APPLICATION OF TETRALINYLAMINES AS CARBOXAMIDE PROTECTING GROUPS IN PEPTIDE SYNTHESIS

BY
AMIR QKEYOJJUSUF

THIS THESIS HAS BEEN ACCEPTED FOR THE DEGREE OF... A COPY MAY BE UNIVERSITY LIBRARY,

A Thesis Submitted in part fulfilment for the Degree of Master of Science of the University of Nairobi.

University of NAIROBI Library

0479279 2

1988
DECLARATION

This thesis is my original work and has not been presented for a degree in any other University.

AMIR OKEYO YUSUF

This thesis has been submitted for examination with our approval as University Supervisors.

DR. B.M. BHATT
CHEMISTRY DEPARTMENT
UNIVERSITY OF NAIROBI

DR. P.M. GITU
CHEMISTRY DEPARTMENT
UNIVERSITY OF NAIROBI
DEDICATION

To my father Mr. Youssef Khairallah, mother Mrs. Fatuma Yusuf, brothers and sisters.
ACKNOWLEDGEMENTS

I am extremely grateful to Dr. Enalendu Manshu khla Bhatt and Dr. Peter Machatha Gitu for their timely advice, encouragement, patience and understanding during the experimental work and writing up of this thesis.

My deep appreciation is expressed to the German Government for arranging and awarding me the DAAD Scholarship. I am also thankful to the staff of DAAD Office, Nairobi, for their co-operation during these studies.

I wish to thank George Omburo (Maine) and Odoyo Ojwang' [Boston) for the part they played in sending me all the necessary reagents needed for my work, which were not locally available. I also wish to thank Willis Ouma for his on the spot help whenever asked.

My sincere thanks go to both the teaching and technical staff of the Chemistry Department for their kind assistance and co-operation at all times.
Finally, I wish to thank Mrs. Mary Kihara for typing the final copy of this thesis.
A study was carried out to convert 1-tetralone and some of its derivatives to the amines by Leuckart reaction. In this reaction, the ketones (1) 1-cetralone, (2) 5-methoxy-1-tetra1one, (3) 6-methoxy-1-tetralone, (4) 7-methoxy-1-tetralone and (5) 5,7-dimethyl-1-tetralone were converted to the formyl derivatives. These formamides namely, (1a) 1,2,3,4-tetrahydro-1-naphthy1, (2a) 5-methoxy-1,2,3,4-tetrahydro-1-naphthy1, (3a) 6-methoxy-1,2,3,4-tetrahydro-1-naphthy1, (4a) 7-methoxy-1,2,3,4-tetrahydro-1-naphthy1 and (5a) 5,7-dimethyl-1,2,3,4-tetrahydro-1-naphthy1 formamides were then hydrolyzed to their corresponding amines:-(lb) 1-aminotetralin, (2b) 1-amino-5-methoxytetralin, (3b) 1-amino-6-methoxytetralin, (4b) 1-amino-7-methoxytetralin, and (5b) 1-amino-5,7-dimethyltetralin. This was carried out by both acidic (concentrated hydrochloric acid) and basic (1C% aqueous NaOH) conditions. The former gave yields ranging from 0% to 75%, while the latter gave yields ranging from 90% to 97%. Acid hydrolysis of 3a and 4a gave black-gummy compounds and no amines were obtained. This showed that hydrolysis of formyl derivatives under basic conditions gave better results and is recommended.
Suitability of these 1-tetralinyl groups as potential carboxamide protecting groups for asparagine and glutamine side chain amide groups were investigated. The amines 1b,2b,3b,4b and 5b were used as precursors to prepare the carboxamide protected derivatives namely, (6) Boc-Gln(1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl, (7) Boc-Asn(1,2,3,4-tetrahydro-1-naphthyl)-B-OBzl, (8) Boc-Gln(5-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl, (9) Boc-Asn(5-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-B-OBzl, (10) Boc-Gln(6-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl, (11) Boc-Asn(6-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl, (12) Boc-Gln(7-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl, (13) Boc-Asn(7-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl, (14) Boc-Gln(5,7-dimethyl-1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl,(15) Boc-Asn(5,7-dimethyl-1,2,3,4-tetrahydro-1-naphthyl)-g-OBzl. The N,N'-dicyclohexylcarbodiimide/N-hydroxysuccinimide (DCC-HONSU) coupling method gave yields ranging from 40% to 86%. These carboxamide protected derivatives were subjected to cleavage studies in TFA-ChCl^3-anisole (50:46:2-v/v). The protecting groups in glutamine derivatives (6, 6,10,12. and 14) were removed within 24hr. In the carboxamide protected derivatives of asparagine (7, 9,11,13 and 15), the protecting groups in 9 and 11 were found too labile to be used during
peptide synthesis. The protecting groups in 7, 13 and 15 were stable in the above deprotecting reagent upto 24hr. These derivatives (7, 13 and 15) were therefore subjected to cleavage studies in boron trifluoride complex with acetic acid (BTFA). This completely removed the protecting groups. The group in 7 was cleaved completely after 4hr, in 13 after 3hr and in 15 after 3hr. This showed that the groups 1,2,3,4-tetrahydro-1-naphthyl,7-methoxy-1,2,3,4-tetrahydro-1-naphthyl and 5,7-dimethyl-1,2,3,4-tetrahydro-1-naphthyl were found to be potential carboxamide protecting groups due to their stability in TFA-CH$_2$Cl$_2$-anisole (50:48:2 v/v) and their easy cleavage by BTFA.

The carboxamide protected derivatives whose protecting groups were found promising (7, 13 and 15) were used in the synthesis to the dipeptides Boc-Phe-Asn(1,2,3,4-tetrahydro-1-naphthyl)-g-OBzl, Boc-Phe-Asn(7-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl and Boc-Phe-Asn(5,7-dimethyl-1,2,3,4-tetrahydro-1-naphthyl)-g-OBzl. The carboxamide protecting groups in these dipeptides also behaved in the same way as in 7, 13 and 15. These dipeptides were used in the synthesis to the tripeptides, Boc-Ile-Phe-Asn(1,2,3,4-tetrahydro-1-naphthyl)-6-OBzl, Boc-Ile-Phe-Asn(7-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-ct^CBzl and Boc-Ile-Phe-Asn(5,7-dimethyl-1,2,3,4-tetrahydro-1-naphthyl)-B-OBzl.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>TITLE ...</td>
</tr>
<tr>
<td>DECLARATION</td>
</tr>
<tr>
<td>DEDICATION</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
</tr>
<tr>
<td>ABSTRACT ...</td>
</tr>
</tbody>
</table>

CHAPTER ONE ..

INTRODUCTION .. 1

CHAPTER TWO ..

RESULTS, AND DISCUSSION <

2.1 Synthesis of amines by Leuckart reaction 24
 2.1.1 Conversion of 1-tetralone and its
derivatives to 1-aminotetralin derivatives 25

2.2 Synthesis of carboxamide protected asparagine and glutamine derivatives 28

2.3 Cleavage studies of the carboxamide protected derivatives of glutamine and asparagine in TFA-CH₂Cl₂-anisole (50:48:2 v/v) and some of them in BTFA-TFA 29

2.4 Application of carboxamide protected derivatives in peptide synthesis 42
CHAPTER THREE

EXPERIMENTAL

3.1 General experimental section

3.2 Synthesis of 1-Tetralone 44

3.3 Synthesis of formyl derivatives

3.3.1 N-6-Methoxy-1,2,3,4-tetrahydro-1-naphthyl formamide

3.3.2 N-7-Methoxy-1,2,3,4-tetrahydro-1-naphthyl formamide 48

3.3.3 N-5,7-Dimethyl-1,2,3,4-tetrahydro-1-naphthyl formamide 48

3.3.4 N-5-Methoxy-1,2,3,4-tetrahydro-1-naphthyl formamide

3.3.5 N-1,2,3,4-Tetrahydro-1-naphthyl formamide

3.4 Synthesis of Amines 50

3.4.1 1,2,3,4-Tetrahydro-1-naphthylamine-- 50

3.4.2 5-Methoxy-1,2,3,4-tetrahydro-1-naphthylamine 52

3.4.3 5,7-Dimethyl-1,2,3,4-tetrahydro-1-naphthylamine 53

3.4.4 Attempted synthesis of 6-methoxy-1,2,3,4-tetrahydro-1-naphthylamine (1-amino-6-methoxytetralin) and 7-methoxy-1,2,3,4-tetrahydro-1-naphthylamine (1-amino-7-methoxytetralin) 54
3.4.5 6-Methoxy-1,2,3,4-tetrahydro-1-naphthylamine

3.4.6 7-Methoxy-1,2,3,4-tetrahydro-1-naphthylamine 55

3.5 Synthesis of tert-Butyloxycarbonyl-L-phenylalanine 56

3.6 Synthesis of tert-Butyloxycarbonyl-L-isoleucine 57

3.7 Synthesis of N-hydroxysuccinimide esters 58

3.7.1 N-Hydroxysuccinimide ester of t-Butyloxycarbonyl-L-phenylalanine 58

3.7.2 N-Hydroxysuccinimide ester of t^1-Butyloxycarbonyl-L-isoleucine

3.8 Synthesis of tert-Butyloxycarbonylaspartic acid 60

3.9 Synthesis of-ex-Benzyl tert-Butyloxycarbonyl-aspartate 61

3.10 Synthesis of Carboxamide protected asparagine and glutamine derivatives

3.10.1 a-Benzyl tert-Butyloxycarbonyl-CA
N -1,2,3,4-tetrahydro-1-naphthylglutamate

3.10.2 8-Benzyl tert-Butyloxycarbonyl-CA
N -1,2,3,4-tetrahydro-1-naphthylisoasparaginate 64
3.10.3 6-Benzyl tert-Butyloxy-

1,2,3,4-tetrahydro-1-naphthyl-
isoasparaginate

3.10.4 a-Benzyl tert-Butyloxy-

1,2,3,4-tetrahydro-1-naphthyl-

glutamate

3.10.5 a-Benzyl tert-Butyloxycarbonyl-
CA
N 6-methoxy-1,2,3,4-tetrahy-
dro-1-naphthylasparaginate

3.10.6 a-Benzyl tert-Butyloxycarbonyl-
CA
N 6-methoxy-1,2,3,4-tetra-
hydro-1-naphthylglutamate

3.10.7 8-Benzyl tert-Butyloxycarbonyl-
CA
N 7-methoxy-1,2,3,4-tetra-
hydro-1-naphthylisoasparaginate

3.10.8 a-Benzyl tert-Butyloxycarbonyl-
CA
N 7-methoxy-1,2,3,4-tetrahydro-
-1-naphthylasparaginate

3.10.9 a-Benzyl tert-Butyloxycarbonyl-
CA
N 7-methoxy-1,2,3,4-tetrahydro-
-1-naphthylglutamine

3.10.10 6-Benzyl tert-Butyloxycarbonyl-
N-5,7-dimethyl-1,2,3,4-tetrahydro-
-1-naphthylisoasparaginate
3.10.11 cx-Benzyl tert-Butyloxy carbonyl-
N⁹⁵⁻⁵, ⁷-dimethyl-1, ₂, ₃, ⁴-
tetrahydro-1-naphthyl glutamate-- 73

3.11 Synthesis of dipeptides 74

3.11.1 Boc-Phe-Asn(1, ₂, ₃, ₄-tetrahydro-
-1-naphthyD-B-OBzl 74

3.11.2 Boc-Phe-Asn(7-rtethoxy-1, ₂, ₃, ₄-
tetrahydro-1-naphthyl)-5-OBzl 75

3.11.3 Boc-Phe-Asn(7-Methoxy-1, ₂, ₃, ₄-
tetrahydro-1-naphthyl)-a-OBzl 76

3.11.4 Boc-Phe-Asn(5, ₇-dimethyl-1, ₂, ₃, ₄-
tetrahydro-1-naphthyl)-e-OBzl 76

3.12 Synthesis of tripeptides 77

3.12.1 Boc-Ile-Phe-Asn(1, ₂, ₃, ₄-tetra-
hydro-1-naphthyl)-6-OBzl 77

3.12.2 Boc-Ile-Phe-Asn(7-Methoxy-1, ₂, ₃, ₄-
tetrahydro-1-naphthyl)-ct-OBzl 79

3.12.3 Boc-Ile-Phe-Asn(5, ₇-dimethyl-
1, ₂, ₃, ₄-tetrahydro-1-naphthyl)-
g-OBzl 79

3.13 Cleavage studies of the carboxamide prote-
tct derivatives in TFA-CH^[Cl^[anisole
(50:48:2 v/v)- 60

3.14 Cleavage studies of the carboxamide prote-
tct derivatives in Boron trifluoride
complex with acetic acid (36% BF^[j BF₃.2AcOH)- 81

LIST OF ABBREVIATIONS 62

REFERENCES 88
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>II</td>
<td></td>
</tr>
<tr>
<td>III</td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td></td>
</tr>
<tr>
<td>VII</td>
<td></td>
</tr>
<tr>
<td>VIII</td>
<td></td>
</tr>
<tr>
<td>IX</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
<tr>
<td>XI</td>
<td></td>
</tr>
</tbody>
</table>

I	Some of the naturally occurring ci-Amino Acias
II	Some of the naturally occurring peptides--
III	Effect of variation in the Leuckart reaction on the condensation with 3-phenyl-2-butanone
IV	Effect of temperature on the Leuckart reaction with 3-phenyl-2-butanone
V	Effect of time on the Leuckart condensation with 3-phenyl-2-butanone
VI	Effect of time and reagents on the hydrolysis of N-formyl-3-phenylbutan-2-amine
VII	Amine synthesis from both acid and base hydrolysis of the formyl derivatives
VIII	The carboxamide protected asparagine and glutamine derivatives
IX	Standard compounds for cleavage components identification
X	TFA-CH₂Cl₂-anisole (50:48:2 v/v) cleavage studies of the carboxamide protecting groups of glutamine and asparagine
XI	BTFA studies of carboxamide protecting groups of asparagine
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>SCHEME</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Coupling of two unprotected amino acids</td>
<td>3</td>
</tr>
<tr>
<td>2. Protection of amino and carboxyl groups in amino acids</td>
<td>4</td>
</tr>
<tr>
<td>3. Mechanism of the DCC-mediated peptide coupling</td>
<td>6</td>
</tr>
<tr>
<td>4. Rearrangement of the O-acylisourea to the N-acylurea</td>
<td>7</td>
</tr>
<tr>
<td>5. Carboxyl protection by cyanomethyl group</td>
<td>8</td>
</tr>
<tr>
<td>6. N-Hydroxysuccinimioe ester of an N-protected amino acid</td>
<td>6</td>
</tr>
<tr>
<td>7. Synthesis of glycylalanine</td>
<td>9</td>
</tr>
<tr>
<td>8. Stepwise elongation from the N-terminal amino acid</td>
<td>10</td>
</tr>
<tr>
<td>9. Stepwise elongation from the C-terminal amino acid</td>
<td>11</td>
</tr>
<tr>
<td>10. Fragment condensation</td>
<td>12</td>
</tr>
<tr>
<td>11. Side reactions undergone by asparagine and glutamine amide groups</td>
<td>15</td>
</tr>
<tr>
<td>12. Leuckart reaction mechanism</td>
<td>24</td>
</tr>
<tr>
<td>13. Conversion of 1-tetralone and its derivatives to 1-aminotetralin derivatives</td>
<td>25</td>
</tr>
<tr>
<td>14. Synthesis of carboxamide protected asparagine and glutamine derivatives</td>
<td>28</td>
</tr>
<tr>
<td>15. Proposed cleavage mechanism of the carboxamide protecting group</td>
<td>3q</td>
</tr>
<tr>
<td>SCHEME</td>
<td>PAGE</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>16. Resonance structures of the 1-tetralinyl group with electron donating groups at positions 6< 8, 5 or 7</td>
<td>39</td>
</tr>
<tr>
<td>17. Dipeptide synthesis from carboxamide protected derivative</td>
<td>43</td>
</tr>
<tr>
<td>18. Tripeptide synthesis from the fully protected dipeptide</td>
<td>43</td>
</tr>
</tbody>
</table>
CHAPTER ONE

INTRODUCTION

There are 20 naturally occurring α-amino acids, which are the main building blocks of all peptides and proteins. These amino acids are called α-amino acids because they bear an amino and a carboxylic acid group on the same carbon atom.

Of the α-amino acids, only glycine does not possess a specific rotation. The rest contain an asymmetric centre namely the α-carbon. This centre confers on the molecule the property of chirality which is necessary condition for optical activity. The α-amino acids are classified into acidic, neutral and basic. They differ from each other by having different side chain group (R). The naturally occurring amino acids are the L-isomers (except glycine) and some are listed on Table I (H$_2$NCH(R)CO$_2$H).

