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Abstract

In many situations units of some sort are to be tested perhaps to label 

them as defective (non-satisfactory) or non-defective (satisfactory). Often 

testing the units one by one is inefficient especially when they are cheap to 

obtain relative to the cost of the test. In such cases it is often preferable 

to form groups of units and test all units in a group simultaneously. This 

is called ’’group testing” or ’’group screening” in statistical literature.

This thesis considers estimation of the prevalence rate in a group 

screening design using two methods: maximum likelihood method and 

Bayesian method.

Most of the work in group screening have concentrated on designs 

without errors. In this work we have undertaken a review of these works 

and extending them to the case with errors, which involves taking the 

accuracy of the screening or testing equipment into consideration.

It is shown that for small group sizes and large values of p and k, 

the bias is considerable while for low values of p and k, there is relatively 

little bias,and that the best design for a given experiment depends on 

the prevalence rate, tolerable mean square error, the sampling cost of an 

individual sample and the cost of performing a single test.

We have also shown how Bayes methods can be incorporated in the 

group screening problem. "For low prevalence rate, we have shown that 

Bayes estimator outperforms the maximum likelihood estimator in terms
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of bias and mean square error. Also we have argued that interval estimates 

based on Bayes method may be more appropriate, as to avoid intervals 

extending outside the parameter space.

By taking measurement errors into consideration, we have shown that 

by group testing we not only achieve a cost saving, but also an increase in 

the estimation accuracy.

For estimating infection rate in a population of organisms, when 

sample pools of unequal sizes are analyzed, we have suggested an iterative 

method of determining successive estimates of the infection rate,resulting 

in an estimator which can easily be evaluated and upgraded, using the 

average size of positive pools.
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Chapter 1

General Introduction

1.1 The Concept of Group Screening D esigns

In many practical situations, units of some sort are to be tested per

haps to label them as defective (non-satisfactory) or non-defective (satisfac

tory). The units might be blood samples, insects or electrical components, 

for which defective could mean testing positive for a disease, carrying a 

disease causing agent, or being faulty respectively. Often testing the units 

one by one is inefficient, especially when very few of them are defective and 

they are cheap to obtain relative to the cost of the test. In such cases, it is 

often preferable to form groups of units and test all units in a group simul

taneously. In statistical literature, this is referred to as ’’group testing” or 

’’group screening” . Usually the outcome of the group test is dichotomous. 

When the outcome is satisfactory, one concludes that all units in the group 

are satisfactory; if it is not, one concludes that at least one unit is defective 

but does not know which one(s) or how many. If the aim is to classify each 

individual as positive or negative then individuals in positive groups will

1
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have to be retested in smaller groups, perhaps individually until all positive 

ones have been identified . This is known as classification problem. In 

many applications the aim is to estimate only the proportion of positives 

in the population, not specifying which particular individuals are positive. 

This is called estimation problem.

The main aim of group screening is to reduce the expected number 

of tests in the classification problem by eliminating a large number of non

defective factors in a batch, thereby effecting substantial saving in the cost 

of the experiment. For the estimation problem, the aim is to determine 

the optimal group size that improves the precision of the estimator of p, 

the proportion of positives in the population. Thus, group screening is a 

cost effective method of detecting defective individuals and estimating the 

prevalence rate of attribute in these individuals in a given population.

1.2 Term inologies and N otations

Terms used in group screening designs have been specific to particular 

areas of application. Owing to this, terminologies describing the same con

cept are diversified and sometimes confusing. Group screening designs have 

also been called group testing, pooling, probing, composite sampling, multi

vector transfer, pooling organisms, by researchers such as Sobel and Groll 

(1959), Gibbs and Gower (1960), Swallow (1985,1987), Chao and Swallow 

(1990 and so on. Groups have been termed group-factors, batches, compos

ite samples, test plants,pools, pooled sera, samples, and so on. Defective and 

non-defective have been called significant and insignificant, unsatisfactory

2
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and satisfactory, bad and good, non-conforming and conforming, contam

inated and non-contaminated, active and inactive, positive and negative, 

infected and non-infected, diseased and healthy, non-reactive and reactive, 

and so on.

Terms such as repeated trials (Graff and Roellfs(1972)), stepwise 

(Manene(1985)), curtailed and hierarchial (Johnson, Kotz and Wu(1992)) 

have been used to describe special types of group testing.

Various notations have been used for the population size, group size, 

total number of groups or pools formed, number of groups found defective 

or non-defective, the probability of a factor being defective or non-defective 

and the corresponding probability of a group factor being defective or non

defective.

Some notations by various researchers are shown below.

Table 1 Table of Notations in group-screening designs

Description Watson Bhattacharrya Thompson Chiang

Population size f N m N

Group size k m k m

No. of groups g n n n

No.of defective groups r n-R n - Z x i X

No.of non-defective groups g-r R Z x i n-x

Prob of defective factor P e P P

Prob of non-defective factor 1-p i - e 1-p 1-p

Prob of defective group-factor P* i-p l-h(p) 7r

Prob of non-defective group-factor 1 - p * p h(p) 1 — 7T

In this work we shall adopt Watson’s(1961) notations.
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1.3 A pplications

Various researchers have used group screening to estimate the propor

tion of defective or infected individuals in a given population. Applications 

include studying the spread of insect borne diseases, quantifying resistance 

factors in plants and estimating proportions of infected or infective indi

viduals in a population among others.

In epidemiologic investigation of disease agents transmitted by arthro

pod vectors, it is often necessary to estimate the infection rate in the vector 

population. Because the number of specimens in the sample in most cases 

is quite high, it is practically impossible to assay each specimen individu

ally. Instead the specimens are randomly divided into a number of pools 

and each pool is tested as a unit. If a pool includes at least one infected 

specimen the test shows positive, whereas a negative test is obtained when 

no infected individual is present in the pool. The ratio of the number of 

positive pools to the total number of specimens in all pools, is called the 

infection rate which bears a direct relationship to the prevalence or risk of 

the diseases in the human and other populations. The areas of application 

that are used in our study and the work done by some researchers in these 

areas is mentioned in the following sub sections.

1.3.1 Insect-V ector Problem

Thompson(1962) used group testing to estimate the proportion of 

vectors capable of transmitting aster-yellows virus in a natural population 

of the six spotted leaf hoppers. A group of insects were randomly chosen
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and caged with each plant in a given time interval. Only the test plant 

result from a group of insects was used in estimating the proportion of 

viruliferous insects in the population from which the random sample was 

drawn.

Chiang and Reeves(1962) suggested simple and accurate methods of 

estimating the infection rate in a mosquito population, using group screen

ing design. They considered a pooling device where mosquitoes collected 

from the field were divided into pools, each pool containing nearly constant 

number of mosquitoes which was then tested for the presence of virus.

Walter et al (1980) used pools of variable sizes to determine if cer

tain mosquitoes could transovarially transmit yellow fever virus. A yellow 

fever infected adult population of Aedes aegypt produced a progeny popu

lation which was hatched, reared to adults, separated by sex and grouped 

in pools for virus assay. Two strains of yellow fever virus were used. Strain 

A isolated from a dead monkey and strain H isolated from a pool of Haem- 

agogus mosquitoes. Temporal variation occurred during the laval devel

opment period, requiring from 6 to 20 days for all mosquitoes to pupate. 

This biological process resulted in pools of variable sizes.

1.3.2 R odent-B acterium  Problem

Sobel and Elashoff(1975) considered a case where rodents are col

lected from the harbour of a large city and after being killed and dissected 

their liver was carefully examined under a microscope, for the presence or 

absence of a specific type of bacterium. The goal was to study the pro-
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portion of rodents that carry this type of bacterium, using an economical 

experimental design. In this application the cost of obtaining the animals 

was assumed negligible compared to the cost of the test.

1.3.3 Blood Testing Problem

The standard procedure for screening individuals for antibody to the 

HIV is by Enzyme Linked Immunosorbent Assay (ELISA). Other kits such 

as Western Blot(WB) are also used, though more expensive but more reli

able. Gastwirth and Hammick(1989) estimated prevalence, rate by firstly 

combining blood samples from k individuals into a single batched sample 

using ELISA followed by Western Blot for confirmation.

Kline et a/(1989) undertook a study to assess whether the testing of 

pooled sera was technically feasible, cost effective and an accurate method 

of determining HIV seroprevalence in large population based on surveys. A 

series of experiments were performed to estimate the reliability of ELISA 

method using pooled sera.

Davies, Grizzle, and Bryan(1973) estimated the probability of post

transfusion hepatitis, when patients received several blood products by 

generalizing to pools for which each unit does not have the same probability 

of transmitting the disease.

1.3.4 P lan t Testing Problem

Gibbs and Gower(1960) used the multiple vector transfer method 

to determine the frequency with which a virus disease is transmitted to
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another by taking samples from a population and testing more than one 

sample on each test plant. The number of test plants that became in

fected were then used to determine the proportion of diseased plants in the 

population.

1.3.5 Other A pplications

Other areas of application that have recently been considered include qual

ity control application by Xiang Fang et al (2007), industrial experimen

tation by Vine et a/(2008),breast cancer research tumor growth study 

by Herald-Weeden-Fekjar et a/(2008)and statistical analysis of E (fTlod)~ 

optimal mixed level supersaturated designs by Koukorinas and Mylona 

(2009).
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1.4 Literature R eview

Group screening was first introduced into the literature by Dorfman 

(1943) as an economical way of testing blood samples of army inductees 

in order to detect the presence of syphilis infection. He proposed that 

rather than test each blood sample individually, portions of each of the 

samples could be pooled together and the pooled sample tested first. If 

the pooled sample was non-infected, all the inductees would be passed with 

no further test. Otherwise, each portion of the blood samples would be 

tested individually. The aim here was to reduce the expected total number 

of tests and the expected total cost of inspection, with the assumption 

that the prevalence rate was low. He plotted graphs of prevalence rate 

p versus group sizes. Optimal group sizes occurred at stationary points 

on the curves but he did not give a general expression for obtaining the 

optimal group sizes.

Various researchers have extended this concept to estimate the pro

portion of defectives under different conditions. These conditions include: 

(i) group screening with equal group sizes, equal probability and with 

no errors in decision by Gibbs and Gower(1960), Thompson(1962), Chi- 

ang and Reeves(1962),Kerr(1971), Bhattacharyya et al{ 1979) and Swal- 

low( 1985,1987) (ii) group screening with equal group sizes, equal proba

bility but with errors in decision by Gastwirth and Hammick(1989) (iii) 

group screening with unequal group sizes, equal probability and with no 

errors in decision by Griffith( 1972),Walter et al(1980) and Le(1981).

Based on these conditions, a theoretical framework for studying esti-
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mation problem in Group screening designs is suggested, as shown in figure 

1.1 below.

Figure 1.1: Theoretical Framework for Estimation in Group Screening Designs

From the framework more conditions are identified and therefore, the fig

ure is split into various frames as shown below. These frames were used 

to identify the gaps in the research conducted. The study concentrated on 

the frames 1(a), 1(b) and F(c).

9



1(3) Kb) 1(c) Kg)

1(e) 1(f) 1(g) 1(h)

Figure 1.2: Approaches to the study of Estimation in Group Screening Designs
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Under the first condition given in diagram 1(a), Thompson(1962) 

used a Binomial model and the maximum likelihood estimation method to 

estimate the infection rate. Some properties of the estimator of p such as 

biasedness and Best Asymptotic Normal (BAN) were investigated and the 

optimum number of insects per plant is determined by finding the value of 

k that minimizes the asymptotic variance using differential calculus. This 

work can be reviewed and the optimal group size determined by minimizing 

the mean squared error.

Kerr(1971) used the binomial model and the maximum likelihood 

estimation method to estimate the infection rate. The biasedness of the 

estimate was studied using graphs. But he did not give an expression for 

determining the biasedness.

Bhattacharyya et al(1979) considered two models of the population: 

the finite population model where the whole population was sampled and 

the infinite population model where sampling was done from super pop

ulation. For the finite population model, the method of moments was 

used while for the infinite model the MLE method was used based on the 

binomial distribution to estimate the infection rate. They studied the bi

asedness of the estimator. They did not consider the other properties of the 

estimator, and the optimal value of k for both finite and infinite models.

Kline et a/(1989) model results was based on the groups that were 

identified positive in estimating p, but did not take into consideration the 

fact that positive pools can be misclassified as negative. The estimated 

value of p was actually lower than than the true value.

11



Tebbs and Bilder(2003) and Lew and Levy (1989) studied empiri

cal Bayes approach in group screening designs. They considered a beta 

distribution with a =  1 as the conjugate of the binomial distribution and 

determined the posterior mean assuming an estimate (3 of (3. Compari

son between MLE and Bayesian estimates was made using the relative bias, 

showing that EB estimate outperforms MLE. They also discussed interval 

estimation, where credible interval or the highest posterior density (HPD) 

construction method was used. This work can be extended to the general 

case where a and (3 are unknown and the case a  = 1 treated as a special 

case. Griffiths(1973)also studied MLE for the beta-binomial distribution 

and its application to the households distribution of total number of cases 

of a disease.

Under condition 1(b), Gastwirth and Hammick(1989) obtained two 

estimators p\ and P2 based on the maximum likelihood method and the 

method of moments. Two cost functions were formulated, the first based 

on individual testing and the second on group screening. They were mainly 

interested in estimating p but not in determining the optimal group size 

that reduces the relative cost. They also made the assumption that sensi

tivity and specificity of the test kits were constants. In practise this is not 

always true as the results of the tests are influenced by several factors.

