ISOLATION AND CHARACTERIZATION OF LIGNOCELLULOSE BIODEGRADING ENZYMES FROM MARINE WOODBORERS:

ļ

ļ

POTENTIAL IN BIOETHANOL PRODUCTION

BOSIRE CARREN MORAA

M.Sc (Applied Physiology & Cellular Biology)

University of Nairobi

A Thesis Submitted in Fulfilment of the Requirements for the Degree of Doctor of

Philosophy in Biotechnology

CENTRE FOR BIOTECHNOLOGY & BIOINFORMATICS

UNIVERSITY OF NAIROBI

NOVEMBER 2013

DECLARA TION

This thesis is my original work and has not been presented for a degree in any other

university.

NOSMS CARREN MORAA

Signature

~"-!:.~_'.v!7.:..... Date _ :2-_:::r_;_/l__,....:/_'2-0_'_3_

This thesis has been submitted for examination with our approval as the supervisors

I. PROF. LAILA ABUBAKAR Department of Biochemistry

University of Nairobi

Signature

Date ,27/11 /tl...D 13

2. PROF .. JAMES OCIL-'\NDA Centre tor Biotechnology & Bioinformatics

University of Nairobi

Signature

3. DR. JARED BOSIRE

Kenya Marine & Fisheries Research Institute

Signature \sim

Date !J-2[[([0]S1~

ACKNOWLEDGEMENTS

ļ

This PhD study was made possible by the financial support from my employer, the Technical University of Mombasa, to whom I am deeply grateful. I also thank my employer for the study leave granted to me, which enabled me to complete my research work in good time. I am very grateful to the National Council for Science & Technology, Ministry of Education, for a research grant (NCST/5/003/CALL2/199) that was a stepping-stone to my PhD research.

İ

I sincerely appreciate the support and guidance of my supervisors, Prof. Laila Abubakar, Prof. James Ochanda and Dr. Jared Bosire in carrying out the research work that has led to the success of this thesis. I also value with gratitute the support extended to me by Dr. Isabella Ochola and Dr. George Obiero.

Many thanks to the authorities of the Kenya Marine & Fisheries Research Institute, Mombasa, the Department of Biochemistry and the Centre for Biotechnology & Bioinformatics (CEBIB), University of Nairobi, for providing facilities for the undertaken research work.

I would like to extend my sincere gratitute to the technical assitance accorded to me by the Kenya Marine & Fisheries Research Institute in sampling, without which, this work would not have been a success. My sincere appreciation also to the technical assistance I received from the Department of Biochemistry and CEBIB, University of Nairobi. I am particularly grateful to Ms. Ann Owiti, Mr. Edwin Rono and Mr. Faustus Mmbaya for extending a helping hand.

And finally, special thanks to my family for being there for me throughout the period of study and indeed always. God bless you all.

This thesis is dedicated to my dear husband Mr.

Kennedy Okeri, son Ellis and daughter Darlene.

!