TABLE I

SOME OF THE NATURALLY OCCURRING α-AMINO ACIDS

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbreviations</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Aspartic acid</td>
<td>Asp</td>
<td>-CH$_2$CO$_2$H</td>
</tr>
<tr>
<td>L-Glutamic acid</td>
<td>Glu</td>
<td>-(CH$_2$)$_2$CO$_2$H</td>
</tr>
</tbody>
</table>
TABLE 1 continued

<table>
<thead>
<tr>
<th>Name</th>
<th>Abbreviation</th>
<th>Neutral a-amino acids</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Cystine</td>
<td>Cys</td>
<td>-CH$_2$-S-S-CH$_2$CHINH$_2$CQ</td>
</tr>
<tr>
<td>L-Cysteine</td>
<td>Cys</td>
<td>-CH$_2$SH</td>
</tr>
<tr>
<td>L-Asparagine</td>
<td>Asn</td>
<td>-CH$_2$CONH$_2$</td>
</tr>
<tr>
<td>L-Phenylalanine*</td>
<td>Phe</td>
<td>-CH$_2$C$_6$H$_5$</td>
</tr>
<tr>
<td>L-Threonine*</td>
<td>Thr</td>
<td>-CH(OH)CH.</td>
</tr>
<tr>
<td>L-Serine</td>
<td>Ser</td>
<td>•CH$_2$OH</td>
</tr>
<tr>
<td>L-Glutamine</td>
<td>Gin</td>
<td>•(CH$_2$)$_2$CONH$_2$</td>
</tr>
<tr>
<td>(.Methionine*</td>
<td>Met</td>
<td>•(CH$_2$)$_2$SCH$_3$</td>
</tr>
<tr>
<td>L-Tyrosine</td>
<td>Tyr</td>
<td>CH$_2$C$_6$H$_4$OH</td>
</tr>
<tr>
<td>Glycine</td>
<td>Gly</td>
<td>•</td>
</tr>
<tr>
<td>L-Alanine</td>
<td>Ala</td>
<td>-CH.</td>
</tr>
<tr>
<td>L-Valine*</td>
<td>Val</td>
<td>•CH(CH$_3$)$_2$</td>
</tr>
<tr>
<td>L-Leucine*</td>
<td>Leu</td>
<td>•CH$_2$CH(CH$_3$)$_2$</td>
</tr>
<tr>
<td>L-Isoleucine</td>
<td>Ile</td>
<td>•CH(CH$_3$)CH$_2$CH$_3$</td>
</tr>
<tr>
<td>Basic a-amino acids</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-Lysine</td>
<td>Lys</td>
<td>(CH$_2$)$_4$NH$_2$</td>
</tr>
<tr>
<td>L-Arginine</td>
<td>Arg</td>
<td>$\text{2 3} \mid 2$ NH</td>
</tr>
</tbody>
</table>

These are essential amino acids that are needed in the diet to prevent a negative nitrogen balance.
In peptide synthesis involving preparation of larger molecules containing two or more amino acid residues joined together by a peptide bond, the carboxyl (-COOH)° and amino group C-NH' not participating in peptide bond formation and ether reactive functional groups must be protected. This protection of the amino acid minimises racemization, side products and increases its solubility. Since amino acids contain at least one amino and one carboxyl group they can take part in acylation reactions in two different ways: as acylating reactants (carboxyl components) or as the compound to be acylated (amino components). Thus if no preventive precautions are taken, a large number of undesired compounds will be formed in addition to the desired product as given in Scheme 1.

SCHEME 1
Coupling of two unprotected amino acids

\[
\begin{align*}
\text{H}_2\text{N-CHR-CO}_2\text{H} & \quad \cdot \quad \text{H}_2\text{N-CHR'-CO}_2\text{H} & \quad \rightarrow \quad \text{H}_2\text{N-CHR-CONH-CHR'}-\text{CO}_2\text{H} \\
& \quad \quad \quad + \quad \text{H}_2\text{O} \\
\text{I} & \quad \quad \quad \text{II} & \quad \quad \quad \text{III}
\end{align*}
\]

In addition to the required dipeptide III, carboxyl group of II can also couple with amino group of I.
Two other dipeptides can also be formed by intermolecular coupling between two molecules of I and also of II. The coupling of I and II may yield not only the dipeptides but quite readily the cyclic dipeptides. The amino group may be protected by formyl, tosyl, phthaloyl, trifluoroacetyl, carbobenzoxyl, tert-butyloxy-carbonyl, cyclopentyloxy-carbonyl, triphenylmethyl(trityl) etc., while the carboxyl group may be protected by esterification using such groups as methyl, ethyl, benzyl, tert-butyl etc. A series of reactions in Scheme 2 show how protection of amino and carboxyl groups in an a-amino acid may be carried out.

\textbf{SCHEME 2}

Protection of amino and carboxyl groups in amino acids.

(i) Amino group protection of one amino acid

\[
\begin{align*}
\text{CH}_3\text{COSN, } & -H-NCHR'CO-H & \overset{^{0\circ\text{o}}}{\longrightarrow} & \text{Boc-NCHR'-CO}_2 \\
& 3 & 3 & 3 & 2 & 2 & 2 & \text{Citric acid'}
\end{align*}
\]

(ii) Carboxyl group protection in the other amino acid

\text{acid}^{5,6}
In peptide bond formation, either carboxyl or amino group of the amino acid has to be activated, without which coupling is bound to be slow or not at all. Amino group activation is by isocyanates, phosphazo, phosphite amides etc. Carboxyl group activation is by acid chlorides, azides, mixed anhydrides, activated esters22, carbodiimides22 etc. The latter are used as coupling agents in peptide synthesis. A coupling agent is a compound added to the mixture of carboxyl and amino components and its main function is usually to form an intermediate anhydride or active ester. By far the most commonly used coupling agent is dicyclohexylcarbodiimide (OCC)24,25. The mechanism of the DCC-mediated peptide coupling was studied by D.F. Detar. Addition of the carboxyl component to the C=N double bond gives (1) which is called an O-acylisourea (see Scheme 3). Intermediate (1) is not isolated as such but is allowed to undergo nucleophilic attack by the amino component. Intermediate (1) can also react with an additional mole of carboxyl component to form an anhydride (3), which can also acylate the amino component. One side reaction known to occur during the DCC coupling is the spontaneous rearrange-
SCHEME 3

Mechanism of the DCC-mediated peptide coupling

\[
K^* \quad \begin{array}{c}
\text{H} \quad \text{H} \\
\text{^\^N=C=N-\text{y}} + \text{G-N-CHCOOH} \\
\text{R} \\
\end{array}
\]

\[
\begin{align*}
\text{or} & \quad XH-N-C \\
\text{R} & \quad (1)
\end{align*}
\]

\[
\begin{align*}
K^* \quad \text{H} & \quad \text{H} \\
\text{G-N-CH-C-N-CH-COOH} & \quad \text{Q - J - JU - \text{y}} \\
\text{R} & \quad \text{R} \\
\end{align*}
\]

\[
\begin{align*}
\text{G-N-(JH-C-N-CH-COOH} & \quad \text{Q-N-CH-COOH} \\
\text{R} & \quad \text{A'} \\
\end{align*}
\]

G represents amino protecting group.
roent of the O-acylisourea (1) to the N-acylurea (4) (Scheme 4). This latter compound is unreactive towards amino acids. This rearrangement is minimized by working in methylene chloride or acetonitrile as solvent?

SCHEME 4
Rearrangement of O-acylisourea to N-acylurea

\[
\begin{array}{c}
\text{O} - \text{I} - \text{F} - \text{R} - \text{O} - \text{V} - \text{O} \\
\text{O} - \text{I} - \text{CH-N-C} - \text{II} - \text{CH-N-C} \\
\text{O} - \text{II} - \text{R} - \text{H} \\
\text{(4)} - \text{R} - \text{II} \\
\end{array}
\]

In the active ester method an N-protected amino acid is converted to an ester, which in general under mild conditions is a weaker acylating agent than is a mixed anhydride. It is found that ordinary methyl or ethyl esters react too slowly with amino acids to be practical. Groups on the alcohol part of the ester that tend to withdraw electrons should improve the susceptibility of the ester carbonyl to attack by a nucleophilic α-amino group. Schwzyzer made use of cyanomethyl esters, where an electron-withdrawing nitrile group is in the alcohol part of the ester (Scheme 5).
Carboxyl Protection by cyanomethyl group.

\[
\text{GNH-CH-COOH} \cdot \text{Cl-CH}_2\text{CN} \xrightarrow{\text{base}} \text{8} \xrightarrow{\text{I}} \text{GNH-CH-C-O-C}^\cdot\text{CN \ H}_2\text{NCH}_2\text{CO}_2\text{H} \cdot \text{R' CN}
\]

\[
\text{GNH-CH-C-N-CHCOOH} \cdot \text{HOCH}_2\text{CN}
\]

Later phenyl and nitrophenyl esters came into use. Here nucleophilic attack is encouraged by an increase in the electronic stability of the incipient phenoxide ion because of delocalization of negative charge onto an aromatic ring.

One of the active esters commonly used is N-hydroxysuccinimide developed by Anderson, Zimmerman, and Callahan. The N-hydroxysuccinimide ester of an N-protected amino acid was synthesized as shown in Scheme 6.
In dipeptide synthesis, one has to go through the protection of amino group of the first amino acid before activating its carboxyl group. Thus if we protect the amino group of glycine with some reagent G-X, and activate the -COOH group with some reagent Y-G', then a synthesis of glycylalanine, would proceed as shown in Scheme 7,

SCHEME 7

Synthesis of glycylalanine

Protection \(\text{H}_2\text{N-CH}_2\text{C-\text{OH}} \cdot \text{G-X} \rightarrow \text{GNH-CH}_2\text{C-\text{OH}} - \text{HX} \)

Activation \(\text{GNH-CH}_2\text{-C-\text{OH}} \cdot \text{Y-G'} \xrightarrow{\text{GNH-CH}_2\text{C-\text{G'}} \cdot \text{Y-\text{O}}} \)

Coupling \(\text{GNH-CH}_2\text{-C-G'} \cdot \text{H}_2\text{N-CH-C-\text{OZ}} \)

\(\text{CH}_3 \)

GNH-CH_2C0NHJH-?-DZ \cdot HG'

\(\text{CH}_3 \)

Deprotection \(\text{GNH-CH}^\text{ONHCCH-C-\text{OZ}} \rightarrow \text{H}_2\text{N-CH}_2\text{C0NHJH-\text{OH}} \)

\(\text{CH}_3 \)

\(\text{CH}_3 \)

G = amino protecting group, Z = carboxyl protecting group.

There are three general ways for the synthesis of a peptide chain: (a) stepwise elongation starting from the N-terminal amino acid, (b) stepwise elongation starting from the C-terminal amino acid, and (c) joining together small peptides with the proper partial sequences (fragment condensation). The three methods are shown in Schemes 8, 9 and 10 respectively.
(2) **Stepwise elongation from the N-terminal amino acid** (Scheme 6).

In this method selective unmasking of amino-protecting group of a peptide I affords an amino component II which in turn may be condensed with an activated acylamino acid III to give the corresponding protected peptide IV, which is selectively deblocked to give V, etc. Thus, elongation of the peptide chain by this approach involves the linking of one amino acid at a time to the N-terminal amino group of the growing peptide chain. Racemization is not a serious problem in this method, since activated acyl amino acids serve as carboxyl components.

SCHEME 8

Stepwise elongation from the N-terminal amino acid,

\[
\begin{align*}
&\text{Selective}\ \ \ \ \text{deblocking}\quad R_i \\
&Y-HNCHCO-HKCHCOOZ \quad \text{HjNCHCO-HNCHCOOZ} \\
&(i) \quad (n)
\end{align*}
\]

\[
\begin{align*}
&\text{Selective}\ \ \ \ \text{deblocking}\quad p \quad \quad R_i \\
&Y-HNCHCOX \quad Y-HNCHCO-HNCHCOOZ \quad \text{HjNCHCO-HNCHCOOZ} \\
&(m) \quad (IV) \quad (n)
\end{align*}
\]

\[
\begin{align*}
&R_i \quad R_i \quad R_j \\
&\text{HjNCHCO-HNCHCO-HNCHCOOZ} \quad \text{etc.} \quad (n)
\end{align*}
\]

\[
\begin{align*}
V = \text{amino protecting group} \quad Z = \text{carboxyl protecting group}
\end{align*}
\]
(b) **Stepwise elongation from the C-terminal amino acid (Scheme 9).**

In this approach the carboxyl protecting group (Z) of a peptide I is selectively removed, and the resulting new carboxyl component II is activated by group (X). The activated peptide III subsequently reacts with an amino acid ester (or amino acid anion) IV to give the protected peptide V. In an analogous manner peptide V can be converted to VI, etc.

Condensation of the acyl peptide carboxyl component II with the amino acid component IV can also be brought about by activating the amino group of the latter instead of the carboxyl group of the former. By either procedure elongation of the peptide chain is accomplished by linking one amino acid at a time to the carboxyl terminal amino acid residue of a given peptide chain.

SCHEME 9

Stepwise elongation from the C-terminal amino acid

\[
\begin{align*}
\text{Activation} & : Y-\text{HNCHCO-HNCHCOOZ} \\
& \quad \stackrel{(n)}{\text{Selective deblocking}} \quad R \quad R^*_n \quad Y\text{HNCHCO-HNCHCOOH} \quad (n) \\
\text{Deblocking} & : Y-\text{HNCHCO-HNCHCOOZ} \\
& \quad \stackrel{(n)}{\text{Selective deblocking}} \quad R \quad R^*_n \quad Y\text{HNCHCO-HNCHCOOH} \\
& \quad \stackrel{(in)}{\text{Activation}} \quad Y-\text{HNCHCO-HNCHCOX} \quad H\text{HNCHCOOZ} (IV) \\
\text{Deblocking} & : Y\text{HNQICO-HNCHCOHNCHCOOZ} \\
& \quad \stackrel{(n)}{\text{Selective deblocking}} \quad R^*_n \quad R^*_n \quad R^*_n \quad H\text{HNCHCOOZ} \\
& \quad \stackrel{(n)}{\text{Activation}} \quad Y-\text{HNCHCO-HNCHCOOZ} \\
\text{Deblocking} & : Y-\text{HKCHCO-HNCHCOHNCHCOX} \\
& \quad \stackrel{(n)}{\text{Selective deblocking}} \quad R^*_n \quad R^*_n \quad R^*_n \quad H\text{HNCHCOOZ} \\
& \quad \stackrel{(n)}{\text{Activation}} \quad Y-\text{HNCHCO-HNCHCOOZ} \\
& \quad \stackrel{(n)}{\text{Selective deblocking}} \quad R^*_n \quad R^*_n \quad R^*_n \quad H\text{HNCHCOOZ} \\
& \quad \stackrel{(n)}{\text{Activation}} \quad Y-\text{HNCHCO-HNCHCOOZ} \\
& \quad \stackrel{(n)}{\text{Selective deblocking}} \quad R^*_n \quad R^*_n \quad R^*_n \quad H\text{HNCHCOOZ} \\
& \quad \stackrel{(n)}{\text{Activation}} \quad Y-\text{HNCHCO-HNCHCOOZ} \\
\end{align*}
\]
(c) Fragment Condensation (Scheme 10)

This is elongation of the chain by the coupling of fragments. This mode need not imply an elongation in just one direction, but could start from the middle, for example, and build in both directions. This kind of coupling is the preferred method for large peptides.

SCHEME 10

Fragment condensation

\[
\text{GNHCHR} + \text{H}^\text{CHl'} \rightarrow \text{GNHCHRCONHCHR' COOH}
\]

selective \[^{\text{G}} \\text{GNHCHRCONHCHR' COOH} \rightarrow \text{GNHCHRCONHCHR' COOH}
\]

deblocking \[^{\text{C-tenninal}} \rightarrow \text{GNHCHRCONHCHR' COOH}
\]

\[
\text{GNHCHR} + \text{H}_2 \text{NCHR'' COOH} \rightarrow \text{HNCHR' CONHaR'' COOZ}
\]

\[
\text{GNHQIRCONHKH' COG} + \text{H}^\text{NQIR'' CONHCHR'' COOH}
\]

\[
\text{H}_2 \text{NCHRCONHaRf CONHCHR' CONHCHR'' COOH}
\]

G = amino protecting group* Z = carboxyl protecting group,

It should be obvious that not only the a-amino group of the N-terminal residue, but also certain side chain groups may require protection before coupling is to take place because many of them are also nucleophilic in nature. If R,R',R'' etc. are
reactive groups such as -CH^CO^H, -Ch^-SH, -(CH\textsubscript{2})\textsubscript{2}CO\textsubscript{2}H,
-(CH\textsubscript{2})\textsubscript{4}NH\textsubscript{2}, -(CH\textsubscript{2})\textsubscript{2}-SCH\textsubscript{3},-CH\textsubscript{2}OH, -CH(CH\textsubscript{3})OH,
-CH\textsubscript{2}CgH\textsubscript{5}OH, -CH\textsubscript{2}C0NH\textsubscript{2}, -(CH\textsubscript{2})\textsubscript{2}C0NH\textsubscript{2} etc., they, too
must be protected to prevent side reactions in the
course of peptide synthesis.