Xin, Litvak and Pagano( 1994,1995) applied the model to HIV screen

ing where they showed that pooling sera samples not only achieves cost 

savings but increases the estimation accuracy. They also showed that 

pooled testing increases the probability of estimating prevalence substan-

12



tially compared to non pooled testing. This work can be extended to the 

case where, misclassification which leads to high false prevalence rates is 

taken into consideration.

Under the third set of conditions given in diagram 1(c), Chiang and 

Reeves(1962) considered two pool sizes where the pool size in one group 

was markedly different from the other. They used the joint probability 

function of the number of positive pools in the two groups and the max

imum likelihood method to estimate the infection rate. They studied the 

biasedness of the estimator and its asymptotic behavior.

Walter et al (1980) used the binomial model and the maximum like

lihood method to estimate the infection rate. They then used the Newton- 

Raphson iteration method to determine the relationship between successive 

estimates. They studied the asymptotic behavior of the estimate.

Le(1981) reviewed the work of Walter et al (1980) and came up with 

a new estimator which could be solved non iteratively using the Poisson 

model and the method of moments. Bayesian estimation method can be 

applied and other properties such as mean square error and efficiency stud

ied.

1.5 Statem ent of the Problem

Dorfman’s original problem was to identify individuals with rare at

tribute. In this case the objective was to optimize the problem cost effec

tively. The assumption was that the probability p of defective was known.

What if p is not known. Once the individuals have been identified

13



then p can be calculated. However, if the individuals are not identified for 

confidentiality purposes, how do we estimate p? This was the statement 

of the problem that we have tackled.

1.6 O bjectives of the Study

The main objective of this study was to estimate the prevalence of defec

tives in group-screening designs for the identified routes in the conceptual 

framework. The methods of Maximum Likelihood Estimation and the 

Bayesian approach were used.

Specifically we were interested in

(i) Identifying variables used in the design and using the variables to find 

the conditional probabilities appropriate for estimation problem.

(ii) Reviewing the works by other researchers using the conditional proba

bilities.

(iii) Deriving estimators (MLE and Bayes) and studying their properties 

such as Unbiasedness, Consistency and Efficiency.

(iv) comparing the estimators using for example Relative Bias, Mean Square 

Error and Relative Efficiency.

1.7 M ethodology

The goal of group screening procedure is to study the efficiency of the 

design, which is determined by optimizing a cost function. Some of the 

methods that were used in achieving this goal include:-

14



(i) Differential and integral calculus used in determining the optimum 

group size

(ji) Numerical approximations used in cases where iterations are involved

(iii) Statistical methods such as the Cramer-Rao lower bound and the Delta 

method were used in studying the asymptotic properties of the estimator.

(iv) Computer Simulation applied when comparing the efficiency of the 

group screening design with that of the traditional method of one at a 

time testing.



Chapter 2

M aximum Likelihood Estim ation  
W ith Equal Probabilities but 
W ithout Errors in Decisions

2.1 Introduction

In this chapter, we review the estimator of the prevalence rate p 

under the condition of equal probability, equal group sizes and without 

errors in decision, using the maximum likelihood method of estimation. 

In section 2.2, we study the binomial model and its maximum likelihood 

estimator. The properties of the estimator such as biasedness, asymptotic 

variance, mean squared error and efficiency are discussed in section 2.3. 

The following three general assumptions are made in this chapter; (1) 

the status of individuals are taken to be independently and identically 

distributed Bernoulli random variables,(2) testing errors are negligible, and 

(3) test cost dominates the cost of sampling individuals and is independent 

of group size.

16
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2.2 Binom ial M odel

If s is the number of defective factors in a group-factor of size 

k and p is the probability that a factor is defective, then s follows a 

binomial distribution with parameters p and k .The probability that a 

g r o u p - factor is defective is given by

If r is the number of defective group-factors then its probability function 

is

V

1 — qk, where q =  1 — p. (2 .1)

f ( r )
( ? > " ( ! -P * )s_r 1,2,

( 2 .2)

0 otherwise

Thus, the mean of r is

E(r) =  gp*

9(1 -  qk) (2.3)

and the variance of r  is

var(r) =  9/<‘!l -  /'*) 

=  9(1 -«*)«*• (2.4)

We now consider the maximum likelihood estimation of the binomial model.



2.2.1 Maximum Likelihood Estimator of p

Using the binomial model, the likelihood function of r  is given by

l  = (® V r(i -  P* r r -

Taking logarithms, we have

\nL = In +  r  lnp* + (g — r) ln(l — p*) (2.5)

Differentiating with respect to p* and equating to zero, we have

P* =  -•  (2.6)
9

But since p* =  1 — qk, eqn (2.6) can be simplified to give

r . i
pk =  1 -  (1 -  -)* .

9

If k = 1, we have the traditional estimator

r

(2.7)

(2 .8)

2.3 Properties of the Estim ator, pk

In this section, we consider the properties of the estimator such as biased

ness, asymptotic variance, mean squared error and efficiency.

2.3.1 The Mean of the Estimator and its Biasedness

Since pk is a function of a'-binomial variable r, we have

E ( h )  =  E ( i - ( i - - ) 1) ( 9)p*r( i - p T " r
r=0 9 v /

18



=  1
a

- £ (
r=0

9 - r
9 \9 ~ r>

p*r( l - p * ) g—r

= i - z ( 1 )i f s ) ( ( i - p ) ' i)i( i - ( i - p ) * r i, (2 .9 )i=o 9 W
where i =  g — r. Rewriting (2.9), the mean of pk is expressed as

m )  =  i - ( - ) t £ « t ( ? ) ( ( i - p ) ‘ )i( i - ( i - p ) * r i
9 i=0 v J

= i — (-)*«!, (2.10)
9

where

<*i = t  ^  ( g)((i -  p)fc)*(i -  (i -  p)‘r ‘. (2.U)

When k = 1 , (2.10) becomes

E(Pi) =
9 i=0 W

= p. (2.12)

Thus, for k = 1 , pk is an unbiased estimator of p.

Proposition 2.3.1

The value of the estimator pk given in equation (2.7) overestimates the 

prevalence rate of defectives when k is greater than one (k > 1).

19



Proof:

To prove this proposition, we use Jensen’s inequality, which states that, if 

f(x) is a convex function then E(f (x))  > f (E(x))  and if f(x) is concave 

then E(f (x))  < f (E(x))  ,provided the expectations exist and are finite. 

Approach 1:
Assume that

Pk =  1 -  (1 -  -)*
9

is continuous. Then we have

dpc 1 / r i i
—  =  — ( 1 ---- ) kdr gk^ g

and

d2pk k — 1. r. i _2 

Or2 (s*;)21 -

Therefore, p is convex.

Since fk  is a function of r, say 0(r), then by Jensen’s inequality,

E W ) }  >4>[£(r)].

Thus,

E(pk) > 1 -  (1 

= 1 - ( 1  

=  P-

E(r) 
9 '

9 '

k
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A ppr°ach

Let

then

and

Therefore, x is 

Thus,

implying that 

and that 

Hence

x = (1 —

dx
dr r

d2x 1 — k 
dr2 (gk)2

concave.

(1 ---- )*■' 2 < 0 for k > 1
9

1

£(1 -  - f  <
2 3

9 9

B d  -  > a  -  ^ d ) 1.
5 0

£ ( «  > i -  (i -  — )‘

= 1 -  (1 

=  P-

* A
* fc
)

5

i
fc
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ApProach 3:

From formula (2.8),

"ITiKlH*I O} 
1

t-HII

Let

V =  ( f f - r )* ,

then,

dy - 1 / a - i  
d-r= T {9 ~ r)

and

d2y 1 - k  i _2  /  n 
0 r* =  p  0  <■)• < 0 .

Therefore,

<5
V 1 ?T| — IA to
' 1

E{ 1 -  - 4 {g -  r)*) > 1 -  —r{g -  E{r)Yk
gk gk

and hence

E(pk) > i - \ ( g - g p * ) ) 1 
g~k

= p-

Thus, for k > l, pk overestimates p with exact bias given by

B e xa c t = E{pk) -  p. (2.13)

The table below shows the values of E(pk) for selected p, k and g.

22



Number of groups, g

T a b le  2 . E ( p k )  for selected values of p , g  and k.

p=0.01

k 10 20 30 40 70 100
1 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02 1.000E-02

5 1.044E-02 1.021E-02 1.014E-02 1.010E-02 1.006E-02 1.004E-02

10 1.051E-02 1.024E-02 1.016E-02 1.012E-02 1.007E-02 1.005E-02

15 1.055E-02 1.026E-02 1.017E-02 1.013E-02 1.007E-02 1.005E-02

20 1.057E-02 1.027E-02 1.018E-02 1.013E-02 1.008E-02 1.005E-02

p=0.05

k

1 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02 5.000E-02

5 5.243E-02 5.116E-02 5.076E-02 5.057E-02 5.032E-02 5.022E-02

10 5.336E-02 5.152E-02 5.099E-02 5.074E-02 5.042E-02 5.029E-02

15 5.572E-02 5.187E-02 5.121E-02 5.089E-02 5.050E-02 5.035E-02

20 6.498E-02 5.240E-02 5.146E-02 5.107E-02 5.060E-02 5.041E-02
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k

p=0.10

1 0 . 1 0 0 0 0 . 1 0 0 0 0 . 1 0 0 0 0 . 1 0 0 0 0 . 1 0 0 0 0 . 1 0 0 0

5 0.1057 0.1026 0.1017 0.1013 0.1007 0.1005

10 0.1190 0.1044 0.1027 0 . 1 0 2 0 0 . 1 0 1 1 0.1008

15 0.1905 0.1142 0.1049 0.1031 0.1016 0 . 1 0 1 1

2 0 0.3391 0.1695 0.1227 0.1091 0.1026 0.1017

p= 0 . 2 0

k

1 0 . 2 0 0 0 0 . 2 0 0 0 0 . 2 0 0 0 0 . 2 0 0 0 0 . 2 0 0 0 0 . 2 0 0 0

5 0.2251 0.2075 0.2047 0.2035 0.2019 0.2013

10 0.4407 0.2835 0.2330 0.2156 0.2050 0.2032

15 0.7398 0.5743 0.4619 0.3846 0.2676 0.2273

2 0 0.9022 0.8211 0.7506 0.6889 0.5440 0.4435

We note from the table that for small group sizes and large values of 

p and k, the bias is considerably large. However, for low values of p and k, 

even fairly small group sizes suffice to yield estimates of p , with relatively 

small bias.

Because the MLE can result in serious bias, we consider the possibility of 

bias correction. Using standard methods given in Rao (1973), the following 

approximation is suggested.

k -  1 , 1 -  (1  - p ) k}
JJcrctd^ n io l (̂  „\fc_1 h (2.14)

2gk2 (1  — p)k

Tile table below shows the corrected bias for selected values of p , k and g.
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T a b le  5.Bias Corrected E ( p k )  for selected values of p , g  and k.

Number of groups, g

p=0.005

k 5 10
1 0.005000 0.005000

2 0.005250 0.005130

5 0.005400 0.005200

10 0.005460 0.005230

20 0.005500 0.005250

II o o 1—‘

k

1 0.01000 0.01000
2 0.01050 0.01025

5 0.01082 0.01041

10 0.01094 0.01047

20 0.01105 0.01052

15 20 30

0.005000 0.005000 0.005000

0.005080 0.005063 0.005042

0.005130 0.005101 0.005067

0.005150 0.005115 0.005077

0.005170 0.005125 0.005083

0.01000 0.01000 0.01000
0.01017 0.01013 0.01008

0.01027 0.01020 0.01014

0.01031 0.01024 0.01016

0.01035 0.01026 0.01017



k

p=0.05

1 0.05000 0.05000 0.05000 0.05000 0.05000

2 0.05257 0.05128 0.05086 0.05064 0.05043

5 0.05444 0.05222 0.05148 0.05111 0.05074

10 0.05573 0.05287 0.05191 0.05143 0.05096

2 0 0.05808 0.05404 0.05269 0.05202 0.05135

p= 0 . 1 0

k

1 0 . 1 0 0 0 0 0 . 1 0 0 0 0 0 . 1 0 0 0 0 0 . 1 0 0 0 0 0 . 1 0 0 0 0

2 0.10528 0.10264 0.10176 0.10132 0.10088

5 0.10999 0.10499 0.10333 0.10250 0.10166

10 0.11513 0.10757 0.10504 0.10378 0.10252

2 0 0.13089 0.11544 0.11030 0.10772 0.10515

p=0.25

k

1 0.25000 0.25000 0.25000 0.25000 0.25000

2 0.26458 0.25729 0.25486 0.25365 0.25243

5 0.28857 0.26928 0.26286 0.25964 0.25643

10 0.36311 0.30656 0.28770 0.27828 0.26885

2 0 0.88983 0.80991 0.62328 0.52996 0.43664

We note that there is substantial reduction in bias for small values 

of p, even for large values of k.
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The variance of the estimator is given as,

2.3.2 T he V ariance o f th e  E stim ator

var(pk) =  E[pk -  E(pk ) ]2

= E\pk -  1 +  1 -  E(pk))2 

= E ( l - p k)2 - ( l - E ( p k))2.