ļ

iv

TABLE OF CONTENTS

ļ

ISOLATION	AND CHARACTERIZATION OF LIGNOCELLULOSE BIODEGRAD	ING
ENZYMES FR	OM MARINE WOODBORERS: POTENTIAL IN BIOETHANOL	
PRODUCTIO	N	<u> </u>
DECLARATIO	DN	II
ACKNOWLE	DGEMENTS	III
DEDICATION	Ν	IV
LIST OF TAB	LES	IX
LIST OF FIGU	JRES	X
LIST OF ABB	REVIATIONS AND SYMBOLS	XII
ABSTRACT		XIV
CHAPTER O	NE	1
1.0 GENER	AL INTRODUCTION AND LITERATURE REVIEW	1
1.1 GENERA	l Introduction	1
1.1.1 RATIO	NALE	4
1.1.2 Нурот	HESIS	6
1.1.3 OBJEC	FIVES	6
1.2 LITERAT	fure Review	6
1.2.1 CLASS	BIVALVIA	6
1.2.2 Order	r Isopoda	9
1.2.3 LIGNO	CELLULOSE	11
1.2.4 LIGNO	CELLULOLYTIC ENZYMES	20
1.2.5 BIOETH	HANOL PRODUCTION	28
1.2.6 ISOLAT	ION, PURIFICATION AND CHARACTERIZATION OF LIGNOCELLULOLYTIC	
ENZYMES		35
1.3. Resear	CH DESIGN AND THESIS OUTLINE	38
CHAPTER TV	NO	41
<u>2.0. MATER</u>	RIALS AND METHODS	41
2.1. Study	Area	41
2.1.2. DESCH	RIPTION OF STUDY SITES	41
2.2. Collec	TION AND PRESERVATION OF MARINE WOODBORERS	47
	ECTION STRATEGY	47
	IOLOGICAL AND MOLECULAR IDENTIFICATION OF WOODBORERS	49
	HOLOGICAL IDENTIFICATION OF WOODBORERS	49
2.3.2. MOLE	CULAR IDENTIFICATION OF WOODBORERS	49

٠		

!	
2.4. Species Specificity Analysis	51
2.5. CHEMICALS (ENZYMES, SUBSTRATES, BUFFERS AND REAGENTS)	51
2.6. EXTRACTION AND PREPARATION OF CRUDE GUT EXTRACTS	52
2.7 DETERMINATION OF LIGNOCELLULOLYTIC ACTIVITIES OF THE EXTRACT	52
2.7.1. LIGNINOLYTIC ACTIVITY	52
2.7.2. Cellulolytic Activity	54
2.7.3. Hemicellulolytic Activity	55
2.8. Culturing of Microorganisms from the Gut of the Woodborers	55
2.9. MORPHOLOGICAL AND MOLECULAR IDENTIFICATION OF BACTERIA	56
2.9.1. DNA PREPARATION AND 16S RRNA FRAGMENT ANALYSIS	56
2.9.2. BACTERIAL DNA SEQUENCE ANALYSIS	57
2.10. MORPHOLOGICAL AND MOLECULAR IDENTIFICATION OF FUNGI	57
2.10.1. DNA PREPARATION AND INTERNAL TRANSCRIBED SPACER (ITS) FRAGMENT	
ANALYSIS 58	
2.10.2. FUNGAL DNA SEQUENCE ANALYSIS	59
2.11. Phylogenetic Analysis	59
2.12. INDUCTION OF WOODBORERS' GUT MICROBIOTA TO PRODUCE ENZYMES	59
2.13. DICYATHIFER MANNII MICROBIAL COMMUNITY	61
2.14. BIOETHANOL PRODUCTION	61
2.15. ENZYME PURIFICATION AND CHARACTERIZATION	62
2.15.1. Purification of Enzyme	62
2.15.2. DETERMINATION OF PROTEIN CONCENTRATION	63
2.15.3. EFFECT OF PH AND TEMPERATURE ON XYLANASE ACTIVITY	63
2.15.4. MOLECULAR WEIGHT DETERMINATION	63
2.15.5. Zymogram Analysis	64
2.15.6. SUBSTRATE CONCENTRATION AND SUITABILITY	64
2.15.7. KINETIC STUDIES	64
2.16. DATA ANALYSIS	65
CHAPTER THREE	<u>66</u>
3.0 MANGROVE WOODBORERS: A CASE STUDY OF THE KENYAN COAST. IS	
THERE SPECIES PREFERENCE?	<u>66</u>
3.1. INTRODUCTION	66
3.2. MANGROVE WOODBORERS	67
3.2.1. MORPHOLOGICAL AND MOLECULAR IDENTIFICATION OF MARINE WOODBORERS	67
3.2.2. Species Host Specificity	72
3.3. DISCUSSION AND CONCLUSIONS	75
CHAPTER FOUR	<u>78</u>
4.0 LIGNOCELLULOLYTIC ACTIVITIES OF CRUDE GUT EXTRACTS OF	
MARINE WOODBORERS DICYATHIFER MANNII AND SPHAEROMA	
TEREBRANS	78
4.1. INTRODUCTION	78
4.2. DETERMINATION OF LIGNOCELLULOLYTIC ACTIVITIES OF CRUDE GUT EXTRACTS	78

