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Forewords

The East African Universities Mathematics Programme (EAUMP) is a collaboration project be-
tween Eastern Africa Universities and International Science Programme (ISP) of Uppsala Uni-
versity, Sweden. The project started in 2002, and the currently participating universities in the
region are University of Dar es Salaam, University of Nairobi, Makerere University, National
University of Rwanda, Kigali Institute of Technology and University of Zambia. The main
objective of the programme is to promote cooperation and exchange of ideas in mathematical
research and teaching of mathematics and to stimulate communication between mathematicians
in the Eastern African Region and beyond.

The first EAUMP Conference was held in Nairobi, Kenya, from 18th March to 21st March
2003. Due to the success of the conference it was decided to hold such a conference regularly.
The Department of Mathematics of the University of Dar es Salaam agreed to hold the 2nd
EAUMP conference to celebrate 10th anniversary of the programme.

The proceedings, which follow, consist of speeches, papers and abstracts presented at the 2nd
EAUMP Conference, held at The Nelson Mandela African Institute of Science and Technology,
Arusha, Tanzania from 22nd to 25th August 2012. More than 125 participants from about 10
countries attended the conference. The conference program was comprised of 6 invited plenary
lectures, and more than 45 contributed talks were presented and discussed.

The aims of the conference were:

• To stimulate regional and international collaboration in research and training.

• To provide a forum for interaction of African Mathematicians and others from the devel-
oped countries for research experience.

• To introduce African Mathematicians from the region to some fundamental techniques
and recent developments in these fields, thus forming research collaborations.

• To update the knowledge of African Mathematicians, particularly lecturers and M.Sc../Ph.D.
students who are stationed at home, to start pursuing these areas as research interest.

The success of the conference could not have been registered without concerted effort from the
Local organizing committee in the Department of Mathematics and the EAUMP coordinators
committee. I would therefore like to extend my heartfelt thanks to the following.

Local Organizing Committee

• Dr. Egbert Mujuni Chairperson

• Dr. Sylvester. E. Rugeihyamu EAUMP coordinator

• Dr. Eunice Mureithi Member

• Dr. Theresia Marijani Secretary

• Mr. Emmanuel Evarest Member
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EAUMP Coordinating Committee

• Dr. Sylvester E. Rugeihyamu (Coordinator of University of Dar es Salaam)

• Prof. Patrick G. O. Weke (Coordinator of University of Nairobi)

• Dr. Juma Kasozi (Coordinator of Makerere University)

• Dr. Isaac Tembo (Coordinator of University of Zambia)

• Dr. Isidore Mahara (Coordinator of National University of Rwanda)

• Mr. Michael Gahirima (Coordinator of Kigali Institute of Science and Technology)

• Dr. John M. Mango (Inter Network Coordinator, Makerere University)
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THE 2ND EASTERN AFRICA UNIVERSITIES MATHEMATICS
PROGRAMME (EAUMP) CONFERENCE

The Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania
August 22nd - 25th, 2012

Welcome Speech
by

Prof. E. S. Massawe

Head, Mathematics Department, University of Dar Es Salaam

Guest of Honour, Minister of Communication, Science & Technology, Tanzania, Hon. Prof.
Makame Mnyaa Mbarawa (MP),

The Vice Chancellor of the University of Dar es Salaam, Professor Rwekaza Mkandala

The Vice Chancellor Nelson Mandela African Institute of Science and Technology, Professor
Burton Mwamila

Head of ISP and Director of Chemistry Program, Professor Peter Sundin

Director of Mathematics Program, Professor Leif Abrahamsson

Delegates from ISP

Distinguished guests and visitors,

Dear Participants,

Ladies and Gentlemen,

On behalf of the Department of mathematics, University of Dar es Salaam and on my own
behalf, I wish to take this opportunity to welcome you all the invited guests and participants
and especially you the guest of honour, the Minister of Communication, Science & Technology,
Tanzania, Hon. Prof. Makame Mnyaa Mbarawa, to this important Congress. Please do feel at
home.

Guest of Honour
The Eastern Africa Universities Mathematics Programme (EAUMP) Network was established
in 2002 to further the mathematical sciences in the Eastern Africa Region. The main objective
of the Network is to promote cooperation and exchange of ideas in mathematical research and
teaching of mathematics and to stimulate communication between mathematicians in the East-
ern Africa Region and beyond. The Network, since its foundation, has been organizing schools
and workshops and conferences. One of the objectives of these workshops and conferences is
to bring together researchers from various branches of mathematics and related fields, and to
simulate intersection and cooperation.

Guest of Honour
EAUMP is a non-political and non-profit making Network devoted to the promotion of re-
search, teaching and learning of mathematics at all levels. We are very proud of this because
recent years have seen unprecedented growth of interest in the application of mathematical
ideas and techniques to problems in Science and Technology in industry.
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Guest of Honour
EAUMP is aware of the important role of the mathematics researchers in promoting the subject.
In this conference, we shall have a series of presentations and group discussions in the areas of
pure mathematics, Financial Mathematics, Epidemiology, Mathematics for the Industry, Theo-
retical Fluid Dynamics, Statistics, Mathematics Education, Computer Science and Theoretical
Physics. The program will include keynote speakers, esteemed researchers and regular presen-
tations.

Guest of Honour
EAUMP was found in 2002. This year we are celebrating the 10th Anniversary of the EAUMP
Network. Performance of EAUMP in the last 10 years gives one confidence that the EAUMP
will survive the next 10 years and beyond as an important and active Network. Schools and
Conferences of this type will have to continue. Schools and Conferences of EAUMP are the
lifeline of the Network as is the case of most professional organizations

Guest of Honour
Finally I will like to say that, our motto is ”We build for the Future”. The future success of
EAUMP will depend on the continued cooperation and commitment of all the members of
EAUMP and other stakeholders.

Guest of Honour
Allow me on behalf of all the EAUMP members to thank all those who in various ways have
supported our Conference and specifically the International Science Programme (ISP) of Upp-
sala University, Sweden , The Ministry of Communication, Science and Technology, Tanzania,
Commission for Science and Technology (COSTECH), Tanzania, The Academi Science of the
Developing World (TWAS), The European Mathematical Society - Committee for Develop-
ing Countries (EMS-DC), The German Academic Exchange Service (DAAD), The University
of Dar es Salaam, The University of Dar es Salaam Gender Centre, the University of Dar es
Salaam Directorate of Research, NORAD through NOMA Project, Tanzania Communications
Regulatory Authority (TCRA) and All nodes of the EAUMP network

I would also like to thank the local organizing committee and all those behind the scene for the
excellent job done in terms of making us stay in Arusha happily.

Once again, you are all warmly welcome.

Thank you.
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Eastern Africa Universities Mathematics program (EAUMP - Network
Origin, Operation, Achievements the Future and Challenges.

by

Dr. John M. Mango

EAUMP Coordinator and Inter-Network Cooperation

Today is a great and memorable day for EAUMP

• In June 1995, SIDA/SAREC and Uppsala University organized a conference on ’Donor
support to development oriented research in Basic Sciences’.

• In March 1999 a conference was organized in Arusha, Tanzania with the aim of address-
ing the regional challenges.

• In 2001 SIDA/SAREC organized the 1st International conference in Mathematics in
Africa South of the Sahara. It was during this conference that the poor state of Math-
ematics in the Eastern African region was reported. This gave birth to EAUMP in 2002
to try and address the Challenges of the time. It is interesting to note that some of the
challenges are still existing though at a reduced level.

The Key People who participated in the initial stages 2001/2002

• Prof. Leif Abrahamson -Uppsala University in Sweden.

• Dr. C. Baruka Alphonce -University of Dar es Salaam.

• Prof. V. Masanja -University of Dar es Salaam.

• Prof. John W. Odhiambo -University of Nairobi.

