and from water to the land in summer (called 

the wet phase, because the wind is composed of warm, moist air), causing a drastic change in 

the precipitation and temperature patterns on the area impacted by the monsoon.

The driving force for the monsoons is the differential heating o f land and water surfaces by 

the solar radiation, which results in land-ocean pressure differences. The monsoonal winds 

are mostly confined to the tropics where the temperature contrast between the land and ocean 

is sufficiently high to generate the circulation. The monsoon is an important feature of 

atmospheric circulation, because large areas in the tropics and subtropics are under the 

influence of monsoons which bring humid air from over the oceans to produce rain over the 

land. The agricultural economies of impacted areas such as Asia and India frequently depend 

on the moisture provided by monsoon wind driven storm.

East Africa is subject to two monsoonal wind circulations, the Northeast (NE) and the 

Southeast (SE) monsoons. These monsoons coincide with the months of the year when the 

ITCZ is further from East Africa and thus are associated with relatively little rainfall (Okoola, 

1999a). The northeast (NE) monsoon airstream occurs during the Northern Hemisphere 

winter (December to February) and emanates from the Arabian anticyclone which is situated 

on the Arabian Peninsula. It then recurves south of the equator to become a north-westerly
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flow. The NE monsoonal winds have a sea trajectory of modest length thus they are warm 

and dry. The southeast (SE) monsoon current occurs during Northern Hemisphere Summer 

(June to August) and comes from the Mascarene highs over the southern Indian Ocean hence 

it is cool and moist. The flow then recurves north of the equator to become south-westerly.

Both monsoons are generally diffluent in the low levels and flow parallel to the coast. They 

are relatively shallow extending up to about 600hpa and capped aloft by an easterly flow 

resulting in a persistent inversion near 600hpa. The inversion inhibits cloud development, but 

it is occasionally broken by incursions o f the westerlies (Okoola, 1982).

2.3.3 Tropical Cyclones

A tropical cyclone refers to an intense spiral storm that originates over warm tropical oceans 

and is characterized by low atmospheric pressure, strong winds and heavy rainfall. A 

characteristic feature of tropical cyclones is a warm centre with clear skies, light winds and 

low atmospheric pressure called the eye. Eye diameters are typically 40km but can range 

from under 10km to over 100km. The eye is surrounded by a dense ring of cloud about 16km 

high known as the eye wall which marks the belt of strongest winds and heavy rainfall. There 

is also a rapid variation of pressure across the storm which mostly occurs near the centre and 

resulting in very steep pressure gradient force, which is responsible for the strong winds 

present in the eye wall. Tropical cyclones derive their energy from the warm tropical oceans 

and do not form unless the Sea Surface Temperature (SST) is above 26.5°C, although once 

formed they can persist over lower SST.

Cyclones that affect the East Africa region (mostly southeastern coast of Tanzania) are those 

that form over Southwest Indian Ocean basin upto about 100° E. They generally occur from 

November to May but are more common during the months o f January to March. On average, 

there are nine tropical disturbances a season, with about 50% of them reaching Tropical 

Cyclone (TC) status. However, their effect on East Africa weather may be indirect. Their 

formation during late March and early April often leads to delayed and below normal long 

rainfall over Eastern Africa region as was the case in 1984 (Okoola, 1999a). High frequency 

of the TC in the Mozambique Channel during 1984 resulted in winds being diverted to the 

Channel resulting into the non-establishment of the ITCZ over the Eastern Africa region 

during the long rainfall season. This led to loss of lives and livestock due to the drought that 

resulted.
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2.3.4 Subtropical Anticyclones

These are synoptic-scale quasi-permanent pressure cells that form the descending arms of the 

tropical Hadley circulations. The pressure difference between the equatorial regions and the 

sub-tropical anticyclones drive the tropical trade winds. The four anticyclones affecting the 

synoptic flow over East Africa region are the Azores and Arabian anticyclones in the 

northern hemisphere (Griffiths and Solimani, 1972) and Mascarene and St. Helena 

anticyclones in the southern hemisphere (Van de Boogaard, 1977). The anticyclones are most 

intense during the winter season of each hemisphere and weaker during summer. The relative 

location, strength, structure and spatial orientation of these anticyclones determine whether 

they will pump in moist air or dry air over a region.

The Arabian anticyclone generates a stronger North Easterly (NE) flow during the short 

rainfall period than the South Easterly (SE) flow from the weaker Mascarene anticyclone. 

However, since the NE flow does not have long trajectory over the ocean as compared to the 

SE flow, it results in lesser rainfall during the September-November period.

The Mascarene and St. Helena are more pronounced during the southern hemisphere winter 

(June to August). The Mascarene anticyclone generally determines the characteristics of the 

moist SE monsoon flow over the Indian Ocean which influences rainfall over most o f Eastern 

Africa. During the March-May season, the Mascarene anticyclone drives stronger and more 

moist SE flow into East Africa. Convergence of SE flow with the NE flow, both o f which 

have stronger easterly component results into more rainfall in this season. The intensity and 

relative position of St. Helena anticyclone determines the position and depth of the quasi

permanent low pressure centre over central Africa, and therefore the intensity of the weather 

associated with it and how far to the east this weather will penetrate due to the strength of the 

meridional arm of the 1TCZ.

2.3.5 Jet streams

A jet stream is a narrow, fast, upper atmospheric wind current, flowing at around 10 

kilometers above the surface of the Earth. The jet stream may extend for thousands of 

kilometers around the world, but it is only a few hundred kilometers wide and usually less 

than 1.6 kilometers thick. A jet stream forms at the boundaries of adjacent air masses with 

significant differences in temperature. The jet stream is thus mainly found near the 

tropopause, at the transition between the troposphere (where temperature decreases with
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height) and the stratosphere (where temperature increases with height).

The two jet streams that affect the weather and climate over the East Africa region are the 

Turkana Jet stream and the East Africa Low Level Jet stream (EALLJ). The Turkana jet 

stream is a strong SE low level jet in the Turkana Channel which separates the Ethiopian 

Highlands and the East Africa Highlands. This jet stream exists throughout the year, with the 

morning winds being stronger than the afternoon winds, mainly due to stronger vertical 

mixing and dilution of the jet maximum in the afternoon (Kinuthia and Asnani, 1982). Details 

of the Turkana Jet stream can be found in Kinuthia and Asnani (1982), Kinuthia (1992) and 

Indeje et al., (2001) among others.

The East Africa Low Level Jet (EALLJ) stream occurs near the coast of East Africa. This jet 

stream is one o f the major well-recognized cross-equatorial flows that have been studied 

through observational and numerical models (Findlater 1966; 1977; Krishnamurti et al. 1976; 

among others). The jet core is generally located between 1 and 1.6 km above the mean sea 

level and is associated with flows across the equator carrying Southern Hemisphere air 

northward up the African continent and ending at the Indian subcontinent. This jet stream 

induces strong currents and upwelling over the western equatorial Indian Ocean. It thus plays 

an integral role in the seasonal development of the Somali Current, an intense ocean current 

that flows northward only during the southwest monsoon. The je t builds during the months of 

April and May, becomes more pronounced in June to August and decays in September and 

October, during which the flow reverses to NE monsoons. Its horizontal divergence and 

vertical wind shear leads to dry conditions over East Africa.

2.3.6 Global and regional modes of climate variability

A mode of variability is a climate pattern with identifiable characteristics, specific regional 

effects, and often oscillatory behavior. Many modes of variability are used as indices to 

represent the general climatic state of a region affected by a given climate pattern. Such 

modes of variability may be found closer or far away from the target area, yet have an effect 

on the latter.

Climate dynamics research has demonstrated the existence of several modes of climate 

variability. The large scale modes of climate variability that relates to the East Africa rainfall 

include the El Nifio/Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) Mode, Quasi- 

Biennial Oscillations (QBO) and Intraseasonal Oscillations (ISO) among others.
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2.3.6.1 Quasi-Biennial Oscillations

The Quasi-Biennial Oscillation (QBO) is a quasi-periodic reversal of the equatorial zonal 

wind between easterlies and westerlies in the tropical stratosphere with a mean period of 23 

to 30 months averaging at about 26 months. The alternating wind regimes develop at the top 

of the lower stratosphere and propagate downwards at about 1.2 km per month until they are 

dissipated at the tropical tropopause. At the top of the vertical QBO domain, easterlies 

dominate, while at the bottom, westerlies are more likely to be found.

Several studies have confirmed the presence of the QBO in various atmospheric parameters. 

Some variables that have exhibited QBO include temperature, ozone, Indian monsoon and 

Africa rainfall (Ogallo et al., 1994; Indeje and Semazzi, 2000). A study by Indeje and 

Semazzi (2000) has shown that about 36% of rainfall variability over Eastern Africa during 

the long rainfall season is associated with the QBO in the lower equatorial stratospheric zonal 

winds and further suggested that the relative role of QBO and rainfall over Eastern Africa is 

stronger in the time-lag sense than the simultaneous relationship.

2.3.6.2 El Nino / Southern Oscillation

El Nifio / Southern Oscillation (ENSO) is a set of interacting parts of a single global system 

of coupled ocean-atmosphere climate fluctuations that come about as a consequence of 

oceanic and atmospheric circulations.

ENSO is the largest coupled ocean-atmosphere phenomenon resulting in climatic variability 

on interannual time scales (Godf nez-Dominquez et al., 2000). This wide ranging influence 

of ENSO has attracted the attention of the global climate community, particularly due to the 

well-documented economic and societal impacts, both today and throughout historical times, 

recorded locally and globally, within a wide latitudinal band about the equator.

El Nino which is the oceanic component of ENSO refers to the anomalous and sustained 

warming of the Sea Surface Temperature anomalies of magnitude greater than 0.5°C across 

the central and eastern tropical Pacific Ocean. The cooling phase is referred to as La Nifia. 

When the anomaly is met for a period of less than five months, it is classified as El Nino or 

La Nina conditions; if the anomaly persists for five months or longer, it is classified as an El 

Nino or La Nina episode.

The atmospheric signature of ENSO, the Southern Oscillation (SO) reflects the monthly or
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seasonal fluctuations in the air pressure difference between Tahiti and Darwin. In using the 

Southern Oscillation Index (SOI) based on just two stations, it must be recognized that there 

are many small-scale and high frequency phenomena in the atmosphere, such as the Madden- 

Julian Oscillation that can influence the pressures at stations involved in forming the SOI but 

that do not reflect the Southern Oscillation itself. As such, a 5-month running mean of SST 

anomalies and SOI is made in order to smooth out the possible intraseasonal variations in the 

tropical ocean.

While ENSO events show basically in phase variations between the Pacific and Indian 

Oceans, their signature in the Atlantic Ocean lag behind the Pacific events by 12 to 18 

months. Many o f the countries most affected by ENSO events are developing countries 

whose economies are largely dependent upon their agricultural and fishery sectors as a major 

source of food supply, employment and foreign exchange.

ENSO is the most prominent known source of interannual climate variability around the 

world including Eastern Africa with an irregular cyclicity of 3 to 8 years. Many studies have 

investigated the relationship between East African rainfall and ENSO. Mutemi (2003) found 

a strong relationship between rainfall over East Africa and evolutionary phases o f ENSO. 

Shifts in the onset/cessation of rainfall patterns over some regions were observed while in 

others significant reduction in the seasonal peak was evidenced. Nicholson and Kim (1997) 

observed that ENSO has little influence on the long rainfall season but significantly 

modulates rainfall during the short rainfall season. Ogallo (1988) found significant 

instantaneous and time lagged negative correlations between East African seasonal rainfall 

and the Southern Oscillation Index (SOI). By correlating the global SST anomalies within the 

tropics (30° N/S) with the rotated principal component analyses (RPCA) modes of the 

autumn rainfall over Eastern Africa, Ogallo et al. (1988) found that 36% of the short rainfall 

variation in East Africa could be explained by SST variations in western Pacific and most of 

Indian Ocean.

Using an atmospheric General Circulation Model (GCM) forced with various combinations 

of Indian and Pacific SST anomalies, Goddard and Graham (1999) observed that while the 

SST variability of the tropical Pacific exerts some influence over the African region, it is the 

atmospheric response to the Indian Ocean variability that is essential for the model simulating 

robust rainfall response over eastern, central and southern Africa. This may point to the 

importance of the Indian Ocean Dipole (IOD) in climate studies which is discussed next.
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Further details of the ENSO influence over East Africa can be found in Mutemi (2003), 

Ogallo (1988) and Ogallo el al. (1988) among others.

2.3.6.3 Indian Ocean Dipole

Previous studies have identified a unique ocean-atmosphere mode characterized by 

anomalously warm SSTs over the western Indian Ocean and anomalously cold SSTs in the 

eastern Indian Ocean (Saji et al., 1999; Owiti, 2005; Owiti et al., 2008). The evidence 

indicates that Indian Ocean SST anomalies have a significant impact on regional atmospheric 

circulation and rainfall anomalies that extend into Eastern and Southern Africa. As the wind 

flow entering East Africa mostly originates from the Indian Ocean, it would be reasonable to 

assume that Indian Ocean Dipole (IOD) SST anomalies would have a marked influence on 

the moisture supply to the adjacent landmasses (Reason, 2001).

Indian Ocean Dipole (IOD) refers to the occasional occurrences of see-saw SST anomalies 

over the southeastern and western parts of equatorial Indian Ocean (Figure 2.1). The 

difference between mean SST anomalies observed in tropical western Indian Ocean (50° E -  

70° E, 10° S -  10° N) and tropical southeastern Indian Ocean (90° E -  110° E, 10° S -  

Equator) has been used to quantify the zonal temperature gradient representative o f the IOD 

(Saji et al., 1999).

Analysis on the evolutional phases of IOD index by Owiti (2005) and Owiti et al, (2008) 

indicate the significant SST anomalies begin to appear around April, attains maximum peak 

around October/November and starts decaying in January. Most cycles do not extend beyond 

one year. As such, the significant association between the IOD and Eastern Africa regional 

rainfall is stronger during the short (OND) rainfall season while the correlation values are 

generally not significant during the long (MAM) rainfall seasons.

Available records show that at times the strong positive (negative) IOD events co-occurred 

with El Nifio (La Nina) episodes. This may be indicative o f some possible interactions 

between ENSO and IOD. However, some strong IOD events were observed in non-ENSO 

events. A study by Trenberth (1997) indicate that warming over the western Indian Ocean 

during the ENSO events is associated with high moisture fluxes over the marine boundary 

layer. The increased tropospheric moisture associated with the warm El Nino events is 

advected into the Eastern Africa by the relatively strong easterly wind flow during the wet 

seasons. The advected moisture supports enhanced convection and orographic precipitation
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through latent heat release thus sustaining wet conditions over the East African region. 

Comprehensive details of the IOD over East Africa region can be found in Saji et al. (1999); 

Black et al. (2003); Clark et al. (2003); Black (2005); Owiti (2005) and Owiti et al. (2008) 

among others.

Figure 2.1: SST anomalies (red shading denotes warming; blue-cooling) during (a) 
positive and (b) negative Indian Ocean dipole (IOD) event. {Source A. Suryachandra 
Rao, Institute fo r  Global Change Research, Japan)
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2.3.6.4 Intraseasonal Oscillations

Studies have shown that intraseasonal oscillations (ISO) are present in the proxies of the 

rainfall such as outgoing longwave radiation over the tropical region (Anyamba, 1990; Soden 

and Fu. 1995; Barr-Kumarakulasinghe and Lwiza, 1998; Omeny, 2006). A study by Gitau 

(2005) over Kenya has suggested the existence of ISO in the occurrence of the daily rainfall 

events. A quasi biweekly oscillation with 10 to 20 days periodicity has been found in the 

occurrence of rainfall events (Okoola, 1989; Gitau, 2005). Another form of the intraseasonal 

oscillations that is most prominent in the tropical region is the Madden-Julian Oscillation 

(MJO). The Madden-Julian Oscillation plays an important role in climate variability and has 

a significant influence on medium-to-extended ranges of weather forecasting in the tropics 

(Jones et al. 2000; Pohl and Camberlin, 2006; Omeny, 2006; Omeny et al., 2008). Goswami 

et al. (2003) have suggested that the slow evolution of the monsoon intraseasonal oscillations 

on account of the 30 - 60 days dominant periodicity could make it potentially predictable by 

up to about three weeks in advance during the Indian summer monsoon.

2.3.7 Mesoscale systems/features

Mesoscale systems are small-scale weather systems with the horizontal dimension ranging 

from 5 to 500 km and typically possessing lifetimes of a day or less. They cannot therefore be 

observed on synoptic charts. For such systems, the vertical motion is as important as the 

horizontal ones and Coriolis force has little or no effect due to the short lifetime or the over

riding magnitude of other forces. Proximity to the ocean, varied topography and existence of 

large inland lakes induces vigorous mesoscale circulations with a strong diurnal cycle over 

several parts o f the East Africa region.

2.3.7.1 Effects of orography

Spatial distribution of weather in East Africa is to some extent determined by the interactions 

between the quasi-stationary mesoscale circulations and the seasonally varying large scale 

flow. By modeling the interaction of the mesoscale circulation and synoptic scale 

circulations, Mukabana and Pielke (1996) and Indeje et al. (2001) demonstrated that 

orography plays a role in causing rainfall at nearly all places in Kenya and East Africa 

respectively.

Oettli and Camberlin (2005) have defined statistical models to explain the spatial distribution 

of rainfall in Eastern Africa (southern Kenya and NE Tanzania) based on various
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topographical descriptors. The results indicated that the north-south exposure contrasts are 

the main factor of rainfall variation, except in the northern summer (June to September). 

South-facing stations are wetter, especially during the long rainfall (March to May) season 

since southerly winds are slightly wetter than those with a northerly component. East-facing 

stations are wetter in the short rains season (October to December) and drier in the monsoon 

season. These variations coincide with seasonal atmospheric circulation changes over the 

study region. The study finally concluded that mean elevation had little effect on the monthly 

rainfall while other factors especially north-south exposure describe the interaction between 

rainfall and topography more adequately.

2.3.7.2 Land and Sea/Lake Breezes

These are diurnal local winds that are generated as a result of the different specific heat 

capacities of the water and land near the shores.

The sea/lake breeze is one o f the most frequently occurring mesoscale weather systems. The 

sea/lake breeze refers to a diurnal, thermally driven circulation in which a surface 

convergence zone often exists between airstreams having over-water versus over-land 

histories. It results from the unequal sensible heat flux of the lower atmosphere over adjacent 

solar-heated land and water masses. Because of the large specific heat capacity o f a water 

body, the air temperature changes little over the water while over land, the air mass warms 

during daytime. Occurring during periods of fair skies and generally weak large scale winds, 

the sea/lake breeze is recognizable by a wind shift to onshore, generally several hours after 

sunrise.

The reverse occurs at night, the land cools off quicker than the ocean due to differences in 

their specific heat capacities, which forces the dying of the daytime sea/lake breeze. If the 

land surface temperature drops below that of the adjacent sea/lake, the pressure over the 

water will be lower than that of the land, setting up a land breeze. The colder air from the 

land then moves offshore. Typically, the land breeze circulation is much weaker and 

shallower than its daytime counterpart, the sea/lake breeze.

Breeze circulations are created within the vicinity of Lake Victoria and along the coast. 

Sea/Lake breeze dominates during the aftemoon/evening. The katabatic (drainage) winds 

coupled with the land breeze, dominate during late night/early morning up to at least 100 km 

from the shore. This circulation interacts with the seasonal flow and forces convection up to a
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distance of even 150-200 km from the Lake Victoria shore (Mukabana, 1992; Okeyo, 1987).

The occurrence and strength o f the both sea/lake and land breezes is controlled by land-sea 

surface temperature differences, the synoptic wind and its orientation with respect to the 

shoreline; the thermal stability of the lower atmosphere and the geometry o f the shoreline and 

the complexity o f the surrounding terrain.
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CHAPTER THREE 

DATA AND METHODS

This chapter provides the description o f the datasets that were used in the current study to 

achieve the objectives discussed in section 1.3. It also provides the methodology that was

adopted.

3.1 Datasets

Several secondary datasets were used in this study. These are the observed daily rainfall 

amounts, Hadley centre Sea Surface Temperatures (SSTs), NCEP/NCAR and ERA40 re

analysis data, radiosonde observations, the indices o f Nino, Indian Ocean Dipole (IOD), and 

Sea Surface Temperature (SST) gradients. These datasets covered about 40 years starting 

from 1958. The daily rainfall dataset covers the East Africa region while the SSTs and re

analysis data covered the tropical region and part of the mid-latitudes (50° N - 50° S). 

Radiosonde observations were obtained over Nairobi in East Africa and Bangui in Central 

Africa.

Like the rest o f Africa, East Africa continues to experience some difficulties with the 

availability o f long-time climate data (see Figure 1 in Camberlin and Philippon, 2002). The 

available surface observations are rather sparse and their number has tremendously reduced 

over time. Each of the three East Africa countries has one operational upper-air observation 

station (Njau, 2006) out of which two have a lot of missing data.

3.1.1 Rainfall data

The observed daily rainfall amounts for 36 stations across the three East Africa countries and 

extending from January 1962 to December 2000 was used in this study. The amount of 

missing data from each station is highly variable (at most 7%). At times, data are missing for 

all the days in a month since the report forms are filled and sent to the headquarters of the 

National Meteorological services on a monthly basis. In such a case, the report forms were 

sourced from the Headquarters of the National Meteorological services and used to fill the 

gaps. However such cases were quite few.

The spatial distribution of the stations with long un-interrupted time series was carefully 

selected in order to minimize the amount of the missing data. At the same time, an evenly 

distributed gauge network throughout the study region was required. Figure 3.1 shows the
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spatial distribution of the Eastern African stations used in the study. Table 3.1 which gives 

the names of the station used, their location and elevation. Based on the requirement of this 

study for a long un-interrupted time series of daily rainfall observations with few missing 

data points, the network of the station was assumed to be the most representative o f the daily 

rainfall climatology over the study area. This dataset was obtained from the archives of 

Kenya Meteorological Department, 1GAD Climate Prediction and Applications Centre 

(ICPAC) both o f which are in Nairobi, Kenya and the Centre de Recherches de Climatologie 

(CRC) at Universite de Bourgogne in Dijon, France.
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Figure 3.1: Network of the East African rainfall stations used
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Table 3.1: Details of the East African rainfall stations used in the study

No Stations Latitudes Longitudes (°E) Elevation in M 
(AMSL)

KENYA
1 Mandera 3.93°N 41.87 230
2 Moyale 3.53°N 39.05 1113
3 Lodwar 3.12°N 35.62 566
4 Marsabit 2.32°N 37.98 1219
5 Maralal 1.10°N 36.70 1951
6 Wajir 1.80°N 40.07 244
7 Kakamega 0.28°N 34.75 1555
8 Nyahururu 0.03°S 36.35 2374
9 Kisumu 0.10°S 34.58 1146
10 Garissa 0.47°S 39.63 128
11 Dagoretti 1.30°S 36.75 1798
12 Narok 1.13°S 35.83 1890
13 Lamu 2.27°S 40.90 9
14 Makindu 2.28°S 37.83 1000

15 Malindi 3.23°S 40.10 3

16 Voi 3.40°S 38.57 579
17 Mombasa 4.03°S 39.62 57

UGANDA
18 Kitgum 3.30°N 32.88 940
19 Arua 3.05°N 30.92 1280
20 Gulu 2.78°N 32.28 1106
21 Soroti 1.72°N 33.62 1127
22 Masindi 1.68°N 31.72 1146
23 Namulonge 0.53°N 32.62 1150
24 Kasese 0.18°N 30.10 691

25 Entebbe 0.03°N 32.45 1183
26 Bushenyi 0.57°S 30.17 1590
27 Mbarara 0.60°S 30.68 1412
28 Kabale 1.25°S 29.98 1867

TANZANIA
29 Bukoba 1.33°S 31.82 1143
30 Musoma 1.70°S 33.93 1147
31 Mwanza 2.47°S 32.92 1139
32 Moshi 3.35°S 37.33 869
33 Kigoma 4.88°S 29.67 999
34 Tabora 5.08°S 32.83 1182
35 Dodoma 6.17°S 35.77 1120
36 Dar es salaam 6.87°S 39.20 53
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3.1.2 Re-analysis data

Re-analysis data refers to a gridded dataset representing the state of the Earth's atmosphere, 

incorporating direct observations, remote-sensed observations and global climate model 

(GCM) output. Data from different sources such as surface, ship, aircraft, radiosonde, 

satellite and GCMs are quality controlled, merged and interpolated at grid points 

(assimilated) to obtain the re-analysis data.

Different types of re-analysis data have been developed over time by different climate 

centres. These include the re-analysis data from the National Centre for Environmental 

Prediction (NCEP) and the National Centre for Atmospheric Research (NCAR) as 

documented by Kalnay et al. (1996), ERA40 and ERA-interim from the European Centre for 

Medium-range Weather Forecast (ECMWF) as documented by Uppala et al., (2005) and 

JRA25 from the Japanese Meteorological Agency among others. In the current study, the 

JRA dataset could not be considered since it spans a short duration of 26 years only from 

January 1979 to December 2004 for JRA (Kazutoshi et al, 2005). The ERA-interim dataset 

could not be used for similar reason.

The NCEP/NCAR re-analysis and ERA40 datasets are both gridded to a horizontal resolution 

of 2.5° latitude by 2.5° longitude. Though the data assimilation system remained unchanged 

over the re-analysis periods to help eliminate perceived climate jumps associated with 

changes in the real time data assimilation system, the NCEP/NCAR re-analysis data is still 

affected by changes in the observing systems (Kalnay et al. 1996; Kanamitsu et al., 2002). 

These two re-analysis datasets have been used in Eastern Africa with satisfactory results in 

Mutai and Ward (2000), Zorita and Tilya (2002), Camberlin and Philippon (2002), Black et 

al. (2003), Pohl et al. (2005) for the NCEP/NCAR and in Mukabana and Pielke (1996) and 

Okoola (1999b; 1999c) for the ERA40.

The NCEP/NCAR re-analysis dataset was downloaded from the database of the National 

Oceanic and Atmospheric Administration (NOAA) website while the ERA40 dataset was 

downloaded from the database of the European Centre for Medium-range Weather Forecasts 

(ECMWF) website. The two re-analysis datasets were compared with the radiosonde data 

over the study area and the surrounding regions. The re-analysis dataset that mostly replicated 

the radiosonde data was thus adopted and used for further analysis to accomplish the 

objectives of the study. It should however be noted that re-analysis dataset are not simple 

interpolation of the observed data to the grid-points and therefore we do not expect a perfect
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match between the observed radiosonde and re-analysis data.

From the re-analysis dataset that mostly replicate the radiosonde data, four variables were 

extracted at 925mb, 700mb and 200mb levels representing the lower, middle and upper 

atmospheric levels. The four variables extracted were the zonal (u) and meridional (v) 

components of wind vector, the specific humidity (q) and the geopotential heights ((p).

Due to the importance attributed to the circulation patterns while studying the rainfall 

patterns, it was necessary to ascertain the re-analysis dataset that closely replicated the 

measured radiosonde data.

3.1.3 Radiosonde data

Radiosonde sounding systems use in situ sensors carried aloft by a small, balloon-borne 

instrument package, the radiosonde, to measure vertical profiles of atmospheric pressure, 

temperature, and moisture (relative humidity or wet bulb temperature) as the balloon ascends, 

and transmit the data to a ground-based receiver and data acquisition system. A rawinsonde is 

a radiosonde that is designed to also measure wind speed and direction. Rawinsondes are 

commonly referred to as radiosondes. The radiosonde electronic subsystems sample each 

sensor at regular intervals.

Upper-air winds (horizontal wind speed and direction) are determined during radiosonde 

ascents by measuring the position o f the radiosonde relative to the earth's surface as the 

balloon ascends. By measuring the position of the balloon with respect to time and altitude, 

wind vectors can be computed and represent the layer-averaged horizontal wind speed and 

wind direction for successive layers.

An upper-air station exists in each of the three countries considered in this study. They are 

located at Nairobi (01° 18’S, 36° 45’E), Entebbe (00° 03’N, 32° 27’E) and Dar-es-Salaam 

(06° 50'S, 39° 12’E). Njau (2006) observed that the later two stations had a lot of data

missing and hence unsuitable for analysis. In view of this, Nairobi upper-air station was 

chosen to represent the East Africa region.

The zonal and meridional wind components of radiosonde wind data at different standard 

pressure levels from two locations (Nairobi in Kenya and Bangui in Central Africa Republic) 

spanning a period of 30 years and extending from January 1959 to December 1988 was used 

to assess the quality of the re-analysis datasets. Bangui radiosonde station is located at 04°
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24'N, 18° 31 *E at an altitude of 366 M above Sea Level (Duree et al., 2006). The radiosonde 

data for Bangui upper-air observational station was downloaded from the Research Data 

Archive at the National Centre for Atmospheric Research (NCAR) website *. The Bangui 

upper-air station was used because it is located over a region (Central Africa) where 

NCEP/NCAR and ERA40 re-analyses shows large discrepancies, yet it is important source of 

moisture advection from Congo Basin which significantly affect rainfall variability in East 

Africa. Another reason for the choice o f Bangui was that the observed data has a common 

time overlay with the Nairobi upper-air data yet it is outside the study area but within the 

equatorial region.

3.1.4 Hadley centre sea surface temperature

Sea-Surface Temperatures (SSTs) play an important role in modulating rainfall variability. 

Idealised SST anomalies have been used to force global and regional circulation models to 

simulate rainfall variability and study the physical mechanisms behind the variability over 

various regions, such as the Sahel (Moron et al., 2003), northwest Africa (Li et al., 2003), 

Africa as a whole (Paeth and Friederichs, 2004), and southern Africa (Reason, 2002; Misra,

2003) .

Many of these studies have suggested the importance o f SST in modulating rainfall 

variability, either indirectly such as an alteration in the position of the 1TCZ (Biasutti et al.,

2004) or by more direct ‘local’ mechanisms (Janowiak, 1988; Walker, 1990; Jury and 

Pathack, 1993; Jury et al., 1993; Mason, 1995; Shinoda and Kawamura, 1996; Reason and 

Lutjeharms, 1998). Over the Eastern Africa region, SSTs and SST-derived indices have 

regularly been used for various studies including the seasonal rainfall prediction (Ogallo et 

al., 1988; Nicholson and Kim, 1997; Mutai et al., 1998; Latif et al., 1999; Indeje et al., 2000; 

Black et al., 2003; Mutemi, 2003; Owiti, 2005; Nyakwada, 2009).

The Hadley centre SSTs used in this study are gridded to a horizontal resolution of 1° latitude 

by 1° longitude and covered 45° N/S latitude but spanned all longitudes (Rayner et al., 2003). 

The monthly Hadley Centre SST covered a period of 40 years from January 1961 to 

December 2000.

3.1.5 Other datasets used

" www.dss.ucar.edu/datasets/ds430-0

http://www.dss.ucar.edu/datasets/ds430-0
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Several other datasets, in the form of climatic indices, were used in this study. These include 

the Nifio indices which were downloaded from the Climate Prediction Centre (CPC) 

website+\  the lOD indices which have been documented by Owiti (2005) and the SST- 

gradients developed by Nyakwada (2009). These indices are used over the Greater Horn of 

Africa countries (of which the study region forms part of) for seasonal rainfall prediction by 

IGAD Climate Prediction and Application Centre. These datasets are all at monthly timescale 

and cover the period 1961 to 2000. The locations where the lOD index is derived from were 

highlighted in sub-section 2.3.6,3. The locations where Nino and SST-gradient indices are 

derived are discussed next.

Figure 3.2 and Table 3.2 shows the locations used to compute different Nifio indices. The 

Nifio indices have significant association with the seasonal rainfall over the eastern Africa 

region especially during the short rainfall season (Ogallo, 1988; Ogallo et al., 1988; Indeje et

al., 2000; Mutemi, 2003).

Figure 3.2: Graphical depiction of the four Nino regions (source: CPC)

www.cpc.noaa.gov/data/indices/sstoi.indices

http://www.cpc.noaa.gov/data/indices/sstoi.indices
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Table 3.2: The coordinates used to compute the various Nino indices (source: CPC)

Longitudes (°) Latitudes (°)

NINO 1 80 -  90 W 5 -  10 S

NINO 2 80 -  90 W 0 - 5  S

NINO 1+2 80 -  90 W 0 - 1 0 S

NINO 3 9 0 -  150 W 5 N -  5 S

NINO 4 150W -160E 5 N -  5 S

NINO 3.4 1 20 - 170 W 5 N -  5 S

Figure 3.3 gives the locations used to compute the zonal and meridional SST-gradient modes 

with the highest relationships with seasonal rainfall over East Africa (Nyakwada, 2009). The 

gradient modes are computed in the direction of the arrows from the SST anomalies 

representing the grids as indicated in Table 3.3. Nyakwada (2009) undertook principal 

component analysis of the SST for each ocean basin separately and for Atlantic-Indian 

Oceans combined. The modes of variability that were highly correlated with the seasonal 

rainfall totals over Eastern Africa were then identified and used as centre of action of the SST 

gradients.



Figure 3.3: The locations used to compute the sea surface temperature gradients (Source: Nyakwada, 2009, p. 127)
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Table 3.3: Computation of meridional and zonal sea surface temperature gradient 
(Source: Nyakwada, 2009, p. 128)

Ocean Region Longitude (°) Latitude (°) Gradient
Computation

Gradient
Name

Pacific A 1 2 0 -9 0  W 5 N -  5 S

B 15 0 - 180 E 5 N -  5 S B-A ZPAC

Indian C 8 0 -1 0 0  E 5 N -  5 S

D 4 0 -6 0  E 5 N -  5 S D-C ZIND

I 5 0 -7 5  E 2 0 -  10N

H 35 -  70 E 20 -  30 S I-H MIB1

J 3 0 -7 0  E 30 -  40 S I-J MIB3

Atlantic G 40 -  10 W 40 -  30 N

K 20 W -  15 E 20 -  30 S G-K MAB3

F 20 W -  15 E 10 -  20 S G-F MAB6

L 4 0 -1 5  W 10 -  20 N L-F MAB4

Atlantic and D 40 -  60 E 5 N -  5 S

Indian E 10 W -  10E 5 N -  5 S E-D ZAF

3.2 Methodology

Three approaches can be adopted to undertake this research. These approaches are statistical, 

dynamical and hybrid (combination o f the statistical and dynamical approach). Statistical 

approaches are relatively fast, are less computer-intensive and generally strive for concise 

representation o f physical features that control the region’s climate. Dynamical approaches 

on the other hand are based on fundamental conservation laws for mass, energy and 

momentum and thus contain more complete physics than statistical approaches. However, the 

more complete physics evokes a significant computational cost that limits the use of 

dynamical approaches. This study has opted for the statistical approach as a research design.

Initially, the missing data gaps were filled and the quality control measures undertaken to 

ascertain the homogeneity of the data. Statistical analysis was performed to classify the study 

region into few near-homogeneous sub-regions. This will ease the interpretation of the results 

obtained as well as eliminate the local noise within the datasets.
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3.2.1 Missing data and Quality control

The biggest drawback in long-term meteorological time series analysis is that recorded data 

available must be gap-filled and quality controlled to provide a reliable continuous 

homogeneous reference series in which divergences are only caused by variations in weather 

and climate (Lucio et al., 2006). Several interpolation methods can be used to approximate 

the missing rainfall amounts. These include the correlation and regression methods, distance 

weighted method (Inverse distance and Shepard methods), Schafer method, Thiessen polygon 

method and Krigging method, among others (Ogallo, 1982, 1988; Basalirwa, 1991; Schafer, 

1991; Lynch and Schulze, 1995).

In this study, missing data were estimated using the correlation and regression techniques. 

The station that was highly correlated with the one with missing data was initially identified. 

Regression equations were then derived for the two stations for the period during which both 

stations have the data. The regression equation was later used to estimate the missing data. 

Upon filling in the missing data gaps, the quality of the data was assessed before any analysis 

was undertaken. It is worthy to mention that less than seven percent of the daily rainfall was 

estimated. Continuous missing data were not estimated and such stations were excluded from 

this study.

The double mass curve analysis was used to test the consistency of the rainfall data. The 

method involves the comparison of the accumulated seasonal rainfall record at a station with 

that of the accumulated seasonal rainfall of the nearby station. For homogeneous records, the 

double mass curve appears as a single straight line.

The zonal and meridional components of the re-analysis wind at the closest grid points to the 

two radiosonde stations were extracted. A simple correlation analysis between the time series 

of zonal and meridional components of the radiosonde wind data at both Nairobi and Bangui 

on one side and the closest grid points on the other hand was undertaken. The re-analysis 

dataset which had the highest correlation coefficient over most of the upper air levels was 

used. It has been observed that both NCEP/NCAR and ERA40 datasets are high-quality data 

for application in climate related research. In the next section, the methodology used to 

delineate the study area into near-homogeneous sub-regions is discussed.
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3.2.2 Regionalization of the study area into near-homogeneous sub- 

regions

The classification of locations into spatial rainfall regimes with similar temporal rainfall 

characteristics not only reduced the number of locations that are used in the study but also 

reduced the local noise associated with observation from an individual location while 

extracting spatially coherent signal. This in return made the interpretation of the results 

easier. The principal component analysis (PCA) approach was used to attain this.

PCA analysis is one of the most efficient ways of compressing geophysical data both in space 

and time, as well as separating noise from meaningful data. The technique aims at finding a 

new set of variables that capture most o f the observed variance from the data through linear 

combinations o f the original variables. PCA is in essence a non-model orientated tool, which 

allows a time display and a space display of a space-time field such as temperature and 

rainfall.

PCA is an orthogonal linear transformation that converts the data to a new coordinate system 

such that the greatest variance by any projection of the data comes to lie on the first 

coordinate (called the first principal component), the second greatest variance on the second 

coordinate, and so on. Each variable is transformed into a linear combination of orthogonal 

(perpendicular) common components with decreasing variation. Each component carries 

different information, which is not related with other components. PCA is used for 

dimensionality reduction in a dataset while retaining those characteristics of the dataset that 

contribute most to its variance, by keeping lower-order principal components and ignoring 

higher-order ones. Such low-order components often contain the "most important" aspects of 

the dataset.

PCA produces a visual representation o f the relative positions of the data in a space/time of 

reduced dimensions, thus indicating spatial/temporal relationships among the variables. The 

position of each of the data points is defined by a series of axes, each of which represents 

separate uncorrelated information.

The output is a covariance/correlation matrix denoting the transformation coefficients 

(eigenvectors) listed in decreasing order of variation. The total variance accounted for by 

each component is the eigenvalue.

The EOFs are generally plotted as contour or vector maps, from which one can assess which
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regions are closely related, inversely related or unrelated, as well as identify centres of 

activity, regions of strong gradients among others. The relative importance of each mode is 

determined by its associated eigenvalue, which is used to calculate the variance attributable to

that mode.

Let P be an m x n matrix of daily rainfall data, where m is the number of days and n is the 

number of stations. This matrix can be decomposed into linear functions of m temporal and n 

spatial vectors so that the rainfall observation P,j on day / at station j  is

P„- lLa,kei,° P = a e<31)
*=1

where a,k is the element for day / in the klh time vector, and is the element for station j  in

the kth space vector.

The strength o f  the analysis is that often a large part of the spatial variability of the original 

data can be reproduced using only a few of the space vectors. These may be interpreted in 

relation to the underlying physical rainfall producing processes. The time vector may be seen 

as a time series of weights, giving more or less weight to a particular space vector (spatial 

rainfall pattern) each day. To recreate the original daily spatial rainfall pattern, the weighted 

spatial patterns are superimposed.