!	vii
!	
4.3. DISCUSSION AND CONCLUSIONS	82
CHAPTER FIVE	84
5.0 CULTURABLE GUT MICROBIOTA OF MARINE WOOD BORING INVERTEBRATES DICYATHIFER MANNII. SPHAEROMA TEREBRANS AND	
<u>CIROLANA SP.</u>	84

5.1.	INTRODUCTION	84
5.2.	MARINE WOODBORERS CULTURABLE GUT MICROBIOTA	84
5.2.1	MORPHOLOGICAL AND MOLECULAR IDENTIFICATION OF BACTERIA	84
5.2.2	MORPHOLOGICAL AND MOLECULAR IDENTIFICATION OF FUNGI	86
5.3.	DISCUSSION AND CONCLUSIONS	88

CHAPTER SIX

92

92

6.0 LIGNOCELLULOLYTIC ACTIVITIES OF CULTURABLE MARINE WOODBORERS' GUT MICROBIOTA: POTENTIAL IN BIOETHANOL PRODUCTION

6.1.	INTRODUCTION	92
6.2.	LIGNOCELLULOLYTIC ACTIVITIES OF WOODBORERS' GUT MICROBIOTA	92
6.2.1.	Culturable Marine Woodborers' Gut Microbiota	92
6.2.2.	INDUCTION OF WOODBORERS' GUT MICROBIOTA TO PRODUCE ENZYMES	94
6.2.3.	LIGNOCELLULOLYTIC ACTIVITIES OF GUT MICROBIOTA EXTRACTS	94
6.3.	ETHANOL PRODUCTION	111
6.4.	DISCUSSION AND CONCLUSIONS	113
CITAT		110
CHAI	PTER SEVEN	118

CHAPTER SEVEN

7.0 CELLULOLYTIC AND HEMICELLULOLYTIC SYSTEM OF DICYATHIFER MANNII GUT MICROBIAL COMMUNITY: ISOLATION, PURIFICATION AND CHARACTERIZATION OF XYLANASE

CHA	RACTERIZATION OF XYLANASE	118
7.1.	INTRODUCTION	118
7.2.	D. MANNII GUT MICROBIAL COMMUNITY	119
7.2.1.	ACTIVITIES OF CRUDE D. MANNII GUT MICROBIAL CULTURE SUPERNATANT	119
7.2.2.	Isolation and Purification of Xylanase	120
7.2.3.	EFFECT OF PH AND TEMPERATURE ON XYLANASE ACTIVITY	123
7.2.4.	SUBSTRATE SPECIFICITY AND SUITABILITY	125
7.2.5.	KINETIC PARAMETERS	127
7.3.	DISCUSSION AND CONCLUSIONS	128
CHA	PTER EIGHT	132
<u>8.0</u>	GENERAL DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS	132
8.1.	GENERAL DISCUSSION AND CHAPTER SUMMARY	132
8.2.	Conclusions	137
8.3.	RECOMMENDATIONS	138

!		
8.4	FUTURE PERSPECTIVES: MICROBIAL METAGENOMICS	139
<u>REF</u>	ERENCES	141
APP	ENDICES	178
1.0	WOODBORERS DNA PCR GEL PHOTO	178
2.0	Sugar Standard Curves	178
3.0	MEDIA PREPARATION FOR BACTERIAL AND FUNGAL GROWTH	180
4.0	BACTERIA AND FUNGI DNA PCR GEL PHOTOS	181
5.0	D. MANNII GUT MICROBIAL CRUDE CULTURE SUPERNATANT ACTIVITY	185
6.0	SDS-PACF	186

6.0	SDS-PAGE	186
7.0	XYLANASE PURIFICATION & CHARACTERIZATION	188

LIST OF TABLES

!

!

!

!

