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CHAPTER ONE 

1.0 INTRODUCTION 

1.1 BACKGROUND INFORMATION 

Survival analysis is a statistical method for data analysis where the outcome variable of 

interest is the time to the occurrence of an event (Klembaum,1996).Hence survival analysis is 

also referred to as "time to event analysis", which is applied in a number of applied fields, such 

as medicine, public health, social science, and engineering. In medical science, time to event can 

be time until recurrence in a cancer study, time to death, or time until infection. In the social 

sciences, interest can lie in analyzing time to events such as job changes, marriage, birth of 

children and so forth. 

The engineering sciences have also contributed to the development of survival analysis 

which is called failure time analysis since the main focus is in modeling the lifetimes of 

machines or electronic components (Lawless,1982).The developments from these diverse fields 

have for the most part been consolidated into the field of survival analysis. Because these 

methods have been adapted by researchers in different fields, they also have several different 

names: event history analysis (sociology), failure time analysis (engineering), duration analysis 

or transition analysis (economics). These different names do not imply any real difference in 

techniques, although different disciplines may emphasize slightly different approaches. Survival 

analysis is the name that is most widely used and recognized (Lee and Wan, 2003). 

1.2 Models for Survival Data 

The complexities provided by the presence of censored observations led to the 

development of a new field of statistical methodology. The methodological developments in 

survival analysis were largely achieved in the latter half of the 20th century. Although Bayesian 

methods in survival analysis (Ibrahim and Sinha,2001) are well developed and are becoming 

quite common for survival data, my application will focus on frequentist methods. One of the 

oldest and most straight forward non-parametric methods for analyzing survival data is to 

compute the life table, which was proposed by Berkson and Gage (1950) for studying cancer 

survival. One important development in non-parametric analysis methods was obtained by 

Kaplan and Meier (1958). While non-parametric methods work well for homogeneous samples, 

they do not determine whether or not certain variables are related to the survival times. This need 
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leads to the application of regression methods for analyzing survival data. The standard multiple 

linear regression models are not well suited to survival data for several reasons. Firstly, survival 

times are rarely normally distributed. Secondly, censored data result in missing values for the 

dependent variable (Klembaum, 1996). The Cox proportional hazards (PH) model is now the 

most widely used for the analysis of survival data in the presence of covariates or prognostic 

factors. This is the most popular model for survival analysis because of its simplicity, and not 

being based on any assumptions about the survival distribution.  

The model assumes that the underlying hazard rate is a function of the independent 

covariates, but no assumptions are made about the nature or shape of the hazard function. In the 

last several years, the theoretical basis for the model has been solidified by connecting it to the 

study of counting processes and martingale theory, which was discussed in the books of Fleming 

and Harrington (1991) and of Andersen et al (1993).These developments have led to the 

introduction of several new extensions to the original model. However the Cox PH model may 

not be appropriate in many situations and other modifications such as stratified Cox model 

(Klembaum,1996) or Cox model with time-dependent variables (Collett,2003),can be used for 

the analysis of survival data. The accelerated failure time (AFT) (Collett,2003) model is another 

alternative method for the analysis of survival data. The purpose of this study is to compare the 

performance of the Cox models and the AFT models. This will be studied by means of real 

dataset from a cohort on treatment for HIV/AIDS.  

1.3 Statement of the Problem 

The proportional hazards model (Cox 1972) and the accelerated failure time models are 

the two major approaches to the regression analysis of censored data (Cox and Oakes 1984). Due 

to the availability of efficient inference procedures that are implemented in all statistical software 

packages, the proportional hazards model is used almost exclusively in practice. As reported by 

Reid (1994) the accelerated failure time models i.e. standard parametric models such as Weibull, 

Exponential and Lognormal are accelerated failure time models. These models are “in many 

ways more appealing because of its quite direct physical interpretation, “especially when the 

response variable does not pertain to failure time. This model may provide more accurate or 

more concise summarization of the data than the proportional hazards model in certain 

applications. Despite all these advantages Accelerated Failure Time Models are least used in 

medical research. 
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1.4 Objectives 

1.4.1 General Objective 

The main aim of this study is to compare Accelerated Failure Time and COX Proportional 

Hazards Models at HAART inception in a cohort of HIV infected adults in determining survival 

of patients. 

1.4.2 The specific objectives are to: 

1. Apply cox proportional hazard and accelerated failure time models on real data set. 

2. Evaluate the models using Akaike Information Criterion. 

1.5 Significance of the study 

The outcome of this study would provide information about the risk factors or the most 

influential covariate that have significant impact on survival of HIV patients during treatment. 

Laboratory measurements, such as numbers of CD4 cells and levels of plasma HIV RNA, are 

helpful in determining the stage of infection and may serve as prognostic markers. Other factors 

may also influence outcome. This study will look at a number of factors including demographic 

and other host factors that may play a role in disease progression as well as describing the 

important impact antiretroviral therapy has had in disease progression. The study will try to 

identify death risk extent of patients under these significant factors at different time during their 

care. The study will also help in comparing the utility of COX and accelerated failure time 

(AFT) models, findings will help in making a decision as to which model to apply under 

specified conditions defined by predictor variables. Findings of the study will also give a deeper 

insight on how the concept of standardized measure of variability and Akaike information 

criterion can be applied in survival analysis. 

1.6 Limitation of the Study 

1. The study was restricted to adults, and results might not be applicable to infants and 

children. 

2. The study presumed that all deaths are caused by HIV infection. 

3. Parts of information on individuals are missed because of censored observations. 

4. The study is based on baseline values of the variables of interest. 
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1.7 Research Questions 

1. Between accelerated failure time model and cox proportional hazard model which is 

more efficient in analysis of time to event data? 

2. How can Akaike information criterion be applied in survival analysis? 
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CHAPTER TWO 

2.0 REVIEW OF LITERATURE 

2.1 Introduction to the Chapter 

The literature selected and discussed in this section are those that are more related and 

relevant to this study. Studies or research related to the survival of HIV/AIDS especially in 

Kenya are scarce. The literature review given below has three parts. The first part is a general 

overview of HIV/AIDS pandemic and the Kenya’s situation. The second part concerns survival 

analysis in health research and the third is about Akaike Information System application in health 

research. 

2.2 HIV/AIDS 

Human Immunodeficiency Virus (HIV) is the virus that causes acquired 

immunodeficiency syndrome (AIDS). Being a member of a group of viruses called retroviruses. 

HIV infects human cells and uses the energy and nutrients provided by those cells to grow and 

reproduce. AIDS is a disease in which the body's immune system breaks down and is unable to 

fight off certain infections, known as "opportunistic infections", and other illnesses that take 

advantage of a weakened immune system. When a person is infected with HIV, the virus enters 

the body and lives and multiplies primarily in the white blood cells. These are the immune cells 

that normally protect us from disease. The hallmark of HIV infection is the progressive loss of a 

specific type of immune cell called T-helper or CD4 cells.  

As the virus grows, it damages or kills these and other cells, weakening the immune 

system and leaving the individual vulnerable to various opportunistic infections and other 

illnesses, ranging from pneumonia to cancer (free encyclopedia Wikipedia. Facts about 

HIV/AIDS, 2001). The U.S. Centers for Disease Control and Prevention (2011) defines someone 

as having a clinical diagnosis of AIDS if they have tested positive for HIV and meet one or both 

of these conditions: 

1. They have experienced one or more AIDS-related infections or illnesses 

2. The number of CD4 cells has reached or fallen below 200 cells per cubic milliliter of 

blood (a measurement known as cd4-cell count) 

In healthy individuals, the CD4 count normally ranges from 450 to 1200 cells/푚푚 .For 

many years, there were no effective treatments for AIDS. Today, people in Kenya, other 

developing and developed countries can use a number of drugs to treat HIV infection and AIDS. 
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Some of these are designed to treat the opportunistic infections and illnesses that affect people 

with HIV/AIDS. In addition, several types of drugs seek to prevent HIV from reproducing and 

destroying the body's immune system. Many HIV patients are taking several of these drugs in 

combination a regimen known as highly active antiretroviral therapy (HAART). When 

successful, combination or "cocktail" therapy can reduce the level of HIV in the bloodstream to 

very low, even undetectable, levels and sometimes enable the body's CD4 immune cells to 

rebound to normal levels. 

2.3 The Burden in HIV/AIDS 

With around 2.6 million people becoming infected with Human Immunodeficiency Virus 

in 2009,there are now an estimated 33 million people around the world who are living with HIV, 

including millions who have developed AIDS,( AVERT, 2011). Since the beginning of the 

epidemic, AIDS has killed nearly 19 million people worldwide. AIDS has replaced malaria and 

tuberculosis as the world's deadliest infectious disease among adults and is the fourth leading 

cause of death worldwide. 

In 2011 Kenya estimates that approximately 6.2% of the adult population is HIV-

infected. HIV prevalence in Kenya is believed to have peaked in 1995–1996, at 10.5%, 

subsequently falling by approximately 40% and remaining relatively stable for the last several 

years. Historically a key marker for national progress in the AIDS response, HIV prevalence 

becomes more difficult to interpret as antiretroviral treatment is scaled up. Because treatment 

extends life and reduces rates of AIDS deaths, increases in HIV prevalence are likely even with 

incremental declines in the rates of new infections. Accordingly, performance indicators for 

Kenya’s most recent national AIDS strategy project a relatively modest decline in HIV 

prevalence between 2007 and 2013, with an actual uptick on overall HIV prevalence anticipated 

over time due to the health benefits of improved treatment access. 

An estimated 1.6 million Kenyans were living with HIV in 2011. This equals the peak 

number of HIV-infected people that had previously been maintained annually between 1996 and 

2002, and it represents a nearly four-fold increase over the 400,000 people estimated to be living 

with HIV in Kenya in 1990. Kenya has the third largest population of people living with HIV in 

sub-Saharan Africa and the highest national HIV prevalence of any country outside Southern 

Africa (UNAIDS, 2008). As people living with HIV are living longer as a result of improved 
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access to HIV treatment, it is anticipated that the total number of HIV-infected individuals in 

Kenya will continue to increase, approaching 1.8 million by 2015. 

There is considerable geographic variability in the burden of HIV in Kenya. Provincial 

HIV prevalence ranges from a high of 13.9% in Nyanza Province to a low of 0.9% in North 

Eastern Province a more than 15 fold variation (Kenya National Bureau of Statistics, 2010). 

Nyanza Province alone accounts for one in four HIV-infected people in Kenya.  

Kenya’s epidemic disproportionately affects women who account for 59.1% of adults 

living with HIV. Among people aged between 15 and 49 years, HIV prevalence among women 

(8.0%) is nearly twice that among men which is 4.3%  (Kenya National Bureau of Statistics, 

2010). The odds of being infected increase as individuals’ transition from adolescence to 

adulthood. Although HIV is most likely to affect young adults, a considerable number of older 

people are living with HIV. In 2008–2009, roughly one out of 11 (9.1%) Kenyan men ages 50–

54 were HIV-positive (Kenya National Bureau of Statistics, 2010).  

For Kenyans as a whole, urban residents have historically more likely to be HIV-infected 

than rural dwellers (Kenya National Bureau of Statistics, 2010). However, there is a notable 

distinction between men and women in this regard, with men in rural areas more likely to be 

HIV-infected than their urban counterparts (4.5% vs. 3.7%) (Kenya National Bureau of 

Statistics, 2010). Over time, HIV prevalence in urban and rural settings has converged, with HIV 

prevalence in urban areas only modestly higher than prevalence in rural settings. HIV affects 

Kenyans from all socioeconomic strata. Highest HIV prevalence (7.2%) is among the top wealth 

quintile, with the second highest HIV prevalence among the second lowest (6.8%). The poorest 

Kenyans (lowest wealth quintile) are least likely to be living with HIV, with a prevalence of 

4.6%.For sub-Saharan Africa generally, educational attainment is inversely correlated with HIV 

risk for women, at least according to surveys conducted over the last 10–15 years (Hargreaves et 

al, 2008). In Kenya, this pattern is not so clearly established. Although women with secondary 

education or higher have lower HIV prevalence (6.9%) than women who completed only 

primary education (8.9%), lowest HIV prevalence is reported among women with no education 

(5.8%) (Kenya National Bureau of Statistics, 2010).  

Muslim Kenyans have HIV prevalence roughly half the national average (3.3%), 

compared with 5.9% of Roman Catholics and 6.6% of people of Protestant or another Christian 

denomination (Kenya National Bureau of Statistics, 2010). Among Kenyan tribes, the Luo are 
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notably more likely to be living with HIV than other ethnicities, with more than one in five Luo 

(20.2%) testing HIV-positive in the 2008–2009 national household survey (Kenya National 

Bureau of Statistics, 2010). Somalis have the lowest HIV prevalence of any ethnicity (0.8%). 

2.4 HIV/AIDS Mortality in Kenya. 

Since the epidemic began, HIV has claimed the lives of at least 1.7 million people in 

Kenya. In 2011, an estimated 49,126 people in Kenya died of AIDS-related causes. The AIDS 

death toll in 2010 represents a nearly two-thirds drop from the peak in AIDS deaths in 2002–

2004, when an estimated 130,000 people died each year. Peak mortality followed peak HIV 

incidence in Kenya by roughly a decade, which is expected given the roughly 10-year life 

expectancy of a newly infected individual in the pre-ART era. Were current trends to continue, 

Kenya would achieve its 2013 target for reducing the annual number of AIDS deaths to 61,000 

or lower. Indeed, current projections indicate that 26,720 Kenyans are likely to die of AIDS-

related causes in 2013. 

2.5 The Impact of HIV in Kenya 

The epidemic continues to have far-reaching social, economic, health and population 

effects. In addition to the harms directly inflicted on HIV-infected individuals and the 

households in which they live, AIDS has had indirect effects that are nevertheless real and 

substantial on communities and the whole of society. 

In particular, HIV infection results in severe economic consequences for affected 

households (Bates et al., 2004). One out of nine households in Kenya has been affected by AIDS, 

with the head of household having HIV in more than three out of four AIDS-affected households 

(NASCOP, 2009).  