• Prof. Wandera Ogana -University of Nairobi.

• Dr. Vincent Ssembatya -Makerere University.

• Prof. Livingstone Luboobi -Makerere University.

• Dr Fabbian Nabugoomu, Makerere University.

Objectives of the EAUMP Network

• Enhancement of postgraduate training with special emphasis to PhD training.

• Establishing and strengthening collaborative research in Mathematics.

• Strengthening the collaborating Mathematics departments.

• Development of resources for the collaborating Mathematics Departments.
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Membership of the Network

• University of Dar-es-Saalam, Tanzania, (Since 2002)

• Makerere University, Uganda, (Since 2002)

• University of Nairobi, Kenya. (Since 2002)

• National University of Rwanda (NUR) and Kigali Institute of Science and Technology
(KIST), joined in August 2008.

• University of Zambia, joined in April 2009.

• NB: University of Addis Ababa, University of Khartoum and Nelson Mandela African
Institute for Science and Technology have expressed interest to join the Network.

Coordination Structure

• ISP Mathematics Director–Prof. Leif Abrahamsson

• EAUMP Advisory Board

• Overall Coordinator–Prof Estomih Massawe (Dar-Main Coordinating office for now)

• Inter Network Coordinator– Dr John Mango Magero

• School of Mathematics, University of Nairobi Coordinator– Prof Patrick Weke

• Makerere University, Department of Mathematics Coordinator-Dr Juma Kasozi

• University of Dar es Salaam, Department of Mathematics Coordinator-Dr Sylvester
Rugeihyamu

• Kigali Institute of Science and Technology (KIST), Department of Applied Mathematics
Coordinator-Mr Gahirima Michael

• National University of Rwanda (NUR), Department of Applied Mathematics Coordinator-
Dr Mahara Isidore

• University of Zambia, Department of Mathematics Coordinator-Dr Isaac Tembo.

Sources of funding for the Network

• ISP-International Science Program (Over 95% of EAUMP activities are sponsored by
ISP), based at the University of Uppsala, Sweden.

• ICTP-International Centre for Theoretical Physics in Italy.

• AMMSI-Millenium Science Initiative

• LMS- London Mathematical Society
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• DAAD

• IMU/ CDC- International Mathematical Union through its Commission for developing
Countries

• TWAS-The Third World Academy of Sciences

• The other sources of sponsorship are the local universities.

Major Achievements of the Network since 2002

• Capacity building through Ph.D training (6 completed and 12 ongoing)- All are members
of staff eg Egbert Mujuni.

• Capacity building through Postdoc (4 awarded in 2011)- All are members of staff.

• Capacity building through M.Sc. training (more than 50 have benefited)- Some are mem-
bers of staff, Some doing Ph.Ds. Staff exchange in the region.

• Research visits by Cooperating Scientists (From Sweden, Italy, USA,) eg Paul, Rikard,
Fanja Eleonara, Ramadas etc Equipment (Computers, projectors etc).

• Books and Journals (Subscribed to some Journals, obtained books and ebooks).

• Publications (Increased volume of publication in refereed journals).

• Conferences/Workshops/Schools for graduate students and researchers/lecturers. The
Schools are organized to cover areas of mathematics where the region is most disadvantaged)-
Over 300 different M.sc and some Ph.Ds have attended and benefitted from the EAUMP
Schools and Conferences.

• Research projects.

• Established/identified potential of member departments.

Challenges

• Low funding and yet in this region of the world we are not short of interested students to
do Masters and Ph.Ds in Mathematics.

• Insufficient local manpower to teach and supervise

• Understaffing in Departments of member universities.

• Low interest of Ph.D students in Pure Mathematics.

The future of EAUMP Network
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• The poor state of mathematics in the region is now improved by ISP intervention. The
present state needs to be improved further through continued cooperation with ISP and
other organizations.

• There is great need for more capacity building in the member Departments through Ph.D,
PostDoc and M.Sc training.

• When resources allow, the EAUMP network will be extended to other Universities in the
region. There are smaller universities in the region where capacity building in Mathe-
matics is of urgent need.

• We need to use the Network to help reduce the problem of brain drain. From the present
experience, students who register in their local universities for their graduate training
under the sandwich mode, have settled, and are teaching/working in their local/regional
Universities.

• We plan to hold a Conference in each financial cycle (3 years as was the original plan)
so that our graduate students, staff and academics outside the region will gather to share
research experiences through paper and poster presentations.

• Strengthen the fundraising drive for the network and research cooperation with other
networks through the newly created office of Inter Network Cooperation. Apart from
the usual funding from ISP, ICTP and AMMSI/LMS for schools and conferences, this
year using the new office we have been able to secure funds from CDC,TWAS and DAAD
and this has supported a total of 13 persons (regional speakers and DAAD Alumni).

• Improve on the way we transport our student participants to EAUMP Schools and Con-
ferences. In the recent past we have lost students in road accidents while travelling to
attend EAUMP Schools.

• We request for more support from our local Universities and Governments.

Just a comment

In some discussion at the 2012 European Congress of Mathematicians, one Professor criti-
cized the Scandevian Sandwich training mode of Sida and ISP type practiced in Africa. The
professors proposal was that Sida and ISP sends money to South African Universities for ca-
pacity building of the SIDA/ISP collaborating Universities in Africa so that the training of the
sandwich students takes place in South African Universities and not Swedish Universities. As
EAUMP, we are strongly opposed to the idea in that;

(i) South Africa is still interested in our PhD products/graduates and Sweden is not for they
have more than enough. The SIDA/ISP collaboration with African Universities is for
capacity building in the collaborating Universities and not in South Africa, Europe, USA
etc. It is clear that South Africa has offered some of our graduates well paying positions
and these have not come back to meet the objective of the training

(ii) All the sandwich PhD students trained so far under SIDA/ISP have remained and are
serving their home Universities. A case example is the SIDA Makerere Bi-Lateral pro-
grammes since 2002 which has trained over 200 PhDs mostly in the hard Sciences like
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Engineering, Medicine, Agriculture etc and all these are stationed and serving Makerere
University.

(iii) The cost of ISP sandwich PhD training is cheap and affordable.

We also recognize and appreciate the contribution of South African Universities in capacity
building of regional Universities and we hope to continue collaborating with them but not to
substitute the SIDA/ISP collaboration. As EAUMP, we remain grateful to our sponsors, we
promise to work and achieve the set objectives as we also look forward to continued support of
the Network by ISP and other organizations.

THANK YOU
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THE 2ND EASTERN AFRICA UNIVERSITIES MATHEMATICS
PROGRAMME (EAUMP) CONFERENCE

The Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania
August 22nd - 25th, 2012

Welcome Speech
by

Prof. Rwekaza Mukandala

Vice Chancellor, University of Dar Es Salaam

Guest of Honour, The Minister of Communication, Science & Technology, Tanzania, Hon. Prof.
Makame Mnyaa Mbarawa (MP),

Congress Participants,

Ladies and Gentlemen,

On Behalf of the entire University of Dar es Salaam and on my behalf, I wish to take this
opportunity to welcome all the invited guests and participants to this second Eastern Africa
Universities Mathematics Programme Congress (EAUMP). Please do feel at home.

The University of Dar es Salaam is proud to host this second EAUMP Congress. I am informed
that the Network of EAUMP started on 2002, earlier than in most other regions in Sub-Saharan
African region. This programme is unique and flexible since it has led to close collaboration
between the participating departments in the network. All indications have shown that there
is now more interaction among members of departments of Mathematics in the region and
Mathematicians from Sweden and other areas.

When the Department of Mathematics of the University of Dar es Salaam indicated to me
that University of Dar es Salaam has been honoured to host the 2nd EAUMP Congress we
welcomed the initiative.