Peptides constitute an important branch in
chemistry because a lot of them possess biological
activity. Some of the hormones important for normal
body activities are made of peptides. These aut
principally as transmitters of information and
 coordinators of the activities of the various tissues
in the organism.

A selection of naturally occurring peptides are
given in Table II. Most of these substances occur

\begin{table}[h]
\centering
\begin{tabular}{|l|l|l|}
\hline
Peptide & Source & No. of amino acids \\
\hline
Vasopressin & Hypothalamus & 9 \\
Oxytocin & Posterior pituitary & 9 \\
Corticotropin & Anterior pituitary & 39 \\
Insulin & B-cells of pancreas & 51 \\
\hline
\end{tabular}
\caption{Some of the naturally occurring peptides.}
\end{table}

in man and with structural modifications in many other
vertebrates as well. Both vasopressin and oxytocin
are nonapeptides, similar in structure but yet
different in function. They differ in amino acids
at positions 3 and 8. Oxytocin causes stimulation
of milk release while vasopressin regulates the absorption of water at the distal renal tubule.

All synthetic analogues of oxytocin in which other positions (3, 4 and 8) have been altered show lower potency in contracting the mammalian uterus.

Studies on a number of biologically active peptides have shown that a number of these contain glutamine and/or asparagine amino acid residues, and other amino acids having amide groups at the carboxyl end of the peptide. In synthesizing these peptides containing carboxamide groups, it is important that the carboxamide side chain group be protected.

The amide groups of asparagine and glutamine undergo the following side reactions (eq 1-3) during peptide synthesis: (Scheme 11) \(^{28,29}\)

(1) deamination to the corresponding acid

(2) formation of imides and subsequent hydrolysis [N-protected asparagine or glutamine enters (a), asparaginyl or glutaminyl peptides (b). In this case the loss of a proton by the action of alkali occurs in both position a and \(\alpha\). The a site is more
SCHEME 11

Side reactions of asparagine and glutamine amide groups

1) Deamination to the corresponding acids.

\[
\text{NHR'} + \overset{\text{C}}{\text{H}_2} \overset{\text{M}}{\text{N}} \overset{\text{XNHCHCNHH'}}{\text{XNHCHCNHH'}}
\]

2) Formation of imides and subsequent hydrolysis

a) N-protected asparagine or glutamine esters.

b) Asparaginyl or glutaminyl peptides.

First Case: Initial abstraction of proton from peptide chain.
(c) Second case: Initial abstraction of proton from the side chain amide group.

\[\text{XNHCHCNHR'} \quad \text{"OH} \quad \text{XNHCH} - \text{C-NHR}" \]

3) Formation of pyroglutamyl peptides from glutaminyl peptides.

4) Dehydration

\[\text{XNHCHOOO} \quad \text{-t^O} \quad \text{XN1O1O0OH} \]

\[\text{X} = \text{amino protecting group or peptide chain} \]
\[\text{n} = 1, \text{ asparagine} \]
\[\text{n} = 2, \text{ glutamine} \]
\[\text{R'} = \text{peptide chain} \]
\[\text{R} = \text{aryl or alkyl} \]
reactive because of the greater electrophilic strength of the α carbon atom as compared with that of the ω carbon atom. The subsequent release of the -NH\(^{\text{α}}\) group leads to formation of α and ω isomeric peptides, though the latter is obtained in greater amount. Reaction at the ω site causes cleavage of the peptide (c)]j (3) formation of pyroglutamyl derivatives from glutaminyl peptides* and (4) dehydration.

A number of carboxamide protecting groups have been studied. These include P-methoxybenzyl, 2,4-dimethoxybenzyl, 4,4'-dimethoxybenzhydryl, 2,4,6-trimethoxybenzyl, xanthyl, 4-methoxy-?-
methylbenzyl, etc. Although these groups have been successfully used in preparing dipeptides, only benzhydryl group has been used in preparing longer peptides, where several amino-deprotecting and peptide bond formation steps have been successfully carried out in the presence of carboxcimide groups fully protected with benzhydryl group. Thus, a good protecting group prevents side reactions, racemization and increases solubility of the protected amide.

The first part of this project is the conversion of 1-tetralone derivatives to 1-aminotetralin derivatives by Leuckart reaction which involves
heating aldehyde or ketone in the presence of excess ammonium formate to give formamide which upon hydrolysis gives the corresponding primary amine.

Crossley and Moore have indicated that there are a number of experimental conditions which influence the yield of the desired amine. In order to study the effect of the reagent upon the yield of amine, the two scientists carried out a series of experiments on the condensation of formamide with 3-phenyl-2-butanone in which the source of preparation of the formamide was varied. The reactions were carried out using a ratio of five moles of reagent to one mole of ketone and the formyl derivative was hydrolyzed in concentrated hydrochloric acid by refluxing for eight hours. Table III shows the yield of N-formyl-3-phenylbutan-2-amine obtained by using the various reagents. Table III shows, that the use of formamide gave a lower yield of product than that obtained from ammonia and formic acid. The addition of formic acid to formamide increased the yield to that obtained from the ammonia and formic acid reagent.

They also found that the temperature at which the reaction was carried out had an effect on the yield. In order to determine the effect of temperature on the yield of product, three experiments
TABLE III

Effect of variation in the Leuckart reaction on the condensation with 3-phenyl-2-hutanone. Acid hydrolysis of formyl derivative.

<table>
<thead>
<tr>
<th>Run</th>
<th>Leuckart reagent</th>
<th>Temp.°C</th>
<th>Time, hrs</th>
<th>Yield of amine;</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Formamide</td>
<td>170-180</td>
<td>22</td>
<td>27</td>
</tr>
<tr>
<td>2</td>
<td>Formic acid and ammonia (5 moles each)</td>
<td>175-185</td>
<td>21</td>
<td>45</td>
</tr>
<tr>
<td>3</td>
<td>Formamide and formic acid (2.5 moles each)</td>
<td>170-180</td>
<td>22</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>Formamide and formic acid (2.5 moles each)</td>
<td>170-180</td>
<td>15</td>
<td>48</td>
</tr>
<tr>
<td>5</td>
<td>Formic acid and ammonia (5 moles each)</td>
<td>160-170</td>
<td>7.5</td>
<td>50</td>
</tr>
</tbody>
</table>

were run on 3-phenyl-2-butanone, using the reagent from ammonia and formic acid in which the temperature of the reaction was varied, although all were heated for fifteen hours. The results are shown in Table IV. It is evident that the yield was influenced by

TABLE IV

Effect of temperature on the Leuckart reaction with 3-phenyl-2-butano'ne. Time: Fifteen hours. Acid hydrolysis of formyl derivative.

<table>
<thead>
<tr>
<th>Run</th>
<th>Temp.°C</th>
<th>Amine %</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>190-200</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>170-180</td>
<td>47</td>
</tr>
<tr>
<td>0</td>
<td>160-170</td>
<td>50</td>
</tr>
</tbody>
</table>
the temperature at which the condensation was
carried out and in these experiments the yield
was twice as much at 160-170 as at 190-200°.

The effect of varying the time of heating
when carrying out the condensations at various
temperatures is shown in Table V. A yield of 50%
was obtained when the condensation was carried but

TABLE V
Effect of time on the Knoevenagel condensation with

<table>
<thead>
<tr>
<th>Run</th>
<th>Time,hrs</th>
<th>Amine%</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>15</td>
<td>23</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
<td>50</td>
</tr>
<tr>
<td>13</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>14</td>
<td>4</td>
<td>48</td>
</tr>
</tbody>
</table>

Temperature: 160-170°

at 190-200° for five hours, while a yield of only
23% was obtained after heating for fifteen hours.
The reaction may be heated for fifteen hours at
160-170° without a reduction in yield, although
the same results were obtained by heating for as
short a period as four hours.
At least two procedures have been described for the hydrolysis of the formyl derivative to the corresponding amine. In one, 30% sodium hydroxide solution was used and in the other concentrated hydrochloric acid was the hydrolytic agent. The effect of various concentrations of these two hydrolytic agents on purified N-formyl-3-phenylbutan-2-amine is shown in Table VI. At the same time, the two made an extensive study of the variation in time and experimental conditions on the hydrolysis of the formyl derivative from the reaction mixture.

TABLE VI

Effect of time and reagents on the hydrolysis of N-formyl-3-phenylbutan-2-amine.

<table>
<thead>
<tr>
<th>Run</th>
<th>Hydrolytic reagent</th>
<th>Time of hydrolysis, hrs</th>
<th>Amine yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Concentrated hydrochloric acid</td>
<td>8</td>
<td>59'</td>
</tr>
<tr>
<td>16</td>
<td>10% hydrochloric acid</td>
<td>8</td>
<td>75</td>
</tr>
<tr>
<td>17</td>
<td>10% hydrochloric acid</td>
<td>1</td>
<td>67</td>
</tr>
<tr>
<td>18</td>
<td>30% sodium hydroxide</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>10% sodium hydroxide</td>
<td>8</td>
<td>71</td>
</tr>
<tr>
<td>20</td>
<td>6.6% "</td>
<td>8</td>
<td>76</td>
</tr>
</tbody>
</table>
without subsequent purification. The best yield was obtained by hydrolyzing the formyl derivative directly in the reaction mixture with concentrated hydrochloric acid.

In this project it is proposed to carry out a conversion of 1-tetralone and some of its derivatives to the amines by Leuckart reaction. In this reaction the ketones are converted to the formyl derivatives. Hydrolysis of these derivatives to the amines is carried out using 36% concentrated hydrochloric acid on the one hand and in the other 10% aqueous NaOH was the hydrolytic agent.

The next stage is in using these amines (1-aminotetralin and its derivatives) as precursors in synthesizing the carboxamide protected derivatives of a-benzyl t^-butyloxy carbonylglutamate, a-benzyl t^-butyloxy carbonylgsparatate and B-benzyl^-butyl-oxy carbonylasparatate.

After successfully preparing carboxamide protected glutamine and asparagine derivatives, stability of their protecting groups in TFA-CH\textsubscript{2}Cl\textsubscript{2}-anisole(50:48:2 v/v) are studied using thin-layer chromatography (TLC). The protecting group(s) that is/are not cleaved -For upto 24hr is/are then subjected to boron trifluoride in acetic acid (BTFA). Generally a good carboxamide protecting
group should be stable in TFA-ChC^-anisole and HCl-dioxane (reagents used for removal of amino-protecting groups) and should be readily removed with strong cleavage reagents like BTFA^4+ and HF® which are used for complete removal of most of the protecting groups at the end of peptide synthesis. Complete removal of the carboxamide-protecting group gives a free amide group. Optical activity of the peptide or amino acid should be maintained during the introduction and removal of the protecting groups.

The protecting groups that are stable in TFA-CF^-anisole but cleaved when subjected to BTFA will be promising as carboxamide protecting groups. Some of these carboxamide protected derivatives whose protecting groups are promising will be used to synthesize a few peptides for testing their suitability as protecting groups under peptide synthesis conditions.
2.1 SYNTHESIS OF AMINES BY LEUCKART REACTION:

Although the exact mechanism has not been definitely established, the reaction can be explained in the following steps: (a) the ammonium formate dissociates into ammonia and formic acid at the temperature of the reaction and (b) ammonia adds to the carbonyl group or condenses to form the corresponding imine; (c) the formic acid then acts as a reducing agent to remove the hydroxyl or reduce the imino group and (d) if in excess, may form the formyl derivative which is subsequently hydrolyzed to the free amine. The other proposed mechanism is where formamide is the reactive agent (both depicted in Scheme 12).

SCHEME 12

Leuckart reaction mechanism

Case one:

\[
\begin{align*}
11 & \text{COON}_2H_4 \cdot HCOOH + NH_3 \xrightarrow{K, \text{OH}} K \\
& \xrightarrow{r, K} j + HCOOH \xrightarrow{CHNH_j+Cl+H,\,\theta} \\
& \xrightarrow{RCOR' + NH_3} \xrightarrow{r} \xrightarrow{W} \xrightarrow{G,\text{NH}} + HCOOH \xrightarrow{\text{CHNH, } -t CO^\text{W}} \\
& \xrightarrow{\text{H.O } J} \xrightarrow{W} \xrightarrow{\text{CHNH}^\text{W}, + HCOOH} \xrightarrow{K'} \xrightarrow{CHNHCHO + H.O}
\end{align*}
\]
Scheme 12 Continued

Case two:

\[
\text{HI-CL-OH} + :\text{NH}_2 \rightarrow \text{H} - \text{ii-ONH} - \text{m-J-NH}_2 \text{I} \quad - \text{OH} - \text{H}_2\text{O}
\]

\[
\text{H-C-N-C-R} \quad \text{H-C-N=C-R} \quad \text{H-C-N-Gi-R} + \text{CD}, \quad \text{R'} \quad \ldots \quad \text{Hn}
\]

SCHEME 13

2.1.1 CONVERSION OF 1-TETRALONE AND ITS DERIVATIVES TO 1-AHINOTETRALIN DERIVATIVES

\[
\text{HCO}_2\text{H/NaNHS} \quad 170-180^\circ \rightarrow
\]

1-S

1a-Sa

lb-5b
the naming of the compounds are as follows:-

1 = 1-Tetralone
1b = 1-Aminotetralin

2 = 5-Methoxy-1-tetralone
2b = 1-Amino-5-methoxytetralin

3 = 6-Methoxy-1-tetralone
3b = 1-Amino-6-methoxytetralin

4 = 7-Methoxy-1-tetralone
4b = 1-Amino-7-methoxytetralin

5 = 5,7-Dimethyl-1-tetralone
5b = 1-Amino-5,7-dimethyltetralin

1a = N-1,2,3,4-Tetrahydro-1-naphthyl formamide

2a = N-5-I'methoxy-1,2,3,4-tetrahydro-1-naphthyl formamide

3a = N-6-Methoxy-1,2,3,4-tetrahydro-1-naphthyl formamide

4a = N-7-Methoxy-1,2,3,4-tetrahydro-1-naphthyl formamide

5a = N-5,7-Dimethyl-1,2,3,4-tetrahydro-1-naphthyl formamide

The compounds 1a-5a are the formyl derivatives and the hydrolysis was with 36% concentrated hydrochloric acid on the one hand and in the other 10% aqueous NaOH was the hydrolytic agent. The results are as given in Table VII.

TABLE VII

Amine synthesis from both acid and base hydrolysis of the formyl derivatives. Refluxing time: Acid 3hn Base 3hr.

<table>
<thead>
<tr>
<th>Formyl der.</th>
<th>Acid (Amine %)</th>
<th>Acid (Pure formyl der.)</th>
<th>Base (Amine %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>44</td>
<td>54</td>
<td>97</td>
</tr>
</tbody>
</table>
TABLE VII Continued

<table>
<thead>
<tr>
<th>Formyl der.</th>
<th>AcidCAmine %) (Crude formyl der.)</th>
<th>Acid (Amine %) (Pure formyl der.)</th>
<th>Base (Amine %)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>60</td>
<td>75</td>
<td>95</td>
</tr>
<tr>
<td>3a</td>
<td>0</td>
<td>U</td>
<td>94</td>
</tr>
<tr>
<td>4a</td>
<td>0</td>
<td>0</td>
<td>96</td>
</tr>
<tr>
<td>5a</td>
<td>40</td>
<td>52</td>
<td>90</td>
</tr>
</tbody>
</table>

Acid hydrolysis of formyl derivatives were done in two ways. In case one, the crude formyl derivatives were refluxed directly with concentrated hydrochloric acid. In the other case, the already purified formyl derivatives were refluxed with the concentrated acid. The amine yields of the first case are based on the starting ketones while in case two the yields are based on the pure formyl derivatives. Base hydrolysis was by refluxing purified formyl derivatives with 10% aqueous NaOH. It can be concluded from the table that a higher yield of all the amines was obtained when 10% aqueous NaOH was the hydrolytic agent as compared to 36% concentrated hydrochloric acid. The amines were not obtained when acid hydrolysis of N-6-methoxy-1,2,3,4-tetrahydro-1-naphthyl formamide and N-7-methoxy-1,2,3,4-tetrahydro-1-naphthyl formamide were done. The black-gummy compound that was obtained after hydrolysis could have been due to the ease of polymerization of their formyl derivatives.
2.2 SYNTHESIS OF CARBOXAMIDE PROTECTED ASPARAGINE AND GLUTAMINE DERIVATIVES5,11

Amines (RNH$^+$) will react with Boc-Asp-a-Q3z1 and Doc-Glu-a-OBzl in the presence of coupling reagents e.g. DCC to give a-benzyl tert-butyloxy-carbonyl-N-R-asparaginate and a-benzyl tert-butyloxy carbonyl N-R-glutamine respectively as shown in Scheme 14 (R=Carboxamide protecting group) The coupling gave yields ranging from 40% to 69%.