The epidemic has resulted in a sharp deterioration of basic health indicators. Between 

1998 and 2003 or roughly between the epidemic’s peak in Kenya and the early introduction of 

antiretroviral therapy , the adult mortality rate (ages 15–49) rose by 40% for women and by 30% 

among men (Gelmond et al., 2009, citing findings from consecutive Demographic and Health 

Surveys). With a large number of newborns newly infected each year, the epidemic has also 

increased mortality among children under five (Gelmond et al., 2009).  

The concentration of the epidemic’s burden among young adults has visited particular 

hardships on Kenya’s children, regardless of whether children themselves become HIV positive 

(K’Oyugi,2002). In 2011, an estimated 1.1 million children in Kenya had lost one or both parents 
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to AIDS. Kenyan children with one or more HIV infected parents are significantly less likely 

than other children to be in school, more likely to be underweight, and less likely to receive basic 

medical care (Mishra et al., 2005).  

While children have experienced among the harshest effects of the epidemic, AIDS has 

burdened Kenyans from all age strata and all walks of life. Nearly one in five (18%) Nairobi 

residents over age 50 report having been personally affected by AIDS, such as becoming 

infected, caring for an AIDS patients or orphaned child, or losing a loved one (Kyobutungi et al., 

2009).  

AIDS appears to have affected fertility patterns. On average, HIV infected women have 

40% fewer children than the norm (Akinyi et al, 2010). HIV-infected women are notably less 

likely to express a desire for a child within the next two years than women who had tested HIV-

negative or who had not received HIV test results; women living with HIV are also significantly 

more likely than other women to report not desiring to have a child at any point in the future 

(NASCOP, 2009). 

2.6 Treatment and Care for People Living With HIV: The Challenge of Sustaining Recent 

Gains. 

Over the last several years, the HIV landscape in Kenya has been transformed by the 

rapid expansion of access to life-preserving antiretroviral therapy. The scaling-up of treatment 

programmes throughout Kenya has reduced HIV-related morbidity and mortality, prevented 

vulnerable households from falling deeper into poverty, rejuvenated entire communities, helped 

alleviate the stigma long associated with HIV infection, supported national efforts to improve 

maternal and child health, and contributed to gains in Kenya’s fight against tuberculosis. These 

achievements are nothing short of historic. Kenya’s most recent national HIV strategy – KNASP 

III – emphasizes the country’s long-term commitment to HIV treatment access. During the four-

year (2009–2013) period covered by KNASP III, it is projected that treatment and care will 

account for 57.9% of all HIV-related spending (NACC, 2009). 

In this ongoing national undertaking to achieve universal treatment access, important 

challenges remain. With the number of people who will need antiretroviral treatment in the 

future outweighing those who are currently medically eligible, it is clear that sustaining treatment 

access will demand unflagging national commitment for decades to come. Uncertainties 

regarding future international funding for continued treatment scale-up, as well as the inevitable 
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growth over time in demand for costly second-line antiretroviral regimens, merely underscore 

the many challenges that await AIDS stakeholders in the coming years. 

2.7 Approach to HIV Treatment and Care 

Consistent with international recommendations, Kenya has adopted a public health 

approach to HIV treatment scale-up. National guidelines specify standardized first-line regimens, 

mandate routine patient monitoring, offer guidance on how and when to change regimens, and 

identify evidence-based approaches to clinical practice, including management of common 

treatment related toxicities and drug interactions. These guidelines have also formed the basis for 

extensive clinical training and capacity-building initiatives to ensure that diverse cadres of health 

care workers have the needed competence to play their respective roles in the administration of 

HIV treatment and care.  

A national network of Comprehensive Care Clinics facilitates the ready access of people 

living with HIV to treatment, care and support services (IPPF et al., 2008). Roughly one in six 

health facilities (16%) were providing antiretroviral therapy in 2010. The number of facilities 

administering antiretroviral therapy increased from 731 in 2008 to 1,171 by early 2011 for adults 

and 1,105 for pediatric. As of December 2011, 1,405 facilities (including 1,242 public sector 

facilities) offered antiretroviral therapy.  

In 2009, 213,521 HIV-positive patients were newly enrolled in HIV care, representing 

roughly one-third of cumulative enrolment (621,813) (NASCOP, 2010). The number of newly 

enrolled females in 2009 (140,639) was roughly twice the number of new male enrollees 

(72,882) (NASCOP, 2010). In 2009, 52% (111,744) of newly enrolled patients were started on 

antiretroviral therapy in 2009 (NASCOP, 2010).  

Kenya has exempted people living with HIV from the usual cost-sharing requirements for 

antiretroviral therapy and treatment for tuberculosis. However, patients may remain liable for 

certain costs associated with nutritional support, laboratory investigations and treatment of 

opportunistic infections. The Government of Kenya has long recognized the value of engaging 

families and communities in treatment efforts. In 2002, the National AIDS/STD Control 

Programme in the Ministry of Health issued guidelines to aid families and community workers in 

undertaking home-based care for people living with HIV (NASCOP, 2002). KNASP III calls for 

initiatives to strengthen home and community-based care services (NACC, 2009). 
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2.8 Antiretroviral Therapy 

Since the detection of first AIDS case in mid 80s, Kenya primarily provided symptomatic 

treatment and palliative care and later slowly introduced mono and dual therapy especially in the 

private sector. In the mid-1990s, the emergence of a new class of antiretroviral compounds 

ushered in the era of highly active antiretroviral therapy.  

Antiretroviral therapy was first introduced through the private sector in the late 1990s but 

only became widely available through the private sector beginning in 2003–2004. Declines in the 

price of antiretroviral drugs, abetted in part by generic competition, have enabled the country to 

progressively increase coverage of antiretroviral treatment. 

2.9 Initiation of Antiretroviral Therapy 

Consistent with changes in international practice, as set forth in updated WHO 

recommendations, Kenya recommends the early initiation of antiretroviral therapy. Prior to 2007, 

Kenya provided for initiation of therapy when a patient’s CD4 count fell below 200 cells/푚푚 . 

In 2007, as evidence began to suggest that earlier initiation of therapy was advisable, Kenya 

began using a CD4 threshold of 250cells/푚푚  for starting therapy. As of June 2010, Kenya 

began calling for antiretroviral treatment to begin once a patient’s CD4 count reached or fell 

below 350cells/푚푚 . Kenya standard operating procedure requires definitive evidence of a 

positive HIV test result before antiretroviral therapy may be prescribed, although national 

guidelines permit clinicians to presume a diagnosis of HIV in symptomatic children when 

virologic confirmation is not possible. These changes have significantly increased the number of 

adults who are eligible for treatment, with further increases anticipated in the coming years. 

Kenya’s recommendations for starting treatment in HIV-infected children have also 

evolved to reflect expanded knowledge of state-of-the-art approaches. Drawing on emerging 

evidence of optimal approaches to the management of HIV infection in children, Kenya 

recommended, beginning in 2009, that all HIV-positive children under 18 months be started on 

antiretroviral therapy (NASCOP, 2009).  

The changes in eligibility requirements for antiretroviral therapy have significantly 

increased the number of children in need of therapy. In 2011, more than 150,000 children in 

Kenya were eligible for antiretroviral therapy. As a result of scaled-up services to prevent 

mother-to-child transmission, it is anticipated that the number of children in need of therapy will 

decline in future years. 



12 
 

2.10 Predictors of HIV/AIDS survival 

 In a study by Moore et al., (2006), where they aimed to determine the prognostic value 

of baseline CD4 percentage in terms of patient survival in comparison to absolute CD4 cell 

counts for HIV-positive patients initiating highly active antiretroviral therapy (HAART). In the 

study a cohort study of 1623 antiretroviral therapy-naive HIV-positive individuals who initiated 

HAART between 1 August 1996 and 30 June 2002 was conducted. Cumulative mortality rates 

were estimated using Kaplan–Meier methods. Cox proportional hazards regression was used to 

model the effect of baseline CD4 strata and CD4 percentage strata and other prognostic variables 

on survival. A subgroup analysis was conducted on 417 AIDS-free subjects with baseline CD4 

counts between 200 and 350cells/ml. In multivariate models, low CD4 percentages were 

associated with increased risk of death (CD4 %< 5, relative hazard (RH) = 4.46; CD4% 5–14, 

RH =2.43; P<0.01 for both) when compared with those subjects with an initial CD4 fraction of 

15% or greater, but had less predictive value than absolute CD4 counts. In subgroup analyses 

where absolute CD4 strata were not associated with mortality, a baseline CD4 fraction below 

15% (RH=2.71; 95% confidence interval (CI) 1.20–6.10), poor adherence to therapy and 

baseline viral load 4100 000 HIV-1 RNA copies/mL were associated with an increased risk of 

death. They concluded that CD4 percentages below 15% are independent predictors of mortality 

in AIDS-free patients starting HAART, including those with CD4 counts between 200 and 350 

cells/푚푚 . CD4 percentages should be considered for inclusion in guidelines used to determine 

when to start therapy. 

2.11 Non-Parametric and Parametric Models for Studying Time to Event 

The semi parametric Cox proportional hazards model is more popular than parametric 

methods to analyze time-to-event data because no assumption is needed about the shape of the 

underlying hazard of the event over time. Examples of hazard distributions include exponential, 

Weibull, and log-logistic. Semi parametric and parametric methods both yield the relative hazard 

(RH) as the measure of association, allowing researchers to gain insight into the actual risk 

process from onset of exposure to an event of interest. Some distributions allow modeling of 

actual failure times. The accelerated failure time (AFT) models produce a “time ratio” (TR) as its 

measure of association, and the time when the nth percentile of subjects achieves the outcome of 

interest can be directly estimated. Using time-to-event data in which the underlying hazard is 

assumed to fit a Weibull distribution. 



13 
 

Biomedical researchers tend to choose semi parametric methods to model time-to-event 

data, in a study by Sethi, et al, (2009), data was analyzed from a prospective cohort study of 195 

adults receiving HIV/AIDS care and highly active antiretroviral therapy in Baltimore they were 

followed for 1188 visits between February 2000 and December 2001. Kaplan-Meier estimation 

and cox and Weibull regressions were performed. Results showed that illicit drug users 

experienced a greater hazard of clinically significant antiretroviral resistance as compared to 

non-users. Weibull regression demonstrated that a quarter and a half of illicit drug users 

developed resistance within 5 and 20 months of viral suppression, respectively, compared to 20 

and 85 months, respectively, for non-users. Both semi parametric and parametric methods 

demonstrated an increased hazard of clinically significant resistance associated with illicit drug 

use. The parametric model facilitated the estimation of elapsed time to resistance associated with 

illicit drug use. 

From the study above the relative hazard produced in semi parametric and parametric 

proportional hazards modeling helped researchers identify risk factors for an outcome of interest. 

Parametric models in the accelerated failure time metric are not commonly used despite the time 

ratio being a more easily interpretable measure of association than the relative hazard. AFT 

models also facilitate the estimation of elapsed time between exposure and outcome, which has 

more clinical interpretability than a hazard ratio. In the analysis of the above study illicit drug 

use was associated with a doubling of the hazard of rebound with resistance even after 

adjustment by other factors.  

According Sethi, et al, (2009), one could even argue the analysis, as reported, would have 

little impact on HIV care. However, the finding that a quarter of illicit drug users were predicted 

to rebound with resistance within 5 months of achieving viral suppression has important 

implications. This reveals the imminence of rebound with resistance among illicit drug users 

despite achieving treatment success and emphasizes a need for physicians to ascertain substance 

use among patients and schedule more frequent follow-up visits for these patients. Researchers 

conducting survival analyses should consider the use of parametric models. When properly fitted 

to the data, these models produce inferences identical to those drawn from Cox regression. The 

estimation of time ratios and elapsed time are especially advantageous as they have 

interpretations that can directly translate to clinical and public health practice. Concerns about 

misspecification of the model, while valid, can be minimized by the use of broad classes of 
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parametric models that encompass a wide variety of hazard shapes (Sethi, et al, 2009). In a study 

by Pierre De Beaudrap and et al (2008), 404 HIV-1- infected Senegalese adult patients were 

enrolled and data censored as of September 2005. Predictor effects on mortality were first 

examined over the whole follow-up period (median 46 months) using a Cox model and 

Shoenfeld residuals. Then, changes of these effects were examined separately over the early and 

late treatment periods; i.e., less and more than 6-month follow-up. They found out that during the 

early period, baseline body mass index and baseline total lymphocyte count were significant 

predictors of mortality (Hazard Ratios 0.82 [0.72-0.93] and 0.80 [0.69-0.92] per 200 cell/푚푚 , 

respectively) while baseline viral load was not significantly associated with mortality. During the 

late period, viro-immunological markers (baseline CD4-cell count and 6-month viral load) had 

the highest impact. In addition, the viral load at 6-month was a significant predictor (HR = 1.42 

[1.20-1.66]). They concluded that impaired clinical status could explain the high early mortality 

rate while viro-immunological markers were rather predictors of late mortality.  

This study underlined changes over time in mortality predictors among HIV-1 infected 

patients. Disappearance of the predictive value of prognostic variables may often occur in 

medical studies .The previous finding of an early peak in mortality rate prompted them to 

investigate more carefully the early period after HAART initiation. Whereas the effect of 

baseline CD4 cell count on the hazard of death remained roughly constant during the whole 

follow-up, the impacts of BMI and of total lymphocyte count were important immediately after 

HAART initiation before fading out after 6 months.  

Clinical variables (BMI, CDC stage) were strongly associated with early death but not 

with death after 6 months. In the study cohort, the clinical status at enrolment may be, in 

average, more advanced than in other cohorts as shown by the low median CD4 cell count at 

baseline (128 in study cohort versus 168 in the Euro SIDA cohort, 192 in the Swiss cohort, and 

250 in the panel of the ART-CC cohorts) and by the clinical stage (more than half of the cohort 

under study were in CDC stage C versus 25% in the Swiss cohort 34 and 21% in the ART-CC). 