Congress of this nature complements the status of our respected and oldest Institutions in
Africa. We also know that congresses of this nature are a forum for dissemination of infor-
mation and for forging meaningful cooperation and collaboration in research and teaching.
Our Universities in the region encourages collaboration among scholars of same discipline and
also encourages inert-disciplinary arrangements.

At this juncture I wish to pay glowing tribute to the Swedish Universities, in particular Uppsala
University through Sida for their commitment in the Development and Education in our region.
We in the developing countries are very grateful for the support that Sida has extended to our
Universities for collaborative research with scientists at similar Swedish institutions. We have
developed capacity and competence in teaching and research.

To you participants of the congress; I wish you productive deliberations. Your contributions
will go a long way in promoting the subject of Mathematics.

I now like to take this opportunity to invite our Guest of Honour, Hon. Prof. Makame to address
you and officially open the Congress.
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THE 2ND EASTERN AFRICA UNIVERSITIES MATHEMATICS
PROGRAMME (EAUMP) CONFERENCE

The Nelson Mandela African Institute of Science and Technology, Arusha, Tanzania
August 22nd - 25th, 2012

OPENING SPEECH
by

Prof. Makame Mnyaa Mbarawa

Minister Of Communication, Science & Technology, Tanzania

The Chairperson of the EAUMP Conference Organising Committee,
Distinguished guests,
Distinguished Conference Participants,
Ladies and Gentlemen,

It is a great honour and pleasure for me to participate in this special activity of the Eastern Africa
University Mathematics Programme Network. This meeting of the EAUMP is significant not
only to Mathematicians in higher learning institutions but also to all people who understand the
value and role of mathematical Sciences in our everyday life and work. That is why I consider
this opportunity to interact with members of this Network a significant one and quite enriching.
I must therefore thank the organizing committee for inviting me to participate in this opening
session and therefore allowing me time to have a glimpse at some on the professional concerns
of mathematicians as reflected in the agenda for this meeting.

I take this opportunity to welcome you all to the Nelson Mandela African Institute of Science
and Technology and to the EAUMP conference on particular. It is my sincere hope that you
will find this venue a convenience place for the kinds of activities scheduled for this conference.
This is the most favourable season for this part of Tanzania. Those of you coming from warmer
regions may therefore find this to be the best time of the year to visit Arusha. I am however
confident that, in the course of your stay, each one of you will find a memorable aspect of life
and places in this town.

Chairperson
I am informed that during this conference, research papers on various topics in mathematics and
mathematical sciences will be presented by experts in the field. I have no doubt that the papers
to be presented originate from concerted research effort, and that this conference therefore
serves as an avenue for the dissemination of the findings of recent research. Yet, while sharing
of ideas and research findings among yourselves is in itself a sufficiently noble activity, a lot
more will be gained if your deliberations ultimately find a place in professional publications. I
hope this is indeed what you plan to do with the papers to be presented here.

Chairperson
I wish to relate to the significant of Mathematical sciences in human experience and develop-
ment. It is common knowledge that Mathematical reasoning occupies a core position in the
foundation of scientific and technological developments that have characterized the entire his-
tory of humanity. It is no wonder, therefore, that mathematics is known as the queen of science
and technology. But we also know that at the very elementary level, Mathematics is used in
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measurements, commerce, engineering, and as a daily language of comparison. I am told, and I
have no reason to doubt the fact that, at the most and the more sophisticated level, mathematics
is used as a tool to understand the universe. The whole of Information Technology, so we are
informed, is basically the mathematics of wave transmission. It is in view of this profound sig-
nificance of the discipline of mathematics that I revere the work being done by your Network
in advancing the frontiers of knowledge in this field. I urge you to maintain vigour and rigour
in researching the various topical issues of our day and in improving the public rendering of
the nature and role of Mathematics in our lives.

Chairperson
It is gratifying that EAUMP is a regional Network of scientists, and that it has functioned for
10 years. I congratulate you for being one of the oldest and vibrant professional organizations
in our region. I also congratulate you for the excellent tradition you have instituted of holding
your workshops in the various countries of the region rather than having them conveniently
hosted by one country. This is surely a virtue for other regional Networks to emulate.

Chairperson
I am informed that EAUMP was found in 2002, implying that the Network today is 10 years
old, and that since then it has held several workshops. I must commend EAUMP for maintain-
ing a strong and stable momentum for 10 years. I strongly join hands with you chairperson
that;performance of the EAUMP in the last 10 years gives one confidence that EAUMP will
survive the next 10 years and beyond as an important and active Programme.

Chairperson
I understand that in the last workshops, participants drew a list of recommendations or action
points. It would be interesting to explore the extent to which those have been implemented.
While I am not sure it is in your interest to engage in this kind of exercise at this point in
time, I am quite convinced that this would be a useful thing to do. In same vein, I may go a step
further and propose that you revisit all the major recommendations made in previous workshops
with a view to assessing the impact they have had on the development of Mathematics and
mathematical Sciences in the region.

Chairperson
I am sure this opening session is not meant for long speeches. I therefore wish to end my
remarks by wishing you very productive deliberations and a happy stay in Tanzania.

Lastly, the Chairperson, distinguished guests, ladies and gentlemen, it is now my honour and
pleasure to declare the 2012 EAUMP CONFERENCE OFFICIALLY OPENED.

I thank you all for your attention
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A Proposed Research Agenda in Mathematics Education in Africa
by

M. E. A. El Tom

Garden City College for Science and Technology, Sudan

Abstract

Efforts at capacity building in mathematics in Africa have not been sufficiently sensi-
tive to the importance of mathematics education. They do not appear to have been informed
by the fact that mathematical research and mathematics education are organically linked: a
weakness in either will undermine the other as well as the science and & technology base,
which is vital for meaningful sustainable development.

The paper attempts to identify the most pressing issues and questions for mathematics
education in Africa. The proposed research agenda in mathematics education are based on
these issues and questions.

1. Introduction
A major aim of the East African Universities Mathematics Programme (EAUMP) network is to
strengthen mathematical research in departments of mathematics participating in it. It is useful
to think of this aim as part of the broader goal of promoting mathematics in the continent,
which is shared in common by the African mathematical community. The achievement of this
goal is far from straightforward and requires considerable effort. For, mathematics in Africa
is ’young’ (most African countries could not boast a single Ph. D. in mathematics at the time
of independence in early 1960s. Moreover, the role of mathematics in society is ”subtle and
not generally recognised in the needs of people in everyday life and most often it remains
totally hidden in scientific and technological advancements” (Brown 2007). I consider in the
next section some specific obstacles that seem to stand between African mathematicians and
the achievement of the goal of promoting mathematics. Also, the section cites some of the
problems facing mathematics in specific African countries. The level of research output in
mathematics education in Africa is discussed in section 3. A review of the literature dealing
with factors that play a role in mathematics achievement is presented in section 4. A proposed
research agenda in mathematics education in Africa are presented in the final section.

2. Some problems of mathematics in Africa
The International Mathematical Union (IMU) observes in a recent study that in most African
countries ”mathematical development is limited by low numbers of secondary school teachers
and mathematicians at the masters and PhD levels.” Furthermore, the study observes that ”Tal-
ented students are dissuaded from careers in mathematics by low salaries, a poor public image,
and a shortage of mentors engaged in exciting mathematical challenges” (IMU 2009).

Overall, the IMU study concludes, ”the story of mathematical development in Africa is one of
potential unfulfilled. Based on the achievements of some outstanding individuals and institu-
tions, it is clear that no African country lacks talented potential mathematicians. But without
a stronger educational structure at all levels, few of them are able to reach their potential.”
The last statement in this quotation is further articulated in the observation that there is an
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almost universally held conviction held by mathematicians and mathematics educators, ”that
each mathematical level of learning is grounded pyramid-like in the previous ones, and that
lack of quality or capacity at any level of a country’s mathematical infrastructure weakens all
the levels above. Conversely, the absence of some kind of pinnacle deprives the lower levels of
leadership, training and context” (IMU 2009).