The space vectors may be found using either the correlation or the covariance matrix of the 

rainfall time series. The correlation matrix was used in this study. Svensson (1999) has 

indicated that large scale rainfall patterns become less clear when the covariance matrix was 

used over mountainous areas with the larger rainfall variances as compared to those on the 

plain. The inhomogeneous terrains over the study region thus justify the use of the correlation 

matrix.

Since the daily rainfall distribution at each station was skewed, the daily rainfall totals had to 

be transformed. Two approaches of the transformation that can be used are the square-root 

and logarithm transformations. Square-root transformation was used in this study since it is 

easily applied unlike the logarithm one which gives some difficulties when zero rainfall 

amounts are considered. The square-root transformed daily rainfall series works well over the 

East Africa region (Barring, 1988; Camberlin and Okoola, 2003). Stephenson et al. (1999) 

have indicated that square root transformation is the optimal variance stabilizing
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transformation for a Poisson process and thus is beneficial in stabilizing the variance of 

sporadic rainfall time series.

The square-root transformed rainfall data Pip were standardized by subtracting the mean Pj, 

of the time series for each station and then dividing by the standard deviation Oj, so that the 

new standardized rainfall Ay, is

(3.2)

The symmetric n x n correlation matrix C, calculated with regard to the time series (i.e. 

column-wise for the matrix A) is given by

A A
(m - 1)

(3.3)

The correlation matrix can be decomposed into eigenvectors e, and associated eigenvalues \  

(Svensson, 1999). The eigenvectors are the space vectors described by Equation 3.1, and the 

corresponding eigenvalues are measures of the explained variance accounted for by each 

eigenvector. The eigenvalues are obtained by solving Equation 3.4 while the eigenvectors 

are obtained by solving Equation 3.5.

\C -AJ\ = 0 (3.4)

(C -A l)e  = 0 (3.5)

Comprehensive details on the application of PCA in atmospheric science studies can be 

found in von Storch and Zwiers (1999), Wilks (2006), Hannachi et al., (2007) and in Jolliffe 

(2002) for the general application of EOF analysis.

There are at times some difficulties in interpretation of the obtained patterns (Ambaum et al., 

2001; 2002; Dommenget and Latif, 2002) because the physical modes are not necessarily 

orthogonal. Spatial orthogonality and temporal uncorrelation of the PCs impose limits on 

physical interpretability of loading patterns (Hannachi et al., 2007). This is because physical 

processes are not independent and therefore physical modes are generally expected to be non- 

orthogonal. Horel (1981) pointed out that if the first EOF has a constant sign over its domain, 

then the second one will generally have both signs with the zero line going through the
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maxima of the first EOF.

The difficulties associated with interpreting PCAs have led to the development of more tools 

to overcome this problem. The linear transformation of PCs, based on rotation is one such 

tool which have been introduced and yielded the concept o f Rotated Principle Component 

Analysis (RPCA) as discussed by Richman (1986).

The main purposes of RPCA are to;

i) Alleviate the strong constraints of PCA mainly orthogonality/uncorrelation of 

outputs and domain dependence of spatial patterns (Dommenget and Latif, 2002);

ii) Obtain simple structures; and

iii) Ease in the interpretation o f the obtained patterns.

Rotation of the EOF patterns can systematically alter the structures of EOFs. Rotation of EOF 

has the effect o f redistributing the variance within the eigenvectors and therefore removing 

the ambiguities while conserving the variance extracted by the selected subset of non-rotated 

eigenvectors (Indeje, 2000). By constraining the rotation to maximise a simplicity criterion, 

the REOF patterns can be made simple.

Given a p x m  matrix, Um = (ul, u2, u3 ..... urn) of the leading m PCA loadings, the rotation 

is achieved by seeking an/w xm  rotation matrix R to construct the REOFs K according to;

K = Ump (3.6)

where /? is either R or (R1)'1 depending on the type of rotation desired. The simplicity 

criterion for choosing the rotation matrix for maximisation problem is expressed by;

ma xf(Ump) (3.7)

over a specified subset or class of m x m  square rotation matrices R.

Various rotation criteria exist (Richman, 1986). However, they can be broadly classified into 

two families (Jennrich, 2001; 2002) namely;-

1. Orthogonal in which the rotation matrix is chosen to be orthogonal and /? = R.

2. Oblique in which the rotation matrix is chosen to be non-orthogonal and /? = (R 1)'1.

Varimax orthogonal rotation was used in this study as oppose to the Quartimax oblique
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rotation for three reasons, namely:

i) The rotated PCA yield components that are easier to interpret physically.

ii) Studies done over the East Africa region using this method have obtained 

satisfactory results (Ogallo, 1980; Indeje, 2000; Ouma, 2000; Okoola and 

Camberlin, 2003; Komutunga, 2006).

iii) Thirdly and most important, by normalising the spatial eigenvectors to unity, 

Varimax rotation produces uncorrelated components that satisfy the assumptions 

o f cluster analysis (Phillips and Denning, 2007).

Different authors have suggested different methods that can be used to determine the number 

of principal components that should be retained for rotation (Kaiser, 1959; Anderson, 1963; 

Castell, 1966; North et al., 1982; Overland and Preisendorfer 1982). The method used in this 

study to determine the number of the principal components to be retained and rotated is the 

Monte Carlo simulation method.

The Monte Carlo method is used to simulate a statistical model under the assumption that a 

given null hypothesis H0 is true (von Storch and Zwiers, 1999). A matrix of random values of 

the size of the observed data is generated, in which the temporal auto-correlation found in the 

observed times-series is reserved. PCA is computed on this matrix, and the eigenvalues 

stored. This procedure was repeated 500 times. All the eigenvalues are ranked and the 95th 

percentile considered as the 95% confidence threshold, to which the actual eigenvalues of the 

observed data set are compared. All eigenvalues higher than the threshold are judged 

significant.

Rotated Empirical Orthogonal Function (REOF) and simple correlation analyses were used to 

delineate the near-homogeneous rainfall sub-regions in East Africa using the quality- 

controlled daily gauge rainfall. The approach used in this analysis is similar to the one 

employed by Indeje (2000). Each Rotated Principal Component (RPC) time series obtained 

from REOF analysis was correlated with the stations’ rainfall data and stations with 

significant correlation coefficient identified. Delineation of a near-homogeneous sub-region 

was accomplished by identifying the stations with the largest correlation with the RPC time 

series associated with the eigenvector o f the daily rainfall in a season.
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3.2.3 Baseline information of wet and dry spells

In order to successfully achieve the first specific objective of this study as outlined in section 

1.3, several intraseasonal statistics (ISS) on the wet/dry spells were defined and computed at 

both local (station) and sub-regional (near-homogeneous) levels as described in Table 3.4. 

This provides the baseline information on the various aspects of daily rainfall performance as 

supplied by the alternating wet and dry spells.

Initially, a threshold for separation o f wet and dry days and the definition of wet and dry 

spells was adopted. The frequency distribution of the wet and dry spells is determined, from 

which the various intraseasonal statistics of wet and dry spells are computed. Simple 

correlation analysis was undertaken to determine the association between the seasonal rainfall 

totals and the various intraseasonal statistics of the wet and dry spells. The variation of the 

seasonal rainfall totals and intraseasonal statistics of wet and dry spells with time was finally 

assessed using the non-parametric Spearman rank correlation analysis. These steps are 

elaborated in the subsequent sections.

3.2.3.1 Threshold used and definition of wet and dry spells

The occurrence of a wet or dry day is a mutually exclusive event (Chapman, 1998; Dobi- 

Wantuch et al., 2000). A threshold for delineating wet and dry days is required when 

analysing spells of rainfall since the frequency distribution o f the length of the wet/dry spells 

is highly skewed and depends on the selected threshold (Barring et al., 2006).

Different authors have used different thresholds based on the aspect of the spells that they 

need to consider. Dobi-Wantuch et al. (2000) have indicated that the standard observational 

threshold o f 0.1 mm provides a good representation of precipitation conditions for some 

observational records. Moon et al. (1994) and Matrin-Vide and Gomez (1999) have used 0.1 

mm since it is the usual precision o f rain-gauges. Frei et al. (2003) have used a higher 

threshold o f 1.0 mm since it is more resistant to measurement errors related to light rainfall. 

Douguedroit (1987) and Lazaro et al. (2001) employed a threshold of 1.0 mm and argued that 

rainfall less than this amount evaporated off directly.

Perzyna (1994) used a threshold of 2.0 mm in order to remove any events featuring less 

rainfall and with very little significance in the river flow due to losses by interception and 

evaporation. Ceballos et al. (2004) have used a threshold of 10 mm since rainfall below this 

amount have only small effect on the soil water-content at a depth greater than 5cm from the
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surface (Ceballos et al., 2002). Such rainfall remains at the surface of the soil or on its plant 

cover, from where it readily returns to the atmosphere through evapo-transpiration.

Recent studies have mainly used more than one threshold for delineating the dry/wet days in 

observational records. Gitau et al. (2008) have used 1, 3 and 5 mm thresholds based on the 

average evapo-transpiration at the different locations in Kenya. Ambenje et al. (2001) have 

used five thresholds of 1, 12.5, 25.4, 50.8 and 100 mm to study the frequency distribution of 

days with precipitation above these thresholds over 19 countries in eastern and southern 

Africa for the four standard seasons. Ceballos et al. (2004) have used two thresholds of 0.1 

and 10 mm to study dry spells on Duero basin in Spain.

In this study, a threshold of 1.0mm was used to delineate wet days from dry days. This was 

mainly because of two reasons. First lower thresholds (less than 1.0mm) are more vulnerable 

to measurement errors associated with light rainfall and readily evaporate given the higher 

evapo-transpiration rate at the study region. Secondly, higher thresholds (more than 1.0mm) 

substantially reduce the sample size of the data to be used for further analysis since they 

greatly reduce the number of wet days. Other studies over East Africa that have used a 

threshold of 1.0 mm include the work of Mungai (1984) and Ogallo and Chillambo (1982).

A dry day was therefore defined as any day that received rainfall less than 1.0 mm, while a 

wet day was any day that received rain equal to or in excess o f 1.0 mm.

Once the threshold for wet days was fixed, the next aspect was the definition of wet and dry 

spells. Different authors have considered different definitions of the wet/dry spells. Two main 

examples of such definitions are given here. Pefia and Douglas (2002) defined wet (dry) 

spells as days when 75% or more (35% or less) of the stations along the Pacific side of 

Nicaragua, Costa Rica, and Panama records rainfall.

However, most authors define wet and dry spells locally. Ogallo and Chillambo (1982) have 

defined a wet (dry) spell of length i as a sequence of i wet (dry) days preceded and followed 

by a dry (wet) day. It is this definition that was used in this study.

The intraseasonal statistics of wet and dry spells (ISS) can be defined at station (local), sub

regional (near-homogeneous zone) or regional (the whole of study area) levels. This study 

considers the former two levels and yields the concept of local intraseasonal statistics of wet 

and dry spells (LISS) at station level and sub-regional intraseasonal statistics of wet and dry
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spells (SRISS) at near-homogeneous zone level. The 1.0mm threshold value was used to 

derive both the LISS and SRISS.

3.2.3.2 Local intraseasonal statistics of wet and dry spells

Based on the threshold value and definition of wet and dry spells discussed above, the wet 

and dry spells of varying lengths at local (station) level were tallied and organised into a 

frequency distribution table as described in Gitau (2005), Tilya (2006) and Bamanya (2007). 

From the frequency distribution tables, various intraseasonal statistics of the wet and dry 

spells were computed. Table 3.4 gives a description of the various intraseasonal statistics that 

were computed from the frequency distribution table for each year and at each station. In 

addition, the seasonal rainfall totals was computed by summing up the daily rainfall 

observations for each individual season.

It is worth clarifying at this point that in order to determine the above intraseasonal statistics 

of the wet and dry spells, the dry periods before the first and after the last rainfali/wet spells 

were excluded. This was in order to avoid the long dry spells that occur at the beginning and 

at the end of the rainfall period, and which belongs to the preceeding and following dry 

seasons respectively. To accomplish this and since the date of onset and cessation of the 

rainfall period were not predetermined, the dry spells before (after) the first (last) wet spells 

for each rainfall season were excluded from the dry spell analysis.
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The significance of the calculated Pearson correlation coefficient was tested by computing 

the / statistic given by Equation 3.9. The computed / statistic obtained was compared against 

the tabulated critical values and appropriate conclusions drawn.

where the symbols have the same meanings as in Equation 3.8.

3.2.3.2.2 Trend analysis

The time series of meteorological parameters are often generated by a complex interaction of 

a number o f weather/climate systems. The temporal behaviour of such weather/climate 

systems, in terms of trends and modes of variability is therefore of paramount importance for 

understanding of climate and the assessment of its potential impacts.

The interannual variation of the local intraseasonal statistics o f wet and dry spells (LISS) was 

assessed for any significant trend using the Spearman rank correlation analysis. This is a non- 

parametric approach based on ranks and is used here since there are very few underlying 

assumptions about the structure of the data. This method produces robust results especially 

when the observations are thought not to satisfy the normal distribution (Helsel and Hirsch, 

1992). In addition, the use of ranks rather than actual values makes it insensitive to outliers 

and missing values.

The sample {{X„ Yi) for / = 1, 2, 3 —  n} is replaced by the corresponding sample of ranks 

{(Rxi, Ryi) for / = 1, 2, 3 -— n} where R\, is the rank o f X t amongst the Xs and RYi is 

similarly defined. The differences d  between the ranks o f each observation on the two 

variables are then calculated. If there are ties, the tied observations are assigned the 

corresponding average rank. The dependence between X and Y is then estimated with the 

Spearman rank correlation coefficient p which is given by Equation 3.10;

(3.9)

6 X < / ?
(3.10)

where:
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d, = the difference between each rank of corresponding values of X  and Y, and n = the 

number of pairs o f  values. The significance o f the computed spearman rank 

correlation coefficient was tested by computing the statistic / given by Equation 3.9.

3.2.3.3 Sub-regional intraseasonal statistics of wet and dry spells

Different methods can be used to calculate the sub-regional intraseasonal statistics (SRISS) 

based on daily rainfall from several locations. At sub-regional level, the local noise 

associated with observations from individual locations is minimized. The extraction of a 

spatial coherent signal (if any) is an important step towards the assessment of the 

predictability potential of a given climate variable.

Figure 3.4 shows a schematic diagram of three different approaches that can be used to 

compute the SRISS. The first method involves computing the local intraseasonal statistics of 

wet and dry spells (LISS) at individual locations, which are then averaged for a specific near- 

homogeneous zone to obtain the SRISS. In the second method, the observed daily rainfall 

amounts for several stations constituting a given sub-region (near-homogeneous zone) are 

first averaged and the SRISS derived from the sub-regional areal-average rainfall. The final 

method involves using the Principal Component Analysis (PCA) scores as obtained from 

regionalization for each sub-region (near-homogeneous zone). In the case of the Principal 

Component (PC) score, the threshold that could correspond to the 1.0 mm threshold which 

was used at the station level was chosen. The daily rainfall data for all the n stations 

constituting a near-homogeneous sub-region are grouped together into a single column and 

sorted in ascending order (starting with the smallest). The percentile p, corresponding to the 

value of 1.0 mm was then obtained. The Principal Component (PC) score was also sorted in 

ascending order and the position (p/n) obtained. The PC score threshold used is the value that 

corresponds to the p/n position rounded off upwards. This PC score value corresponds to 1.0 

mm threshold used for station data.

Out of the three approaches available for computing the SRISS (Figure 3.4), the box-plot of 

the correlation coefficients between the LISS and the SRISS was used to determine the best 

approach for deriving SRISS. A comparative assessment carried out with SRISS obtained 

using the three approaches shown that the second approach gives results that are inconsistent 

w ith the other two.

I he SRISS obtained were assessed for their association with seasonal rainfall totals at sub
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region level as well as their variation with time in a similar manner to those o f the local 

intraseasonal statistics of wet and dry spells (LISS). This completed the analyses necessary to 

achieve the first specific objective o f  this study.

The second specific objective as outlined in section 1.3 was investigating the linkages 

between the various sub-regional intraseasonal statistics of the wet and dry spells (SRISS) 

including seasonal rainfall totals and dominant large scale climate fields that drive the global 

climate during specific seasons. Initially the spatial coherence of the various intraseasonal 

statistics of the wet and dry spells was assessed by undertaking inter-station correlation 

analysis. This provides an indirect measure of potential predictability. The indices of Nifio, 

IOD and SST gradients were used as the predefined predictor indices. Total and partial 

correlation analyses were then used to quantify the relationship between various SRISS and 

large scale climate fields. This enabled the identification o f locations from which additional 

potential predictor indices were extracted. Plausible physical/dynamical explanation and 

comparative location assessment helped to reduce the number of the additional potential 

predictor indices. The various steps which were undertaken are discussed in details in the 

following sections.



Figure 3.4: Schematic diagram on different approaches of calculating sub-regional intraseasonal statistics of wet and dry spells
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3.2.4 Spatial coherence and potential predictability

Precipitation is the most difficult climate component for models to forecast, because it 

involves both microscopic and macroscopic physical processes, it is closely related not only 

to the large scale weather situation but also to the small scale weather systems, and is 

influenced by the atmospheric thermodynamics and local topography. The fact that there is 

no high-variance principal component (unrotated or rotated) or any significant component 

with high loadings over a large part o f the study region implies that there is only limited 

coherence in the intraseasonal statistics (Haylock and McBride, 2001). It therefore means that 

no single predictor (such as IOD, SST-derived indices) is likely to explain a high proportion 

of the intraseasonal statistics of the wet and dry spells over the entire study region. Higher 

spatial coherence implying fewer predictors would explain most of the variance.

Before any relationship between the derived intraseasonal statistics of wet and dry spells and 

the large scale atmospheric fields was evaluated, it was necessary to assess the spatial 

coherence o f these statistics (Equation 3.8). Potential predictability may be inferred from the 

spatial coherence analysis of sub-regional scale anomalies based on the hypothesis that any 

large scale climate forcing such as the Sea Surface Temperature would tend to give a rather 

spatially uniform signal (Haylock and McBride, 2001). Low spatial coherence o f any of the 

intraseasonal statistics indicates that the signal is localized and thus the sub-regional potential 

predictability is reduced, since any large scale forcing may be masked by stronger local 

effects.

The intraseasonal statistics derived at local level were used. The inter-station correlation 

(same as spatial correlation) coefficient of a given statistic was computed for all the locations 

constituting a given sub-region. The results obtained are represented as box-plot. This was 

done for the six sub-regions during the long and short rainfall seasons. A box-plot provides a 

convenient way of graphical depicting groups of numerical data through the five-number 

summaries (the smallest observation, lower quartile (Ql), median (Q2), upper quartile (Q3) 

and the largest observation). Figure 3.5 shows an illustration of the statistical summaries 

provided by the box-plot.

To derive the spatial coherence of each intraseasonal statistic for the whole study region, the 

inter-station correlation coefficients of a given intraseasonal statistic for all the near- 

homogeneous sub-regions were also plotted as a single box-plot. A smaller box-length would 

indicate that the intraseasonal statistic in question at local levels is highly correlated. A higher
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The three atmospheric variables were not nested as such. However, the predictor search was 

confined to region (80°W -  120°E, 45°S -  45°N). The choice o f this region was based on the 

fact that it includes the sub-tropical anticyclones which control moisture fluxes towards East 

Africa. It also enables the depiction o f  the wind features which directly affect East African 

climate, such as the Indian Ocean monsoon, the Indian and Atlantic Ocean Walker-type 

circulation cells, the Tropical Easterly Jet, the Subtropical Westerly Jets among others. It is 

worthy to mention that there was an assumption that higher latitude (latitudes beyond 45°N or 

45°S) oceanic and atmospheric systems, at seasonal scale do not influence the rainfall 

characteristics over equatorial eastern Africa.

+ + + + + + + + + + j+ + /f
+ + + + + + + + + 4 j-y f+

___I____________ I______L I ___L

-150 -100 -50 0 50 100 150
Longitudes

Figure 3.6: Map showing the nesting of the SST grid points. Red plus (+) are the fine 
grid resolution while the black plus (+) are for the coarse grid resolution.

The partial correlation between the predictands (rainfall totals as well as intraseasonal 

statistics) and the Hadley centre SSTs, atmospheric variables o f zonal and meridional winds, 

specific humidity and geopotential height were then calculated while controlling the 

influence of the predefined predictor indices (in section 3.2.5.1) that were significant at 95% 

confidence level. This provided a list of additional potential predictors for the rainfall totals 

and the different intraseasonal statistics. The rationale behind the partial correlation analysis 

was that many large scale climate fields are influenced by major modes of variability such as 

ENSO (already described by the indices used in step 1) hence full correlation with East 

Africa rainfall may at times only reflect co-variations induced by the common forcing rather 

than a physical relationship.

Partial correlation y YXW allows us to determine what the correlation between any two



60

variables say X and Y would be, if the third variable W is held constant. This ensures that no 

variance predictable from W enters the relationship between Y and X. In z-score form, we 

can predict both X and Y from W, then subtract those predictions leaving only information in 

X and Y that is independent o f W, as follows.

Zx~YxwZw an<̂ Z y ~ Y ywZ w (3.11)

where £ ar*d z> are predicted z-scores for X and Y respectively. Subtracting these 

predicted scores, we obtain

Zxtn) = Zx~Zx = Zx~rxwZw (312>

with variance (] -  y \ w) and

ZY(res) = Z y ~ Z y = Z y ~  V YW Z w (3.13)

with variance (J - f YW), where 7 Urcs) and 7 l(m| are the residual information in X and Y

controlling W. The partial correlation, in the form of a covariance divided by the two 

standard deviations, then equals

Z X ( r e s )  Z Y ( r e s )
Y yx.i

(3.14)

N V<1 - r l*rX 1 -r„)
Substituting Equations 3.12 and 3.13 into the numerator of Equation 3.14, we get

Z x  ~ Y xwZ ĥ Z y rm Z w )
Y YX.

(3.15)

N id -rxJ( 1 ~rJ
which gives

''̂ L̂ZxZŷ N ~ 1*yŵL̂Zx Zŵ  N ~ Yxŵĥ Zy Zh ) + YxwYyŵLZŵ A/'
y yxw

~ r x w ^ \  -  Y w )

(3.16)

But Equation 3.8 in z-score form becomes ̂ v). = X(ZvZ>)  ̂N • Thus Equation 3.16

reduces to

V xy Y yw Yxw Y x w Y yw^  Y xwY yw
Y yx.w

id - r 2»,X 1 -r„)
(3.17)

which finally becomes
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r  yx.w
V

y  at t* rn- I f  xw

<1 ~ r xw)( 1 - r r» .)
(3.18)

T his is the equation for a partial correlation that was used to search and identify predictors 

from the oceanic and atmospheric variables. The partial correlation approach has been 

successfully used by Behera et al. (2005) in determining the effect of IOD (ENSO) on short 

rainfall over Eastern Africa while the effect of ENSO (IOD) is removed.

Partial correlation maps were then produced. It was from these maps that the highly 

correlated regions were identified and used to compute the new indices. It is worthy to 

mention that the correlation box identified were at least 5° by 5° for the atmospheric variables 

and 6° by 6° for the oceanic variable. This means that at least four grid points were averaged 

for the atmospheric variable predictors (since they are gridded at 2.5° by 2.5°) and oceanic 

variable predictors (fine grid nested at 3° by 3°). This was to ensure that the predictors have 

less noise, remain stable and do not vary too fast from the time the forecast is made until the 

time the observations are made. Mutai et al. (1998) have combined the UK Met. Office SST 

version 4 (MOHSST4) which are initially at 1° by 1° to form a 10° by 10° grid boxes to 

improve data coverage and reduce noise. Gong et al. (2003) have further demonstrated that 

spatial aggregation increases the skill o f seasonal total precipitation forecasts.

At times, none of the predefined indices were significantly correlated with the rainfall totals 

and intraseasonal statistics. In such situations, concurrent and lagged simple correlation 

analyses were first undertaken with Hadley Centre SSTs. The significant SST predictors 

identified were then used to undertake partial correlation with the atmospheric variables. 

There were also cases where two or more predefined predictors were significantly related to 

the same intraseasonal statistics but highly dependent on each other. The predictor that was 

most frequently picked was used. In case both predictors are equally frequently occurring, the 

predictor with the highest correlation coefficient was retained. In case two or more predefined 

predictors which are not significant related to each other were identified, there were all 

retained.

3.2.5.3 Selection of robust potential predictors

The foregoing procedure yielded quite a large number of oceanic and atmospheric predictors. 

I here was therefore the need to reduce the high number of predictors. In this study, apart 

from the use o f standard statistical methods, the selection of the potential predictors was also
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based on the physical interpretation o f the relationship with East Africa rainfall. Only those 

predictors with a plausible physical/dynamical relationship were retained and later used to 

generate the regression model. The interpretation of the lag-relationship was based on the 

persistence of the predictor within its geographical location or its modulation on other climate 

variables especially the Sea Surface Temperature (for atmospheric variables).

Similarly, upon identification of the several predictors for the different intraseasonal 

statistics, comparative analysis was undertaken to identify the predictors that were more or 

less located at the same position with a shift of a few degrees of latitude or longitude. This 

not only reduced the number o f predictors further but also ensured that only robust predictors 

were retained. The number o f predictors had to be reduced since we need to include only 

those predictors that have significant association with our predictants. Robust predictors are 

those predictors with strong and consistent association with the predictants and are further 

supported by logical physical or dynamical linkage with the majority of the predictants. Small 

shifts in the location of the predictors from one predictand to the next are likely to reflect 

sampling errors rather than real climatic features. The main misgiving with these steps was 

that the variance explained by the regression models developed from these few predictors 

was likely to be slightly reduced. However as observed in Philippon (2002), it is desirable 

that physical consistency outweighs statistical skill in empirical climate prediction.

3.2.6 Development of regression models

The final specific objective as outlined in section 1.3 was predictability assessment of the 

various intraseasonal rainfall variables through statistical models based on the linkages 

already identified, for the improvement of early warning systems. Forward stepwise 

multivariate linear regression (MLR) analysis was used to develop empirical statistical 

prediction models with sufficient lead time. The concept of the adjusted correlation 

coefficient was used to determine the number of predictors to be retained in the model. The 

cross validation method and calculation of the Linear Error in Probability Space (LEPS) skill 

score were used to assess the performance of developed MLR models. The residuals from the 

models developed were finally evaluated using the Durbin-Watson statistics and 

Kolmogorov-Smirnov test. The intraseasonal statistics with correlation coefficient of less 

than 0.5 between the observed and the cross-validated model output time series were 

classified as unpredictable.
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3.2.6.1 Multivariate Linear Regression

The multivariate linear regression (MLR) approach is a common method in seasonal climate 

prediction. It is the most frequently used method over the East Africa region and has provided 

seasonal forecasts with useful skills (Mutai el al., 1998; Camberlin and Philippon, 2002; 

korecha and Barnston, 2007; Nyakwada, 2009). Statistical relationships between various 

wet/dry spells statistics and oceanic/atmospheric predictors were developed using forward 

stepwise MLR approach at sub-regional scale.

In the forward stepwise MLR approach, each predictor variable is entered into the regression 

model in an order determined by the strength of their correlation with the predictand. The 

effect of adding each predictor is assessed and the predictor retained if it contributes 

significantly to the variance explained by the model. This procedure is repeated until all the 

predictors that contribute to the variance of the model are retained. Those predictors that do 

not significantly contribute to the explained variance of the model are thus left out.

A MLR model which expresses intraseasonal statistics at any specific time t (T,) as a function 

of atmospheric and oceanic predictors at time lag k (X„+*) may be expressed in Equation 

3.19;

Y, = a +b>X„.>+b,XM+..... +b„X„.t <319)

For zero lagged relationship, Equation 3.19 becomes;

Y, = a+b,X„+b2X 2,+.....+b„X„ (3-2°>

where a is the regression constant and b, are regression coefficients. Both the regression 

constant and coefficients were estimated from available records.

The strong inter-correlation between the predictors leads to multi-collinearity which means 

that the predictors are non-orthogonal. This results to lacks o f the model’s accuracy and may 

lead to unclear interpretation of the regression coefficients as measures o f original effects 

(Me Cuen, 1985). It further imposes the problem of redundancy and unnecessary loss of 

degrees of freedom especially when large numbers of correlated predictors are used (Krishna 

Kumar et al., 1995). To increase the reliability of regression models while using the multi- 

collinearity predictors, the variance inflation factor, VIF (Fox, 1991) should first be 

determined. The VIF measures how much the variance of the estimated regression
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coefficients are inflated by multi-col linear predictors compared to when the independent 

variables are uncorrelated. In the current study, only independent variables that are 

uncorrelated were used to generate the regression model since the variance inflation factor 

was not calculated.

The cross validation method was used to test the developed MLR models for the various sub

regional intraseasonal statistics of the wet and dry spells (SRISS). This method involves 

temporarily discarding observations from the dataset and then estimating the discarded 

observations. The estimated values are then compared with the discarded value (Isaaks and 

Srivastaka, 1989). In this study, three values were left out each time and regression models 

developed with the remaining values. The regression model developed was then used to 

estimate the discarded values. The method was used since the available time series of SRISS 

was not long enough to enable the subdivision of the time series into training and verification 

periods. More details of cross validation method can be obtained from Issaks and Srivastaka 

(1989), Barnston et al. (1996) and Wilks (2006).

3.2.6.2 Number of predictors to be retained

A popular measure of the strength of association in linear regression between the observation 

and the model output is the coefficient of determination Z?2, defined as the proportion of 

variability in the outcome variable explained by the model. However, a serious problem with 

this measure is that it can substantially overestimate the strength of association when the 

number of predictors p, is not small relative to the number of observations n. It can attain its 

maximum value of 1 for any saturated model even when the predictors and outcome are 

independent o f each other. The adjusted coefficient of determination overcomes this problem 

(Liao and McGee, 2003). The adjusted coefficient of determination, in the forward stepwise 

MLR analysis, discourages incorporating additional predictors that will make little marginal 

changes in the unexplained variance. The adjusted Z?2 accounts for the number of the 

predictors in the model and only increases if the new predictor improves the model more than 

would be expected by chance. The number of predictors to be retained in the final MLR 

model was thus determined from the adjusted R2 of the cross-validated model. When the 

addition of a new predictor results in a decrease of the adjusted Z?2 or remains unchanged, the 

new predictor was excluded and the model was developed with the previous predictors only.
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The adjusted R2 is defined as

f

*L = i-
Yl ~  1 \

n -  p - 1
0 -  r ) (3.21)

where p is the number of predictors, n is the number of observations and R is the correlation

coefficient.

Equation 3.21 means that the adjusted R2 incorporates only the unexplained (from the 

denominator term) and total variance (from the numerator term). Delsole and Shukla (2002) 

and Nyakwada (2009) have observed that fewer predictors tend to produce better models than 

those developed using large numbers o f predictors.

In addition to the adjusted R2, the Analysis of Variance (ANOVA) was used to test the 

statistical significance of the regression constants, together with the variance accounted for 

by oceanic and atmospheric predictors. Details of ANOVA test and other regression 

principles can be obtained from Kendall and Stuart (1961), Kendall (1976), and Wilks (2006) 

among other authors.

3.2.6.3 Assessment of the model performance

Several methods can be used to assess the performance/skill o f prediction models. Zhang and 

Casey (2000) have broadly grouped them into four categories and highlighted their 

advantages and disadvantages using the Australian winter and summer seasonal rainfall 

forecast model hindcasts for a period of 96 years. The Linear Error in Probability Space 

(LEPS) score that was developed by Ward and Folland (1991) and later refined by Potts et al. 

(1996) was used in this study.

LEPS is defined as the mean absolute difference between the cumulative frequency of the 

model forecast and the cumulative frequency of the observations (Jolliffe and Stephenson, 

2003). It evaluates the model skill by penalizing errors in terms of the distance between 

forecasts and observations in cumulative probability space. It gives relatively more penalty 

when forecasting events around average values but gives relatively higher scores and less 

penalty for forecasts of extreme events (Zhang and Casey, 2000).
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The normalized linear error in probability space score is given by

5 "  = 3 ( 1 +  P ‘, -  P r + P o - P o ) -  1 (3.22)

Where P a is the cumulative probability distribution of the observations and P F is the 

cumulative probability distribution o f the regression model forecasts. A maximum score of 2

is achieved w henP () = P, .  =0 o rP () = P ,  = 1 while a minimum score of -1 is attained

w hen/^, =0 and P, =\ or PQ- 1 and PF= 0. It is often desirable to have a measure of 

overall skill over a range of -100% to 100%. For a sufficiently large ensemble o f forecast 

being assessed together, a method has been developed. To achieve the skill range from -100% 

to 100%, the average skill (SK) for continuous, categorical and probability forecasts is 

defined by equation 3.23.

S K  =
1 1 0 0 5 '

1 5 '^ m

(3.23)

where the summation is over all pairs of forecasts and observations. The definition of 

S  depends on whether the number is positive or negative. If positive, S m is the sum of the

maximum possible scores given by the observations. If the numerator is negative, S m is the

sum of the modulli of the worst possible scores given the observations. That in short means 

that negative values of SK score indicate that the models developed are worse off than 

climatology while positive values indicate that the models are better off than climatology. A 

value of zero means that the model is as good as the climatology. More details of its 

derivation can be found in Potts el al. (1996). Camberlin and Philippon (2002) have 

previously used this skill score measure over Eastern Africa.

3.2.6.4 Residual analysis from the regression models

A good multivariate linear regression model requires that the residuals (the difference 

between the actual observations and the forecasted values) are independent and have a 

normal distribution (Nayagam et al., 2008). The Durbin-Watson statistic checks the 

significance o f the assumption that the residuals for successive observations are uncorrelated 

/ independent. Its value ranges from zero to four. Values more than two indicate that there
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exists some negative autocorrelation and values less than two, a positive autocorrelation. The 

Durbin-Watson (DW) statistic is defined as

DW = T- iv

I Er=\

(3.24)

where N is the number of residuals, Ey is the residual at the time T and 

Et-i is the residual at timeT-1.

The values of the Durbin-Watson statistic are compared with the critical values tabulated by 

Farebrother (1980) since the regression models generated did not have the constant term. If 

there exists any kind of significant lag one autocorrelation, then the assumption of 

independence o f residuals is violated and the model can be improved further (Makridakis et

al., 1998).

One sample Kolmogorov-Smirnov test was used to ascertain that the residuals were normally 

distributed. Kolmogorov-Smirnov test determines whether an underlying probability 

distribution from a finite sample differs from a hypothesized distribution by comparing the 

empirical distribution function with the cumulative distribution function specified by the null 

hypothesis. Minor improvements made by Lilliefors leads to the Lilliefors test (Lilliefors, 

1967).

The null hypothesis is that the residuals from the multivariate linear regression (MLR) 

models are normally distributed. The alternative hypothesis is that the residuals have a 

distribution different from the normal distribution function.

3.3 Limitations and assum ptions of the study

In the scientific studies including climatology and meteorology, there are limitations that one 

comes across and assumptions that have to be made in order for the study to move forward. 

The current study was not an exception.

The first major limitation was that the many rainfall stations that were established in the 

colonial period have been stopped due to the high cost of operations. Only a few stations 

established in the colonial period still exist today which means that stations/locations with 

long time series of the daily rainfall series are limited. This had an effect on the network of 

the stations used. Another limitation was the slow pace of data digitization especially for the
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non-synoptic stations. This has an effect o f reducing the length of the data records for the

stations used.

Based on the foregoing limitations, several assumptions were made. The first assumption 

made was that the station network and study period used in this study is representative of the 

study region based on availability o f long uninterrupted time series of daily rainfall series. 

The results obtained and conclusions made may therefore have slight differences with similar 

studies made over the study region at a different time especially in the context of the climate 

change aspect.

Another assumption made was that higher latitude (latitudes beyond 45°N or 45°S) oceanic 

and atmospheric systems, at seasonal scale, do not distinctly influence the rainfall 

characteristics over the equatorial eastern Africa. The search of the linkages between the 

intraseasonal statistics of the wet and dry spells was therefore confined to the equatorial, 

tropical and mid-latitudes regions.

The nesting o f  the oceanic field was based on the assumption that SST fields with large 

spatial extent at far distance may be expected to influence the East Africa climate just like 

SST fields with small spatial extent at close distance. For atmospheric fields, the lower, 

middle and upper atmospheric levels can be adequately represented by the 925mb, 700mb 

and 200mb. The search for linkages with atmospheric variables from re-analysis was 

therefore restricted to these levels with the exception o f the specific humidity which excluded 

the upper atmospheric level.

Small shifts in the location of the predictors from one predictand to the next were assumed to 

reflect sampling errors rather than real climatic features. This tends to slightly reduce the 

variance explained by the multivariate linear regression models developed from these few 

predictors. Philippon (2002) has indicated that it is desirable that physical consistency 

outweighs statistical skill in empirical climate prediction.

The identification of linkages between the large-scale climate fields and interannual 

variability of the sub-regional intraseasonal statistics of the wet and dry spells (SRISS) was 

done by total and partial linear correlation analysis. The multivariate linear regression 

models that are developed to predict the SRISS were also linear. These two assumptions were 

made despite the fact that climatic processes are non-linear. Under certain circumstances, the 

predictive part may therefore be underestimated.



The results obtained and conclusions derived in the next chapter are thus based on these 

major assumptions, taking into account the limitations already stated.
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CHAPTER FOUR

RESULTS AND DISCUSSIONS

4.0 Introduction
This chapter presents the results obtained from various methods that were used to achieve the 

overall and specific objectives o f the study. The results from data quality control analysis are 

how ever presented first since the quality of the data used in any study form fundamental basis 

upon which the information is derived and conclusions drawn. The methods used to estimate 

the missing data and the quality control checks were presented in section 3.2.1.

4.1 Data m anagement
4.1.1 Double mass curve homogeneity test

Results from the double mass curve analysis of the gap-filled daily rainfall data indicated that 

a single straight line could be fitted to the cumulative seasonal rainfall totals for any two 

chosen stations. These results were similar to those obtained by Gitau (2005) and Komutunga 

(2006) among others. Figures 4.1 and 4.2 show typical examples of the double mass curve 

that were obtained for the long and short rainfall season respectively.

Figure 4.1: Double mass curve for Mwanza and Musoma during the long rainfall season
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4.1.2 Comparison of radiosonde with re-analysis data

Ihe correlation coefficients between monthly radiosonde observations and re-analysis zonal 

wind component for both NCEP/NCAR and ERA with the seasonal cycle not removed are 

given in Table 4.1. From this table, it was quite clear that the correlation coefficients between 

radiosonde observations and ERA40 and NCEP/NCAR re-analysis at most standard pressure 

levels are high with Nairobi data, but relatively low for Bangui. For Bangui, both re-analysis 

records accounted for 8% to 33% of the variance of the radiosonde zonal wind observations 

at the various standard pressure levels considered. Deseasonalised data for both the reanalysis 

and radiosonde observations gave similar results hence are not discussed. The ERA40 

accounts for slightly higher variance o f the radiosonde data observations for both Nairobi and 

Bangui at most standard pressure levels considered compared to NCEP/NCAR re-analysis.
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Table 4.1: Correlation coefficient between radiosonde observations at Bangui and 
Nairobi and monthly re-analysis data from the nearest grid-point

850mb 700mb 500mb 200mb 150mb

Nairobi Radiosonde ERA40 - 0.837 0.788 0.877 0.847

U-component NCEP - 0.794 0.810 0.809 0.823

Bangui Radiosonde ERA40 0.508 0.510 0.290 0.574 -

U-component NCEP 0.416 0.368 0.287 0.543 -

Several evaluations have indicated superior performance by ERA40 over NCEP/NCAR on 

some facets o f the re-analyses. A comparison of the re-analyses of moisture budgets by 

Stendel and Arpe (1997) concluded that the ERA40 precipitation fields were superior in the 

extra-tropics to those of other re-analyses when compared with Global Precipitation 

Climatology Project (GPCP) observational data. Annamalai et al. (1999) found the ERA40 to 

be better in describing the summer Asian monsoon. Engelen et al. (1998) confirmed the 

ECMWF re-analysis water vapor fields in the lower and upper troposphere were superior. 