Anaemia was an independent and stable predictor of death as previously found in the 

Euro SIDA cohorts (Lundgren et al., 2003). The pathogenesis of anaemia in AIDS remains 

complex. According to the study although malaria could play a role in addition to inflammatory, 

deficiency and bleeding causes, it is unlikely that this effect was important in the highly 

urbanized setting of Dakar. It was interesting to note that total lymphocyte count at baseline was 
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a stronger predictor than CD4 cell count at baseline during the early period despite the 

correlation between the two counts. Similar results were found in children and this may reflect 

the better prognosis value of CD4 cell percentage than that of CD4 cell count. It is important to 

note that the total lymphocyte count has been proposed as a surrogate for CD4 cell count in low 

income country settings (WHO 2006).However, in their study, the total lymphocyte count was 

predictive only over very short time-to-event periods, which means that therapy initiation on 

basis of total lymphocyte count only may occur too late. They pointed out that additional studies 

are needed to assess the prognosis value of total lymphocyte count. Changes in the extent of 

predictor effects between the early and the late period were striking. Indeed, the effect of BMI 

and of total lymphocyte count at baseline disappeared.  

Therefore, these variables have a high prognostic value during the first months after 

HAART initiation, but lost it later. On the other hand, whereas they did not find significant 

association between viral load measured at baseline and subsequent risk of death, viral load 

measured at 6 months was noted to be important predictor of death for patients who survived 

until 6 months. They pointed out that this was consistent with other studies that did not find a 

significant association between the viral load at baseline and the risk of death in advanced stage 

disease with low CD4 cell count. Also the initial response to HAART as assessed by the viral 

load at 6 months has a great prognostic value; this has been already demonstrated in developed 

countries (Egger M et al., 2002). This result emphasizes the importance of updating viral load in 

patient monitoring after HAART initiation in a low-income setting. The CD4 cell count at 

baseline remained a predictive factor for death after 6 months, with a stronger effect than the 6-

month CD4 cell count. They did put forward several hypotheses to explain the disagreement 

between this result and those of other studies (Egger et al, 2002).Firstly; they argued that missing 

data may reduce the effect of the CD4 cell count at 6 months. In order to examine the effect of 

missing data, they used the same Cox model with and without that variable in the sub-population 

with known CD4 value at 6 months and found the same effects and significance for all the other 

covariates. Secondly, these results were applicable only to patients who survived at least 6 

months after enrolment and therefore to a subset of the study population. At baseline, time since 

infection varied greatly between patients of the cohort, who may have produce a mixture of sub-

populations with different prognoses and may explain their results. The more frailty patients 

would be characterized by clinical variables and their results argue for the use of immunological 
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markers instead of clinical stage or total lymphocyte count to decide initiation of HAART even 

in low-income countries. Conversely they recommended that, patients with an advanced disease, 

a low BMI or a functional dependence should be carefully monitored and more intensive care 

could be proposed during the first months. 

In another study by Jon Michael Gran et al (2010), they argued that when estimating the 

effect of treatment on HIV using longitudinal data, standard methods may produce biased 

estimates due to the presence of time-dependent confounders. Such confounding can be present 

when a covariate, affected by past exposure, is both a predictor of the future exposure and the 

outcome, they gave an example of CD4 cell count, being a marker for disease progression for 

HIV patients, but also a marker for treatment initiation and influenced by treatment. Fitting a 

marginal structural model (MSM) using inverse probability weights is one way to give 

appropriate adjustment for this type of confounding. In their paper they studied a simple and 

intuitive approach to estimate similar treatment effects, using observational data to mimic several 

randomized controlled trials. Each trial was constructed based on individuals starting treatment 

in a certain time interval. An overall effect estimate for all such trials was found using composite 

likelihood inference. The method offered an alternative to the use of inverse probability of 

treatment weights, which is unstable in certain situations. The estimated parameter was not 

identical to the one of an MSM; it was conditioned on covariate values at the start of each 

mimicked trial. This allowed the study of questions that were not that easily addressed fitting an 

MSM. The analysis could be performed as a stratified weighted Cox analysis on the joint data set 

of all the constructed trials, where each trial was one stratum. The model was applied to data 

from the Swiss HIV cohort study. In their study an example of a time-dependent confounder was 

estimating treatment effects for HIV is the CD4 cell count, which, as an indicator of immune 

status, it is a predictor of treatment and outcome (AIDS or death), while at the same time 

influenced by treatment. To deal with this type of confounding, Robins et al, (2000) introduced a 

new type of model, called the marginal structural model (MSM). When fitting an MSM, time-

dependent confounding is typically adjusted for using inverse probability of treatment (IPT) 

weighting. Each individual’s probability of being treated is calculated conditioned on their 

observed covariates at each time point, which then are used to construct the IPT weights for that 

individual. The time-dependent confounding variables are no longer predictors of the exposure in 

the weighted analysis. The rest of the parameters in the MSM can therefore be estimated using a 
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weighted time-dependent Cox analysis, adjusting only for baseline covariates. Even though IPT 

weighting is an elegant way to adjust for time-dependent confounding, it has properties that 

make the weights unstable in certain situations.  

The main problem lies in the instability of the estimated weights at the time where 

individuals go from being off treatment to on treatment. When the conditional probability of 

initiating treatment is small, the denominator in the expression for the weight can be close to 

zero, making the estimated weights unstable. In other words, individuals with unusual covariate 

histories when starting treatment can be given very large weights. The fact that the individuals 

keep this weight constant for their remaining event history after initiating treatment adds to the 

problem. In their paper they consider an alternative approach to time-dependent confounding, 

than the IPT weights used to fit an MSM. Their method was seeking to estimate a similar 

treatment effect as the MSM, but now by looking at the causal or counterfactual effect of 

treatment in many mimicked randomized controlled trials, each trial being distinguished by the 

time of treatment start. This approach also allowed them to investigate some questions that 

would not be that easy to answer with an MSM; such as estimating separate treatment effects for 

individuals with different CD4 counts at treatment start. Where in the MSM the time-dependent 

confounding is typically adjusted for using weighting, they considered a method of many 

successive Cox analyses, comparing the event histories of individuals starting treatment and the 

ones not yet on treatment in different time intervals separately. Individuals not on treatment by 

the start of the trial were considered to be artificially censored at the time of later treatment start.  

One of the motivations behind the use of sequential Cox approach in the study was to 

look at alternatives to IPT weighting. In the sequential Cox method the IPT weights were 

avoided, partly by using artificial censoring to censor individuals at later treatment start. It was to 

be expected that individuals with certain covariate histories were more likely to get artificially 

censored due to later treatment start than others, which would make the artificial censoring 

dependent on disease history. In addition, ordinary censoring could also be dependent. To adjust 

for this bias, both types of dependent censoring were accounted for using IPC weighting. The 

problem of unstable IPT weights was based on the fact that the weights for individuals on 

treatment were calculated using the inverse of the probability of starting treatment. That way, an 

estimated small probability of starting treatment was to give a large weight. IPC weights were 

only calculated using the probability of not being censored. Considering this there were usually 
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no situations which would involve dividing by a number close to zero. Thus, the same problem 

of unstable weights was not present. In summary, Jon Michael Gran et al(2010) made five main 

assumptions for their estimate of the treatment effect to be a causal estimate; these are (i) the 

chosen covariates are sufficient to adjust for confounding, (ii) the model for estimating the 

hazard rate is correct, (iii) the model estimating the weights used to adjust for any dependent 

censoring is correct, (iv) the effect of treatment is the same in all mimicked trials, and (v) the 

effect is the same for all covariate histories before the start of the mimicked trials given 

covariates at the starting time. 

2.11.1 Accelerated Failure Time Models for Survival Analysis in Studies with Time-

Varying Treatments 

As it is widely believed two useful models for survival analysis are the Cox proportional 

hazards model and the accelerated failure time (AFT) model. The widely used Cox model 

measures causal effect on the hazard (rate) ratio scale, whereas the less used AFT model, 

measures causal effect on the survival time ratio scale. Both the Cox model and semi parametric 

versions of the AFT model according to Miguel et al (2005) are models that leave the baseline 

hazard (or, equivalently, the baseline survival distribution) unspecified. However, even in the 

absence of unmeasured confounding and model misspecification, these standard models for 

survival analysis will provide estimates that fail to have a causal interpretation when: (i) there 

exists a measured time-dependent risk factor for survival that also predicts subsequent treatment, 

and (ii) past treatment history predicts subsequent risk factor level. Factors that meet condition 

(i) are known as time-dependent confounders. For example, when estimating the causal effect of 

highly active antiretroviral therapy (HAART) on the survival of individuals infected with the 

human immunodeficiency virus (HIV), condition (i) is met by the variable CD4 cell count 

because a low CD4 cell count is both a risk factor for survival and used by clinicians to decide 

whether to initiate HAART. Also, condition (ii) is met because prior HAART use increases CD4 

cell count. Therefore, including the time-dependent confounder CD4 cell count in a standard Cox 

or AFT model may not appropriately adjust for confounding. In contrast to standard Cox and 

AFT models, structural Cox and AFT models can be used to estimate causal effects when 

conditions (i) and (ii) hold. Marginal structural Cox model has previously been used to estimate 

the causal effect of HAART on the hazard of AIDS or death of HIV-infected individuals. The 

causal hazard ratio from the marginal structural model was 0.54 (95% confidence interval [CI]: 
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0.38, 0.78) when comparing continuous treatment with HAART versus no treatment with 

HAART. This hazard ratio was estimated by inverse probability weighting. The simultaneous 

presence of conditions (i) and (ii), and thus the problem of time-dependent confounding by 

factors affected by prior treatment, is ubiquitous in pharmaco epidemiology. Other examples of 

time-dependent confounders that are affected by prior treatment are upper gastrointestinal 

bleeding when studying the effect of NSAIDs on gastric cancer, measures of disease severity 

when studying the effect of methotrexate on the mortality of patients with rheumatoid arthritis 

and hematocrit when studying the effect of erythropoietin on the mortality of dialyzed patients. 

In their paper Miguel et al., (2005) reviewed the differences between structural models 

and standard regression models for survival analysis. They describe a structural AFT model, and 

illustrated the application of this model for estimating the effect of HAART on AIDS-free 

survival in two prospective cohort studies of HIV-infected individuals. They found out that 

Nested structural AFT models and marginal structural Cox models can be used to consistently 

estimate the effect of a time-dependent exposure on survival in the presence of time-dependent 

confounders affected by prior exposure. On the other hand, standard models for survival analysis 

may yield biased estimates of causal effect because they adjust for time-dependent confounding 

by including the confounders as covariates in the model. To avoid this problem, structural 

models adjust for time-dependent confounding by g-estimation or inverse probability weighting. 

Using a nested structural AFT model, they estimated that continuous HAART increased survival 

time by 2.5 fold in the MACS/WIHS. 

Their causal effect estimates from a structural AFT model are consistent with those from 

a marginal structural Cox model. It is reassuring that these two very different methods for 

estimating causal effects yield similar results, and that both arrive at the same qualitative 

conclusion as a previously conducted randomized trial (Hammer et al.,1997). In contrast, a 

standard associational Cox model did not find a substantially lower mortality rate among those 

treated compared with those untreated with HAART. 

According to Donglin and Lin (2007), the accelerated failure time model provides a 

natural formulation of the effects of covariates on potentially censored response variable. The 

existing semi parametric estimators are computationally intractable and statistically inefficient. 

In their article they proposed an approximate non-parametric maximum likelihood method for 

the accelerated failure time model with possibly time-dependent covariates. They estimated the 
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regression parameters by maximizing a kernel-smoothed profile likelihood function. The 

maximization was achieved through conventional gradient-based search algorithms. The 

resulting estimators were consistent and asymptotically normal. The limiting covariance matrix 

attained the semi-parametric efficiency bound and could be consistently estimated. They also 

provide a consistent estimator for the error distribution. Extensive simulation studies 

demonstrated that the asymptotic approximations were accurate in practical situations and the 

new estimators were considerably more efficient than the existing ones. 

2.12 Akaike Information Criterion (AIC) 

AIC is an asymptotically un-biased estimator of the expected relative Kullback-Leibler 

information quantity or distance (K-L) (Kullback and Leibler, 1951), which represents the 

amount of information lost when we use model A to approximate model B.upon computing AIC, 

the preferred model is the one with the smallest AIC value (Akaike, 1974).The AIC for a given 

model is a function of its maximized log-likelihood (l) and the number of estimable parameters 

(K): 

AIC = −2l + 2K 

In a study by Mohamad et al,(2007) where their main objective was to compare two 

survival regression methods; cox regression and parametric models in patients with gastric 

adenocarcinomas who registered at Taleghani hospital. They retrospectively studied 746 cases 

from February 2003 through January 2007. Gender, age at diagnosis, family history of cancer, 

tumor size and pathologic distant of metastasis were selected as potential prognostic factors and 

entered into the parametric and semi parametric models. Weibull, exponential and lognormal 

regression were performed as parametric models with the Akaike Information Criterion (AIC) 

and standardized of parameter estimates to compare the efficiency of models. For the aim of 

comparison among parametric and semi parametric models they used Akaike Information 

Criterion (AIC) and standardized of parameter estimates. The AIC proposed in Akaike (1974), is 

a measure of the goodness of fit of an estimated statistical model. It is grounded in the concept of 

entropy. The AIC is an operational way of trading off the complexity of an estimated model 

against how well the model fits the data. 

The survival results from both Cox and Parametric models showed that patients who 

were older than 45 years at diagnosis had an increased risk for death, followed by greater tumor 

size and presence of pathologic distant metastasis.The evaluation criteria indicated Cox and 
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Exponential model are similarly the best models in multivariate analysis and same conclusions in 

univariate analysis. Although it seems that there may not be a single model that is substantially 

better than others, the data strongly supported the log normal regression among parametric 

models in univariate analysis and it can be lead to more precise results as an alternative for Cox. 
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CHAPTER THREE 

3.0 METHODOLOGY 

3.1 Introduction to the Chapter 

This chapter describes the method that was used to meeting the study objectives. Cox 

Proportional Hazard and Accelerated Failure Time Models were used on historical data set and 

evaluated using Akaike information criterion. A description of the research setting, research tools 

used, research procedure used and the ethical issues relating to the study are also given. 