2.1 Cracks in the foundation

There are important indications that educational systems in most African countries exhibit
cracks in their respective systems. Awareness of these cracks and devising appropriate mea-
sures for dealing with them are prerequisites for effective promotion of mathematics in the
continent.

• Image of mathematics

Achievement in mathematics is influenced by, among other factors, beliefs about and
attitudes towards mathematics. How do parents, teachers and students themselves view
mathematics? Do these groups attribute success in mathematics largely to ability or ef-
fort? A questionnaire was designed and distributed to 24 leading mathematicians work-
ing in departments of mathematics in universities of different African countries to try and
find answers to such questions. The response was highly limited, only 6 questionnaires
were completed and returned: Ghana, Mali, Kenya, Nigeria, Sudan and Tunisia. The
responses from 4 of these countries, namely Ghana, Mali, Nigeria and Sudan turned out
to be similar and they are presented in Figure 1.

Although it is not permissible to generalize on the basis of very limited response to the
questionnaire, the Figure suggests that general education students in Ghana, Mali, Nige-
ria and Sudan have a negative image of mathematics, characterizing it as very difficult,
unrelated to reality and only for the clever. Also, society in the four countries seem to
share in common with general students the perception that mathematics is both difficult
and only for the clever. In contrast, policy-makers seem to have a positive image of
mathematics, indicating awareness of its importance for economic development. Indeed,
the Nigerian Federal Minister of Education said ” there could be no meaningful progress
in the country without promoting the study of mathematics and sciences” (AfricaSTI. 4
March 2012)

Response to the questionnaire from Tunisia indicate that both general education students
and society at large perceive mathematics as very difficult and unrelated to reality. Also,
policy-makers view mathematics as very important for economic development.

In Tanzania, mathematics is characterized as Math characterized as the ”(most) diffi-
cult subject taught in schools” (Philemon 2010). In their review of the strengthening
mathematics and science in secondary education (SMASSE) science project in Kenya,
Onderi and Malala (2011) believe that the documented poor performance of students in
mathematics could be attributed to students’ negative attitude towards the subject. They
go on to ascribe this attitude to ”low entry behavior, belief that these subjects are hard,
peer pressure, lack of proper learning facilities, teacher absenteeism and theoretical ap-
proach to teaching mathematics.” However, the response to the questionnaire indicate
that policy-makers in Kenya attach great value for mathematics.
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The data reported above pertain to 7 countries belonging to different regions of the con-
tinent (North, East and West Africa), exhibit important differences in their educational
systems, and differ in the levels of their respective economic development. Thus, it is
not unreasonable to conclude that the image of mathematics in most African countries is
similar to that reported for the 7 countries mentioned above.

Figure 1: : General education students’, society’s and policy-makers’ image of mathematics,
selected African countries, 2012

General educa-
tion students

Society at large Policy-makers

Very difficult
Unrelated to reality
Only for the clever
Very important for
passing examinations
Very important for
economic development

Source: responses to questionnaire from mathematicians in Ghana, Mali, Nigeria, and Sudan.

• Teachers of mathematics

Hanushek and Rivkin (2006) make the important observation that ”The most consistent
finding across a wide range of investigations is that the quality of the teacher in the
classroom is one of the most important attributes of schools”. Yet the identification of
good teachers has been complicated by the fact that the simple measures commonly used-
such as teacher experience, teacher education, or even meeting the required standards for
certification - are not closely correlated with actual ability in the classroom (Harbison
and Hanushek (1992); Hanushek (1995); Hanushek and Luque (2003); Hanushek and
Rivkin (2006)). But, however one perceives of good teaching (e.g. Goe (2007), there is
data to suggest strongly that ’good’ teachers of mathematics are in short supply in most
African countries.

Indeed, in most African countries, mathematical development is limited by low numbers
of secondary school teachers and mathematicians at the masters and PhD levels. An
important contributing factor to this situation is that talented students are dissuaded from
careers in mathematics by low salaries, a poor public image, and a shortage of mentors
engaged in exciting mathematical challenges (Developing Countries Strategies Group
(DCSG), 2009). South Africa, Tanzania and Uganda provide examples of this problem.

In South Africa, Adler (1994) reported that “72% of mathematics teachers in African
schools, are under-qualified ” Obviously, these shortages of 18 years ago pose an enor-
mous challenge well into the future. Indeed, Adler noted that projections ”for the next
ten years indicate that there is a need to produce 135 700 primary and 93400 secondary
teachers in order to reach the targeted average teacher-pupil ratio of 1:35. That the imme-
diate areas of attention need to be [mathematics and science] is highlighted in numerous
policy proposals ” More recently, the South African Department of Education (2004:10)

13



Figure 2: Vicious cycle of shortage of good teachers of mathematics

expressed concern that the teaching of mathematics in schools was often never a first
choice to talented mathematics graduates. Consequently, mathematics was often taught
by inadequately qualified teachers and this led to a vicious cycle of poor teaching, poor
learner achievement and a constant under-supply of competent teachers.”

In Tanzania, Danielle (2012) observes that ”Enrollment rates are low and failure rates are
high. Resources and learning materials are limited. But perhaps more than anything, the
country suffers from a severe lack of qualified teachers.” In a recent World Bank study
(Mulkeen, 2009) it is reported that in Zanzibar, 970 students passed A-level examinations
in 2006, but only 53 of these passed mathematics, which leads to shortage of qualified
entrants to teacher training colleges. The resulting vicious cycle is shown in Figure 2.

A vicious cycle similar to that in Zanzibar is found in Uganda. For, despite a lowering of
admission requirement, Uganda found it difficult to fill places for secondary mathematics
and science teacher training in the national training colleges. This reflects the imbalance
in examination results. In the 2006 Uganda Advanced Certificate of Education (UACE)
examination, 25836 students passed history, but only 5776 passed mathematics. This
weakness in mathematics can be seen as a vicious cycle.

Research has shown a positive correlation between teachers’ content knowledge and their
students’ learning (Villegas-Reimers 2003, UIS 2006). Despite the importance of ade-
quate content knowledge, there are concerns that some teachers in Africa do not reach
the level of knowledge required. SACMEQ data show that in several countries the aver-
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Table 1: Percentage of women who hold a doctorate degree of the total doctorate holders in
mathematics: selected African countries

Country Proportion of women holding a
PhD in mathematics (%)

Algeria 16
Botswana 31
Burkina Faso* 0
Djibouti 100 (only doctorate holder is fe-

male)
Egypt 20
Malawi 25
Mali* 0
Mauritania* 0
Mauritius 17
Somalia 50 (1 out of 2)
South Africa 19
Sudan* 8.3
Swaziland 50 (3 out of 6)
Tanzania 2.6
Tunisia 18

* Author’s observations. Source: El Tom (2008); Gerdes (2007).

age teacher did not perform significantly better in reading and mathematics tests than the
highest performing sixth-grade students (UNESCO 2006).

• African women and mathematics

It is widely recognized that women are severely underrepresented in the fields of science
and engineering worldwide (UNESCO: The World’s Women 2010: Trends and Statis-
tics).

A significant feature of mathematics in Africa is that it is male-dominated. Based on
first-hand experience of mathematics in several African countries and the data compiled
by Gerdes (2007) about African doctorates in mathematics, I estimate the proportion of
women mathematicians in Africa to be, on average, less than 10%. Table 2 below shows
some relevant data.

The seriousness of this situation led the African Mathematics Millennium Science Initia-
tive (AMMSI) to organize a Symposium in 2008 on African Woman and Mathematics,
Maputo, Mozambique. Participants noted that the following factors, among others, influ-
enced the motivation of the girl child towards mathematics and led to lack of self-esteem
in the subject:

– Belief that mathematics was a tough subject.