SCHEME 14

Synthesis of carboxamide protected asparagine and glutamine derivatives.

\[
\begin{align*}
&\text{CO}_2\text{H} & &\text{CO}_2\text{H} \\
&\text{I}^2 & &\text{I}^2 \\
&(\text{CH}_3)_n & & (\text{CH}_3)_n \\
&\text{H,NCH}_0\text{O,H} + (\text{CH}_3)-\text{COCN}^- & & / (\text{CH}_3)_3\text{COCNHCHC}_0\text{H} \\
&1. \text{NaOH} & & 2. \text{Citric Acid}
\end{align*}
\]

1. DCC

\[
\begin{align*}
&\text{CO}_2\text{H} \\
&\text{I} \\
&\text{I}^2 - \text{C}_6\text{H}_5\text{S}<\text{O}<\text{H} \\
&\text{D} \quad \text{C} \quad \text{C} \quad , \quad \text{HCNSU}, \quad \text{RNH}, \\
&\text{•} \quad \text{H}_5\text{COONHCHCO}_2\text{CH}_2\text{CH}_3 \\
&\text{3. (C}^\text{H}_3\text{H}^\text{N}^\text{NH} \\
&\text{4. Citric Acid}
\end{align*}
\]

\[
\begin{align*}
&\text{comR} \\
&\text{I} \\
&(\text{CH}_3)_3\text{COONHCHCO}_2\text{CH}_2\text{C}(\text{H}_3)
\end{align*}
\]

\[n = 1 \text{ aspartic acid or asparagine derivatives}\]

\[n = 2 \text{ glutamic acid or glutamine derivatives}\]
2.3 CLEAVAGE STUDIES OF THE CARBOXAMIDE PROTECTED DERIVATIVES OF GLUTAMINE AND ASPARAGINE IN TFA-CH\(_2\)Cl\(_2\)-anisole (50:48:2 v/v) AND SOME OF THEM IN BTFA-TFA.

Both Boo and benzyl protecting groups are easily removed under mild conditions. The former is selectively removed with 50% TFA-CH\(_2\)Cl\(_2\) while the latter is selectively removed by catalytic hydrogenation. The two groups are easily removed by HF and BTFA-TFA. In addition to removing these two protecting groups, they also remove carbobenzox trityl, tert-butyl, diphenylmethyl, xanthyl, 2,4-dimethoxybenzyl etc. They do not remove methyl ethyl esters, or affect peptide bonds. BTFA-TFA was tested to find whether it would remove some of the glutamine and asparagine carboxamide protecting groups. Anisole was used as a carbonium ion trap.

The proposed cleavage mechanism of the carboxamide protecting group in acid is given in Scheme 15.
Proposed cleavage mechanism of the carboxamide.

Scheme 15

Protecting group

The carboxamide protected asparagine and glutamine derivatives treated with TFA-CH$_2$Cl$_2$-anisole (50:48:2 v/v) and BTFA-TFA are listed on Table VIII. The standard compounds that were used in cleavage components identification are shown in Table IX. The cleavage results for TFA-CH$_2$Cl$_2$-anisole and BTFA-TFA are given on Tables X and XI respectively.
<table>
<thead>
<tr>
<th>Compound No.</th>
<th>Compound</th>
<th>Rf</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Boc-Gln(1, 2, 3, 4-tetrahydro-1-naphthyl)-a-0Rzl</td>
<td>0.63</td>
</tr>
<tr>
<td>7</td>
<td>Boc-Asn(1, 2, 3, 4-tetrahydro-1-naphthyl)-p-DBzl</td>
<td>0.89</td>
</tr>
<tr>
<td>8</td>
<td>Boc-Gln(5-methoxy-1, 2, 3, 4-tetrahydro-1-naphthyl)-a-G9zl</td>
<td>0.81</td>
</tr>
<tr>
<td>9</td>
<td>Boc-Asn 5-methoxy-1, 2, 3, 4-tetrahydro-1-naphthyl)-B"03zl</td>
<td>0.83-</td>
</tr>
<tr>
<td>10</td>
<td>Boc-Gln(6-methoxy-1, 2, 3, 4-tetrahydro-1-naphthyl)-a-03zl</td>
<td>0.78</td>
</tr>
<tr>
<td>11</td>
<td>Boc-Asn(6-methoxy-1, 2, 3, 4-tetrahydro-1-naphthyl)-a-D3zl</td>
<td>0.77</td>
</tr>
<tr>
<td>12</td>
<td>Boc-Gln(7-methoxy-1, 2, 3, 4-tetrahydro-1-naphthyl)-a-03zl</td>
<td>0.82</td>
</tr>
<tr>
<td>13</td>
<td>Boc-Asn(7-methoxy-1, 2, 3, 4-tetrahydro-1-naphthyl)-a-03zl</td>
<td>0.83</td>
</tr>
<tr>
<td>14</td>
<td>Boc-Gln(5, 7-dimethyl-1, 2, 3, 4-tetrahydro-1-naphthyl)-a-OBzl</td>
<td>0.87</td>
</tr>
<tr>
<td>15</td>
<td>Boc-Asn 5, 7-dimethyl-1, 2, 3, 4-tetrahydro-1-naphthyl)-6-0Bzl-</td>
<td>0.91</td>
</tr>
<tr>
<td>16</td>
<td>Boc-Phe-Asn(1, 2, 3, 4-tetrahydro-1-naphthylB-OBzl</td>
<td>0.75</td>
</tr>
<tr>
<td>17</td>
<td>Boc-Phe-Asn(7-methoxy-1, 2, 3, 4-tetrahydro-1-naphthyl)-a-OBzl</td>
<td>0.69</td>
</tr>
<tr>
<td>18</td>
<td>Boc-Phe-Asn(5, 7-dimethyl-1, 2, 3, 4-tetrahydro-1-naphthyl)-B-OBzl</td>
<td>0.76</td>
</tr>
<tr>
<td>19</td>
<td>Roc-Ile-Phe-Asn(1, 2, 3, 4-tetrahydro-1-naphthyl)-6-0Bzl-</td>
<td>0.73*</td>
</tr>
<tr>
<td>20</td>
<td>Boc-Ile-Phe-Asn(7-methoxy-1, 2, 3, 4-tetrahydro-1-naphthyl)-a-OBzl</td>
<td>0.33*</td>
</tr>
<tr>
<td>21</td>
<td>Boc-Ile-Phe-Asn(5, 7-dimethyl-1, 2, 3, 4-tetrahydro-1-naphthyl)-6-HBzl</td>
<td>0.70*</td>
</tr>
</tbody>
</table>

'solvent sys cm (:}
TABLE IX

Standard compounds for cleavage components identification. Solvent system F was used.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Rf</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-Gln(1,2,3,4-tetrahydro-1-naphthvl)-a-OBzl</td>
<td>0.51</td>
</tr>
<tr>
<td>H-Asn(1,2,3,4-tetrahydro-1-naphthvl)-fj-PBzl</td>
<td>0.64</td>
</tr>
<tr>
<td>H-Gln(5-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl</td>
<td>0.52</td>
</tr>
<tr>
<td>H-Asn(5-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-6-OBzl</td>
<td>0.59</td>
</tr>
<tr>
<td>H-Gln(6-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl</td>
<td>0.50</td>
</tr>
<tr>
<td>H-Asn(6-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl</td>
<td>0.55</td>
</tr>
<tr>
<td>H-Gln(7-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl</td>
<td>0.50</td>
</tr>
<tr>
<td>H-Asn(7-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl</td>
<td>0.58</td>
</tr>
<tr>
<td>H-Gln(5,7-dimethyl-1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl</td>
<td>0.54</td>
</tr>
<tr>
<td>H-Asn(5,7-dimethyl-1,2,3,4-tetrahydro-1-naphthyl)-B-OBzl</td>
<td>0.60</td>
</tr>
<tr>
<td>a-Benzyl-L-glutaminine</td>
<td>0.18</td>
</tr>
<tr>
<td>L-glutamine</td>
<td>0.06</td>
</tr>
<tr>
<td>B-Benzyl-L-isoasparaginate</td>
<td>0.13</td>
</tr>
<tr>
<td>L-Isoasparagine</td>
<td>0.05</td>
</tr>
<tr>
<td>a-Benzyl-L-asparaginate</td>
<td>0.17</td>
</tr>
<tr>
<td>L-Asparagine</td>
<td>0.05</td>
</tr>
</tbody>
</table>
TABLE X

TFA-CH-,C1-,anisole (50:48;2 v/v) cleavage studies of the carboxamide protecting groups of glutamine and asparagine.

1=starting compound 2=derivative with only Boc-deprotected
3=derivative with both Boc and carboxamide protecting group
 deprotected or Boc and benzyl group deprotected 4=all the
 protecting groups deprotected. Solvent system F.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cleavage duration, hr</th>
<th>Cleavage products (R^.) Extent of protecting group removal (24hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12 3 4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0 0.83 - - - Partial</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>- 0.51</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- 0.51 0.18 -</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>- 0.51 0.18 -</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>- 0.51 0.18 -</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>- 0.51 0.18 -</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0 0.89 - No removal</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>- 0.64</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- 0.64</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>- 0.64 -</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>- 0.64</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>- 0.64 -</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0 0.81 - - - Partial</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>- 0.52</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- 0.52</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>- 0.52</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>- 0.52 0.18 -</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>- 0.52 0.18 -</td>
<td></td>
</tr>
</tbody>
</table>
TABLE X Continued

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cleavage duration (hr)</th>
<th>Cleavage products (R,J)</th>
<th>Extent of protecting group removal (24hr).</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0</td>
<td>0.83</td>
<td>Partial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.59 0.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.59 0.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.59 0.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.59 0.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.59 0.13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0.59 0.13</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.78</td>
<td>Complete removal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.50 0.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.50 0.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.50 0.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.50 0.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.50 0.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0.77</td>
<td>Complete removal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.58, 0.17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.58 0.17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.58 0.17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.58 0.17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0.82</td>
<td>Partial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0.50 0.18</td>
<td></td>
</tr>
<tr>
<td>Compound</td>
<td>Cleavage duration,</td>
<td>Cleavage products (R^)</td>
<td>Extent of protecting group removal (24hr)</td>
</tr>
<tr>
<td>----------</td>
<td>-------------------</td>
<td>------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>12 3 4</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0.83</td>
<td>No removal</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0.87</td>
<td>Partial</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.54 0.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.54 0.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.54 0.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.54 0.18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0.91</td>
<td>No removal</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0.75</td>
<td>No removal</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0.62</td>
<td></td>
</tr>
</tbody>
</table>
TABLE XI

BTFA studies of carboxamide protecting groups of asparagine

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cleavage duration, hr</th>
<th>Cleavage products (R_f)</th>
<th>Duration for complete removal of protecting group (hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0</td>
<td>0.89</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>0.64</td>
<td>0.22</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>0.22</td>
<td>0.05</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>0.22</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>0.05</td>
</tr>
</tbody>
</table>
TABLE XI Continued

<table>
<thead>
<tr>
<th>Compound</th>
<th>Cleavage duration, hr</th>
<th>Cleavage products (Rf)</th>
<th>Treatment for group (hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>0</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>-</td>
<td>0.58 0.37 0.05</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>-</td>
<td>0.17 0.05</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>-</td>
<td>0.05</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>0.13 0.05</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>0.13 0.05</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>0.62 0.12</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>0.12 0.02</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>0.57 0.12</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>0.12 0.02</td>
</tr>
</tbody>
</table>

The case with which the carboxamide protecting group is removed will in theory affect the stabilization of the carbonium ion by either inductive or resonance effect of the substituent group on the 1-tetralinyl group. The unsubstituted 1-tetralinyl group will give a secondary carbonium ion which is stabilized by the delocalization
process and the inductive effect of the ring. When an electron donating group is substituted on positions 5, 6, 7 or 8 of the 1-tetralinyl group, the carbonium ion formed is more stable than the one formed from the unsubstituted 1-tetralinyl group. These groups would then be more easily removed under acidic medium than the unsubstituted 1-tetralinyl group. However, 1-tetralinyl groups with electron donating groups at positions 6 and 8 would be more readily cleaved than those with substituents at positions 5 and 7 as they would be respectively at para and ortho positions with respect to the carbon one where the amino group was attached in the original carboxamide protected compound.

Thus after cleavage the delocalized structures will at one stage have the carbon bearing the positive charge attached to the electron containing group with an effective distribution of charge, while for positions 5 or 7 there is separation of charge in delocalized structures as shown in Scheme 16.

Cleavage studies on the carboxamide protected derivatives of glutamine (6, 8, 10, 12 and 14) showed that all the protecting groups were removed by TFA-CH₂Cl₂-anisole (50:48:2 v/v) within 24 hrs. For the carboxamide protecting groups in asparagine
SCHEME 16

Resonance structures of 1-tetralinyl group with electron donating groups at positions 6, 8, 5 or 7

MeO at position 6

MeO at position 8

MeO at position 5

MeQ at position 7
derivatives, it was found that the groups 5-methoxy-1,2,3,4-tetrahydro-1-naphthyl in 9 and 6-methoxy-1,2,3,4-tetrahydro-1-naphthyl in 11 were too labile to be used as carboxamide protecting groups during peptide synthesis. They, were readily removed by TFA-CH₂Cl₂-anisole (50:48:2 v/v) immediately before the next amino acid residue was coupled into the growing peptide chain, with the former cleaved partially while the latter was completely cleaved in 24hr. On the other hand the groups 1,2,3,4-tetrahydro-1-naphthyl in 7, 7-methoxy-1,2,3,4-tetrahydro-1-naphthyl in 13 and 5,7-dimethyl-1,2,3,4-tetrahydro-1-naphthyl in 15 were stable in the above deprotecting reagent but were completely removed by boron trifluoride in acetic acid (BTFA)-the reagent used to remove most of the side chain protecting groups after the final coupling step has been carried out. In BTFA, the group 1,2,3,4-tetrahydro-1-naphthyl in 7 was completely removed after 4hr, 7-methoxy-1,2,3,4-tetrahydro-1-naphthyl in 13 after 3hr and 5,7-dimethyl-1,2,3,4-tetrahydro-1-naphthyl in 15 after 3 hr. This showed that the three groups were found suitable as carboxamide protecting in asparagine and isoasparagine residue due to their stability in TFA-CH₂Cl₂-anisole (50:48:2 v/v) but were readily cleaved by BTFA. Final products
were isoasparagine and asparagine. As mentioned earlier, 1-tetralinyl groups with electron donating groups at positions 6 and 8 would be expected to be more readily cleaved as carbonium ion formed will be more resonance stabilized. This explains why the 6-methoxy-1,2,3,4-tetrahydro-1-naphthyl group was the most easily cleaved. The 5-methoxy-1,2,3,4-tetrahydro-1-naphthyl group whose carbonium ion is not stabilized by the methoxy group by resonance is not as easily cleaved as the former group.

1,2,3,4-tetrahydro-1-naphthyl shows marked stability in TFA-CH$_2$Cl$_2$-anisole (50:48:2 v/v) since the carbonium ion formed from the unsubstituted 1-tetralinyl group is less stable. 7-methoxy-1,2,3,4-tetrahydro-1-naphthyl and 5,7-dimethyl-1,2,3,4-tetrahydro-1-naphthyl also show marked stability because the delocalized structures after cleavage do not at any one stage have the carbon bearing the positive charge attached to the electron donating groups (only possible for positions 6 or 8). In BTFA, 7-methoxy-1,2,3,4-tetrahydro-1-naphthyl and 5,7-dimethyl-1,2,3,4-tetrahydro-1-naphthyl groups are slightly less stable as compared to the unsubstituted 1-tetralinyl group. This is because
the first two have electron donating groups on the ring and hence a slightly more stable carbonium ion is formed as compared to the carbonium ion formed by the unsubstituted 1-tetralinyl group.