3.2 Study setting  

The study was carried out in Karuri Health Center. Karuri Health Centre was started in 1940’s; 

the running of the health Central is by the Centre Government (Ministry of Health). It is 

classified as a level 3 facility. It offers various services including curative, preventive and 

promotive. It is located in Karuri Location which is a location of Kiambu East District in 

Kiambu County. The health center is headed by a Clinical Officer who is deputized by a Nursing 

Officer. It has a Comprehensive Care Centre (CCC) which serves HIV positive clients. Currently 

3459 patients are enrolled in the clinic with 65% of them already on HAART 

3.3 Empirical study 

The data that used in this study was obtained from Karuri Health Centre in Kiambu County.  

Kiambu East District has several centers which provide ART care to PLWHIV where the units in 

the clinic have nurses, a pharmacy, data clerks, rooms, equipment and etc. The district started 

offering free ART service in 2005. Data for this study were extracted from the available standard 

national medical registers, which have been adopted by the Ministry of Health (MOH). The 

registers include the Pre ART register (register of patients at their first visit), the ART register 

(registration after ART initiation), and the follow-up patient form. Sampling was carried out 

using simple random sampling.The resulting sample from the sample frame  comprised all cases 

of HIV-infected patients older than 18 years who have started HIV/AIDS treatment between 

January 1st 2008 to 31st December 2012 and followed for the outcomes of either the event (death) 

or censored (dropped out, lost to follow up, transferred out to other centers or on follow up at the 

end of study time). The end of the follow-up time was 31st December 2012. 
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3.4 Variables of the study 

3.4.1 The Response Variable 

The response or outcome variable in this study is the survival time measured (in months) from 

the date of the ART treatment’s start until the date of the patient’s death or censor. 

3.4.2 Predictor Variables 

The predictor variables in survival data analysis are called covariates. These are explanatory 

variables which are assumed to influence the survival of HIV infected patients and are given 

below. 

1. Age in years… … … … … … … … … … … … … … … … … … . . … … …푋  

2. Sex (Male, Female) … … … … … … … … … … … … … … . … … … …푋  

3. Baseline Weight (kg) … … … … … … … … … … … … … . … … … …푋  

4. Substance abuse (Smoking, Alcohol)(no, yes) … … … … … … …푋  

5. Base line CD4 cell/푚푚 … … … … … … … … … . … … … … … … …푋  

6. Regimen type… … … … … … … … … … … … … … . … … . . … … … …푋  

7. WHO Clinical staging on HAART initiation. … … … … … . … …푋  

8. BMI… … … … … … … … … … … … … … … … … … … … … … … … . …푋  

9. Tb treatment status… … … … … … … … … … … … … … … … … … …푋  

10. Drug adherence… … … … … … … … … … … … … … … … … … . … …푋  

3.5 Study design 

It was a retrospectively study where a total of 248 subjects were sampled .The period of study 

was from 1st January  2008 through 31st December  2012.Gender, age at initiation of HAART, 

baseline weight (kg) ,substance abuse (smoking, alcohol or any other drug), CD4 cell count 

(cells/푚푚 )taken at the beginning of the study,  regimen type (TDF +3TC+EFV or NVP and 
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AZT+3TC+NVP or EFV),history of drug adherence, whether the patient is on tuberculosis 

treatment or not and the world health clinical staging at the initiation of HAART Were the 

predictor variables.Cox Proportional Hazard model a semi-parametric model and Accelerated 

Failure Time a parametric model (Weibull, Exponential and lognormal form ) were performed 

with the Akaike Information Criterion (AIC) been used  to compare the efficiency of models. 

3.6 Sampling Method 

Sample size determination was addressed in the original study. 

The following formula was used for sample size computation: 

n =
( )

( )
 

where  α = significant level (0.05) 

1-β= the power of the study (90%) 

푍 / =Z-value attributed to α/2 (1.96) 

푍 = 푍 − 푉푎푙푢푒 푎푡푡푟푖푏푢푡푒푑 푡표 1 − 훽(1.28) 

µ − µ  = the expected difference between the subjects on TDF +3TC+EFV or NVP and 

AZT+3TC+NVP or EFV. 

This gave a total of 288 but only those whose data was complete were analyzed giving a total of 

248 subjects. 

3.7 Ethical Aspects 

All facets of the relevant ethics were adequately addressed by the primary study; hence was not 

replicated here except for a formal application and subsequent acquisition of the original datasets 

from the Ministry of Health (MOH), Karuri Health Centre. 
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3.8 Validity and Reliability 

Content validity is based on the adequacy with which the items in an instrument measure the 

attributes of the study (Nunnally, 1978). Content validity of the method was ensured through 

constructive criticism from colleagues in my class and my supervisors who have an extensive 

experience in research. The study will be revised and improved according to advice and 

suggestions made. Reliability is the extent to which any measuring procedure/method yields the 

same results on repeated trials (Carmines & Zeller, 1979). The reliability of the method will be 

ensured through fitting the model to hypothetical datasets. Furthermore, the reliability and 

validity of the results will be obtained through member checks to help indicate whether the 

findings appeared to match with perceived authenticity. This will be done in order to limit the 

distorting effects of random errors on the findings. 

3.9 Method 

3.9.1 Survival Analysis  

3.9.2 Basic Concepts on Survival Analysis 

The primary concept in survival analysis is survival time which is also called failure time. 

Survival time is a length of time that is measured from time origin to the time the event of 

interest occurred. To determine survival time precisely, there are three requirements: A time 

origin must be unambiguously defined, a scale for measuring the passage of time must be agreed 

upon and finally the definition of event (often called failure) must be entirely clear. The specific 

difficulties in survival analysis arise largely from the fact that only some individuals have 

experienced the event and other individuals have not had the event in the end of study and thus 

their actual survival times are unknown. This leads to the concept of censoring. Censoring 

occurred when we have some information about individual survival time, but we do not know the 

survival time exactly. 

There are three types of censoring: right censoring, left censoring, and interval censoring. 

Right censoring is said to occur if the event occurs after the observed survival time. Let C denote 

the censoring time, that is, the time beyond which the study subject cannot be observed. The 
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observed survival time is also referred to as follow up time. It starts at time 0 and continues until 

the event X or a censoring time C, whichever comes first. 

The observed data are denoted by (T, δ), where T = min (X, C) is the follow-up time, and δ = 

퐼( )  is an indicator for status at the end of follow-up, 

δ =  퐼( ): =          0 푖푓 푋 >  퐶 (표푏푠푒푟푣푒푑 푐푒푛푠표푟푖푛푔)
1 푖푓 푋 ≤   퐶 (표푏푠푒푟푣푒푑 푓푎푖푙푢푟푒)  

There are some reasons why right censoring may occur, for example, no event before the 

study ends, loss to follow-up during study period, or withdrawal from the study because of some 

reasons. The last reason may be caused by competing risks. The right censored survival time is 

then less than the actual survival time. 

Censoring can also occur if we observe the presence of a condition but do not know 

where it began. In this case we call it left censoring, and the actual survival time is less than the 

observed censoring time. If an individual is known to have experienced an event within an 

interval of time but the actual survival time is not known, we say we have interval censoring. 

The actual occurrence time of event is known within an interval of time. Right censoring is very 

common in survival time data, but left censoring is fairly rare. An important assumption for 

methods presented in survival analysis studies for the analysis of censored survival data is that 

the individuals who are censored are at the same risk of subsequent failure as those who are still 

alive and uncensored. i.e. a subject whose survival time is censored at time C must be 

representative of all other individuals who have survived to that time. If this is the case, the 

censoring process is called non-informative. Statistically, if the censoring process is independent 

of the survival time. i.e. 

P(X ≥ x; C ≥x) = P(X ≥x) P(C ≥ x), 

Then we will have non-informative censoring. Independence censoring is a special case of non-

informative censoring. In this study, we assumed that the censoring is non-informative right 

censoring. 

 



27 
 

3.9.2.1 Survival time distribution 

Let T be a random variable denoting the survival time. The distribution of survival times is 

characterized by any of three functions: the survival function, the probability density function or 

the hazard function. The survival function is defined for both discrete and continuous T, and the 

probability density and hazard functions are easily specified for discrete and continuous T. 

The survival function is defined as the probability that the survival time is greater or equal to t. 

S (t) = P (T ≥ t), t ≥ 0. 

T discrete  

For a discrete random variable T taking well-ordered values 0≤ 푡 < t2 < …푡 , let the probability 

mass function be given by P (T = 푡 ) = f ( 푡 ), i = 1; 2…, then the survival function is 

                              S (t) = ∑ 푓/ (t ) 

                                      =∑f (tj) I (tj≥t), 

Where the indicator function I (푡 ≥t):=
0 if t < 푡

1 if  t  ≥ 푡 

In this case, the hazard function h (t) is defined as the conditional probability of failure at time tj 

given that the individual has survived up to time tj, 

hj= h(tj) = P (T = tj/ T≥tj) = ( )
( )

 = ( )
( )

 = 1 – ( )
( )

 

hence 

1- h(tj) =
 ( )

( )
,  and 

∏ (1 –  ℎ (푡푗)) / co  = ( )
( )

 * ( )
( )

 * … * ( )
( )

 = S(t)  ……………………………..(3.1) 

Since   S (t1) = 1 and S(t) = S(푡 ) 

Moreover,  
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f(tj) = h(tj) * S(tj) 

= 

ℎ(푡푗) (1 − ℎ(푡 )) 

………………………………………………………………………………..(3.2) 

3.9.2.2  T is absolutely continuous 

For an absolutely continuous variable T, The probability density function of T is 

f (t)=F’(t)= -S’(t), t≥0 

The hazard function gives the instantaneous failure rate at t given that the individual has survived 

up to time t, i.e.  

 

ℎ(푡) = 푙푖푚 ↓
( ⃒ ,t≥0 

There is a clearly defined relationship between S(t) and h(t), which is given by the formula 

h(t) = f(t)/S(t) = 푙표푔푠(푡) …………………………………………………………….( 3.3)             

 then          s(t)=exp [−∫ ℎ(푥)푑푥]= exp (-H(t)), t≥0,……..……………………..…..(3.4) 

where H(t)= ∫ ℎ(푥)푑푢 is called the cumulative hazard function, which can be obtained from the 

survival function since H (t) = -log S (t).  

The probability density function of T can be written 

f(t) = h(t) exp[-∫ ℎ(푥)푑푥], t≥0 

These three functions give mathematically equivalent specification of the distributions of 

the survival time T. If one of them is known, the other two are determined. One of these 

functions can be chosen as the basis of statistical analysis according to the particular situations. 
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The survival function is most useful for comparing the survival progress of two or more groups. 

The hazard function gives a more useful description of the risk of failure at any time point. 

3.9.3 Non-parametric methods 

In survival analysis, it is always a good idea to present numerical or graphical summaries 

of the survival times for the individuals. In general, survival data are conveniently summarized 

through estimates of the survival function and hazard function. The estimation of the survival 

distribution provides estimates of descriptive statistics such as the median survival time. These 

methods are said to be non-parametric methods since they require no assumptions about the 

distribution of survival time. In order to compare the survival distribution of two or more groups, 

we will use log-rank tests. 

3.9.3.1 The Kaplan-Meier estimate of the survival function 

The life table is the earliest statistical method to study human mortality meticulously, but its 

standing has been reduced by the modern methods, like the Kaplan-Meier (K-M) method. In 

clinical studies, individual data is usually available on time to death or time to last seen alive. 

The K-M estimator for the survival curves is usually used to analyze individual data, whereas the 

life table method applies to grouped data. Since the life table method is a grouped data statistic, it 

is not as precise as the K-M estimate, which uses the individual values. Suppose that r 

individuals have failures in a group of individuals. Let 0≥ t (1) < …<t(r) < ∞ be the observed 

ordered death times. Let rj be the size of the risk set at t (j), where risk set denotes the collection 

of individuals alive and uncensored just before t(j). Let dj be the number of observed deaths at t (j), 

j = 1; …, r. Then the K-M estimator of S (t) is defined by 

Ŝ (푡) = (1 −  
푑
푟 )

: ( )

 

This estimator is a step function that changes values only at the time of each death. Suppose that 

the distribution is discrete, with atoms hj at finitely many specified points 0≤T1< T2 <… <Tj: the 

survival function S(t) may be expressed in terms of the discrete hazard function hj as  

              



30 
 

Ŝ (푡) = (1 −  ℎ )

 /⃒

 

To derive the full likelihood from a sample of n observations, we will first collect all the terms 

corresponding to the atom휏j . Let bi = j if the ith individual dies at 휏 : Using (3.2), the 

contribution to the total log likelihood is 

 

 

logh푏 + 

  푙표푔(1 − ℎ )
  

 

Let ei= j if the ith individual is censored at 휏j ; using the equation (3.1), the log likelihood 

contribution to the total likelihood is 

log(1− ℎ ) 

Then the total log likelihood is given by  

l= ∑ logℎ +∑ [∑ log(1 − ℎ )]  + ∑ [∑ log(1 − ℎ푘)]  

 

=∑ 푑  푙표푔  ℎ  + ∑ [∑ 푑 ] log (1-hk) + ∑ [∑ 푐 ] log (1- hk) 

= ∑ [푑 log ℎ + (rj –dj ) log (1 –hj) ], 

Where dj is the number of observed death at Tj , cj is the number censored at [휏j, 휏j+1),and rj is 

the number of living and uncensored at 휏j If  hj is the solution of 

                                                                                                 =  –  = 0 
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then,  

                                                                                           ĥj= dj/rj. 