– Lack of role models in the area of maths.

– Early pregnancies.
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– Cultural, economic and religious backgrounds that impeded the access of children
in general, and the girl child in particular, from accessing quality education.

Unless the representation of African females in mathematics is improved significantly,
the pool of potential mathematicians will remain restricted and, consequently, efforts at
capacity building in mathematics education and mathematical research will be hampered.

• Performance of students The performance of students in mathematics is described as poor
in many African countries. For example, in Kenya, the consistently poor performance in
mathematics and science subjects became a matter of serious concern in the late 1990s
and the Ministry of Education, Science and Technology felt that it had to intervene in
order to improve the situation. Thus, a project entitled ’Strengthening mathematics and
science in secondary education’ (SMASSE) was introduced in 1998 (Phase I) in cooper-
ation with the Japanese International Cooperation Agency (JICA).

Feeling that they share in common with Kenya the same problem of poor performance,
several countries joined SMASSE. In 2011, SMASSE membership included Angola,
Benin, Botswana, Burkina Faso, Burundi, Cameroon, Congo, Cote d’Ivoire, Egypt, Ethiopia,
Gambia, Ghana, Lesotho, Madagascar, Malawi, Mali, Mauritius, Mozambique, Namibia,
Niger, Nigeria, Rwanda, Senegal, Seychelles, Sierra Leone, South Africa, Sudan, Swazi-
land, Tanzania, Uganda, Zambia, and Zimbabwe (Mutahi 2011, cited in Onderi and
Malala).

More than a decade since the introduction of SMASSE, Onderi and Malala (January
2011) find that ” teaching in schools is examination oriented and rote learning is the or-
der of the day in most schools. Little attention is paid to individual differences, teaching
and effective evaluation methods and classroom management. This has been therefore
reflected in the declining performance in Mathematics and Sciences in the national ex-
amination, with only a few exceptions.

In Tanzania, only 24.3% passed B/Mathematics in Certificate of Secondary Education
Examinations (CSEE) in 2008 (compared with a pass rate of 46.3% biology and 53.6%
physics. The pass rates in CSEE 2009 for mathematics and science subjects were: Bio
43.2%; B/Maths 17.8%; Physics 55.5%; Chem. 57.1%. Interestingly, boys performed
better than girls in B/Mathematics, CSEE 2009: 10.6% girls passed vs. 23.9% boys
(Philemon (2010)).

In 1995, 15 ministries of education in southern and east Africa launched a consortium for
monitoring education quality, which is popularly known as SACMEQ. South Africa par-
ticipated in the second study conducted by SACMEQ. ”A random sample of 3 416 grade
6 learners from 169 South African public schools was tested in reading (literacy) and
mathematics (numeracy). The learners performed particularly poorly in mathematics”
(Moloi; undated).

It appears that education authorities in a few African countries have chosen to partici-
pate in international student achievement studies as a means of improving teaching and
learning in mathematics and science. Two highly regarded such studies are the Trends in
International Mathematics and Science Study (TIMSS), and the Programme for Interna-
tional Student Assessment (PISA). While TIMMS is conducted every four years, PISA
is conducted every three years.

16



Few African countries have so far participated in either PISA or TIMSS. Only two
African countries have ever participated in PISA during the period 2000-2012, namely
Mauritius (2009) and Tunisia (2000 (3) 2012). Participation of African countries in
TIMSS was 7 in 1999, 6 in 2003, 5 in 2007 and 7 in 2011 (2011 results will be released
in December 2012).

I present in Table 1 below the average scores for eighth-grade students in Singapore and
in participating African countries as well as the average international score in mathemat-
ics for 1999 (4) 2007.

The data show that students in all African countries scored below the international aver-
age and, moreover, the ranking of every African country, except Algeria, has deteriorated
over the study years.

If one assumes that participation in international assessments indicate that education au-
thorities in participating countries are seriously concerned about the quality of mathemat-
ics education in their respective countries and that they are exerting efforts to improve it,
then one might conclude that performance of students in mathematics in other African
countries is unlikely to be better than that of their counterparts in participating countries.

Table 2: Average mathematics scores for eighth-grade students in Singapore, participating
African countries and for all participating countries: 1999 (4) 2007*.

1999 2003 2007
Singapore 604 (1) 605 (1) 593 (3)
International average 487 467 500
Algeria 387 (39)
Botswana 366 (42) 364 (43)
Egypt 406 (36) 391 (38)
Ghana 276 (44) 309 (47)
Morocco 337 (37) 387 (40)
South Africa 275 (38) 264 (45)
Tunisia 448 (29) 410 (35)
Number of participating countries 38 48 48

* Ranking of a country is indicated in parentheses

• Language of instruction The language of instruction in many African countries is the
colonial language, especially at post-primary levels. However, it is widely believed
that the best medium for teaching a child is her/his mother tongue. Yet, as (UNESCO
1953) observes, ”it is not always possible to use the mother tongue in school, and, even
when possible, some [political, linguistic, educational, socio-cultural, economic, finan-
cial, practical] factors may impede or condition its use.”

The issue of teaching children mathematics in a language other than their mother-tongue
is widely discussed in extant literature due to the perceived gap in academic performance
between children with different proficiency level in the language of instruction (for ex-
ample, Cuevas (1984); Adler (1998); Abedi and Lord (2001); Howie (2003); Zakaria
and Abd Aziz (January 2011). The Standards for Educational and Psychological Testing
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underscored that for ”all test takers, any test that employs language is, in part, a measure
of their language skills” (American Educational Research Association [AERA], Amer-
ican Psychological Association [APA], & National Council on Measurement in Educa-
tion [NCME], 1999, p. 91). Thus, if certain students have not yet sufficiently acquired
language skills, they may not be able to adequately demonstrate their knowledge in a
content-based assessment (Abedi, et al. 2006). Clearly, the language of instruction plays
an important role in the performance of school children in mathematics.

3. Research in mathematics education in Africa
The discussion of the previous section demonstrate that mathematics education in Africa faces
many challenging problems. Measures and policies for improving the quality of mathematics
education in a country must be informed by research. It is of interest to inquire about the level
and foci of research in mathematics education in Africa. Resource constraints make it difficult
to undertake a comprehensive inquiry and I limit myself in what follows to an inquiry about the
level of research in mathematics education in selected African countries. In view of the vari-
ations among the selected countries, it is reasonable to assume that the findings apply to most
African countries. The level of research output in both mathematics and mathematics education
and mathematics in 20 African countries over the period 1980-2010. The regional distribution
of selected countries is as follows: 5 (East Africa), 3 (North Africa), 4 (Southern Africa) and
8 (West Africa). The countries show important variations in their level of development, scien-
tific and technological capacity, population size, and the size of their educational systems. As
such they may be considered to be representative of the whole continent. The data in the Ta-
ble show that the annual level of research output in mathematics education during the 31-year
period 1980-2010 in most African countries is negligible. For, on average, each country in the
Table, excluding South Africa, published about a single paper per a decade. If one considers
publications in mathematics, then a contrasting picture emerges. We find, after excluding the
four countries with more than 1000 publications during the period of the data (Algeria, Egypt,
Nigeria and South Africa), one finds that each of the remaining 16 countries published, on
average, about 5 papers every 2 years. What explains this contrasting situation? Significant
differences in research capacity or relative neglect of mathematics education, or both? I con-
clude this section by observing that the low level of research output in both disciplines (each
country in the Table averaged just under 19 publications per year during the 31-year period)
is perhaps an indication of the fact that mathematical research and mathematics education are
organically linked: a weakness in either will undermine the other.