Table 1.1. Components of lignocellulose and their biodegrading fungal enzymes 19
Table 3.2. Host preference of various species of mangrove woodborers 73
Table 4.1. Lignin modifying enzyme activity of crude gut extracts
Table 4.2. Cellulolytic and hemicellulolytic activity spectrum of gut extracts 81
Table 5.1. Identification of bacteria from woodborers' gut
Table 5.2. Identification of fungi from woodborers' gut
Table 6.1. Bacteria and fungi isolated from woodborers' guts 93
Table 6.2. Cellulolytic and hemicellulolytic activity of bacterial isolates 95
Table 6.3 Cellulolytic and hemicellulolytic activity of fungal isolates 99
Table 6.4. Bacterial mixed substrate cultures cellulase & hemicellulase activity 104
Table 6.5. Fungal mixed substrate cultures activity 107
Table 6.6. Activity maxima of woodborers' gut microbiota
Table 7.1. Purification of xylanase from D. mannii gut microbial community
Table 7.2. Michaelis-Menten analysis of substrate affinity of xylanase 126
Table A1. Bacterial growth media 180
Table A2. Fungal growth media
Table A3. Activity of D. mannii gut microbial Community
Table A4. Laemmli gel for SDS-PAGE 186
Table A5. Dalton Mark IV [®] for SDS-PAGE
Table A6. Results obtained during optimum pH determination
Table A7. Results obtained during optimum temperature determination

LIST OF FIGURES

!

!

Figure 1.1 Burrows produced by marine woodborers	4
Figure 1.2. Chemical constitution of cellulose	12
Figure 1.3. Schematic presentation of xylan	15
Figure 1.4. Schematic structural formula for lignin	16
Figure 1.5. Catalyzed oxidation of syringaldazine by laccase	17
Figure 1.6. Cellulose structure and enzymes involved in cellulose degradation	21
Figure 1.7. Enzymes involved in the degradation of xylan	25
Figure 1.8. β -1, 4-xylanase, a glycoside hydrolase from Nonomuraea flexuosa	26
Figure 6.3. Lignocellulose bioconversion processes into valuable bioproducts	28
Figure 2.1. Map of the Kenyan Coast showing sampling sites	44
Figure 2.2. Mida Creek mangroves	45
Figure 2.3. Tudor Creek mangroves	46
Figure 2.4. Gazi Bay mangroves	47
Figure 3.1. Woodborer morphology	68
Figure 3.3. Sphaeroma terebrans and Cirolana sp. burrows	69
Figure 3.4. Dicyathifer mannii burrows	69
Figure 3.5. Mangrove wood deterioration by borers.	74
Figure 5.1. Phylogenetic tree based on 16S rRNA gene sequence	86
Figure 5.2. Phylogenetic tree based on ITS gene sequence	88
Figure 6.1. Comparison of β -glucosidase and xylanase activities	97
Figure 6.2. Comparison of CMCase, β -glucosidase and xylanase activities	. 102
Figure 6.3. Comparison of cellulolytic and xylanolytic activities I	. 105
Figure 6.4. Comparison of cellulolytic and xylanolytic activities II	. 108

!

х

Figure 6.5A Gas chromatography profile of ethanol standard control
Figure 6.5B Gas chromatography profile of ethanol from fermentation reaction 112
Figure 6.5CGas chromatography profile of uninoculated control
Figure 7.1. Activity of the crude culture supernatant
Figure 7.2. SDS-PAGE profile of the purified enzyme. 122
Figure 7.3. Effect of pH on xylanase activity 123
Figure 7.4. Xylanase optimal temperature
Figure 7.5. Lineweaver-Burk plot for xylanase activity 127
Figure 7.6. Michaelis-Menten plot for xylanase activity
Figure A1. Agarose gel of woodborers PCR product178
Figure A2. Standard curve of absorbance as a function of glucose concentration 179
Figure A3. Standard curve of absorbance as a function of xylose concentration 180
Figure A4. Agarose gel of PCR products of fungal isolates from S.terebrans gut 181
Figure A5. Agarose gel of PCR product of fungal isolates from Cirolana sp. gut 182
Figure A6. Agarose gel of PCR products of fungal isolates from D. mannii gut 183
Figure A7. Agarose gel of bacterial isolates PCR product from the woodborers 184
Figure A8. Sephadex G-200 gel filtration chromatography A_{280} profile
Figure A9. Activity of sephadex G-200 gel filtration chromatography fractions 189
Figure A10. Folin-Lowry standard curve 192