This maximizes the likelihood since the total log likelihood function is concave down. So that 

the K-M estimator of the survival function is 

 

 

Ŝ(t)= ∏ (1− ĥ )
⃒

 

 

= 

(1 −
푑
푟 )

/⃒

 

The K-M estimator gives a discrete distribution. If the observations are modeled to come from 

unknown continuous distribution, the maximum likelihood estimator does not exist.  

3.9.3.2 Greenwood’s formula 

Confidence interval for the survival probability is calculated by Greenwood’s formula; first, we 

will need the variances of the ĥjs. Let the number of individual at risk at t (j) be rj and the number 

of deaths at t (j) be dj. Given rj, the number of individuals surviving through the interval [t (j), t 

(j+1)), rj _ dj, can be assumed to have binomial distribution with parameters rj and 1-hj: The 

conditional variance of rj - dj is given by 

V (rj - dj⃒rj) = rjhj(1 - hj). 

The variance of ĥj is  

V(ĥj/rj) = V (1- ĥj) = V(1-  ) = ( )
. 
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Since ĥj is a conditional independent of ĥ1,…, ĥ , given r1, … rj-1, the delta method can be 

used to obtain. 

V (In Ŝ(t)⃒rj: t(j)<t) = V [∑ (푙푛 1 − ĥ )⃒: ( )  rj] 

= ∑ 푉[ln (1− ĥ )⃒r ]: ( )  

≈∑ (: ( ) 푙푛 (1 − 푥  ))  푥 = ĥ V ( ĥj/rj 

= ∑ {−
ĥ

}: ( )
2 ( ) , j=1, …, r 

we estimate this by simply replacing hj with ĥj = dj/rj, which gives 

V (lnŜ(t)) = ∑
( ): ( ) ,  j=1,…, r 

Let Y = ln Ŝ (t), again using the delta method, we get,  

V  (Ŝ (t)) ≈ [Ŝ (t)]2∑ : ( ) .    ……………………………………………………. (3.5) 

This is known as Greenwood’s formula. The K-M estimator and functions of it have been proved 

to be asymptotically normal distributed (Andersen, P. K., 1993).Thus the confidence intervals 

will be constructed by the normal approximation based on S (t). 

3.9.3.3 Estimating the median and percentile of survival time 

Since the distribution of survival time tends to be positively skewed, the median is preferred for 

a summary measure. The median survival time is the time, beyond which 50% of the individuals 

under study are expected to survive, i.e., the value of t (50) at Ŝ (t (50)) = 0:5. The estimated 

median survival time is given by 

ť (50)= min {ti⃒Ŝ(ti)<0.5}, 

Where ti is the observed survival time for the ith individual, i = 1; 2; …; n. In general, the 

estimate of the pth percentile is  
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t  (p) = min {ti⃒Ŝ(ti)< 1 -  }. 

The variance of the estimator of the pth percentile is 

V [Ŝ (t (p))] = ( Ŝ( ( ))
( )

)2 V {t(p)} 

= (- f  (t (p))) 2 V {t (p)}. 

The standard error of t’ (p) is therefore will be given by 

SE [t  (p)] = 
̂( ( ))

 SE [Ŝ (t  (p))] 

The standard error of Ŝ (t’ (p))will be obtained using Greenwood’s formula, given in equation 

(3.5) An estimate of the probability density function at the pth percentile t’ (p) is used by many 

software packages 

f [t (p)] = Ŝ[û( )] Ŝ[ ̂( )]
(̂ )  û( )

, 

where, 

û(p)  = max {t(j)⃒Ŝ(t(j))≥ 1 -  + ε},  

l (p) = min {t(j)⃒Ŝ(t(j)) ≤ 1-  – ε}, 

t(j) is jth ordered death time, j = 1, 2, … r. ε = 0.05 is typically used by a number of statistical 

packages. Therefore, for median survival time, û (50) is the largest observed survival time from 

the K-M curve for which Ŝ (t) ≥0.55, and l’ (50) is the smallest observed survival time from the 

K-M curve for which Ŝ (t) ≤0.45 

The 95% confidence interval for the pth percentile t’ (p) has limits of 

t’(p) ± 1.96SE{t’(p)} 

3.9.3.4 Non-parametric comparison of survival distributions 

The K-M survival curves can give us an insight about the difference of survival functions in two 

or more groups, but whether this observed difference is statistically significant requires a formal 
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statistical test. There are a number of methods that can be used to test equality of the survival 

functions in different groups. One commonly used non-parametric tests for comparison of two or 

more survival distributions is the log-rank test which we used in this study. 

For two groups, let t (1)<t (2)<…<t (k)be the ordered death times across the two groups. Suppose 

that dj failures occur at t (j) and that rj subjects are at risk just prior to t (j) (j = 1, 2,…,k). Let dij and 

rij be the corresponding numbers in group i (i = 1, 2).The log-rank test will compare the observed 

number of deaths with the expected number of deaths for group i. Consider the null hypothesis 

S1 (t) = S2 (t), i.e. there is no difference between survival curves in two groups. Given rj and dj, 

the random variable d1j has the hyper geometric distribution 

( )
 . 

Under the null hypothesis, the probability of death at t(j) does not depend on the group, i.e. the 

probability of death at t(j) is  . So that the expected number of deaths in group one is 

E(d1j) = e1j = r1jdjrj
-1

 

The test statistic is given by the difference between the total observed and expected number of 

deaths in group one 

UL = ∑ (푑 −e1j)………………………………………………………………….(3.6) 

Since d1j has the hyper geometric distribution, the variance of d1j is given by 

V’1j = V (d1j)=    ⃒ ( )
/ ( )

 ,…………..…………………………………………(3.7) 

V(UL) = ∑ 푉  = VL 

Under the null hypothesis, statistic (3.6) has an approximate normal distribution with zero mean 

and variance VL. This then follows 

 ~ 휘  
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There are several alternatives to the log-rank test to test the equality of survival curves, for 

example, the Wilcoxon test .These tests may be defined in general as follows: 

∑ 푤 (푑 − 푒 )
∑ 푤 푉

 

where wj are weights whose values depend on the specific test. 

 

The Wilcoxon test uses weights equal to risk size at t(j), wj = rj.  This gives less weight to longest 

survival times. Early failures receive more weight than later failures. The Wilcoxon test places 

more emphasis on the information at the beginning of the survival curve where the number at 

risk is large. This type of weighting may be used to assess whether the effect of treatment on 

survival is strongest in the earlier phases of administration and tends to be less effective over 

time. Whereas the log-rank test uses weights equal to one at t(j), wj = 1. This gives the same 

weight to each survival time. Therefore, Wilcoxon statistic is less sensitive than the log-rank 

statistic to difference of d1j from e1j in the tail of the distribution of survival times.  

The log-rank test is appropriate when hazard functions for two groups are proportional over time, 

i.e., h1 (t) = Øh2(t) So it is the most likely to detect a difference between groups when the risk of 

a failure is consistently greater for one group than another and it was the one that was used in 

this study. 

3.9.4 Cox Regression Model 

The Cox Proportional Hazards model is given by: 

h (t⃒X) = h0 (t) exp (β1x1+ β2x2 + … + βpxp) = h0(t) exp (β’x), 

where h0(t) is called the baseline hazard function, which is the hazard function for an individual 

for whom all the variables included in the model are zero., X = (x1,x2, … , xp)’ is the values of 

the vector of explanatory variables for a particular individual, and β’= (β1, β2, …, βp) is a vector 

of regression coefficients. 

The corresponding survival functions are related as follows: 
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S (t⃒X) =푠 (푡) 
 (∑ )  

This model, also known as the Cox regression model, makes no assumptions about the form of 

ℎ (t) (non-parametric part of model) but assumes parametric form for the effect of the predictors 

on the hazard (parametric part of model). The model is therefore referred to as a semi-parametric 

model. The beauty of the Cox approach is that this vagueness creates no problems for estimation. 

Even though the baseline hazard is not specified, we can still get a good estimate for regression 

coefficients β hazard ratio, and adjusted hazard curves. The measure of effect is called hazard 

ratio. The hazard ratio of two individuals with different covariates x and x∗ will be given by: 

̂
퐻푅 = ( )  ( )

( )  ( ∗)
 = exp {∑훽 ′ (X-X*)}. 

This hazard ratio is time-independent, which is why this is called the proportional hazards model. 

3.9.4.1  Partial likelihood estimate for Cox proportional hazards model 

Fitting the Cox proportional hazards model, we estimated h0 (t) and β. One approach was to 

attempt to maximize the likelihood function for the observed data simultaneously with respect to 

h0 (t) and β. A more popular approach is proposed by Cox, D. R., and Oakes, D(1984) in which a 

partial likelihood function that does not depend on h0 (t) is obtained for β. Partial likelihood is a 

technique developed to make inference about the regression parameters in the presence of 

nuisance parameters (h0 (t) in the Cox PH model). In this part, I we constructed the partial 

likelihood function based on the proportional hazards model. 

Let t1 t2 ,…,tn be the observed survival time for n individuals. Let the ordered death time of r 

individuals be t1<t2<,…,<t(r) and let R (푡 ) be the risk set just before t(j)and r(j) for its size. So that 

R (t(j)) is the group of individuals who are alive and uncensored at a time just prior to t(j). The 

conditional probability that the ith individual dies at t(j) given that one individual from the risk set 

on R (t(j)) dies at t(j) is P(individual i dies at t(j)⃒ one death from the risk set R (t(j)) at t(j)) 

= 
(     ( )) 

 (    ( )
 

= 
(     ( ))

∑ (     ( )( ( )
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≈’
{     ( ( ), ( )  )}/

∑ {     ( ( )( ( ) , ( ) )}/
 

= 
 ↓     ( ), ( )  /

 ↓ ∑ {     ( ( ) ( ), ( ) )/
 

= 
( ( )

∑ ( ( )( ( )
 

=
( ( ))  ( ( ( ))

∑ ( ( )( ( )  ( ( ( )
 

=
 ( ( ( )

∑ ( ( )( ( )
 . 

Then the partial likelihood function for the Cox PH model is given by 

L(β) =∏
 ( ( ( )

∑ ( ( )( ( )
 ,  ………………………………………………………… (3.8) 

in which xi(t(j)) is the vector of covariate values for individual i who dies at t(j): This likelihood 

function is only for the uncensored individuals. Let t1, t2 ,…, tn be the observed survival time for 

n individuals and δi be the event indicator, which is zero if the ith survival time is censored, and 

unity otherwise. The likelihood function in equation can be expressed as 

L(β) = ∏ [
 ( ( ( )

∑ ( ( )( ( )
]δi

,     ........................................................................................................................(3.9) 

where R(ti) is the risk set at time ti 

The partial likelihood is valid when there are no ties in the dataset. That means there is no two 

subjects who have the same event time. 

3.9.4.2  Proportional hazard assumption checking 

The main assumption of the Cox proportional hazards model is proportional hazards. 

Proportional hazards means that the hazard function of one individual is proportional to the 

hazard function of the other individual, i.e., the hazard ratio is constant over time. There are 

several methods for verifying that a model satisfies the assumption of proportionality.  
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3.9.4.2.1  Graphical method 

COX PH survival function is got by the relationship between hazard function and survival 

function 

S(t, x1) = S0(t)exp(∑ β x ) 

Where X = (x1,x2, …xp)’ is the values of the vector of explanatory variables for a particular 

individual. When taking the logarithm twice, we get 

ln[-lnS(t,x)] = ∑ β x + ln [-lnS0(t)]. 

Then the difference in log-log curves corresponding to two different individuals with variables x1 

= (x11; x12 ,…, x1p) and x2 = (x21 ,x22 ,…, x2p) is given by 

ln[-lnS(t,x)] – ln[S(t,x2) ]=∑ 훽 (푥 − 푥 )  

which does not depend on t. This relationship is very helpful to help us identify situations where 

we may or may not have proportional hazards. By plotting estimated log (-log (survival)) versus 

survival time for two groups we would see parallel curves if the hazards are proportional. This 

method does not work well for continuous predictors or categorical predictors that have many 

levels because the graph becomes "cluttered". Furthermore, the curves are sparse when there are 

few time points and it may be difficult to tell how close to parallel is close enough. 

3.9.4.2.2  Adding time-dependent covariates in the Cox model 

Time-dependent covariates are created by creation of interactions of the predictors and a function 

of survival time and including them in the model. For example, if the predictor of interest is Xj , 

then we create a time-dependent covariate Xj(t), Xj(t) = Xj x g(t) , where g (t) is a function of 

time, e.g., t, log t or Heaviside function of t. The model assessing PH assumption for Xj adjusted 

for other covariates is 

h(t, x (t)) = h0 (t) exp[β1x1 +β2x2 +… +βjxj +… +βpxp +δxjx g (t)]. 

Where x (t) = (x1; x2 ,…, xp ,xj (t))’ is the values of the vector of explanatory variables for a 

particular individual. The null hypothesis to check proportionality is that δ = 0. The test statistic 
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can be carried out using either a Wald test or a likelihood ratio test. In the Wald test, the test 

statistic is W = (δ /se(δ ))2. The likelihood ratio test will calculates the likelihood under null 

hypothesis, L0 and the likelihood under the alternative hypothesis, La. The LR statistic is then   

LR = -2 ln (L0/La) = -2 (l0 - la), where l0, la are log likelihood under two hypothesis respectively. 

Both statistics have a chi-square distribution with one degree of freedom under the null 

hypothesis. If the time-dependent covariate is significant, i.e., the null hypothesis is rejected, 

then the predictor is not proportional. In the same way, we assessed the PH assumption for 

several predictors simultaneously. 

3.9.4.2.3  Tests based on the Schoenfeld residuals 

The other statistical test of the proportional hazards assumption is based on the Schoenfeld 

residual .The Schoenfeld residuals are defined for each subject who is observed to fail.If the PH 

assumption holds for a particular covariate then the Schoenfeld residual for that covariate will 

not be related to survival time. So this test will be accomplished by finding the correlation 

between the Schoenfeld residuals for a particular covariate and the ranking of individual survival 

times. The null hypothesis is that the correlation between the Schoenfeld residuals and the 

ranked survival time is zero. Rejection of null hypothesis concludes that PH assumption is 

violated. 