4. Proposed research agenda in mathematics education in Africa
The proposed research agenda in mathematics education in Africa reflect largely the problems
presented in section 2 above. While the agenda are not meant to be comprehensive, I claim that
they are fundamental to any efforts towards improving the teaching and learning of mathematics
in African schools. In view of the vital role of the teacher in formal education, it is natural that
our first three proposed items concern the teacher.

4.1 Unqualified teachers

Many African countries face shortages of qualified math teachers, especially in secondary
school. While the obvious long-term solution is to increase the supply of trained teachers,
there is a considerable delay before such an increase has an impact. Indeed, most countries
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Table 3: Level of research output in mathematics education and mathematics in selected
African countries: 1980-2010.

Country Number of publications in
Mathematics education Mathematics

Algeria 2 1174
Benin 0 41
Burkina Faso 1 37
Equatorial Guinea 0 0
Egypt 8 3481
Ethiopia 1 78
Ghana 4 16
Cote d’Ivoire 0 5
Kenya 12 111
Malawi 1 14
Mali 1 7
Nigeria 10 596
Senegal 0 84
South Africa 165 4419
Sudan 4 56
Tanzania 2 47
Tunisia 5 1585
Uganda 4 29
Zambia 2 16
Zimbabwe 4 112
Total (20 countries) 226
Total (19 countries, excluding South Africa) 61

Source: Thomson Reuters Web of Science databases.
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have little option but to allow recruitment of unqualified teachers. What kind of in-service
training is needed to bring them to qualified status?

4.2 Qualified teachers (pre-service programmes)

How are present mathematics teachers being prepared? Is their subject knowledge adequate?
Is their pedagogical knowledge adequate? How closely should their mathematics curriculum
be aligned to the needs of the classroom (i.e. school mathematics curriculum)?

4.3 Qualified in-service teachers (continuous professional development)

Given the education and experience of qualified practicing teachers, what are appropriate pro-
grammes for their continuous professional development? How often should in-service pro-
grammes be offered? And where should they be offered? What modes of delivery are effective?

4.4 Mathematics curricula

The need for reform of mathematics curricula is predicated by, among other factors,

(a) Advances in mathematics (including, how mathematics interacts with other disciplines)

(b) Advances in mathematics education (e.g. learning theories)

(c) Advances in technology.

• To what extent are mathematics curricula in African education systems influenced by
such factors?

• What is the role of the teacher in curriculum reform?

• What are the differences between the intended, implemented and achieved curriculum?

• Does the secondary school mathematics curriculum address the needs of all students
adequately?

4.5 Gender

What explains the observation that in many African countries girls are less successful than boys
in science-based subjects and are less ”keen on” them? How to identify and nurture girls that
demonstrate ability in mathematics?

4.6 Language of instruction

I noted in section 2.1 above that the learning of mathematics requires a variety of linguistic
skills that second-language learners may not have mastered. Furthermore, special problems
of reliability and validity arise in assessing the mathematics achievement of students from a
language minority (Cuevas 1984).

• What is the student’s attitude towards the use of an official language as a medium of
instruction in learning mathematics?

• What is the teacher’s attitude towards the use of an official language as a medium of
instruction in teaching and learning mathematics?
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• Are there significant differences in the mathematics performance of official language
learners and proficient speakers of the official language?

It should be obvious from the foregoing that research problems in mathematics education are
typically multi-faceted and require an awareness of the complexity of the teaching and learning
of mathematics and the surrounding social context. In view of the responsibility of depart-
ments of mathematics for the promotion of mathematics in Africa (El Tom, 1984), it cannot
be overemphasized that mathematicians should strive to participate actively in this multidisci-
plinary activity. Indeed, in the context of Africa, mathematics education is too important to be
left for non-mathematicians.
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Mathematical Competitions for Gifted Students: Organization and
Training
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What are the competitions?

In addition to regular competitions, problem-solving sessions during a limited time, like na-
tional Olympiads or multiple-choice question exams, the World Federation of National Math-
ematics Competitions has formally defined competitions as including enrichment courses and
activities in mathematics, mathematics clubs or ”circles”, mathematics days, mathematics camps,
including live-in programs in which students solve open-ended or research-style problems over
a period of days, and other similar activities. These activities all have in common the values
of creativity, enrichment beyond the normal syllabus, opportunities for students to experience
problem solving situations and provision of challenge for the student. Competitions give stu-
dents the opportunity to be drawn by their own interest to experience some mathematics beyond
their normal classroom experience.

Short history

Among all the methods for identifying gifted students, mathematical competitions probably
has the longest and most successful history. The idea of competitions in mathematics goes
back to the Hungarian Etvs/Kurschak Contest, 1894. First after forty years later came the St.
Petersburg (1934) and Moscow (1935) Mathematical Olympiads. The competitions gained
a lot of popularity after the Second World War and resulted among other things in the first
International Mathematical Olympiads (1959). The success of the IMO was such that within
a few years the number of participating countries grew from 7 to 20. Today more than 100
countries from all continents participate in the IMO and those countries cover more than 85%
of the population of our Planet. Many more countries have their national competitions but can’t
afford sending a team to the IMO. This is a case with many developing countries.

The goals:

There are several goals of competitions in Mathematics.

1. An ultimate method for identifying gifted students,

2. To give students an opportunity to discover a latent talent in mathematics and provide
a stimulus for improving learning. Competitions provide opportunity for creativity and
independent thinking, as students often solve problems in unexpected and innovative
ways.

3. To provide resources for the classroom activities: competitions are an important part of
learning mathematics and a fun activity for students of all ages. The success of competi-
tions over the years, particularly the resurgence in the last 50 years, indicates that these
are events in which students enjoy mathematics. A long-term objective of the organizing
committee of a mathematical contest should definitely be rising of the national education
level.
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4. To highlight the importance of mathematics: competitions provide a focus on problem
solving, sometimes giving students an opportunity to be associated with a cutting edge
area of mathematics in which new methods may evolve and old methods be revived.

The practice.

Competitions come in a number of categories:

1. Local competitions on a school level, community level or town.

2. Provincial competitions within a country, which often are a part of more general national
Olympiad.

3. National mathematical Olympiads.

4. Regional Olympiads, like Baltic Way Mathematical Contest, Asian-Pacific Mathematical
Olympiad, Balkan Olympiad, Pan African Math Olympiad and so on.

5. International contests: IMO, Tournament of Towns, Kangaroo Mathematical Contest.

Other categories:

6. Competitions for girls only: China Girls’ Math Olympiad and European Girls’ Math
Olympiad.

7. Team competitions: Baltic Way Team Competition and even contests involving whole
classes, giving a very different feel to the competition.

8. Competitions for Primary schools and competitions for University students.

Competitions today

As we mentioned earlier, most countries have a permanent competitions activities although
very often those activities are limited to at most national level. Most of the time the reason
is lack of funds for travels and for training camps. However, the recent development shows
that more and more private companies (banks, investment corporations, telephone companies
and internet providers) discover a need of skilled, well-educated co-workers and are willing to
sponsor different elite-search events, one of which is obviously mathematical competitions.

The questions offered at the competitions are most of the time non-standard problems being
non-routine, provocative, fascinating, and challenging, often with elegant solutions. The topics
assume little prior knowledge beyond school curriculum and covers most of the school mathe-
matics: geometry, trigonometry, algebra, inequalities, number theory and combinatorics.

Organizing a competition:

1. An organizing committee. Preferably consisting of a group of University teachers and a
group of Secondary school teachers.
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2. Getting acquainted with the ”competitional mathematics”. This usually goes beyond the
secondary schools curriculum; demands some (accessible) knowledge and a good part
of creativity. There are hundreds of books and numerous websites with different kind
of competitions on different levels. Some help may be received from mathematicians
coming from countries with a long tradition in organizing olympiads.

3. Preparing a competition. Could be a competition covering only some schools of only one
city (the capital) or a number of cities and slowly, in the following years, extending it to
the whole country.