2.4 APPLICATION OF CARBOXAMIDE PROTECTED DERIVATIVES IN PEPTIDE SYNTHESIS.

The carboxamide protected derivatives whose protecting groups were found promising (7, 13 and 15) were used in peptide synthesis. This was done by deprotecting Boc groups of the carboxamide protected derivatives, followed by coupling with N-hydroxysuccinimide ester of N-protected amino acid (Scheme 17). The dipeptide carboxamide protecting groups 1,2,3,4-tetrahydro-1-naphthyl in 16, 7-methoxy-1,2,3,4-tetrahydro-1-naphthyl in 17 and 5,7-dimethyl-1,2,3,4-tetrahydro-1-naphthyl in 18 were stable in TFA-CH$_2$Cl$_2$-anisole (50:48:2 v/v) within 24hr. In BTFA, the group in 16 was completely cleaved after 4hr, in 17 after 3hr and in 18 after 3hr. These protecting groups were therefore found promising due to their stability in TFA-CH$_2$Cl$_2$-anisole (50:48:2 v/v) and their easy cleavage by BTFA. These dipeptides were used in
synthesizing the tripeptides 19, 20 and 21- respectively (Scheme 18). The dipeptides yield ranged from 75% to 90% while tripeptides were from 70% to 70%.

SCHEME 17
Dipeptide synthesis from carboxamide protected derivative

1. TFA
Boc-Asn(R)-a-OBzl → H-Asn(R)-a-OBzl

2. Triethylamine

→ Boc-Phe-Asn(R)-a-Orz1

SCHEME 18
Tripeptide synthesis from the fully protected dipeptide

(Boc-Ile-Phe-Asn(R)-a-OBzl)→ 1. TFA

H-Phe-Asn(R)-a-OBzl

Boc-Ile-ONSu

Boc-Ile-Phe-Asn(R)-a-OBzl

(Tripeptide)

R= Carboxamide protecting group in 7, 13 or 15.
3.1 GENERAL EXPERIMENTAL SECTION:

Ascending thin-layer chromatograms (TLC) were run on silica gel G(60) with solvent systems benzene, Aj chloroform, Bj chloroform-ethyl acetate (3:1 v/v), Cj chloroform-acetone (1:1 v/v), Oj diethyl ether, E» chloroform-methanol-glacial acetic acid (85:10:5 v/v), F. Cleavage solvent H was trifluoroacetic acid-dichloromethane-anisole (50:48:2 v/v). Melting points (uncorrected) were determined in capillary tubes in a Gallenkamp melting point apparatus. Spots were revealed with iodine vapour and ninhydrin solution (0.2g ninhydrin in 100ml of acetone). Acid hydrolyzates of peptides were prepared using 6N hydrochloric acid (110°, 16hr). Nuclear magnetic resonance spectra (NMR) were measured using a Perkin-Elmer R12B(60MHz). Infrared spectra (IR) were measured using a Pye-Unicam SP3-300 infrared spectrophotometer.

3.2 SYNTHESIS OF 1-TETRALONE

In a 500-ml round-bottomed flask, fitted with a reflux condenser carrying at the top a tube leading to a gas absorption trap, were placed 32.8g (0.2 mol) of y-phenylbutyric acid and 32g (0.27 mol) of thionyl chloride. The mixture was carefully heated on a steam
bath until the acid was melted, and then the reaction was allowed to proceed without the application of external heat. After twenty five to thirty minutes hydrogen chloride was no longer evolved and the mixture was warmed on the steam bath for ten minutes. The flask was then connected to the water pump, evacuated, and heated for ten minutes on the steam bath and finally for two or three minutes over a small flame in order to remove the excess thionyl chloride. The acid chloride thus obtained was a nearly colourless liquid and needed no further purification. The flask was cooled, 175ml of carbon disulfide was added and the solution cooled in an ice-bath. 30g (0.23 mol) of aluminium chloride was added rapidly in one lot, and the flask was immediately connected to the reflux condenser. After a few minutes, the rapid evolution of hydrogen chloride ceases and the mixture was slowly warmed to the boiling point on the steam bath. After heating and shaking the mixture for ten minutes the reaction was complete. The reaction mixture was cooled to 0°C, and the aluminium chloride complex was decomposed by the careful addition, with shaking, of 100g of ice. 25ml of concentrated hydrochloric acid was added and the mixture transferred to a 2-l round-bottomed flask and steam-distilled. The carbon disulfide distilled
first, then there was a definite break in the distillation, after which the reaction product comes over completely in about 2-1 of the next distillate. The oil was separated, and the water was extracted three times with 100-ml portions of benzene. The oil and extracts were combined, solvent removed, and the residue distilled at reduced pressure: wt. 18.1g (62%) b.p. 113-116°/6mm. TLC, solvent system E, R^2 = 0.93. IR spectrum (neat, vmax): aromatic proton stretch, 3030 cm⁻¹ C=O group, 1680 cm⁻¹. NMR spectrum (CCl₄): 6.725 (m, 4H) for the aromatic protons, 6.1 (m, 2H), 6.25 (m, 2H) and 6.21 (m, 2H) for the tetralinyl methylene protons.

3.3 SYNTHESIS OF FORMYL DERIVATIVES

3.3.1 N-6-METHOXY-1,2,3,4-TETRAHYRO-1-NAPHTHYL FORMAMIDE.

To a three-necked flask equipped with a dropping-funnel, thermometer and down-directed condenser, was added with care 5.17g (85.1 mmol) of 28% ammonia and 4.35g (85.1 mmol) of 90% formic acid. The temperature of the solution was raised to 160°C by distilling out water, and 3g (17 mmol) of 6-methoxy-1-tetralone in chloroform was added for ten minutes. The temperature was maintained at
170–180°C for two hours and any ketone which distilled was returned to the flask at intervals. On cooling a brown mass was formed which on analysis by TLC was found to contain four compounds of R_f = 0.97, 0.80, 0.38 and 0.06 with C as solvent system. The compounds were isolated by column chromatography using the same solvent system as for TLC. Compound with R^ 0.38 was found to be the formyl derivative: wt. 1.2g (34%) m.p. 77-78°C. TLC, solvent system C, R_f= 0.38. IR spectrum (KBr, vmax): NH, 3250 cm^-1 C=O group, 1635 cm^-1 aromatic proton stretch, 3040 cm^-1.

NMR spectrum(CDCl_3): 68.2 (m,1H) for the aldehydic proton; 67.2 (m,1H), 66.7 (m,2H) for the aromatic protons; 65.4 (signal,1H) for CONH proton; 63.8 (s,3H) for the methoxy protons; 62.8 (m,3H) for tetralinyl protons on C-1, C-4; 61.93(m,4HJ for tetralinyl methylene protons on C-2, C-3.

3.3.2 N-7-METHOXY-1,2,3,4-TETRAHYDPO-1-NAPHTHYL FORMAMIDE.

This formyl derivative was synthesized from 3g (17 mmol) of 7-methoxy-1-tetralone, 5.17g (85.1 mmol) of 28% ammonia, 4.35g (85.1 mmol) of 90% formic acid in the same manner as described
for N-6-methoxy-1,2,3,4-tetrahydro-1-naphthyl formamide: wt. 1.32g (37.8%), m.p. 78-79 C. TLC, solvent system C, 0.42. IR spectrum (KBr, vmax): NH, 3270 cm⁻¹, C=O group, 1635 cm⁻¹. NMR spectrum (CDC13): 68.22 (m,1H) for the aldehydic proton, 66.82 (m,3H) for the aromatic protons, 65.15 (s,1H) for CONH proton, 63.77 (s,3H) for the methoxy protons, 62.66 (m,3H) for tetralinyl protons on C-1, C-4, 61.85 (m,4H) for tetralinyl methylene protons on C-2, C-3.

3.3.3 N-5,7-PIMETHYL-1,2,3,4-TETRAHYDRO-1-NAPHTHYL FORMAMIDE.

This formyl derivative was synthesized from 3g (17 mmol) of 5,7-dimethyl-1-tetralone, 5.17g (85.1 mmol) of 28% ammonia, 4.35g (85.1 mmol) of 90% formic acid in the same manner as described for N-6-methoxy-1,2,3,4-tetrahydro-1-naphthyl formamide: wt. 1.56g (45.1%), m.p. 106-107°C. TLC, solvent system C, R^= 0.54. IR spectrum (KBr, vmax): NH, 3240 cm⁻¹, C=O group, 1630 cm⁻¹. NMR spectrum (CDC13): 68.15 (m,1H) for the aldehydic proton, 66.92 (s,2H) for the aromatic protons, 65.1 (s,1H) for CONH proton, 62.55 (m,3H) for tetralinyl protons on C-1, C-4, 62.5 (s,3H),
52.17 (s,3H) for the two methyl groups on the ring;
61.85 (m,4H) for tetralinyl methylene protons on
C-2, C-3.

3.3.4 **N-5-METHOXY-1,2,3,4-TETRAHYDRO-1-NAPHTHYL
FORMAMIOE.**
This formyl derivative was synthesized from
3g (17 mmol) of 5-methoxy-1-tetralones, 5.17g
(85.1 mmol) of 28% ammonia, 4.35g (85.1 mmol) of
90% formic acid in the same manner as described for
N-6-methoxy-1,2,3,4-tetrahydro-1-naphthyl formamide:
wt. 1.4g (40%), m.p. 141-142°C. TLC, solvent
system C, R_f= 0.48. IR spectrum (KBr, v̇_irα): MH,
3270 cm⁻¹ (C=O group), 1640 cm⁻¹. NMR spectrum
CDCl₃) 58.16 (m,1H) for the aldehydic proton;
56.9 (m,3H) for the aromatic protons; 5.1
(signal,1H) for CONH proton; 63.8 (s,3H) for the
methoxy protons; 62.6 (m,3H) for tetralinyl
protons on C-1, C-4; 51.85 (m,4H) for tetralinyl
methylene protons on C-2, C-3.

3.3.5 **N-1,2,3,4-TETRAHYDRO-1-NAPHTHYL FORMAMIOE.**
This formyl derivative was synthesized from
4g (27.4 mmol) of 1-tetralone, 8.31g (136.8 mmol)
of 28% ammonia, 6.99g (136.8 mmol) of 90% formic
acid.
acid in the same manner as described for
N-6-methoxy-1,2,3,4-tetrahydro-1-naphthvl formamide:
wt. 2.49g (52%), m.p. 74-76°C. TLC, solvent system
C, R_p= 0.51. IR spectrum (nujol, v_max): NH,
3260 cm\(^{-1}\), C=0 group, 1620 cm\(^{-1}\). NMR spectrum
(CDC\(_3\)): 68.15 (m,1H) for the aldehydic proton,
57.19 (m,4H) for the aromatic protons, 65.25 (signal,
1H) for CONH proton, 62.75 (m,3H) for tetralinyl
protons on C-1, C-4, 61.9 (m,4H) for tetralinyl
methylene protons on C-2, C-3.

3.4 SYNTHESIS OF AMINES

3.4.1 1,2,3,4-TETRAHYDRO-1-NAPHTHYLAMINE-
(1-AMINQTETRALIN).
To a three-necked flask equipped with a
dropping-funnel, thermometer, and down-directed
condenser, was added with care 8.31g (136.8 mmol)
of 28% ammonia and 6.99g (136.8 mmolJ of 90% formic
acid. The temperature of the solution was raised
to 160°C by distilling out water, ami 4g (27.4 mmol)
of 1-tetralone was added at one time using a
dropping-funnel. The temperature was maintained at
170-180°C for two hours and any ketone which
distilled was returned to the flask at intervals.
The formyl derivative was hydrolyzed in the reaction
mixture by refluxing for three hours with 10ml of 36% concentrated hydrochloric acid. After standing overnight, a white crystalline solid was formed. The mixture was diluted with 50ml of water and extracted with 10ml of benzene, to remove water-insoluble material. The aqueous solution was treated with 10ml of 45% sodium hydroxide solution and the oil thus produced extracted with 20ml of benzene. The benzene solution was washed three times with 10ml of water each time, dried with anhydrous sodium sulphate and the benzene removed by distillation under reduced pressure. The residue gave 1.77g (44%) of product, b.p. 246-247°C/714 mm. TLC, solvent system A, R_f= 0.06.

IR spectrum (neat, vmax): IMH stretching vibration for primary amine, 3310 cm\(^{-1}\) and 3220 cm\(^{-1}\) aromatic proton stretch, 3020 cm\(^{-1}\) methylene stretches, 2880 cm\(^{-1}\) and 2860 cm\(^{-1}\). NMR spectrum (CDCl\(_3\)): 67.2 (m,4H) for the aromatic protons, 63.9 (m, 3H) for the -IMH^ proton, 62.8 (m,3H) for the tetralinyl protons on C-1, C-4, 61.8 (m,4H) for tetralinyl methylene protons on C-2, C-3.
3.4.2 5-HETHOXY-1,2,3,4-TETRAHYORO-1-NAPHTHY-LAMINE (1-AMINO-5-METHQXYTETRALIN).

This amine was synthesized from 3g (17 mmol) of 5-methoxy-1-tetralone, 5.17g (85.1 mmol) of 28% ammonia, 4.35g (85.1 mmol) of 90% formic acid in the same manner as described for the synthesis of 1-aminotetralin. The amine salt was readily soluble in warm water. Crystallization of the amine was done by adding petroleum ether (b.p. 40-60°), which gave a pale-yellow precipitate: wt. 1.79g (59.5%) m.p. 109-111°C. TLC, solvent system A, Rf=0.06. IR spectrum (KBr, v_max): NH stretching vibrations for primary amine, 3330 cm\(^{-1}\) and 3330 cm\(^{-1}\); aromatic proton stretch, 3050 cm\(^{-1}\); methyl stretches 2980 cm\(^{-1}\) and 2930 cm\(^{-1}\); methylene stretches, 2860 cm\(^{-1}\) and 2820 cm\(^{-1}\). NMR spectrum (CDCl\(_3\)): 67.07 (m,3H) for the aromatic protons; 64.00 (m,2H) for the \(-\text{IH}_2\) protons; 63.82 (s,3H) for the methoxy protons; 62.77 (m,3H) for the tetralinyl protons on C-1, C-4, 62.12 (m,4H) for tetralinyl methylene protons on C-2, C-3.
3.4.3 5,7-DIMETHYL-1,2,3,4-TETRAHYDR0-1-NAPHTHY-LAMINE (1-ANINO-5,7-DIMETHYLTETRALIN).

This amine was synthesized from 2g (11.5 mmol) of 5,7-dimethyl-1-tetralone, 3.48g (57.4 mmol) of 20% ammonia, 2.64g (57.4 mmol) of 90% formic acid in the same manner as described for the synthesis of 1-aminotetralin. The amine salt was readily soluble in warm water. Crystallization of the amine was done by adding petroleum ether (b.p. 40-60°), that gave a white precipitate: wt. 0.8g (39.8%), m.p. 106-107°C. TLC, solvent system B, 0.06. IK spectrum (KBr, vmax): NH stretching vibrations for primary amine, 3320 cm⁻¹ and 3300 cm⁻¹ aromatic proton stretch, 3040 cm⁻¹. NMR spectrum (CDC₁₃): 67.1 (m,1H), 66.9 (m,1H) for the aromatic protons, 64.0 (m,2H) for the -NH⁺ protons, 62.6 (m,3H) for the tetralinyl protons on C-1, C-4, 62.3 (s,3H), 62.2 (s,3H) for the two methyl groups on the ring, 61.9 (m,4H) for tetralinyl methylene protons on C-2, C-3.
3.4.4 ATTEMPTED SYNTHESIS OF 6-METHOXY-1,2,3,4-
-TETRAHYDRO-1-NAPHTHYLAMINE (1-AMINO-6-
-METHOXYTETRALIN) AND 7-METHOXY-1,2,3,4-
-TETRAHYDRO-1-NAPHTHYLAMINE (1-AMINO-7-
-METHOXYTETRALIN).

The attempted synthesis of the amines were from 3g (17mmol) of 6-methoxy-1-tetralone or 7-methoxy-1-tetralone, 5.17g (85.1 mmol) of 28% ammonia, 4.35g (85.1 mmol) of 90% formic acid in the same manner as described for the synthesis of 1-aminotetralin. Acid hydrolyses of the formyl derivatives gave black-gummy compounds. The amines were not obtained.

3.4.5 6-METHOXY-1,2,3,4-TETRAHYDRO-1-NAPHTHYLAMINE
(C1-AMINO-6-METHOXYTETRALIN).