But

m - h ?  = E  (l -  - f  (9) p " ( i  -  p')9~r
r =0 9 V J

= E ( h ‘ ( 9 y 9_' ( i - p 7 -i=o 9 w
Therefore,

■ var(pfc) =  ±  (V f 9 ')p*s-*(l -  P'Y -  (1  -  E(pk) f .  
i=o 9 v J

Alternatively, let

a, = h i ( 9) p ’a- o - Py -
i=o W

But from (2.10)

E(pk) =  1 -  %gl

Hence,

\ 012 , a ls2var (pk) = —  -  (— )
gk Qk 

Oi2 — Ql2
gk

(2.15)

(2.16)
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When A; =  1

var(pk) = \ e {i2) -  (1  - p ) 2 
9

(var(i) +  (E(i))2) -  (1 -  p)2

{^(1 -  p)p + ( g ( l -  p ))2 -  g2( 1 -  p )2}

P(1 - P ) (2.17)
9

2.3.3 Asym ptotic Variance of the Estimator

Here, we show that as the number of groups becomes large, the variance 

of the estimator is best asymptotically normally distributed. We approach 

this using two different methods.

Method l:B ased on C ram er-R ao Bound

The Cramer-Rao bound states that for an estimator pk.

~ E ^

But from eqn. (2.5),

In L = £ = \n j  +  r  Inp* + (g — r) ln(l — p*),

implying that

dp p* 1 — p*' dp
d£ r g — r dp*

and
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Therefore,

d2t
~ E ^ ] = ( -  +  T-P* 1 9  ) ( T ?  + (9-!>)p-p* dp dp2

and hence,

f f ( | ( l - ( l - p ) fc) ) 2 

(1  -  (1  ~ p ) k){l ~ p ) k

gk2( l - p ) k~2 1
1 — (1  — p)k

lim varfmdg-> oo
l -  (l - v t

gk2(\ -
(2.18)

Method 2: Based on the D elta M ethod

Here, we use the fact that if y is a random variable and a function of 

another random variable x ie y = f (x)  , then

var(y) ~  var(x)(f'(x))2.

In this case, p* = 1 — (1  — p)k => f>k =  1 — (1 — p*)*. 

Therefore,

var(pk) »  var(p*)(^%  

5 K
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(2.19)

P*( 1 — P*)* 1 
gk2

( l - ( l - p ) fc) ( l - p ) 2- fc 
gk2

1 -  (1

^/c2(l -  p ) k ~2

Thus, the two methods give the same asymptotic variance for p and shows 

that the estimator is Best Asymptotically Normal for large g. That is, for

fixed k and g —> oo

VdiPk -  P) -► Normal(0,
1 (1  -P)*  ^

,k-2r ( 2 .20)
gk2{ l - p )

In the next section, we are interested in how the asymptotic variance be

haves for fixed group-factor size and fixed total number of group-factors.

2.3.4 The Behavior of the Asym ptotic Variance

(a) For fixed group factor size, k

var(pk) = ^ ^ - ( ( 1  ~ p)~ k -  1 ) 

constant
5

9

which implies that

— var(pfc)
og

—constant
92

< 0 , for 0  < p < 1 .

Thus, for fixed k, the variance of the estimator is inversely proportional to 

the number of group-factors g. This implies that the larger the number of 

group-factors, the smaller the variance and hence the more reliable will be
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(b) For fixed total number of factors, /  =  gk,

the estimate.

var (pk) =
(1 - p ) 2((l - p )  k -  1 )

/  k

We check whether the variance is monotonic increasing or decreasing. 

Consider the two functions

(1  ~ P ) 2 ( ( 1  ~P)~k ~  1 ) 
f  k

and

( i - P)2 ( ( i - p ) - (t+1) - i )
/  k + 1

By binomial expansion

( l - p ) - fc- l  _  (1  + kp +
k k

=  P(l + ^ + (* +  1)^  +  2 y  +  „ . )  (2 .2 1 )

and

( i - p ) - ( fc+1) - 1 _  (i +  {k +  i )p +  (fc+1)^ + 2)p2 +  (fc+i)(fc+2)(fc+3y  +  ^ _ i
k + 1  k + 1

=  p(l +
(fc + 2)P (fc +  2)(A: +  3)p2 

2! 3!
(2 .22)

Since eqn (2 .2 2 ) is greater than eqn (2 .2 1 ) for all k > 1 , it implies that the 

function is monotonic increasing and hence the variance of the estimate 

increases as the group-factor size increases.

In the next section, we (1 ) find the optimal value of /c, ie, the group-factor

31



size which minimizes MSE and total cost, for a given level of p and fixed 

number of groups g\ (2) compare the MSE of pk when k =  1 and when 

f. y  i; and (3) compare the cost of achieving tolerable level of MSE with 

group and individual sampling plans.

2.3-5 Mean Squared Error

The mean squared error of an estimator is the average squared deviation 

from the true value of the parameter, which incorporates measures of both 

accuracy (bias) and precision (variance) of the estimator. In this case,

MSE(pk) = E\pk -  E(pk)]2 + [E{pk -  p)}2

=  E\pkP2 + [E{pk)}2 ~  2pkE(pk)\ + [[E(pk)}2 +  p2 -  2pE(pk)] 

=  E ( p l ) + p 2 -2pE(pk )

B '  =  E(pk -  p f

| ;/ =  E [ l - ( l - r- ) - p } 2

= E [ ( l - p ) - ( l - r- ) l}2 

= (1 — p)2 + E[l — — 2(1 — p)E(l — -)*
g g

= (i - p ) 2 +  E ( - ) ^ )  [(i -  p)kn i  -  (i -  v ) T l
i=o g W

- 2 ( 1  - P) £ C - y  [ ( i - p ) fcf [ i - ( i - p ) fcr
i=o g

=  ( l - p ) 2 +  E ( - ) M ( 1 )i - 2 ( l - p ) ]  4 (1  -  Sk)9̂  (2.23)
i=o g g

-o g

where 5k =  (1  -  p)k.

The table below gives the MSE for selected values of p, g and k. The un
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derlined values represent minimal MSE, which correspond to optimal k.

Table 4■ MSE for selected values of p,g and k.

Number of group-factors, g

p=0.20

k 1 0 2 0 30 40 70 1 0 0

1 1.600E-02 8.000E-03 5.333E-03 4.000E-03 2.286E-03 1.600E-03

2 9.802E-03 4.681E-03 3.078E-03 2.293E-03 1.300E-03 9.068E-04

3 8.356E-03 3.663E-03 2.375E-03 1.396E-03 9.884E-04 6.876E-04

4 1.005E-02 3.284E-03 2.081E-03 1.207E-03 8.506E-04 5.895E-04

5 1.768E-02 3.365E-03 1.975E-03 1.123E-03 7.861E-04 5.424E-04

6 3.492E-02 4.547E-03 2.040E-03 1.416E-03 7.630E-04 5.232E-04

1 6.391E-02 8.713E-03 2.577E-03 1.508E-03 7.691E-04 5.230E-04

8 0.104167023 1.886E-02 4.653E-03 1.950E-03 8.025E-04 5.384E-04

9 0.153026644 3.797E-02 1.047E-02 3.614E-03 8.854E-04 5.693E-04

10 0.206815486 6.763E-02 2.297E-02 8.410E-03 1.166E-03 6.240E-04
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p = 0 . 1 0

k 10 2 0 30 40 70 . 1 0 0

1 9.000E-03 4.500E-03 3.000E-03 2.250E-03 1.286E-03 9.000E-04

2 5.068E-03 2.450E-03 1.616E-03 1.206E-03 6.845E-04 4.779E-04

3 3.723E-03 1.759E-03 1.153E-03 8.571E-04 4.846E-04 3.378E-04

4 3.088E-03 1.420E-03 9.243E-04 6.854E-04 3.861E-04 2.688E-04

5 2.807E-03 1.224E-03 7.917E-04 4.642E-04 3.285E-04 2.283E-04

6 2.876E-03 1.103E-03 7.076E-04 5.213E-04 2.914E-04 2.023E-04

7 3.494E-03 1.027E-03 6.521E-04 4.785E-04 2.663E-04 1.845E-04

8 5.031E-03 9.870E-04 6.151E-04 3.541E-04 2.488E-04 1.721E-04

9 7.984E-03 9.931E-04 5.915E-04 4.296E-04 2.365E-04 1.632E-04

10 1.291E-02 1.087E-03 5.794E-04 3.266E-04 2.280E-04 1.570E-04

11 5.816E-04 4.102E-04 2.224E-04 1.527E-04

12 4.093E-04 2.192E-04 1.500E-04

13 4.165E-04 2.180E-04 1.487E-04

14 2.186E-04 1.485E-04

15 1.494E-04
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p = 0 . 0 1

k 10 2 0 30 40 70 . 1 0 0

1 9.900E-04 4.950E-04 3.300E-04 2.475E-04 1.414E-04 9.900E-05

2 5.246E-04 2.553E-04 1.687E-04 1.260E-04 7.159E-05 5.001E-05

5 2.212E-04 1.056E-04 6.933E-05 5.162E-05 2.922E-05 2.038E-05

10 1.159E-04 5.470E-05 3.580E-05 2.661E-05 1.503E-05 1.047E-05

15 8.058E-05 3.768E-05 2.460E-05 1.826E-05 1.030E-05 7.160E-06

2 0 6.302E-05 2.919E-05 1.901E-05 1.410E-05 7.940E-06 5.520E-06

25 5.282E-05 2.414E-05 1.568E-05 1.161E-05 6.530E-06 4.540E-06

30 4.710E-05 2.079E-05 1.347E-05 9.960E-06 5.590E-06 3.890E-06

35 4.610E-05 1.844E-05 1.191E-05 6.980E-06 4.930E-06 3.420E-06

40 5.296E-05 1.670E-05 1.076E-05 7.940E-06 4.440E-06 3.080E-06

45 7.469E-05 1.537E-05 9.000E-06 7.270E-06 4.060E-06 2.820E-06

50 1.235E-04 1.435E-05 9.100E-06 6.751E-06 3.760E-06 2.610E-06

60 3.853E-04 1.300E-05 8.100E-06 4.730E-06 3.330E-06 2.310E-06

70 1.088E-03 1.307E-05 7.500E-06 4.320E-06 3.030E-06 2.090E-06

10 0 1.030E-02 1.186E-04 7.700E-06 4.740E-06 2.570E-06 1.770E-06
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p=0.05

k 10 2 0 30 40 70 . 1 0 0

1 4.750E-03 2.375E-03 1.583E-03 1.188E-03 6.786E-04 4.750E-04

2 2.582E-03 1.253E-03 8.277E-04 6.179E-04 3.510E-04 2.451E-04

5 1.196E-03 5.598E-04 3.657E-04 2.716E-04 1.533E-04 1.067E-04

8 8.745E-04 3.888E-04 2.518E-04 1.862E-04 1.045E-04 7.268E-05

10 8.509E-04 3.346E-04 2.152E-04 1.257E-04 8.877E-05 6.163E-05

15 2.404E-03 2.750E-04 1.709E-04 9.836E-05 6.909E-05 4.777E-05

2 0 3.789E-04 1.569E-04 1.120E-04 6.104E-05 4.198E-05

25 2.068E-04 1.111E-04 5.816E-05 3.971E-05

30 1.702E-04 5.853E-05 3.951E-05

35 4.096E-05

In general, the MSE decreases to a minimum as the optimal value of 

k is attained, then increases. Lower MSE values occur with larger number 

of group-factors,g. After the minimum MSE is reached, the rate of increase 

in MSE with k decreases as the number of group-factors increases.

2.3.6 The Cost Function

Define the cost of obtaining the estimate, when k =  1 as

L Ci = f x ( C 8 + CA), (2-24)

and the cost of the group testing as

I  C* =  /  x (Cs +  5 d ), (2.25)
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where C\ and Ck are total costs for one at a time tests and group tests 

respectively,Cs is the sampling cost of one individual sample and Ca is the 

cost of performing one test. The reduction in cost is emphasized when Ca 

is substantially greater than Cs- Suppose Ca is five times Cs from either 

an individual test or group test. The table above may be useful in com

paring alternative experiments. For example, if the objective is to achieve 

a tolerable MSE of say 0.001 when p =  0.05. When 10 groups are tested, 

a design in which A: =  10 yields an MSE of 0.0008509. When 30 groups are 

tested, a design in which k = 2 yields an MSE of 0.0008277. The traditional 

plan(/c = 1) would require approximately 70 groups to achieve the desired 

MSE of 0.0006786. The costs of these three alternative experiments are 

estimated as follows:

Ck = g x k x C s + g x C A

Ck=10 = 10 x 10 x 1 + 10 x 5

=  150 cost units

Ck=2 =  30 x 2 x 1  + 30 x 5

=  2 1 0  cost units

Ck=i =  70 x 1 x 1 + 70 x 5

=  420 cost units.

The first alternative therefore is the most cost-effective. It requires only 35 

percent of the cost of the traditional plan to achieve an MSE of 0.001 in 

this example. Clearly, the best design for a given experiment depends on 

Pi the tolerable MSE, Ca and Cs- A researcher can use the techniques to
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select the least costly design that achieves the experimental objectives.

2,3.7 Efficiency

We define Efficiency as the ratio of the MSE of the estimator at optimal k

to the MSE when k =  1. That is,

_  M S E (O P T IM U M )
~ M S E (T R A D IT IO N A L ) '

The table below gives the ratio of MSE when optimal k is used to the MSE 

when the traditional plan k — 1 is used.

Table 5. Relative Efficiency for the values of p and g as given in 

Table 4 above.