Newman et al. (2000) evaluation of the NCEP, National Aeronautics and Space 

Administration (NASA), and ERA40 which focused especially on the warm pool area of the 

Pacific from the standpoint of outgoing longwave radiation, precipitation and 200-mb 

divergence, found substantial problems with all re-analyses, although ERA40 gave the best 

estimates of the 200-mb divergence.

A study by Camberlin et al. (2001) over Africa, south of Sahara using split moving-windows 

dissimilarity analysis (Cornelius and Reynolds, 1991; Kemp et al., 1994) has shown that 

major discontinuities exist in the time series of five NCEP/NCAR variables considered prior 

to 1968 at nearly all levels but more widespread for the lower troposphere. The five variables 

that were considered are the zonal (u) and meridional (v) components of the wind, 

geopotential height (cp), air temperature (T) and specific humidity (H).

The observed differences in the re-analysis datasets are due to the different observational 

databases, different analysis systems that may run at different resolutions, and different 

model dynamics and physics. In the tropics, the constraint o f geostrophy on the divergent 

circulation is weak and thus there is considerable sensitivity to the diabatic heating field 

particularly that associated with moist processes (Annamalai et al., 1999). In data sparse 

areas, the analysis heavily depends on the first guess supplied by the forecast model which in
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return will be sensitive to the diabatic heating distribution produced by the physical 

parameterizations used in the model.

The consistency of the ERA40 in replicating the radiosonde observations at the two locations 

indicates the degree to which it represents the truth and hence its reliability when used for 

model development and validation. It was therefore used in the subsequent analysis in this

study.

For the data management, the study concluded that the daily rainfall observations were of 

good quality and ERA40 re-analysis was most representative o f the radiosonde observations. 

They could therefore be subjected to further analyses in order to attain the overall and 

specific objectives of the current study. These quality controlled data formed the foundation 

of all the analyses that were undertaken in this study. The results of zoning the study domain 

into few near-homogeneous sub-regions are discussed in the next section.

4.2 Near-homogeneous sub-regions for the study area
Most of the zoning of rainfall network into near-homogeneous rainfall sub-regions over the 

East Africa has been based on the Rotated Principal Component Analysis (RPCA). These 

include the studies by Ogallo (1980), Basalirwa (1991), Indeje et al. (2000) and Komutunga 

(2006) among others. However, none o f these studies have zoned the Eastern Africa region 

into near-homogeneous rainfall sub-regions based on the observed gauged daily rainfall. The 

results obtained from this study were nevertheless compared with those of other studies that 

used observed gauged rainfall data at other timescales.

Application o f the Rotated Empirical Orthogonal Functions (REOF) and simple correlation 

analysis to the gap-filled quality controlled daily rainfall data yielded 6 near-homogenous 

rainfall sub-regions for both the long and the short rainfall seasons as shown by Figures 4.3 

and 4.4 respectively. This simply means that only 6 Principal Components were found to be 

significant at 95% confidence level according to Monte Carlo testing. It should be stressed 

that REOF produces patterns of rainfall variability rather than patterns of actual rainfall since 

the data after square-root transformation were normalized before the procedure was carried 

out and the mean rainfall removed (Williams et al., 2007). The regionalisation was therefore 

based on the occurrence and intensity o f daily rainfall events, so that stations/locations that 

receive rainfall under related synoptic conditions fall within the same sub-region (Tennant 

and Hewitson, 2002).
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The six near-homogeneous zones derived from the daily rainfall series over East Africa 

during the long rainfall season (Figure 4.3) are: 1. CK -  Central and Western Kenya, 2. CS -  

Coastal strip o f Kenya and Tanzania, 3. NK -  Northeastern Kenya, 4. WT -  Western 

Tanzania and Southern Uganda. 5. EH -  Southeastern lowlands of Kenya and Northeastern 

Tanzania, and 6. WU -  Western Uganda consisting of most parts of Uganda. However, Arua 

and Lodwar (located at the northern fringe of study region) could not unambiguously be 

attributed to any of the near-homogeneous sub-regions. They were thus grouped together 

with the nearest stations.

The six near-homogeneous zones delineated for the daily rainfall series during the short 

rainfall season (Figure 4.4) are: 1. CK -  Central Kenya and southeastern lowlands, 2. WU -  

Western Kenya and most parts of Uganda, 3. NK -  Northeastern Kenya, 4. CS -  Coastal strip 

of Kenya and Tanzania, 5. CT -  Central and Northern Tanzania, and 6. LV -  Western of 

Lake Victoria and western Tanzania. The spatial patterns of the near-homogeneous zones for 

the two seasons are quite different with the exception of northeastern Kenya and the coastal 

strip of Kenya and Tanzania, which looks similar with some few modifications.
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Figure 4.3: The six near-homogeneous sub-regions obtained from daily rainfall series 
during long rainfall season

Figure 4.4: The six near-homogeneous sub-regions obtained from daily rainfall series 
during short rainfall season
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Table 4.2: Eigen values, variance and cumulative variance explained

Principal
Component

Eigen value Variance 
explained (%)

Cumulative variance 
explained (%)

Long 1 2.70 7.49 7.49
Rainfall 2 2.51 6.97 14.46
Season 3 2.22 6.16 20.62
(March- 4 2.05 5.70 26.32
April-May) 5 1.89 5.26 31.59

6 1.83 5.08 36.67

Short 1 2.54 7.04 7.04
Rainfall 2 2.50 6.96 14.00
Season 3 2.21 6.13 20.13
(October- 4 2.09 5.80 25.93
November- 5 1.98 5.49 31.42
December) 6 1.74 4.83 36.26

Though the results indicate six significant PCs for both long and short rainfall seasons, the 

spatial patterns for the near-homogeneous rainfall sub-regions have slight variations. This 

may point to the different atmospheric dynamics responsible for the behavior o f climate 

during the various seasons of the year. Even in tropical regions with single-season regimes 

such as India and West Africa, the early and later parts of the rainy season often exhibit slight 

distinct regional patterns and teleconnections (Camberlin and Philippon, 2002). Ininda (1995) 

has recommended that monthly analysis were better during the long rainfall season since the 

season experiences higher variability.

A study by Indeje (2000) classified the entire East Africa region into eight and nine near- 

homogeneous zones based on the annual and seasonal rainfall respectively. It is worthy to 

clarify at this point that southern Tanzania (south of 7° S) was not included in the current 

study since this region has one rainfall season that extends from November to May. Results 

from Indeje (2000) compare quite well over the coastal strip o f Kenya and Tanzania (Zone 1 

in Indeje, 2000) for both rainfall seasons. Farmer (1988) showed that rainfall over the coastal 

areas of Kenya was highly correlated and could be averaged to form a single rainfall index. 

I he spatial pattern of near-homogeneous sub-regions obtained in this study is quite similar to 

those constructed by Ogallo (1988) and Indeje (2000) with some slight variations. The slight 

variations are attributed to the fact that the spatial coherence assessed from daily rainfall data 

arises from both interannual and intraseasonal variability, whereas the use of seasonal and
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annual totals provides information on interannual variability only.

Collectively, the six significant Principal Components (PCs) accounted for 36.67% and 

36.26% of the total variance in the daily rainfall over the Equatorial East Africa region during 

the long and short rainfall seasons respectively (Table 4.2). Compared to the total variance in 

the seasonal rainfall explained by the first six significant PCs of 57% and 73% for long and 

short rainfall seasons respectively (Indeje 2000), the current values are quite low. Camberlin 

and Philippon (2002) have indicated that for the Greater Horn of Africa, it takes 11 

components to explain half o f the total variance in the month-by-month analysis using the 

extended PC A. Further, the use o f the scree test and examination of the spatial patterns 

retained only the first 6 PCs that are subjected to Varimax orthogonal rotation. These 6 

significant PCs together have explained 35.5% of the variance (Camberlin and Philippon, 

2002).

The low percentage of the total variance of daily rainfall explained in the current study may 

be attributed to the noise in the daily rainfall which is smoothed out when summed to obtain 

seasonal and annual totals and also the fact that the synoptic and mesoscale systems that 

mainly influence rainfall at a daily time scale, but only affect a few stations at a time cannot 

be captured at seasonal or higher timescales.

Station rainfall data are only representative of some area of variable size and shape 

surrounding the rain gauge (Huffman et al., 1997). Such point measurements of a spatially 

variable parameter can be highly erratic relative to the rest of the area, and be a poor 

representation o f the effect o f the large scale processes. This is particularly true of daily data. 

Clustering the rainfall stations into near-homogeneous rainfall sub-regions based on 

occurrence of rainfall events overcame this problem. Hence stations that receive rain under 

similar synoptic weather conditions are placed in the same sub-region. Near-homogeneous 

sub-regions based on daily rainfall events captured the higher-order intraseasonal variations 

in rainfall better so that individual synoptic situations and atmospheric circulation anomalies 

plays a greater role.

In conclusion, the study has for the first time been able to classify occurrence of daily rainfall 

over the equatorial eastern Africa region into six near-homogeneous rainfall sub-regions for 

both the long and short rainfall seasons. There were however significant spatial differences in 

the patterns for the individual seasons. The total variance of the daily rainfall explained by
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the six significant PCs are 36.67% and 36.26% for the long and short rainfall seasons 

respectively. Though the total variance explained is low, it can be seen that the sub-regions 

obtained by the REOF and simple correlation are climatologically reasonable (i.e. coherent 

sub-regions within which high covariance is expected) and they seem related to specific 

topographic contexts.

Upon the assessment of the data quality, identification o f the significant RPCs and 

classification of the study domain into near-homogeneous rainfall sub-regions, the baseline 

characteristics o f the wet/dry spells over the study area were studied next.

4.3 Baseline information of wet and dry spells
As indicated in section 3.2.3.1, only one threshold of 1.0 mm was used to delineate the wet 

days from dry ones. A higher threshold of 3.0mm was found to substantially reduce the 

sample size o f the data required for further analysis and make comparisons with most other 

studies less straightforward. It was hence dropped. This section presents the various aspects 

of the intraseasonal statistics of the wet and dry spells.

4.3.1 Local intraseasonal statistics of wet and dry spells

Initially the various local (station level) intraseasonal statistics of wet and dry spells (LISS) 

for the long and short rainfall seasons are individually discussed and compared. Next, the 

association of the LISS with the seasonal rainfall was discussed and finally the trend result of 

the LISS with time was presented. The LISS for the long rainfall (MAM) season are 

presented and discussed first. For both figures 4.5 and 4.6, the kriging method of 

interpolation was used to extrapolate on the areas where the data was not available. Details on 

this interpolation method can be found in Cressie (1990, 1991).

4.3.1.1 Local intraseasonal statistics during long rainfall season

Figures 4.5a and b show the spatial pattern of the mean length of wet and dry spells 

respectively over the study area during the long rainfall season. Figure 4.5a shows that 

longer wet spells are reported over the coastal strip of East Africa, northern Tanzania closer 

to Mt Kilimanjaro and next to Lake Victoria, central and western Kenya. Figure 4.5b shows 

that longer dry spells are confined to northern and eastern Kenya, Central Tanzania and 

northeastern part of Uganda. The mean frequency of wet (dry) spells exceeding 3 (5) days 

and the longest wet (dry) spells had similar spatial patterns hence they are not shown. These 

patterns relatively conform to those of the mean seasonal rainfall amounts with drier (wetter)
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areas tending to show longer (shorter) dry spells and shorter (longer) wet spells.

Figure 4.5: Spatial pattern of the mean length of (a) wet and (b) dry spells in days for 
the long rainfall season (1962 -  2000)

4.3.1.2 Local intraseasonal statistics during short rainfall season

Figures 4.6a and b show the local intraseasonal statistics of the wet and dry spells 

respectively during the short rainfall season. Notable differences were found when the mean 

lengths of the wet spells for the two wet seasons are compared. The longer wet spell that was 

observed over the coastal strip during the long rainfall season was notably absent. However 

for the short rainfall season, most parts along the coast have much less rainfall than during 

the long rainfall season. The longer wet spell that had been observed over the western parts of 

Lake Victoria extended into parts o f western Uganda and most parts of western Tanzania 

(Figure 4.6a). It can also be seen that the mean length of a wet spell is slightly longer during 

the long rainfall season over most parts of study domain. This may help to explain why the 

long rainfall season receives slightly more rainfall than the short rainfall season over most 

parts.

In the case o f the mean length of the dry spell (Figure 4.6b), the patterns are closer to those 

found during the long rainfall season (Figures 4.5b). The spatial patterns of the mean
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frequency of wet (dry) spells o f 3 (5) days or more and those of the longest wet/dry spells are 

similar to those of the mean length o f wet/dry spells, hence not shown.

Figure 4.6: Spatial pattern of the mean length of (a) wet and (b) dry spells in days for 
the short rainfall season (1962 -  2000)

It is equally worthy to compare the local intraseasonal statistics within a given near- 

homogeneous sub-region as derived in section 4.2 for the two rainfall seasons. Two such sub- 

regions remain relatively unchanged between the long and the short rainfall seasons. They are 

the coastal strip of Kenya and Tanzania and the northeastern parts of Kenya (Figures 4.3 and 

4.4). The coastal strip (zone 4 and zone 2 for the long and short rainfall season respectively 

with an additional station of Moshi during the short rainfall season) was selected in order to 

compare the local intraseasonal statistics during the two rainfall seasons. The results of this 

comparison are shown in Table 4.3.

The study concluded that during the long rainfall season, the mean lengths of the wet (dry) 

spells are longer (shorter) and records the longest wet spell. Higher (lower) mean frequency 

of wet (dry) spells of 3 (5) days or more were obtained in the long rainfall season as 

compared to the short rainfall at both local and sub-regional levels. There are more wet days 

during long rainfall season as compared to the short rainfall season which has more dry days. 

In terms of spatial patterns, the local intraseasonal statistics of the dry spells did not show 

marked differences between the long and the short rainfall seasons, unlike the case for the 

local intraseasonal statistics of wet spells that had marked differences between the two

seasons.



Table 4.3: Local intraseasonal statistics of (a) wet and (b) dry spells over coastal strip of East Africa

(a)
Wet spells Mean Length Longest Spell 3 days or more wet Mean Intensity Number of wet 

days

MAM OND MAM OND MAM OND MAM OND MAM OND

Malindi 2.92 1.67 20 10 4.26 1.67 14.88 9.39 34.33 17.72

Mombasa 2.45 1.90 16 9 3.56 2.85 14.81 10.66 30.00 25.59

Lamu 2.78 1.56 23 10 3.38 1.23 16.24 10.16 28.54 12.97

Dares Salaam 2.85 1.82 17 11 6.10 2.59 14.41 13.71 42.64 22.41

Moshi* 2.44 1.53 21 7 5.13 1.31 14.93 8.49 36.82 15.62

* Indicates a station in a different sub-region during the long rainfall season

(b)
Dry spells Mean Length Longest Spell 5 days or more dry Number of dry

days
MAM OND MAM OND MAM OND MAM OND

Malindi 3.67 7.45 26 72 2.69 4.08 39.31 57.13
Mombasa 4.03 4.71 26 29 3.54 4.23 45.13 55.62
Lamu 4.09 10.04 28 64 2.92 3.08 38.39 49.05
Dares Salaam 2.93 5.96 26 39 2.49 4.26 40.28 57.46
Moshi 3.07 6.52 23 41 2.44 3.67 42.85 53.18
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4.3.1.3 Relationship with the local seasonal rainfall totals

Figures 4.7a-i and 4.8a-i indicate the spatial patterns of the Pearson correlation coefficient 

between seasonal rainfall totals and the various intraseasonal statistics of wet and dry spells 

for the long and short rainfall seasons respectively at local level. The results show that there 

is a significant positive (negative) correlation between the seasonal rainfall totals and the 

intraseasonal statistics of the wet (dry) spells over most locations during the two wet seasons 

considered.

During the long rainfall season, all individual locations indicated a strong significant positive 

correlation between the seasonal rainfall totals on one side and number of wet days in the 

season (Figure 4.7a) and the mean rainfall intensity per rain day (Figure 4.7c) on the other 

side. Most locations in Uganda and Tanzania had a weaker though significant positive 

correlation of seasonal rainfall and the mean length of a wet spell (Figure 4.7b), duration of 

the longest wet spell (Figure 4.7f) and the mean frequency o f wet spell of 3 days or more 

(Figure 4.7g). However, they are a few exceptions. For instance, Bushenyi in southwestern 

Uganda had a negative (though insignificant) correlation between the seasonal rainfall totals 

and mean length o f a wet spell (Figure 4.7b) and duration o f the longest wet spell (Figure 

4.7f).

The Pearson correlation coefficient between the intraseasonal statistics of dry spell and the 

seasonal rainfall totals during the long rainfall season are shown by Figures 4.7 d-e, h-i. The 

duration of the longest dry spell (Figure 4.7 h) was the least significantly correlated with the 

seasonal rainfall totals, followed by the mean frequency of the dry spell of 5 days or more 

(Figure 4.7 i) and the number of the dry days (Figure 4.7 d) in that order. The northern part 

of Kenya especially did not have statistically significant association (at 95% confidence 

level) with these three intraseasonal statistics of the dry spells. The mean length of the dry 

spell during the long rainfall season however had significant negative correlation with the 

seasonal rainfall totals over most locations (Figure 4.7 e).

The seasonal rainfall totals during the short rainfall season have a high correlation with the 

intraseasonal statistics of both wet and dry spells (Figures 4.8a-i). Only the number of wet 

days in a season (Figure 4.8a) had significant association (at 5% significant level) over all 

the locations. However, seasonal rainfall totals over Maralal in north Kenya for example have 

insignificant relationship with the mean length of the wet spell (Figure 4.8b), mean rainfall 

intensity per rain day (Figure 4.8c) and the duration of the longest wet spell (Figure 4.8f).
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Some locations over southwestern Uganda and western Tanzania have insignificant 

relationship between the seasonal rainfall and mean frequency of wet spells of 3 days or more 

(Figure 4.8g). Similar to the long rainfall season, the mean length of the dry spell report the 

significant negative association with the seasonal rainfall totals over most locations (Figure 

4.8e).

An interesting observation made during the short rainfall season was that the mean frequency 

of dry spells o f 5 days (Figures 4.8i) and more and the number of dry days (Figures 4.8d) 

had a positive linear relationship with the seasonal rainfall totals over northern and 

northeastern parts o f Kenya (Lodwar, Maralal, Marsabit, Mandera, and Wajir). Lamu and 

Dodoma were also noted to be in this group (Figures 4.8d and i). These locations are in the 

arid and semi-arid lands (ASALs) and receive little rainfall during this season. The above 

pattern was attributed to the fact that as the seasonal rainfall total increases, the seasonal 

length also increases and thus the number of dry days and mean frequency of dry spell of 5 

days or more increases. Otherwise as the seasonal rainfall reduces, the number o f the dry 

days reduces since the rest o f the period within the season constitutes the dry season.
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Figure 4.7: Maps of the Pearson correlation coefficient between seasonal rainfall totals and (a) number of wet days in the season, (b) 
mean length of wet spell, (c) mean rainfall intensity, (d) number of dry days in the season, and (e) mean length of dry spell during the 
long rainfall season. Closed (open) circles indicate positive (negative) correlation. Green (red) indicates the coefficient is significant 
(insignificant) at 95% confidence level



4°N 

2°N 

0°

2°S 

4°S 

6°S

(f) Longest wet spell (g) Wet spells of 3 days or more

4°N 

2°N

(f  

2°S 

4°S 

6°S

30°E 33°E 36°E 39°E 42°E 30°E 33°E 36°E 39°E 42°E

> uSanDa /

& 7 F V
KENYA

* "  : m m )
/  TANZANIA ^

(h) Longest dry spell (i) Dry spells of 5 days or more

Figure 4.7 {coni.): Maps of the Pearson correlation coefficient between seasonal rainfall totals and (f) duration of the longest wet spell, 
(g) frequency of wet spells of 3 days or more, (h) duration of the longest dry spell, and (i) frequency of dry spells of 5 days or more 
during the long rainfall season. Closed (open) circles indicate positive (negative) correlation. Green (red) indicates the coefficient is 
significant (insignificant) at 95% confidence level
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Figure 4.8: Maps of the Pearson correlation coefficient between seasonal rainfall totals and (a) number of wet days in the season, (b) 
mean length of wet spell, (c) mean rainfall intensity, (d) number of dry days in the season, and (e) mean length of dry spell during short 
rainfall season. Closed (open) circles indicate positive (negative) correlation. Green (red) indicates the coefficient is significant 
(insignificant) at 95% confidence level
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Figure 4.8 (cont.): Maps of the Pearson correlation coefficient between seasonal rainfall totals and (f) duration of the longest wet spell, 
(g) frequency of wet spells of 3 days or more, (h) duration of the longest dry spell, and (i) frequency of dry spells of 5 days or more 
during the short rainfall season. Closed (open) circles indicate positive (negative) correlation. Green (red) indicates the coefficient is 
significant (insignificant) at 95% confidence level
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Trend results

*or l l̂c trends of the seasonal rainfall and intraseasonal statistics of wet and dry 

.al scale are shown in Figures 4.9a-j and 4.10a-j for the long and short rainfall 

''Pectively. It can be seen from Figure 4.9a that most locations have 

negative trend for the seasonal rainfall totals but were not significant during the 

II season. However, Lodwar in northern Kenya and Bukoba in northwestern 

how significant decreasing trend for the seasonal rainfall total (Figure 4.9a). 

decreasing trend in the number of wet days (Figure 4.9b) was observed over 

itions in southern Uganda, northwestern and western Tanzania (Bukoba, Kigoma 

). 1 he number of dry days has significantly increased over several parts of Uganda 

»e) during the long rainfall season.

duration of wet spells has reduced significantly over northern, western and 

ganda as well as northwestern Tanzania (Figure 4.9c). On the other hand, the 

ion o f dry spells significantly increased over parts of northern Kenya and western 

igure 4.9f). The mean frequency of wet spells of 3 days or more have significantly 

>ver northeastern Kenya and on the eastern side of Lake Victoria (Figure 4.9h). 

parts of Kenya, the Tanzania-Uganda border and at few isolated locations over 

nd Uganda, there is a significant increasing trend in the mean frequency of dry 

days or more (Figure 4.9j).

ipared with the long rainfall season, the intraseasonal statistics of wet and dry 

i significant trend are quite sporadic during the short rainfall season (Figures 
lowever, the mean frequency of dry spells of 5 days or more (Figure 4.10j), the 

jency of wet spells of 3 days or more (Figure 4.10h) and the duration of the 

t spell (Figure 4.10g) have increased over the entire study area during the short 

ison. Significant increasing trend in the mean frequency of dry spells of 5 days or 

noted over most parts of Uganda, western and coastal Kenya during the short 

ison (Figure 4.10j). In their study, Ambenje et al. (2001) had noted that most 

the tropics exhibited a reduction (though not significant) in both the seasonal 

als and associated frequency which is consistent with the current results.
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Figure 4.9: Maps of the Spearman rank correlation coefficient of (a) seasonal rainfall totals, (b) number of wet days in the season, (c) 
mean length of wet spell, (d) mean rainfall intensity, (e) number of dry days in the season, and (f) mean length of dry spell during the 
long rainfall season. Closed (open) circles indicate increasing (decreasing) trend. Green (red) indicates the trend is significant 
(insignificant) at 95% confidence level
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Figure 4.9 (cont.): Maps of the Spearman rank correlation coefficient of (g) duration of the longest wet spell, (h) frequency of wet spells 
of 3 days or more, (i) duration of the longest dry spell, and (j) frequency of dry spells of 5 days or more during the long rainfall season. 
Closed (open) circles indicate increasing (decreasing) trend. Green (red) indicates the trend is significant (insignificant) at 95% 
confidence level
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Figure 4.10: Maps of the Spearman rank correlation coefficient of (a) seasonal rainfall totals, (b) number of wet days in the season, (c) 
mean length of wet spell, (d) mean rainfall intensity, (e) number of dry days in the season, and (f) mean length of dry spell during the 
short rainfall season. Closed (open) circles indicate increasing (decreasing) trend. Green (red) indicates the trend is significant 
(insignificant) at 95% confidence level



(g) Longest wet spell (h) Wet spells of 3 days or more

(j) Dry spells of 5 days or more

30°E 33°E 36°E 39°E 42°E
Figure 4.10 (cont.): Maps of the Spearman rank correlation coefficient of (g) duration of the longest wet spell, (h) frequency of wet spells 
of 3 days or more, (i) duration of the longest dry spell, and (j) frequency of dry spells of 5 days or more during short rainfall season. 
Closed (open) circles indicate increasing (decreasing) trend. Green (red) indicates the trend is significant (insignificant) at 95% 
confidence level
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An interesting observation from Figures 4.10a-j is that, for the short rainfall season, the 

absence of any trend in seasonal totals masks out significant trends in the distribution of the 

rainfall (Figures 4.10a). The positive trends in both the 3-day wet spells (Figures 4.9h & 

4.10h) and 5-day dry spells (Figures 4.9j & 4.1 Oj) may reflect a change in the rainfall 

distribution, with longer spells becoming more common.

Figures 4.11 and 4.12 provide a summary on the percentage number of stations with 

significant trends for the long and short rainfall seasons respectively. They clearly show that 

during the two seasons and over most locations, there is significant increasing trend in the 

mean frequency o f dry spells of 5 days or more, followed by mean frequency of wet spells of 

3 days or more and the duration of longest wet spells. At least one in every three stations has 

a significant increasing trend in the mean frequency of dry spells of 5 days or more in both 

rainfall seasons (Figures 4.11 and 4.12). During the long rainfall season (Figure 4.11), 

several locations had significant decreasing trend in the mean duration of wet spells, followed 

by the number o f wet days and the mean rainfall intensity during the wet spells. At least one 

in every six stations had significant increasing trend in the mean frequency of wet spells of 3 

days or more and duration of the longest wet spells during the long and short rainfall seasons 

(Figures 4.11 and 4.12).
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Figure 4.11: Percentage number of stations with significant decreasing (negative) and increasing (positive) trends for seasonal rainfall 
totals and the various intraseasonal statistics of wet and dry spells during the long rainfall (MAM) season
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Figure 4.12: Percentage number of stations with significant decreasing (negative) and increasing (positive) trends for seasonal rainfall 
totals and the various intraseasonal statistics of wet and dry spells during the short rainfall (OND) season
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4.3.2 Sub-regional intraseasonal statistics of wet and dry spells

Section 3 .2 .3 .3  clearly indicated the different methods used to compute the sub-regional 

intraseasonal statistics of the wet and dry spells (SR1SS). The results obtained are discussed 

in this section, but first the statistics from the three methods are compared.

4.3.2.1 Comparative analysis of the three definitions of SRISS

Figures 4.13a-c illustrates how the sub-regional intraseasonal statistics o f wet and dry spells 

(SRISS) were derived by using the coastal strip of Kenya and Tanzania (sub-region 2) as an 

example. Figure 4.13a shows a line graph of the PC score for this sub-region during the 

MAM 1977 season. In this instance, the 1.0mm threshold used corresponds to -0.214 for the 

PC score. Figure 4.13b shows the distribution of the wet days at local (station) level where a 

red dot represents a wet day. The last graph in Figure 4.13b shows the distribution of wet 

days obtained by averaging the rainfall amounts and plotting the resultant series while 

maintaining the 1.0mm threshold. Figure 4.13c shows the distribution of the wet days 

obtained from the PC score which were represented as bar graph.

The local and sub-regional statistics obtained from Figures 4.13a-c are shown by Table 4.4. 

The table shows that there is an outright biasness if the daily rainfall amounts from the 

individual stations are averaged and then used to determine the sub-regional statistics. For 

instance, while the other two methods gives 31.5 and 29 as the number of wet days (NW), 

this approach gave 49 number of wet days. This approach tends to overestimate the 

components o f the wet statistics while underestimating those of the dry statistics. Barring et 

al. (2006) have shown that the threshold for delineating wet/dry days on area-average are 

quite different as compared to when using the point observational data. They found out that 

by using the threshold of 1.0mm to delineate the wet and dry days on the point observations, 

the threshold had to be adjusted in order to obtain the same results as those of point 

observations. Averaging the intraseasonal statistics obtained at the local level to obtain areal- 

averaged intraseasonal statistics on the other hand give results that are consistent with those 

of the PCA score analysis.

It is concluded therefore that the method of temporal averaging daily rainfall time-series 

before generating ISS is unsuitable. The next step is therefore to further assess the respective 

merits of the two remaining methods.
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Dates of the season

Figure 4.13: The temporal distribution of wet and dry spells during the MAM 1977 over 
the coastal strip of Kenya and Tanzania (sub-region 2) at local and sub-regional levels, 
(a) The PC score time series, (b) the distribution of wet and dry spells at four individual 
stations and from the areal-average rainfall for the four stations, and (c) the 
distribution of wet and dry spells from the PCA score time series. The x-axis is the dates 
of the season and is common to the three graphs.
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Table 4.4: The intraseasonal statistics for MAM 1977 over sub-region 2 at local and 
sub-regional levels

LOCAL SCALE SUB-REGIONAL SCALE

ISS

Malindi Mombasa Lamu Dares sa

Areal-

Average

ISSs

Average

rainfall

PCA

score

SR 298.4 196.9 243.8 525.4 316.1 316.1

MW 2.21 1.85 2.00 3.75 2.45 4.90 2.42

MD 3.15 3.92 3.17 2.91 3.29 3.56 3.36

LW 4 5 5 10 6 11 6

LD 7 13 10 7 9.25 10 10

3W 6 3 3 6 4.5 6 5

5D 4 4 3 2 3.25 2 3

NW 31 24 26 45 31.5 49 29

ND 41 47 38 32 39.5 32 37

MI 9.63 8.20 9.38 11.68 9.72 6.45

The different intraseasonal statistics obtained at the local level (for each station) were 

correlated with those obtained for the PCA scores and those areal-averaged for each sub- 

region. The aim was to assess how representative of the local rainfall distribution were the 

types o f the sub-region indices. The box-plots of the correlation coefficients during the long 

and short rainfall seasons are shown by Figures 4.14 and 4.15 respectively. Both figures 

indicate that seasonal rainfall totals and number of wet days have the highest correlation 

coefficient in both cases while the mean frequency of dry spells of 5 days or more have the 

least coefficient. A closer look shows that during the long rainfall season there are no outliers 

unlike the short rainfall season (Figures 4.14a and 4.15a). In the case of areal-average 

SRISS, both seasons show significant correlations for all the components considered (Figure 

4.14b and 4.15b). More outliers are also observed in these correlations as compared to the 

PCA-based SRISS, but on the whole the values obtained for the PCA-based data are lower, 

which simply means that the PCA-based data was less representative of the local rainfall 

distribution. Ogallo et al. (1988) have used both the PC-based and arithmetic areal-average 

seasonal rainfall totals indices at near-homogeneous zones over East Africa region to study 

their teleconnection with the global sea surface temperature anomalies.
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It was concluded in this sub-section that the SRISS obtained from averaging the daily rainfall 

amounts from the individual stations are the most unrealistic and thus could not be used in the 

current study. The PCA-based SRISS is not as representative as the areal-average SRISS. 

However, it is free from outliers. The SRISS from these two approaches were thus kept for 

further analysis.
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Figure 4.14: Box-plot of correlation coefficient (1962 - 2000) between (a) PCA-SRISS 
and LISS, and (b) areal-averaged SRISS and LISS during the long rainfall (MAM) 
season. For each ISS, the correlations are those obtained between the 36 LISS time- 
series and the SRISS for the corresponding sub-region. The dashed lines show the 
significant threshold at 95% confidence levels.
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(a) Boxplot of correlation between OND Regional PCAISS and LISS

Boxplot of correlation between OND Regional Areal-Average ISS and LISS
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Figure 4.15: Box-plot of correlation coefficient between (a) PCA-SRISS and LISS and 
(b) areal-averaged SRISS and LISS during the short rainfall (OND) season. For each 
ISS, the correlations are those obtained between the 36 LISS time-series and the SRISS 
for the corresponding sub-region. The dashed lines show the significant threshold at 
95% confidence levels

4.3.2.2 Relationship with sub-regional seasonal rainfall totals

The relationship between the sub-regional seasonal rainfall total and the sub-regional 

intraseasonal statistics of wet and dry spells (SRISS) obtained from the PCA scores and those 

obtained from areal-averaging of the intraseasonal statistics at locations fonning a sub-region 

is presented in this part. The objective is to assess how dependent are the seasonal rainfall 

totals on the distributions of the rainfall within the rainfall season as supplied by wet and dry 

spells.
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At the sub-regional level, most of the intraseasonal statistics of the wet spells for the two 

rainfall seasons had significant positive relationship with the seasonal rainfall total (Tables 

4.5 and 4.6). Just like at the local level, the mean frequency of dry spells of 5 days or more 

had the least and insignificant associations with the seasonal rainfall totals. The intraseasonal 

statistics of the dry spells for the long rainfall season are least associated with seasonal 

rainfall totals as compared to the short rainfall season.

The study therefore concluded that at both local and sub-regional levels, the seasonal rainfall 

totals has positive (negative) linear associations with the intraseasonal statistics of the wet 

(dry) spells in both seasons. While the relationships with the intraseasonal statistics of the 

wet spells are mainly significant over most locations, those of the dry spells remain 

insignificant mostly. The mean frequency of dry spells of 5 days or more (the number of wet 

days) has the least (strongest) association with the seasonal rainfall totals at both local and 

sub-regional levels. Comparison between the two seasons further concluded that the 

associations between the seasonal rainfall totals and the intraseasonal statistics of the wet and 

dry spells are stronger in the short rainfall season than the long rainfall season.
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Tabic 4.5: Pearson correlation coefficient between the seasonal rainfall totals and intraseasonal statistics during long rainfall season at
sub-regional level for the period 1962 - 2000. Bold number indicates the coefficient is significant at 95% confidence level

Sub-region
Wet Dry Mean Mean Longest Longest 3 Wet 5 Dry
days days Wet Dry Wet Dry days days Intensity

PC A score 0.94 -0.72 0.56 -0.73 0.71 -0.45 0.61 -0.41 0.92
Central and western Kenya

A rea l a v e ra g e 0.92 -0.23 0.74 -0.61 0.71 -0.41 0.77 -0.33 0.63

Coastal strip of Kenya and PC A score 0.77 -0.35 0.61 -0.39 0.73 -0.36 0.12 -0.11 0.95

Tanzania Areal average 0.82 -0.33 0.65 -0.42 0.72 -0.40 0.48 -0.31 0.82

PC A score 0.92 0.08 0.73 -0.46 0.73 -0.13 0.70 -0.02 0.86
Northeastern Kenya

Areal average 0.88 0.11 0.67 -0.74 0.59 -0.28 0.76 -0.06 0.51

Western Tanzania and PC A score 0.80 -0.63 0.60 -0.33 0.41 -0.36 0.53 -0.34 0.99
southern Uganda Areal average 0.72 -0.38 0.57 -0.52 0.29 -0.22 0.44 -0.26 0.68

Southeastern lowlands of 
Kenya and northeastern

PC A score 0.92 -0.24 0.71 -0.55 0.70 -0.15 0.72 -0.38 0.86

Tanzania Areal average 0.87 -0.12 0.75 -0.54 0.70 -0.37 0.86 -0.22 0.64

PC A score 0.86 -0.26 0.26 -0.40 0.25 -0.40 0.75 0.29 0.98
Most parts of Uganda

Areal average 0.69 -0.10 0.39 -0.49 0.28 -0.37 0.49 -0.08 0.70
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Table 4.6: Pearson correlation coefficient between the seasonal rainfall totals and intrascasonal statistics during short rainfall season at
sub-regional level for the period 1962 - 2000. Bold number indicates the coefficient is significant at 95% confidence level

Wet Dry Mean Mean Longest Longest 3 Wet 5 Dry
Sub-region days days Wet dry wet dry days days Intensity

Central Kenya and PC A score 0.95 -0.30 0.71 -0.55 0.72 -0.40 0.76 -0.20 0.88

southeastern lowlands Areal average 0.97 -0.42 0.86 -0.85 0.77 -0.68 0.93 -0.49 0.75

Western Kenya and most parts PC A score 0.90 -0.82 0.44 -0.57 0.59 -034 0.66 -0.22 0.96

of Uganda Areal average 0.94 -0.28 0.77 -0.20 0.81 -0.28 0.82 -0.36 0.67

PC A score 0.96 -0.12 0.77 -0.33 0.90 -0.36 0.68 -0.03 0.67
Northeastern Kenya

Areal average 0.91 0.08 0.66 -0.45 0.76 -0.36 0.80 0.23 0.75

Coastal strip of Kenya and PC A score 0.96 -0.57 0.74 -0.67 0.75 -0.58 0.85 -0.25 0.70
Tanzania Areal average 0.96 -0.40 0.88 -0.64 0.88 -0.63 0.93 -0.04 0.86

PC A score 0.93 -0.44 0.77 -0.62 0.72 -0.33 0.58 -0.42 0.89
Central and northern Tanzania

Areal average 0.93 -0.52 0.79 -0.59 0.73 -0.49 0.87 -0.65 0.57

Western of Lake Victoria and PC A score 0.89 -0.79 0.65 -0.63 0.33 -0.41 0.74 -0.68 0.97
western Tanzania Areal average 0.79 -0.69 0.76 -0.62 0.65 -0.45 0.75 -0.61 0.60
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4.3.2.3 Trend results

The spearman rank correlation coefficients of seasonal rainfall totals and SRISS over the 

period 1962 to 2000 for the long and short rainfall seasons are shown by Tables 4.7 and 4.8 

respectively. During the long rainfall season, most of the intraseasonal statistics did not have 

a significant trend at sub-regional scale apart from sub-region 4 covering the western parts of 

Lake Victoria, northwestern and western Tanzania and southern Uganda. This sub-region had 

significant decreasing trend in seasonal rainfall totals, number of wet days in a season and 

mean duration o f wet spells for both the PCA score and areal-average derived statistics. 

Further, the PCA score derived mean rainfall intensity and duration of longest wet spell had 

significant decreasing trend while significant increasing trend was observed for number of 

dry days in a season and the mean frequency of dry spells o f 5 days or more for same sub- 

region 4. It is also worthy to highlight that sub-regions 3, 4 and 5 covering Northeastern 

Kenya; Coastal strip of Kenya and Tanzania; and Central and northern Tanzania respectively 

had significant increasing trend in the occurrence of dry spells of 5 days or more derived 

from PCA score.

As shown in Table 4.8, most of the intraseasonal statistics did not have significant trends at 

sub-regional level during the short rainfall season, except for some positive trends in the 

mean frequency of dry spells of 5 days or more.

In conclusion, significant trends were noted in all the intraseasonal statistics o f the wet and 

dry spells though at few isolated locations and sub-regions during the two rainfall seasons. 

However, significant increasing trend in the mean frequency ol dry spells of 5 days or more 

shows an organized pattern for the two seasons at both local and sub-regional levels. Some 

crops such as maize are particularly sensitive to long dry spells around the flowering stage. 