0.6g (2.9 mmol) of N-6-methoxy-1,2,3,4-
tetrahydro-1-naphthyl formamide was hydrolyzed with 25ml of 10% sodium hydroxide solution under reflux at 140°C for three hours. The amine obtained was extracted with 10ml of chloroform. The solution was dried with anhydrous sodium sulphate and solvent
removed in vacuo. The residue was dissolved in ethyl acetate and petroleum ether (b.p. 40-60°) added. A yellow-orange precipitate was formed: wt. 0.49g (94.2%), m.p. 97-98°C. TLC, solvent system A, 0.06. IR spectrum (KBr, vmax): NH stretching vibrations for primary amine, 3400 cm$^{-1}$ and 3380 cm$^{-1}$, aromatic proton stretch, 3040 cm$^{-1}$.

NMR spectrum CCDC13): 67.3 (m,1H), 66.75 (m,2H) for the aromatic protons, 63.87 (m,2H) for the -NH$^+$ protons, 63.82 (s,3H) for the methoxy protons, 62.77 (m,3H) for tetralinyl proton; on C-1, C-4, 61.86 (m,4H) for tetralinyl methylene protons on C-2, C-3.

3.4.6 7-\textit{IETHØXY}-1,2,3,4-TETRAHYDRO-1-NAPHTHYLAMINE (1-AMINO-7-METHOXYTETRALIN).

This amine was synthesized from 0.6g (2.9 mmol) of N-7-methoxy-1,2,3,4-tetrahydro-1-naphthyl formamide in the same manner as described for the synthesis of 6-methoxytetralin: wt. 0.5g (96.2%), m.p. 83-85°C. TLC, solvent system A, R_f = 0.07. IR spectrum (KBr, vmax): NH stretching vibrations for primary amine, 3390 cm$^{-1}$ and 3370 cm$^{-1}$. NMR spectrum (CDC$_3$): 67.37 (s,1H), 67.0 (m,2H) for the aromatic protons, 64.0 (m,2H) for the -NH$^+$
protons) 63.79 (s,3H) for the methoxy protons
62.70 (m,3H) for tetralinyl protons on C-1, C-4
61.85 (m,4H) for tetralinyl methylene protons on
C-2, C-3.

3.5 SYNTHESIS OF t-BUTYLOXycARBONYL-L-PHENYL-
LAGALAMINE (Boc-Phe-OH')17

A mixture of 1.65g (0.01 mol) of L-phenyl-
lalanine, 3.59g (0.015 mol) of t-butyl p-nitrophenyl-
carbonate, 2.65g (0.025 mol) of sodium carbonate,
15ml of t-butyl alcohol and 10ml of water was
refluxed by steam-bath for thirty minutes. Two
liquid layers persisted but all solids dissolved
during this period. The condenser was removed and
the mixture was concentrated by an air stream
during ten minutes heating to remove t-butyl alcohol.
Sodium p-nitrophenolate dihydrate crystallized and
was collected after cooling and washed with 7ml of
water in three portions* the filtrate was adjusted
to pH 5 to 6 by dilute hydrochloric acid and
extracted with two 20ml portions of ether to remove
any remaining t-butyl p-nitrophenylcarbonate and
p-nitrophenol. The aqueous portion was adjusted
to pH about 1 and the t-butyloxycarbonyl-L-phenyl-
lalanine was extracted into three 10ml portions of
anhydrous ether. After evaporation of the ether, the solid residue was recrystallized from 60ml of petroleum ether (b.p. 40-60°) plus 4ml of ethyl acetate: wt. 1.4g (52.6%), m.p. 78-80° (Lit. 79-80°, Anderson, McGregor, 1957). TLC, solvent system B, R_p= 0.6. IR spectrum (nujol, vmax): NH, 3260 cm^{-1}, C=O groups, 1700 cm^{-1} and 1630 cm^{-1}. NMR spectrum (CDCl_3): 6.7.25 (s,5H) for the aromatic protons, 6.4.9 (signal,1H) for C0NH proton, 6.4.5 (signal,1H) for Phe methine, 6.3.1 (m,2H) for the C-CH_2-Ph protons, 1.38 (s,9H) for the (CH^C protons.

3.6 SYNTHESIS OF t-BUTYLOXYCARBONYL-L-ISOLEUCINE (Boc-Ile-OH)\(^{17}\)

A mixture of 6.55g (0.05 mol) of L-isoleucine, 14.95g (0.063 mol) of t-butyl p-nitrophenyl-carbonate, 2.28g (0.057 mol) of sodium hydroxide, 100ml of t-butyl alcohol and 50ml of water was refluxed by steam-bath for 30 minute:). Two liquid layers persisted but all solids dissolved during this period. The condenser was removed and the mixture was concentrated by an air stream during ten minutes heating to remove t-butyl alcohol. Sodium p-nitrophenolate dihydrate crystallized and was collected after cooling and washed with 35ml of
water in three portions; the filtrate was adjusted to pH 5 to 6 by dilute hydrochloric acid and extracted with two 100ml portions of ether to remove any remaining t-butyl p-nitrophenylcarbonate and p-nitrocpeno1. The aqueous portion was then adjusted to pH about 1 and the t-butyloxycarbonyl-L-isoleucine was extracted into three 5Gml portions of anhydrous ether. After evaporation of the ether, the solid residue was recrystallized from acetone-water: wt. 1.0flg (9%) (Lit. 96%, Schnabel, 1967), m.p. 49-55°. TLC, solvent system 3, R. = 0.61. IR spectrum (nujol, v_max): NH, 3340 cm⁻¹ C=C groups, 1705 cm⁻¹ and 1660 cm⁻¹. NMR spectrum (CDCl₃): 55.15 (signal, 1H) for CO NH proton, 64.3 (signal, 1H) for the methine, 51.0 (s, 3H) for the two methyls of the, 61.5 (s, 9H) for (CH₃)₃C protons.

3.7 SYNTHESIS OF N-HYDROXYSUCCINIMIDE ESTERS

3.7.1 N-HYDROXYSUCCINIMIDE ESTER OF t-SUTYLOXYCARBONYL-L-PHENYLALANINE (Boc-Phe-OMS'J).

3utyloxycarbonyl-L-phenylalanine (1.0g, 3.98 mmol) and N-hydroxysuccinimide (0.45g, 3.99mmol) were mutually dissolved in 10ml o+ anhydrous dimethoxyethane (DME) at 0°C. Then dicvclohsxyl-carbodiimide (0CC) (0.903g, 3.98 mmol - 10%) was dissolved with stirring and the solution kept at 0-5°C for a period of twenty four hours.
The dicyclohexylurea which formed was separated by filtration and the filterate evaporated to dryness in an open dish leaving a crystalline residue of 1.44g of crude product. Two successive recrystallizations from isopropyl-alcohol-diisopropyl ether gave the pure product: wt. 1.0fig (75%), m.p. 151-152° (Lit. 152-153°, Anderson et al. 1954). TLC, solvent system B, Rf= 0.33. IR spectrum (nujol, vmax): NH, 3360 cm\(^{-1}\), C=O groups, 1610 cm\(^{-1}\), 1720 cm\(^{-1}\) and 1690 cm\(^{-1}\).

NMR spectrum (CDCl\(_3\)): 67.3 (s,5H) for the aromatic protons; 64.9 (m,2H) for CONH and Phe methine protons; 63.28 (m,2H) for the C-CH\(_2\)-Ph protons; 62.83 (s,4H) for the succinimido methylene protons; 61.4 (s,9H) for .(CH\(^3\)C protons.

3.7.2 N-HYDROXYSUCCINIMIDE ESTER OF t-BUTYLOXY-CARBONYL-L-ISOLEUCINE (Boc-Ile-ONSU).

Butyloxy carbonyl-L-isoleucine (0.79g., 3.42 mmol) and N-hydroxysuccinimide (0.39g, 3.42 mmol) were mutually dissolved in 10ml of anhydrous dimethoxyethane at 0°C. Then dicyclohexylcarbodiimide (0.78g, 3.42 mmol + 10%) was dissolved with stirring and the solution kept at 0-5°C for a period of twenty four hours.

The dicyclohexylurea which formed was separated by filtration and the filterate evaporated to dryness
in an open dish leaving a crystalline residue of 0.92g of crude product. Two successive recrystallizations from diisopropyl ether gave the nure product 0.63g (58%), m.p. 91-92° (Lit. 92-93°, Anderson et al. 1954). TLC, solvent system B, 0.31. IR spectrum (nujol, v_max): IMH, 3350 cm⁻¹ C=O groups, 1805 cm⁻¹, 1720 cm⁻¹ and 1670 cm⁻¹. NMR spectrum (CDCl₃): 64.96 (signal, 1H) for CONH proton, 64.55 (signal, 1H) for the lie methine, 62.81 (s, 4H) for the succinimido methylene protons 61.44 (s, 9H) for (CH⁺C protons, 61.04 (m, 6H) for the two methyls of He.

3.3 SYNTHESIS OF tert-BUTOXYPYRCHOBONYLASPARTIC ACID

This compound was prepared by the pH-stat method (Schnabel, 19G7). To a stirred solution of 26.5g (0.2 mol) of aspartic acid in deionised water dioxane was added 4N sodium hydroxide until pH 9 was reached. N-tert-Butyloxycarbonyl azide (31.5g, 0.22 mol) was added and pH maintained at 10.2 by continuous addition of 4N sodium hydroxide. The Boc-Asp was extracted with ethyl acetate. Crystallization was by ethyl acetate-petroleum ether (b.p. 40-60°) which gave a white precipitate: wt. 32.5g (70%), m.p. 114-115° (Lit. 114-116°, Anderson et al. 1567).
3.9 SYNTHESIS OF b-BENZYL L-AMYLOXYCARBONYL-
ASPARTATE (Boc-Asp-a-OBzl)

This compound was synthesized in the same manner as described in the literature (Hruby et al., 1973). 11.75g (0.05 mol) of N-tert-butyloxy-carbonylaspartic acid (prepared by the pH-stat method of Schnabel), was converted to tert-buty1-oxyxcarbonylaspartic acid anhydride by reacting with 11.38g (0.055 mol) of dicyclohexylcarbodiimide (DCC), and the powdered product was stirred with 5.4g (0.05 mol) of anhydrous benzyl alcohol for about 24 hours. The crude oil was reacted with 13.65g (0.075 mol) of dicyclohexylamine (DCHA) to give Boc-Asp-a-OBzl DCHA salt (m.p.140-142°, Lit 141-142, Hruby et al., 1973). The free Boc-Asp-a-OBzl was regenerated from the salt with 20% aqueous citric acid and recrystallizea from ethanol-water at 2°: wt. 12.12g (75%; -n.p. 99-101° (Lit. 99.5-101°, Hruby et al., 1973i. TLC, solvent system 5, R^= 0.64. IR spectrum (nujol, vmax): NH, i3G0 cm C=O groups, 1725 errn^1 and 1640 cm^-1. NMR spectrum (CCDC1^): 67.35 (s,5H) for the aromatic protons; 65.65 (signal, 1H) for CO NH proton:; 65.22 (s,2H) for the -O-CH^-Ph protons; 64.6 (signal, 1H) for Asp methinej 63.0 (m,2Hj for the Asp methylene- protons; 61.48 (s,9H) for (CH_3)_3C protons.
3.10 SYNTHESIS OF CARBOXYAMIDE PROTECTED ASPARAGINE AND GLUTATHIONE DERIVATIVES

3.10.1 A-BENZYL t-BUTYLOXYCARBANYL-N-1,2,3,4-
TETRAHYDRO-1-NAPHTHYLGLUTAMINATE (Boc-Gln-
(1,2,3,4-TETRAHYDRO-1-NAPHTHYl)-ct-QBzl).

A stirred mixture of 0.5g (1.5 mmol) of a-benzyl t-butyloxy carbanyl glutamate and 0.26g (2.25 mmol) of N-hydroxysuccinimide in 3ml of dichloromethane was cooled to -5°C. To this mixture was added 0.34g (1.65 mmol) of dicyclohexyl-carbodiimide in 5ml of dichloromethane, and the mixture was stirred at -5°C for 50 minutes. A solution of 0.24g (1.65 mmol) of 1,2,3,4-tetrahydro-
1-naphthylamine was added and the mixture was stirred at -5°C for an additional 50 minutes and at room temperature for 24hr. Acetic acid (0.075ml) was added, the mixture was stirred for 15 minutes, and the dicyclohexylurea was filtered off and washed with three 3ml portions of dichloromethane. The solvents were removed on a rotary evaporator in vacuo and the residue was dissolved in 4.5ml of dichloromethane. Some insoluble crystals were filtered off. Chloroform (7ml) was added to the filtrate, the solution was washed with three 5ml portions of 5\ aqueous citric acid, three 12ml portions of 5\ aqueous sodium bicarbonate, and"five 15ml portions of deionised water. The organic layer was dried over
anhydrous sodium sulphate and the solvents were removed on a rotary evaporator in vacuo. The semi-solid was dissolved in 6ml of hot ethyl acetate, cooled to room temperature and filtered off. To the filterate a solution of 24ml of petroleum ether (b.p. 40-60°C) was added dropwise, and the mixture kept at 0-5°C overnight. The precipitate was filtered, washed with three 4.5ml portions of petroleum ether (b.p. 40-60°C) - ethyl acetate (4:1) and dried vacuo to give the product: wt. 0.31g (5%) j m.p. 82-33°. TLC, solvent system C, Rf= 0.80. IR spectrum (nujol, vrnax): NH, 3310 cm⁻¹, C=0 groups, 1740 cm⁻¹, 1680' cm⁻¹ and 1630 cm⁻¹. NMR spectrum (CDCl₃): 67.45 (s,5H) for the phenyl group; 67.3 (m,4H) for the a substituted phenyl group; 56.0 (signal,1H), 65.4 (signal,1H) for CONH protons; 6L.25 (s,2H) for the -O-CH₂Ph proton; 64.3 (signal,1H) for Gin methine; 62.85 (m,3H) for tetralinyl protons on C-1, C-4, 62.28 (m,4H) for Gin methylene protons; 61.96 (m,4H) for tetralinyl methylene protons on C-2, C-3; 61.52 (s,9H) for (CH^₃)₃C protons.
3.10.2 B-BENZYL t-BUTYLOXYCARBONYL-N-1,2,3,4-
-TETRAHYDRO-1-NAPHTHYLISOASPARAGINATE
(Boc-Asn(1,2,3,4-tetrahydro-1-naphthyl) -
-e-OBzl).

This compound was prepared from 0.485g
(1.5 mmol) of 6"benzyl _t-butyloxycarbonylaspartate
(Boc-Asp-3-OBzl) and 0.24g (1.65 mmol) of
1,2,3,4-tetrahydro-1-naphthylamine in the same
manner as described for the preparation of
Boc-Gln(1,2,3,4-tetrahydro-1-naphthyl)-e-OBzl: wt.
6.6g (99%); m.p. 124-125°. TLC, solvent system C,
Rf = 0.93. IR spectrum (KBr, v max): NH, 3230 cm⁻¹;
C=O groups, 1730 cm⁻¹, 1680 cm⁻¹ and 1645 cm⁻¹.
NMR spectrum (CDC1₃): 67.35 (s,5H) for the phenyl
group; 57.15 (m,4H) for the disubstituted phenyl
group, 66.7 (signal, 1H), 65.6 (signal,1H) for Cor;H
protons; 65.15 (s,2H) for the -0-CH₂"Ph protons,-
64.5 (signal,1H) for Asn methinsi 01.8 (,T,4H) for
the tetralinyl methylene protons on C-2, C-3;
61.34 (s, SH) for (CH-J^C protons.
3.10.3 8-BENZYL t-BUTYLOXYCARBONYL-\textit{N}-S-METHOXY-1,2,3,4-TETRAHYDRO-1-NAPHTHYLISNAPARNITNATE (Boc-Asn(5-methoxy-1,2,3,4-tetrahydro-1-naphthy1)-B-OBzl)

This compound was prepared from 0.485g (1.5 mmol) of B-benzyl _t-butyloxycarbonylaspartate (Boc-Asp-\textit{t}-OBzl) and 0.29g (1.65 mmol) of 5-methoxy-1,2,3,4-tetrahydro-1-naphthylamine in the same manner as described for the preparation of Boc-Gln(1,2,3,4-tetrahydro-1-naphthy1)-a-CBzl: wt. 0.52g (72%), m.p. 60-62°. TLC, solvent system C, R.p= 0.93. IR spectrum (nujol, vmax): NH, 3310 cm-1, C=O groups, 1720 cm-1, 1600 cm-1 and 1645 cm-1.