Number of group-factors, g

p 10 2 0 30 40 70 1 0 0

0 .2 0.522245 0.410449 0.370228 0.354037 0.333805 0.326887

0 .1 0.311921 0.219328 0.193137 0.181892 0.169565 0.165007

0.05 0.179135 0.11579 0.099078 0.093547 0.08571 0.083187

0 .0 1 0.046562 0.026262 0.022727

At low values of p , the MSE for optimal k is always less than the MSE 

for the traditional plan for a given number of group-factors, increasing the 

number of group-factors results in (1) reducing MSE (2) increasing optimal 

k and (3 ) reducing the ratio of optimal MSE to traditional MSE.
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Chapter 3

M aximum Likelihood Estim ation  
W ith Equal Probabilities and W ith  
Errors in Decisions

3.1 Introduction

In this chapter, we consider group screening design with equal prob

ability, equal group sizes and with errors in decision. The presence of 

measurement errors resulting from the limited precision of tests makes 

estimation using traditional methods, impossible in some screening situ

ations. Ignoring measurement errors leads to severe bias, and inference 

about the prevalence becomes unsatisfactory. The probability of a group 

factor being declared defective is determined using two approaches, the 

sensitivity-specificity approach discussed in section 3.2 and test of hypoth

esis approach considered in section 3.4. Relative efficiency of the group 

estimate against the traditional estimate is considered in section 3.3.
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3.2 Sensitivity-Specificity  Approach

Sensitivity is defined as the probability of correctly identifying a de

fective item, while specificity is the probability of correctly classifying a 

non-defective item. Define the following indicator variables:

T  =x l
1 ,

0 ,

if the ith batch screening test is positive 

otherwise.

and

Di =
1 , if at least one individual in the ith batch is positive 

0 , otherwise.

Further, let

V = Prob(7) =  1 /A  = 1)

= sensitivity of the screening test

(3.1)

and

6 = Prob(T? =  0/Di = 0)

=  specificity of the screening test.

(3.2)

Note from eqn (2 .1 ) that

Prob(A  = 1) = 1 -  qk

and

Prob(A  =  0) =  qk.

40



Watson’s (1961)result on group-factors declared defective can be 

proved using the indicator variables, as given in the following theorem.

Theorem 3.2.1

When screening with errors in decisions and using the sensitivity-specificity 

approach, the probability that a group-factor of size k is declared defective 

is given as

<  = [1 “ (! -  P)k]v + (! -  p f (1 “ e)-

where p, k, r\ and 9 are as defined before.

Proof

By definition

7r* = Prob(T) =  1)

— Prob(7) =  1, Di =  1) + Prob(7) = 1, Di = 0)

= Prob(X) =  1 /Di =  l)Prob(Dj =  1) 4 - Prob(Tj =  l / D t =  0)Prob(A =  0) 

= r?(l -  qk) + (1 -  9)qk 

= r? -  (r) + 9 -  l)qk

= [ l - ( l - p ) k}v + ( l - p ) k( l - 0 ) .  (3.3)

This completes the proof.

Note that as p —> 1 , [1 — (1  — p)k]r) —> 77, hence 7rj is a monotonic 

increasing function of p. That is, the higher the prevalence the more likely 

it is that a group-factor will test positive.This leads to the condition that 

1 -  9 < 7Tj < 77, with equality if and only if p =  0 or p = 1 respectively.
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3.2.1 M axim um  L ikelihood E stim ator o f p

Using the binomial model , the likelihood function is given by

£ =  ( f W (  i - < r r,

where r is the number of group-factors declared defective.

Taking logarithms we have

In L = i  = In + r  In 7  ̂+  (g — r) ln(l — 7T*).

Differentiating partially with respect 7r* and equating to zero gives

" I =  j '
(3.4)

That is,

which implies that

V ~  (77 +  0 -  1 )qk =
9

so that assuming that 77 and 9 are known,

1
P = 1 -  [(

r 1
------------)(77-----)}k
V + 9 - l ){l g h

or

If 77 =  9 = 1 and -n\ wediave.9’

(3.5)
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which is the same as the result in equation (2.7), for the case of no errors. 

Since both sensitivity and specificity for testing kits are always »  0.5, 

 ̂4 - 0 — 1 > 0. Thus p is well defined if 7rJ < 77. By monotonicity of as 

a function of p, it follows that

1 — 0 < nt = -  < ri.
9 ~

(3.6)

This is the condition for the prevalence to be estimable given the 

observed ratio  ̂ and the sensitivity 77 and specificity 9. Thus, the proba

bilities of estimating prevalence are given by

Pr[7Ti > 1  — 0] =  Pr[r > g(l — 0)]

t  r V o  - *rrr
r=[sr(l-0)] V /

i=o W
(3.7)

and

Pr[7r* < 77] =  1 — Pr[r > gp)]

[  =  1 - e  ( 9 ) < r ( i - < r rr=av y  J

9^~V) /n\= 1 - e . (a-®)t=0 W
These probabilities may be evaluated by summing up the terms of the 

lanomial distribution, and may be used to study whether group screening
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improves Prot>a,t)ility of estimating prevalence for various values of 77 and

0 for fixed number of groups g. Thus, in the case of a rare trait, specificity 

plays a major role in investigating the effect of pooling and estimating 

the prevalence based on test results than sensitivity. Thus, the inequality 

> 1 — 0 is more useful in determining the probability of prevalence. In 

the case of high prevalence, equation (3.8) indicates that sensitivity plays 

a major role in the estimation than specificity.

3.2.2 The Mean of the Estimator and its Biasedness

The mean of the estimator p is given by

*\u—rTTjf

=  (3 '9)

Letting i = g — r, we have

E(p) 9

i - E_  v ------------rfo  - l  + - ) k (9 u r i(l -
~ o  [p  +  e - i y  9  W

9

i - E-  v  7----- 7 -----77i (9(v -  1 ) + i ) H 9A K 9 *(! - O l]=° (g(rj + 6 — l) )k W

= 1 -

where

aT

(g(v + o - !))
I  5 k

(3.10)

«; = £  (s f t - 1 ) + o* ( ? V r ‘(i -  
i=0 W

(3.11)
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£quation(2.10) is a special case of equation (3.10), by letting 77 

and Trf =  [1 -  (1 -  p)k] +  (1 -  p)*. When k = 1,

1

=  0 =  1

E(p) =  1 - 

=  1

g(v + e -  1 ) 
1

{g (v -  1 ) + E(i))

g{ri + e -  q i s h - 1) + & - < ) )  

( v - { v - ( v  + 0 -  i )qk})77 +  0 -  1)
= 1 - q k

= P-

Thus, for k =  1, p is an unbiased estimator of p. However, for k > 1 

p is biased and overestimates p .This claim can be proved using Jensen’s 

inequality.

In this study , we assume that p =  1 — ziiv  ~  ^)]r is continous. Then,

dp = 1 r 1 ( _ Lv,
dr gk rj + 0 — 1 ^ #

T’ X ^

and
97* fc ^

so long as

<92p A: — 1 1 ,

P > Ln-
Therefore, under this condition

=  l - [
1

77 +  0 — 1
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1
= 1 - ( r i - ( v - ( v  + 0 -  l )qkWy + 0 -  1

i - l — !, A v + e - l ) / ] *p + 6 — 1

1 ~ q

P-

That is, E(p) > p.

Alternatively, let

x  = r 1

p + o - l  g'

so that

and

dx — 1 1 r i_i
= ~gk \  + 0 -

d2x 1 — k 1 r . i_ 2

dr2 =  J g W  y + O - l  ^ ~ g '^  - ° ’

for k > 1 and 77 > .̂

Therefore,

1 r i 1 E(v) r
£ ----- t-----(77- - ) *  < f------------ ( n ---- — )1*[p + 0 -  V 1 g Jl ~  [77 +  0 - l W g U

1

77 +  6* -  1

[------ -------[p +  0 -  1

q-

( p - K ) V

( p - ( p - ( p  + o -  i)gk))}]

Therefore,

E [— \ — 7 fa ~  " )]fc < <7, T) + (J — l g
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which implies that

That is,

Hence,

E(p) > p.

Thus, p overestimates p.

Also, suppose we express E(p) as

E(P) =  1
{g(rj + 0 -  1 ))'

—E(rjg -  r ) k.

Let y = (rjg — r ) k. Then

and

dy 1 , i_i
g ;  = - k ( n 9 - r y

=  - p - ( w  -  r ) 1 2 < 0  for fc > 1 .

Therefore,

E ( p g - r ) k < (?pg -  E{r))k

= { g g - g n l Y
i l

=  g k( p ~ K ) k 

= gH(v + o -  i)qk)1 

= {giv + o -  W q-



Thus,
j

E{gg ~ r)'1
{g(v + 6 -  1 )qk)~k

t <q,

which implies that

E(r]q — r )k
1 --------- — ----- -----T > 1 - q

k\  k{g(r] + 6 -  1 )gfc)

and hence for k > 1 and p > 7- ,p  overestimates p.

3.2.3 The V ariance of th e  E stim ato r

The variance of the estimator is given by

var(p) =  E\p — E(p)Y

E(1 -  p)2 -  (1 -  E(p)Y

But

E ( l - p ) 2 = ------------- j E ( V - - f
(r) +  6 — l ) fc g

-— V - t E O  -  V rW a -  < r r
(rj +  9 — l ) fcr=o g \ r J

-— - 1 +  V  -  < Y
{v + d -  l)*t=0 9 W

------------- ------------ T h g ( v  - 1 )  +  )̂l  (9) < 9- l ( i -  < Y
(g(r) + 9 — l ) ) fc i=° \ v

ar
2  5

(g{r) + 9 -  1 ))*
(3.12)
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where i  — g  — r  and

i=0 V *

Therefore,

var(p) = Q 2 „  r -T /_ / , \ \2

(gin + » - 1))*
T -  (1 -  E(p))‘ .

Suppose r] =  6 = 1, then

var(p) =  *(1 -  ttJ)4 -  (1 -  E {p ) f
9k *=o W

E (l ) n  c -p h 2=  — i----- (l -  E(p)) •
9 k

Thus, equation (2.16) is a special case of equation (3.15). When 

equation (3.14) becomes,

E ^ ^ - ( l - p ) 2 = i ( v a n  + (E(i))2) -  (1  -  p f
9" 9‘

■p(9(i -  p)p + g2(i -  p)2) -  (i -  V?

(1 ~P)P
9

(3.13)

(3.14)

(3.15)

k = 1

(3.16)
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3 ,2.4 A sy m p to tic  V ariance o f th e  E stim ator

The asymptotic variance of the estimator in this case is explained by the 

following result given Xin, Litvak and Pagano(1995).

Theorem 3.2.2

When screening with errors in decisions and using the sensitivity-specificity 

approach, the asymptotic variance of the estimator p of p, the prevalence 

rate given in equation (3.5), is expressed as

var(p) — (i - p?  ( i - O  (i - p ) —2k~*7C
f  (77 +  9 — l ) 2 k 

for 0 < p < 1 , where k , 7̂ , 77, and 6 are as defined earlier.

Proof

We use two alternative methods to prove this result. 

Method l:B ased on C ram er-R ao  Bound 

(i) Using the formula

L nL .
( 3p2 ^

the binomial model given in equation (3.4)implies that
g — r d7r*M  =  ,r_ _  jp__ -_y

dp 7Ti 1 — TTi dp ’
and

d2£ 
dp2 

Therefore,

=  (■ 9 ~ r  * ) & ) ' + £
g -  r d2

;)•

- E ( — ) =  [El 
W 2' lx ; 2

7T*2 ( 1 - 7 T l f ^ d p '  ' V 7Tj 1-7T* dp2 '

g -  gn\ dirl 2 r̂ i  9 ~ 9*u
+ l(X li)z _  [: 

(1  — TT* )2 dp
1 ] ( ^ 1 ) 2

_ *
^1 1 — 7r*  ̂ dp2

7T! (1  -  O  dp
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Hence,

lim var(p)
g—>oc w '

-  O
, ^ 2

(ii) Using the formula

lim var(p)
g—>oo v '

1

ydp’
r drTj g - r  drr\ ^2

7Ti dp 1 — dp

‘ l«
g - r  ^rdnl  2 

1 - 7 [ d p l ’

E ( ^ ) 2 =
a p  7Ti 1 — 7T* dp

fE(r2) -  2 p 7 r j £ ( r )  +  p 2^ 2 d^l  2 

[ 7T̂2(1 -7T* )2 U 5 p J
rvar(r) +  (£ (r ) ) 2 -  2grr\E{r) +  g2Trf <977̂ 2

n a p J

Thus,

where

*\2< ( ! - < )
7T

12][M u
7rr2 ( l -7r*) 2JL5 p J

[-------------][— f .
TTj (1  — 7T*) dp

lim var (p)
g—>oo v 7

77̂ (1 — 7Ti )
f drr̂  x2

9<aif>

( ^ f  =  fc2[(>> + -  1 )2?“ "2]
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Method 2: Based on the Delta Method

Here, let x — p and y = as given in equation (4.3). Then,

giving

Therefore,

var(p) ~  var(7rt) [ ^ ] 2

where /  =  gk.

gir{(l-7r{) d r r j - n l  ^ l l 2

g* W { U « - l ] 1 1

7rl(l-7ri*) { y - n l ) * ~ 2 ,
9 k2(y + 9 — 1)E

-  i ) - ¥ - * ]

(1  - p ) 2 (1 - 0  ( l - p ) - 2kirt 
f  (y + 0 — l ) 2 k

3.3 R elative Efficiency

Although group screening increases the probability of obtaining a positive 

estimate of the prevalence, such a screening strategy would not be attrac

tive, if it yielded a less accurate estimate. This would seem to be the case
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result.