4. Getting in touch with at least one teacher of mathematics in each (if possible) school in
the country and prepare him/her for arranging a competition.

5. The first stage could be a multiple-choice questions. This is easily marked by the teacher
and the results are then send to the national committee. In smaller countries, like Sweden,
the papers are marked by the national committee during a weekend-long working session.

The best students may be then selected for the next stage. For example 20-50 students.
It may be a provincional competition or already a national final. It is important however
that at this stage the questions demand a full solution, not a multiple-choices alternatives.

6. Training of the most successful and promising students for further, international compe-
titions.

7. Participating in an International regional competition, for example PAMO, or creating
smaller events, like East African Mathematical Challenge. It doesn’t have to involve
travels (the students, up to 10 from each country, can work in their schools, but the pa-
pers may be marked by one ”hosting country”, which may vary from year to year.

This year PAMO will take place September 8-16 this year in Tunisia. The country reg-
istered that far are Mali, Tunisia, Burkina Faso, Algeria, Tanzania, Kenya, Gambia, Cte
d’Ivoire, Nigeria, Egypt and South Africa.

wwww.pamo− official.org

8. IMO - the queen of all competitions. In the latest one, in Argentina, July 2012, par-
ticipated 100 countries from all over the world, but only six from Africa (Uganda, Ivory
Coast, South Africa, Nigeria, Tunisia and Morocco). Next IMO will take place in Colom-
bia (2013) and then in Cape Town (2014), for the first time on the African soil.

www.imo− official.org

www.artofproblemsolving.com
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Estimation of IBNR Claims Reserves Using Linear Models
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Abstract

Stochastic models for triangular data are derived and applied to claims reserving data.
The standard actuarial technique, the chain ladder technique is given a sound statistical
foundation and considered as a linear model. The chain ladder technique and the two-
way analysis of variance are employed for purposes of estimating and predicting the IBNR
claims reserves.

1. Introduction
If claims runoff triangles are to be analysed statistically, as a data analysis exercise, it is desir-
able to express them as linear models. If the claims are analysed using a model for each row,
then it may be straightforward to write down a linear model. The use of linear models to anal-
yse the data by row can give useful insights into the nature of the data, but it is the linear model
which is close to the chain ladder technique that is of greatest interest to actuaries. This linear
model, whose connection with the chain ladder technique was first identified by Kremer[4] is
described in sections 3 and 4.

The data are assumed to be lognormally distributed and is first logged before a linear model is
applied. The transformation from the raw data to the logged data is, obviously, straightforward,
but the reverse transformation, once the analysis has been carried out, is not simple. This is
dealt with in section 5. The process is represented in Figure 1.

Figure 1:

Prediction from linear models when the data are lognormally distributed was first considered by
Finney [3]. Finney considered a sample of independently, identically distributed data, and the
theory was generalized to a sample of independently, but not necessarily identically distributed
data by Bradu and Mundlak [2]. Subsequent papers by Renshaw [5], Verrall [6], and Weke [8]
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have considered the properties of the estimators in more detail. The techniques outlined in this
paper have been implemented in GLIM (Baker and Nelder [1] and the results shown.

2. Linear Models
The linear model to be considered is

y = Xβ + ε (2.1)

where y is a data vector of length n, β is an n × p design matrix and ε is an error vector of
length n. The error vector ε is assumed to have mean zero and variance-covariance matrix Σ.

The minimum variance linear unbiased estimators of the parameters, β, are the weighted least-
squares estimators, β̂, where

β̂ =
(
X ′Σ−1X

)−1
X ′Σ−1y (2.2)

If the errors, ε, are assumed to be jointly normally distributed, then the estimators, β̂, are
also the maximum likelihood estimators. Since a logarithmic transformation will be applied
to the data, the reverse transformation to estimate actual claims will depend on the estimation
method being used. One estimator can be obtained by simply substituting the estimators into
the equations. This is used in the lemmas which show the similarity between the chain ladder
technique and a certain linear model. However, these estimators, and indeed the maximum
likelihood estimators, are biased, and it may be better to use unbiased estimators. If the errors
are assumed to be uncorrelated with equal variance then equation (2.1) simplifies to

β̂ = (X ′X)−1X ′y (2.3)

which is a form which will also be used.

The distributional properties of the maximum likelihood estimators, β̂, are well-known. As-
suming that the errors are independently, identically distributed with variance σ3,

β̂ ∼ N
(
β, σ2(X ′X)−1

)
(2.4)

3. The Chain Ladder Technique as a Linear Model
Kremer [4] showed that the chain ladder technique is very similar to a two-way analysis of
variance and investigated the properties of the estimators. This section describes the connection
between the actuarial chain ladder technique and the statistical analysis of variance method.
Assuming a triangular data set (without loss of generality) the cumulative claims data, to which
the chain ladder technique is applied, are

{Cij = i = 1 . . . , t; j = 1 . . . , t− i+ 1} (3.1)

The differenced data, to which the analysis of variance model is applied, are

{Zij : i = 1, . . . , t; j = 1 . . . , t− i+ 1} (3.2)

where
Zij = Cij − Ci,j−1, j ≥ 2
Zi,1 = Ci1

27



The chain ladder technique is based on the model

E[Cij] = λjCi,j−1; j = 2, . . . , t. (3.3)

The parameter λj is estimated by λ̂j , where

λ̂j =

i−j+1∑
i=1

Cij

i−j+1∑
i=1

Ci,j−1

(3.4)

The expected ultimate loss, E[Cij], is estimated by multiplying the latest loss, Ci,i−j+1, by the
appropriate estimated λ-values:

estimate of E[Cij] =

(
t∏

j=t−i+2

λ̂j

)
Ci,i−j+1 (3.5)

The chain ladder technique produces forecasts which have a row effect and a column effect.
The column effect is obviously due to the parameters {λj : j = 2, . . . , t}. There is also a row
effect since the estimates for each row depend not only on the parameters {λj : j = 2, . . . , t},
but also on the row being considered. The latest cumulative claims, Ci,t−i+1, can be considered
as the row effect. This leads to consideration of other models which have row and column
effects, in particular the two-way analysis of variance model. The connection is first made
with a multiplicative model (see [7]). This uses the non-cumulative data, Zij , and models them
according to:

EbZijc = UiSj (3.6)

where Ui is a parameter for row i, and Sj is a parameter for row j.

A multiplicative error structure is assumed and also

t∑
j=1

Sj = 1 (3.7)

In this model, Sj is the expected proportion of ultimate claims which occur in the jth develop-
ment year; and Ui is the expected total ultimate claim amount for business year i (neglecting
any tail factor). The estimates of Ui will be compared with the estimates of E[Cit] in equation
(3.5) and Sj and λj will be related to each other.

The analysis of variance estimators are based on the model (3.6):

EbZijc = UiSj

and the chain ladder technique is based on the model (3.3):

E[Cij] = λjCi,j−1; j = 2, . . . , t.

In terms of the models, ignoring for the moment the estimation of the parameters, this simply
represents a reparameterisation.
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Under the chain ladder model, the expected claim total for business year is

t∏
j=t−i+2

λjCi,t−i+1 (3.8)

and the expected claim amount in development year t− i+ 2 is

λt−i+2Ci,t−i+1 − Ci,t−i+1 (3.9)

The equivalent quantities under the multiplicative model (3.6) are

Ui (3.10)

and UiSt−i+2 (3.11)

Equating (3.8) and (3.9) with (3.10) and (3.11), respectively, gives

St−i+2 =
λt−i+2 − 1

t∏
j=t−i+2

λj

The expected claim amount for development year t− i+ 3 under each model is

λt−i+3λt−i+2λt−i+1 − λt−1+2Ci, t− i+ 1 (3.12)

and
UiSt−i+3 (3.13)

which gives

St−i+3 =
λt−i+3 − 1

t∏
j=t−i+3

λj

In general, the expected proportion of ultimate claims can be written in the form

Sj =
λj − 1
t∏
l=j

λl

(3.14)

Considering year of business t, the expected total claim amount under each model is[
t∏

j=2

λj

]
Ct1

and Ut.