The frequency of prolonged dry spells of various durations needs therefore to be studied.
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Table 4.7: Spearman rank correlation coefficient of the seasonal rainfall totals and intraseasonal statistics at sub-regional scale during
long rainfall season for the period 1962 - 2000. Bold number indicates significant trend at 95% confidence level

Sub-region Seasonal Wet Dry Mean Mean Longest Longest 3 Wet 5 Dry
Rainfall Intensity days days Wet Dry Wet Dry days days

Central and western Kenya
PC A score -0.19 -0.20 -0.18 0.25 -0.22 0.13 -0.07 0.11 0.06 0.23

Areal average -0.20 -0.24 -0.22 -0.08 -0.11 0.05 -0.01 -0.17 -0.27 0.09

Coastal strip of Kenya and PC A score 0.13 0.15 0.07 0.17 -0.01 -0.04 0.14 0.12 0.11 0.29

Tanzania Areal average 0.14 0.06 0.08 -0.13 0.19 -0.03 0.24 -0.01 -0.01 -0.07

PC A score -0.24 -0.22 -0.13 0.28 -0.18 0.32 0.03 0.35 0.01 0.39
Northeastern Kenya

Areal average -0.23 -0.42 -0.08 0.19 -0.01 0.18 ' 0.02 0.14 0.02 0.36

Western Tanzania and PC A score -0.33 -0.34 -0.34 0.33 -0.40 -0.06 -0.41 0.19 -0.10 0.42
southern Uganda Areal average -0.42 -0.14 -0.40 0.12 -0.42 0.19 -0.18 0.05 -0.04 0.13

Southeastern lowlands of 
Kenya and northeastern

PC A score -0.02 -0.05 -0.08 0.05 0.03 0.14 0.10 -0.06 0.24 0.34

Tanzania Areal average -0.00 0.13 -0.09 0.00 -0.13 0.18 -0.02 0.12 -0.11 -0.01

PC A score -0.15 -0.14 -0.04 0.11 -0.28 -0.16 0.08 0.04 -0.05 0.10
Most parts of Uganda

Areal average -0.09 -0.00 -0.28 0.35 -0.51 0.08 -0.33 -0.07 -0.20 0.20
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Tabic 4.8: Spearman rank correlation coefficient of the seasonal rainfall totals and intraseasonal statistics at sub-regional scale during
short rainfall season for the period 1962 - 2000. Bold number indicates significant trend at 95% confidence level

Sub-region Seasonal Wet Dry Mean Mean Longest Longest 3-wet 5-dry
Rainfall Intensity days days Wet Dry Wet Dry days days

Central Kenya and PC A score 0.10 0.12 0.22 -0.07 0.08 -0.30 0.06 0.02 0.46 0.18

southeastern lowlands Areal average 0.13 0.13 0.08 -0.14 0.05 -0.12 0.03 -0.02 0.17 -0.10

Western Kenya and PC A score 0.08 0.07 -0.06 0.13 -0.21 0.06 -0.13 0.10 0.22 0.16

most parts of Uganda Areal average 0.07 0.12 -0.06 0.21 -0.12 0.20 -0.08 0.07 -0.07 0.34

PC A score -0.23 -0.22 -0.20 0.12 -0.15 0.23 -0.10 0.18 0.05 0.29
Northeastern Kenya

Areal average -0.24 -0.32 -0.10 0.07 0.04 0.21 -0.02 0.06 -0.00 0.14

Coastal strip of Kenya PCA score 0.08 0.10 0.12 0.16 0.01 -0.12 0.16 -0.06 0.12 0.47

and Tanzania Areal average 0.13 0.16 0.11 0.17 0.01 -0.10 0.07 -0.08 0.06 0.28

Central and northern PCA score -0.11 -0.11 -0.12 -0.04 0.06 0.30 0.01 0.11 0.15 0.28

Tanzania Areal average -0.08 0.13 -0.19 -0.18 -0.18 -0.06 -0.24 0.01 -0.13 0.04

Western of Lake 
Victoria and western

PCA score 0.09 0.10 0.10 -0.02 -0.23 -0.28 -0.28 -0.20 0.39 0.10

Tanzania Areal average 0.12 0.27 -0.01 0.07 -0.18 -0.05 -0.11 -0.22 0.11 0.11
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4.4 Spatial coherence and potential predictability results
For relatively homogeneous sub-regions, the spatial coherence analysis provides a measure of 

potential predictability (Moron et al., 2006). An illustration of the within-the-region (inter

station) differences in the interannual variability of the intraseasonal statistics is shown by 

Figures 4.16a and b. It is found that all the 5 stations making up the sub-region 1 (central 

highlands and southeastern lowlands of Kenya) during the short rainfall season display 

similar year-to-year variations in the standardized number o f wet days (Figure 4.16a). Both 

SRISS indices (PCA and RIS) well replicate these variations. This reveals that the number of 

wet days is a spatially very coherent variable over sub-region.

For the same season and over the same sub-region, the duration of the longest dry spell 

between individual locations and at the sub-regional level are quite contrasted (Figure 

4.16b). This simply suggests that during the short rainfall season, there is high potential to 

predict the number of wet days and lower potential predictability for the duration of the 

longest dry spells over central highland and southeastern lowlands of Kenya (sub-region 1).

The inter-station correlation coefficient was next used as an evaluation of spatial coherence 

for each sub-region. Figures 4.17a and b shows the inter-station correlation coefficients of 

intraseasonal statistics of wet and dry spells at two sub-regions during the long rainfall 

season. For sub-region 1 (central highlands and western Kenya), only the seasonal rainfall 

totals and the number of wet days have significant correlation coefficients between almost all 

the stations, though quite low. For the other variables, significant correlations are restricted to 

a few station couples (top whiskers and crosses on Figure 4.17a). Sub-region 6 which 

represents most parts of Uganda on the other hand has almost no significant correlation 

except for some couples of stations, as denoted by a few outliers in several of the 

intraseasonal statistics (Figure 4.17b).
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Figure 4.16: The standardized (a) number of wet days in a season and (b) duration of 
the longest dry spell over central highlands and southeastern lowlands of Kenya (sub- 
region 1) during the short rainfall (OND) season for the sub-region as a whole (RIS and 
PCA) and for the individual stations (Makindu, Dagoretti, Garissa, Nyahururu and Voi) 
which belongs to this sub-region

There were similar observations during the short rainfall season though the significance of 

correlation coefficient was slightly higher (Figures 4.18a and b). In addition to the two 

variables identified above, the mean frequency of wet spells of 3 days or more and the mean 

length of the dry spells for sub-region 1 (central highlands and southeastern lowlands of 

Kenya as shown in Figure 4.18a) and the duration of the longest wet spells for sub-region 4 

(coastal strip o f Kenya and Tanzania as shown in Figure 4.18b) were also significant.
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(a) Sub-region 1 (7 stations) (b) Sub-region 6 (8 stations)
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Figure 4.17: The inter-station correlation of the various intraseasonal statistics of wet 
and dry spells over (a) central and western Kenya with 7 stations (sub-region 1), and (b) 
most parts of Uganda with 8 stations (sub-region 6) during the long rainfall (MAM) 
season. The dotted line across shows 95% confidence level threshold

(a) Sub-region 1 (5 stations) (b) Sub-region 4 (5 stations)
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Figure 4.18: The inter-station correlation of the various intraseasonal statistics of wet 
and dry spells over (a) central highlands and southeastern lowlands of Kenya with 5 
stations (sub-region 1), and (b) coastal strip of Kenya and Tanzania with 5 stations (sub- 
region 4) during the short rainfall (OND) season. The dotted line across shows 95% 
confidence level threshold

When all the inter-station correlation coefficients from different sub-regions are assembled 

together, the seasonal rainfall totals and number of wet days were found to have the greatest 

spatial coherence during the two rainfall seasons as shown by Figures 4.19a and b. The
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values for the short rainfall season were slightly higher as compared to those o f long rainfall 

season. For the short rainfall season, the number of wet days is even slightly more coherent 

than the seasonal rainfall totals (Figure 4.19b). The frequency of dry spells o f 5 days or more 

and the mean rainfall intensity were found to have the lowest values for both seasons.

A box-plot o f all the inter-station correlation coefficients for all the sub-regions shows that 

merging the inter-station correlation coefficients have the net effect o f decreasing the inter

station correlation coefficient. Despite the decrease in the inter-station correlation, few 

variables still have significant correlation coefficients. For both rainfall seasons, the variables 

are the seasonal rainfall totals (SR) and number of wet days (NW) only. In addition, during 

the long rainfall season, the variables are mean length of dry spells (MD) and number of dry 

days (ND) as shown by Figure 4.19a while for the short rainfall season, the variables are 

mean length o f  wet spells (MW), duration of the longest wet spell (LW) and mean frequency 

of wet spells o f 3 days or more (3W) as shown by Figure 4.19b. This means that the spatial 

coherence (hence potential predictability) is reasonably high in a few sub-regions for these 

variables. Given the relatively higher spatial coherence of inter-annual anomalies of rainfall 

frequency compared to seasonal rainfall and mean daily rainfall intensity, recent work in the 

tropics have suggested that the rainfall frequency at the station scale is more seasonally 

predictable than the later two (Moron et al., 2006; 2007; Robertson et al., 2009). This has 

been attributed to the fact that tropical mesoscale convective clusters can produce large 

differences in rainfall intensity over short distances (Moron et al., 2006; 2007).
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Figure 4.19: Box plot of inter-station correlation coefficients of all stations within the 
study region for the (a) long (MAM) and (b) short (OND) rainfall seasons. The dotted 
line across shows 95% confidence level threshold

Another way to characterize spatial coherence is to determine and plot the percentage of the 

local variance explained for each variable. The correlation coefficient between the sub

regional intraseasonal statistics of wet and dry spells (SRISS) including seasonal rainfall 

totals time series (both PC scores based and the areal average of the local intraseasonal 

statistics) and the intraseasonal statistics at local levels were averaged for the whole study 

region. The average correlation coefficient obtained is squared to obtain the percentage of the 

local total variance explained as described in section 3.2.4.

Figure 4.20 shows the percentage o f the total local variance explained by the sub-regional 

intraseasonal statistics indices for the long and short rainfall seasons. The figure clearly 

shows that the seasonal rainfall totals and the number o f wet days in a season have higher
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potential predictability during the two rainfall seasons. The percentage of the local variance 

explained for the whole study area during the two rainfall seasons was between 30 -  60% for 

the two statistics from both the PCA-based and areal-average based SRISS. The mean 

frequency of dry spells of 5 days or more, the duration of the longest dry spell and the mean 

rainfall intensity have the lowest coherence, and hence the least potential predictability. Some 

of variables for the areal-average based SRISS, like the duration of longest wet spells (LW), 

mean length o f the wet spells (MW), mean frequency o f wet spells of 3 days or more (3W) 

and mean length of the dry spells (MD) displays a reasonably high percentage o f  the variance 

explained (35 -  40%) for OND, which makes us expect some level o f predictability. 

Consistent with previous studies which have shown the seasonal rainfall totals for the short 

rainfall season to be highly predictable and with significant association with well-known 

global and regional climate signals (Ogallo, 1988; Ogallo et al., 1988; Indeje et a l, 2000; 

Black et al., 2003; Mutemi, 2003; Black, 2005; Owiti, 2005; Owiti et a l, 2008), the SRISS 

have higher potential predictability for the short rainfall season as compared to the long 

rainfall season.

It was found that the PCA-based SRISS explained very low' percentages o f total local 

variance. They remain below 20% (10%) for all the intraseasonal statistics apart from the 

seasonal rainfall totals and number of wet days during the short (long) rainfall season. This 

could be due to the fact that the spatial signature of each PC has a much larger extent than the 

sub-region to which it has been associated with. In other words, the PCA-based SRISS are 

not strictly sub-regional. The results further demonstrate that sub-regional indices of seasonal 

rainfall totals and intraseasonal statistics derived from areal-average are more representative 

than those derived from the PC scores.

The percentage of the variance of local random series explained by the area-average SRISS 

was also determined. This was accomplished by generating random Gaussian time series, and 

aggregating them by computing the average. The number of stations in each sub-region was 

maintained. The percentage of the local variance was then computed. This was repeated 500 

times and the 95th percentile extracted. It is the percentage local variance which is exceeded 

only 5 times out of 100 based on random time-series. This 95% confidence level is 17% for 

MAM and 19% for OND. All the RISS values computed from the real data (Figure 4.20) 

surpass these thresholds which mean that the spatial coherence in all cases is significant. In 

other words, there is a climate signal in all the variables. However, for some variables like the
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mean frequency of dry spells of 5 days or more (5D) and mean rainfall intensity (MI), the 

percentage of local variance explained is only marginally higher than the 95% threshold. The 

slight difference in thresholds between MAM and OND is due to the fact that the number of 

stations in each sub-region is slightly different between the two seasons. Thus the SRISS 

including seasonal rainfall totals derived from the areal-average were investigated further for 

their association with large scale climate fields as discussed in the next section.

Figure 4.20: The local variance explained by sub-regional intraseasonal statistics of wet 
and dry spells derived from PCA scores (PISS) and from areal-averaging (RISS) during 
the long (MAM) and short (OND) rainfall season
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4.5 Linkages between large scale clim ate fields and sub-regional 
intraseasonal statistics of wet and dry spells

The methodology of assessing the linkages between the large scale climate fields on one side 

and interannual variability of rainfall totals and sub-regional intraseasonal statistics of wet 

and dry spells (SR1SS) on the other side was discussed in section 3.2.5. The results obtained 

will be discussed in this section. Due to the higher potential predictability identified above for 

the seasonal rainfall totals and SR1SS during the short rainfall season, the linkages with large 

scale climate fields for this season will be presented and discussed first. In the whole of this 

section, a confidence (significant) level of 95% (5%) was used unless otherwise stated. This 

corresponds to a correlation coefficient of magnitude 0.3162 according to the student t-test 

since they were 39 observations. Thus any correlation coefficient of magnitude less than 

0.3162 were considered insignificant while correlation coefficient of magnitude equal or 

greater than 0.3162 was considered significant and hence retained in the analysis.

4.5.1 Linkages during the short rainfall season

Several studies have documented strong association between the seasonal rainfall 

totals/anomalies during the short rainfall season over the eastern Africa region on one hand 

and the regional and global climate signals on the other hand (Ropelewski and Halpert, 1987; 

Janowiak, 1988; Ogallo, 1988; Ogallo et al., 1988; Indeje et al., 2000; Mutemi 2003; Black et 

al., 2003; Saji et al., 2003; Black, 2005; Behera et al., 2005; Owiti, 2005; Owiti et al., 2008). 

Ropelewski and Halpert (1987), Janowiak (1988), Ogallo (1988), Ogallo et al. (1988), Indeje 

et al. (2000) and Mutemi (2003) have shown that there exists a strong ENSO signal in the 

seasonal rainfall totals during this season while Black et al. (2003), Saji et al. (2003), Black 

(2005), Behera et al. (2005), Owiti (2005) and Owiti et al., (2008) have shown the connection 

between seasonal rainfall totals and IOD. This section will first briefly confirm the 

relationship between the seasonal rainfall totals on one hand and regional and global climate 

signals on the other hand; and further sort whether the different SRISS are themselves 

associated with the regional and global climate signals, using previously defined climate 

indices (NINO, IOD, SST gradients) as discussed in section 3.2.5.I. This will be followed by 

a presentation of the additional potential predictors as derived in sections 3.2.5.2 and 3.2.5.3. 

Along with that will be the discussion on how these indices influence the seasonal rainfall 

totals and SRISS.
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4.5.1.1 Linkages with predefined SST predictors

Figures 4.21a-f shows the concurrent and lagged correlation analysis results o f the areal- 

average seasonal rainfall totals and number of dry days in a season over the six sub-regions 

(Z1 to Z6) with 1-month, 2-months average and 3-months average of Nifio 3 index from the 

months of October to May. These two variables (seasonal rainfall totals and number of dry 

days) have been selected to illustrate the typical behavior o f the relationship with ENSO for 

different lags, and different timescales. Figure 4.21a clearly indicates significant concurrent 

positive relationship between the seasonal rainfall totals and Nino 3 index over the six sub- 

regions. This relationship diminishes as lagged correlations are considered and several 

months averaged (Figure 4.21b and c). By the month of June, the correlation coefficient was 

less than 0.3 for both 1-month (Figure 4.21a) and 2-months average (Figure 4.21b) of Nifio 

3 index which is insignificant (at 0.95 confidence levels). Similar results were obtained for 

Nino 1+2, Nino 3, Nino 4, 10D indices, SST gradient across the equatorial Indian Ocean 

(ZIND) for both seasonal rainfall totals and number of wet days in a season. These results are 

in agreement with those of Mutemi (2003) on ENSO, Owiti (2005) on IOD and Nyakwada 

(2009) on SST gradients.

However, such a strong concurrent and lagged relationship is not always the case during the 

short rainfall season as illustrated by Figures 4.21d-f. In this case, the number o f dry days in 

a season is not statistically related to the Nino 3 index at four out of the possible six sub- 

regions from both concurrent and lagged correlation results (Figures 4.21d-f).

Figure 4.21a further shows that there is some noise when the one month index is considered. 

It can be seen that there is a drop in the correlation coefficient with the Nifio 3 September 

index which is again recovered by the Nifio 3 August index. However, once the index is 

averaged for two or three months, the decrease in the lagged correlation coefficient is rather 

smooth (Figures 4.21b and c). With the consideration for a sufficient lead time in the 

development of prediction models and further noting that the lagged correlation coefficients 

beyond June are insignificant, the use of the July-August two-month average for the all 

predictors was seen as suitable in the current study. The indices for July-August are available 

by mid-September meaning there will be adequate time to update the indices before the start 

of the OND season.
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Figure 4.21: Correlation coefficient analysis between areal-averaged October- 
November-December (OND) seasonal rainfall totals (SR) and (a) 1 month (b) 2 months’ 
average and (c) 3 months’ average of Nino 3 index (October to May), for the six rainfall 
sub-regions Z1 to Z6; and areal-averaged OND number of dry days (ND) and (d) 1 
month (e) 2 months’ average and (f) 3 months’ average of Nino 3 index. CL denotes 
95% significant level threshold
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Figure 4.22: Correlation coefficient between predefined predictors averaged for July- 
August (x-axis) and areal-averaged October-November-December (a) seasonal rainfall 
totals, (b) number of wet days, (c) mean length of wet spells, (d) longest wet spell, (e) 
frequency of 3 wet days or more, (f) mean rainfall intensity, (g) number of dry days, (h) 
mean length of dry spells, (i) longest dry spell, and (j) frequency of 5 dry days or more, 
over the six rainfall sub-regions Z1 to Z6. CL shows the 95% confidence level threshold
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Figures 4.22a-j summarize the relationship between the predefined predictors averaged for 

July-August and the OND seasonal rainfall totals and sub-regional intraseasonal statistics of 

wet and dry spells (SRISS). The seasonal rainfall totals (Figure 4.22a) and SRISS of wet 

spells (Figures 4.22b-e) during the short rainfall season have a positive lagged association 

with the Nino indices. The highest correlations are for Nifio 3.4 and the lowest ones for Nifio 

1+2. Other significant relationships are generally obtained with SST gradients across the 

equatorial Indian Ocean (IOD and ZIND), though the correlations are often higher for IOD 

(Figures 4.22a-e). ZIND refers to the zonal SST gradient mode over the Indian Ocean 

developed on similar principles as IOD but centred along the equator, and has been shown to 

have stronger relationships with SOND rainfall than the classical IOD (Nyakwada, 2009). 

The centres o f the action for this SST gradient are shown in Table 3.3 while the calculation 

of the gradient mode is shown by the direction of arrow in Figure 3.3. It is worthy 

mentioning at this point that most of the other SST gradients did not show significant 

association with the seasonal rainfall totals and SRISS thus are not discussed here. The zonal 

SST gradient across the equatorial Pacific Ocean (ZPAC) had significant correlation with 

seasonal rainfall totals and other SRISS. Multi-collinearity assessment shows that it has a 

highly significant negative association (correlation coefficient about -0.7) with the ENSO 

indices hence was also not discussed here.

The anomalous warm conditions during the boreal autumn over the Nino regions induce 

changes in the Walker circulation, with anomalous ascending motion over Equatorial Eastern 

Africa and anomalous descending motion over the maritime continent and southern Africa. 

The anomalous ascending (descending) motions tend to bring wet (dry) conditions over 

Equatorial Eastern Africa (Maritime continent and southern Africa). Seasonal rainfall totals 

and SRISS o f wet spells over sub-region 2 (which covers western Kenya and most parts of 

Uganda) shows the strongest lagged correlation coefficients especially with the Nino indices.

The association of the mean rainfall intensity and the intraseasonal statistics o f the dry spells 

with the predefined predictors were rather diverse (Figures 4.22f-j). In many cases, the 

correlations are low and insignificant, but there are exceptions. Sub-region 6 (southern 

Uganda and western Tanzania) has strong lagged correlation coefficients between the SRISS 

of dry spells and the predefined SST predictors. For instance, a correlation of -0.6 was found 

between the Nino3.4 and the mean length of the dry spells, suggesting longer dry spells 

during La Nina years (Figure 4.22h).
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!t is interesting to observe that while the number of the wet days (NW) shows that strongest 

association with Nino indices (Figure 4.22b), the duration of the longest dry spell (LD) also 

shows a relatively strong and coherent/uniform response to Nifio indices (Figure 4.22i). This 

means that a very long dry spell is expected to occur throughout East Africa during the short 

rainfall season with La Nina conditions, with potentially adverse effect on crops. The mean 

frequency of dry spells o f 5 days or more shows the weakest control by Nifio and other 

predefined indices (Figure 4.22j). This is closely followed by mean rainfall intensity (Figure 

4.22f) and then the mean duration o f the dry spells (Figure 4.22h) and number of dry days 

(Figure 4.22g) in that order. The weak control o f the mean rainfall intensity by the ENSO 

indices and the low spatial coherence observed earlier may be attributed to the fact that 

tropical mesoscale convective clusters produce large differences in rainfall intensity over 

short distances (Moron et al., 2006; 2007).

From the strong significant correlations with the predefined predictors, two indices with 

strong significant lagged correlations with the seasonal rainfall totals and SRISS were 

chosen. These were the Nifio3.4 and Z1ND indices whose average values for July-August are 

not related, yet they are associated with seasonal rainfall totals and most of the SRISS during 

the short rainfall season. They can be thought o f as representing the climate signals from 

Pacific and Indian Ocean sea surface temperature in general terms for this study.

4.5.1.2 Linkages with additional potential predictors

Additional potential predictors were searched for in oceanic (Hadley centre SST) and 

atmospheric (ERA40) fields as described in sub-section 3.2.5.2. Concurrent and lagged 

correlation analysis of the seasonal rainfall totals and SRISS on one hand and the oceanic and 

atmospheric variables on the other hand while controlling the effects o f significantly 

correlated predefined indices identified several common potential predictors. These oceanic 

and atmospheric predictors are briefly described in Table 4.9. Table 4.10 shows the number 

of SRISS including the seasonal rainfall totals that have significant association with a given 

predictor at 95% confidence level. For example WCAUS is only associated with 2 

intraseasonal statistics while BoBEN is associated with all the 9 SRISS and the seasonal 

rainfall totals.

The association of the nine additional (oceanic and atmospheric) predictors with the seasonal 

rainfall totals and SRISS during the short rainfall season is summarized by Figures 4.23a-e 

and 4.24a-e. Just like with the predefined predictors, the seasonal rainfall totals and the
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SRISS of wet spells are more coherent in their responses to these predictors (Figures 4.23a- 

e). Oceanic potential predictor, BoBEN and atmospheric potential predictor, SINDS for 

example have a significant negative and lagged relationship with the seasonal rainfall totals 

(Figure 4.23a) and all the SRISS o f wet spells (Figures 4.23b-e). The various SRISS of the 

wet spells responds more or less uniformly to any predictor identified for all the sub-regions. 

For example, the duration o f the longest wet spell (LW) had a correlation coefficient close to 

the 95% confidence level (+0.31) with SWHAW potential predictor over the six sub-regions 

(Figure 4.23d). The insignificant relationship found for some of the coefficients was 

attributed to the fact that for the sake of simplicity, total correlations are shown in Table 

4.10, Figures 4.23a-e and 4.24a-e, while the identification and selection o f the additional 

potential predictors was based on partial correlation analysis, after the effect o f significantly 

correlated predefined predictors has been removed.

The SRISS o f dry spells were somehow diverged in their responses to the additional potential 

predictors identified just like was the case with the predefined predictors (Figures 4.24a-e). 

Considering the same predictor, SWHAW had varied correlation coefficients with mean 

duration of the dry spells (MD) at about +0.20 for two sub-regions (sub-region 2 and 5) and 

about -0.30 to -0.60 for the remaining four sub-regions (Figure 4.24c). Most o f SRISS of dry 

spells have insignificant association (at 95% confidence level) with the additional potential 

predictors (Figures 4.24a-e). However, there are several exceptions. One such example is the 

atmospheric predictor SINDS that has a generally consistent response with the mean rainfall 

intensity (Figure 4.24a) and all the SRISS of dry spells with the exception of the mean 

frequency o f dry spells of 5 days or more in 3 sub-regions (Figures 4.24b-d). These show 

that though the response of the intraseasonal statistics o f dry spells may not be uniform for 

any given oceanic or atmospheric signals, there are a few exceptions.

In the next sections, each of these predictors is described in details and a physical 

interpretation on how the predictor influences the SRISS for which it is significantly 

correlated provided. The SST-based potential predictors will be discussed first followed by 

the atmospheric potential predictors derived from the ERA40.



Table 4.9: Brief description of the additional potential predictors for the short rainfall (OND) season and their location details

Index
name

Description Location details (°)
Longitude Latitude

ECMAD SST index on the east coast o f Madagascar over south-western Indian Ocean 56 -  63 E 18 -  12 S

BoBEN SST index over Bay of Bengal extending to west coast of Malaysia and Indonesia 83 -  90 E 1 2 -  17N

SWHAW SST index on the south-western of Hawaii in the Pacific Ocean 140- 120 W 10 -  25 N

WCAUS SST index on western coast of Australia over the south-eastern Indian Ocean 9 5 -1 0 5  E 2 4 -  15 S

SINDS Zonal wind component index at 925mb level to the south of the Bay of Bengal near 
the southern tip of India sub-continent

70 -  90 E 5 -  10N

EQAFR Zonal wind component index at 200mb level extending from Equatorial Africa into 
Equatorial Atlantic Ocean 0 - 4 5  E 1 0 -5  S

MARCON Zonal wind component index at 200mb level over the maritime continent and 
extending over the equatorial Indian Ocean 8 5 -  110E 2.5 S - 2.5 N

SWAFRC Specific humidity index at 700mb level located at Angola coast on south-western 
Africa and extending to Atlantic Ocean on the west and Zambia to the east 5 -  15 E 2 5 -  15S

EQIND Specific humidity index at 700mb level extending from the southern tip of India 
subcontinent, through equatorial Indian Ocean into the eastern Africa region 35 -  90 E 0 -  10N
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Tab le  4.10: A summary' o f  the association between the identified additional potential predictors (July-August) and the sub-regional 
intraseasonal statistics of wet and dry spells for the Octobcr-Novcmher-Dccember rainfall season and the most strongly correlated 
intraseasonal statistic and sub-region

Predictor Atmospheric Level Index Name Number of SRISS associated Strongest total correlation

w ith the predictor (out of 10) SRISS Sub-region Coefficient

SST surface ECMAD 3 LW 3 -0.37

BoBEN 10 3W 6 -0.55

SWHAW 9 MD 4 -0.56

WCAUS 2 ND 4 0.46

925mb SINDS 10 SR 2 -0.70

u-wind
200mb

EQAFR 7 ND 6 0.46

MARCON 10 ND 4 -0.58

Specific 700m b
SWAFRC 9 3W 1 0.43

humidity EQIND 7 SR 2 0.42
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(a) Correlation coefficient of OND SR with Ju l-Aug predictors

Figure 4.23: Correlation coefficient between the nine additional potential predictors 
identified averaged over July-August period and the areal-averaged October- 
November-December (a) seasonal rainfall totals, (b) number of wet days, (c) mean 
length of wet spell, (d) longest wet spell and (e) frequency of 3 wet days or more, over 
the six rainfall sub-regions Z1 to Z6. CL shows 95% confidence level threshold
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(3) Correlation coefficient of OND Ml with Jul-A ug  predictors

Figure 4.24: Correlation coefficient between the nine additional potential predictors 
identified averaged over July-August period and the areal-averaged October- 
November-December (a) mean rainfall intensity, (b) number of dry days, (c) mean 
length of dry spell, (d) longest dry spell and (e) frequency of 5 dry days or more, over 
the six rainfall sub-regions Z1 to Z6. CL shows the 95% confidence level threshold
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4.5.1.2.1 Additional predictors from the sea surface temperature

From Table 4.10, Figures 4.23a-e and 4.24a-e, it can be seen that four additional potential 
predictors were identified from the SST field which are discussed next.

(a) ECMAD

This index refers to the SST on the east coast of Madagascar (ECMAD) over southwestern 

Indian Ocean (Figure 4.25a). The signal persists from July-August through to October- 

December over this location (Figures 4.25a-c), though during the OND season, it is rather 

weak. This index is significantly associated with three intraseasonal statistics o f the wet spells 

(Table 4.10 and Figure 4.23). This index has significant negative association with mean 

duration o f wet spell and duration o f longest wet spell over northeastern Kenya (sub-region 3) 

and mean frequency of wet spells o f 3 days or more over southern Uganda, northwestern and 

western Tanzania (sub-region 6).

Correlation analysis with the two components of the wind vector field did not show any 

significant signal. However, Gatebe et al. (1999), Henne et al. (2008) and (Okoola et al., 

2008) have documented several flow regimes, two of which originate from south-eastern 

Africa and south-western Indian Ocean advecting the moist air masses into the Eastern Africa 

region. The wanning of the SST over the east coast o f Madagascar diverts the south- 

easterlies southwards thus they advect less moisture to Eastern Africa. This results in drier 

conditions over Equatorial East Africa. It implies that the mean duration of wet spells, the 

duration o f  the longest wet spell and mean frequency o f wet spells of 3 days or more are 

significantly reduced.

Correlation analysis with global SSTs shows that this index is related to SST in other parts of 

the Indian Ocean (mainly south and east of India during the July-August period and the 

southern Indian Ocean for the entire July to December period as shown in Figures 4.25a-c). 

However, ECMAD is independent from ENSO and IOD as shown in Table 4.11.

The physical hypothesis as to how this predictor influences East African rainfall, coupled 

with the independence from predefined SST predictor indices thus bringing about new 

predictive information provides a strong case for it to be retained as a potential predictor. 

However the fact that this index has weaker linear relationships with the atmospheric 

variables (zonal and meridional components of wind vector, specific humidity and 

geopotential height) over East Africa during the OND season marks its major weakness.
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Figure 4.25: Map of significant correlation between East Coast of Madagascar 
(ECMAD) SST index and global SST for (a) July-August, (b) September and (c) 
October-December. The green rectangle in (a) shows the approximate location of 
ECMAD SST index computed for July-August period from 1962 to 2000

Table 4.11: Correlation coefficients between East Coast of Madagascar (ECMAD) SST 
index and some predefined predictors

Nifio 1+2 Nifio 3 Nifio 4 Nino 3.4 lOD ZIND
Jul-Aug 0.26 0.19 0.25 0.14 0.28 -0.02
OND 0.23 0.26 0.19 0.22 0.17 0.01
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(b) BoBEN

This index refers to the SST over the Bay of Bengal (BoBEN) extending to west coast of 

Malaysia and Indonesia (Figure 4.26a). The signal somehow persists from July-August into 

the short rainfall season in the north-eastern Indian Ocean (Figures 4.26a-c). Its spatial 

extent tends to reduce as we approach the OND season and confined to the eastern Indian 

Ocean during the OND period (Figure 4.26c).

This index has significant negative association over most o f the sub-regions with the seasonal 

rainfall totals and all SRISS of the wet spells including the mean rainfall intensity (Figure 

4.23). Over southern Uganda, northwestern and western Tanzania (sub-region 6), it has 

significant positive association with all the SRISS of the dry spells (Figure 4.24). It has 

significant positive relationship with the mean duration o f dry spells over the western parts of 

the study domain, central Kenya and southeastern lowlands as well as the coastal strip of 

eastern Africa (sub-regions 1, 2, 4 and 6) and duration o f the longest dry spells over the 

western sector, central Kenya and southeastern lowlands (sub-regions 1, 2 and 6).

Warm conditions in the north-eastern Indian Ocean, as portrayed by this index are expected 

to result in a strengthening of the Indian Ocean Walker circulation cell in boreal autumn, with 

anomalous ascending motion in the east and descending motion in the west. A SST warming 

over the index location is likely to reinforce the circulation anomalies associated with the 

negative phase of the IOD/ZIND, which is characterized by warm (cold) conditions in the 

eastern (western) Indian Ocean. The BoBEN index is located close to the eastern pole of the 

IOD/ZIND, and it actually displays a significant correlation with the ZIND index (Table 

4.12) during the OND period. However, the partial correlation between BoBEN and East 

Africa rainfall, independent of ZIND is still significant, which means BoBEN brings 

independent predictive information. The strengthening of the Indian Ocean Walker 

circulation cell results in the reduction of seasonal rainfall totals, number of wet days, 

duration o f the longest wet spells, and the mean frequency of the wet spells of 3 days or more 

over Eastern Africa. The mean duration of the dry spells and duration of the longest dry 

spells are also increased.

Correlation analysis with the global SST shows that this index has no signal over the tropical 

Pacific Ocean (Figures 4.26a-c), which is further confirmed by the insignificant correlation 

coefficients between the Niflo indices and this index (Table 4.12). This independence from
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ENSO and indices from Indian Ocean coupled with the fact that it shows significant 

relationship with different atmospheric variables (zonal and meridional components of wind 

vector, specific humidity and geopotential height) over East Africa during the OND season, 

justify its retention as a potential predictor.

(b) Correlation map of global Sept SST with BoBEN
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(c) Correlation map of global OND SST with BoBEN

Figure 4.26: Map of significant correlation between Bay of Bengal (BoBEN) SST index 
and global SST for (a) July-August, (b) September and (c) October-December. The 
green rectangle in (a) shows the approximate location of BoBEN SST index computed 
for July-August period from 1962 to 2000
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Table 4.12: Correlation coefficients between Bay of Bengal (BoBEN) SST index and 
some predefined predictors

Nifio 1+2 Nifio 3 Nifio 4 Nifio 3.4 IOD Z1ND
Jul-Aug 0.28 -0.02 0.02 -0.16 -0.12 -0.27
OND 0.03 -0.15 -0.18 -0.23 -0.21 -0.39

(c) SWHAW

This SST index, located south-west of Hawaii (SWHAW) in the Pacific Ocean, is clearly 

distinct from the core ENSO region and has strong persistence from July-August through to 

October-December (Figures 4.27a-c). Over the coastal strip of Kenya and Tanzania (sub- 

region 4) and northeastern Kenya (sub-region 3), this index has significant positive 

association with seasonal rainfall totals and all the SRISS of wet spells. The seasonal rainfall 

totals, number of wet days and mean frequency of wet spells of 3 days or more over Central 

Kenya and southeastern lowlands o f Kenya (sub-region 1) also had significant positive 

association with this index (Figure 4.24). Significant negative association with this index was 

observed for some dry spells statistics, over scattered sub-regions, and in less consistent way 

than wet spells statistics.

This index has significant positive signal with SST over the central equatorial Indian Ocean 

(Figure 4.27c) during the OND period and with zonal winds at 925mb level over the Indian 

Ocean closer to the East Africa coast that start to appear in July-August, and grows in 

September through to December (Figures 4.28a-c). The positive relationship of SRISS of 

wet spells with the zonal wind component implies that the south-easterlies are weakened thus 

depositing more moisture over Eastern Africa, which results in wetter conditions. The wet 

conditions lead to an increase (decrease) in the magnitude of the SRISS of wet (dry) spells 

and seasonal rainfall totals.

Results of correlation analysis with the predefined predictor indices show that the index is 

significantly correlated with Nino 4 from July-August to October-December and with Nifio

3.4 during the OND season only (Table 4.13). It is thus believed that this index depicts SST 

conditions which are associated with some ENSO events, and which result into a subsequent 

warming o f  the Indian Ocean in the northern autumn (Cadet, 1985).

The independence of this predictor from most of the Nino indices and indices from Indian 

Ocean, and its relationship to several atmospheric variables around East Africa during the 

OND season, justify its retention as an additional potential predictor.
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Figure 4.27: Map of significant correlation between South-West 
of Hawaii (SWHAW) SST index and global SST for (a) July- 
August, (b) September and (c) October-December. The green 
rectangle in (a) shows the approximate location of SWHAW SST 
index computed for July-August period from 1962 to 2000
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(a) Correlation map of global Jul-Aug U925 with SWHAW
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Figure 4.28: Map of significant correlation between South-West 
of Hawaii (SWHAW) SST index and global U925 for (a) July- 
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Table 4.13: Correlation coefficients between South-West of Hawaii (SWHAW) SST 
index and some predefined predictors

Nifio 1+2 Nino 3 Nifio 4 Nifio 3.4 IOD ZIND
Jul-Aug 0.14 0.09 0.62 0.28 0.05 -0.10
OND 0.36 0.24 0.49 0.28 0.19 -0.03

(d) WCAUS

This index refers to the SST on the western coast of Australia (WCAUS) over the 

southeastern Indian Ocean which persists from July-August through to October-December 

(Figures 4.29a-c). This index has significant positive association with the number of dry 

days over western Kenya and most parts of Uganda (sub-region 2) and coastal strip of Kenya 

and Tanzania (sub-region 4); and the duration of the longest dry spells over western Kenya 

and most parts of Uganda (sub-region 2) as shown by Table 4.10 and Figure 4.24.

The SST cooling (warming) over the index location results in wet (dry) conditions over 

Eastern Africa. The location of this index is in the neighbourhood of the eastern pole of the 

IOD and ZIND and hence its influence on seasonal rainfall totals and SRISS may be similar 

to those o f negative phase of ENSO and IOD events. Black (2005) has observed localized 

regions of cooling along the Sumatran coast and off Australia that was caused by ENSO- 

related anomalies in water transport via the Indonesian through-flow (Meyers, 1996). Black 

et al. (2003) have documented anomalously cold SSTs in the southeast Indian Ocean near the 

north Australian coast, which are significant for both moderate and extreme IOD events. 

However during the extreme positive events, the negative SST anomalies are centered on the 

equator. Furthermore, correlation analysis with the predefined SST indices shows that the 

coefficients are mostly insignificant (Table 4.14). It is suggested that SSI' variations in the 

WCAUS region enhance / weaken the zonal temperature gradients across the Indian Ocean 

thus impacting on the Indian Ocean Walker circulations, thus adding their effects or not to the 

gradients associated with IOD. This indicates that the index provides new predictive 

information. It was thus retained as an additional potential predictor for the OND season. The 

major weakness of this index was that it has only weak signals in the atmospheric variables 

over East Africa.

