

SURVEY SAMPLING THEORY AND METHODS

DANKIT K. NASSIUMA

16

F. O. Box 36347 F. M. Box 36347

Table of Contents

PREFACE		
1	INTRODUCTION	1
1.1	Overview of research methods	1
1.2	Surveys and sampling	7
1.3	Definitions	10
1.4	Properties of estimators	12
1.5	Sampling methods	14
1.6	Survey design and planning	15
1.7	Data collection methods	15
1.8	Sources of error in sampling	22
1.9	Pilot surveys (pre-surveys)	23
	Practice problems	24
2	SIMPLE RANDOM SAMPLING	27
2.1	Introduction	27
2.2	Simple random sampling without replacement (SRSWOR)	27
2.3	Estimating the finite population variance S ²	35
2.4	Estimation of the population total	39
2.5	Estimation of the population proportion	40
2.6	Simple random sampling with replacement (SRSWR)	43
2.7	Subpopulations (domains)	50
2.8	Pooling of independent estimates in SRS	52
	Practice problems	54
3	DETERMINATION OF SAMPLE SIZE	59
3.1	Introduction	59
3.2	Use of coefficient of variation	59
3.3	Use of probability statements	61
3.4	Determination of <i>n</i> for unknown σ and fixed c.i. length	63

3.5Sample size based on sampling cost64Practice problems67

•

4	SAMPLING WITH UNEQUAL PROBABILITY	71
4.1	Introduction	71
4.2	Sample selection by PSS with replacement	74
4.3	Estimation of the population total in PPS WR	76
4.4	Estimation of the var(\hat{Y})	79
4.5	Comparison of PPS WR with SRS WR	82
4.6	Selection of samples by PPS WOR	84
4.7	Comparison of PPS WOR and PPS WR	96
4.8	Combination of PPS and SRS schemes	98
	Practice problems	99
5	SYSTEMATIC SAMPLING	103
5.1	Introduction	103
5.2	Linear systematic sampling (LSS)	103
5.3	Circular systematic sampling (CSS)	106
5.4	Variance of \overline{y}_{sys}	107
5.5	Comparison of systematic sampling and simple	
	random sampling SRS	109
5.6	Estimation of the variance of a systematic sample mean	112
5.7	Super populations	112
5.8	Systematic sampling using unequal probabilities	117
5.9	Repeated sampling in SYS	122
	Practice problems	123
6	STRATIFIED RANDOM SAMPLING	125
6.1	Introduction	125
6.2	Estimation of the population mean	126
6.3	Estimation of the variance of var(\overline{y}_{st})	129
6.4	Allocation of sample size	129
6.5	Comparison of stratified sampling with SRS	135
6.6	Allocations which need more than 100% sampling	137
6.7	Stratified sampling for proportions	138
6.8	Post-stratification	140
6.9	Stratified sampling with unequal probabilities	142
	Practice problems	144

7	RATIO AND REGRESSION ESTIMATORS	147
7.1	Introduction	147
7.2	Ratio estimators	148
7.3	Ratio estimators in stratified sampling	160
7.4	Regression estimators	164
7.5	Regression estimators for stratified sampling	168
	Practice problems	172
8	CLUSTER SAMPLING	177
8.1	Introduction	. 177
8.2	Single stage cluster sampling	181
8.3	Multistage cluster sampling	196
8.4	Two stage cluster sampling	197
8.5	Stratification in cluster sampling	210
	Practice problems	213
9	FURTHER TOPICS	215
9.1	Two phase sampling	216
9.2	Successive sampling	220
9.3	Estimation of population size	221
	Practice problems *	227
	REFERENCES	229
	APPENDIX	231
	INDEX	233

Preface

Surveys are inseparable from research and planning. This necessitates the teaching of sampling methods as well as their application not only at college and university level, but also to applied researchers.

It is the objective of this book to introduce the language, methods and application of sampling from a practical, mathematical perspective. It is expected that the reader will be enabled to plan and execute surveys and also be capable of evaluating estimates of various parameters especially the location and scale parameters as well as their standard errors.

The book is divided into nine chapters with the first chapter introducing the language of sampling and an overview of research projects, proposal writing and experimentation. The material in this chapter has a social science and educational research flair and is thus easy to apply in a wide range of situations including market research and opinion polls. The second chapter introduces the simple random sampling procedure which is the most basic sampling technique. This is followed by a study on methods of sample size determination in chapter three. This chapter is based mainly on the assumption that a simple random sampling procedure is used but it can easily be extended to other sampling procedures. Chapters four to eight focus on the unequal probability, systematic sampling, stratified sampling, ratio and regression estimation, and cluster sampling procedures. Elaborate proofs for various procedures are given in these chapters. In chapter nine, three topics in sampling are briefly discussed. These are aspects which are usually ignored in most books on sampling and include multiphase sampling, successive sampling and the estimation of population size.

In chapters two to nine, a cook-book kind of option is availed for those who may be interested in applications of the various methods. Important functions for the estimates and their standard errors are highlighted in boxes so that the rest of the formulae can be skipped.

The material presented in this text when used for teaching at undergraduate level should be covered in two semesters. It is expected that the student has already taken some basic first and second year undergraduate mathematics courses. In the case of researchers interested in the applications aspect, a basic knowledge and appreciation of statistical inference is assumed.

It is hoped that this book will be friendly and invaluable to the researcher, lecturer and the student for the understanding and application of sampling procedures to a wide range of problems.