Theorem  3.3.1

since fewer tests are required. But this is not true as shown in the following

When screening with errors in decisions for a fixed sample size f  and for 

sm all p, the asymptotic variance of the estimator p of p is a monotonic 

decreasing function of k, where p is as given in equation (3.5). 

p roof

var(p) =  

Since 7 increases in k,

(1  - P )  2fc<

(1  - P ?  (1  ~ *1) (1  ~P) 2k̂ \
f  (rj +  6 — l ) 2 k

1 — 7T| is a decreasing function of k. For small p, 

[{(! -  P)~2k ~  (1 -  P)~k)v  +  (1 -  P)~k( 1 -  0)]
k k

^  [(1 +  2pk -  1 -  pk)rj + (1  + pk)( 1 -  9)]
k

1 _ Q
= p ( l - 6  + rt) + —— ,

which is also a decreasing function in k, indicating that the variance de

creases with an increase in group size k. Thus, group screening gives rise 

to a more accurate estimator of prevalence with fewer tests.

Efficiency can also be defined as a ratio of asymptotic variances var(pfe>i)/var(pjt=i), 

for a fixed sample size and various values of 77, 0 and p.

3.4 The Test of H ypothesis Approach

Consider the indicator variables Tj and D{ defined in section(3.2) above. 

Further, let Sx be the number of defective factors in the ith group-factor.
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We then determine the conditional probabilities Prob(Ti/Dt) and Prob{Ti/Si).

To do so, we develop a test of hypothesis as follows:

H o  : $  =  0

against

Hi : Si = s.

Watson(1961) defined the power of this test as

7Ti(s0 i,o:i) =  the probability of declaring a group with s defective factors defective 

=  Prob(Ti =  1 /Si = s),

where

=  the level of significance in the first stage 

=  probability of declaring a non-defective group-factor defective 

=  Prob{Ti = 1 /A  = 0)
= 7Ti(0, dfi),

and

with A as the effect of a group and a1 as the variance. Thus 7Ti(s0 i, an) is 

a function of k.

With these notations, Watson(1961) obtained the following result.
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'Theorem 3.4.1

jTTien screening with errors in decisions, the probability of declaring a de

fective group-factor defective is given by

_  ^ = i 7Ti (s0 i >Q;i )C)p V _s

I  7fl~  T = 7  ‘

where the parameters are as defined earlier.

Proof

Suppose the group test is positive and the group factor is actually defective, 

then we have,

7r'i =  Prob(Ti = l /S i  > 1)

Prob{Ti =  1, Si > 1)
Prob(Si > 1 )

E j=1 Prob{Ti = l ,Si  = s)
£s=i Prob(Si =  s)

_ Eg=i Prob(Tj =  1/Sj =  s)Prob(Sj = a)
Es=i Prob(Si =  s)

r j= i

■  =  ELi7ri(g0i;Qi)C)pA9fc~s
1 — qk

L - (3-17)

This completes the proof.

55



Theorem 3.4.2

When screening with errors in decisions, the probability that a group-factor 

is declared defective is given by

7T* =  7r' -  (ttJ -  ai)qk.

where the 7^  and aq are as in theorem (3.4.1) and the other parameters as 

earlier defined.

Proof

7rj =  Prob(Ti = 1)

= Prob(T.L =  1, Di =  1) +  Prob(Ti =  1, A  =  0)

= Prob(Ti = 1 /Di =  1 )Prob(Di = 1) +  Prob(Tt =  1, A  =  0)Prob{Dl =  0) 

= 7Ti(l -  «/*) + 9*

= ,r'i -  M  -  “ 1)9 *-

Based on this theorem, we obtain the following result.

This completes the proof.

The maximum likelihood estimator of 71̂  is given in equation (3.4), as 

r x = r- with var(Trt) =  But

Therefore,

7T* =  Tri -  (7ri -  ai )qk. 

(tt'i  -  oi\)qk =  7 ri -  ttJ ,
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giving

ak -  ^

Thus,

(1 - p ) ‘ =

implying that

P = 1 -
tt; - ttH
tt'i -  CCi.

Therefore,

p =  1 - r a  - r-1 .9

.A  -  ®i

A  -  oil

= / « ) ,  say.

=  <£(r),say.

Using the delta method, if p = f ( A ) i  then

r dfvar (p)
(Ini'

"var(7r*)

d , , k l 2 r7r*(l -  n\)
dn{

d
dnl

9

/ *-|In 2 r7Ti — 7Ti * '
7Ti -  £*1 5

i f A  -  A ) ~k 1

k \n[  ~  o i

2 r^*

3

( A  -  A  \ * 2W t l - ’r;)!
l A  -  a i J

--
1

05

1
2̂ ^ 1(1  ^lJi /7TJ -  Of!
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Using Jensen’s inequality, if 0(r) is convex, then

E[(J)(r)\ > <j>[E(r)].

Condition for p =  0(r) to be convex is derived as follows:

dp _  <LL_
dr dr 1

_/ r l i7Ti---1 a
L7ri -  a j

implying that

Note that

1

gk
71"! — —

1 g 
L7ri -  a i

r - 1

/ r . i_o,   — L ^d2p k — 1

<9r2 (fi'fc)2 Ltt! — c v i .

^ 2^
——r > 0  if A: > 1 and > —. 

Under these conditions, then </>(r) is convex. Hence,

E[<Kr)] > <j)[E(r)\.

That is,

E  1 -
7Ti — -

L7Ti -  Oil } — [A  ~ £(§)
7r'i -  Qi

=  1
L7rx — ati

1 -
7Ti -TTi , Ifc

Ln -  aiJ

=  1 - A  -  \ A  -  K  - <*i)g*]
A  -  ai
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=  1
. tt'i -  ai .

=  1 -(«*)*

=  1 - 9  

=  P-
Thus, E(p) > p showing that p overestimates p.

3.4.1 Special Case

The result obtained by Thompson(1962) can be considered as a special 

case, where 7Tj =  1 and a\ — 0. For instance,

“  (^l -  a i)9 = 1 “ 9 = P -

Then ttJ =  p* =  J,

var(7r*) =  var(p*)

Tims.

var(p) =

p*(l — p*) gfc(l — 
9 9

p ^ l - p * ) * " 1

gk2

gk2

1 - q k 
gk2qk~2
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3.4.2 Alternative Approach

1 — (1  — p)k
gk2( 1 — p) k ~2

Let

Pi = probability of declaring a defective group-factor non- defective

=  Prob(Ti = O/Di =  1).

Therefore,

1 — an = probability of declaring a non-defective group-factor non- defective 

=  Prob(Ti = 0/ Di = 0)

=  specificity of the test 9,

and

1 — Pi =  probability of declaring a defective group-factor defective 

[ =  Prob(Ti = 1/Di = 1)

=  sensitivity of the test g.

Thus, 7rj can be defined in terms of ai and Pi as follows.
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When screening with errors in decisions and using the test of hypothesis 

approach, the probability that a group-factor is declared defective is given 

by

K  =  (1 -  A )  -  (1 -  Qfi -  Pi)qk.

where A  is the probability of declaring a defective group factor non

defective and the other parameters are as defined earlier.

Proof

7T * = Prob(T i =  1)

=  Prob(T i =  1, D i  =  1 )  4- Prob(T i =  1, A  =  0 )

=  Prob(T.} =  1 /D i  =  1 )P rob (D i -  1 )  +  Prob(T t = 1, D % =  0 )P rob{D l = 0 )  

=  7 r J ( l  -  qk) + a iq k

=  (l  -  A ) ( i  - q k) +  ®\qk 

I =  1 -  A  -  qk +  oilqk +  P\qk 

=  (ai +  A  — +  (1 — A )

=  (1 -  A )  -  (1 -  Oi -  Pi)qk. (3.18)

This completes the proof.

Thus, equations (3.3) and (3.18) give similar results for the probability of 

declaring a group-factor defective.

Theorem  3.4 .3
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The maximum likelihood estimator of p using 7r* in equation (3.18) 

is therefore,

V =  i - JL ]k
1 — Pi — a\

= ! _ [ !  " f t -» ? ]> .
[l - P i - a P

Since 0 < p < 1, it follows that

. 1 — Pi — 7Ti* i
o < i -  ■  <  1 .

I  -  P l ~  O il

Thus,
1 -  pi -  ttI

< 1 ,1 - P i - a i
which implies that 1 — Pi — 7r* < 1 — Pi — ai and hence

(3.19)

Similarly,

which implies that

_  7Tl .

1 -  P i -  TT* 
1 -  P i - a i > 0 ,

(3.20)

7T* > 1 - P i .  (3.21)

Expressions (3.20) and (3.21) can thus be used to determine the probability 

of prevalence p as is the case with expressions (3.7) and (3.8), for known 

values of ai and Pi and since 7r* is a function of r which has a binomial 

distribution.
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Chapter 4

Bayesian Estim ation W ith and 
W ithout Errors in Decision

4.1 Introduction

In this chapter,we consider the Bayesian method of estimation ap

plied to group-screening design with equal prior probability, equal group 

sizes with and without errors in decision. The assumption here is that 

there is prior knowledge of the infection rate which is random with known 

probability distribution. The rest of the chapter is organized as follows. 

The Bayesian estimator without errors is considered in section 4.2. Section

4.3 gives an alternative approach to estimating the parameters of the beta 

distribution, a and (3. The case where a =  1 is discussed as a special case 

in section 4.4. The prior on p*, the probability that a group-factor is de

clared defective is discussed in section 4.5. Section 4.6 gives the comparison 

between the MLE and the Bayesian estimator based on biasedness, mean 

square error and confidence interval. Estimation with errors in decisions is
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considered in section 4.7.

4.2 Estim ation W ithout Errors in D ecisions

Since the probability of a factor being defective is small, we use a family 

of prior distribution appropriate for rare traits. Thus, we use the beta 

distribution since it is a conjugate of the binomial distribution.

If r is the number of defective groups out of g groups formed, then

fir/p) =
o, otherwise.

(4.1)

Thus, the joint distribution of r and p is given by

f { r ,p )  =  f {r/p)-f(p)

(®)[i -  (i -  P)*]r (i -  -  Pr i(4.2)

Let

(4.3)

Then

/ ( r ,p ) =  { B ( a , « } - y - 1( l - p ) * » - ‘r+'’- l [ l - ( l - p ) ‘lr. (4.4)kg—k r+ 0 — 1

With this joint distribution, we determine the marginal probability density 

function as given in the following theorem .
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The marginal probability density f(r)  is given by

T heorem  4.2 .1

P
m  = (r) ( - i y ( - x - 3 f  •a  +  p  \ r  J  j =o \ j  J  a  +  p

Proof

/ J/ w  =  io n i B ^ m - y - ' o - p ^ - ^ - ' i i - o

/„' - p ) ki)

^ j{ B (a , /3 )}  1 p"  '(1  ~ P)
k j + k g - k r + P - l j - I r r ^ y ^

{B(a, (3)} * (£  . \ ( - l ) JB (a ,k j  + k g - k r  + (3))
3=0\JJ

y B (a ,k j  + kg -  kr + 0)
B(a, 0)

P ^kj+kg—kr

o + P

_ ( P  \ k { g - r ) ( g \  y> /r\/ iVi (  0  \ k3

{ a  +  p } W^oW ) K a  +  p ) ‘ (4.5)

The approximation in the above equation can be given the following justi

fication. For large N, Abramowitz and Stegun (1960) showed that

T(N  + fl) ~  N a-b
T ( N  +  b)

(4.6)
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To determine the estimates of the hyperparameters a  and (3 , we differ

entiate expression (4.5) partially with respect to a  and /? . Suppose the 

estimates are a and j3 , then the posterior distribution of p is given as

f{p/r) = f ( r ,p ) / f ( r )

P&- \ 1  -  p ) k9- k r + P - l [ l  _  (1 - p ) k y

E j= o Q (- l) j 5 (a , kj  + kg -  kr +  /?)’

leading to the following result.

Theorem 4.2.2

With expression (4.7), the Bayes estimator of p, based on squared error 

loss is given by

Jo1 p.p&~ \ l  -  p ) * 9 - k r + 0 - i[i _  (! _  p)k]rdp 

E5=o.Q kj + kg -  kr + 0)

fp1 P&( 1 -  p)k(9-r)+0-l[l -  (1  -  p)k]rdp 
E5=oQ ( - 1  k{j + g — r) + ft)

s i = o ( j ) ( - +  1. H i  +  9 ~ r) +  (3) 
E5=0 ( p ( - 1  k(j + g - r ) + P )

_ l ) j  &pkAu+9-r)
(&+P)kB+a~r)

a \k{j+g-r)+1 '

Proof

y-r fr\( 1 \ i B(a+lMj+g-r)+P)
L ) B (a ,0 )

v r (r\ ( 1 V
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y r  i \ 7 a 0 kU+a
^ j = 0 \ j j V '  (Q+̂ Ĵ O'+S-r-)

^ = o 0 ( - l M ( ^ ) ‘O+^ ,+I'

Hence, the proof.

4.3 E stim ation of a and (3

f ( r ) = fu Q { 5 (q>̂ )} V  H1 ~P)Hb

Theorem 4.3.1

The marginal density function of r is given by

f(r)  = kT
a ' pk(g-r)

Kr) (a + P)r+k(9-r) •

Proof

For small p, (1 — p)k ~  1 — kp. Therefore, we have

(g-r)+(3-l(kpy dp
f{r)  -  lpQ 1(l ~ p ) k{9

=  k ' { f \ { B ( a , 0 ) } - '  f p ^ d - p f g - r ) + 0-1dp

= k' ( ) )  [B(a. /?) ( 1B

(4.8)

From the marginal probability density function of r  above,

(ff-r)+/9- l [1 _ ( 1 - p ) k y d p ' (4.9)

For small p, we propose the following theorem.