Table 4.14: Correlation coefficients between western coast of Australia (WCAUS) SST 
index and some predefined predictors

Nino 1+2 Nifio 3 Nifio 4 Nifio 3.4 IOD ZIND
Jul-Aug 0.08 -0.13 -0.12 -0.18 0.09 -0.31
OND -0.08 -0.28 -0.24 -0.29 0.02 -0.27
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Figure 4.29: Map of significant correlation between western coast of Australia 
(WCAUS) SST index and global SST for (a) July-August, (b) September and (c) 
October-December. The green rectangle in (a) shows the approximate location of 
WCAUS SST index computed for July-August period from 1962 to 2000

4.5.1.2.2 A d d it io n a l p red ic to rs  from  the  w in d  fie ld

Three additional predictors were identified from the zonal component of the wind field 

(Tables 4.9 and 4.10). None of the SRISS picked any predictor from the meridional 

component of the wind field. The associations with tropical zonal winds suggest that Walker 

circulation anomalies are involved in the teleconnections.
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(a) SINDS

This index refers to the zonal wind component at 925mb level to the south o f  the Bay of 

Bengal and near the southern tip of India sub-continent (SINDS) as shown in Figure 4.30a. 

This index has significant association with all the SRISS o f the wet and dry spells and rainfall 

totals (Table 4.10, Figures 4.23 and 4.24). With the seasonal rainfall totals and SRISS of wet 

spells, the whole study area has significant negative association with this index. A significant 

negative relationship with mean rainfall intensity over the whole study area except inland 

Tanzania and southern Uganda (sub-regions 5 and 6) was also observed with this index.

Over the whole study area, the index have significant positive association with number of dry 

days in a season except over northeastern Kenya (sub-region 3) and coastal strip of Kenya 

and Tanzania (sub-region 4); mean duration of dry spells except over western Kenya and 

most parts o f Uganda (sub-region 2) and northern and central Tanzania (sub-region 5); and 

duration of the longest dry spells over the whole area except over southern Uganda and 

western Tanzania (sub-region 6). South of equator and excluding the coastal strip of Kenya 

and Tanzania, the mean frequency o f dry spells of 5 days and more had significant positive 

association with this index.

The index has a significant negative association with zonal wind at 925mb over East Africa 

and extending into western Africa coast and Gulf of Guinea from July-August through to 

October-December (Figures 4.30a-c). Though the local significant correlation with the zonal 

wind over Northern Indian Ocean seems to die out after September (Figures 4.30b), Figures 

4.31a-c suggest that the enhanced low-level monsoon winds as portrayed by this index 

modulate the SST by cooling around the index location initially in July-August. The 

modulation spreads to northern, central and western parts of Indian Ocean closer to the 

western pole o f the IOD/ZIND (Figures 4.31b and c). The cooling of the SSI around the 

western pole o f the IOD/ZIND is, at times associated with the drier conditions over the 

eastern Africa. The drier conditions results in reduction in the magnitude of seasonal rainfall 

totals and SRISS of the wet spells as well as an increase in the magnitude of the SRISS of dry 

spells.

Correlation analysis with the global SST shows that this signal is significantly but negatively 

correlated with SST over the Nino regions from July-August through to October-December 

and over much of the northern and western Indian Ocean during the October-December 

period. This is further confirmed by the strong negative significant correlation coefficients
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obtained with the Nifio and Indian Ocean indices (Table 4.15).

The dependence of the SINDS wind index on Nifio and Indian Ocean indices is discussed 

here. The SINDS wind index was identified when the partial correlation analysis was 

undertaken between the July-August zonal component o f wind field at 925mb level and 

number of wet days during the OND season while controlling the effects o f July-August 

predefined predictors (Nifio3.4 and ZIND) and the five additional potential predictors earlier 

identified from the SST field.

Table 4.16 shows the concurrent total and partial correlation coefficients between the SINDS 

wind index and number of wet days over the six sub-regions while controlling the effects of 

predefined and additional potential predictors averaged for July-August period. The number 

of wet days has significant negative (positive) total correlation coefficient with SINDS (Nifio 

3.4) over the six sub-regions and significant positive total correlation coefficient with ZIND 

over two sub-regions.

Table 4.15: Correlation coefficients between southern tip of India sub-continent 
(SINDS) zonal wind index and some predefined predictors

Nifio 1+2 Nifio 3 Nifio 4 Nifio 3.4 IOD ZIND
Jul-Aug
OND

-0.57
-0.72

-0.66
-0.69

-0.61
-0.60

-0.70
-0.69

-0.45
-0.61

-0.07
-0.32



1
0.986 
0.819 

0.651 

0 484 

—  0.316

1-0.316 
-0.501 

-0  686

(t>) Correlation map of global Sept U925 with SINDS

40°N

20°N ...

0°

20°S
*

40°S -  •

§

I

0 640 

0.559 

0.478 

0.397 

0.316 

-0.316 
-0.513 

-0.711

(c) Correlation map of global OND U925 with SINDS

40°N

20°N

0°
20°S

40°S I
180°W 120°W 60°W  0° 60°E 120°E 180°W

0.713
0.614

0.515

0416
0.316

-0.316
-0.531

-0.746

Figure 4.30: Map of significant correlation between southern tip 
of India sub-continent (SINDS) zonal wind index and global U925 
for (a) July-August, (b) September and (c) October-December. 
The green rectangle in (a) shows the approximate location of 
SINDS zonal wind index computed for July-August period from 
1962 to 2000



(a ) C orre la tion  m ap  o f g loba l Jut A ug  SST w ith  S IN D S
0 .624  

0470

0316  

-0.316  

-0.514 

-0.711

(b) Correlation map of global Sept SST with SINDS
0.624

0.470

0316

-0.316

-0.529

-0.741

(c) Correlation map of global OND SST with SINDS

40°N

20°N

0°
20°S

40°S

180°W 120°W 60°W  0° 60°E 120°E 180°W

0660  

0 488 

0.316 

-0.316 

-0.545 

-0.773

Figure 4.31: Map of significant correlation between southern tip 
of India sub-continent (SINDS) zonal w ind index and global SST 
for (a) July-August, (b) September and (c) October-Decentber



136

Significant negative partial correlation coefficients between number of wet days (RNW) and 

SINDS while controlling the effects o f ZIND and the six additional potential SST predictors 

were obtained over the entire region (Table 4.16). Significant negative partial correlation 

coefficients were obtained over two sub-regions only when Nirio 3.4 was controlled. 

Controlling the combined effects of Nifio 3.4, ZIND and the six SST potential predictors, 

significant negative partial correlation coefficients between the number of wet days and 

SINDS wind index were obtained over four out of the six sub-regions. This means that 

despite the strongly significant total correlation coefficient between SINDS wind index and 

the predefined predictors (Table 4.15), the SINDS wind index provides additional predictive 

information on the number of wet days that could not be captured by the predefined 

predictors in two out of the six sub-regions (Table 4.16). Similar remarks apply to other 

additional potential predictor indices from oceanic fields already discussed earlier such as 

SWHAW index and atmospheric fields presented later which had significant correlation with 

the predefined predictors.

In their study on the prediction of the East African OND rains, Philippon et al. (2002) also 

found that an atmospheric index, taken in September and describing the Indian monsoon 

intensity, was having some predictive skill, in addition to more traditional SS T predictors. 

The present study further demonstrates a partly independent predictive skill of Asian 

monsoon dynamics as early as July-August.

The plausible physical explanation on how this index relates to East Africa rainfall and the 

fact that this index provides additive predictive information despite its strong association with 

the Nino and Indian Ocean indices provides a strong case for the retention of this index as an 

additional potential predictor during the short rainfall season.
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Table 4.16: Total and partial correlation coefficients between areal-averaged number of 
v*etdavs (NW) and southern tip of India sub-continent (S1NDS) zonal wind index while 
controlling other predictors for July-August period. Bold numbers indicate that the 
coefficient is significant at 95% confidence level

Total correlation with NW Partial correlation between NW 
controlling

& SINDS while

SINDS Nifio3.4 ZIND Nino3.4 ZIND Other
potential SST 

predictors

Nifio3.4, ZIND & 
other potential SST 

predictors

1 -0.53 0.41 0.20 -0.37 -0.52 -0.48 -0.42

2 -0.59 0.59 0.24 -0.30 -0.59 -0.56 -0.43

3 -0.54 0.52 0.20 -0.29 -0.54 -0.46 -0.24

4 -0.62 0.48 0.22 -0.45 -0.62 -0.55 -0.52

5 -0.47 0.42 0.32 -0.27 -0.47 -0.46 -0.43

6 -0.49 0.45 0.34 -0.27 -0.49 -0.45 -0.28

(b) EQAFR
This index refers to the zonal wind component at 200mb level extending from Equatorial 

Africa (EQAFR) into Equatorial Atlantic Ocean (Figure 4.32a). This signal persists from 

July-August through to October-December (Figures 4.32a—c). Over the coastal strip of 

Kenya and Tanzania (sub-region 4), this index has significant inverse association with 

seasonal rainfall totals and number of wet days. Significant negative association were 

obtained between this index and seasonal rainfall totals, number of wet days in a season, 

mean frequency of wet spells of 3 days or more over northeastern Kenya (sub-region 3) as 

shown in Figure 4.23. Significant positive association are observed over southern Uganda, 

northwestern and western Tanzania (sub-region 6) between this index and the number of dry 

days, mean duration of the dry spells and the duration of the longest dry spell (Figure 4.24).

The negative (positive) association of this index with SRISS of wet (dry) spells implies that a 

weakening o f  the upper level easterlies over the Eastern Africa region tends to precede dry 

conditions over East Africa. Correlation analysis with global SST shows that this index is 

associated with the cooling of SST over northern and western Indian Ocean and most parts of 

the tropical eastern Pacific Ocean during the July to December period (Figures 4.33a-c and 

Table 4.17). It should be noted that this index has significant negative association with the
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zonal component of wind and specific humidity both at 925mb level extending from 

equatorial eastern Atlantic Ocean, through equatorial Africa into the equatorial western 

Indian Ocean (not shown). The weakening of the upper level easterlies over Eastern Africa 

coupled with the cooling of the SST in the northern and western Indian Ocean and tropical 

eastern Pacific Ocean are typical o f the negative phase o f the IOD and ENSO events that 

results in dry conditions over the Eastern Africa.

This index also displays quite a strong persistence at 200mb level over Africa from July to 

December (Figures 4.32a-c). During the OND season, the index has a symmetrical (about 

equator) but negative association with zonal wind component at 200mb level at 20° N/S and 

extending from longitudes 0° to about 90° E. This persistence may be partly explained by the 

strong connection with ENSO, itself a persistent phenomenon. However, the wind signal also 

has an independent component anchored at African longitudes, out-of-phase between the 

upper (200mb) and the lower levels (925mb) as discussed above. It is therefore suggested to 

depict variations in the (zonal) Walker circulation above equatorial Africa, partly associated 

to SST anomalies and possibly to land surface conditions. These circulation anomalies have 

an evident connection to East African rainfall.

This justifies the retention of this index as an additional potential predictor, although the 

strong association with the Nino and Indian Ocean indices marks its major weakness.

Table 4.17: Correlation coefficients between Equatorial Africa (EQAFR) zonal wind 
index and some predefined predictors

Nino 1+2 Nino 3 Nino 4 Nino 3.4 IOD ZIND
Jul-Aug
OND

-0.46
-0.65

-0.57
-0.70

-0.75
-0.75

-0.71
-0.73

-0.32
-0.49

-0.00
-0.29
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(c) MARCON

This index refers to the zonal component of wind field at 200mb level over the coast of 

Malaysia and Indonesia representing the maritime continent (MARCON) and extending over 

the equatorial Indian Ocean (Figure 4.34a). Over northern and central Tanzania (sub-region 

5), this index has significant positive relationship with the seasonal rainfall totals and four 

SRISS of wet spells (Figure 4.23). Significant positive association was also noted with 

number of wet days, mean duration o f wet spells, duration o f longest wet spells over western 

part of Lake Victoria and western Tanzania (sub-region 6). Over the coastal strip of Kenya 

and Tanzania (sub-region 4), significant negative association was found between this index 

and all the four SRISS of dry spells (Figure 4.24) and the duration of the longest dry spells 

over a few other sub-regions. The significant positive (negative) association of this index and 

the SRISS o f wet (dry) spells imply that the upper level easterlies are enhanced over the 

index location in July-August.

Similar to the SINDS, the wind signal associated with this index dies off in September 

(Figures 4.34a—c) but the significant negative association with the SST over this location and 

western Pacific Ocean persists into the October to December period (Figures 4.35a-c). 

Lower SSTs over the Maritime continent may produce atmospheric subsidence anomalies, a 

feature which weakens Walker circulations over the Indian and Pacific Oceans, thus resulting 

in an increase in the seasonal rainfall totals and SRISS o f wet spells and a drop in SRISS of 

dry spells over East Africa. This index has weak (though significant) positive correlations 

over the Nino regions (Figures 4.35a—c) that tend to grow over time (Table 4.18). This may 

suggest that the enhancement of the easterlies over the index location in July to September 

maybe a precursor of the ENSO events.

The partial independence o f MARCON from Nino and IOD indices coupled w ith the physical 

explanation on how this index relates to East Africa climate suggest this index is 

complementary to explain rainfall variations. It was therefore retained as an additional 

potential predictor.

Table 4.18: Correlation coefficients between maritime continent (MARCON) zonal 
wind index and some predefined predictors

Niflo 1+2 Nino 3 Niflo 4 Niflo 3.4 IOD ZIND
Jul-Aug 0.03 0.34 0.17 0.39 0.22 0.20
OND 0.19 0.43 0.34 0.48 0.24 0.44
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4.5.1.2.3 Additional predictors from the specific humidity field

Two additional predictors were identified from the specific humidity field at 700mb level. 

SWAFRC was associated with 8 SRISS and seasonal rainfall totals while EQIND was 

associated seasonal rainfall totals and 6 SRISS (Tables 4.9 and 4.10, Figures 4.23 and 4.24). 

These indices are briefly discussed below.

(a) SWAFRC

This index refers to the specific humidity at 700mb level located at the Angola coast on 

southwestern Africa (SWAFRC) and extending to Atlantic Ocean on the west and Zambia to 

the east (Figure 4.36a). Over eastern sector of the study region (sub-regions 1, 3 and 4), this 

index has a significant positive association with seasonal rainfall totals and number of wet 

days (Figure 4.23). The mean duration of the wet spells and mean frequency o f wet spells of 

3 days or more over central Kenya and southeastern lowlands of Kenya (sub-regions 1) have 

significant positive association with this index. This index has significant positive correlation 

with number of dry days and mean frequency of dry spells of 5 days or more over 

northeastern Kenya, an arid and semi-arid area (sub-region 3) as shown by Figure 4.24.

This index has a significant positive relationship with the specific humidity at 700mb level 

over Arabian Sea, Red sea, most parts of northern Africa, equatorial Atlantic Ocean and 

southern Indian Ocean around latitude 30°S during July-August period (Figure 4.36a). Over 

September, the signal weakens and seems to be a bit noisier (Figure 4.36b). During the OND 

period, the index has well-defined signal over central and eastern Africa and equatorial Indian 

Ocean extending to southern Indian Ocean (Figure 4.36c). Enhanced low- to mid- 

tropospheric moisture over these areas, when advected to East Africa may result in wet 

conditions.

Concurrent and lagged correlation analysis with the global SSTs does not show any persistent 

signal over the three global oceans. This is further confirmed by the weak correlation 

coefficients o f this index with Nino, IOD and ZIND indices (Table 4.19).

The major strength of this index is that it is independent from predefined SST predictors. 

Although its physical connection with OND rainfall over East Africa is not straightforward, it 

was retained as an additional potential predictor for the short rainfall season.
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Table 4.19: Correlation coefficients between southwestern Africa (SWAFRC) specific 
humidity index and some predefined predictors

Nino 1+2 Nino 3 Nino 4 Nino 3.4 lOD Z1ND
Jul-Aug 0.06 0.07 0.07 0.08 0.24 0.23
OND * 0.20 0.22 0.01 0.14 0.35 0.36
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Figure 4.36: Map of significant correlation between southwestern Africa (SWAFRC) 
specific humidity index and global S700 for (a) July-August, (b) September and (c) 
October-December. The green rectangle in (a) shows the approximate location of 
SWAFRC specific humidity index computed for July-August period from 1962 to 2000
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(b) EQIND

This index refers to the specific humidity at 700mb level extending from the southern tip of 

India subcontinent, through equatorial Indian Ocean (EQIND) into the eastern Africa region 

(Figure 4.37a). The index persists from July-August through to October-December (Figures 

4J7a-c). Significant positive relationship exists between this index and seasonal rainfall 

totals over western sector o f the study area (sub-regions 2 and 6), northeastern Kenya (sub- 

region 3) and coastal strip o f Kenya and Tanzania (sub-region 4); number o f wet days and 

mean frequency of wet spells of 3 days or more over western Kenya and most parts of 

Uganda (sub-region 2) as shown by Figure 4.23. Significant inverse relationship with this 

index is obtained over northern and central Tanzania (sub-region 5) with number of dry days, 

duration of longest dry spells and mean frequency of dry spells of 5 days or more (Figure 

4.24).

The persistence of this signal over the eastern Africa from July-August through to October- 

December (Figures 4.37a-c) implies that the moisture that is locally available is retained. 

The index also shows a persistent positive correlation with the SST over the northern and 

equatorial Indian Ocean (Figures 4.38a—c). The warming of the equatorial Indian Ocean 

SST, the advection of moisture from the Indian Ocean by the easterlies coupled with the 

retention o f the locally available moisture results in wet conditions over East Africa and 

hence the positive (negative) association of this index with SRISS of wet (dry) spells.

The strong positive association of this index with SST over the tropical eastern Pacific Ocean 

(Figures 4.38a-c) is confirmed by the strong and significant positive correlation coefficients 

with the Nino indices (Table 4.20).

Table 4.20: Correlation coefficients between equatorial Indian Ocean (EQIND) specific 
humidity index and some predefined predictors

Nifio 1+2 Nifio 3 Nifio 4 Nifio 3.4 IOD ZIND
Jul-Aug 0.73 0.59 0.32 0.44 0.41 0.27
OND 0.62 0.46 0.23 0.33 0.38 0.18
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4.5.2 Linkages during the long rainfall season

Different studies have documented inconsistent association between the rainfall totals during 

the long rainfall season over Eastern Africa on one hand and the regional and global climate 

signals on the other hand (Ogallo, 1988; Ogallo et al., 1988; Hastenrath et al., 1993; Rowell 

el al., 1994; Nicholson, 1996; Nicholson and Kim, 1997; Philipps and McIntyre, 2000; Mutai 

and Ward, 2000; Indeje et al., 2000). Based on data from different periods and different 

spatial scales, Ogallo (1988), Ogallo et al. (1988), Hastenrath et al. (1993), Rowell et al. 

(1994) and Philips and McIntyre (2000) did not find any significant correlations between the 

seasonal rainfall totals during the long rainfall season over East Africa and either the 

atmospheric or oceanic component o f ENSO. Nicholson (1996), Nicholson and Kim (1997) 

and Indeje et al. (2000) indicate that shifts exist in the relationship between Nifio3 SST and 

seasonal rainfall totals across the season. According to these studies, weak positive rainfall 

anomalies are found on the onset year of El Nino conditions, while more pronounced 

negative anomalies develop in the decaying phase of El Nino. This shows that uncertainty 

still remains in the significance of the March-May rainfall and ENSO relationship.

There is however a general consensus that a month by month analysis provides better 

understanding on the long rainfall season over Eastern Africa (Mutai and Ward, 2000; 

Camberlin and Philippon, 2002; Zorita and Tilya, 2002). Camberlin and Philippon (2002) 

have shown that while the rainfall totals for March and April may have the same response to 

El Nino events, the response for May rainfall totals is somewhat different. Concurrent 

correlation analysis between the first two leading PCs of monthly rainfall totals over northern 

Tanzania and large scale climate forcings shown that March and April rainfall anomalies 

were linked to zonal thermal contrast between the Indian Ocean and the Eastern African land 

mass and associated anomalies in the zonal component o f surface wind (Zorita and Tilya, 

2002). The May rainfall anomalies on the other hand were associated with a meridional 

surface temperature contrast between the Indian Ocean and the Asian continent, and 

meridional component of surface wind anomalies. This study thus reassessed the relationship 

between the rainfall totals and sub-regional intraseasonal statistics of the wet and dry spells 

(SRISS) over the equatorial eastern Africa region during the March to May season and the 

large scale climate signals.
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Based on these facts and the low spatial coherence of the seasonal rainfall totals and SRISS 

that was observed in the earlier parts o f this study, the long rainfall season was split into two 

parts namely the March-April part and the May part. The linkages between the predefined 

and potential (both oceanic and atmospheric fields) on one hand and the rainfall totals and 

SRISS on the other hand were analysed separately for the two parts of the long rainfall 

season.

4.5.2.1 Linkages during the March-April period

As indicated in section 4.5.1.1 earlier, all predictors are averaged for two-months with a lead 

time of one month to allow for the updating of the predictors identified before the start of the 

season. This means that the Decernber-January values were averaged to obtain the predictor 

index for the March-April part of the season.

4.5.2.1.1 Linkages with the predefined SST predictors

The total correlation between some of the predefined predictor indices and the SRISS and 

rainfall totals during the March and April period of the long rainfall season are illustrated by 

Figures 4.39a—j. In general, the predefined predictors (including the ENSO indices) do not 

have significant association with rainfall totals and SRISS during the March-April period. 

However, occasionally some predefined predictors surpass the 95% significance threshold. 

Two meridional gradients are the most frequent in surpassing the threshold (Figures 4.39a, b, 

d, i and j). These are MIB1 (a meridional gradient across the Indian Ocean) and MAB3 (a 

meridional gradient across the Atlantic Ocean) as discussed by Nyakwada (2009). Their 

relationship with East Africa also remains tenuous, which justifies the search for additional 

potential predictors which is discussed in the next section.
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Figure 4.39: Correlation coefficient between predefined predictors averaged for 
December-January period (x-axis) and the areal-averaged March-April for (a) rainfall 
totals, (b) mean rainfall intensity, (c) number of wet days, (d) number of dry days, (e) 
mean length of wet spells, (f) mean length of dry spells, (g) longest wet spell, (h) longest 
dry spell, (i) frequency of 3 wet days or more, and (j) frequency of 5 dry days or more, 
over the six rainfall sub-regions Z1 to Z6. CL shows the 95% confidence level threshold
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4.5.2.1.2 Linkages with additional potential predictors

Partial correlation while controlling the effects of MIB1 and MAB3 identified thirteen (13) 

additional potential predictors from the oceanic (2) and atmospheric (11) fields. Table 4.21 

provides a brief description of the 13 additional potential predictors. Their association with 

the rainfall totals and SR1SS during the March-April period of the long rainfall season are 

summarised by Table 4.22, Figures 4.40a-e and 4.41a-c. Most of these predictors appear to 

have general weak correlation and quite unstable for the different sub-regions partly because 

the coefficients shown are for the total correlation while the predictors were based on partial 

correlation and also the weak teleconnections that are peculiar to this season. There still exist 

some significant correlations which deserve further examination in the next sections.

Several o f these 13 predictors had been identified during the short rainfall season. However, 

there are slight shift in the location o f the predictors, which was mainly associated with the 

evolutions o f  the climate systems with time. The slight variation in the location can be easily 

recognized by comparing the location co-ordinates of BoBEN (in Table 4.9) and BoBEN-1 

(in Table 4.21); WCAUS and WCAUS-1; S1NDS and SINDS-1; SINDS and SINDS-2; and 

EQAFR and EQAFR-1. Though the teleconnections mechanisms may be slightly different 

also, these five predictors are not described in details further. The other eight additional 

potential predictors that had not appeared during the short rainfall season are discussed in 

details next and a physical interpretation on how they possibly influence the SRISS for which 

they are significantly correlated is given. The additional potential predictors from the wind 

field are discussed first in the next section.
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Table 4.21: B r ie f  d e sc r ip t io n  o f  the  a d d i t io n a l  p o te n t ia l  p r e d ic to r s  fo r  M a rc l i -A p r i l  p e r io d  o f  long  ra in fa l l  seaso n  a n d  th e i r  lo ca tion  
de ta i ls

Index
name

Description
Location details (°)

Longitude Latitude

BoBEN-1 A slight location variation of BoBEN (Bay of Bengal) SST index 68 -  73 E 1 2 -  17N

WCAUS-1 A slight location variation of WCAUS (West coast of Australia) SST index 10 6 - 118 E 2 0 -  12 S

SINDS-1
A slight location variation of SINDS (southern tip of Indian sub-continent) zonal 
wind index at 925mb level

55 -  80 E 1 0 -  5 S

ANGCO Zonal wind index at 925mb level located over Angola and its coast 10 -  20 E 25 -  20 S

WAFR Zonal wind index at 925mb level from Atlantic Ocean into western Africa 3 5 -  15 W 15 - 2 5  N

SINDS-2 A slight location variation of SINDS (southern tip of Indian sub-continent) zonal 
wind index at 925mb level

55 -6 5  E 5 -  10N

CINDO Zonal wind index at 700mb level over equatorial central Indian Ocean 70 -  80 E 2.5 S - 2.5 N

SCEINDO Zonal wind index at 700mb level, south of central equatorial Indian Ocean 8 0 -1 0 5  E 17.5-12.5 S

NINDS Zonal wind index at 200mb level over northern India subcontinent 80 -  90 E 20 -  30 N

EQAFR-1 A slight location variation of EQAFR (Equatorial Africa) zonal wind index at 200mb 
level 10 -  20 E 1 0 -5  S

NEGHA Meridional wind index at 925mb level over north-eastern parts of Greater Horn of 
Africa in eastern Sudan, northern Ethiopia and parts of Djibouti 35 -  45 E 5 -  15 N

WINDO Meridional wind index at 925mb level over equatorial western Indian Ocean and 
equatorial Africa 50 -  60 E 2.5 S - 2.5 N

EBBEN Specific humidity index at 925mb level over southern Asia slightly to the east o f Bay 
of Bengal 9 5 -1 0 5  E 2 0 -2 5  N
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T a b le  4.22: A s u m m a r y  o f  the  a ssoc ia t ion  be tw een  the  iden t i f ied  a d d i t io n a l  p o te n t ia l  p r e d i c to r s  a n d  the  s u b - r e g io n a l  in t r a s e a s o n a l  
s ta t is t ic s  o f  w e t  a n d  d ry  spells  fo r  the  M a r c h - A p r i l  p e r io d  o f  th e  long  ra in fa l l  sea so n  a n d  th e  m o s t  s t ro n g ly  c o r r e l a t e d  in t r a s e a s o n a l  
statistic a n d  sub-region

Predictor Atmospheric Index Name Number of SRISS associated Strongest total correlation

Level with the predictor (out of 10) SRISS Sub-region Coefficient

SST Surface BoBEN-1 1 MI 2 0.36

WCAUS-1 2 MI 1 -0.45

SINDS-I 8 MW 4 -0.58

925mb ANGCO 5 SR 3 -0.39

WAFR 7 3W 2 -0.50

u-wind SINDS-2 3 5D 6 0.42

700mb CINDO 6 NW 6 0.45

SCEINDO 4 MD 3 -0.47

200mb NINDS 4 MI 2 0.42

EQAFR-1 7 3W 5 0.52

v-wind 925mb NEGHA 5 MD 3 -0.44
WINDO 2 MD I 0.39

Specific

humidity
925mb EBBEN 6 MW 5 -0.48



152

Figure 4.40: Correlation coefficient between the thirteen additional potential predictors 
identified averaged over December-January period and the areal-averaged March- 
April (a) rainfall totals, (b) number of wet days, (c) mean length of wet spell, (d) longest 
wet spell and (e) frequency of 3 wet days or more, over the six rainfall sub-regions Z1 to 
Z6. CL shows the 95% confidence level threshold
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Figure 4.41: Correlation coefficient between the thirteen additional potential predictors 
identified averaged over December-January period and the areal-averaged March- 
April (a) mean rainfall intensity, (b) number of dry days, (c) mean length of dry spell, 
(d) longest dry spell and (e) frequency of 5 dry days or more, over the six rainfall sub- 
regions Z1 to Z6. CL shows the 95% confidence level threshold



4.5.2.1.2.1 Additional predictors from the wind field

The additional potential predictors from the wind field for the March-April period of the long 

rainfall were obtained from both the zonal and meridional components and at all the three 

representative levels (Table 4.22), unlike during the short rainfall season (Table 4.10). The 

additional potential predictors so identified did not have significant correlation with the 

MAB3 and MIB1, which had shown significant relationship with the East Africa rainfall 

during the March-April period of the long rainfall season. The predictors for both the zonal 

and meridional components identified at the three atmospheric levels are discussed next, 

starting with the 925mb level.

(a) ANGCO

This index refers to the zonal component of wind at 925mb level located over Angola and its 

coast (ANGCO) as shown by Figure 4.42a. This signal persists from December-January to 

February (Figures 4.42a and b), but it is rather weak in March-April (Figure 4.42c). A signal 

of the opposite sign extending from equatorial Atlantic Ocean, equatorial Africa into eastern 

Africa persist from December-January to February but is slightly weakened in March-April. 

Camberlin and Philippon (2002) have identified a zonal wind component at lOOOmb over the 

Congo basin that was associated with the rainfall totals for March-April period over Kenya 

and Uganda.

Over the northeastern Kenya (sub-region 3), this index has significant inverse association 

with rainfall totals, number of wet days, mean frequency of wet spells of 3 days or more and 

mean rainfall intensity. A significant positive association with the mean duration of dry spells 

was noted over coastal strip of Kenya and Tanzania (sub-region 2) and central and western 

Kenya (sub-region 1).

The negative (positive) association of this index with the SRISS of the wet (dry) spells 

implies weakening of the easterlies over the index location and enhanced easterlies over 

equatorial Africa, which results in dry conditions over the study area in March-April. 

Correlation analysis with global SST (not shown) shows that this index is associated with 

SST cooling over the central Indian Ocean and the Nino regions in December-January. In 

February and March-April, the cooling is spread over the western Indian Ocean. The index is 

associated with moisture reduction over the equatorial Indian Ocean and equatorial Africa in 

December-January and to some extent in March-April. The weakening ot the easterlies, the 

cooling of the SST over Indian Ocean and Nino regions coupled with the moisture reduction

154
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over the Equatorial Indian Ocean and equatorial Africa result in dry conditions over the study 

area. Hence SRISS of dry spells (wet spells and rainfall totals) during the March-April period 

of long rainfall season have positive (negative) association with this index.

The plausible physical explanation on how this index relates to East Africa rainfall provides a 

strong case for its retention as an additional potential predictor.

(a) Correlation map of global Dec-Jan U925 with ANGCO
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Figure 4.42: Map of significant correlation between Angola and its coast (ANGCO) 
zonal wind index and global U925 for (a) December-January, (b) February and (c) 
March-April. The green rectangle in (a) shows the approximate location of ANGCO 
zonal wind index computed for December-January period from 1961 to 2000
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(b) WAFR

This index refers to the zonal component of wind at 925mb level extending from the Atlantic 

Ocean into western Africa (WAFR) around 20°N as shown by Figure 4.43a. However the 

local signature of this wind signal dies off in December-January (Figures 4.43a-c). Henne et 

al. (2008) have documented six flow regimes towards East Africa. One such regime which 

may be associated with WAFR index is the North Africa free tropospheric flow observed 

from January to May and accounting for 6% of the totals flow regime observations studied. 

The index is also within the proximity of the pole centre used to develop the meridional SST 

gradients (Figure 4.3 and Table 3.3) over the Atlantic Ocean for the prediction of eastern 

Africa seasonal rainfall totals (Nyakwada, 2009).

Over most parts of Uganda (sub-region 6), this index has significant negative association with 

the number o f wet days and significant positive association with number of dry days as well 

as the mean duration of dry spells. Over the north-eastern Kenya (sub-region 3), the index has 

significant negative association with the rainfall totals and significant positive association 

with the mean duration of dry spells and mean frequency o f dry spells of 5 days or more. The 

number of wet days and mean frequency of wet spells of 3 days or more had significant 

inverse relationship with this index over the coastal strip of Kenya and Tanzania (sub-region 

2).

The negative (positive) association o f this index with the SRISS of the wet (dry) spells and 

rainfall totals implies that the easterlies are enhanced around December-January. Correlation 

analysis with the global SST shows that this index has significant inverse association with 

SST over the maritime continent and significant positive association with the SST on Pacific 

Ocean around Hawaii. However the association over the maritime continent weakens with 

time. This index does not show a good association with the specific humidity at 925mb level. 

The main weakness with this index was that it dies off soon after January. Despite the tact 

that the relationship of this index with East Africa rainfall is not straightforward, the index 

was retained as an additional potential predictor.
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(a) Correlation map of global Dec-Jan U925 with WAFR

Correlation map of global Febr U925 with WAFR
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Figure 4.43: Map of significant correlation between western Africa (WAFR) zonal wind 
index and global U925 for (a) December-January, (b) February and (c) March-April. 
The green rectangle in (a) shows the approximate location of WAFR zonal wind index 
computed for December-January period from 1961 to 2000
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(c) NEGHA

This index refers to the meridional component of wind at 925mb level over northeastern parts 

of Greater Horn of Africa (NEGHA) in eastern Sudan, northern Ethiopia and parts of 

Djibouti (Figure 4.44a). The signal persists from December-January, through February into 

March-April period (Figures 4.44a-c). This index has significant positive association with 

the rainfall totals, number o f wet days and the duration of longest wet spells over northeastern 

Kenya (sub-region 3). Over the same sub-region, the index has significant negative 

association with the mean duration o f dry spells and mean frequency of dry spells of 5 days 

or more.

The positive (negative) association of this index with the SRISS of the wet (dry) spells and 

rainfall totals implies that the weaker northerlies from December-January through to March- 

April over the index location result in wet conditions over the study area. Enhanced 

northerlies suggest the persistence of an abnormally strong north-easterly (dry) winter 

monsoon flow over the Greater Horn of Africa, which would delay the seasonal shift of ITCZ 

towards northeastern Kenya. A significant correlation between NEGHA and both 925mb 

zonal winds and specific humidity over equatorial Africa (not shown) denote a consistent 

pattern involving variations in the location / northern extent of the 1TCZ. Correlation analysis 

with the global SST also shows that this index has significant negative association with SST 

over most parts of the tropical Indian and Pacific Oceans (Figures 4.45a-c). 1 his suggests 

that NEGHA is partly driven by SST over the Indian and Pacific Oceans, which could explain 

the persistence of the anomalies from December-January, through February to March-April 

(Figures 4.45a-c).

The hypothesis provided earlier on how this index influences the rainfall totals and SRISS 

during the March-April period, coupled with the fact that this index is significantly related to 

the oceanic field (SST) and other atmospheric variables provides a strong case for its 

retention as an additional potential predictor.
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Figure 4.44: Map of significant correlation between northeastern 
parts of Greater Horn of Africa (NEGHA) meridional wind index 
and global V925 for (a) December-January, (b) February and (c) 
March-April. The green rectangle in (a) shows the approximate 
location of NEGHA meridional wind index computed for 
December-January period from 1961 to 2000
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Figure 4.45: Map of significant correlation between northeastern 
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March-April
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(d) WINDO

This index refers to the meridional component of wind at 925mb level over equatorial 

western Indian Ocean (WINDO) and equatorial Africa (Figure 4.46a). This signal persists 

from December-January through to March-April period (Figures 4.46a-c). Significant 

inverse relationship exist between this index and mean rainfall intensity over western 

Tanzania and southern Uganda (sub-region 4) while significant positive association exist with 

mean duration of dry spells over central and western Kenya (sub-region 1).

The negative (positive) association o f mean rainfall intensity (mean duration of dry spells) 

implies that the enhancement of the northerlies over the index location which results in dry 

conditions over the study area. Strong negative association exists between this index and the 

zonal wind component at 925mb over equatorial eastern Africa and the adjacent Indian 

Ocean. This index has significant negative relationship with specific humidity at 925mb level 

over southern Indian Ocean (Equator to 20°S) and extending to the adjacent parts of the 

Africa continent. With SST, the index has significant negative association over the tropical 

Indian and Pacific Oceans, south of Equator up to the 20°S. The enhancement of the 

northerlies over the index location, moisture reduction and the cooling of the SST over Indian 

Ocean results in dry conditions over the study area.

This index is very similar to what is found for NEGHA, suggesting variations in the 

latitudinal location of the ITCZ, but in a reverse way compared to how NEGHA impacts East 

Africa rainfall. This is quite consistent since this index impacts on sub-regions that are 

located further south and western, whereas NEGHA was impacting on northeastern Kenya

rainfall.
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Figure 4.46: Map of significant correlation between equatorial western Indian Ocean 
(WINDO) meridional wind index and global V925 for (a) December-January, (b) 
February and (c) March-April. The green rectangle in (a) shows the approximate 
location of WINDO meridional wind index computed for December-January period 
from 1961 to 2000

Correlation map of global Mar-Apr V925 with WINDO
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(e) CINDO

This index refers to the zonal wind component at 700mb level over equatorial central Indian 

Ocean (CINDO) as shown by Figure 4.47a. The signal persists from Decernber-January 

through to March-April period though it weakens with time (Figures 4.47a-c). This index 

has a significant positive relationship with the rainfall totals and SRISS o f the wet spells. 

With the rainfall totals, the association is significant over the northeastern Kenya (sub-region 

3) and western sector of the study area (sub-regions 4 and 6). With the number of wet days, 

the association is significant over the central and western blocks of the study area (sub- 

regions 1, 4, 5 and 6). The mean frequency of wet spells o f 3 days or more over most parts of 

Uganda (sub-region 6), central and western Kenya (sub-region 1) and southeastern lowlands 

of Kenya and northeastern Tanzania (sub-region 5) has significant positive association with 

this index.

The positive relationship of this index with the rainfall totals and SRISS of wet spells implies 

that enhancement (weakening) of the westerlies (easterlies) over the index location which 

results in wet conditions over the study area. With specific humidity at 700mb level, this 

index has significant positive association over southern Indian Ocean (Equator to 20°S) and 

extending westwards to cover eastern and central Africa (not shown). The significant positive 

association persists from December-January through to March-April. This index has 

significant positive association with SST over the equatorial eastern Pacific Ocean and 

western Indian Ocean (not shown). The wet conditions could be associated with westward 

shift of the meridional arm of the ITCZ when the strong easterlies prevail and possibly, more 

stable easterlies.

Though the explanation on how this index influences the East Africa rainfall during the 

March-April period is still not straightforward, the index was retained as an additional 

potential predictor.
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(a) Correlation map of global Dec-Jan U700 with CINDO
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Figure 4.47: Map of significant correlation between equatorial central Indian Ocean 
(CINDO) zonal wind index and global U700 for (a) December-January, (b) February 
and (c) March-April. The green rectangle in (a) shows the approximate location of 
CINDO zonal wind index computed for December-January period from 1961 to 2000
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(f) SCEINDO

This index refers to the zonal wind component at 700mb level, south of central equatorial 

Indian Ocean (SCEINDO) from 10°S to 20°S (Figure 4.48a). The signal shows weak 

persistence from December-January through to March-April period (Figures 4.48a-c). This 

index only has significant negative association with the duration of longest wet spells and 

mean rainfall intensity over southeastern lowlands of Kenya and northeastern Tanzania (sub- 

region 5).

The inverse relationship o f this index with the SRISS o f wet spells implies that the easterlies 

are weakened over the index location, which results in dry conditions over the study area. 

With the specific humidity at 700mb (not shown), this index has significant faint positive 

relationship to the east of Madagascar. This means that the moisture is retained over this part 

of the Ocean and does not move towards the African continent. The index has significant 

positive association with SST over index location in Indian Ocean and central equatorial 

Pacific Ocean.