3.9.4.2.4 Cox proportional hazards model diagnostics 

After a model has been fitted, the adequacy of the fitted model needs to be assessed. The model 

checking procedures below are based on residuals. In linear regression methods, residuals are 

defined as the difference between the observed and predicted values of the dependent variable. 

However, when censored observations are present and partial likelihood function is used in the 

Cox PH model, the usual concept of residual is not applicable. A number of residuals have been 

proposed for use in connection with the Cox PH model. We will use three major residuals in the 

Cox model: the Cox-Snell residual, the deviance residual, and the Schoenfeld residual.  

3.9.4.2.5  Cox-Snell residuals and deviance residuals 

The Cox-Snell residual is given by Cox and Snell (1968) The Cox-Snell residual for the ith 

individual with observed survival time ti is defined as 
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rci = exp (β ’xi ) H 0(ti) = - log S i(ti), 

Where H 0 (ti) is an estimate of the baseline cumulative hazard function at time ti, which was 

derived by Kalbfleisch and Prentice (2002).This residual is motivated by the following result: 

Let T have continuous survival distribution S(t) with the cumulative hazard H(t) = -log(S(t)).  

Thus, ST (t) = exp (-H(t)). Let Y = H(T) be the transformation of T based on the cumulative 

hazard function. Then the survival function for Y is 

SY(y) = P(Y>y) = P(H(t)>y) 

=P(T>퐻  (y)) = ST (퐻 (y)) 

= exp (-HT (퐻 (y)) = exp (-y). 

Thus, regardless of the distribution of T, the new variable Y = H(T) has an exponential 

distribution with unit mean. If the model was well fitted, the value S i (ti) would have similar 

properties to those of Si (ti) . So rci = -log S i (ti) will have a unit exponential distribution with 

fR(r) = exp (-r). Let SR(r) denote the survival function of Cox-Snell residual rci . Then 

SR(r) = ∫ 푓 (푥)푑푥= ∫ exp(−푥)푑푥 = exp (−푟), 

HR(r) = -log SR(r) = -log (exp (-r)) = r 

and  

HR (r) = -log SR(r) = -log (exp (-r)) = r 

 

Therefore, we will use a plot of H(rci) versus rci to check the fit of the model. This gives a 

straight line with unit slope and zero intercept if the fitted model is correct. The Cox-Snell 

residuals will not be symmetrically distributed about zero and cannot be negative. The deviance 

residual is defined by 

rDi= sign(rmi)[-2{rmi + δilog(δi-rmi}] 1/2
 

Where the function sign (.) is the sign function which takes the value 1 if rmi is positive and -1 if 

rmi is negative; rmi = δi - rci is the martingale residuals for the ith individual; and δi = 1 for 
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uncensored observation, δi = 0 for censored observation. The martingale residuals take values 

between negative infinity and unity. They have a skewed distribution with mean zero. The 

deviance residuals are a normalized transform of the martingale residuals . They also have a 

mean of zero but are approximately symmetrically distributed about zero when the fitted model 

is appropriate. Deviance residual can also be used like residuals from linear regression. The plot 

of the deviance residuals against the covariates can be obtained. Any unusual patterns will 

suggest features of the data that have not been adequately fitted for the model. Very large or very 

small values will suggest that the observation may be an outlier in need of special attention. In a 

fitted Cox PH model, the hazard of death for the ith individual at any time depends on the value 

of exp (β’0xi) which is called the risk score. A plot of the deviance residuals versus the risk score 

will be a helpful diagnostic to assess a given individual on the model. Potential outliers will have 

deviance residuals whose absolute values are very large. This plot will give the information 

about the characteristic of observations that are not well fitted by the model.  

3.9.4.2.6    Schoenfeld residuals 

All the above three residuals are residuals for each individual. I will describe covariate-wise 

residuals: Schoenfeld residuals The Schoenfeld residuals were originally called partial residuals 

because the Schoenfeld residuals for ith individual on the jth explanatory variable Xj is an 

estimate of the ith component of the first derivative of the logarithm of the partial likelihood 

function with respect to βj : From equation (3.2), this logarithm of 20 the partial likelihood 

function is given by 

( ) =∑ 훿 {푥 −  푎 } 

Where xij is the value of the jth explanatory variable j = 1, 2,…, p for the ith individual and 

aji = 
∑  ( )( )

∑ (( )
 

The Schoenfeld residual for ith individual on Xj is given by rpji = δi{xji - aji}. The Schoenfeld 

residuals sum to zero. 
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3.9.4.2.7  Strategies for analysis of non-proportional data 

If the statistic tests or other diagnostic techniques will give strong evidence of non-

proportionality for one or more covariates.To deal with this we use two popular methods: 

stratified Cox model and Cox regression model with time-dependent variables which are 

particularly simple and can be done using available software in my analysis. 

3.9.4.2.8  Stratified Cox model 

One method that we can use is the stratified Cox model, which stratifies on the predictors not 

satisfying the PH assumption. The data are stratified into subgroups and the model is applied for 

each stratum. The model is given by 

hig (t)=hog(t)exp(β’xig)Where g represents the stratum. 

The hazards are non-proportional because the baseline hazards may be different between strata. 

The coefficients β are assumed to be the same for each stratum g. The partial likelihood function 

is simply the product of the partial likelihoods in each stratum. A drawback of this approach is 

that we cannot identify the effect of this stratified predictor.  

3.9.4.2.9 Cox regression model with time-dependent variables 

Until now we have assumed that the values of all covariates did not change over the period of 

observation. However, the values of covariates may change over time t. Such a covariate is 

called a time-dependent covariate. The second method that we will consider is to model non-

proportionality by time-dependent covariates. The violation of PH assumptions are equivalent to 

interactions between covariates and time. That is, the PH model assumes that the effect of each 

covariate is the same at all points in time. If the effect of a variable varies with time, the PH 

assumption is violated for that variable. To model a time-dependent effect, we will create a time-

dependent covariate X (t), then β X (t) = βX x g (t). g (t) is a function of t such as t; log t or 

Heaviside functions, etc. The choice of time-dependent covariates may be based on theoretical 

considerations and strong clinical evidence. The Cox regression with both time independent 

predictors Xi and time-dependent covariates Xj(t) can be written  

h(t⃒x(t))= h0(t)exp [∑ 훽 푥  + ∑ 훼 푥 (푡)], 



43 
 

The hazard ratio at time t for the two individuals with different covariates x and x* will be  given 

by 

H R ’ (t) = exp [∑ 훽 (푥∗ − 푥 ) + ∑ 훼 푥∗(푡)] − 푥 (푡))]. 

Note that, in this hazard ratio formula, the coefficient α j is not time-dependent. α j represents 

overall effect of Xj(t) considering all times at which this variable was measured in this study. But 

the hazard ratio depends on time t. This means that the hazards of event at time t is no longer 

proportional, and the model is no longer a PH model. 

In addition to considering time-dependent variable for analyzing a time-independent variable not 

satisfying the PH assumption, there are variables that are inherently defined as time-dependent 

variables. One of the earliest applications of the use of time-dependent covariates is in the report 

by Crowley and Hu (1977), on the Stanford Heart Transplant study. Time-dependent variables 

are usually classified to be internal or external. An internal time-dependent variable is one that 

the change of covariate over time is related to the characteristics or behavior of the individual. 

For example, blood pressure, disease complications, etc. The external time-dependent variable is 

one whose value at a particular time does not require subjects to be under direct observations, 

i.e., values changes because of external characteristics to the individuals. For example, level of 

air pollution. 

3.9.4.3 Accelerated Failure Time Model 

Although parametric models are very applicable to analyze survival data, there are relatively few 

probability distributions for the survival time that can be used with these models. In these 

situations, the accelerated failure time model (AFT) is an alternative to the PH model for the 

analysis of survival time data. Under AFT models we measured the direct effect of the 

explanatory variables on the survival time instead of hazard. This characteristic allows for an 

easier interpretation of the results because the parameters measure the effect of the correspondent 

covariate on the mean survival time. Currently, the AFT model is not commonly used for the 

analysis of clinical trial data, although it is fairly common in the field of manufacturing. Similar 

to the PH model, the AFT model describes the relationship between survival probabilities and a 

set of covariates. 
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For a group of patients with covariate (X1,X2,…,Xp) , the model is written mathematically as 

S(t⃒x) = S0(t⃒n(x)), where S0(t) is the baseline survival function and η is an ‘acceleration factor 

that is a ratio of survival times corresponding to any fixed value of S(t). The acceleration factor 

is given according to the formula η(x) = exp (α1x1 + α2x2 + … + αpxp) 

Under an accelerated failure time model, the covariate effects will be assumed to be constant and 

multiplicative on the time scale, that is, the covariate impacts on survival by a constant factor 

(acceleration factor). 

According to the relationship of survival function and hazard function, the hazard function for an 

individual with covariate X1;X2,…,Xp is given by 

h (t⃒x) = [1/η (x)]h0[t /η(x)]……………………………………………………………….. (3.10) 

The corresponding log-linear form of the AFT model with respect to time is given by  

log Ti = μ + α1X1i +α2X2i + … + αpXpi + σ휖  

where μ is intercept, σ is scale parameter and 휖  is a random variable, assumed to have a 

particular distribution. 

For each distribution of 휖  there is a corresponding distribution for T. The members of the AFT 

model class include the exponential AFT model, Weibull AFT model, log- logistic AFT model, 

log-normal AFT model, and gamma AFT model. The AFT models are named for the distribution 

of T rather than the distribution of 휖 or log T. 

Table 3.1  Summary of parametric AFT models 

Distribution of 휖 Distribution of T 

Extreme value 1 Exponential  

Extreme 2 Weibull 

Logistic  Log-logistic 

Normal  Log- normal  
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Figure 3.1 Summary of parametric models 

 

 

 

 

 

 

 

The survival function of Ti can be expressed by the survival function of 휖  

Si(t) = P (Ti≥ t) 

= P (log Ti≥ log t) 

= P (μ + α1x1i + α2x2i + … + αpxpi + σ휖  ≥ log t)…………………………………………………(3.11) 

= P(εi≥
  ) 

= Sεi(
   

The distributions of εi and the corresponding distributions of Ti are summarized in Table 3.1, and 

the summary of the commonly used parametric models are described in Figure 3.1. 

The effect size for the AFT model is the time ratio. The time ratio comparing two levels of 

covariate xi (xi = 1 vs. xi = 0), after controlling all the other covariates is exp(αi), which is 

interpreted as the estimated ratio of the expected survival times for two groups. A time ratio 

above 1 for the covariate will implies that this covariate prolongs the time to event, while a time 

ratio below 1 indicates that an earlier event is more likely. Therefore, the AFT models will be 

interpreted in terms of the speed of progression of a disease. The effect of the covariates in an 
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accelerated failure time model is to change the scale, and not the location of a baseline 

distribution of survival times.  

3.9.4.3.1 Estimation of AFT model 

AFT models are fitted using the maximum likelihood method. The likelihood of the n observed 

survival times, t1, t2 ,…, tnwill be given by  

L(α,μ,σ) = ∏ {푓 (푡 )}훿 {Si(ti)}1-훿  

wherefi(ti) and Si(ti) are the density and survival functions for the ith individual at ti and δi is the 

event indicator for the ith observation. Using equation (3.11), the log-likelihood function will 

then given by 

log L (α,μ,σ) = ∑ {−훿 푙표푔 (휎푡 + 훿 푙표푔푓 (푍 ) + ( 1 – δi)log S휀 (Zi))}, 

whereZi = log ti – μ – α1x1i – α2x2i - … - αpxpi) ⃒ / σ.  

3.9.4.3.2 Weibull AFT model 

Suppose the survival time T has W(λ,γ) distribution with scale parameter λ and shape parameter γ 

From equation (3.10), under AFT model, the hazard function for the ith individual is 

Hi(t) = [1/ηi(X)]h0[t/ηi(X)] 

=[1/ηi(X)]λγ(t/ηi(X))γ-1 

=1/[ηi(X)]γ λγ(t)γ-1  

Where ηi = exp(α1x1i + α2x2i + … + αpxpi) for individual i with p explanatory variables. 

So the survival time for the ith patient is W(1/[ηi(X)]γ λ,γ). The Weibull distribution has the AFT 

property. 

If Ti has a Weibull distribution, then εi has an extreme value distribution (Gumbel distribution). 

The survival function of Gumbel distribution is given by 

S휀  (ε) = exp ( - exp (ε)). 
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From equation (3.11), the AFT representation of the survival function of the Weibull model is 

given by 

Si(t) = exp [- exp ( 
  ⋯ ))] 

= exp [ - exp (   …  ))t1/σ]…………………………………………..………(3.12) 

The PH representation of the survival function of the Weibull model is given by  

Si (t) = exp { - exp ( β1x1i  + … + βpxpi)λtγ}………………………………………………(3.13) 

Comparing the above two formulas (3.12) and (3.13), we can easily see that the parameter λ,γ,βj 

in the PH model will be expressed by the parameters μ,σ,αj in the AFT model: 

λ = exp ( - μ/σ),γ = 1/σ, βj = - αj/σ……………………………………………………………(3.14) 

Using equation (3.3), the AFT representation of hazard function of the Weibull model will be 

given by 

hi (t) = t − 1 exp (
  … )

………………………………………………(3.15) 

Suppose the pth percentile of the survival distribution for the ith individual is ti (p), which is the 

value such that Si (ti (p)) =  . From equation (4.4), we can easily get  

ti (p) = exp [ σ log { - log ( )} + μ + α’xi] 

The median survival time is 

ti(50) = exp [σlog(log2) + μ + α’xi]……………………………………………………….(3.16) 

To calculate the standard error of β jwe can use the appropriate covariance of a function of two 

parameter estimate 훳̂ 훳̂  which is given by  

(
̂
)2V (훳̂ ) + (

̂
)V  ( 2) + 2 (

̂ ̂
) Cov (훳̂ 훳̂ ). 