-  kr
fg\ T (a  +  f 3 ) T ( a  +  r)r(fc(g -  r) + 0 )  

y r )  T a T / 3 T ( a  +  r  +  k ( g  — r )  +  (3)
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5 (4.10)r) (a 4 - (3)r+k(9-r)

a more simplified expression of the marginal density function of r.

The hyperparameters a and (3 can be estimated by maximizing the likeli

hood function leading to a digamma function, or for fixed a , we find (3 by 

differentiating f(r)  partially with respect to (3 and equating to zero. Thus,

Q f(r) _  kr (9r )[(a+ 0)r+kl‘3 -^ ra r k (g - r)0 ^ 9- ^ - 1- a r 0 k^ -^ (r+ k{g -r)) (a+ 0 )r+k^ - r) - 1] _ n  
dp  ~  ^  (a+ p)2^+k^-r)) —  0.

Solving this equation, we get

This shows that (3 can be expressed as a function of number of positive 

pools and the pool size.

4.4 Special case: A prior on p  w ith a  = 1

Here, the prior probability distribution of p is given by,

The joint probability distribution function of r and p, conditional on (3 is 

thus,

f(p) =  (3(1 — p)13 1 : 0  < p < 1 and (3> 1 .

f ( r ,p /0 ) =  (*) [1 -  (1 -  P)T(1 -  p)Ks- r)0( 1 -  p f - 1

(4.12)
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for r =  0,1.... ,g and 0 < p < 1 . The marginal distribution function of r

is therefore,

f ( r /0 )  =  0 /„' [1 -  (1 -  P)T(1 -  (4.13)

This integral is finite, when (3 > 1. Using the change of variable technique 

with u =  (1  — p)k, it follows that p =  1 — u* and that dp = — (1 — 

p) 1~k ^.Thus, equation (4.13) becomes

f ( r /g )  =  0 k - 1r ) £ u r r+t - \ i - u ) rdu

=  m s  + l ) r ( g  -  r  +  
kT(g -  r  +  l ) r ( 9  + f )

for r =  0 , 1 , 9-

0(9 + U
%  + f r 1’

(4.14)

Differentiating equation (4.14) with respect to (3 and

equating to zero gives,

1 / ( 9 + f r +1(g + u  -  0(g + ir U ^ f o  + f y
k {

which is simplified as,
^  { (^+ f  r 1} 2

=  0 ,

(3 =
gk

(4.15)

The posterior distribution is therefore, given by

kT(9 + g + 1)
f ( p / r )  =

k~\r

r ( 9 - r + f ) r ( r  +  l )

(1 -  -  ( 1  - p f ]

— (1 _ p ) ^ - Hf - i [ i  _  (1 - p ) k]\4.16) 
r ( ^ - r  +  f ) T ( r + l )
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for 0 < p < 1. Using the squared error loss function L{p,a) = (p -  a)2, 

the Bayes estimate of p is the mean of the posterior f {p / r ) as given in the 

following theorem by Tebbs and Bilder (2003). The alternative proof of 

this theorem is given as follows.

Theorem 4.4.1

The mean of the posterior distribution f ( p / r ) is given by,

'g - r \ £
p =  1 -

g + 1

Proof

Using change of variable u = (1 — p)k again, we have

ri
P =  J0 P f iP /r iP) dP

_  r1 kT(g  +  f  + l)
-  Jo  ̂ , P'r  ( g - r  + f ) r ( r  +  1)

p ( l - p ) fca'"r)+^ ' 1[ l - ( l - p ) fc]T

kT(g +  f  + 1 ) r1 1C - ( l - u * ) u 9- r+* - \ \ - u ) r du 
Jo k K ’T{g -  r +  f  ) r ( r  +  1) Jo k

rfo  +  l  +  i)
\ L u!> r+* du ~ Jo u9 r+̂ +* X(1 — u)r duj

r(^  — r -h f  ) r ( r  H- !_)

r(ff + 1  +  i ) f r(g  + 1  — r ) r ( r  + 1 ) r(<? + f  + j  -  r ) r ( r  + 1 )

r(p  -  r  +  f)T (r +  1 ) l r(p  + l +  f)

= ! n g  + l  + m g - r  + l  + l)  

n g - r + i n g + i  + i  + i y

rfo  +  f i  +  i)

(4.17)
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which can be simplified using equation (4.6), to the frequentist estimate

p = 1 -
U + J  '

(4.18)

4.5 Prior on p*

In this section, we consider an alternative approach to determining the 

Bayes estimate based on the relationship between p and p*, the probability 

that a group-factor is declared defective. We call the resulting estimate, 

the indirect Bayes estimator, pibys■ The probability of r conditioned on 

p*is given by,

/(r/p*) =  ^ j p " ( l  -  P*)»-r .

The prior probability of p* is given by,

/ ( p*) =  Fr a r

=  { B ( a , / ? ) } - y » - 1( l - p * ) ' S"1- (4.19)

The joint probability distribution function of r  and p* is given by,

/ ( r ,p ‘) = i ® V ( l - p * r ’-{£ l(a ,/3 )} -y“- 1

=  {B(a,/3)}-1r J p * r+“- 1(l -(4.20)

A.
The marginal distribution of r is therefore,

f (r)  = l '  -  p-y-r+e-1 dp-
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=  {#(<*,/?)} 1r ) B ( r  + a , g - r  + (3)

fg \ B{r + a,g - r  + (3)
\r )  B(a,p)

'9 ) (a )r( & \H
i W V  W / T  •

Differentiating with respect to (3 and equating to zero, we get

A <*(g ~ r) 
r

The posterior distribution of p* is given by,

/(p „/r )  =  0 * r( l - P * ) a~r{ g (o ,/3)}"V , ° - 1
^  B(r+a,g-r+P)

P

B(a,0)

^Q+r-1^  _  p*y~r+P-l
B(r + a ,g  — r + (3)

The posterior mean of p* based on squared error loss is given by,

fd p*a+r (i -  p y - r + 0 ~ 1 dp*
p *  =

B(r + a,g — r + (3)

B{r + a + l ,g — r + (3) 
B(r + a, g — r + (3)

r + a 
g + a + /3

This yields the posterior of p through the transformation p* = 1 — ( 

and we compute the Bayes estimator under the square error loss a

r +  a \ * 
g + a  + (3Plbys — 1 I 1
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(4.22)

(4.23)

(4.24) 
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(4.25)



However, we can directly compute this, without computing the posterior 

of p as follows.

Theorem 4.5.1

The posterior mean of p is given by,

Plbys — 1 (1
r + a \  k 

g + a + (3

Proof

Plbys = j ^ [ l - ( l - p f k]f(p*/r)dp*

1 ★ a+r-lQ  _
=  1 -  /   ---- — -̂--- — ------ —— dp*

Jo B{r +  a,g — r +  (3)

Using the substitution u — 1 — p*, we have

Plbys —= 1 -  £  r+ ^+ i-^ i _  u Y ^ - ' d u

(4.26)

=  1 -
B ( g - r  + 0 + \ , r  + a) 

B(r + a, g -  r + (3)

= 1 - r ( g  -  r + /? + ^ ) r (g  + a  + /?) 
r ( f l - r  +  £ ) r ( s  +  a  +  (3 +  i )

-  1 -  i 9 r+,^RYk by eqn(4.6) g + a  + (3

= 1 - 1 -
r + a \ k

g + a + (3J

which is easier to compute and therefore may be preferred in practise.

(4.27)
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4.6 D erivation of M om ents

Given from equation (4.21) that

f (r \ = M  r (Q + /^)r(a +  r)T(g -  r  +  (3) 
J[r) W  raT(3T{g + a + P)

then

9  \  r ( a  +  m < *  +  (r -  l ) ) r ( g  -  (r -  1) + 0) 
n  1 \ r - V  T a r ^ r ( j  +  a  +/?)

Dividing the two equations, we have

f (r)  = ( g - r  + l)(r  -  1 +  a) 
f i r -  1) r { g - r  + (3)

which implies that

r(g -  r  +  0)f{r) = (g -  r +  l)(r  -  1 +  ai)f(r -  1). (4.29)

Summing equation (4.30) over r gives,

Y, r (g  -  r + /3)f{r) = £ ( p - r  +  l ) ( r -  1 + a ) f { r -  1)
r=1 r=1

That is,

(g + 0 ) t  rf (r)  = g a f  f ( r  -  1) +  (g -  a) £ ( r  -  1 ) / ( r  1 -  1 ).
r=l r= 1 r= 1 r=l

Thus,

(0 +  / 5 ) M i  =  +  (5 -  a ) ( M i  -  gf(g)) -  ( M 2 -  g2.f(g)),

which simplifies to

(a +  /3)M 1 =  ga
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Therefore, the first moment

E{r) = Mi = got (4.30)(a + 0)
Multiplying equation (4.30) by r  and summing over r we have,

E r<1{9 ~ r  + 0)f{r) = £ [ ( r  -  1 )  +  l ] [ f o  -  r +  l)][(r -  1 +  a ) / ( r  -  1 ) ] ,
r=l r=l
which implies that

{9 + P) E r2/(r) -  E  r3/(0 = £<*[£ (r -  1 )/(r -  1) + E  /(r -  !)]
r=l r=l r=l r=l

+  ( # - a ) [ £ ( r -  ! ) 2/ ( r -  1 ) +  E ( r -  l ) / ( r -  1)]
r=l r=l

-  E ( r  -  l)3/(  ̂-  1) -  E {r ~  1 )2f ( r  ~ 1).
r= 1 r=l

This can then be expressed as,

(g +  0)M2 -  M3 =  0 <*[Afi -  gf(g) + 1 -  /(#)] +  (n -  a)[M 2 -  fif2 + Mi -  gf{g)}

~  [M3 -  33/(2)] -  [ ^ 2  -  p2/(^)],

which implies that

( a  +  0  +  1)M 2 =  [fifcr +  fi1 — a] M i +  got.

Substituting for Mi from equation (4.31), we have the second moment as
ga(ga + g) +  ga0

Mo --------------------------- .
(<a + 0)(o' +  0 +  1 )

The moment estimators of a  and 0  are thus given as,

(4.31)

a =
M,i)Mt2) - ( g -  l )M l

( i )

(.9 ~  ~  9m (2)

9 ~ M m '0 — a
M,

( i )

(4.32)

same as those derived by Skellan(1948).
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4.7 Com parison of Estim ators

Here, the point estimate and interval estimate are compared and their 

characteristics are discussed.

4.7.1 Point Estimate Characteristics

In this section, we compare the Maximum Likelihood Estimate and the 

Bayesian Estimate through the measures of bias and mean squared error. 

In a Bayesian framework, the choice of the loss function determines the 

specific form of the estimator. However, since we are comparing the two 

estimators on frequentist terms, after the specific form of the estimator is 

identified, the loss function is no longer used. For p fixed, the bias and 

mean squared error of pbys, respectively are given by,

Bias(pbys) = E(pbys -  p)

(4.33)

and

M SE(pbys) = E[(pbys -f>)2]
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=  E I G v  -  p )2] (®) [i -  ( i  -  p ) Y ( i  -  p)K ,~r)

=  (1  p ) 2I T + 1 ) r (* +  f  +  i )

fe°r(i+| + i + 1)r (9 + | + i + 1)

r (g + f + i)r(i + |  + |)  _ 2(1  _ '
[r(i + f  + i  + i ) r (9  + f  + i  + i) J

Q [ l - ( 1 -?)* ]'■ * (!- p ) “ . (4.34)

In particular, for the indirect Bayes estimator pibyS the bias is given by,

Bias(pibyS) =  E{j)jbyS p)

and the mean squared error is given by

M SE(p Ibys) =  E[{pIbys -  p)2],

where

P lb y s — 1
r +  a  \k  

g +  a  +  (3)

For comparing the Bayes estimator corresponding to a Beta(a,/3) prior 

on p, the prior on p* is chosen to be Beta(a>*, (3*), where a* and (3* are 

obtained by equating the first two moments. That is,

F
a* +  {3*

and

F ( F  +1)
(a* + (3* + l)(a* + /?*)

=  B :

(4.35)

(4 .36)
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where

r(tt +  {3)T((3 +  k) 
T0T (a + (3 +  k)

and

r{a + P)r{(3 + 2k) 
r/3T{a + /3 + 2 k)

Solving for a * and (3* from equations (4.35) and (4.36), we have

. .  (i - a )(b - A )
A 2 -  B

and

__ A(B  -  A)
P A2 — B

For the simple case, where a  — 1, we find that

r ( i  + p ) r ( 0  + k) 0  

r p r { i  + (3 + k) p + k

T{l+P)T{P + 2k) _  (3
r p r ( l +  p + 2 k) ~  (3 + 2k'

Thus,

and

* _  k(3[((3 +  k) — {(3 +  2k)] _
a  ~  m e + 2 fe) -  o s + ky] ~

= /32p  +  fc) -  Q3 +  2k)] = P 
~ (3[f3((3 + 2k) - { (3  + k)2] k'
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Example (4.1):

Liu et al(1997) reported results on 1875 blood donors screened for anti

HCV at the Blood Transfusion Service in China. The 1875 serum samples 

were tested individually (k = 1 ) to examine effectiveness of pooling. With 

a group size of k =  5 and g = 375, they got r =  37. Using equation (4.15),

P =
1875
37 50.66.