Given its relationship with moisture retention over the Indian Ocean, providing a plausible 

physical explanation as to how this index influences the SRISS of the wet spells, it is retained 

as an additional potential predictor for the March-April period.
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Figure 4.48: Map of significant correlation between south of central equatorial Indian 
Ocean (SCEINDO) zonal wind index and global U700 for (a) December-January, (b) 
February and (c) March-April. The green rectangle in (a) shows the approximate 
location of SCEINDO zonal wind index computed for December-January period from 
1961 to 2000
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(g) NINDS

This index refers to the zonal wind component at 200mb level over northern India 

subcontinent (NINDS) as shown by Figure 4.49a. The signal persists from December- 

January through to March-April (Figures 4.49a-c), though it reduces in strength with time 

and seems to shift westwards. This signal has significant negative association with zonal 

wind component at 200mb over equatorial Indian Ocean extending through equatorial Africa 

into eastern equatorial Atlantic Ocean which persists from December-January through to 

March-April. Over the coastal strip of Kenya and Tanzania (sub-region 2), the index has 

significant positive relationship with the rainfall totals, number of wet days, mean frequency 

of wet spells of 3 days or more and mean rainfall intensity. Over the same sub-region, this 

index has significant negative relationship with the mean duration of dry spells.

With the global SST, this index has significant positive association with SST over Indian 

Ocean north of 20°S from December-January through to March-April (not shown). The index 

has significant positive association with SST over the equatorial Pacific Ocean in December- 

January but reduces with time and is confined to the west of 120°W over the equatorial 

Pacific Ocean in March-April period. This is further confirmed by the strong positive 

association between this index and the Nifio indices (Table 4.23). This may suggest that 

NINDS describes a variant of ENSO patterns over Indian Ocean, which unlike the ENSO, is 

abetter predictor of rainfall during the March-April period.

Table 4.23: Correlation coefficients between northern India subcontinent (NINDS) 
zonal wind index and some predefined predictors

Nino 1+2 Nino 3 Nino 4 Nino 3.4 IOD MIB1 MAB3

Dec-Jan 0.72 0.74 0.58 0.71 0.26 0.35 -0.19

Mar-Apr 0.30 0.40 0.40 0.50 -0.14 0.13 0.03
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Correlation map of global Dec-Jan U200 with NINDS
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Figure 4.49: Map of significant correlation between northern India subcontinent 
(NINDS) zonal wind index and global U200 for (a) December-January, (b) February 
and (c) March-April. The green rectangle in (a) shows the approximate location of 
NINDS zonal wind index computed for December-January period from 1961 to 2000
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4.5.2.1.2.2 Additional predictors from the specific humidity field

Another additional potential predictor was identified from the specific humidity field at 

925mb level.

(a) EBBEN

This index refers to the specific humidity at 925mb level over southern Asia slightly to the 

east of the Bay of Bengal (EBBEN) as shown by Figure 4.50a. This signal persists from 

December-January through to March-April though reduced in intensity and shifts from Bay 

of Bengal towards equatorial Africa and the equatorial Indian Ocean (Figures 4.50a-c).

Over the western block of the study area (sub-regions 4 and 6) and northeastern Kenya (sub- 

region 3), this index has significant negative association with the rainfall totals and the 

number o f wet days. Significant negative relationship exists with the mean duration of wet 

spells and duration of longest wet spells over the central and western Kenya (sub-region 1) 

and southeastern lowlands of Kenya and northeastern Tanzania (sub-region 5). Over western 

Tanzania and southern Uganda (sub-region 4), this index has significant positive relationship 

with the number of dry days and significant negative association with the mean duration of 

wet spells and mean frequency of wet spells of 3 days or more.

With the zonal wind component at 925mb level (not shown), this index has significant 

positive association over the study area that persists from December-January through to 

March-April period. This index has strong positive association with the SST over the Indian 

Ocean north of the 20°S, the Atlantic Ocean between 20°S to 30°S and over the tropical 

Pacific Ocean that persists over the entire duration (not shown). We hypothesis that the index 

is a reflection of large SST pattern, that influence wind anomalies. It is these large scale wind 

anomalies that influences East Africa rainfall.
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(a) Correlation map of global Dec-Jan S925 with EBBEN
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Figure 4.50: Map of significant correlation between east of the Bay of Bengal (EBBEN) 
specific humidity index and global S925 for (a) December-January, (b) February and (c) 
March-April. The green rectangle in (a) shows the approximate location of EBBEN 
specific humidity index computed for December-January period from 1961 to 2000

Most of the additional potential predictors identified earlier have significant association with 

the predefined indices especially the Nino indices and more specifically the Nifio 1 + 2 and 

Nino 3 indices. This is despite the fact that the Nifio indices did not show significant 

association with the rainfall totals and SRISS during the March-April period. This simply 

means that the additional potential predictors identified here carries with them part of the
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ENSO signal, but that it is not this phenomenon which carries the predictive information. 

Camberlin and Philippon (2002) indicated that rainfall totals for March and April have 

significant negative responses to El-Nifio events but over a period different from the one 

considered here, and they cautioned on the existence of decadal-scale variations in this 

relationship. Additionally, the prediction model they developed, which incorporated an El- 

Nifio index, was for a zero lead-time, whereas a longer lead-time is considered in the present 

study, and ENSO is known to undergo phase shifts at this time of the year.

The additional potential predictors were also found to have significant association with the 

SST over the Indian Ocean and yet the association with the Indian Ocean Dipole (lOD) index 

was mostly insignificant. That meant that the additional potential predictors were associated 

with the basin-wide or regional variation of the SST and not the mode of variability 

associated with lOD. Owiti (2005) has indicated that the evolution of the Indian Ocean 

Dipole events begins around April, attains peak in October-November and dissipates around 

January. Rarely do the IOD events extend beyond one year (Owiti, 2005). This explains why 

the rainfall totals and SRISS are better related to potential predictors other than IOD. 

Although these predictors are mostly atmospheric ones, they may still be associated with 

SST, which is one of the most obvious features of the climate system, able to provide enough 

persistence for use in seasonal prediction. Previous studies have also demonstrated the skill of 

atmospheric predictors, either as forcing agents of surface conditions, or as a marker of large- 

scale energy gradients.

4.5.2.2 Linkages during the month of May

The predictors for the intraseasonal statistics during the month of May were averaged for the 

January and February values. Unlike the previous periods where a one month lead time was 

maintained, a two months’ lead time was used here. The explanation behind this move is 

briefly discussed in section 4.6.2. An assessment o f the association between the SRISS 

during the month of May and the predefined indices is discussed next.

4.5.2.2.1 Linkages with the predefined SST predictors

Figures 4.51a-j show graphical presentation of the total correlation coefficients between 

some of the predefined predictor indices on one hand and the SRISS and rainfall totals for the 

month o f May on the other hand. Just like for the March-April period, the predefined 

predictors did not show many significant relationships with the SRISS and rainfall totals for 

the month of May. The Indian Ocean Dipole (IOD) index was the only predefined predictor
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that has significant association with the rainfall totals and several of the SRISS of the wet and 

dry spells (Figures 4.51a-c, f, h and i). However, this was mainly over the western Tanzania 

and southern Uganda (sub-region 4). This is consistent with Zorita and Tilya (2002) who 

emphasized the zonal teleconnections across the Indian Ocean in May against meridional 

teleconnections in March-April.

4.5.2.2.2 Linkages with additional potential predictors

Partial correlation while controlling the effect o f the lOD index identified ten (10) additional 

potential predictors from the oceanic and atmospheric fields. A brief description of these ten 

additional potential predictors is provided in Table 4.24. The association o f these predictors 

with the rainfall totals and SRISS during the month o f May is summarized by Table 4.25, 

Figures 4.52a-e and 4.53a-e.

As earlier observed with the additional potential predictors of the March-April period of the 

long rainfall season, some of the predictors for the month ot May had been identified during 

the short rainfall season or March-April period. These predictors are F.CMAD-1 and 

WCAUS-2, all of which are from oceanic field (Table 4.9). These predictors are therefore 

not described in details in the subsequent sections. I he rest of the potential predictors are 

from the atmospheric fields, with those from the wind field being discussed first in the next

section.
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Figure 4.51: Correlation coefficient between predefined predictors averaged over 
January-February period (x-axis) and the areal-averaged (a) rainfall totals, (b) mean 
rainfall intensity, (c) number of wet days, (d) number of dry days, (e) mean length of 
wet spell, (f) mean length of dry spell, (g) longest wet spell, (h) longest dry spell, (i) 
frequency of 3 wet days or more, and (j) frequency of 5 dry days or more, for the month 
of May over the six rainfall sub-regions Z1 to Z6. CL shows the 95% confidence level 
threshold



T a b le  4 .24: B rie f  d e sc r ip tio n  o f  th e  a d d it io n a l  p o te n tia l  p re d ic to r s  fo r  m o n th  o f  M ay  d u r in g  long  ra in fa l l  sea so n  a n d  th e i r  lo c a tio n  
d e ta ils

In d e x
D e s c r ip t io n

L o c a t io n  D e ta i ls  (°)

N a m e L o n g i tu d e L a t i t u d e

E C M A D -1 A slight location variation of ECMAD (East coast of Madagascar) SST index 63 -  75 E 25 -  19 S

W C A U S -2 A slight location variation of WCAUS (West coast o f Australia) SST index 9 0 -  100 E 1 2 -  4 S

S A F R Meridional wind index at 925mb level over southern Africa 25 -  30 E 30 - 2 0  S

N E A T O
Meridional wind index at 700mb level over the western Africa region and extending 

slightly over the northern Atlantic Ocean
12.5-7 .5  W 5 -  25 N

S S A
Meridional wind index at 200mb level to the south of the study area covering parts of 
Southern Tanzania, Malawi and Mozambique

2 5 -3 5  E 1 5 -5  S

E Q A T O Meridional wind index at 200mb level over the equatorial Atlantic Ocean 3 5 -2 5  W 0 -  10N

C S IN D O Meridional wind index at 200mb level over central parts of the southern Indian Ocean 80 -  90 E 30 -  20 S

S M E S E A Specific humidity index at 925mb level south of the Mediterranean Sea 5 W -2 0 E 27 .5 -32 .5  N

W C S O A Specific humidity index at 925mb level on the western coast of southern Africa 5 W -2 0 E 25 -  20 S

S T A F R Geopotential height index at 700mb level over the southern tip of Africa continent 20 -  30 E 4 0 -3 5  S



T a b le  4 .25: A s u m m a ry  o f  th e  a sso c ia tio n  b e tw een  th e  id e n tif ie d  a d d it io n a l  p o te n tia l  p r e d ic to r s  a n d  th e  s u b - re g io n a l  in tr a s e a s o n a l  
statistics o f  the w e t  and d ry  spells for the  m o n th  o f  M ay  o f  the long  r a in fa ll  sea so n  a n d  th e  m o st s tro n g ly  c o r r e la te d  in tra s e a s o n a l  
s ta t i s t ic  a n d  s u b - re g io n

P r e d ic to r A tm o s p h e r ic In d e x  N a m e N u m b e r  o f  S R IS S  a s s o c ia te d S t r o n g e s t  to ta l  c o r r e l a t i o n

L e v e l w ith  th e  p r e d i c t o r  ( o u t  o f  10) S R I S S S u b - r e g io n C o e f f ic ie n t

S S T S u r f a c e E C M A D -1 4 SR 1 0.44

W C A U S -2 5 SR 4 -0 .43

9 2 5 m b S A F R 7 3W 6 -0 .52

7 0 0 m b N E A T O 5 3W 3 -0.41

v -w in d S S A 4 LW/MI 4 -0.41

2 0 0 m b E Q A T O 7 SR 5 0.45

C S IN D O 8 MW 2 -0 .52

S p e c if ic
9 2 5 m b

S M E S E A 5 NW 1 -0 .42

h u m id ity W C S O A 6 5D 5 -0 .49

G e o p o te n t ia l

h e ig h ts
7 0 0 m b S T A F R 5 3W 2 -0 .46
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(a) Correlation coefficient of May SR with Jan-Feb predictors

F igu re  4 .5 2 : C o r r e la t io n  c o e f f ic ie n t  b e tw e e n  th e  te n  a d d i t io n a l  p o te n t ia l  p re d ic to r s  
id en tif ied  a v e ra g e d  o v e r  J a n u a r y - F e b r u a r y  p e r io d  a n d  th e  a r e a l - a v e r a g e d  (a ) ra in fa l l  
to tals, (b )  n u m b e r  o f  w e t  d a y s ,  (c ) m e a n  le n g th  o f  w e t  sp e ll, (d ) lo n g e s t  w e t  sp e ll , a n d  (e) 
f re q u e n c y  o f  3 w e t d a y s  o r  m o r e ,  f o r  th e  m o n th  o f  M a y  o v e r  th e  six  r a in f a l l  s u b - re g io n s  
Z1 to  Z 6 . C L  sh o w s  th e  9 5 %  c o n f id e n c e  lev e l th r e s h o ld
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(3) Correlation coefficient of May Ml with Jan-Feb predictors

F ig u re  4 .5 3 : C o r r e la t io n  c o e f f ic ie n t  b e tw e e n  th e  te n  a d d i t io n a l  p o te n t ia l  p r e d ic to r s  
id en tif ied  a v e ra g e d  o v e r  J a n u a r y - F e b r u a r y  p e r io d  a n d  th e  a r e a l - a v e r a g e d  (a ) m e a n  
ra in fa ll  in te n s i ty ,  (b )  n u m b e r  o f  d r y  d a y s , (c) m e a n  le n g th  o f  d r y  s p e ll ,  (d )  lo n g e s t  d ry  
spell, a n d  (e) f r e q u e n c y  o f  5 d r y  d a y s  o r  m o re , fo r  th e  m o n th  o f  M a y  o v e r  th e  six  ra in fa l l  
s u b -re g io n s  Z1 to  Z 6 . C L  s h o w s  th e  9 5 %  c o n f id e n c e  level th re s h o ld
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4.5.2.2.2.1 Additional predictors from the wind and geopotential height fields

Additional potential predictors for the rainfall totals and sub-regional intraseasonal statistics 

of wet and dry spells (SRISS) were identified from the meridional component of the wind 

field. The predictors identified at the 925mb level are discussed first.

(a) S A F R

This index refers to the meridional component of wind field at 925mb level over southern 

Africa (SAFR) as shown by F ig u r e  4 .5 4 a . Though this index seems to persist over its 

location from January-February through to May, the index location shifts slightly 

equatorwards over time ( F ig u r e s  4 .5 4 a - c ) .  A signal o f opposite sign persists over the study 

area and its neighbourhood from January-February through to May.

This index was significantly associated with the rainfall totals and SRISS o f wet and dry 

spells over most parts of Uganda only (sub-region 6). Significant negative association over 

sub-region 6 was noted between this index and the rainfall totals, number of wet days, mean 

duration of wet spells, duration of longest wet spells and mean frequency o f wet spells of 3 

days or more (F ig u re s  4 .5 2 a - e ) .  With the mean duration of dry spells and duration of longest 

dry spells, this index had a significant positive association ( F ig u r e  4 .5 3 c  and d ).

This index has significant positive association with the zonal component o f wind at 925mb 

over the study area and its neighbourhood that persists from the January-February through to 

the month of May (not shown). The index has insignificant association with the SST over the 

Indian and Atlantic Oceans (not shown). The persistence of this index may be associated with 

the land gradients since the association with SST is rather weak. It was therefore retained as 

an additional potential predictor despite the fact that only one sub-region showed significant

association with this index.
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F igu re  4 .5 4 : M a p  o f  s ig n if ic a n t  c o r r e la t io n  b e tw e e n  s o u th e r n  A fr ic a  (S A F R )  m e r id io n a l  
w ind in d e x  a n d  g lo b a l V 9 2 5  f o r  (a )  J a n u a r y - F e b r u a r y ,  (b ) M a r c h - A p r i l  a n d  (c) M a y . 
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index c o m p u te d  fo r  J a n u a r y - F e b r u a r y  p e r io d  f ro m  1962 to  2000
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(b) NEATO

This index refers to the meridional wind component at 700mb level over the western Africa 

region and extending slightly over the northern Atlantic Ocean (NEATO) as shown by 

Figures 4.55a-c. Its location suggests that this index may be associated with the Africa 

Easterly Jet (AEJ). The index is also within the proximity of the pole centre used to develop 

the meridional SST gradients over the Atlantic Ocean for the prediction o f Eastern Africa 

seasonal rainfall totals (Nyakwada, 2009).

Significant negative association exists between this index and rainfall totals, number of wet 

days, mean frequency of wet spells of 3 days or more over northeastern Kenya (sub-region 3) 

as shown in Figures 4.52a, b, and e respectively. Over the coastal strip of Kenya and 

Tanzania (sub-region 2), a significant negative relationship exists with the mean frequency of 

wet spells o f 3 days or more (Figure 4.52e). With the mean rainfall intensity over the south

eastern lowlands of Kenya and north-eastern Tanzania (sub-region 5), a significant negative 

association exists with this index (Figure 4.53a).

The wind signal associated with this index dies off immediately after February (Figures 

4.55b & c). With the SST, this index has persistent significant negative association with the 

SST over the central and eastern equatorial Pacific Ocean (Figures 4.56a-c). The negative 

association is enhanced with time as one moves from January-February through to the month 

of May (Figures 4.56a-c), as confirmed by the bigger correlation coefficients with 

predefined predictors over the Pacific Ocean. This index seems to prefigure changes in the 

ENSO context in the Pacific Ocean. Although the correlation between ENSO and East Africa 

May rainfall is generally not significant, we can speculate that the exact SST pattern shown to 

be associated with this index has more influence. The weakening of the westerlies coupled 

with the unavailable of the moisture supply in the month of May leads to dry conditions.

Despite its relationship with the East Africa rainfall not being straightforward, this index was 

retained as an additional potential predictor for the month of May.
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(c) SSA

This index refers to the meridional component of the wind field at 200mb level to the south 

of the study area (SSA) covering parts of Southern Tanzania, Malawi and Mozambique 

(Figure 4.57a). This signal persists over the index location from January-February to March- 

April (Figures 4.57a & b) and is slightly shifted westwards and located over Angola in May 

(Figure 4.57c). A signal o f opposite sign located over the western equatorial Indian Ocean, 

persists from January-February to March-April and is shifted westwards in the month of May 

with reduction in spatial extent. This signs a ridge-trough pattern across equatorial and 

southern Africa. It can be hypothesized that these features are associated with shifts in the 

preferred location of convection over equatorial Africa, and related tropical-extratopical 

cloud bands in the southern hemisphere.

Over western Tanzania and southern Uganda (sub-region 4), this index has significant 

negative relationship with the rainfall totals, duration o f the longest wet spells (Figure 4.52a 

& d) and mean rainfall intensity (Figure 4.53a). Over the south-eastern lowlands of Kenya 

and north-eastern Tanzania (sub-region 5), this index has significant negative relationship 

with the rainfall totals (Figure 4.52a).

The index has significant but inverse association with the specific humidity at 925mb level 

over the central Indian Ocean that tend to increase in intensity and spatial extend as one move 

from January-February, to March-April and finally to the month of May (not shown). A 

significant negative association was also observed over the study area with the zonal wind 

component at 925mb level from January-February through to the month of May (not shown). 

The enhancement of the easterlies implies dry conditions over the study area.
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Figure 4.57: Map of significant correlation between south of the study area (SSA) 
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(d) EQATO

This index refers to the meridional component of wind field at 200mb level over the 

equatorial Atlantic Ocean (EQATO) as shown by Figure 4.58a. The signal persists over the 

index location from January-February through to the month of May as shown in Figures 

4.58a—c. By the month of May, a signal has developed over the study area (Figure 4.58c).

Over the southeastern lowlands of Kenya and northeastern Tanzania (sub-region 5), 

significant positive relationship exists between this index and rainfall totals and all SRISS of 

the wet spells as shown by Figures 4.53a-e. Significant positive association exists over the 

coastal strip of Kenya and Tanzania (sub-region 2) between this index and rainfall totals, 

number of wet days, mean duration of the wet spells (Figures 4.53a-c). Significant negative 

relationship was also noted with the mean frequency o f dry spells of 5 days or more over the 

same sub-region (Figure 4.54e). With mean frequency of wet spells o f 3 days or more 

(Figures 4.53e), significant positive association exists over north-eastern Kenya (sub-region 

3) and western Tanzania and southern Uganda (sub-region 4).

A significant positive relationship exists between this index and the SST over the western 

Indian Ocean and Pacific Ocean from January-February through to the month of May (not 

shown). This association tends to intensify over the Indian Ocean as confirmed by the 

increased magnitude of the correlation coefficient of this index with predefined predictors of 

IOD and M1B1 (Table 4.26). With the specific humidity at 925mb level (not shown), this 

index has significant positive association over equatorial Indian Ocean, equatorial Africa and 

parts of the equatorial Atlantic Ocean from January-February through to the month of May.

The weakening of the easterlies over the study area in the month of May, the warming of the 

SST over the western Indian Ocean coupled with the moisture supply from Indian Ocean 

leads to wet conditions over the study area. This index was therefore included as an 

additional potential predictor.

Table 4.26: Correlation coefficients between equatorial Atlantic Ocean (EQATO) 
meridional wind index and some predefined predictors

Nifio 1+2 Nifio 3 Nino 4 Nino 3.4 IOD MIB1 MAB3

Jan-Feb 0.42 0.46 0.61 0.51 0.05 -0.18 -0.03

May 0.29 0.38 0.61 0.51 0.33 -0.23 -0.14
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(e) CSINDO

This index refers to the meridional wind component at 200mb level over the central parts of 

the southern Indian Ocean (CSINDO) around 20°S (Figure 4.59a). The signal over the index 

location does not persist beyond January-February (Figure 4.59a) though there is a faint trace 

inMarch-April (Figure 4.59b). A signal of opposite sign exists in the northern Indian Ocean 

in January-February and March-April but dies off in May (Figures 4.59a-c). This suggests 

variations in the intensity o f Hadley circulations at these longitudes.

Most sub-regions show significant negative correlations between this index and May rainfall 

and wet spells statistics especially number of wet days, mean length of the wet spells and 

duration o f the longest wet spells as shown by Figures 4.52a-d. Over most parts of Uganda 

(sub-region 6), this index has significant positive correlation with mean length of dry spells 

and the duration of the longest dry spells as shown by Figures 4.53c & d.

This index has no relationship with the SST over the Indian and Atlantic Oceans. However, a 

significant positive relationship exists between this index and the SST over central Pacific 

Ocean in January-February and March-April but greatly reduced in spatial extent during the 

month o f May (not shown). Consistent with these observations, the index had significant 

positive relationship with the Nino indices only but during the January-February period alone 

(not shown). With the zonal wind component and specific humidity both at 925mb level (not 

shown), this index has significant positive association over the western Indian Ocean and 

study area in January-February, but confined to the study area for the March-April period 

and the month of May.

(f) STAFR
This index refers to the geopotential height at 700mb level over the southern tip of Africa 

continent (STAFR) as indicated in Figure 4.60a. This signal does not persist beyond the 

January-February period (Figures 4.60a-c).

Over the coastal strip of Kenya and Tanzania (sub-region 2), significant negative relationship 

exists between this index and rainfall totals, number of wet days, duration of longest wet 

spells and mean frequency of wet spells of 3 days or more (Figures 4.52a, b, d and e). 

Significant negative relationship with the number o f wet days and mean frequency of wet 

spells o f 3 days or more over the northeastern Kenya (sub-region 3) was also noted (Figures 

4.52b and e).
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With the zonal wind component at 925mb and 700mb levels (not shown), this index has 

significant negative relationship over the study area and western parts o f equatorial Indian 

t o n  from January-February through to the month of May. No significant association was 

noted with SST over the global Oceans. Its relationship with the East African rainfall is 

however not straightforward like most other additional potential predictors.

(a) Correlation map of global Jan-Feb V200 with CSINDO

Correlation map of global Mar-Apr V200 with CSINDO

Correlation map of global May V200 with CSINDO

n
■

0.992
0.823
0.654
0.485
0.316
-0.316
-0.478
-0.640

0.422

0.316

U  -0-316 

-0.403 

-0.489

I
0.392

0.316

-0.316

-0.395

-0.474

180°W180°W 120°W 60°W 0° 60°E 120°E
Figure 4.59: Map of significant correlation between central parts of the southern Indian 
Ocean (CSINDO) meridional wind index and global V200 for (a) January-February, (b) 
Vlarch-April and (c) May. The green rectangle in (a) shows the approximate location of 
CSINDO meridional wind index computed for January-February period from 1962 to
2000
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Figure 4.60: Map of significant correlation between southern tip of Africa continent 
(STAFR) geopotential height index and global G700 for (a) January-February, (b) 
March-April and (c) May. The green rectangle in (a) shows the approximate location of 
STAFR geopotential height index computed for January-February period from 1962 to
2000
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4.5.2.2.2.2 Additional predictors from specific humidity

Two additional potential predictors were identified from the specific humidity at the 925mb 

levels (Tables 4.24 and 4.25) as discussed in the next section.

(a) SMESEA

This index refers to the specific humidity at 925mb level over North Africa, south of the 

Mediterranean Sea (SMESEA) as shown by Figure 4.61a. The signal persists from January- 

February through to the month o f May (Figures 4.61a-c). A signal of opposite sign exists 

over the study area from January-February through to the month of May.

This index has significant negative association with the rainfall totals, number of wet days 

and mean frequency of wet spells of 3 days or more over central and western Kenya (sub- 

region 1), western Tanzania and southern Uganda (sub-region 4), and southeastern lowlands 

of Kenya and northeastern Tanzania (sub-region 5) as shown by Figures 4.52a, b and e. Over 

the southeastern lowlands of Kenya and northeastern Tanzania (sub-region 5), a significant 

negative relationship with the mean duration o f wet spells (Figures 4.52c) and mean rainfall 

intensity (Figures 4.53a) was also noted.

Given that it is a continental signal and it has strong temporal persistence, we can speculate 

that this index is associated with the soil moisture anomalies (January -  February is a rainy 

season in North Africa). Over the central Pacific Ocean, this index has significant but inverse 

association with SST that persists from January-February through to the month of May as 

shown by significant and increasing correlation coefficients between this index and the 

ENSO indices (Table 4.27). In the Indian Ocean, the index has a significant positive signal 

between Equator and 20°S over the western Indian Ocean in the month of May alone. With 

the zonal component of wind field at 925mb level (not shown), this index has significant 

inverse relationship over Gulf o f Guinea in January-February, and shifting eastwards with 

time. By the month of May, the significant inverse association is slightly to the west of the 

study area and extending into Gulf of Guinea. The weakening of the westerlies over the study 

area, the cooling of SST over equatorial Pacific from January-February through to May 

results in dry conditions.

The robust physical explanation on how this index relates to the rainfall totals and SRISS 

coupled with the signals from the oceanic and atmospheric variables justify the inclusion of 

this index as an additional potential predictor.
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(a) Correlation map of global Jan-Feb S925 with SM ESEA

40°S

(b) Correlation map of global Mar-Apr S925 with SMESEA

(c) Correlation map of global May S925 with SMESEA
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Figure 4.61: Map of significant correlation between south of the Mediterranean Sea 
(SMESEA) specific humidity index and global S925 for (a) January-February, (b) 
March-April and (c) May. The green rectangle in (a) shows the approximate location of 
SMESEA specific humidity index computed for January-February period from 1962 to
2000

Table 4.27: Correlation coefficients between south of the Mediterranean Sea (SMESEA) 
specific humidity index and some predefined predictors

Nino 1+2 Nifio 3 Nifio 4 Nifio 3.4 IOD MIB1 MAB3

Jan-Feb -0.31 -0.37 -0.60 -0.45 -0.09 -0.01 0.10

May -0.22 -0.36 -0.64 -0.54 -0.18 -0.13 0.29
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(b) WCSOA

This index refers to the specific humidity at 925mb level on the western coast of southern 

Africa (WCSOA) as shown by Figure 4.62a. The signal persists over the index location from 

January-February through to the month of May (Figures 4.62a-c). A signal o f the opposite 

sign exists over the study area, extending to the equatorial western Indian Ocean and persists 

over the same period.

A significant negative association exists between this index and mean duration of dry spells 

over coastal strip of Kenya and Tanzania (sub-region 2) and mean frequency of dry spells of 

5 days or more over western Tanzania and southern Uganda (sub-region 4) as shown in 

Figures 4.53c and e respectively. Over the southeastern lowlands o f Kenya and northeastern 

Tanzania (sub-region 5), significant negative association exist with the number of dry days 

and mean frequency of dry spells o f 5 days or more (Figures 4.53b & e).

With the zonal wind component at 925mb level (not shown), this index has significant but 

inverse relationship over the study area and extending through equatorial Africa into western 

parts of Equatorial Atlantic Ocean. This relationship persists from January-February through 

to the month of May though with the reduction in spatial extent. This index is not associated 

with the SST over the Indian and Atlantic Oceans. However, a significant but negative 

association was observed with the SST over the equatorial Pacific Ocean which persists from 

January-February through to the month of May. This is further confirmed by significant 

negative correlation coefficients between this index and the Nifio indices (Table 4.28). The 

depletion of the moisture and the strengthening of the easterlies over the study area results in 

dry conditions.

The consistent atmospheric signals associated with this index, and the assumption on how 

they relates to the SR1SS of dry spells provide a strong case for retention o f this index as an 

additional potential predictor.

Table 4.28: Correlation coefficients between western coast of southern Africa (WCSOA) 
specific humidity index and some predefined predictors

Nino 1+2 Nino 3 Nino 4 Nino 3.4 IOD MIB1 MAB3

Jan-Feb -0.42 -0.48 -0.43 -0.51 0.10 -0.16 0.02
May -0.41 -0.44 -0.46 -0.51 0.11 -0.12 0.11
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Figure 4.62: Map of significant correlation between western coast of southern Africa 
(WCSOA) specific humidity index and global S925 for (a) January-February, (b) 
March-April and (c) May. The green rectangle in (a) shows the approximate location of 
WCSOA specific humidity index computed for January-February period from 1962 to
2000

As earlier observed, most of the potential predictors identified have significant association 

with the predefined predictor indices. This is despite the fact that most of the predefined SSI 

predictors did not show significant association with the rainfall totals and SR1SS for the 

month o f  May. This simply means that the additional potential predictors identified here 

carries with them part of the ENSO signal, but that it is not this phenomenon which carries

(a) Correlation map of global Jan-Feb S925 with W CSOA

(b) Correlation map of global Mar-Apr S925 with WCSOA

(c) Correlation map of global May S925 with WCSOA B
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(he predictive information.

Henne et al., (2008) have documented six flow regimes towards the east Africa region. One 

of these flow regimes is the North Africa free tropospheric flow accounting for 6% of all the 

observations studied. Several of the additional potential predictors may be related with this 

flow regime. The additional potential predictors in mind are NEATO and SMESEA. 

Consistent with these additional potential predictors, the North Africa free tropospheric flow 

was observed from January through to May.

In conclusion, the identification o f the large scale oceanic and atmospheric signals associated 

with the sub-regional intraseasonal statistics of wet and dry spells (SR1SS) including rainfall 

totals shown that during the short rainfall season, the large scale signals are mainly from the 

oceanic field. However during the earlier and later parts of the long rainfall season, the large 

scale signals are mainly from atmospheric fields of zonal and meridional components of wind 

and the specific humidity. A signal from the geopotential height was identified only once. 

The ocean (as a component of climate system) has a longer memory thus the SST field as a 

climatic variable has a greater persistence hence the higher potential predictability already 

observed. The atmospheric variables have a rather lower persistence which may point to the 

lower potential predictability of sub-regional intraseasonal statistics of wet and dry spells and 

rainfall totals. Indeje and Semazzi (2000) have indicated significant positive simultaneous 

and non-zero lag correlations between rainfall over parts of East Africa and lower equatorial 

stratospheric zonal wind during the months of March to May and June to August did exist. 

These associations were observed to be more prominent during lag than in the simultaneous 

correlations. The long lead predictions using atmospheric indices pose the question of the 

physical basis of the relationships. However, it should be recalled that atmospheric variability 

may reflect land and/or ocean surfaces, both having a relatively longer ‘memory . In such 

case, the atmospheric predictor can be viewed as a proxy of climate memory associated with 

these surface conditions. Surface conditions (esp. land) cannot be always directly captured by 

available data sets.

The additional potential predictors (both oceanic and atmospheric) for the earlier and later 

parts o f the long rainfall seasons were all from within the African continent and the two 

adjacent oceans. The oceanic indices associated with the SRISS and rainfall totals of earlier 

and later parts of the long rainfall season happened to be some of the oceanic indices already 

identified during the short rainfall season though with slight displacement in location.
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Having identified the additional potential predictors for rainfall totals and SRISS for the two 

rainfall seasons, the multivariate linear regression (MLR) models were developed and their 

performance evaluated. These MLR models are discussed in the next section.

4.6 Regression m odels for sub-regional intraseasonal statistics  
of wet and dry spells

The methodology used to develop the multivariate linear regression (MLR) models at sub

regional level and assess the performance of these models was discussed in section 3.2.6. The 

results of the MLR models developed for rainfall totals and SRISS and their performance 

assessment are shown and discussed in the subsequent sections starting with those of short 

rainfall season.

4.6.1 Regression models during the short rainfall season

The seasonal rainfall totals and sub-regional intraseasonal statistics of the wet and dry spells 

(SRISS) during the short rainfall season were found to be spatially more coherent, suggesting 

higher potential predictability as compared to those o f the long rainfall season (Figures 4.19 

and 4.20). This is consistent with previous studies that have found significant concurrent and 

lagged association with the Nino, IOD and SST gradient indices (Ogallo, 1988; Mutemi, 

2003; Black et al., 2003; Black, 2005; Owiti, 2006; Nyakwada, 2009).

The list o f the predictors from which the regression models were developed was shown in 

Tables 4.9 and 4.10. Two predictors from the predefined indices (ZIND and Nino 3.4) and 

nine additional predictors from the oceanic and atmospheric fields are used. The total 

correlation of each of this additional potential predictor with the rainfall totals and 

intraseasonal statistics was shown in Figures 4.23a-e and 4.24a-e. As indicated earlier, the 

predictor indices were averaged for the months of July-August and used to develop the OND 

MLR models for seasonal rainfall totals and SRISS. The predicted values directly obtained 

from the MLR model developed and the MLR cross-validated model are shown as graphs 

while the predictors that are picked and the assessment of performance are tabulated. For the 

cross-validated MLR models, three observations were left out.
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4.6.1.1 Seasonal rainfall totals

Table 4.29 illustrates on how the final number of predictors to be retained was determined 

for the seasonal rainfall totals during the OND season over sub-region 1 (central Kenya and 

southeastern lowlands of Kenya) based on the R-adjusted consideration with the addition of 

one extra predictor at a time. The predictor that was most strongly associated with seasonal 

rainfall totals over sub-region 1 was SINDS with a correlation coefficient of 0.543 and 

adjusted correlation coefficient o f 0.276. In the cross-validated mode, this predictor had a 

correlation coefficient of 0.468 and adjusted correlation coefficient of 0.198. In the second 

step, predictor BoBEN was picked. The two predictors had a multiple correlation coefficient 

of 0.742 with seasonal rainfall totals while the adjusted correlation coefficient was 0.526. In 

the cross-validated mode, the two predictors had a multiple correlation coefficient of 0.686 

with seasonal rainfall totals and the adjusted correlation coefficient of 0.441. In the third step 

SWAFRC was picked, the fourth step gave SWHAW and so on.

A close look at this table shows that the multiple correlation coefficient for the developed 

MLR model and its adjusted correlation coefficient as well as multiple correlation coefficient 

for the cross-validated model has been increasing at each step. However, the adjusted 

correlation coefficient for the cross-validated model starts to decrease after step 4. This 

means that the additional predictor, (SWHAW), makes little marginal changes in the 

unexplained variance and hence should therefore be dropped. The first four predictors can 

thus be used to develop the multivariate linear regression (MLR) model for seasonal rainfall 

totals over this particular sub-region. Multi-collinearity assessment further shows that SINDS 

and SWHAW are significantly inverse correlated (r=-0.406) at 95% confidence level. Since 

the Variance Inflation Factor (VIF) was not calculated, only one of these two predictors 

should be used to avoid the inflation of the variance and loss of degrees of freedom (Krishna 

Kumar et al., 1995). Thus the regression model developed for the seasonal rainfall totals over 

sub-region 1 was based on the first three predictors shown in Table 4.29. The predictors to be 

retained for other sub-regions and the SRISS were similarly obtained.
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Table 4.29: Forward stepwise fitting of the multivariate regression model for OND 
areal-averaged seasonal rainfall totals over sub-region 1

Step Predictor Multiple Correlation Coefficient
included R Adjusted R R cv Adjusted R cv

1 SINDS 0.543 0.276 0.468 0.198

2 BoBEN 0.742 0.526 0.686 0.441
3 SWAFRC 0.789 0.591 0.732 0.497

4 SWHAW 0.808 0.611 0.746 0.504

5 WCAUS 0.818 0.618 0.748 0.493

6 EQAFR 0.818 0.607 0.740 0.463

Figures 4.63a-f show the time series plots from the developed and cross-validated 

multivariate linear regression (MLR) models as well as the actual observations for the 

seasonal rainfall totals (SR) while Table 4.30 summarizes the predictors used and the skill 

score o f the models. The figures show that the developed models capture the direction of the 

observation quite well though at times the magnitudes are not attained. From a list of four 

predictors, two sets of combinations of these predictors were adequate to describe the 

interannual variability of the seasonal rainfall totals over the six sub-regions during the short 

rainfall season. The atmospheric predictor SINDS (a July-August U-wind index at 925mb 

over southern tip of India sub-continent) and oceanic predictor BoBEN (a July-August SST 

index over Bay of Bengal) were common to all the MLR models. This was closely followed 

by SWAFRC (a July-August specific humidity index at 700mb over the southwestern Africa) 

which was picked in five models. It should be observed from Table 4.30 that none of the 

models picked the Nino 3.4 index as a predictor while ZIND index was only picked once. 

This does not mean that Nino 3.4 index (a representative of the ENSO indices) is not related 

to Equatorial Eastern Africa seasonal rainfall totals, but rather the predictive signal in ENSO 

is contained in the other predictors from the Indian Ocean region.



196

Figure 4.63: Time series plot of the observed (obs), regression model (pred) and cross- 
validated model (cv) estimates for October-November-December areal-averaged 
rainfall totals (SR) over (a) Central highlands and southeastern lowlands of Kenya, (b) 
Western Kenya and most parts of Uganda, (c) Northeastern Kenya, (d) Coastal strip of 
Kenya and Tanzania, (e) Central and northern Tanzania, and (f) Western of Lake 
Victoria and western Tanzania. Rcv shows the multiple correlation coefficient for cross- 
validated model
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Table 4.30: The list of predictors’ combination and skill of regression models for areal- 
averaged seasonal rainfall totals during the short rainfall season

Sub-
region

Predictors Multiple correlation 
coefficient between observed 

and predicted

LEPS
score

(% )

Durbin-
Watson
Statistic

R R cv R cv Adj

1 BoBEN, SWAFRC, SINDS 0.789 0.732 0.497 43.31 1.40

2 BoBEN, SWAFRC, SINDS 0.795 0.745 0.517 42.27 2.11

3 BoBEN, SWAFRC, SINDS 0.793 0.629 0.344 39.89 1.89

4 BoBEN, SWAFRC, SINDS 0.820 0.702 0.449 44.69 1.65

5 BoBEN, SINDS, ZIND 0.693 0.622 0.334 32.19 2.40

6 BoBEN, SWAFRC, SINDS 0.777 0.684 0.422 43.99 1.26

Mean Value 0.778 0.686 41.06

Most of the developed MLR models had a multiple correlation coefficient greater than 0.750 

(Table 4.30), with an average of 0.778 while the lowest (0.693) was observed over northern 

and central Tanzania (sub-region 5). The average correlation coefficient for the cross- 

validated MLR models was 0.686, with the lowest (0.622) again observed over northern and 

central Tanzania (sub-region 5).

