




Maureen N. Waswa, George M. Mwenda, Nancy K. Karanja, Paul Woomer and Fred Baijukya Email: maureewaswa@yahoo.com

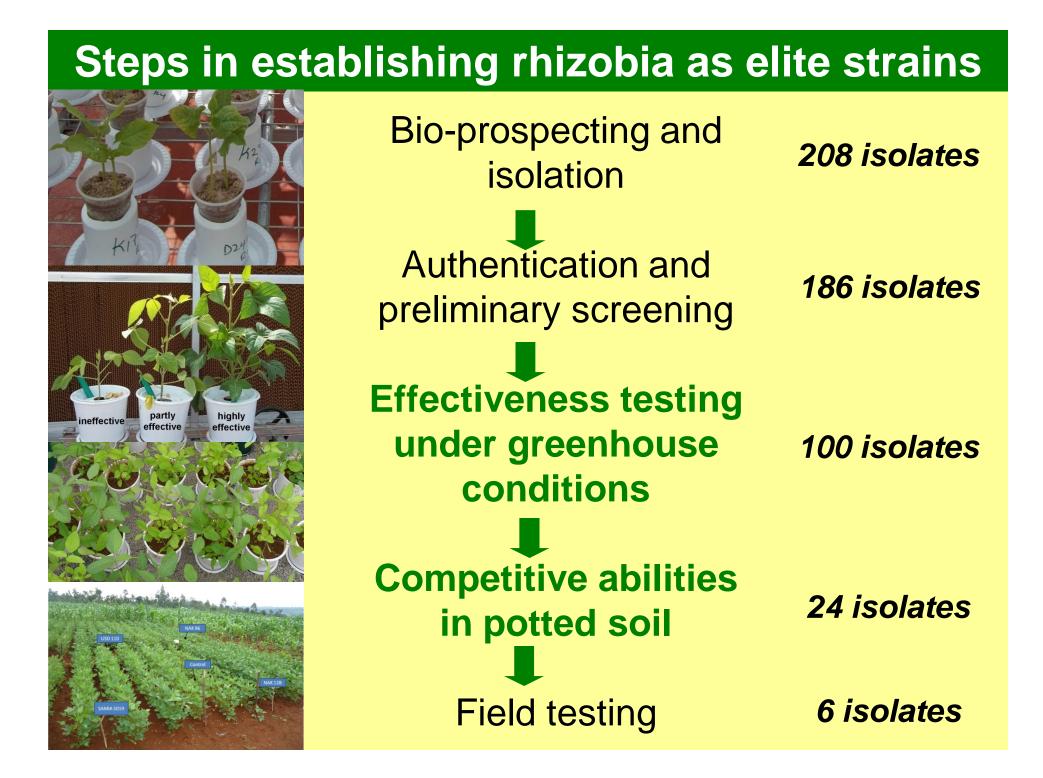


putting rhizobia

to work for



#### **Justification**


Biodiversity and economic potential of African rhizobia is largely unexplored

Potential exists for native rhizobia to outperform exotic commercial strains

**Objectives** 

Identify elite native rhizobia for soybean

Compare these rhizobia to standard industry strains



#### Greenhouse growth systems employed in this study



Leonard jars with sand media Three liter pots with rhizobia-free vermiculite Growth pouches for MPN Three liter pots with site soils

non-quantitative, abandoned as unnecessary

> clean controls, quantitative separation of isolates

rapid estimation of native populations

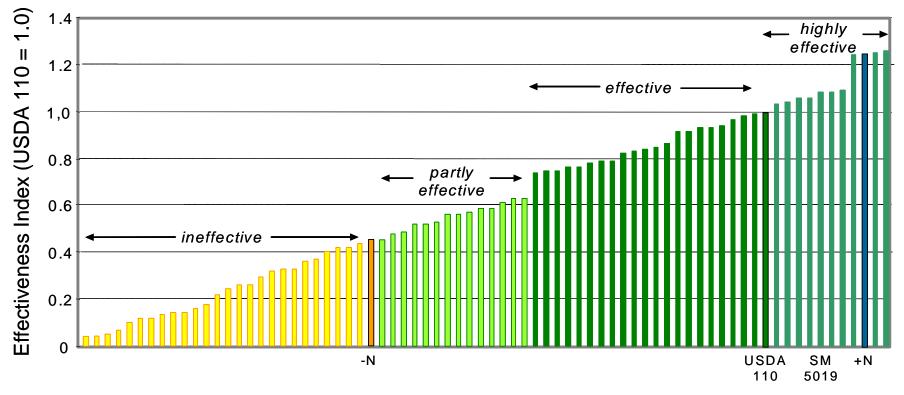
effective isolates
tested for
competitive abilities

Greenhouse effectiveness testing of 100 isolates in 3 liter pots with rhizobia-free vermiculite




Reference

strain


+ N, not

inoculated

Clockwise: early N response (top), sterile irrigation system (upper right), effectiveness differences (lower right) and experimental overview (lower left).