Thus, using equation (4.18) the posterior mean is given by,

P 1 - 375 — 37\ s
376

=  1 -  0.97891 

=  0.021083,

which compares favorably with (3 =  48.13 and p =  0.020557, given by 

Tebbs and Bilder(2003). For the indirect Bayes estimate equation (4.27), 

we get

37+ 1
3 7 5  +  1  +  5+66P lb y s  — 1 I 1

= 1 -  0.979494 

= 0.020506.

Comparison can also be made in terms of relative bias and relative efficiency 

which are respectively defined as,

E(P~
P

and the relative efficiency to be

RE(p) MSE(pk)  
MSE(p)  ’
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where pk is the estimate for A; > 1 . The tables below give a summary of 
the relative bias and the relative efficiency for various values of p and k 
for g = 10, based on the maximum likelihood, the direct Bayes and the 
indirect Bayes estimators.



T ab le  6. Relative Bias for selected values of p , k  and g  =  10.

g—10

p k Pmle Pbys (a*,/?*) Plbys

0.25

1 0.00000

(1,3)

0.00000 (1,3.00) 0.00000

5 0.21661 0.09552 (1,0.60) 0.01252

10 1.57583 0.29291 (1,0.30) 0.00192

15 2.56691 0.37393 (1,0.20) -0.10853

20 2.88854 0.35010 (1,0.15) -0.23565

0.10

1 0.00000

(1,9)

0.00000 (1,9.00) 0.00000

5 0.05731 0.03843 (1,1.80) 0.00311

10 0.19010 0.08031 (1,0.90) 0.00494

15 0.90474 0.14572 (1,0.60) 0.01453

20 2.39111 0.23484 (1,0.45) 0.01712

0.05

1 0.00000

(1,19)

0.00000 (1,19.0) 0.00000

5 0.04851 0.02363 (1,3.80) -0.00740

10 0.06713 0.04351 (1,1.90) -0.00431

15 0.11444 0.06241 (1,1.27) -0.00053

20 0.29962 0.08494 (1,0.95) -0.00039

0.01

1 0.00000

(1,99)

0.00000 (1,99.0) 0.00000

5 0.04360 0.00452 (1,19.8) -0.00870

10 0.05082 0.01180 (1,9.90) -0.01101

15 0.05451 0.01821 (1,6.60) -0.01103

A. 20 0.05734 0.02374 (1,4.95) -0.01033
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T a b le  7. Relative Efficiency for selected values of p ,  k  and g  =  10.

g=10

p k Pmle (<*,/?) Pbys (a*,/?*) p,bys

0.25

1 1.00000
(1,3)

1.96000 (1,3.00) 1.96000

5 1.03260 4.69672 (1,0.60) 7.04301

10 0.99481 19.03341 (1,0.30) 80.62304

15 0.99862 35.90983 (1,0.20) 269.94501

20 0.99971 59.85294 (1,0.15) 147.47321

0.1

1 1.00000
(1,9)

4.00000 (1,9.00) 4.00000

5 1.17922 1.70664 (1,1.80) 1.91413

10 1.04641 7.82342 (1,0.90) 10.69631

15 1.00283 35.66633 (1,0.60) 69.54100

20 0.99924 71.11520 (1,0.45) 210.27562

0.05

1 1.00000

(1,19)

9.00000 (1,19.0) 9.00000

5 1.12490 2.19461 (1,3.80) 2.35772

10 1.19852 1.89812 (1,1.90) 2.17101

15 1.07565 5.68040 (1,1.27) 7.04622

20 1.01584 24.86763 (1,0.95) 34.74474

0.01

1 1.00000

(1,99)

121.00000 (1,99.0) 121.00000

5 1.09484 9.85463 (1,19.8) 10.12575

10 1.11742 4.47010 (1,9.90) 4.69181

15 1.13311 3.14221 (1,6.60) 3.35011

,20 1.14780 2.57100 (1,4.95) 2.77764

We note from the tables, that the biases and the MSE’s of the Bayes

82



estimators are smaller than that of MLE, especially for low prevalence 

rate. The indirect Bayes estimator in general performs very well for small 

k and large g, in the sense of having even smaller bias and MSE. This 

mainly occurs when the experimenter is forced to use smaller group sizes, 

perhaps due to biological considerations involved in test assays.

4.7.2 Asym ptotic Distribution and Interval Estimation

In practise, the the population size and the number of groups are fairly 

large, so that large sample estimates can be used for inference purposes. 

The asymptotic distributions of the MLE and that of the Bayesian estima

tor follow from the general result which obeys the Mann-Wald theorem,

given in Rao(1973). For the function h if
p' +  b\ a

h(P') =  1 - 1 l +  c
then

a
p '( l - p ')  V [l + c

1 - p' +  b 
l + c

a— 1

(4.37)

(4.38)

For the Bayes estimator h(p') =  p, with b =  - , c =  and a = £. Thus,

' - i -  p*)
var(p) f 9 x gp* + a '

l k(g + a + (3) g + a + P. 9
(4.39)

From the example (4.1) above, p = 0.0224 and p = 0.021083, giving that

var(p) =
0.2

1.13101
1 -

0.0224 + 0.00267-1-0.8', 2

1.13101
!0.0224(0.9776) 

375
= 1.89270 x 10~6.
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The standard error of p is therefore 0.0026965, resulting in a 95% confidence 

interval of (0.0183865,0.023779). For the maximum likelihood estimator, 

the confidence interval is given by,

Prnie i  1̂ -2
\

V&l(pmle)

where var(pm/e) is the asymptotic variance given by varpmie — &-2[l — (1  — 

p)k]( 1 — p)2~k and 2 i_ | denotes the 1 — |  quantile of the standard normal 

distribution. Thus, from Example (4.1) above, we get

var(pm/e) =  5—2[1 -  (1 -  0.020557)5](1 -  0.020557)2"5

[1 -  (0.979443)5](0.979443) - 3  

25
=  0.004199.

The standard error is (0.004199/375)0 5 =  0.0033466 giving a 95% confi

dence of(0.01905,0.02575). Thus the indirect Bayesian estimate is more 

precise than the MLE, since for the same level of confidence it gives a 

narrower interval.

4.8 Estim ation W ith  Errors in D ecisions

Estimates based on screening tests can be severely biased, unless adjusted 

for the sensitivity and specificity of the screening test. One such estimator 

is the MLE, which can produce negative confidence endpoints. In this 

section, an attempt is made in studying a Bayesian estimate which always 

lies between zero and one.
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4.8.1 Derivation of a Bayesian Estimator

If r is the number of defective groups out of g groups and ir\ is the proba

bility that a group-factor is declared defective, then

f ( r M )  = (® W (!  -  < ) ’-'■ (4-40)

Using the conjugate prior for the binomial distribution, the prior distribu

tion of is given by,

t  ( r(tt +  b) * a — 1 / \ 6— 1 (/\

JUT) =  ~ Y a fb ~  1 • (4-41)
The joint distribution of r and 7r* is given by,

f i r , *  D =
r9 ’
W,

_*\g—r T  b) *o— l/i _*\i>— 1
1̂ (1 ^1J r . r t  7Tl (1-TTl)ra r^

r  j  { £ ( a ,  6 ) } _ 1 7rJ“ + r - 1( l  -  < ) 5 " r+ b _ 1 ,

where

5(a, 6 )
T a rt

r ( a  +  6 ) ‘

The marginal probability density function of r is given by,

f ( r)  = l '  {B(a,6)}-V j“+ '-1(1 -  r,*. (4.42)

Using the sensitivity-specificity approach, 7r* in the above equation is re

placed by 77 — (77 + 9 — 1 )qk, to give

m  =  l ' h { B ( a , b ) } - 1[ r i - ( r 1 + e - l ) q l‘r r- ' [ l - ^ - ( n  + e

k(r] +  9 -*1)(1 -  p)k~1dp,

which can be solved using numerical integration.

—r+b—1
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4.8.2 Alternative Approach

In group screening designs, the probability that a group-factor is defective 

is given by,

P* = VP+ (i -  0)(i - p ), 

which can be simplified to

P* =  (77 + 0  -  l ) p + 1 — 0,

to give

0 + p* 1
T) + 9 — 1 ’

(4.43)

With g groups the number of positive groups r  follow a binomial distribu

tion:

f(r/p') = (dp*r(1 - p * r r.

The expression p*r( 1 — p*)g~r is proportional to the likelihood function 

L(p). Choosing the uniform distribution as the prior distribution of p, the

posterior mean and Bayesian estimator pbys of p is,

- _  ./(? pL(p)dp
P Jo L (p)dP ’

But

Thus,

p = 9 +  p* -  1 
77 +  0 - 1

dp =
dp*

77 +  0 - 1 ’

(4.44)
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Therefore,

P b y s
f f -

0+p*-l *r(-\   *\
9 r i + O - l P  V-*- P  )

I l - e P * r { l  - p * ) 9 ~ r

a - r  dp
T/+0 1

dp
7 7 + 0 - 1

1 f le (0 + p * - l )p * r( l - p * ) g- rdp 
77 +  0 - 1  /J_0 p*r (1 -  p* )9~rdp

1
77 +  0 —1 ( 0 - 1 )  + JlsP*r+1(i-p*)9~rd r

/i%p*r(l -  p * ) 9~ rdp* .

d+  0 — 1
77 +  0 —1’ (4.45)

where

d _ J l e p*r + l ( l - p * ) a- rdp*

f i _ d p *r(1 -  p * ) g~r dp*

Example (4.2):

A sample survey consisted of the screening of chest radiographs of 96 groups 

of Black women for the presence of pulmonary hypertension (Lew and Levy 

(1989)). An enlarged artery was the screen for pulmonary hypertension; 

8 groups out of 96 (p* = 0.08333) were positive for enlargement. Assume 

that the sensitivity and specificity of the procedure are 0.89 and 0.74 re

spectively.

The Bayesian estimate from eqn (4.38)is,

d +  0.74 -  1 
0.89 + 0.74 -  1

where

Jq.26 P*9(l — p * ) 88dp*

/o°269P*8(1 -  P*)88dp* ’
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0.2706573363.

The estimate is therefore,

0.27 + 0.74 -  1 
0.89 + 0.74 -  1

0.0159.

The maximum likelihood estimate of p* from equation (4.36) is,

(0.0833 + 0 .7 4 -  1)
P (0.89 + 0.74 -  1)

Thus, the Bayesian estimate is non-negative, whereas the MLE is negative. 

In this case, the MLE is set to zero.

4.8.3 Approximation of the Variance

Since both the Bayesian and the MLE are consistent estimators, asymptot

ically there is no significant difference in their variances. Thus, the variance 

of the Bayesian estimate can be approximated by substituting p*bys in the 

estimated variance for MLE,

var iplya) \g(r) + 0 -  l )2]'

In the numerical Example (4.2) above, the variance of pbys is

var (Ptys)
0.0159(1 -  0.0159) 

[96(0.89 + 0.74 - l ) 2]
0.00041066,

and its estimated standard error is SE  =  \/0 .00041066 = 0.02026.
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Chapter 5

Group Screening D esign W ith Equal 
Probabilities but W ith Unequal 
Group Sizes

5.1 Introduction

So far we have considered only cases, where the group size is assumed 

constant throughout the experiment. In this chapter, we consider estimat

ing the prevalence rate in populations with variable group sizes under both 

the condition of no errors and when errors are taken into consideration, a 

common situation in practise. We shall assume that, each member of the 

population is equally likely to be sampled, and that positive and nega

tive members are on average homogeneously distributed across pools. In 

section 5.2, we consider estimation without errors in decision and use the 

Maximum Likelihood Estimation Method and Newton-Raphson method 

of iteration to determine successive estimates. Models studied by various 

researchers are considered as special cases in section 5.3. Estimation with
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errors in decision is briefly discussed in section 5.4.

5.2 Estim ation w ithout Errors in D ecision

5.2.1 Notations and M ethod

Let ki be the number of organisms in a pool, r* be the number of positive 

pools of size ki and gi be the number of pools each of size ki. The number 

of positive pools is binomial with probability distribution,

The mean of r* is E(ri) =  <̂ (1 — qki) and the variance is var(n) =  ^(1 —

where the product is over all the different group sizes used. Taking loga

rithms on both sides, we have

qki)qki, where 1 — qki is the probability that a pool of size ki is positive. 

Conditional on the set of group sizes, the likelihood function is,

(5.1)

Differentiating with respect to q and equating to zero gives,

(5.2)

which yields
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Therefore,

implying that,

and

Hence,

'  kfTj^_ 1 =  ’ kg,
h  1 -  qk< h  q h  q '

£ ]c r £ £
E / J  k. +  E M ; =  E M ;
i=l Q 1 i=l i — 1

E[M»(
2=1

]ki +  1 — qki
r F »  =  » « < •

£ b.r Cc—> **/7. * 7

2=1
E -  EM,i = l 1 -  9 '

Let the population size /  be given by,

/  =  E M ;-
2=1

Then, by equation (5.3)

/ = E hri
=i 1 -

and thus,

= E h r  z
= il -  (1 ~ p ) fc*

£ Jc ■r ■
/ - E - ^ V  =  o.