The approximate variance of βj is expressed as 
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V(β1)= (
̂
)2V (α j) + ( ̂

̂
)2V(σ ) +2(

̂
)(

̂
̂
)Cov (ά 휎̂  

The square root of this is the standard error of β j Then the 95% confidence interval can be 

calculated. 

3.9.4.3.3 Log-normal AFT model 

If the survival times are assumed to have a log-normal distribution, the baseline survival function 

and hazard function are given by 

S0(t) = 1 – Φ (  ) , h0(t) = 
( )

( )]
, 

Where μ and σ are parameters, 흓 (x) is the probability density function and Φ(x) is the 

cumulative density function of the standard normal distribution. The survival function for the ith 

individual is  

Si(t) = S0(t/ηi) 

=1-Φ(  ), 

Where 휂  = exp (α1x1 + α2x2 + … + αpxp) : Therefore the log survival time for the ith individual 

has normal (μ + 훼 xi σ). The log-normal distribution has the AFT property. In a two group study, 

we can easily get 

Ф-1[1-S(t)] = 1/σ (log t – α’xi – μ), 

where xi is the value of a categorical variable which takes the value one in one group and zero in 

the other group. This implies that a plot of Φ-1[1-S(t)] versus log t will be linear if the log-normal 

distribution is appropriate. 
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CHAPTER FOUR 

4.0 RESULTS 

4.1 Introduction 

In this chapter, the results of the study are described and the analysis of the data presented. 

Analysis was done using Stata statistical soft wares. The results describe information on the 

subjects under study and how different predictors influence the outcome of interest, which is 

death by performing chi-square and regression analysis. 

Table 4.1.1 summary of the survival data 

 

The tables indicate 248 total observations. There were no exclusions, 23 failures and total of 
6,715 total analysis times at risk.  

Table 4.1.2 Gender of the Subjects 

 

There were a total of 84 males and 164 females. The total number of hours male were at risk is 
2092 and the total number of hours female were at risk is 4623. The incident rate for male was 
0.0043021 and for female was 0.0030283.  
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Table 4.1.3 Adherence to Prescribed Medication 

 

206 subjects took their medication as prescribed while 42 had poor adherence to prescribed 
drugs. The incident rate for those who had good adherence was 0.0010635and for those who had 
poor adherence was 0.158434. Median survival time for those with poor adherence was 43 hours.  

 

Table 4.1.4 Patient who were on Tuberculosis Treatment 

 

A total of 34 subjects were on tuberculosis treatment. Their median survival time was 45 months. 
The incident rate for those who had tuberculosis was 0.102623. Their total time at risk was 
877months. A total of 214 subjects were not on tuberculosis treatment. Their incident rate was 
0.0023981. Their time at risk was 5838 months. 
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Table 4.1.5 History of Drug Abuse 

 

A total of 57 clients were candidates of substance abuse. Their median survival time was 46 
months and their incident rate was 0.0094399. The total number of months they were at risk was 
1589. A total of 190 subjects were not candidates of drug abuse. Their incident rate was 
0.0013707 and the total number of months they were at risk was 5107.   

 

Table 4.1.6 World Health Organization Clinical Staging 

 

A total of 68 subjects were in WHO clinical stage 1. Their incidence rate was 0.0004897 and the 

total number of months they were at risk was 2042. A total of 42 subjects were in WHO clinical 

stage 2 and their incidence rate was 0.0017406 and the total number of hours they were at risk 

was 1149. A total of 91 subjects were in WHO clinical stage 3. Their incidence rate was 

0.0038494 and the total number of hours they were at risk was 2338 months. A total of 47 

subjects were in WHO clinical stage 4. Their incidence rate was 0.0092749. The total number of 

months they were at risk was 1186. 
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 Figure 4.1.1  Kaplan Meier graph Male and Female. 

 

The Kaplan Meier graph above indicates that gender is not significant in predicting survival.  

 

Figure  4.1.2  Kaplan Meier Graph for Drug Abuse 

 

From the Kaplan Meier graph above, it is clear that there is a significance difference between 

those who abuse drugs and those who do not abuse drugs. Those who abuse drugs die more than 

those who do not. 
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 Figure 4.1.3 Kaplan Meier Graph for Drug Adherence 

 

From the Kaplan Meier graph above, survival is dependent on drug adherence with those who 
have poor adherence dying more than those who do not.  

Figure  4.1.4  Kaplan Meier Graph for Treatment for Tuberculosis 

 

From the Kaplan Meier graph above, subjects on tuberculosis treatment have low survival than 
those who are free from tuberculosis.  
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Figure  4.1.5 Kaplan Meier Survival Estimates for Cd4 Cell Count 

 

 

Figure   4.1.6 Kaplan-Meier Survival Estimates by Body Mass Index 

 

From the figure above it shows that survival is affected by low Body Mass Index, with those who 
have low BMI at the beginning of treatment having a high mortality rate. 
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Table 4.2.7 Log-Rank Test of Significance by Sex 

 

From the Chi-Square test above with 1 d.f (α=0.05) the significance level is 0.3257 which is 
more than 0.05 indicating that survival is independent of sex.  

 

Table  4.2.8 Log- Rank Test of Significance by Drug Abuse 

 

From the Chi-Square test above with 1 d.f (α=0.05) the significance level is below 0.05. 
Therefore, survival is dependent on drug abuse.  
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Table  4.2.9  Log- Rank Test of Significance by drug adherence 

 

From the Chi-Square test above with 1d.f (α=0.05) the significance level is below 0.05 indicating 
that survival is dependent on drug adherence.  

 

Table 4.2.10 Log Rank Test of Significance by Tuberculosis Status  

 

From the Chi-Square test above with 1 d.f (α=0.05) the significance level is below 0.05 and 

indication that survival is dependent on tuberculosis status.  
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 Table  4.2.11 Log-Rank Test of Significance by WHO Staging  

 

 

The Chi-Square test above with 3 d.f (α=0.05) indicates that survival depends on WHO clinical 
stage.  
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Table  4.1.12 Cox Proportional Hazard Regression Stata Output  

In the proportional hazards model of Cox independent failure times  푇 ,푇 , … … . ,푇   are studied, 

here the distribution is described by a hazard function  λ(t)  given by: 

)...exp()()( 221100 ikkii xxxtt    

Therefore hazard rate from Table 4.1.12 will be given by: 

λ(t)=휆 exp(훽 +(1.025696푋 )+( 1.697321푋 )+( 1.029458푋 )+( 2.55818푋 )+( 0.9825466푋 )+ 

(0.8206991 푋 )+( 1.035342푋 ) + ( 0 .7868494푋 ) + ( 0.6513177푋  ) + (  2.987397푋 ) 

From the output above, those with poor adherence have high mortality (they are 3 more times 

likely to die than those with good adherence) followed by those who abuse drugs. Tuberculosis 

treatment, the drug regime, CD4 cell count and BMI are not significant predictors of mortality.  

                                                                              
whoclinica~g     1.035342   .3308147     0.11   0.913     .5534856    1.936697
bmiatthebe~t     .7868494   .1489496    -1.27   0.205     .5429506     1.14031
cd4cellcou~a     .9825466   .0050197    -3.45   0.001     .9727572    .9924345
     regimen     .8206991   .4880643    -0.33   0.740     .2558468    2.632618
weightatth~t     1.029458   .0655568     0.46   0.648     .9086646     1.16631
tbtreatmen~s     .6513177   .3721881    -0.75   0.453      .212512    1.996192
drugadhere~e     2.987397   1.891913     1.73   0.084     .8634329    10.33611
historyofd~e      2.55818   1.593383     1.51   0.132     .7546632    8.671795
         sex     1.697321    1.22641     0.73   0.464     .4118348    6.995278
  ageinyears     1.025696   .0329788     0.79   0.430     .9630532    1.092413
                                                                              
          _t   Haz. Ratio   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood  =   -63.544497                     Prob > chi2     =    0.0000
                                                   LR chi2(10)     =     82.95
Time at risk    =         6696
No. of failures =           22
No. of subjects =          247                     Number of obs   =       247

Cox regression -- Breslow method for ties

Iteration 0:   log likelihood = -63.544497
Refining estimates:
Iteration 6:   log likelihood = -63.544497
Iteration 5:   log likelihood = -63.544497
Iteration 4:   log likelihood =  -63.54586
Iteration 3:   log likelihood = -63.698112
Iteration 2:   log likelihood = -67.038923
Iteration 1:   log likelihood = -79.818325
Iteration 0:   log likelihood = -105.02045

   analysis time _t:  timeinmonths
         failure _d:  statusattheendofthestudy == 1
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Table  4.1.13  Weibull Regression – Accelerated failure-time form  

In the Weibull model, the hazard rate is characterized as: 

h (t;X) =λp(휆푡)                       P=     1   for those with two parameters to be estimated
 0  표푡ℎ푒푟푤푖푠푒

 

휆  =푒  

Therefore h (t;X ) from Table 4.1.13 will be given by; 

h (t;x )  =휆 {exp((3.230099)+( -.0226651푋 )+( -.4876807푋 )+ 

( -.01958푋 )+( -.6353027푋 )+( .0101007푋 )+(  .0480747푋 )+ 

(  -.0631921푋 )+( .1592278푋 )+( .2401341푋 )+(  -.4202942푋 )}}  

 

                                                                              
         1/p     .5902714   .1079915                      .4124036    .8448527
           p     1.694136   .3099461                      1.183638    2.424809
                                                                              
       /ln_p     .5271729   .1829523     2.88   0.004     .1685929    .8857529
                                                                              
       _cons     3.396271   1.818765     1.87   0.062    -.1684428    6.960985
whoclinica~g    -.0631921    .184681    -0.34   0.732    -.4251603     .298776
bmiatthebe~t     .1592278   .1150586     1.38   0.166     -.066283    .3847386
cd4cellcou~a     .0101007   .0032049     3.15   0.002     .0038191    .0163823
     regimen     .0480747   .3407168     0.14   0.888     -.619718    .7158674
weightatth~t      -.01958   .0374351    -0.52   0.601    -.0929514    .0537913
tbtreatmen~s     .2401341   .3332363     0.72   0.471     -.412997    .8932652
drugadhere~e    -.4202942   .3530063    -1.19   0.234    -1.112174    .2715855
historyofd~e    -.6353027   .3909335    -1.63   0.104    -1.401518    .1309129
         sex    -.4876807   .4335439    -1.12   0.261    -1.337411    .3620496
  ageinyears    -.0226651   .0188084    -1.21   0.228    -.0595289    .0141987
                                                                              
          _t        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood  =   -42.361298                     Prob > chi2     =    0.0000
                                                   LR chi2(10)     =     82.40
Time at risk    =         6696
No. of failures =           22
No. of subjects =          247                     Number of obs   =       247

Weibull regression -- accelerated failure-time form 

Iteration 6:   log likelihood = -42.361298  
Iteration 5:   log likelihood = -42.361299  
Iteration 4:   log likelihood = -42.366948  
Iteration 3:   log likelihood = -42.991148  
Iteration 2:   log likelihood = -46.105587  
Iteration 1:   log likelihood = -62.148872  
Iteration 0:   log likelihood = -83.561862  

Fitting full model:

Iteration 3:   log likelihood = -83.561862
Iteration 2:   log likelihood = -83.561868
Iteration 1:   log likelihood = -83.588505
Iteration 0:   log likelihood =  -85.18952

Fitting constant-only model:

   analysis time _t:  timeinmonths
         failure _d:  statusattheendofthestudy == 1
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Table 4.2.14 Exponential Regression – Accelerated failure-time form 

In the exponential model, the hazard rate is characterized as: h (t; X) =λ 

This implies that the conditional ‘probability’ of an event is constant over time (and that events 

occur according to a Poisson process). In other words, the risk of an event occurring is flat with 

respect to time. Modeling the dependency of the hazard rate on covariates entails constructing a 

model that ensures a non-negative hazard rate .the way to do this is by exponentiating the 

covariates such that: 

h (t;X) = 휆 = 푒  

Therefore the  from Table 4.2.14  h (t;X)   is given by; 

h (t;X) = exp ((3.230099)+( -.0385914 푋  )+( -.8851462푋 )+(  -.0346983푋 )+( -1.127786푋 )+ 

(.0153152푋   )+( .3091138푋 )+( -.0954622푋 )+(  .2822042푋 )+( .2369674푋 )+( -.6069931푋 ) 

If h (t) < 1, then the hazard is monotonically decreasing with time. 

If h (t) > 1, then the hazard is monotonically increasing with time. 

If h (t) = 1, then the hazard is flat. 

. 