#### **Effectiveness testing under greenhouse conditions**



N2Africa rhizobia isolates and controls

Strains were compared by Effective Index and then assigned to four categories (< -N control, < 0.75 USDA 110, < USDA 110 and > USDA 110)

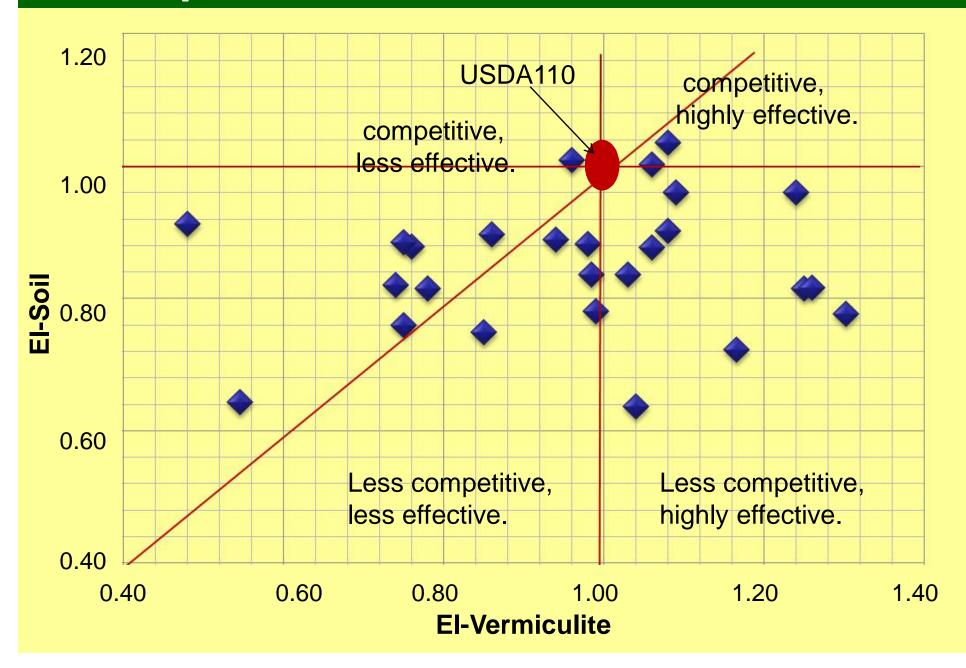
# The best "candidate elite strains" emerging for greenhouse effectiveness testing

| isolate  | EI   | Host                | Source AEZ              |
|----------|------|---------------------|-------------------------|
| NAK 176  | 1.26 | Cowpea              | Coastal plain           |
| NAK 179  | 1.25 | <i>Eriosema</i> sp. | Coastal plain           |
| NAK 96   | 1.24 | Soybean             | Semi-arid upland        |
| NAK 149  | 1.09 | Cowpea              | Coastal plain           |
| NAK 115  | 1.08 | soybean             | Sub-humid midland       |
| NAK 128  | 1.06 | soybean             | Sub-humid midland       |
| USDA 110 | 1.00 |                     | USA (Industry standard) |

#### Greenhouse competitiveness testing of 24 isolates in 3 litre pots with soil

Clockwise: experimental overview (top right), MPN (lower left)and nodulation of test strain (lower right).




1 13+ 1 103 1 10+



The best promising elite strains emerging for greenhouse competitive ability testing

| Isolates | EI   | Host    | Source AEZ                 |
|----------|------|---------|----------------------------|
| NAK128   | 1.00 | Soybean | Semi-arid upland           |
| NAK135   | 1.01 | Soybean | Semi-arid upland           |
| NAK89    | 0.78 | Soybean | Semi-arid upland           |
| NAK84    | 0.84 | Soybean | Semi-arid upland           |
| NAK115   | 1.03 | Soybean | Semi-arid upland           |
| NAK117   | 0.89 | Soybean | Semi-arid upland           |
| USAD110  | 1.00 |         | USA (Industry<br>standard) |

### **Competitive classes of native strains**



| Competitive,<br>highly<br>effective | Less<br>competitive,<br>highly<br>effective | Competitive,<br>less effective | Less<br>competitive,<br>less effective |
|-------------------------------------|---------------------------------------------|--------------------------------|----------------------------------------|
| NAK115                              | NAK9                                        | NAK12                          | NAK10                                  |
| NAK128                              | NAK83                                       | NAK122                         | NAK30                                  |
|                                     | NAK89                                       | NAK135                         | NAK84                                  |
|                                     | NAK96                                       | NAK139                         | NAK117                                 |
|                                     | NAK127                                      | NAK146                         | NAK144                                 |
|                                     | NAK149                                      | NAK152                         | NAK176 (SCcv)                          |
|                                     | NAK176 (SB19)                               | NAK160                         | NAK179 (SCcv)                          |
|                                     | NAK179 (SB19)                               | NAK161                         |                                        |
|                                     |                                             |                                |                                        |
|                                     |                                             |                                |                                        |

#### **Conclusion and recommendation**

- For strains to be elite, they must be screened for genetic stability, satisfactory growth and survival under inoculant manufacturing conditions.
- Preliminary testing of promising native strains have been done and further testing continues at the field with six promising native isolates.
- Competitive, highly effective and less competitive, highly effective: field testing should be done in different soils and environment.
- Isolates NAK179 and NAK176 performed well on promiscuous but not on specific soybean: Different inoculants maybe required for different soybean genotypes.





### ACKNOWLEGEMENT

- CIAT-TSBF through N2 AFRICA for funding the study.
- University of Nairobi for hosting the study.
- Organizers of ISFM conference.

# THANK YOU