On average, the Linear Error in Probability Space (LEPS) skill score of 41.06% was attained 

for the six models (Table 4.30). Since the LEPS skill score value for all the regression 

models are positive, it means that the models output (forecast) are much better than 

climatology. Results of the one sample Kolmogorov-Smirnov test analysis shows that the 

residuals from the cross-validated MLR models are normally distributed. The computed 

Durbin-Watson statistic indicates that the residuals from the cross-validated MLR models 

over western Kenya and most parts of Uganda (sub-region 2) and northern and central 

Tanzania (sub-region 5) had negative autocorrelation (the value is greater than 2) while the 

rest of the study area had positive autocorrelation (the value is less than 2). Comparison with 

the tabulated critical values by Farebrother (1980) shown that the residuals over the northern 

sector of the study were not significantly autocorrelated. Over the rest o f Kenya, northern, 

eastern and central Tanzania (sub-regions 1, 2 and 3), the significant test was inconclusive 

while the residuals over the southern Uganda and western Tanzania had positive first-order
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autocorrelation. This means that the regression models could be improved further by adding 

an autoregressive term. The assessment of the cross-validated MLR models and the residual 

analysis show that these models are robust and can be incorporated for operational uses.

In the subsequent sub-sections, only the skill scores o f the cross-validated MLR model will 

be discussed since it is these models that should be used for operational forecasting work. 

Also only those sub-regions for which the multiple correlation coefficient between the time 

series of observed and cross-validated MLR model output is equal or greater than 0.5 will be 

discussed since only such models can be used for operational forecasting (Philippon et al., 

2009).

4.6.1.2 Number of wet days in a season

Figures 4.64a-f show the time series plots from the developed and cross-validated MLR 

models and the actual observations for the number of wet days in a season (NW) while Table 

4.31 shows the combination of predictors used and the skill of the models. The figures show 

that the models developed capture the peaks quite well but not so well for the lows. From a 

list of five predictors, three combinations were adequate to describe the interannual 

variability of the number of wet days over the six sub-regions (Table 4.31). BoBEN, 

SWAFRC and S1NDS were each picked in five out o f the six MLR models. Two predictors, 

BoBEN and SINDS were adequate to describe the interannual variability o f number of wet 

days over western sector of the study area (sub-regions 2 and 6).

The multiple correlation coefficient between the cross-validated MLR model outputs and the 

actual observations of the number of wet days for the six sub-regions range from 0.60 to 0.70, 

with an average of 0.65 (Table 4.31). According to the LEPS skill score, an average value of 

37.2% was obtained for the six cross-validated MLR models. It should be observed that the 

skill of the multiple correlation coefficient and the LEPS skill score for the cross-validated 

MLR models for the number o f wet days are comparable to those obtained for the seasonal 

rainfall totals (Table 4.30) though slightly lower. This is consistent with the spatial coherence 

results which showed that the two are almost equally potentially predictable (Figures 4.19b 

and 4.20).

The residuals from the six cross-validated MLR models are normally distributed according to 

one sample Kolmogorov-Smimov test. The Durbin-Watson statistic over southern Uganda 

and western Tanzania (sub-region 6) indicates that the residuals from the cross-validated
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MLR models have negative autocorrelation while the rest of the study area had positive 

autocorrelation. Compared to the tabulated critical values, the residuals from the cross- 

validated MLR models over western block of the study area (sub-regions 2, 5 and 6) were not 

significantly autocorrelated. For the eastern block of the study area (sub-regions 1, 3 and 4), 

the test for significant autocorrelation was inconclusive.

Table 4.31: The list of predictors’ combination and skill of regression models for areal- 
averaged number of wet days during the short rainfall season

Sub-
region

Predictors Multiple correlation coefficient 
between observed & predicted

LEPS
score
(% )

Durbin-
Watson
Statistic

R R cv R cv Adj

1 BoBEN, SWAFRC, SINDS 0.770 0.697 0.442 41.84 1.43

2 BoBEN, SINDS 0.695 0.627 0.359 33.17 1.86

3 BoBEN, SWAFRC, SINDS 0.746 0.649 0.372 34.15 1.50

4 BoBEN, SWAFRC, SINDS 0.788 0.698 0.443 43.26 1.55

5 BoBEN, SWAFRC, SINDS 0.689 0.625 0.338 35.11 1.84

6 BoBEN, SINDS 0.689 0.598 0.322 35.49 2.04

Mean Value 0.729 0.649 37.17



2 0 0

(a) NW model. Rw =0.697 (b) NW model. R_, =0.645 
501 "

(c) NW model. R „  =0.649
v Y

(d) NW model, R =0.698 
60.------------ .------------ --------

(f) NW model, R =0.598
CV

'i960 1970 1980 1990 2000
Figure 4.64: Time series plot of the observed (obs), regression model (pred) and cross- 
validated model (cv) estimates for October-November-December areal-averaged 
number of wet days (NW) over (a) Central highlands and southeastern lowlands of 
Kenya, (b) Western Kenya and most parts of Uganda, (c) Northeastern Kenya, (d) 
Coastal strip of Kenya and Tanzania, (e) Central and northern Tanzania, and (f) 
Western of Lake Victoria and western Tanzania. Rcv shows the multiple correlation 
coefficient for cross-validated model
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4.6.1.3 Number of dry days in a season

The time series plots from MLR models that were developed and cross-validated and the 

actual observations for the number of dry days in a season (ND) are shown by Figures 4.65a 

and b while Table 4.32 shows the combination of predictors used and the skill of the models. 

Only two sub-regions (inland Tanzania and southern Uganda) are shown since the rest had a 

multiple correlation coefficient o f less than 0.5 between the observations and the model 

outputs from the cross-validated MLR model. The models developed capture the lows quiet 

well and the direction of the peak but miss the magnitude at times (Figures 4.65a-b). We 

observe that much lower prediction skills was found for the number o f dry days (ND), 

compared to that obtained for the number o f wet days (NW). This is due to the fact both 

variables depend not only the intra-seasonal distribution of the rainfall but also on the length 

of the rainy season. A longer rainy season generally experiences both a greater absolute and 

relative frequency of rain days. By contrast a longer rainy season tends to be associated with 

a lesser relative frequency of dry days; hence an increase in the length o f the season has an 

inverse (mechanical) effect to potentially increase the absolute number of dry days.

The good skill of these models over sub-regions 5 and 6 (Table 4.32) indicates that they can 

complement the models for the number of wet days (Table 4.31) that have the lowest values 

over the same sub-regions as shown in section 4.6.1.2.

An assessment of the residuals using the one sample Kolmogorov-Smimov test indicates that 

the residuals are normally distributed. Compared with the tabulated critical values, the 

residuals according to Durbin-Watson statistic test were not significantly autocorrelated. The 

assessment of the cross-validated MLR models and the residual analysis clearly indicates that 

the models over these two sub-regions are quite robust and can be incorporated for 

operational uses.

Table 4.32: The list of predictors’ combination and skill of regression models for areal- 
averaged number of dry days during the short rainfall season

Sub-
region

Predictors Multiple correlation coefficient 
between observed & predicted

LEPS
score
(%)

Durbin-
Watson
Statistic

R R cv R cv Adj

5 SWAFRC, SINDS 0.739 0.691 0.448 30.48 1.79

6 BoBEN, SWHAW, NINQ3.4 0.748 0.682 0.420 40.11 2.17
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Figure 4.65: Time series plot of the observed (obs), regression model (pred) and cross- 
validated model (cv) estimates for October-November-December areal-averaged 
number of dry days (ND) over (a) Central and northern Tanzania, and (b) Western of 
Lake Victoria and western Tanzania. Rcv shows the multiple correlation coefficient for 
cross-validated model

4.6.1.4 Mean length of wet spells

The time series plots from the developed and cross-validated MLR models and the actual 

observations for the mean duration of wet spells (MW) are shown by Figures 4.66a-f while 

Table 4.33 shows the combination of predictors used and the skill of the models.

The multiple correlation coefficient for the cross-validated models are high (Table 4.33), 

though lower than for the seasonal rainfall totals (Table 4.30), ranging between 0.57 and 

0.71, with an average of 0.63. Most of the additional potential predictors (Table 4.33) picked 

by these models are similar to the ones retained for seasonal rainfall totals (Table 4.30) and 

number of wet days in a season (Table 4.31). According to the LEPS skill score, an average 

value o f  37.3% was obtained for the six MLR models. The lowest multiple correlation 

coefficients and the lowest LEPS skill scores were obtained over the western sector of the 

study area (sub-regions 2 and 6), which was closely followed by the coastal strip of Kenya 

and Tanzania (sub-region 4).

One sample Kolmogorov-Smirnov test indicates that the cross-validated MLR model 

residuals are normally distributed for the six sub-regions. The significant test for 

autocorrelation of residuals from the cross-validated MLR models over coastal strip of Kenya 

and Tanzania (sub-region 4) and central Kenya and southeastern lowlands (sub-region 1) was 

inconclusive. The residuals from cross-validated MLR models over the rest of the study area 

were not significantly autocorrelated.



203

Figure 4.66: Time series plot of the observed (obs), regression model (pred) and cross- 
validated model (cv) estimates for October-November-December areal-averaged 
duration of wet spells (MW) over (a) Central highlands and southeastern lowlands of 
Kenya, (b) Western Kenya and most parts of Uganda, (c) Northeastern Kenya, (d) 
Coastal strip of Kenya and Tanzania, (e) Central and northern Tanzania, and (f) 
Western of Lake Victoria and western Tanzania. Rcv shows the multiple correlation
coefficient for cross-validated model
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Table 4.33: The list of predictors’ combination and skill of regression models for areal- 
averaged duration of wet spells during the short rainfall season

Sub-
region

Predictors Multiple correlation coefficient 
between observed & predicted

LEPS
score
(% )

Durbin-
Watson
Statistic

R R cv R cv Adj

1 BoBEN, SWAFRC, 
SINDS, EQAFR 0.757 0.688 0.412 35.90 1.46

2 BoBEN, SINDS 0.633 0.565 0.282 30.19 1.93

3 ECMAD, SWHAW, 
NIN03.4

0.725 0.626 0.339 40.06 1.79

4 BoBEN, SINDS 0.698 0.585 0.306 34.66 1.42

5 BoBEN, SINDS, ZIND 0.783 0.713 0.466 51.17 2.25

6 BoBEN, SINDS 0.660 0.576 0.295 32.01 1.87

Mean Value 0.709 0.625 37.33

4.6.1.5 Mean length of dry spells

The time series plots from the developed and the cross-validated MLR models and the actual 

observations for the mean duration of dry spells (MD) are shown by Figure 4.67a-c while 

Table 4.34 shows the combination of predictors used and the skill of the models.

Only three sub-regions had their cross-validated MLR models achieve multiple correlation 

coefficients o f equal or more than 0.5 between the time series of cross-validated model and 

the actual observations of mean duration of dry spells. 1 he lowest correlation (0.541) is over 

southern Uganda and western Tanzania (sub-region 6) as shown by Figure 4.67c, followed 

by central Kenya and southeastern lowlands (sub-region 1) with 0.604 as shown by Figure 

4.67a, and the highest (0.672) over the coastal strip of Kenya and Tanzania (sub-region 4) as 

shown by Figure 4.67b. The LEPS skill scores are relatively good for the three cross- 

validated MLR models (Table 4.34). The lowest LEPS skill score was again obtained over 

southern Uganda and western Tanzania. It is interesting to know that the average duration of 

dry spells over southern Uganda and western Tanzania is influenced by NIN03.4 index

alone.
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An assessment using the one sample Kolmogorov-Smirnov test indicates that the residuals 

are normally distributed. The Durbin-Watson statistic shows that the residuals autocorrelation 

were not significant over the three sub-regions, which means that the residuals were 

independent of each other.

The skill assessment o f the cross-validated MLR models and analysis o f the cross-validated 

MLR model residuals show that these models perform much better than climatology, are very 

robust and can therefore be incorporated for operational uses.

Table 4.34: The list of predictors’ combination and skill of regression models for areal- 
averaged duration of dry spells during the short rainfall season

Sub-
region

Predictors Multiple correlation coefficient 
between observed & predicted

LEPS
score
(%)

Durbin-
Watson
Statistic

R R cv R cv Adj
—

1 BoBEN, SINDS 0.669 0.604 0.330 35.95 1.73

4 BoBEN, SWHAW, SWAFRC 0.738 0.672 0.405 40.26 2.10

6 NIN03.4 0.613 0.541 0.274 30.42 2.03
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(b) MD model. R =0.672
20,------------ •------------t--------— ------
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(c) MD model, R =0.541 cv

Figure 4.67: Time series plot of the observed (obs), regression model (pred) and cross- 
validated model (cv) estimates for October-November-December areal-averaged 
duration of dry spells (MD) over (a) Central highlands and southeastern lowlands of 
Kenya, (b) Coastal strip of Kenya and Tanzania and (c) Western of Lake Victoria and 
western Tanzania. Rcv shows the multiple correlation coefficient for cross-validated 
model

4.6.1.6 Duration of longest wet spell

Table 4.35 shows the combination of predictors used and the skill of the models while 

Figures 4.68a-f shows the time series plots from developed and cross-validated MLR 

models and the actual observations for duration of longest wet spells (LW) during the short

rainfall season.
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The cross-validated MLR model for each sub-region attained a multiple correlation 

coefficient of 0.5 or more (Figure 4.68a-f), with the lowest coefficient (0.526) obtained over 

southern Uganda and western Tanzania (sub-region 6) while the highest (0.633) was obtained 

over northeastern Kenya (sub-region 3) as shown by Table 4.35. The LEPS skill score show 

that all the models performed better than climatology with the highest score (36.89%) over 

the coastal strip of Kenya and Tanzania (sub-region 4) and lowest skill (26.62%) over 

southern Uganda and western Tanzania (sub-region 6).

The residuals from the cross-validated MLR models had a normal distribution according to 

one sample Kolmogorov-Smimov test. The test for significant of the autocorrelation of the 

model residuals over central Kenya and southeastern lowlands (sub-region 1) as well as over 

northern and central Tanzania (sub-region 5) were inconclusive while in the rest of the study 

area, the residuals from the cross-validated MLR models were independent.

Table 4.35: The list of predictors’ combination and skill of regression models for areal- 
averaged duration of longest wet spells during the short rainfall season

Sub-
region

Predictors Multiple correlation coefficient 
between observed & predicted

LEPS
score
(%)

Durbin-
Watson
Statistic

R R cv R cv Adj

1 BoBEN, SWAFRC, S1NDS, 
EQAFR 0.705 0.630 0.326 34.33 1.60

2 BoBEN, SINDS 0.662 0.604 0.329 31.41 1.93

3 ECMAD, SINDS, 
MARCON

0.717 0.633 0.350 31.49 2.10

4 BoBEN, SWAFRC, SINDS 0.711 0.623 0.336 36.89 1.66

5 BoBEN, SINDS 0.663 0.586 0.307 27.62 1.90

6 BoBEN, SINDS 0.602 0.526 0.236 26.62 1.99

Mean Value 0.677 0.600 31.39
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4.6.1.7 Duration of longest dry spell

The time series plots from the developed and cross-validated MLR models as well as the 

actual observations for duration o f longest dry spells (LD) are shown by Figures 4.69a-c 

while the combination o f the predictors used and the skill of the cross-validated MLR models 

are shown by Table 4.36.

Only three sub-regions had the multiple correlation coefficient between the actual 

observations and cross-validated MLR time series of 0.5 or greater (Figures 4. 69a-c). These 

sub-regions were central highlands and southeastern lowlands of Kenya (sub-region 1), 

western Kenya and most parts o f Uganda (sub-region 2) and coastal strip of Kenya and 

Tanzania (sub-region 4). The Linear Error in Probability Space (LEPS) skill score indicates 

that these cross-validated MLR models were better off than climatology (Table 4.36). 

However, the skills are lower than for most other variables, which are confirmed by some 

disagreements between the observed and predicted values (Figures 4.69a-c).

Residuals analysis indicates that the residuals for each cross-validated MLR model were 

normally distributed according to one sample Kolmogorov-Smirnov test. The Durbin-Watson 

statistic indicate that the residuals from the cross-validated MLR models over central Kenya 

and southeastern lowlands of Kenya (sub-region 1) and western Kenya and most parts of 

Uganda (sub-region 2) had positive autocorrelation while those over the coastal strip of 

Kenya and Tanzania (sub-region 4) had negative autocorrelation. The test ot significance of 

the autocorrelation shows that the residuals over eastern block of the study area, south of 

Equator (sub-regions 1 & 4) were independent. However, the test was inconclusive over 

western Kenya and most parts o f Uganda (sub-region 2).

The skill assessment o f the cross-validated MLR models and the residual analysis from these 

models clearly indicate that the three models are robust and better off than climatology, and 

the residuals are independent of each other. Hence these cross-validated MLR models can 

therefore be incorporated for operational uses.
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(a) LD model, R = 0.586 
251--------------.------------- ,------- — -------

Figure 4.69: Time series plot of the observed (obs), regression model (pred) and cross- 
validated model (cv) estimates for October-November-December areal-averaged 
duration of longest dry spell (LD) over (a) Central highlands and southeastern lowlands 
of Kenya, (b) Western Kenya and most parts of Uganda and (c) Coastal strip of Kenya 
and Tanzania. Rcv shows the multiple correlation coefficient for cross-validated model
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Table 4.36: The list of predictors’ combination and skill of regression models for areal- 
averaged duration of longest dry spells during the short rainfall season

Sub-
region

Predictors Multiple correlation coefficient 
between observed & predicted

LEPS
score
(% )

Durbin-
Watson
Statistic

R R cv R cv Adj

1 BoBEN, S1NDS 0.654 0.586 0.307 29.59 1.62

2 BoBEN, SWHAW, 
WCAUS, NIN03.4

0.687 0.549 0.219 31.07 1.42

4 SWHAW, MARCON 0.654 0.590 0.312 31.75 2.31

4.6.1.8 Mean frequency of wet spells of 3 days or more

The time series plots from the developed and cross-validated MLR models and the actual 

observations for the mean frequency of wet spells o f 3 days or more (3W) are shown by 

Figures 4.70a—f while Table 4.37 shows the combination of predictors used and the skill of

the models.

The multiple correlation coefficient for the cross-validated models over the six sub-regions 

ranges between 0.57 and 0.69 (Figures 4.70a-f), with an average value o f 0.62 (Table 4.37). 

The lowest multiple correlation coefficients observed over the western sector of the study 

area (Figures 4.70b and f) as well as the coastal strip of Kenya and I anzania (Figure 4.70d). 

According to the LEPS skill score, an average value o f 34.92% was obtained for the six MLR 

cross-validated models. The lowest LEPS skill score (25.1%) was again observed over 

western Kenya and most parts o f Uganda.

According to one sample Kolmogorov-Smirnov test, the residuals from these cross-validated 

MLR models are normally distributed. The Durbin-Watson statistic shows that the residuals 

from the cross-validated MLR models over central Kenya and southeastern lowlands of 

Kenya (sub-region 1) and coastal strip of Kenya and Tanzania (sub-region 4) had negative 

autocorrelation while those from the rest of the study area had positive autocorrelation. The 

test for significance of the residuals autocorrelation was inconclusive over the northeastern 

Kenya (sub-region 3) while over the rest of the study area, the residuals from the cross- 

validated MLR models were independent of each other.
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v a lid a te d  m o d e l (cv ) e s t im a te s  fo r  O c to b e r - N o v e m b e r - D e c e m b e r  a r e a l - a v e ra g e d  
f re q u e n c y  o f  w e t sp e lls  o f  3  d a y s  o r  m o re  (3 W ) o v e r  (a )  C e n t r a l  h ig h la n d s  a n d  
s o u th e a s te r n  lo w la n d s  o f  K e n y a ,  (b ) W e s te rn  K e n y a  a n d  m o s t p a r t s  o f  U g a n d a , (c) 
N o r th e a s te r n  K e n y a ,  (d ) C o a s ta l  s t r i p  o f  K e n y a  a n d  T a n z a n ia ,  (e) C e n t r a l  a n d  n o r th e r n  
T a n z a n ia ,  a n d  (f) W e s te rn  o f  L a k e  V ic to r ia  a n d  w e s te rn  T a n z a n ia .  R cv  sh o w s  th e  

m u ltip le  c o r r e la t io n  c o e ff ic ie n t  f o r  c r o s s - v a l id a te d  m o d e l
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Table 4 .37 : T h e  lis t o f  p r e d i c t o r s ’ c o m b in a t io n  a n d  sk ill o f  re g re s s io n  m o d e ls  fo r  a r e a l -  
averaged f r e q u e n c y  o f  w e t  s p e l ls  o f  3  d a y s  o r  m o re  d u r in g  th e  s h o r t  r a in f a l l  s e a so n

Sub-
region

P r e d ic to r s M u lt ip le  c o r r e la t io n  c o e f f ic ie n t  
b e tw e e n  o b s e r v e d  &  p r e d ic te d

L E P S
s c o re

(%)

D u r b in -
W a ts o n
S ta t is t ic

R R  cv R  cv  A d j

1 BoBEN, SWHAW, EQIND 0.738 0.639 0.358 42.75 2.06

2 BoBEN, SWAFRC, SINDS 0.671 0.567 0.263 25.07 1.75

3 BoBEN, SWHAW, SINDS 0.773 0.692 0.435 39.81 1.45

4 BoBEN, SINDS 0.710 0.595 0.318 34.15 1.67

5 BoBEN, SINDS, ZIND 0.703 0.650 0.372 33.26 2.34

6 BoBEN, SWHAW, EQIND 0.704 0.604 0.310 34.47 1.81

M e a n  V a lu e 0 .7 1 7 0 .6 2 4 3 4 .9 2

4.6.1.9 Mean rainfall intensity

The time series plots from the developed and cross-validated MLR models and the actual 

observations for the mean rainfall intensity (Ml) are shown by F ig u r e s  4 .7 1 a - b  while T a b le  

438 shows the combination of predictors used and the skill of the models.

Only two sub-regions achieved multiple correlation coefficients of 0.5 or more between the 

time series of cross-validated MLR model and the actual observations of mean rainfall 

intensity. These were the models for the central Kenya and southeastern lowlands of Kenya 

(sub-region 1) with multiple correlation coefficient o f 0.55 ( F ig u r e  4 .7 1 a ) and coastal strip of 

Kenya and Tanzania (sub-region 4) with multiple correlation coefficient of 0.682 (F ig u re  

4.71b). The LEPS skill score was 28.08% for the model of sub-region 1 and 36.01% for sub- 

region 4 ( T a b le  4 .3 8 ). These sub-regions are close to the Indian Ocean. The hypothesis is that 

SST off East Africa exerts a direct control on the intensity of local convective activity, 

whereas inland the intensity of the rains is more random. The skill for the coast is particularly 

high, which was not necessarily expected for a variable which has low spatial coherence and 

is considered to be less predictable than the occurrence of the rains.

Results indicate that the residuals for each model were normally distributed according to one 

sample Kolmogorov-Smirnov test. The Durbin-Watson statistics indicate that the residuals 

from the cross-validated MLR model over the central Kenya and southeastern lowlands of
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(coastal strip of Kenya and Tanzania) had negative (positive) autocorrelation. The test of 

significance of the autocorrelation shows that the residuals over central Kenya and 

southeastern lowlands of Kenya were independent of each other while the test was 

inconclusive for the residuals over the coastal strip o f Kenya and Tanzania.

Table 4 .3 8 : T h e  lis t o f  p r e d i c t o r s ’ c o m b in a t io n  a n d  sk il l  o f  re g re s s io n  m o d e ls  f o r  a r e a l -  
averaged  r a in f a l l  in te n s i ty  d u r i n g  th e  s h o r t  r a in f a l l  s e a s o n

Sub-
region

P r e d ic to r s M u lt ip le  c o r r e l a t i o n  c o e ff ic ie n t  
b e tw e e n  o b s e r v e d  &  p r e d ic te d

L E P S
s c o r e

(%)

D u r b in -
W a ts o n
S ta t is t ic

R R  cv R  cv  A d j

1 BoBEN, SINDS 0.591 0.553 0.267 28.08 2.14

4 BoBEN, SWHAW, EQIND 0.760 0.682 0.419 36.01 1.51

F ig u re  4 .7 1 : T im e  s e r ie s  p lo t  o f  th e  o b s e rv e d  (o b s ) ,  r e g re s s io n  m o d e l ( p r e d )  a n d  c ro s s -  
v a lid a te d  m o d e l (cv ) e s t im a te s  fo r  O c to b e r - N o v e m b e r - D e c e m b e r  a r e a l - a v e r a g e d  
ra in fa ll  in te n s i ty  o v e r  (a ) C e n t r a l  h ig h la n d s  a n d  s o u th e a s te r n  lo w la n d s  o f  K e n y a , a n d  
(b) C o a s ta l  s t r i p  o f  K e n y a  a n d  T a n z a n ia .  R cv s h o w s  th e  m u lt ip le  c o r r e la t io n  c o e ff ic ie n t

for c r o s s - v a l id a te d  m o d e l

As a conclusion to the development of prediction models for the OND season, it was found 

that for most variables and sub-regions, it was possible to produce skill models (the multiple 

correlation coefficients between the areal-averaged observations and the cross-validated 

MLR model output equal or greater than 0.5). The residuals from the cross-validated MLR 

models were normally distributed according to one sample Kolmogorov-Smimov test. The 

significance test of the calculated Durbin-Watson statistics against those tabulated further 

shown that for most models, the residuals were independent from each other. Occasionally,
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the test was inconclusive. This occurs when the calculated value lies between the lower and 

upper boundary of the critical values.

The cross-validated MLR models for sub-regional intraseasonal statistics (SRISS) of wet 

spells and seasonal rainfall totals picked the predictors around Bay of Bengal mostly. These 

predictors are BoBEN (the SST over the Bay of Bengal extending to west coast of Malaysia 

and Indonesia as shown by F ig u r e s  4 .2 6 a -c )  and SINDS (the zonal wind component at 

925mb to the south of the Bay of Bengal and near the southern tip of India as shown by 

Figures 4 .3 0 a -c ) .  This shows that oceanic and atmospheric conditions during the July- 

August period around the Bay o f Bengal and largely associated Asian monsoon dynamics 

provide a lot of predictive information for the SRISS o f wet spells and seasonal rainfall totals 

during the short rainfall season.

In the case of the SRISS of dry spells and mean rainfall intensity, the cross-validated MLR 

models did not attain the multiple correlation coefficients of 0.5 or more over most of the 

sub-regions. For these SRISS, there was no preferred predictor for the cross-validated MLR 

models developed. However, SWHAW (the SST over south-western of Hawaii in the Pacific 

Ocean which is clearly distinct from the core ENSO region as shown by F ig u r e s  4 .2 7 a -c )  

was the frequently picked predictor by the few cross-validated MLR models developed.

Consistent with the spatial coherence results, the mean frequency of dry spells of 5 days or 

more did not attain a multiple correlation coefficient between the cross-validated MLR model 

output and the actual observations at any one sub-region hence none o f the models was 

shown. This therefore suggests that the occurrence o f prolonged dry spells of 5 days or more 

could be mainly influenced by local factors. The large scale climate fields are modified by the 

local factors such that they loose most of their properties thus cannot be used to predict this 

statistic with a sufficiently good skill for a lead-time of one month.

4.6.2 Regression models during the long rainfall season

As already mentioned, the time series for the long rainfall season was split into two parts due 

to the low temporal homogeneity of this season, which results into a low spatial coherence for 

the SRISS obtained during the long rainfall season (F ig u re s  4 .1 9 a  and 4 .20 ) and to 

insignificant lagged correlations with predefined SST predictors (F ig u re s  4 .3 9 a - j  and 4 .5 1 a -  

j). The first part constitute the earlier months of March and April, while the second part was 

for the month of May.
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For the purpose of developing multivariate linear regression (MLR) models, the predefined 

and additional potential predictors considered for the earlier part o f the season were averaged 

for the months of December and January. For the later part, the months of January and 

February were averaged. The rationale behind the use of the February predictors to update the 

long rainfall season forecast was that previous studies have shown that the mean rainfall 

onset date for Kenya and northeastern Tanzania is around 1 2 - 1 6  March (Alusa and Mushi, 

1974), around 22 -  26 March (Asnani, 1993), 25 March (Camberlin and Okoola, 2003). The 

small discrepancies between the mean onset dates by Alusa and Mushi (1974) and those of 

Asnani (1993) and Camberlin and Okoola (2003) were attributed to a small trend in recent 

years, toward a delayed onset of the rains (Camberlin and Okoola, 2003). The atmospheric 

and oceanic fields used in this study at the monthly timescale are released towards the second 

week of the following month. The update will thus be issued on time before the actual onset 

of the rainfall occurs. Alternatively most of the predictors from FJadley Centre and ECMWF 

can be forecasted with a one month lead in which case, they would be available and used in 

the regression models before the start of the season.

4.6.2.1 Regression models during the March-April period

The list o f the additional potential predictors from which the multivariate linear regression 

(MLR) models were developed was shown in T a b le  4 .2 1 . Two other predictors from the 

predefined indices (MIB1 and MAB3) were also used. As already mentioned in se c tio n  

4.6.1.1, only those MLR models for which the cross-validated multiple correlation coefficient 

is equal to 0.5 or more are discussed. Most of the SRISS did not attain this value. None of the 

SRISS o f  dry spells actually attained this value. Only the rainfall totals, number of wet days 

and mean frequency o f wet spells o f 3 days or more attained this value in two or more sub- 

regions out of the possible six, while the rest had this value in one sub-region or none. The 

cross-validated MLR models for the rainfall totals are discussed in the next section.

4.6.2.1.1 Rainfall totals

The time series plots from the developed and cross-validated MLR models as well as the 

actual observations for rainfall totals (SR) during the March-April period o f the long rainfall 

season are shown by F ig u r e s  4 .7 2 a - d  while the combination of the predictors used and the 

skill of the cross-validated MLR models are shown by T a b le  4 .39 .

Only four sub-regions had the multiple correlation coefficient of 0.5 or more between the 

actual observations and the cross-validated MLR model time series. These sub-regions were
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central and western Kenya ( F ig u r e  4 .7 2 a ), northeastern Kenya ( F ig u r e  4 .7 2 b ) ,  southeastern 

lowlands of Kenya and northeastern Tanzania ( F ig u r e  4 .7 2 c ) and most parts of Uganda 

(Figure 4 .7 2 d ) .  The Linear Error in Probability Space (LEPS) skill score indicates that these 

cross-validated MLR models were better off than climatology ( T a b le  4 .3 9 ) .

Results o f residuals analysis indicate that the residuals for each model were normally 

distributed according to one sample Kolmogorov-Smirnov test. The test of significance of the 

first-order autocorrelation according to Durbin-Watson statistic shows that the residuals from 

each model in the four sub-regions were independent.

The skill assessment of the cross-validated MLR models indicate that the four models are 

better off than climatology and robust while residual analysis results show that the residuals 

are normally distributed and are independent of each other. These models can therefore be 

incorporated for operational uses. However, the fact that not all the sub-regions had 

regression models developed and also the fact that the predictors picked often differ between 

the sub-regions suggests that care should be taken when using these models. A few 

anomalous years (for instance the 1993 drought in sub-regions 1 and 5 in F ig u r e s  4 .7 2 a  and c 

respectively) are not detected by the models.

Table 4 .3 9 :  T h e  lis t o f  p r e d ic t o r s ’ c o m b in a t io n  a n d  sk ill  o f  re g re s s io n  m o d e ls  f o r  a r e a l -  
av e ra g e d  r a in f a l l  to ta ls  d u r in g  th e  M a r c h - A p r i l  p e r io d  o f  th e  lo n g  r a in f a l l  s e a so n

Sub-
reg ion

P r e d ic to r s M u lt ip le  c o r r e la t io n  c o e ff ic ie n t 
b e tw e e n  o b s e r v e d  &  p re d ic te d

L E P S
s c o r e
(%)

D u r b in -
W a ts o n
S ta t is t ic

R R  cv R  cv  A d j

1 BoBEN-1, NEGHA, 

EQAFR-1, MAB3
0.673 0.597 0.280 30.23 2.16

3

L_ _ _ _

WCAUS-1, WINDO, 
EBBEN, SCEINDO

0.727 0.636 0.335 43.43 2.19

5 BoBEN-1, SCEINDO, 
EQAFR-1

0.688 0.594 0.298 38.20 2.11

6 CINDO, NINDS, MAB3 0.731 0.647 0.350 37.76 1.80
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(d) SR model. R =0.647 
400, w

1960 1970 1980 1990 2000 1960 1970 1980 1990 2000

F igu re  4 .7 2 : T im e  s e r ie s  p lo t  o f  th e  o b s e rv e d  (o b s ) ,  r e g re s s io n  m o d e l ( p r e d )  a n d  c ro s s -  
v a lid a te d  m o d e l (cv ) e s t im a te s  f o r  M a r c h -A p r i l  a r e a l - a v e r a g e d  r a in f a l l  to ta l s  (S R ) o v e r  
(a) c e n t r a l  a n d  w e s te rn  K e n y a ,  (b )  n o r th e a s te r n  K e n y a , (c ) s o u th e a s te r n  lo w la n d s  o f  
K enya a n d  n o r th e a s te r n  T a n z a n ia ,  a n d  (d ) m o s t  p a r t s  o f  U g a n d a . R cv  s h o w s  th e  

m u ltip le  c o r r e la t io n  c o e f f ic ie n t  f o r  c ro s s - v a l id a te d  m o d e l

4.6.2.1.2 Number of wet days

F ig u res  4 .7 3 a - j  show time series plots from the developed and cross-validated MLR models 

as well as the actual observations for the number o f wet days (NW) during the March-April 

period while T a b le  4 .4 0  shows the combination o f predictors used and the skill of the

models.

Unlike the case of rainfall totals, the number of wet days had a multiple correlation 

coefficient value of 0.5 or greater over the six sub-regions (F ig u re s  4 .7 3 a - j ) ,  with an average 

value of 0.58 (T a b le  4 .4 0 ). The six cross-validated MLR models had an average LEPS skill 

score of 31.5%, which means they were better off than climatology. The predictors picked 

differ from one sub-region to the other indicating that they are unstable. However, CINDO 

appears in all models except for sub-region 3 (northeastern Kenya) as shown in T a b le  4 .40 .
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According to one sample Kolmogorov-Smirnov test, the residuals from each of the cross- 

validated MLR models were normally distributed. The test for significance o f the first-order 

autocorrelation shows that apart from the model for sub-region 5 (southeastern lowlands of 

Kenya and northeastern Tanzania) in which the test was inconclusive, the residuals from the 

rest of the models were independent of each other.

Table 4 .4 0 : T h e  lis t o f  p r e d i c t o r s ’ c o m b in a t io n  a n d  sk il l  o f  re g re s s io n  m o d e ls  fo r  a r e a l -  
av e rag ed  n u m b e r  o f  w e t  d a y s  d u r i n g  th e  M a r c h - A p r i l  p e r io d  o f  th e  lo n g  r a in f a l l  s e a so n

Sub-
region

P r e d ic to r s M u lt ip le  c o r r e la t io n  c o e ff ic ie n t 
b e tw e e n  o b s e r v e d  &  p re d ic te d

L E P S
s c o r e

(% )

D u rb in -
W a ts o n
S ta t is t ic

R R  c v R  cv A d j

1 BoBEN-1, ANGCO, 
CINDO, EQAFR-1 0.724 0.656 0.364 40.68 2.26

2 WAFR, CINDO, NINDS 0.645 0.582 0.282 31.38 2.33

3 ANGCO, NEGHA, 
EBBEN, SCEINDO

0.691 0.561 0.234 27.83 1.74

4 EBBEN, CINDO, NINDS 0.641 0.539 0.229 26.86 2.01

5 BoBEN-1, SINDS-1, 
CINDO, EQAFR-1

0.725 0.560 0.233 32.71 1.70

6 WAFR, SINDS-2, CINDO 0.649 0.566 0.262 29.61 2.32

M ean V a lu e 0 .679 0 .5 7 7 3 1 .5 1
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F igu re  4 .7 3 :  T im e  s e r ie s  p lo t o f  th e  o b s e rv e d  (o b s ) ,  r e g re s s io n  m o d e l ( p r e d )  a n d  c ro s s -  
v a lid a te d  m o d e l  (cv ) e s t im a te s  f o r  M a r c h - A p r i l  a r e a l - a v e r a g e d  n u m b e r  o f  w e t d a y s  
(NW) o v e r  (a )  c e n t r a l  a n d  w e s te r n  K e n y a , (b ) c o a s ta l  s t r ip  o f  K e n y a  a n d  T a n z a n ia ,  (c) 
n o r th e a s te r n  K e n y a , (d ) w e s te r n  T a n z a n ia  a n d  s o u th e r n  U g a n d a ,  (e ) s o u th e a s te r n  
lo w la n d s  o f  K e n y a  a n d  n o r th e a s te r n  T a n z a n ia ,  a n d  (f) m o s t p a r t s  o f  U g a n d a .  R cv  sh o w s 

the m u l t ip l e  c o r r e la t io n  c o e f f ic ie n t  fo r  c r o s s - v a l id a te d  m o d e l

4.6.2.1.3 Mean frequency of wet spells of 3 days or more

Table 4.41 shows the combination of predictors used and the skill of the MLR models while 

Figures 4.74a-c show the time series plots from the developed and cross-validated MLR 

models, together with the actual observations for mean frequency of wet spells of 3 days or 

more (3W) during the March-April period of the long rainfall season. Only three sub-regions



2 2 1

which constitute the most of eastern block of the study area attained a multiple correlation 

coefficient o f 0.5 or more between the actual observations and cross-validated MLR model 

outputs. The LEPS skill score over the three sub-regions were better off than climatology, 

with the lowest value (28.8%) noted over northeastern Kenya (sub-region 3) as shown in 

Table 4.41.

Further analysis indicates the cross-validated MLR model residuals are normally distributed 

as determined from the one sample Kolmogorov-Smimov test. The Durbin-Watson statistic 

shows that the residuals over the three sub-regions are independent of each other.

Assessment of the cross-validated MLR models and residual analysis show that these models 

perform much better than climatology while the residuals are normally distributed and 

independent of each other. They can therefore be incorporated for operational uses.