A.
Suppose we set the equation as,

 ̂ k r -
h(qt) = /  -  E *

=i 1 ~  ’

91

(5.3)

(5.4)
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Then by differentiating the equation, we have 

ti(4t) = j~ h{q t) = Y ,k M  1 -
aQt i=\

=  E
L  k?rrqtk'~l

Using Newton-Raphson method of iteration, we have

H it)
Qt+1 =  9i +

fc'(ft)

=  qt +
/ - A ,

Ao

where

and

 ̂ k r
Ai — ------ r1 -  qtk*Z=1

(5.5)

, ^  k fr iq f1 1
2 _ S ( i - ® * 1-)2'

The initial value in this case is the minimum infection rate (MIR), given 

by dividing total number of positive pools by total number of specimens 

used in all the pools and is given by,

9o = i -  h rj}-
i = i  J

An alternative iterative method is to solve formula (5.2) for q. That is,

y  Krlqk' _  * ki(gi -  n)
h  1 -  qki h  q

giving

q  =
Hi=iki(9i -  n)

I k,riqki 1 
^i=1 1 l->.

(5 .6)
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Therefore,

__ ^i=lki(9i ri)Qt+1 \
^3

(5.7)

where

a3 =  e { ^ | ,
*=i l 1 — Qt >

for t= 0 ,l,2 ,........

In order to circumvent the iteration involved in equation(5.4), let ki 

be replaced with k+ , which is the average size of positive pools. That is,

Ef=i Kri
k +  —

£;=l ri

Then equation (5.4) becomes,

which gives,

£ ]c -r ■
/ -  E  = °>i=11 -  r +

/  =
1 -  Qk+ i=l

E  k i r i

l
■/+,1 — qk+

where

/+ = E  k i r i ,
i=1

is the total number of organisms in all positive pools. 

Thus,' a.

« =  [ i -  j ] * - (5.8)
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Equation (5.6)therefore becomes,

Q = [ / - / ■ f
l E f =1 h n

1 -  qk

Thus, based on this result, we have

«** = -  qk*),
J+

which implies that

{i + LzJ±}  ̂= {LzI±)

and hence,

9 = {  I "  j } * -  (5'9)

5.2.2 Poisson Model Approximation to Binomial Model

Suppose p is very small and the group size is large, then letting p = y- 

formula (5.4)becomes,

/  =
X  h n

— (1 ~P )ki

i  -  ( i  -
JL)ki
*+'

t

E
kjTj

1 -  e~*

1 -
1 *

r , . (5.10)
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That is,

f  ~ 1 _  e-pk+f+•

This expression can then be given as,

ln ^ ~ T ^  = ~pk+' ’

leading to

p = - - t l n [ l - h ) .  (5.12)

5.2.3 A sym pto tic Variance of p

From the binomial distribution of r*, in equation (5.1), variance of rx is,

var(n) = Q i{ l-  qkl)qkl.

Asymptotically, for large gi, var(p) can be estimated by var(g), as given in 

the following theorem.

T heorem  5.2.1

For small p, the asymptotic variance of q is given by

Vvar ( ? )
Ei=r hgiqki~2 '

P ro o f

Based on Cramer-Rao method, we have

lim var(p) =#*—+00 vx 7
-E [

1
d2 In L '
~~a
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But,
,fc;—1

and

Now,

d \n L  _  {g i - n  nqn
dq k l[ q 1 ~qk'1

Pp In L i 3 o — v l 3 n ^
dq2 i=1 dq q l=1 dq 1 -  qk̂

d r qki 1 (1 — qki){ki — 1 )qki 2Ti kiqki 1qki 1ri
id = 7:1 ^dq 1 — qki (1 — qki)2 (1 — qki)2

giving,

d2 In L,
E[~ W ]

k i r i ( l - q ki) kigi {kt -  l){ \ -  qki)2qki 2klgl k?gi( l - q

2„ hi-2- K g t f ^  -

= - k j 2giqki~2 
1 — qki

r
kl2glq2k'~2 

1 — qki

(1 — qki)2

Thus,

92 ln L t k , 2g,qk<-2
dq2 f t  l - ? * '  ’

implying that,

( i - s

var(g) =
2 '

E
i= i  i  -  qki

For small p, 1 — qki =  1 — (1 — p)ki «  fcjp. 

Therefore,
e u.r . i r .

1 = 1  K l P  1 =  1 P

f 2̂
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leading to,

where

r>̂i i
' ~ t

E k 29 iq k i~2

k ipi=i

_____i >
E  h g i q k' 2

Hence the proof.

e
E
i=i

n
r

5.3 Special Cases

In this section, models considered by some researchers such as Chi- 

ang and Reeves (1962), Bhattacharya et al (1979) and Griffiths (1972)are 

treated as special cases of the general model presented above.

5.3.1 Chiang-Reeves model

Chiang and Reeves(1962) used two groups with k\ =  k and k2 — 2k. 

Thus, in this case

var(q) 1
'  92(2kfq2t- 2

1 — qk 1 — q2k 1

1 -  q2k
" k2giqk~2(l + qk) +  4k2g2q2k~2
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£ W W  +  9*) +  W ]
l^ S L

2k

I n i
2k

k q  [gi +  (^i + Ag2)qk]
(5.13)

5.3.2 B h a ttach ary a  m odel

In this case,  ̂=  1 so that

implying that,

and hence,

Therefore,

, k\ — ri
f ---- ------ - =  0J 1 K

/  =

l — qkl 

k\ -  T\
l — qkl

fq kl = /  -n&i-

9 =  [ ! ---- 7” ]

■ 11- 7 7 k 1"

- 11- k 1"-
When the suffix 1 is removed, we have

and hence,

r, i
4 =  [ i - - ] '

var(g) =
gk2qk 2 
1 — qk 
l - q k 

gk2qk~2
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5.3.3 Griffiths A pproach

When gi = 1 V i, then

L = h  H a - g W ) * - ’'*.
i=i \ rv

In this case, r* takes the value 1 or 0. For =  1, let i e M  and for r* 

let i £ M.

Therefore,

l  = n  (i -«**) n
i € M  i$M

implying that,

and

In L = E  ln(l ~ Qk i) + E  InQk'
i£M

| - l  „ £ =
dq i  -  qk■ ^  q

Equating to zero, we have

E  k i
a = ___m _____

kjqki~l ' 
ieM[i - q k•

giving

E  h

<7*+l — -----^~
E  [hqthi—1 for t =  0,1, 2,

kl -i&M 1 — qt 
The initial valuq used was

qo =
E 9 i

99



r /  - ! > * ) ,
i

f
Number of groups not infected] **

Total number of groups 

where k* is the optimal value of group size.

5.4 Estim ation W ith  Errors in D ecision

When test error is taken into consideration, the likelihood function is given

b y ,

Differentiating equation(5.15) with respect to q and equating to zero, we 

have

(5.14)

where

K i  = rl - ( v  + 0 -  1) ^ -
Therefore

(5.15)

i=1 LTTii 1 -  TTli j dq
_  (Qj -  r») j =

which gives,

(5.16)

But

— n*u =  — k i ( r j  +  6 — 1 )qki l .

1 0 0



Thus, equation(5.16) becomes

rikq ki — l

77 -  (7 7  +  0  -  % ki
i

= E ri=l i
ki(9i ~ ri)qklki — 1

77 +  (7 7  +  6 -  1 ) < 7 fci — 1

l y .  -  n)qk' 1
q h \ 1  - 7 7  +  (77 +  0 -

Hence,

where

and

Q = Afi
/V

X  ki(gi — Ti)qki 1 
/R =  Z.

i = i  1 —  77 +  (7 7  +  0 —  1 ) ^ 0 *  1

v  2 =  E
1  r,k,qk‘ 1
=177 — (77 +  0 -  1 ) ^ ’

where g0 is the initial value. The Newton-Raphson iterative method can 

then be used to determine successive estimates of the infection rate.



Chapter 6

Summary and Conclusions

6.1 Sum m ary

Our objective in this thesis was to study Estimation Problem in 

Group Screening Designs with emphasis on the methods of Maximum Like

lihood and Bayesian Estimation, under various conditions.

In chapter 1, we reviewed the concept of group screening designs, 

discussed the two areas of concern; identification of individuals called clas

sification problem and estimating proportions called estimation problem. 

Terminologies and notations that have been used by various researchers and 

are specific to particular areas of application were also discussed. Various 

areas of application of group screening designs, such as public heath, phy

topathology, epidemiology and industrial studies were discussed. Based on 

the areas of application and the literature review, a theoretical framework 

for studying estimation in group screening designs has been developed. It 

is this framework that formed the basis of our study in the thesis.

In chapter 2, we reviewed group screening without errors in decision
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using the maximum likelihood estimation method based on Thompson^ 

(1962) work. The MLE estimate of probability of defective factor was cal

culated and its properties such as biasedness, BAN, MSE and asymptotic 

efficiency discussed. For small group sizes and large values of p and k, 

it was observed that the bias is considerably large, while for small values 

of p and k, there was relatively low bias. Determination of the optimal 

group size using MSE was considered and it was observed that the MSE 

decreases to a minimum, as the optimal value of of k is attained, then 

increases. After the minimum MSE is reached, the rate of increase in MSE 

with k decreases as the number of group-factors increases. Also discussed 

was the choice of the most appropriate model based on the cost considera

tion in terms of the model with the least MSE. ft was shown that the best 

design for a given experiment depends on p, tolerable MSE, the sampling 

cost of an individual sample and the cost of performing one test.

Maximum likelihood estimation with errors in decisions was discussed 

in chapter 3. Estimation of prevalence is challenging especially when the 

prevalence is small. One reason is that the presence of measurement errors 

resulting from the limited precision of tests makes estimation, using tra

ditional methods, impossible in some screening situations. Measurement 

error is real, hence ignoring it leads to severe bias, and inference about the 

prevalence becomes unsatisfactory. Indeed in a low prevalence situation 

the expected number of false positives is very high, often even higher than
A.

the number of true positive^. The second reason is that in the low preva

lence areas large sample is needed in order to obtain non-zero estimate.
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This is usually a very costly and often unrealistic solution. This chapter 

considered advantages and disadvantages of group testing as alternative 

solution to this problem. We showed that, by group testing we not only 

achieve a cost saving, but also an increase in the estimation accuracy. We 

also discussed the statistical properties of the estimator such as biasedness 

and asymptotic properties.

In Chapter 4, we discussed a Bayesian procedure to estimate the 

prevalence rate with equal group sizes, equal probability with and without 

errors in decisions, using a beta-type prior distribution and a squared- 

error loss function. Two choices of prior were considered; (i) the prior 

on p, the population proportion and (ii) the prior on p* =  1 — (1 — p)k, 

the group prevalence proportion. The performance of the Bayes estima

tor was evaluated in terms of bias and relative efficiency in comparison 

to the Maximum Likelihood Estimator (MLE). It was observed that the

Bayes estimator outperforms the MLE, for small group sizes and small p.
/

In addition, we also discussed the asymptotic property of the Bayes es

timator and the interval estimation, using the frequentist approach. The 

methods were illustrated using group-testing data from Liu et al(1997),a 

prospective hepatitis C virus study conducted in China. In extending the 

the discussion to Bayesian estimation with errors in decisions, we observed 

that estimates of prevalence based on screening tests can be severely biased 

unless adjusted for the sensitivity and specificity of the screening test. One
A

such estimate is the MLE, w.hich can yield an extreme estimate of zero or 

one that has undesirable characteristic, such as a standard error of zero.
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We then showed that, a Bayesian estimator always falls between zero and 

one.

In chapter 5, we reviewed estimation in a population of organisms 

when unequal sample pools are analyzed, a common situation in practice, 

but not one which can be dealt with by existing methodology. An itera

tive method of determining successive estimates of the infection rate was 

discussed. An example was given of estimating the infection rate of yellow 

fever virus in a mosquito population. The minimum infection rate (MIR), 

which is the ratio of positive pools to the total number of pools was used to 

estimate the true infection rate (TIR) by considering the MIR as the initial 

estimate for the iterative procedure of the maximum likelihood method. In 

order to circumvent the iterations involved, an alternative estimator which 

can easily be evaluated and upgraded, using the average size of positive 

pools was suggested. A brief introduction of estimation with errors was 

given, and this can be considered for further research.

Chapter 6, gives the summary of what has been done chapter by 

chapter in section 6.1, while section 6.2 gives the conclusions from the 

study. Suggestions for further research is discussed in section 6.3.

6.2 Conclusion

Group testing is in general economical in the light of reduced average 

number of units to be tested or samples to be screened, since a group is 

declared defective as soon as an item is found to be defective. Based on a 

given total cost per unit to be tested, a group size k may be determined in
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advance and fixed. Next, based on the prior knowledge of the population 

proportion, the group size may be compared to the optimal value of the 

MLE or that for the Bayes estimator. The direct Bayes method offers a 

good alternative to the experimenter, as he may have some general ideas 

about population proportion which can be used to obtain the value of the 

optimum k, which can be updated in subsequent testing and estimation. 

Once k is known, a prior on p may be transformed into a prior on p* and 

then the alternative Bayes estimator or the indirect Bayes estimator may 

be used. This estimator is simple to calculate and hence, may be attractive 

to users. Choice of k may be guided by physical considerations or be chosen 

by minimizing MSE or be determined from the optimal k for the MLE. For 

practical use, a fixed k is desirable unless variability of the prior is very 

high.

6.3 R ecom m endation for Further Research

Based on the work undertaken in this thesis, the following work for 

further research is recommended.

(a) Studying Estimation problem under the condition of unequal group 

sizes but with errors in decision.

(b) Applying both the Maximum Likelihood and the Bayesian methods to 

the case of unequal probabilities .

(c) Studying the above work using the least squares regression method.

(d) Using the method of moments to study Estimation problem especially
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the case of unequal group sizes, unequal probability and with errors in de

cision.

(e) Applying Bayesian approach to classification problem could be of in

terest.
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