LIST OF ABBREVIATIONS AND SYMBOLS

СВН	Cellobiohydrolase
CBP	Consolidated bioprocessing
CE	Capillary electrophoresis
СМС	Carboxymethyl cellulose
COI	Mitochondrial Cytochrome C oxidase subunit I gene
СТАВ	Cetyltrimethylammonium bromide
DEAE	Diethylaminoethyl
DNS	Dinitrosalicylic acid
DP	Degree of polymerization of cellulose
F _a	Fraction of β -glucosidic bond accessible to cellulose
FGB	First-generation bioethanol
FID	Flame ionization detector
F _{RE}	Fraction of the reducing end to all anhydroglucose units of cellulose,
1/DP	
GH	Glycoside hydrolase
HPLC	High performance liquid chromatography
IEF	Iso-electric focusing

!	
Lac	Laccase
LiP	Lignin peroxidase
Mn	Manganese
MnP	Manganese dependent peroxidase
PAGE	Polyacrylamide gel electrophoresis
PEG	Polyethelene glycol
PMSF	Phenylmethylsulfonylfluoride
p-NPG	p-Nitrophenyl β-D-glucopyranose
SCP	Single-cell proteins
SDA	Sabouraud Dextrose Agar
SDS-PAGE	Sodium dodecyl sulfate- Polyacrylamide gel electrophoresis
SGB	Second-generation bioethanol
SmF	Submerged fermentation
SSF	Solid-state fermentation
ТКР	Tamarind kernel polysaccharide
TLC	Thin layer chromatography

!

!

ļ

ABSTRACT!

ļ

Marine woodborers are members of phylum Mollusca, class bivalvia, families Teredinidae and Pholadidae; and phylum Arthropoda, class crustacea, family Sphaeromatidae. They have a close association with tropical mangrove habitats where they consume lignocellulose and play a role in nutrient cycling. They represent a rich source of lignocellulolytic enzymes that can be harnessed for conversion of biomass into simple sugars and other monomers for a variety of uses including bioethanol production.

İ

Enzymatic degradation of lignocellulose has emerged as the most prominent technology for conversion of biomass into monomer sugars for subsequent fermentation into bioethanol. This is an ideal approach for degrading cellulose because of its mild reaction conditions (pH between 4.8–5.0 and temperature between 45–50 °C), it does not present corrosion problems in the reactors and results in high sugar yields.

This study isolated lignocellulolytic enzymes from marine woodborers in the Kenyan coast, investigated their potential in bioethanol production and characterized the enzyme with highest activity.

Three species of woodborers from marine mangrove plants were identified and relations between them and the host mangrove plants (*Avicennia, Sonneratia, Rhizophora*) described. Marine woodborers *Dicyathifer mannii* (Wright, 1866), *Sphaeroma terebrans* (Bate, 1866) and *Cirolana sp.* occur on submerged parts of roots (proproots, pneumatophores), stems and branches. *D. mannii* was found mostly on *Rhizophora* but also on *Sonneratia*, whereas *S. terebrans* and *Cirolana sp.* were found exclusively on *Avicennia*.

Crude gut extracts were obtained from *D. mannii* and *S. terebrans* (*Cirolana sp.* were not obtained in enough numbers for crude gut extraction). These were tested for lignocellulolytic activity. *D. mannii* crude extracts showed an appreciable endoglucanase (CMCase) activity of up to 50.7 ± 1.51 U/ml , xylanase activity of 35.52 ± 1.54 U/ml and Lip activity of up to 34.65 ± 0.12 U/L (1 U represents 1 micromol of glucose released min⁻¹). *D. mannii* is implicated as a source of these

İ

ļ

enzymes for industrial use.