T able 4 .4 1 :  T h e  lis t o f  p r e d i c t o r s ’ c o m b in a t io n  a n d  sk il l  o f  re g re s s io n  m o d e ls  fo r  a r e a l -  
av e rag e d  f r e q u e n c y  o f  w e t  s p e l ls  o f  3 d a y s  o r  m o r e  d u r in g  th e  M a r c h - A p r i l  p e r io d  o f  
the lo n g  r a in f a l l  s e a s o n

S ub-
reg ion

P r e d ic to r s M u lt ip le  c o r r e la t io n  c o e ff ic ie n t  
b e tw e e n  o b s e r v e d  &  p r e d ic te d

L E P S
s c o re

(%)

D u r b in -
W a ts o n
S ta t is t ic

R R  cv R  cv  A d j

1 ANGCO, CINDO, SCEINDO, 
EQAFR-1

0.682 0.565 0.239 36.60 2.14

2 WAFR, CINDO, NINDS 0.695 0.639 0.358 35.38 2.34

3 ANGCO, NEGHA, EBBEN, 
EQAFR-1

0.674 0.549 0.219 28.77 1.88
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F igure 4 .7 4 : T im e  s e r ie s  p lo t  o f  th e  o b s e rv e d  ( o b s ) ,  r e g re s s io n  m o d e l ( p r e d )  a n d  c ro s s -  
v a lid a ted  m o d e l (c v ) e s t im a te s  f o r  M a r c h - A p r i l  a r e a l - a v e r a g e d  f r e q u e n c y  o f  w e t sp e lls  
of 3 d a y s  o r  m o re  o v e r  (a )  c e n t r a l  a n d  w e s te rn  K e n y a ,  (b ) c o a s ta l  s t r i p  o f  K e n y a  a n d  
T a n z a n ia , a n d  (c) n o r t h e a s t e r n  K e n y a . R cv s h o w s  th e  m u ltip le  c o r r e la t io n  c o e ff ic ie n t

for c r o s s - v a l id a te d  m o d e l

4.6.2.2 Regression models for the month of May

The IOD index and list of the additional potential predictors shown in T a b le  4 .2 4  were used 

to develop multivariate linear regression (MLR) models for the rainfall totals and SRISS for 

the month of May. The cross-validated MLR models for rainfall totals, number of wet days 

and mean frequency of wet spells of 3 days or more attained the threshold of multiple 

correlation coefficient of 0.5 or more with the actual observations in two or more sub-regions 

and hence are discussed in this section. None of the SRISS of dry spells attained the 0.5

(a) 3W model. = 0 565
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correlation coefficient value. In the next section, the regression models for the rainfall totals 

for the month of May are discussed.

4.6.2.2.1 Rainfall totals

Table 4 .42  shows the combination o f the predictors used and the skills of the MLR models 

while F ig u r e s  4 .7 5 a - c  show the time series plots from the developed and cross-validated 

multivariate linear regression (MLR) models, together with the actual observations for the 

rainfall totals (SR) for the month of May. Only half o f the sub-regions did attain the multiple 

correlation coefficient of 0.5 between the actual observations and cross-validated MLR 

models. These sub-regions are the central and western Kenya ( F ig u r e  4 .7 5 a ) , western 

Tanzania and southern Uganda ( F ig u r e  4 .7 5 b )  and southeastern lowlands of Kenya and 

northeastern Tanzania ( F ig u r e  4 .7 5 c ) . The LEPS skill score value obtained for the three sub- 

regions were all positive ( T a b le  4 .4 2 ), an indication that the cross-validated MLR models 

were better off than climatology.

Residuals analysis from these cross-validated MLR models indicates that the residuals for 

each model were normally distributed according to one sample Kolmogorov-Smimov test. 

Compared to the tabulated critical values of the Durbin-Watson statistics, the residuals from 

the three cross-validated MLR models are not significantly autocorrelated, hence they are 

independent from each other.

The skill assessment of the cross-validated MLR models and analysis o f the cross-validated 

MLR model residuals show that these models perform much better than climatology, are very 

robust and can therefore be incorporated for operational uses.

T a b le  4 .4 2 :  T h e  lis t  o f  p r e d i c t o r s ’ c o m b in a t io n  a n d  sk ill  o f  re g re s s io n  m o d e ls  f o r  a r e a l -  
a v e ra g e d  r a in f a l l  to ta ls  f o r  th e  m o n th  o f  M a y

Sub-
re g io n

P r e d ic to r s M u lt ip le  c o r r e la t io n  c o e ff ic ie n t  
b e tw e e n  o b s e r v e d  &  p r e d ic te d

L E P S
sc o re

(%)

D u r b in -
W a ts o n
S ta t is t ic

R R  cv R  cv A d j

1 ECMAD-1, WCAUS-2, 
SMESEA

0.676 0.565 0.261 35.61 2.27

4 WCAUS-2, SSA, SMESEA 0.689 0.624 0.337 36.17 2.10

5 ECMAD-1, SSA, WCSOA, 
CSINDO

0.737 0.645 0.347 37.56 1.58
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(c) SR model. R = 0.645cv

Figure 4.75: Time series plot of the observed (obs), regression model (pred) and cross- 
validated model (cv) estimates for areal-averaged rainfall totals (SR) for the month of 
May over (a) central and western Kenya, (b) western Tanzania and southern Uganda, 
and (c) southeastern lowlands of Kenya and northeastern Tanzania. Rcv shows the 
multiple correlation coefficient for cross-validated model

4.6.2.2.2 Number of wet days

The time series plots from the developed and cross-validated MLR models as well as the 

actual observations for the number of wet days (NW) for the month of May are shown by 

Figures 4.76a-c while the combination of the predictors used and the skill of the cross- 

validated MLR models are shown by Table 4.43.

Only three sub-regions had the multiple correlation coefficient of 0.5 or more between the 

actual observations and the cross-validated MLR models time series. These sub-regions were 

western Tanzania and southern Uganda (Figure 4.76a) southeastern lowlands of Kenya and 

northeastern Tanzania (Figure 4.76b), and most parts of Uganda (Figure4.76c). The LEPS
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skill score attained for the three sub-regions were all positive, an indication that the models 

were better off than climatology, with the lowest value (30.16%) obtained over western 

Tanzania and southern Uganda (sub-region 4).

Further analysis indicates the cross-validated MLR models residuals are normally distributed 

as determined from the one sample Kolmogorov-Smimov test. The test of significance of 

Durbin-Watson statistics obtained against the tabulated values shown that the residuals from 

the three cross-validated MLR models are not significantly autocorrelated.

An assessment of the cross-validated MLR models has indicated that the three models were 

robust and better off than climatology while residual analysis has shown that the residuals are 

normally distributed and independent from each other. These models can therefore be 

incorporated for operational uses.

Table 4.43: The list of predictors’ combination and skill of regression models for areal- 
averaged number of wet days for the month of May

Sub-
region

Predictors Multiple correlation coefficient 
between observed & predicted

LEPS
score
(%)

Durbin-
Watson
Statistic

R R cv R cv Adj

4 WCAUS-2, EQATO, CSINDO 0.673 0.562 0.257 30.16 2.13

5 EQATO, WCSOA, CSINDO 0.689 0.614 0.324 37.12 1.90

6 IOD, SAFR, NEATO 0.643 0.579 0.278 34.36 2.19
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Figure 4.76: Time series plot of the observed (obs), regression model (pred) and cross- 
validated model (cv) estimates for areal-averaged number of wet days (NW) for the 
month of May over (a) western Tanzania and southern Uganda, (b) southeastern 
lowlands of Kenya and northeastern Tanzania, and (c) most parts of Uganda. Rcv 
shows the multiple correlation coefficient for cross-validated model

4 .6 .2 .2 .3  M ean fre q u e n cy  o f w e t spe lls  o f  3 days or m ore

Only two sub-regions had the multiple correlation coefficient equal or greater than 0.5 (Table 

4.44 and Figures 4.77a -b). These were northeastern Kenya (sub-region 3) and most parts of 

Uganda (sub-region 6) as shown by Figures 4.77a and b respectively. Over these two sub- 

regions, the cross-validated MLR models were better off than climatology as indicated by the 

LEPS skill score (Table 4.44).
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One sample Kolmogorov-Smimov test indicates that the residuals are normally distributed 

for the two sub-regions. The test for significance of the first-order autocorrelation was 

inconclusive for the residuals o f the cross-validated MLR model over most parts of Uganda 

(sub-region 6) while over northeastern Kenya (sub-region 3), the residuals are independent.

From the assessment of the cross-validated MLR models, the two models were found to be 

better off than climatology and robust while the residual analysis shown that the residuals are 

normally distributed. These models can therefore be incorporated for operational uses.

Table 4.44: The list of predictors’ combination and skill of regression models for areal- 
averaged frequency of wet spells of 3 days or more for the month of May

Sub-
region

Predictors Multiple correlation 
coefficient between observed 

& predicted

LEPS
score
(%)

Durbin-
Watson
Statistic

R R cv R cv Adj

3 WCAUS-2, EQATO, 
STAFR

0.622 0.548 0.241 25.68 2.17

6 SAFR, NEATO 0.644 0.553 0.267 32.59 1.53

Figure 4.77: Time series plot of the observed (obs), regression model (pred) and cross- 
validated model (cv) estimates for areal-averaged frequency of wet spells of 3 days or 
more (3W) for the month of May over (a) northeastern Kenya, and (b) most parts of 
Uganda. Rcv shows the multiple correlation coefficient for cross-validated model

The poor pattern especially for the peaks and lows and the low multiple correlation 

coefficient between the cross-validated MLR models and actual observations for the month of
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May was associated with the two months’ lead-time in the predictors used to develop these 

models among the other factors. This lead time is considered to be quite long especially given 

that the predictors for the sub-regional intraseasonal statistics of wet spells for long rainfall 

season are mainly from the atmospheric fields that have lower persistence. The atmospheric 

systems thus evolve quite fast.

Consistent with the spatial coherence analyses, most of the variables during the long rainfall 

could not have skillful models. None of the dry spells variables could produce skill models. 

For the wet spells variables, only the rainfall totals, number of wet days and mean frequency 

of wet spells of 3 days or more had slightly skillful models for the two split parts of the long 

rainfall season. The cross-validated MLR models for March-April period of the long rainfall 

did not have any preferred predictors. However, for the number of wet days, CINDO (zonal 

wind component at 700mb level over equatorial central Indian Ocean around 70° -  80° E, 

2.5° S -  2.5° N as shown in Figures 4.47a-c) appears in five out of the six cross-validated 

models developed. At a distant second was the EQAFR 1 (Zonal wind component index at 

200mb level extending from Equatorial Eastern Africa into Equatorial Atlantic Ocean around 

10° -  20° E, 10° -  5° S as shown in Figures 4.32a-c) which appeared in two models for each 

of the three variables for which the models were developed. None of the additional predictors 

appeared across the models for the three wet spells variables for the month of May. CSINDO 

(the meridional wind component at 200mb level over the central parts o f the southern Indian 

Ocean around 80° -  90° E, 30° -  20° S as shown in Figures 4.59a-c) appeared only twice in 

the three cross-validated models developed for the number of wet days during the month of 

May. For the three models developed for rainfall totals during the month of May, three 

potential predictors appeared twice each. The three potential predictors are WCAUS_2 (SST 

index on western coast of Australia over the south-eastern Indian Ocean around 90° -  100° E, 

12° -  4° S shown in Figures 4.29a-c), and ECMAD 1 (SST index on the east coast of 

Madagascar over south-western Indian Ocean around 63° -  75° E, 25° — 19° S as shown in 

Figures 4.25a-c), SSA (meridional component of the wind field at 200mb level to the south 

of the study area around 25 -  35 E, 15 -  5 S as shown in Figures 4.57a-c). The fact that there 

is no preferred predictor for the long rainfall season may suggest that these predictors could 

be unstable and highly variable. This could be attributed to the fact that the long rainfall 

marks the transition of the phase shift for ENSO, that more of the predictors are from 

atmospheric fields which have lower persistence and also the long lead time used for later 

period of the rainfall season.
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In conclusion, the use of the adjusted correlation coefficient ensured that only those 

predictors that significantly contributed to explain the variance are included in the MLR 

models for the rainfall totals and SRISS of both rainfall seasons. Most o f the cross-validated 

MLR models that are shown were developed using two or three predictors, and occasionally 

one or four predictors. This is consistent with Delsole and Shukla (2002) and Nyakwada 

(2009) who have indicated that fewer predictors tend to produce better models than those 

developed using large numbers o f predictors. It was also observed that the correlation 

coefficient of the developed and cross-validated MLR models were slightly different. This 

was mainly attributed to the fact that in the cross-validated model, three observation values at 

a go were left out each time and regression models developed with the remaining 

observations. The LEPS skill score was positive for all the cross-validated MLR models, an 

indication that the models performance much better than the climatology. According to one 

sample Kolmogorov-Smimov test, the residuals from the MLR models were normally 

distributed. Comparison of the calculated with the tabulated critical values of Durbin-Watson 

statistics indicated that the residuals for most o f the cross-validated MLR models were 

independent from each other.

While the cross-validated MLR models were developed for rainfall totals, all SRISS of wet 

spells and most of SRISS of dry spells during the short rainfall season, the two parts of the 

long rainfall season has MLR regression models for the rainfall totals, number of wet days 

and mean frequency of wet spells of 3 days or more only. For the long rainfall season, the 

skills for the other statistics were not high enough to justify their discussion and future 

adopted for operational uses.

For the first time, this study has produced cross-validated MLR models for the number of wet 

days and mean frequency of wet spells of 3 days or more in additional to the routine seasonal 

rainfall MLR models developed by the IGAD Climate Prediction and Applications Centre 

(ICPAC) and National Meteorological and Hydrological Services (NMHS) for their 

operational use. The skills for number of wet days are similar or slightly lower than those of 

rainfall totals, but the cross-validated regression models were developed for a larger number 

of sub-regions, suggesting that this variable is spatially more robust / consistent than the 

seasonal rainfall totals (Moron et al., 2006; 2007; Robertson et al., 2009).



230

CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Summary and Conclusions

This thesis is organised into five chapters, which are summarised independently in this 

section. Chapter one is subdivided into six major sections. A general introduction and the 

problem statement are presented in section one and two respectively. Many past studies have 

focused on understanding the rainfall variability at monthly, seasonal, and interannual time 

scales. Recent studies over the Rast Africa region have concentrated on the understanding of 

atmospheric processes and prediction of rainfall at different timescales, especially at monthly 

and seasonal timescales. Few studies have considered the intraseasonal models of rainfall 

variability over the region. However, it is still unclear how well do intraseasonal wet and dry 

spells which depicting the distribution of the rains relate to seasonal rainfall anomalies, their 

variability over time and space, and how predictable they are. This was the focus of the study.

In the third section of chapter one, the overall and specific objectives pursued in this study 

are highlighted. The overall objective of the study was to investigate the structure of the 

rainfall season in terms of distribution of the wet and dry spells and its variation in space and 

time over Equatorial Eastern Africa. Three specific objectives were therefore; to delineate 

and diagnose some aspects of the distribution of the wet and dry spells at interannual scale; 

investigate the linkage between these aspects and the dominant large scale climate fields that 

drive the global climate during specified seasons; and assess the predictability of the aspects 

of wet and dry spells for the improvement of early warning systems in the region.

Section four provides a justification for carrying out the study. Advance information of 

forthcoming distribution of wet/dry spells could be used to strategize on agricultural and 

water management policies as well as mitigating the adverse effects of recurring extreme 

climate events while fully capitalizing when more abundant and evenly spread rainfall 

occurs. Previous studies have revealed significant associations between rainfall season onsets, 

cessations and occurrence of wet/dry spells on one hand and end-of-season agricultural yields 

on the other hand.

The domain of the study was discussed in section five of chapter one. Three countries of the 

eastern Africa region namely Kenya, Uganda and Tanzania which are located within the 

latitudes 5° N and 12° S, and longitudes 29° E and 42° E, constitute the study domain. The
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physical features and rainfall climatology are elaborated in this section. The study domain has 

large diversity of topographic features that includes the eastern and western highlands with 

snow-capped mountains; and the Great Rift Valley with large inland water bodies in form of 

deep fault lakes. Most parts o f this study region have two wet (rainfall) and two dry seasons 

within the year. The rainfall seasons are locally referred to as long (observed from the months 

of March to May) and short (concentrated within the months of October to December) 

rainfall seasons. In the last section, an overview of this thesis is finally provided.

Previous literature on the intraseasonal aspects o f the rainfall distribution over the study 

region and elsewhere are reviewed in details in chapter two. The first two sections of this 

chapter reviewed studies aimed at understanding the processes and systems associated with 

the spatio-temporal rainfall variability; and those studies aimed at assessing the predictability 

and development of forecast models. Previous studies have related the occurrence of wet and 

dry spells with various circulation regimes over the study area and the surrounding area. 

Others have showed that the first-order Markov chain models describe the occurrence of wet 

and dry spells over the Eastern Africa region quite well. However, those that attempted to 

develop prediction models for the occurrence of wet and dry spells did not have an adequate 

lead-time for operational applications and practice. An increase in the lead-time between the 

prediction and observation time is one of the aim that this study wish to achieve.

The third section of chapter two reviewed the systems that influence rainfall occurrence over 

the study domain. Such systems are the inter-tropical convergence zone, monsoons, tropical 

cyclones, subtropical anticyclones, jet streams, global and regional teleconnections such as 

intraseasonal oscillations, quasi-biennial oscillations, El Nino/southern oscillation and Indian 

Ocean dipole, and the mesoscale systems.

The third chapter addressed the datasets and the methods of analysis used in order to fulfill 

the overall and specific objectives of the study. The first section covered the secondary 

datasets used. The secondary data sets used included observed daily rainfall, reanalysis data, 

sea surface temperature and radiosonde data. The observed daily gauge rainfall observations 

over 36 locations distributed evenly over the study domain and spanning 39 years (1962 — 

2000) were used. The rainfall dataset was provided by the National Meteorological and 

Hydrological Services of the respective countries and the IGAD Climate Prediction and 

Applications Centre. The radiosonde data over Bangui (Central Africa Republic) and Nairobi 

(Kenya) was used to assess the reliability in the use of the re-analysis data from the National
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Centre for Environmental Prediction / National Centre for Atmospheric Research and the 

European Centre for Medium range Weather Forecasting, both of which are gridded at a 

horizontal resolution of 2.5° latitudes by 2.5° longitudes. The Bangui upper-air station was 

used simply because it was outside the study area but within the equatorial region and the 

observed data has a common time overlay with the Nairobi upper-air data. The atmospheric 

variables of the re-analysis dataset considered were the zonal and meridional components of 

the wind vector, the geopotential heights and the specific humidity at three standard 

atmospheric levels o f 925mb, 700mb and 200mb representing the lower, middle and upper air 

levels. The specific humidity at 200mb level was however not considered since it is 

negligible at this level. The four constituted the atmospheric variables from which a list o f 

additional potential predictors could be derived. The Hadley Centre Sea Surface Temperature 

(SST) gridded at a horizontal resolution of 1° latitude by 1° longitude provided the oceanic 

variable from which a list of additional potential predictors could be obtained. Other climatic 

indices considered were those previously published depicting El-Nino, the Indian Ocean 

Dipole (IOD) and SST gradient indices.

The second section of chapter three covered the methodology of analysis. This study adopted 

the statistical research design. Initially the missing daily rainfall observations were estimated 

and quality of the datasets was assessed using the graphical and statistical techniques. The 

missing rainfall data was estimated using the correlation and regression analyses. Less than 

seven percent of the daily rainfall was estimated. The double mass analysis was used to 

assess the quality of rainfall dataset. The other method that was used to test the quality of the 

data sets used was the computing of simple correlation analysis between zonal and 

meridional components of the radiosonde wind data at both Nairobi and Bangui with re

analysis dataset at the closed grid point to the radiosonde station.

S-mode Rotated Principal Component Analysis (RPCA) was then used to delineate areas with 

similar daily rainfall characteristics. Frequency distribution of the wet/dry spells based on 

1mm threshold was determined; intraseasonal wet and dry spells at local and sub-regional 

levels were then derived. The Pearson correlation analysis was computed between the 

seasonal rainfall totals and various aspects of intraseasonal wet and dry spells at local 

(station) and sub-regional (near-homogeneous zone) levels. Using the non-parametric 

Spearman rank correlation analysis, the trend of the seasonal rainfall totals and various 

aspects o f intraseasonal wet and dry spells at local and sub-regional levels was finally
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determined.

The inter-station correlation analyses of the various aspects o f intraseasonal wet and dry 

spells over a given sub-region were computed in order to assess their spatial coherence, an 

indirect measure of potential predictability. Low spatial coherence indicate that the signal is 

localized and thus the predictability potential is reduced, since any large scale forcing may be 

masked by stronger local effects. Total and partial simple correlation analyses were computed 

to quantify the linkages between the various aspects of intraseasonal wet and dry spells 

including rainfall totals at sub-regional level and large scale climate fields that drive global 

climate. The locations of additional potential predictors were noted and indices extracted over 

these locations. Attempts were made to provide plausible physical/dynamical explanation on 

how the various aspects relates to additional potential predictors and comparative location 

assessment o f the additional potential predictor indices helped in reducing the number of the 

robust additional potential predictor indices.

Stepwise multivariate linear regression (MLR) technique was used to develop empirical 

statistical prediction models with sufficient lead time for improving the existing early 

warning systems. The concept of the adjusted correlation coefficient was used to determine 

the optimum number of predictors retained in the models. The cross-validated (leaving out 

three observations each time) method and calculation of the Linear Error in Probability Space 

skill score were used to assess the skill of the developed MLR models. The residuals from 

these MLR models were finally evaluated for independence using the Durbin-Watson 

statistics and Kolmogorov-Smirnov test to ascertain that these residuals had a normal 

distribution. The final section of this chapter highlighted the major limitations that were 

encountered and assumptions that were made in order for the research to move forward. The 

results obtained and conclusions drawn were based on the assumptions, despite the 

limitations.

The results obtained from the various methods o f analysis are discussed in chapter four. 

Results from the double mass curve analysis of the gap-filled daily rainfall data indicated that 

a single straight line could be fitted to the cumulative seasonal rainfall totals for any two 

chosen stations. The gap-filled and quality controlled daily rainfall observations were of good 

quality hence suitable for further analyses in order to achieve the overall and specific 

objectives of the study. For the re-analysis dataset, it was quite clear that the correlation 

coefficients between radiosonde observations and ERA40 and NCEP/NCAR re-analysis at
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most standard pressure levels are of high skills with Nairobi data, but relatively low for 

Bangui. The ERA40 accounts for slightly higher variance of the radiosonde data observations 

for both Nairobi and Bangui at all standard pressure levels considered compared to 

NCEP/NCAR re-analysis. The ERA40 was therefore used in this study. These datasets 

formed the foundation of the analysis for the current study.

For the first time, application of the rotated principal component analysis and simple 

correlation analysis on the square-root transformed daily rainfall observations showed that 

the occurrence and amounts o f daily rainfall over the equatorial eastern Africa can be broadly 

classified into six near-homogeneous rainfall regimes during both the March-May and 

October-December rainfall seasons. The spatial patterns for the six near-homogeneous 

rainfall regimes have slight variations between the two rainfall seasons which may point to 

the different atmospheric and oceanic dynamics responsible for the behavior of climate 

during the various seasons o f the year over the study area. In conclusion, though the total 

variance explained remain low, the six near-homogeneous sub-regions obtained are 

climatologically reasonable, related to specific topographic contexts and they were linked to 

known local and regional climate processes. The low percentage of total variance obtained in 

this study was attributed to the fact that for daily rainfall observations, both the intraseasonal 

and interannual variability are in play while at higher timescales such as month and seasonal, 

only the interannual variability is considered.

In the general terms of wet and dry spells, the long rainfall season has longer (shorter) mean 

durations of the wet (dry) spells and records the longest wet spell. Higher (lower) frequency 

of wet (dry) spells of 3 (5) days or more were also obtained during the long rainfall season at 

both local and sub-region levels. There are more wet days during long rainfall season as 

compared to the short rainfall season which has more dry days. The sub-regional 

intraseasonal statistics of the wet and dry spells (SRISS) including seasonal rainfall totals 

obtained from the averaging the local intraseasonal statistics of the wet and dry spells (L1SS) 

at sub-regional level and those from PC scores are quite comparable. The SRISS obtained 

from averaging the daily rainfall amounts from the individual stations at a specific sub-region 

are the most unrealistic and thus should not be used. This approach tends to overestimate the 

components of the wet statistics while underestimating the components of the dry statistics. 

In conclusion, only the SRISS obtained from the PCA scores and those obtained from 

averaging the LISS were subjected to further analysis.
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For the first time, the results at both local and sub-regional levels shown that the seasonal 

rainfall totals has positive (negative) linear associations with the intraseasonal statistics of the 

wet (dry) spells for both seasons. While the relationships with the intraseasonal statistics o f 

the wet spells are mainly statistically significant (at 95% confidence levels) over most 

locations, those o f the dry spells mostly remain statistically insignificant. The mean 

frequency of dry spells of 5 days or more (the number of wet days) has the least (strongest) 

association with the seasonal rainfall totals. The associations are stronger in the short rainfall 

season than the long rainfall season. However, during the short rainfall season and over the 

arid and semi-arid lands, the seasonal rainfall totals had significant positive association with 

the number of dry days and mean frequency of dry spells of 5 days or more. This meant that 

as seasonal rainfall total reduced, the number of dry days and the mean frequency of the dry 

spells of 5 days or more also reduced since the rest of the October-December period 

constitutes the dry season that was not analyzed.

The results of the trend analysis showed that during the long rainfall season, several locations 

had significant (at 95% confidence level) decreasing trend between 1962 and 2000 in the 

mean duration of wet spells, followed by the number of wet days and the mean rainfall 

intensity during the wet spells. However, these locations did not have an organized pattern. 

At least one in every six stations showed significant increasing trend in the mean frequency 

of wet spells of 3 days or more and duration of the longest wet spells during the short rainfall 

season. For both rainfall seasons, one in every three stations has significant increasing trend 

in the mean frequency o f dry spells of 5 days or more. The stations with significant 

increasing trend in occurrence of prolonged dry spells of 5 days or more showed an organized 

pattern. In conclusion, though the seasonal rainfall totals seem neither to have significantly 

increased nor decreased, the significant increase in the occurrence of prolonged dry spells 

within the rainfall season may help to explain the recent poor agricultural performance and 

lower yields. Climate change is becoming a major development concern not only over the 

Equatorial Eastern Africa region but the world over. Further studies are therefore required to 

examine whether the trends observed in the daily rainfall spells in this study reflect any 

regional climate change signals.

Previous studies have relied mainly on the use o f a representative station for a given near- 

homogeneous sub-region based on communality analysis. This study has clearly 

demonstrated the discrepancies associated with the use of a representative station especially
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in terms of the intraseasonal distribution of the daily rainfall events and the associated 

intraseasonal statistics of wet and spells. This study has shown that the different methods 

used to aggregate rainfall stations at sub-regional scales did not have the same 

efficiency/effectiveness. The study has shown that for highly variable climate element such 

as rainfall, the sub-regional indices provides superior results since they minimize the 

localized effects such as the orography, the errors associated with the individual 

measurements and provides results that are more representative of the general synoptic scale 

features.

Consistent with previous studies, the spatial coherence and potential predictability analysis 

results indicated that the number of wet days was the spatially most coherent SRISS and 

closely followed by the seasonal rainfall totals, while the mean frequency of dry spells of 5 

days or more was spatially least coherent SRISS and hence the least predictable. The results 

further shown that the sub-regional intraseasonal statistics derived from the scores of PCA 

are less spatially coherent compared to those derived from the areal-average of the local 

intraseasonal statistics. This study has for the first time shown that the percentage of the local 

variance explained for the whole study region during the two rainfall seasons was more than 

30% for the seasonal rainfall totals and number o f wet days for both the PCA-based and 

arithmetic areal-average based SRISS. Consistent with earlier studies on the seasonal rainfall 

totals, the intraseasonal statistics of wet and dry spells during the short rainfall season are 

more coherent and potentially more predictable, compared to those of the long rainfall 

season. The PCA-based SRISS has the least spatial coherence with the percentage of the local 

variance explained by SRISS remaining below 20% (10%) for all the SRISS apart from the 

seasonal rainfall totals and number of wet days during the short (long) rainfall season. The 

study concluded that the arithmetic areal-averaged based SRISS explained slightly higher 

percentage of local variance of SRISS for any statistic considered and was therefore 

subjected to further analysis.

Results of simple lagged total correlation analysis showed that a two-month average of the 

predefined indices (Nifio, IOD and SST gradient) with a one month lead time gives the 

optimum significant stable correlation coefficient with the sub-regional intraseasonal of wet 

and dry spells (SRISS). This lead time is adequate for prediction purposes since it provides an 

adequate time to update the indices before the start of the rainfall season. The search for the 

additional potential predictors using the simple lagged partial correlation analysis was
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therefore based on a lead time o f one month and averaging the predictor fields for two

months.

Results from total and partial correlation analyses identified several large scale oceanic and 

atmospheric signals with robust physical/dynamical linkages with arithmetic areal-averaged 

based SRISS including rainfall totals. For the short rainfall season, the simple lagged partial 

correlation analysis identified nine (9) additional potential predictor indices, four from the 

oceanic field and five from the atmospheric fields of zonal wind component and specific 

humidity and span across the whole globe within the latitudes 45° N and 45° S. The long 

rainfall season was split into two parts. For the first part (March-April period), thirteen (13) 

additional potential predictor indices were identified, two from the oceanic field and the rest 

from the atmospheric fields o f zonal and meridional wind components as well as specific 

humidity. Of these thirteen (13) indices, five had slight variation in locations to those already 

identified during the short rainfall season. The slight variation was mainly attributed to the 

evolution o f the global climate system with time. Several of the additional potential 

predictors had significant association with the predefined indices especially the Nino indices 

despite that fact that these did not show significant association with the rainfall totals and 

SRISS during the March-April period. The additional potential predictor indices for this part 

of the long rainfall season are partly related to basin-wide variation ol the SST and not the 

mode of variability associated with IOD. An earlier study had indicated that the evolution of 

the IOD events begins around April, attains peak in October-November and dissipates around 

January and rarely do these events extend beyond one year.

In the later part of the long rainfall season consisting the month of May, 10 additional 

potential predictor indices were identified. It should however be remembered that for the later 

part of the long rainfall season, a two-month lead time was used. The only two indices from 

the oceanic field had already been identified in the early part of the long rainfall season or the 

short rainfall season. Some o f the atmospheric indices identified were often associated with 

the North Africa free tropospheric flow regime towards east Africa region. This flow regime 

accounted for 6% of all the observations in an earlier study. Consistent with this study, the 

flow' regime was observed from January through to May. Each of these additional potential 

predictor indices had a plausible and robust physical/dynamical association with the SRISS. 

Unlike in the short rainfall season, the large scale potential predictor indices for the earlier 

and later parts of the long rainfall season were all from within African continent and the two
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adjacent oceans. By identifying stronger linkages between SR1SS o f wet spells for long 

(short) rainfall season and the atmospheric (oceanic) variables, the study has for the first time 

provided some insights to the prediction challenges for the specific seasons. Although SST 

forms the basis of most prediction schemes, the inclusion of atmospheric predictors was 

found to improve the skill o f the predictions. The atmosphere has less climatic memory when 

compared with the oceans. However, it is hypothesized that such atmospheric predictors are 

proxies of large-scale land and/or oceanic energy gradients, with an inherent memory. The 

study therefore concludes that future predictability efforts for the long rainfall season should 

encourage the inclusion of atmospheric variables in the prediction models.

Skillful cross-validated multivariate linear regression (MLR) models were developed over all 

the six sub-regions for the sub-regional intraseasonal statistics (SRISS) of wet spells 

including rainfall totals during the short rainfall season. Most of these models picked 

additional potential predictor indices around the Bay of Bengal. The predictor indices were 

the BoBEN (the SST over the Bay of Bengal extending to west coast o f Malaysia and 

Indonesia) and SINDS (the zonal wind component at 925mb to the south of the Bay of 

Bengal and near the southern tip of India). This clearly indicated that the oceanic and 

atmospheric conditions during the July-August period around the Bay of Bengal provide a lot 

of predictive information for the SRISS of wet spells and rainfall totals during the short 

rainfall season. For the SRISS of dry spells and mean rainfall intensity, most of the sub- 

regions didn’t have useful cross-validated MLR models. There was no preferred additional 

potential predictor index for the cross-validated MLR models developed. However, SWHAW 

(the SST over south-western of Hawaii in the Pacific Ocean) was the frequently picked 

additional potential predictor index. Consistent with the spatial coherence results obtained 

earlier, none of the six sub-regions have a skillful cross-validated MLR model for the mean 

frequency o f the dry spells o f 5 days or more. This suggests therefore that the occurrence of 

prolonged dry spells could be mainly influenced by local factors.

For the earlier and later parts of the long rainfall season, skillful cross-validated MLR models 

could only be developed for two SRISS of the wet spells and the rainfall totals. These 

statistics are the number of wet days and the mean frequency of wet spells of 3 days or more. 

For these statistics, they are no preferred additional potential predictor indices. Consistent 

with earlier studies, the skill o f these models were low compared to those of the short rainfall 

season and also the models for the number of wet days sometimes had higher skill compared
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to those of rainfall totals. Generally the skills of the model for both parts of the long rainfall 

season were lower. There was no any preferred additional predictor which appeared in both 

parts of the season and for the different SRISS. However, the long rainfall season is a 

difficult season, during which the climatic system undergoes phase shift and also it displays a 

lesser ocean-atmosphere coupling. The models presented still complement the prediction 

schemes currently available

The principle of the adjusted correlation coefficient has clearly provided a criterion for 

determining the optimum number of predictor indices that should be included in the MLR 

models. With the adjusted correlation coefficient criteria, only those predictor indices that 

significantly contributed to explain the variance are included in the MLR models. This gave 

two or three predictor indices which is consistent with previous studies which indicated that 

fewer predictors produce better models than those developed using large number of predictor 

indices.

In conclusion, this study has therefore for the first time produced skillful cross-validated 

multivariate linear regression (MLR) models for predicting some intraseasonal characteristics 

of wet spells that can be used to support the current generation of seasonal rainfall totals 

prediction models being used by the IGAD Climate Prediction and Applications Centre 

(ICPAC) and National Meteorological and Hydrological Services (NHMS). The residuals 

from these models are normally distributed and independent from each others. These models 

together with the information on the likely dates o f onset should provide a more clear picture 

of the likely performance of the rainfall activities within the season.

The results obtained from the current study can be applied in a number of ways to achieve 

sustainable development in the eastern Africa region. These results have showed significant 

increasing trend in the occurrence of prolonged dry spells within the rainfall season over the 

region. There is therefore the need for proper planning, development and management of 

water resource uses to match the water availability as supplied by the wet spells. A study 

done over Machakos in southeastern Kenya has demonstrated that mitigating dry spells 

through irrigation and supplementing soil nutrients by application of fertilizers can increase 

the current food production by three to five times. This ensures that the region attains food 

security and further improves the economic status of the farmers. The results can also be 

incorporated in the early warning systems aimed at reducing the climate risks that have been 

associated with heavy losses in hydropower generation, agricultural production and other
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-dependent socio-economic sectors.

5.2 Recommendations

recommendations from this study target the climate scientists and related research 

institutions, the policy makers, the users o f the climate information and prediction products 

: other stakeholders in the field of climate and weather. The recommendations address

JCS related t0 the Beneration o f wet/dry spells distribution within the season, in addition to 

the seasonal rainfall outlook provided by the national and regional meteorological services.

5.3.1 Recommendations to climate scientists and research 
institutions

Riis study has not determined the onset and cessation dates for the two rainfall seasons 

v> nsidered. Instead the study considered the first and last wet day as representative of the 

nset and cessation days respectively. Such definition of onset and cessation dates are greatly 

jflected by false starts which in turn affects the distribution of wet and dry spells. The study 

:hcrefore suggests that the actual onset and cessation dates based on daily rainfall be 

Jotermined before the frequency distribution of wet and dry spells are derived.

\nother suggestion would be to use a sub-regional definition of wet / dry spells as opposed to 

the local definition used in this study. This may possibly reduce the signal-to-noise ratio 

associated with the local definition of wet / dry spells and consequently increase spatial 

coherence of the various sub-regional intraseasonal statistics of wet and dry spells.

Hie low spatial coherence obtained for most o f the intraseasonal statistics was attributed to 

the influence of the stronger local factors that may mask the large scale atmospheric and 

ceanic influence. The study suggests an alternative approach in which the intraseasonal 

statistics are first derived and individual statistic used to regionalize the study region. From 

this, one expects to yield slightly higher spatial coherence of each intraseasonal statistics and 

thus improved/increased predictability.

This study did not analyze the individual seasons with anomalously high or low occurrence of 

the wet and dry spells. The study therefore recommends that these seasons should be 

.dentified and the atmospheric and oceanic conditions associated with them clearly studied. 

This will provide more insights on the precursor atmospheric and oceanic conditions before 

the occurrence of the anomalously high or low occurrence of the wet and dry spells.
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The oceanic and atmospheric predictors identified by the current study could be used to force 

dynamical models or existing (forced) numerical simulations. The results would then be 

compared with the statistical ones obtained in this study. This will confirm the reliability in 

the use of the identified additional predictors to explain the interannual variability o f SRISS 

and rainfall totals over Equatorial Eastern Africa and possibly beyond.

This study recommends further exploration on the accuracy of the forecasts of atmospheric 

and oceanic variables used here. The ECMWF issues monthly forecasts of the zonal and 

meridional winds, geopotential heights and specific humidity at the standard atmospheric 

levels. From these numerical forecasts, one can extract the key indices depicting atmospheric 

features known to be related to East African rainfall, then statistically relate these predicted 

atmospheric indices to the rainfall. This approach (dynamical-statistical prediction) has over 

some regions been shown to perform better than direct forecasts of seasonal rainfall. A month 

by month development of empirical models for the different intraseasonal statistics especially 

during the long rainfall season could also be assessed.

5.3.2 Recommendations to policy makers

This study has been limited by sparse distribution of the daily rainfall data over the study 

region. It has also been observed that most of the daily data acquired in the recent years has 

not been computerized further limiting the length o f the time series used for the study. Most 

of the pre-colonial rainfall stations has also been closed thus further limiting the number of 

stations to be studied. The study therefore recommends the provision of resources which will 

enable the computerization o f the data such that it can be available in electronic form and also 

revive the stations already closed.

The study has further indicated that the ERA40 dataset is slightly superior over the 

NCEP/NCAR re-analysis over the study area and its neighbourhood. However, the recent 

ERA40 data is out of public domain thereby inhibiting its accessibility and usage for research 

purposes to climate scientists in particular and to the general public at large. This study 

therefore recommends that all the ERA40 dataset should be availed to the public domain 

which w ill enable the comparison of the two major re-analysis datasets in the course of the 

research work.
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5.3.3 Recommendations to users of climate information and 

prediction products and other stakeholders

The results of the current study can be incorporated by researchers in the agricultural and 

food production sectors to ensure that they breed crops (seedlings) that can withstand the 

increasing prolonged dry spells within the rainfall season. The plant-breeders should ensure 

that the phenology o f such crops matches the distribution of the wet and dry spells within the 

grow ing season. In so doing, loss of lives and livestock and famine emanating from the crop 

failure can be avoided.

With the knowledge of the crop water requirements, the farmers and agricultural officers can 

utilize the models developed in this study as a guide in planning of the agricultural activities 

such as weeding, spraying and harvesting; and other socio-economic activities such as 

transportation to the market.

Before the advent of modern scientific methods, rural communities had realized that changes 

in behaviour by some animals, birds, insects and plants had the capacity to detect and respond 

to changes in the atmospheric conditions. Over Chitora in Zimbabwe for example, the 

emergence of black and brown ants from their holes to collect food in the houses in large 

numbers is associated with an impending long wet spell while the appearance of the same 

bringing out the dead and damp food would imply an impending dry spell. Also the redness 

of the sky at sunrise and sunset which depends on the amount of dust particles in the air is 

regarded as precursor of long dry spell. This clearly indicates that the modem scientific 

studies can greatly benefit from indigenous knowledge. It is imperative therefore to integrate 

the traditional knowledge systems with the modern science to further our understanding and 

thereby ensure effective agricultural and disaster management practices. Documentation of 

such traditional knowledge systems is thus recommended through collaborative research 

between climate scientists and stakeholders from other relevant fields.
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