NMR spectrum (CDC\textsubscript{3}): 67.33 (s,5H) for the phenyl group, 66.9 (m,3H) for the trisubstituted phenyl group, 65.65 (signal,1H), 64.9 (signal,1H) for C\textit{ONH} protons, 65.12 (s,2H) for the -D-C\textsubscript{2}-PH protons, 64.6 (signal,1H) for Asn methine, 63.79 (s,3H) for the methoxy protons, 61.8 (m,4H) for the tetralinyl methylene protons on C-2, C-3, 61.33 (s,9H) for (CH-\textit{J},C protons.
3.10.4 \(\text{g-BENZYL \: t-BUTYLOXYCARBONYL.-N}^{\text{5\,\text{Me}}} \text{-}5\text{-METHOXY-}\)
\(-1,2,3,4\text{-TETRAHYDRO-1-NAPHTHYLGLUTAMINATE} \)
\((\text{Boc-Gln(5-methoxy-1,2,3,4-tetrahydro-1-}
\text{-naphthyl)}\text{-a-OBzl})\)

This compound was prepared from 0.5g (1.5 mmol) of \(\text{a-benzyl \: t-butyloxycarbonylglutamate} \)
\((\text{Boc-Glu-a-OBzl})\) and 0.29g (1.65 mmol) of
5-methoxy-1,2,3,4-tetrahydro-1-naphthylamine in the
same manner as described for the preparation of
\(\text{Boc-Gln(1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl: wt.} \)
0.54g (73%); m.p. 104-105°. TLC, solvent system
C, \(R_p= 0.83 \). IR spectrum (nujol, vmax): \(\text{NH,} \)
3320 cm\(^{-1}\); \(\text{C=0 groups, 1743 cm}^{-1}, \text{L650 cm}^{-1} \text{and} \)
1635 cm\(^{-1}\). NMR spectrum CCDC13): 67.33 (s,5n)
for the phenyl group; 66.95 (m,3H) for the trisub-
stituted phenyl group; 65.9 (signal,1H), 65.2
(signal,1H) for \(\text{C=NH} \) protons; 65.1/ (s,2Hi for the
\(-0-\text{CH}_2-\text{Ph} \) protons; 64.25 (signal,1H) for \(\text{Gin} \) methine;
63.8 (s,3H) for the methoxy proton ,; 61.82 (m,4H)
for the tetrailinyl methylene protons on C-2, C-3;
51.4 (s, 3'H' for (CH\(_2\))\text{-C} protons.
3.10.5 g-BENZYL t-BUTYLOXYCAR30NYL-N^A-S-METHQXY-
-1,2,3,4-TETRAHYDRO-1-NAPHTHYLASPARAGINATE
(Boc-Asn(6-methoxy-1,2,3,4-tetrahydro-1-
-naohthyl)-a-03zl)

This compound was prepared from 0.455g
(1.5 mmol) of a-benzyl t-butyloxy carbnoyl aspartate
(Boc-Asp-a-OBzl) and 0.29g (1.65 mmol) of
6-methoxy-1,2,3,4-tetrahydro-1-naphthylamine in the
same manner as described for the preparation of
Boc-Gln(1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl: wt.
0.56g C 78%) m.p. 75-76°. TLC, solvent system C,
Rf = 0.73. IR spectrum (KBr, vmax): NH, 3320 cm^-1;
C=0 groups, 1730 cm^-1, 1680 cm^-1 and 153C cm^-1.
NMR spectrum (C0C1,): 5.36 (s,5H) for the phenyl
group; 5.1 (m,1H), 6.62 (m,2H) for the trisubstituted
phenyl group, 55.85 (signal,1H), 55.05 (signal,
for C0NH protons; 55.2 (s,2H) for the -G-CH.-Ph
protons; 54.45 (signal,1H) for Asn methi.ne; 53.77
(s,3H) for the methcxy protons; 51.8 (m,4H) for the
tetralinyl methylene protons on C-2, C-3, 51.4
Cs,9H) for (CHg) c prots.
3.10.6 g-BENZYL t-BL)TYLØXYCARBØNYL-N6-6-METHØXY-1,2,3,4-TETRAHYØRØ-1-NAPHTHØYLGLUTAMINATE
(Boc-Gln(6-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-g-OBzl)

This compound was prepared from 0.5g (1.5 mmol) of a-benzyl t-butyloxycarbonylglutamate (Boc-Glu-a-OBzl) and 0.29g (1.65 mmol) of 6-methoxy-1,2,3,4-tetrahydro-1-naphthylamine in the same manner as described for the preparation of Boc-Gln(1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl: wt. 0.56g (76%), m.p. 91-92°. TLC, solvent system C, R\textsubscript{f} = 0.67. IR spectrum (KBr, vmax): \textit{v}H, 3310 cm-1, C=O groups, 1730 cm-1, 1680 cm-1 and 1630 cm-1. NMR spectrum (C\textsubscript{6}D\textsubscript{3}O): 67.34 (s,5H) for the phenyl group; 67.1 (m,1H), 65.7 (m,2H) for the trisubstituted phenyl group, 65.8 (signal,1H) 65.0 (signal,1H) for CCH\text{H} protons, 65.19 (s,2H) for the -0-DH^\text{Ph} protons, 64.25 (signal,1H) for Gin methine, 63.77 (s,3H) for the methoxy protons, 61.32 (n,4H) for the cetralinyl methylene protons on C-2, C-3, 51.4 s,9H) for fCHi) Q protons.
.3.10.7 8-BENZYL t-BUTYLQXYCARBONYL-N^A-7-ETHQXY-1,2,3,4- TETRAHYDRO-1-NAPHTYLISOASPARAGINATE
(Boc-Asn(7-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-B-OBzl)

This compound was prepared from 0.485g (1.5 mmol) of B-benzyl t-butyloxycarbonyl aspartate
(Boc-Asp-B-OBzl) and 0.29g (1.65 mmol) of 7-methoxy-1,2,3,4-tetrahydro-1-naphthylamine in the same
manner as described for the preparation of Boc-Gln-(1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl: wt. 0.4g (56%);
m.p. 136-137°. TLC, solvent system C, R_f = 0.90.
IR spectrum (KBr, vmax): NH, 3310 cm^{-1}; C=O groups,
1720 cm^{-1}, 1670 cm^{-1} and 1635 cm^{-1}. NMR spectrum
CCDC13): 67.38 (s,5H) for the phenyl group, 66.85
(m,3H) for the trisubstituted phenyl group; 55.55
(signal,1H), 65.0 (signal,1H) for CONH protons; 55.2
(s,2H) for the -CH_2-Ph protons; 6^v.55 (signal,1H)
for Asn methine; 53.81 (s,3H) for the methoxy protons;
61.85 (m,4H) for the tetralinyl methylene protons on
C-2, C-3; 61.46 (s,9H) for (CH_3)_3C protons.
3.10.8 g-BENZYL t-BUTYLOXYCARBONYL-\(N \)\(^-\)7-METHOXY-1,2,3,4-TETRAHYDRO-1-NAPHTHYLASPARAGINATE

(Boc-Asn(7-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-g-OBzl)

This compound was prepared from 0.485g (1.5 mmol) of g-benzyl t-butyloxy carbonylaspartate (Boc-Asp-a-OBzl) and 0.29g (1.65 mmol) of 7-methoxy-1,2,3,4-tetrahydro-1-naphthylamine in the same manner as described for the preparation of Boc-Gin(1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl: wt. 0.45g (62.5%), m.p. 85-86°. TLC, solvent system C, \(R = 0.75 \). IR spectrum (KBr, \(\nu_{max} \)): NH, 3310 cm\(^{-1}\); C=O groups, 1730 cm\(^{-1}\), 1680 cm\(^{-1}\) and 1630 cm\(^{-1}\). NMR spectrum (\(\text{CDCl}_3 \)) s 67.34 (s,5H) for the phenyl group; 66.78 (m,3H) for the trisubstituted phenyl group, 55.33 (signal,1H), 65.1 (signal,1H) for CONH protons; 65.19 (s,2H) for the .-0-CH\(_2\)-Ph protons; 64.55 (signal,1H) for Asn methine; 63.74 (s,3H) for the methoxy protons; 61.82 (m,4H) for the tetralinyl methylene protons on C-2, C-3; 61.4 (s,9H) for (CH) C protons.
3.10.9 **G-BENZYL t-BUTOXYCARBONYL-N^r^A-7-METHOXY-1,2,3,4-TETRAHYDRO-1-NAPHTHYLGLUTAMINATE**
(Boc-Gln(7-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl)

This compound was prepared from 0.5g CI.5 mmol) of a-benzyl _t-butyloxycarbonylglutamate-(Boc-Glu-a-OBzl) and 0.29g (1.65 mmol) of 7-methoxy-1,2,3,4-tetrahydro-1-naphthylamine in the same manner as described for the preparation of 3oc-Gln(1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl: wt. 0.44g C60%, m.p. 145-146°. TLC, solvent system C, R^'= 0.66. IR spectrum (KBr, vmax): MH, 3320 cm ^\(^x\), C=O groups, 1720 cm ^\(^\diamond\), 1680 cm ^\(^\wedge\) and 1620 cm

NMR spectrum (C0C1.J: 67.32 (s, 5H) for the phenyl group, 66.8 (m,3H) for the trisubstituted phenyl group, 65.75 (signal,1H), 64.95 (signal,1H) for CONH protons? 65.17 (s,2H) for the -0-CH_2"Ph protons, 64.3 (signal, 1H) for Gin methine, 63.75 (s,3H) for the methoxy protons; 61.8 (m,4H) for the tetralinyl methylene protons on C-2, C-3, 61.4 (s,9H) for (Ch)_3 protons.
3.10.10 B-BENZYL t-BUTYLOXycarBONYL-N^PA-5,7-DIME-
THYl-1,2,3,4-TETRAHYDRO-1-NAPHTHYLISOASPAG-
RAGINATE (Boc-Asn(5,7-dirnethy1-1,2,3,4-
-tetrahydro-1-naphthyl)-B-OBzl).

This compound was prepared from 0.485,? (1.5 mmol) of 6-benzyl t^-butyloxycarbonylaspartate
(Boc-Asp-g-OBzl) and 0.29g (1.65 mmol) of 5,7-dimethy1-
-1,2,3,4-tetrahydro-1-naphthylamine in the same manner
as described for the preparation of Boc-Gln(1,2,3,4-
tetrahydro-1-naphthyl)-a-OBzl: wt. 0.29g (40%); m.p.
143-144°. TLC, solvent system C, Rf= 0.94. IR
spectrum (nujol, vmax): NH, 3300 cm C=0 groups,
1714 cm"^1, 1672 cm"^1 and 1633 cm"^1. NMR spectrum
(CDC13): 67.36 (s,5H) for the phenyl group; 66.95
(s,2H) for the tetrasubscituted phenyl group,-
<56.5 (signal,1H), 65.6 (signal,1H) for C0NH protons;
65.19 (s,2H) for the -0-CH2"Ph protons; 64.5 (signal,
1H) for Asn methine; 62.27 (s,3H), 62.2 (s,3H) for
the two methyl groups on the ring; 61.8 (m,4H) for
the tetralinyl methylene protons on C-2, C-3; 61.41
(s, 9H) for (CHO) protons.
3.10.11 a-BENZYL t-BUTYLOXYCARBONYL-N^PA-5,7-DIME-
THYL-1,2,3,4-TETRAHYDRO-1-NAPHTHYLGLUTAMATE (Boc-GlnC 5,7-dimethyl-1,2,3,4-tetra-
hydro-1-naphthyl)-g-OBzl).

This compound was prepared from 0.5g (1.5 mmol) of a-benzyl t-butyloxycarbonylglutamate (Boc-Glu-a-OBzl) and 0.29g (1.65 mmol) of 5,7-dimethyl-1,2,3,4-tetrahydro-1-naphthylamine in the same manner as described for the preparation of Boc-Gln(1,2,3,4-tetrahydro-1-
-naphthyl)-a-OBzl: wt. 0.4g (54%), m.p. 110-111°.

TLC, solvent system C, \(R_f = 0.84 \). IR spectrum (nujol, \(v_{max} \)): NH, 3265 cm\(^{-1}\), C=O groups, 1720 cm\(^{-1}\), 1570 cm\(^{-1}\) and 1620 cm\(^{-1}\). NMR spectrum (CDC\(_3\)): 57.3 (s,5H) for the phenyl group, 56.87 (s,2H) for the tetra-
substituted phenyl group, 55.9 (signal,1H), 65.3 (signal,1H) for CONH protons, 65.13 (s,2H) for -O-CH\(_2\)-Ph protons, 64.3 (signal,1H) for Gin methine, 62.2 (d,dt,1H) for the two methyl groups and Gin methylene protons, 61.8 (m,4H) for the tetralinyl methylene protons on C-2, C-3, 61.38 (s,9H) for -(CH\(_2\))\(_n\) protons.
3.10.11 a-BENZYL t-BUTYLOXYCARBONYL-IMPA⁻5,7-OIME-THYL-1,2,3,4-TETRAHYDRO-1-NAPHTHYLGLUTAMATE (Boc-Gln(5,7-dimethyl-1,2,3,4-tetrahydro-1-naphthyl)-g-OBzl).

This compound was prepared from 0.5g (1.5 mmol) of a-benzyl t-butyloxy carbonyl glutamate (Boc-Glu-a-OBzl) and 0.29g (1.65 mmol) of 5,7-dimethyl-1,2,3,4-tetrahydro-1-naphthylamine in the same manner as described for the preparation of Boc-Gln(1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl: wt. 0.4g (54%), m.p. 110-111°.

TLC, solvent system C, Rf = 0.34. IR spectrum (nujol, vmax): NH, 3285 cm⁻¹, C=O groups, 1720 cm⁻¹, 1570 cm⁻¹ end 1620 cm⁻¹. NMR spectrum CCDC1₃): 57.3 (s,5H) for the phenyl group, 56.87 (s,2H) for the tetra-substituted phenyl group, 65.9 (signal,1H), 65.3 (signal,1H) for C=NH protons, 65.13 (s,2H) for -O-CH₂-Ph protons, 64.3 (signal,1H) for Gin methine, 62.2 (d,1GH) for the two methyl groups and Gin methylene protons, 61.8 (m,4H) for the tetralinyl methylene protons on C-2, C-3, 61.38 (s,9H) for (CH₃)C protons.
3.11 SYNTHESIS OF IPEPTIDES

3.11.1 Boc-Phe-Asn(1,2,3,4-TETRAHYDRO-1-NAPHTHYL)-g-OBzl.

A solution of Boc-Asn(1,2,3,4-tetrahydro-1-naphthyl)-B-OBzl (0.4g, 0.88 mmol) in 6ml trifluoroacetic acid and 0.5ml anisole was stirred for 25 minutes at room temperature. TFA was then removed on a rotary evaporator in vacuo at 25-30°C. 4ml of dimethylformamide was then added to the above solution and pH was adjusted to 7 with triethylamine. To this solution was added Boc-Phe-ONSU (0.32g, 0.83 mmol) and solution was stirred for 14 hours at room temperature. Ethyl acetate (20ml) was added and the solution washed with three 20ml portions of 5% aqueous citric acid, two 20ml portions of 5% aqueous sodium bicarbonate and five 15ml portions of deionised water. The organic portion was dried over anhydrous sodium sulphate. The solvent was removed on a rotary evaporator in vacuo: wt. 0.40g (75.5%); m.p. 151-152°. TLC, solvent system C, R^= 0.76. IR spectrum (nujol, vmax): NH, 3280 cm^{-1}, C=O groups, 1720 cm^{-1}, 1680 cm^{-1} and 1625 cm^{-1}. NMR spectrum (CDC13): 67.36 (s,5H), 67.2(s,5H) for the two phenyl groups; 67.1 (s,4H) for the disubstituted phenyl group, 65.12 (s,2H) for the -0-CH=;Ph protons; 63.05 (m,2H)
for the C-Ch^2-Ph protons, 61.8 (m,4H) for the tetralinyl methylene protons on C-2, C-3, 61.22 (s,9H) for (CH_3)_2-C protons.