To determine the bacterial and fungal diversity within the woodborers' digestive tracts, bacteria and fungi from the digestive tracts of *D. mannii*, *S. terebrans* and a *Cirolana sp.* were cultured and investigated. The bacteria and fungi were identified by sequencing the fragments of 16S rRNA and ITS gene respectively, with subsequent phylogenetic analysis. Four strains, *Lysinibacillus boronitolerans* (from *D. mannii* and *S. terebrans*), *L. fusiformis* (from *S. terebrans* and *Cirolana sp.*), *L. sphaericus* and *L. xylanilyticus* (both from *Cirolana sp.*) had similarity to known 16S rRNA sequences of 98–99 %.

Various strains of Ascomycetes fungi were identified from the digestive tracts of the woodborers. *Aspergillus niger* was isolated from the digestive tracts of both *D.mannii* and *S. terebrans*. In addition, *Neosartorya fischeri* and *A. fumigatus* were present in *D. mannii* whereas *Botryotinia fuckeliana* was found in *S. terebrans* digestive tract. *A. costaricaensis* and *A. fumigatus* were present in *Cirolana sp.* while *Penicillium sp.* was isolated from *D.manni* and *Cirolana sp.* digestive tract. The fungi had similarity to known ITS sequences of 95–100 %. Existence of bacterial and fungal groupings symbiotically associated with woodborers gut is proposed.

Pure bacterial and fungal isolates from each of the woodborers as well as mixed cultures for each woodborer were induced to produce lignocellulolytic enzymes. Substrates used for induction were carboxymethylcellulose sodium salt (CMC), Whatson No. 1 filter paper (FP), beechwood xylan, *Rhizophora* wood dust, D (+)-cellobiose and avicel cellulose. While there was generally low ligninolytic activity in both bacterial and fungal isolates, cellulolytic and hemicellulolytic activity was significantly high in both pure bacterial and fungal isolates as well as in mixed cultures. The highest bacterial enzyme activity was β -glucosidase (94.55 U/ml) shown by *L. boronitolerans* from *S. terebrans* cultured in a medium containing avicel cellulose as a carbon source. In contrast, xylanase activity was highly exhibited (up to 91.7 U/ml) by *L. xylanilyticus* from *Cirolana sp.* in medium containing cellobiose. The highest fungal activity was β -glucosidase (54.77 U/ml) shown by *A. niger* from *D. mannii* gut in a medium with mixed sudstrates. Wood, FP and CMC did not sufficiently induce production of β -glucosidase by the fungal isolates. CMCase production was significantly induced by xylan beechwood substrate.

İ

!

Since *D. mannii* had shown to have the most lignocellulolytic efficacious extracts, the ability of the culture filtrate of its gut microbial community to biodegrade wheat straw into fermentable sugars for ethanol production was investigated. 24 hours fermentations by 0.3 % *Saccharomyces cerevisiae* of 3 % wheat straw degradation reaction mixture with *D. mannii* gut microbial filtrate (previously incubated for 1 hour at 50 0 C in 0.1M sodium acetate buffer, pH 5.0) yielded 0.98 mg/100ml supernatant.

The highest *D. mannii* microbial community lignocellulolytic activity was xylanase. Consequently, xylanase from the culture filtrate of *D.mannii* gut microbial community was isolated and purified. The purified enzyme showed a single band on SDS polyacrylamide gel electrophoresis (SDS-PAGE) with an apparent molecular weight ļ

of ≈ 20 kDa. The enzyme was moderately thermostable with optimum activity at 50 °C and pH 5.0. It had a high affinity for xylan beechwood with K_m and V_{max} values of 0.4 % (w/v) and 128.2 µm ml⁻¹ min⁻¹, respectively. This is the first report on production, purification and characterization of xylanase from *D.mannii* gut microbial community.