                                                                              
       _cons     3.230099   2.980043     1.08   0.278    -2.610678    9.070876
whoclinica~g    -.0954622    .300294    -0.32   0.751    -.6840277    .4931032
bmiatthebe~t     .2822042   .1851358     1.52   0.127    -.0806553    .6450637
cd4cellcou~a     .0153152    .004402     3.48   0.001     .0066874    .0239429
     regimen     .3091138   .5592424     0.55   0.580    -.7869812    1.405209
weightatth~t    -.0346983   .0617055    -0.56   0.574    -.1556388    .0862422
tbtreatmen~s     .2369674   .5471968     0.43   0.665    -.8355185    1.309453
drugadhere~e    -.6069931   .5763563    -1.05   0.292    -1.736631    .5226445
historyofd~e    -1.127786   .5875255    -1.92   0.055    -2.279314    .0237432
         sex    -.8851462   .7036777    -1.26   0.208    -2.264329    .4940366
  ageinyears    -.0385914   .0297631    -1.30   0.195     -.096926    .0197432
                                                                              
          _t        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood  =   -45.762194                     Prob > chi2     =    0.0000
                                                   LR chi2(10)     =     78.85
Time at risk    =         6696
No. of failures =           22
No. of subjects =          247                     Number of obs   =       247

Exponential regression -- accelerated failure-time form 

Iteration 6:   log likelihood = -45.762194  
Iteration 5:   log likelihood = -45.762195  
Iteration 4:   log likelihood = -45.767336  
Iteration 3:   log likelihood = -46.263069  
Iteration 2:   log likelihood = -49.136637  
Iteration 1:   log likelihood = -63.567746  
Iteration 0:   log likelihood =  -85.18952  

   analysis time _t:  timeinmonths
         failure _d:  statusattheendofthestudy == 1
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4.2.15  Lognormal regression – accelerated failure-time form 

 

 

 

 

 

                                                                              
       sigma     .9974098   .1556893                      .7345249    1.354381
                                                                              
     /ln_sig    -.0025935   .1560936    -0.02   0.987    -.3085314    .3033444
                                                                              
       _cons     3.286084   1.920954     1.71   0.087    -.4789163    7.051084
whoclinica~g    -.0390171   .1895374    -0.21   0.837    -.4105036    .3324694
bmiatthebe~t     .2009889   .1330154     1.51   0.131    -.0597164    .4616942
cd4cellcou~a     .0104868    .002721     3.85   0.000     .0051538    .0158199
     regimen     .2420188   .4262894     0.57   0.570    -.5934931    1.077531
weightatth~t    -.0402286   .0437548    -0.92   0.358    -.1259865    .0455294
tbtreatmen~s    -.0329909    .398103    -0.08   0.934    -.8132584    .7472766
drugadhere~e    -.4690429   .3967813    -1.18   0.237     -1.24672    .3086341
historyofd~e    -.7591358   .3975502    -1.91   0.056     -1.53832    .0200482
         sex    -.6466395   .4924402    -1.31   0.189    -1.611804    .3185255
  ageinyears    -.0173423   .0207457    -0.84   0.403    -.0580031    .0233185
                                                                              
          _t        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

Log likelihood  =   -44.605613                     Prob > chi2     =    0.0000
                                                   LR chi2(10)     =     80.72
Time at risk    =         6696
No. of failures =           22
No. of subjects =          247                     Number of obs   =       247

Lognormal regression -- accelerated failure-time form 

Iteration 7:   log likelihood = -44.605613  
Iteration 6:   log likelihood = -44.605613  
Iteration 5:   log likelihood = -44.605655  
Iteration 4:   log likelihood = -44.629809  
Iteration 3:   log likelihood = -46.037048  
Iteration 2:   log likelihood = -57.070323  
Iteration 1:   log likelihood = -61.228004  
Iteration 0:   log likelihood = -84.966309  (not concave)

Fitting full model:

Iteration 6:   log likelihood = -84.966309  
Iteration 5:   log likelihood = -84.966309  
Iteration 4:   log likelihood = -84.966454  
Iteration 3:   log likelihood = -85.002024  
Iteration 2:   log likelihood = -85.780505  
Iteration 1:   log likelihood = -92.904646  
Iteration 0:   log likelihood = -110.87441  

Fitting constant-only model:

   analysis time _t:  timeinmonths
         failure _d:  statusattheendofthestudy == 1



62 
 

CHAPTER FIVE 

5.0 DISCUSSION OF THE RESULTS 

5.1 Discussion 

Health researchers are often interested in semi parametric models in analysis of time to 

event data more than the parametric models but, in a recent review of survival analyses in cancer 

journals (Altman et al., 1985), it was found that only 5 per cent of all studies using the Cox PH 

approach model with respect to checking the underlying assumptions. If this assumption does not 

hold, the Cox model can lead to the unreliable conclusions so Parametric models such as 

Lognormal, Weibull and Exponential are the common choices. These models provide the 

interpretation based on a specific distribution for duration times without need to proportional 

hazard assumptions.  

The aim of this study was to investigate the comparative performance of Cox and 

parametric models in a survival analysis of patients on HAART. I used Akaike Information 

Criterion (AIC) to evaluate the performance of models in analysis. In my example the 

proportional hazard assumptions were hold and the all parametric model residual indicated a 

perfect fit. I explored the impact of gender, age in years, sex, history of drug abuse, history of 

drug adherence,TB treatment status,Weight,regimen,CD4 cell count, BMI at  the beginning and 

WHO Clinical staging on survival time and all parametric and semi parametric models. 

Multivariate analysis showed an increased risk of death for patients who had poor drug 

adherence [HR=2.987397 SE= 1.891913 (P=0.05) CI (0.8634329 10.33611)], who where 

substance abusers [HR=2.55818 SE= 1.593383 (P=0.05) CI (.7546632 8.671795)] for 

multivariate analysis in cox PH model. Age, sex and WHO clinical staging was not an important 
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predictor of survival. From the parametric multivariate analysis the output produced 

exponentiated coefficients (hazard ratios were reported). From the Weibull output (Table 4.1.13) 

a one-unit change in age causes acceleration(risk of death) by 2.27% , whereas a one-unit change 

in weight cause acceleration by approximately 2% but a unit change in BMI improves survival, 

this is by causing deceleration by 1% .Interpreting results in the PH metric is easier, though 

regression coefficients are not difficult to interpret in the AFT metric. A positive coefficient 

means that time is decelerated by a unit increase in the covariate in question. This may seem 

awkward, but think of this instead as a unit increase in the covariate causing a delay in failure 

and thus increasing the expected time until failure. The difficulty that arises with the AFT metric 

is merely that it places an emphasis on log (time-to failure) rather than risk (hazard) of failure. 

Drug abuse was a strong and independent prognostic factor for death as a result of 

HIV/AIDS, and these findings in multivariate analysis is in conformity with previous reports 

(Arveux et al., 2002) indicated poor survival for these patients. Lack of drug adherence is 

another important prognostic factor of survival (Haugstvedt et al., 2003) many authors show that 

the survival depends on the level of cd4 cell count at the beginning of treatment( Moore et al., 

2006). Sex and treatment regime are not significant factor that affected the survival probability 

of patients in both univariate and multivariate analysis.  

The evaluation criteria indicated accelerated failure-time form as the best models in 

multivariate analysis. Although it seems that there may not be a single model that is substantially 

better than others, the data strongly supported the Weibull (Table 5.1) AFT form regression 

among parametric models in multivariate analysis and it can be lead to more precise results as an 

alternative for Cox.  
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5.2 Akaike information criterion 

Akaike information criterion (AIC) was used to compare all these AFT models. Nested 

models can be compared using the likelihood ratio test. The exponential model, the Weibull 

model and log-normal model are nested within gamma model. For comparing models that are not 

nested, the Akaike information criterion (AIC) can be used instead, which is defined as: 

AIC = -2l + 2(k + c) 

where l is the log-likelihood, k is the number of covariates in the model and c is the 

number of model specific ancillary parameters. The addition of 2(k +c) can be thought of as a 

penalty if non-predictive parameters are added to the model. Lower values of the AIC suggest a 

better model. 

Table 5.1 AIC For Parametric Models in HIV/AIDS Survival - Multivariate Analysis 

A F T MODEL A I C VALUES LOG LIKELIHOOD 
WEIBULL -2(-42.361298)+2(10+2)=108.722596 -42.361298 
EXPONENTIAL -2(-45.752194)+2(10+1)=113.504388 -45.762194 
LOG-NORMAL -2(-44.605613)+2(10+2)=113.211226 -44.605613   
COX PH MODEL -2(-63.544497)+2(10+2)=151.088994 -63.544497   
 

Based on AIC, there is no major variability between the three parametric models as witnessed 

with Cox Proportional Hazard model (Table 5.1). Among the parametric models Wiebull is the 

best model in multivariate analysis. The Weibull AFT model (Table 5.1) appears to be an 

appropriate AFT model according to AIC compared with other AFT models, although it is only 

slightly better than exponential or log-normal model. Cox PH model fair poorly compared to 

other parametric models. The largest log likelihood for parametric models was obtained for the 

exponential model; which is also not preferred by the AIC. Although the best-fitting model is the 
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one with the largest log likelihood, the preferred model is the one with the smallest AIC value 

(Akaike, 1974). 
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CHAPTER SIX 

STUDY LIMITATIONS, CONCLUSIONS AND RECOMMENDATIONS 

6.1 INTRODUCTION 

This chapter explains the study limitations, conclusions that are drawn from the study and the 

recommendations of what should be done to improve use of statistical models in health research. 

6.2 STUDY LIMITATIONS 

A limitation of this data is the percent of censoring. A good discrimination among parametric 

models requires the censoring percentage not to exceed 40-50 per cent (Nardi et al., 2003) 

although in my data the censoring was about 90 per cent, the parametric results were not 

performed and were significance.  

6.3 CONCLUSION 

Survival analysis can be used to analyze data on the length of time it takes for a specific event to 

occur. A characteristic of “time to event” data is that we did not know the actual time to event for 

every person in our data set. We knew this only for some individuals. In this regard, our data are 

incomplete (i.e. censored).The study was seeking to; (1) describe the pattern (distribution) of 

event times of the cohort under study; this was done using Kaplan-Meier”, (2) to compare 

patterns of time to event across groups which was done using Log Rank Test and to explore the 

influences of possibly several factors on “time to event” which was achieved by Cox 

Proportional Hazard regression and accelerated failure time model (considering 

weibull,exponential and lognormal forms).Evaluation was also carried out on the models to 

establish which model is more appropriate than the other in the analysis. 
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In this study, the survival/ death status of HIV/AIDS infected subjects who were on 

HAART treatment at Karuri Health Centre between January 1st 2008  to 31st December 2012 was 

studied. The Kaplan-Meier method was used to estimate the survival time of patients after 

commencement of HAART. The mortality rate was high in subjects who abused drug, those who 

did not adhere to treatment as prescribed, those who had tuberculosis and those who had low cd4 

cell count and low BMI at the beginning of treatment (Figures 4.1.2, 4.1.3, 4.1.4, 4.1.5, 

4.1.6).This claim was further authenticated by performing log lank test which produced similar 

results (tables 4.2.11 , 4.2.9, 4.2.10, 4.2.8 ) .Using Cox proportional hazard model covariates that 

significantly influence the survival of HIV/AIDS infected patients were identified. Three 

covariates that are identified to affect the survival of the patients at 0.05 level of significant were 

gender, history of drug abuse and poor treatment adherence (Tables 4.2.15, 4.1.13, 4.2.14, 

4.1.12). 

Akaike Information Criterion was used to evaluate the performance of the models in 

analyzing the data. There was no major variability between the three parametric models as 

witnessed with Cox Proportional Hazard model (Table 5.1). Among the parametric models 

Wiebull was the best model in multivariate analysis based on the value of the AIC. The Weibull 

AFT model (Table 5.1) appears to be an appropriate AFT model according to AIC compared to 

other AFT models,Cox PH model fair poorly compared to other parametric models. The largest 

log likelihood for parametric models was obtained for the exponential model; this model was 

also not preferred by the AIC. 
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6.4 RECOMMENDATIONS 

One main disadvantage of using the AFT model is that the specific distribution of survival time 

is not known in many cases. As proposed by Wei (1992), further studies of this data could 

attempt using a non-parametric version of the AFT model which does not require the 

specification of the distribution can be applied in this dataset. The results from this model could 

then be compared with the standard AFT models and Cox PH models. In addition, further study 

can be carried out to appraise the effects of practical cases such as enormous censoring. 

In spite of advantage in using these models for survival analysis I recommend that further 

studies should be carried out to evaluate the effects of practical cases such as small sample size, 

large censoring and changing in proportional hazard assumption or duration time’s distribution. 
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APPENDIX  I   TIME FRAME 

Task to be completed DATE 

August  
2013 

August 
2013 

August 
2013 

September 
2013 

September 
2013 

 

October 
2013 

October/ 

November 

2013 

Identification of 
research topic  

 

       

Collection of 
background 
information 

 

       

Drafting of proposal 
and presentation 

 

       

Drafting of proposal 
and presentation 

 

       

Data cleaning        

Data analysis        

Report writing, 
submission and 
presentation of final 
draft. 
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APPENDIX  II  STUDY BUDGET 

Items Quantity Unit Price (Kshs) Total (Kshs) 

Stationery & Equipment 

Printing Papers 5 reams 400.00 2,000.00 

Black Cartridges (for HP 845C) 2 2,000.00 4,000.00 

Coloured Cartridge (for HP 845C) 1 2,500.00 2,500.00 

Writing Pens 1 packet 500.00 500.00 

Flash Discs 2 1,000.00 2,000.00 

Note Books 10 30.00 300.00 

Full Scups (Compilation Sheets) 2 reams 250.00 500.00 

Box Files 5 100.00 500.00 

Document Wallets 6 50.00 300.00 

Tape Recorder 2 3,500.00 7,000.00 

Sub total 19,600.00 

Research Proposal Development 

Printing drafts & final proposal 10 copies 500.00 5,000.00 

Photocopies of final proposal 6 copies 100.00 600.00 

Binding of copies of Proposal 5 copies 40.00 200.00 

Sub total 5800.00 

Personnel 

Research Assistants 2 for 2 months 5,000.00 20,000.00 

Sub total 20,000.00 

Thesis Development 

Printing of drafts and final thesis 10 copies 800.00 8,000.00 

Photocopy of final thesis 6 copies 200.00 1,200.00 

Binding of thesis at Main Campus Library 6 copies 250.00 1,500.00 

Dissemination cost   15,000.00 

Sub total 25,700.00 

Miscellaneous 

Grand Total   72,100.00 
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APPENDIX III REQUEST FOR DATA 

 

AUGUSTINE GATIMU NJUGUNA, 

P.O BOX 640-00900, 

KIAMBU, 

06-10-2013. 

TO: 

CLINICAL OFFICER INCHARGE, 

KARURI HEALTH CENTRE, 

P.O BOX 39-00900, 

KIAMBU. 

RE: REQUESTING FOR DATA FROM COMPREHENSIVE CARE CENTER. 

I am Augustine Gatimu Njuguna a student at university of Nairobi taking Masters Of Science In 

Medical Statistics. I am in the process of carrying out my project and I would like to make use of 

your health facility Comprehensive Care Centre data. Attached find a copy of my concept paper 

for a brief description of what I intend to do with the data. Your assistance will be highly 

appreciated. 

Yours faithfully 

Augustine .G. Njuguna 