3.11.2 Boc-Phe-Asr. t'7-HETHOXY-1,2,3,4-TETRAHYDRO-1-NAPHTHYL)-6-0Szl.

This compound was prepared from 0.39g (0.81 mmol) of Boc-Asn(7-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-g-OBzl and 0.25g (0.81 mmol) of Boc-Phe-ONSU in the same manner as described for the preparation of Boc-Phe-Asn(1,2,3,4-tetrahydro-1-naphthyl)-B-OBzl: wt. 0.44g (86%), m.p. 164-165°. TLC, solvent system C, R_f = 0.72. IR spectrum (KBr, vmax): NH, 3290 cm^{-1}, C=0 groups, 1720 cm^{-1}, 1680 cm^{-1} and 1630 cm^{-1}. NMR spectrum (CDC13); 67.34 (s,5H), 67.19 (s,5H) for the two phenyl groups, 66.8 (m,3H) for the trisubstituted phenyl group, 65.12 (s,2H) for -O-Ch^-Pn protons, 63.69 (s,3H) for the methoxy protons, 63.0 (m,2H) for -C-CH_2-Ph protons, 61.75 (m,4H) for the tetralinyl methylene protons on C-2, C-3, 61.18 (i,,9H) for (CH_.)_2-C protons.
3.11.3 **Boc-Phe-Asn(7-NETHQXY-1,2,3,4-TETRAHYDRO-1-\n-NAPHTHYL)-a-OBzl.**

This compound was prepared from 0.39g (0.81 mmol) of Boc-Asn(7-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl and 0.29g (0.81 mmol) of Boc-Phe-ONSU in the same manner as described for the preparation of Boc-Phe-Asn(1,2,3,4-tetrahydro-1-naphthyl)-6-OBzl: wt. 0.46g (90.2%), m.p. 165-166°. TLC, solvent system C, R^= 0.59. IR spectrum (KBr, \(\nu_{max}\)): NH, 3290 cm\(^{-1}\) \(\nu\) C=O groups, 1735 cm\(^{-1}\), 1680 cm\(^{-1}\) and 1630 cm\(^{-1}\). NMR spectrum (CDCl\(_3\)):

57.37 (s,5H), 67.22 (s,5H) for the two phenyl groups,

66.8 (m,3H) for the trisubstituted phenyl group,

65.22 (s,2H) for the -O-CH\(_2\)-Ph prot'ns, 63.7 (s,3H) for the methoxy protons, 61.75 (m,4h) for the tetralinyl methylene protons on C-2, C-3, 61.37 (s,9H) for \(\nu\)'CH\(_3\)_3C protons.

3.11.4 **Boc-Phe-Asn(5,7-DIMETHYL-1,2,3,4-TETRAHYDRO-1-\n-NAPHTHYL)-B-OBzl.**

This compound was prepared from 0.35g (0.81 mmol) of Boc-Asn(5,7-dimethyl-1,2,3,4-tetrahydro-1-naphthyl)-g-OBzl and 0.29g (0.81 mmol) of Boc-Phe-ONSU in the same manner as described for
the preparation of Boc-Phe-Asn(1,2,3,4-tetrahydro-1-naphthyl)-B-OBzl: wt. 0.4g (79%), m.p. 149-150°. TLC, solvent system C, 0.77. IR spectrum (nujol, v_max): NH, 3300 cm\(^{-1}\), C=O groups, 1730 cm\(^{-1}\), 1685 cm\(^{-1}\) and 1635 cm\(^{-1}\). NMR spectrum (CDCl3: 67.38 (s,5H), 67.22(s,5H) for the two phenyl groups, 66.87 (s,2H) for the tetrasubstituted phenyl group, 65.16 (s,2H) for -O-CH\(_2\) "Ph protons, 63.1 (m,2H) for the -C-CH\(^-\) Pn protons, 62.21 (merged s,5H) for the two methyl groups on the ring, 61.83 (m,4H) for the tetralinyl methylene protons on C-2, C-3, 61.23 (s,9H) for (CH\(_3\))\(_3\)C protons.

3.12 SYNTHESIS OF TRIPEPTIDES

3.12.1 Boc-Ile-Phe-Asn(1,2,3,4-TETRAHYDRO-1-NAPHTHYL)-B-OBzl.

A solution of Boc-Phe-Asn(1,2,3,4-tetrahydro-1-naphthyl)-6-QBzl (0.15g, 0.25 mmol) in 3ml TFA and 0.25ml of anisole was stirred at room temperature for 25 minutes. The solvent was removed on a rotary evaporator in vacuo at room temperature. The oil residue was treated twice with 10ml portions of ethyl ether, and the ether was evaporated to dryness each time. The white solid was dissolved in 10ml of dichloromethane and the pH was adjusted to 7.
with triethylamine. Boc-Ile-ONSO (0.05g, 0.25 mmol) was added, and the mixture was stirred for 35 minutes at room temperature. The mixture was filtered and the solvent removed in vacuo on a rotary evaporator at room temperature. TLC of the crude product with solvent system C gave three components with 0.73, 0.35 and 0. Isolation of the components was by column chromatography and component th 0.73 was found to be the tripeptide. Solvent mixture containing the tripeptide was removed in vacuo on a rotary evaporator at room temperature. The residue was dissolved in 4ml of ethyl acetate and 20ml of petroleum ether (b.p. 40-60°) was added and placed in the freezer overnight. The precipitate was filtered off and dried in vacuo to give a white crystalline product: wt. 0.14g (78°o), m.p. 203-204°. TLC, solvent system C, 0.73. IR spectrum (KBr, vmax): NH, 3260 cm\(^{-1}\), -C=O groups, 1725 cm\(^{-1}\), 1680 cm\(^{-1}\) and 1625 cm\(^{-1}\). NMR spectrum (CDC\(_3\)): \(<57 .33 \text{ (s,5H), 67.15 \text{ (s,5H) for the two phenyl groups, 67.08 \text{ (s,4H) for the disubstituted phenyl group, 65.12 \text{ (s,2H) for the -O-CH}_{3}\text{-Ph protons, 63.27 \text{ (n,2H) for the -C-CH}_{2}\text{-Ph protons, 61.8 \text{ (m,4H) for the tetralinyl methylene protons on C-2, C-3, 61.35 \text{(s,9H) for (CH}_{3}\text{)}_{3}\text{C protons, 60.75 \text{(m,6H) for the two methyl groups of lie.}}}

\text{}}\)
3.12.2 Boc-Ile-Phe-Asn(7-METHOXY-1,2,3,4-TETRAHYDRO-1-NAPHTHYL)-a-OBzl.

This compound was prepared from 0.16g (0.25 mmol) of Boc-Phe-Asn(7-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl and 0.08g (0.25 mmol) of Boc-Ile-QNSU in the same manner as described for the preparation of Boc-Ile-Phe-Asn(1,2,3,4-tetrahydro-1-naphthyl)-g-OBzl: white crystalline compound, wt. 0.15g (78%), m.p. 214-216°. TLC, solvent system C, R_f= 0.33, 0, 0.83. IR spectrum (KBr, vmax): NH, 3270 cm\(^{-1}\), C=O groups, 1730 cm\(^{-1}\), 1680 cm\(^{-1}\); and 1530 cm\(^{-1}\). NMR spectrum (C\(_6\)D\(_3\)): 67.36 (s,5H), 67.23 (s,5H) for the two phenyl groups, 65.75 (m,3H) for the trisubstituted phenyl group, 5.2 (s,2H) for the -O-CH\(^2\)Ph protons, 63.75 (s,3H) for the methoxy protons, 61.8 (m,4H) for the tetralinyl methylene protons on C-2, C-3; 51.44 (s,9H) for (CH\(_3\))\(_3\)C protons, 50.9 (m,6H) for the two methyl groups of Ile.

3.12.3 Boc-Ile-Phe-Asn(5,7-DIMETHYL-1,2,3,4-TETRAHYDRO-1-NAPHTHYL)-3-JBzl.

This compound was prepared from 0.15g (0.25 mmol) of Boc-Phe-Asn(5,7-dimethyl-1,2,3,4-tetrahydro-1-naphthyl)-3-QBzl and 0.08g (0.25 mmol)
of Boc-Ile-ONSU in the same manner as described for the preparation of Boc-Ile-Phe-Asn(1,2,3,4-tetrahydro-1-naphthyl)-B-OBzI: white crystalline compound, wt. 0.13g (70%), m.p. 202-203. TLC, solvent system C, R_p= 0.70. IR spectrum (KBr, v max): NH, 3260 cm⁻¹, C=O groups, 1720 cm⁻¹, 1670 cm⁻¹ and 1625 cm⁻¹. NMR spectrum (CDCl₃): 67.35 (s,5H), 67.17 (s,5H) for the two phenyl groups, 66.83 (s,2H) for the tetrasubstituted phenyl group, 65.15 (s,2H) for the -O-CH^'Ph protons, 62.17 (merged s,6H) for the two methyl groups on the ring, 61.64 (m,4H) for the tetralinyl methylene protons on C-2, C-3; chl.23 (s,9H) for (CH₃)₃C protons, 60.75 (r.,6H) for the two methyl groups of He.

Small quantities of the carboxamide protected glutamate, asparaginate and isoasparaginate derivatives were placed in separate vessels, 2ml of cleavage solvent H, was added to each vessel and the mixtures were stirred at room temperature for 24hr. Samples under cleavage treatment were thin-layer
chromatographed at 1hr, 3hr, 5hr, 7hr and 24hr. The solvent system was chloroform-methanol-glacial acetic acid (85:10:5 v/v). Detecting reagent was ninhydrin in acetone.

3.14 CLEAVAGE STUDIES OF Boc-Asn(1,2,3,4-tetrahydro-1-naphthyD-B-OBzl, Boc-Asn(5,7-dimethyl-1,2,3,4-tetrahydro-1-naphthyD)-B-OBzl, Boc-Asn(7-methoxy-1,2,3,4-tetrahydro-1-naphthyl)-a-OBzl and their dipeptides IN BORON TRIFLUORIDE COMPLEX WITH ACETIC ACID (36% BF, 2ACOH).

Small quantities of the compounds were dissolved in 0.5ml TFA and 1.0ml of BTFA was added. The mixtures were stirred and thin-layer chromatographed at 1hr, 2hr, 3hr and 4hr. Solvent system was chloroform-methanol-glacial acetic acid (85:10:5 v/v). Detecting reagent was ninhydrin in acetone.
APPENDIX

LIST OF ABBREVIATIONS

Carboxamide Protecting Groups

<table>
<thead>
<tr>
<th>Name</th>
<th>Formula</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2,3,4-Tetrahydro-1-naphthyl</td>
<td></td>
<td>1.2.3,4-TH-1-NT</td>
</tr>
<tr>
<td>5-Methoxy-1,2,3,4-tetrahydro-1-naphthyl</td>
<td></td>
<td>5-Meo-1,2,3,4-TH-1-NT</td>
</tr>
<tr>
<td>6-Nethoxy-1,2,3,4-tetrahydro-1-naphthyl</td>
<td></td>
<td>6-Meo-1,2,3,4-TH-1-NT</td>
</tr>
<tr>
<td>7-Methoxy-1,2,3,4-tetrahydro-1-naphthyl'</td>
<td>K JL J</td>
<td>7-Neo-1,2,3,4-Thl-1-NT</td>
</tr>
<tr>
<td>5,7-Oimethyl-1,2,3,4-tetrahydro-1-naphthyl</td>
<td></td>
<td>5,7-Me-1,2,3,4-TH-1-NT</td>
</tr>
</tbody>
</table>
Carboxyl Activating and Protecting Groups

<table>
<thead>
<tr>
<th>Name</th>
<th>Formula</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benzyl oxycarbonyl</td>
<td></td>
<td>OBz1</td>
</tr>
<tr>
<td>N-Hydroxysuccinimido</td>
<td></td>
<td>QNSu</td>
</tr>
<tr>
<td>Acetic Acid</td>
<td>CH₃-COOH</td>
<td>HOAc</td>
</tr>
<tr>
<td>Anisole</td>
<td></td>
<td>BzlfJH</td>
</tr>
<tr>
<td>Benzyl Alcohol</td>
<td></td>
<td>BzlfJH</td>
</tr>
<tr>
<td>Boron trifluoroacetatG</td>
<td>(rF₃con)₃B</td>
<td>BTFA</td>
</tr>
<tr>
<td>Diethylene glycolcarbimide</td>
<td></td>
<td>DCHA</td>
</tr>
<tr>
<td>Oligoethylene glycolcarbimidra</td>
<td></td>
<td>ncc</td>
</tr>
<tr>
<td>Name</td>
<td>Formula</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Dicyclohexylurea</td>
<td>O(^{-})O</td>
<td>OCHU</td>
</tr>
<tr>
<td>Diethyl ether</td>
<td>CH(_3)-CH(_2)-O-C:H(_2)-CH(_3)</td>
<td>Et(_2)O</td>
</tr>
<tr>
<td>Diisopropyl ether</td>
<td>CH(_3)-CH(_2)-OH</td>
<td>i-pr(_2)O</td>
</tr>
<tr>
<td>N,N-Dimethylformamide</td>
<td>(\text{DMF})</td>
<td>DMF</td>
</tr>
<tr>
<td>Ethanol</td>
<td>CH(_3)-CH(_2)-OH</td>
<td>EtOH</td>
</tr>
<tr>
<td>Ethyl Acetate</td>
<td>CH(_2)-C=(\text{O})-CH--CH</td>
<td>EtOAc</td>
</tr>
<tr>
<td>Hydrogen Fluoride</td>
<td>HF</td>
<td>HF</td>
</tr>
<tr>
<td>Isopropyl alcohol</td>
<td>i-Pr(_2)OH</td>
<td>i-PrOH</td>
</tr>
<tr>
<td>Name</td>
<td>Formula</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>--------------</td>
</tr>
<tr>
<td>t-Butyl p-nitrophenylcarbonate</td>
<td>$(\text{CH}_3)_3\text{C} - \text{O} - \text{Ct-Hu-P-NPC}$</td>
<td></td>
</tr>
<tr>
<td>Tetrahydrofuran</td>
<td>R°</td>
<td></td>
</tr>
<tr>
<td>Trifluoroacetic Acid</td>
<td>$\text{CF}_3\text{C00H}$</td>
<td>TFA</td>
</tr>
</tbody>
</table>

Derivatives of Glutamic and Aspartic Acids

The 1,2,3,4-tetrahydro-1-naphthyl group is used to illustrate how to write the name, formula, and abbreviation of the carboxamide protected amino acid.

<table>
<thead>
<tr>
<th>Name</th>
<th>Formula</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>a-Benzyl t-butyloxy-carbonylaspartate</td>
<td>$(\text{CH})_3\text{C-0-C-NH-jTH-COOCH^CgH}_5$</td>
<td>Boc-Asp-a-OSz1</td>
</tr>
<tr>
<td></td>
<td>CH° - COOH</td>
<td></td>
</tr>
<tr>
<td>a-Benzyl t-butyloxy-carbonylglutamate</td>
<td>$(\text{CH}_3)_2\text{"C00H}$</td>
<td>Boc-Glu-a-09z1</td>
</tr>
<tr>
<td></td>
<td>$(\text{CH}_3)_3\text{C-0-U-NH-CH-COOCH^CgH}_5$</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Formula</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>a-Benzyl t-butyloxy-RA carbonyl-N-1,2,3,4-tetrahydrol-naphthylasparagine</td>
<td>((\text{CH}_3)_3\text{C}-\text{O}-\text{C}^\text{N}^{-}\text{NH}-\text{CH} - \text{COOCH}_7\text{C}_6\text{H}_5)</td>
<td>Boc-Asn(1,2,3,4-TH-1-NT) n-GBz1</td>
</tr>
<tr>
<td>ct-Bszyl t-butyloxy-CA carbonyl-N-1,2,3,4-tetrahydro-1-naphthylglutamine</td>
<td>((\text{CH}_3)_3\text{C}-\text{O}-\text{C}^\text{N}^{-}\text{NH}-\text{CH} - \text{C}^\text{O}n\text{CH}_7\text{C}_6\text{H}_5)</td>
<td>Boc-Gln(1,2,3,4-TH-1-NT) a-OBz1</td>
</tr>
<tr>
<td>N-bert-Butyloxy carbonylaspartic Acid</td>
<td>((\text{CH}-\text{jKC}-\text{O}^{-}\text{C}^\text{N}^{-}\text{NH}-\text{CH} - \text{COOH})_{\text{CH}^\text{^\text{I}}-\text{COCIH}})</td>
<td>Doc-Asp</td>
</tr>
</tbody>
</table>
Name

N-\textit{tert}-Butyloxy carbonylglutamic Acid

PA

N-\textit{tert}-Butyloxy carbonyl-N-1,2,3,4-tetrahydro-1-naphthyl
'asparag ins

CA

'N-\textit{tert}-Butyloxy carbonyl-N-1,2,3,4-tetrahydro-1-naphthyl
glutamine
<table>
<thead>
<tr>
<th>Formula</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>Boc-Glu</td>
</tr>
<tr>
<td>$(\text{CH}_3)_2\text{C-O-C-NH-rH-CnOH}$</td>
<td>Boc-Glu</td>
</tr>
<tr>
<td>$(\text{CH}_2)_2\text{C0QH}$</td>
<td>$\text{Hoc-Asn}(1,2,3,4-\text{TH}-1-\text{NT})$</td>
</tr>
<tr>
<td>$\text{Hoc-Asn}(1,2,3,4-\text{TH}-1-\text{NT})$</td>
<td>$\text{Qoc-Gln}(1,2,3,4-\text{TH}-1-\text{NT})$</td>
</tr>
</tbody>
</table>
REFERENCES