The claim amount in development year 1, Ct1, is modeled by UtS1, and so it can be seen that

S1 =
1
t∏
l=j

λl

(3.15)
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To summarize, the chain ladder model (3.3) is equivalent to the multiplicative model given by
equation (3.6) with the following relationships between the parameters:

S1 =

(
t∏
l=2

λl

)−1

Sj =

(
t∏
l=2

λl

)−1

(λj − 1)

Ui = E(Cit).

Equations (3.4) and (3.5) give the estimates of {λj : j = 2, . . . , t} and E(Cit). Estimators of
{Si : i = 2, . . . , t} and {Uj : j = 2, . . . , t} can be obtained by applying a linear model to the
logged incremental claims data. Taking logs of both sides of equation (3.6), and assuming that
the incremental claims are positive, results into

E(Yij) = µ+ αi + βj (3.16)

where Yij = logZij denotes the cumulative claims in development year j in respect of accident
year i, and the errors now have an additive structure and are assumed to have mean zero. The
errors will be assumed to be identically distributed with variance σ2 , although this distribu-
tional assumption can be relaxed. Kremer [4] defines as the mean of the logUis and logSjs, so
that the restriction

t∑
i=1

αi =
t∑

j=1

βj = 0

is imposed.

An alternative assumption is that α1 = β1 = 0 . In this case

αi = logUi − logU1 (3.17)
βj = logSj − logS1 (3.18)
µ = logU1 + logS1 (3.19)

The latter set of assumptions are more appropriate for the more sophisticated techniques. How-
ever, prediction and estimation of the claims is unaffected by the choice of the assumptions.

The assumption that error terms, εij , are independently, identically distributed with variance
σ2 will be used, so that the estimators are given by equation (2.3) Now equation (3.16) can be
written in the form of equation (2.1). Suppose, for example, there are three years of data then

y11

y12

y21

y13

y22

y31

 =


1 0 0 0 0
1 0 0 1 0
1 1 0 0 0
1 0 0 0 1
1 1 0 1 0
1 0 1 0 0




µ
α2

α3

β2

β3

+


ε11

ε12

ε21

ε13

ε22

ε31

 (3.20)

clearly gives the form of the parameter vector and the design matrix.

The following lemma, due to Kremer [4], gives the normal equations for the chain ladder linear
model.
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Lemma 3.1 For n years data, the best linear unbiased estimators of µ, αi, βj are the solutions
of

α̂i =
1

t− i+ 1

∑(
Yij −

1

t− j + 1

t−j+1∑
l=1

(Y1j − α̂l)

)
; i = 2, . . . , t (3.21)

β̂j =
1

t− j + 1

∑(
Yij −

1

t− j + 1

t−j+1∑
l=1

(Y1j − β̂l)

)
; j = 2, . . . , t (3.22)

µ̂ =
1

t(t+ 1)

t∑
i=1

t−i+1∑
j=1

(Yij − α̂i − β̂j). (3.23)

Proof:
The normal equations, (2.3), are

(t− i+ 1)µ̂+ (t− i+ 1)α̂i +
t−i+1∑
j=2

β̂j =
t−u+1∑
j=1

Yij; i = 2, . . . , t (3.24)

(t− i+ 1)µ̂+
t−i+1∑
j=2

α̂i + (t− j + 1)β̂j =
t−u+1∑
j=1

Yij; i = 2, . . . , t (3.25)

t(t+ 1)

2
µ̂+

t∑
i=2

(t− i+ 1)α̂i +
t∑

j=2

(t− j + 1)β̂j =
t∑
i=1

t−i+1∑
j=1

Yij (3.26)

Noting that α̂1 = β̂1 = 0 , equations (3.26) and (3.23) are equivalent. Also equations (3.24)
and (3.25) can be written as

α̂i =
1

t− i+ 1

t−i+1∑
j=1

(Yij − β̂j)− µ̂ (3.27)

β̂i =
1

t− i+ 1

t−i+1∑
i=1

(Yij − β̂j)− µ̂ (3.28)

Substituting equation (3.27) into equation (3.28) and vice versa gives equations (3.21) and
(3.22). �

4. Relationship between the Estimators of the Linear Model and the Chain
Ladder Model
The previous section derived the relationship between the parameters of the multiplicative
model and the chain ladder technique. The parameters are estimated in different ways ac-
cording to which method is used, and this section is devoted to examining the relationships
between the estimators of the parameters.

This section contains two lemmas. The first deals with the estimation of Sj and Ui - the param-
eters of the multiplicative model using the chain ladder technique. The second lemma derives
the estimators of Sj and Ui using the two-way analysis of variance model. The two sets of es-
timators are then shown to be similar. Thus, it will be shown that the chain ladder method will
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produce results which are similar to those produced by the analysis of variance method. The
latter has been studied in great depth in statistical literature and the method has the advantage
of a great deal of theoretical background. The theory of analysis of variance will be applied to
insurance data, bearing in mind that the main method in use in the industry is the chain ladder
method.

Lemma 4.2 If

Sj =
λj − 1
t∏
l=j

λl

; j = 2, . . . , t (4.1)

and λj is estimated by λ̃j , where

λ̃j =

t−j+1∑
i=1

Cij

t−j+1∑
i=1

Cij−1

(4.2)

then the estimators of Sj , S̃j , satisfy the relationship

S̃j =

t−j+1∑
i=1

Y ij

t−j+1∑
i=1

Ci,t−i+1

/(
1−

t∑
l=t−i+2

S̃l

) (4.3)

Also, the estimate of Ui is Ũi, where

Ũi =

t−i+1∑
j=1

Zij

t−i+1∑
j=1

S̃j

. (4.4)

Proof:
Equations (4.1) and (4.2) imply that

S̃j =
λ̃j − 1
t∏
l=j

λ̃l

=

t−j+1∑
i=1

Cij −
t−j+1∑
i=1

Cij−1

t−j+1∑
i=1

Cij

t∏
l=1

λ̃l

(4.5)

Now, it can be shown by induction that (see [4])

t−j+1∑
i=1

Cij =

t−j+1∑
i=1

Ci,t−i+1

/
t−i+1∏
l=j+1

λ̃l (4.6)
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Substituting equation (4.6) into equation (4.5) gives

S̃j =

t−j+1∑
i=1

Zij(
t−j+1∑
i=1

Ci,t−i+1

/
t−i+1∏
l=j+1

λ̃l

)
t∏

l=j+1

λ̃l

=

t−j+1∑
i=1

Zij

t−j+1∑
i=1

Ci,t−i+1

t∏
l=t−i+2

λ̃l

(4.7)

It can also be shown by induction that[
t∏
l=k

λl

]−1

= 1−
t∑
l=k

Sl.

This is true for k = 2 by virtue of (3.15) and the relationship

1−
t∑
l=2

Sl = S1.

Suppose it is true for k . Then for k + 1:

1−
t∑

l=k+1

Sl = 1−
t∑
l=k

Sl + Sk

=

[
t∏
l=k

λl

]−1

+
λk − 1
t∏
l=k

λl

=

[
t∏

l=k+1

λl

]−1

(4.8)

Hence, by induction, the result holds. Substituting this result into (4.7) gives

S̃j =

t−j+1∑
i=1

Zij

t−j+1∑
i=1

Ci,t−i+1

/(
1−

t∑
l=t−i+2

S̃l

) (4.9)

as required.

Now, since Ci,t−i+1 =
t−i+1∑
j=1

Zij

and
t∏

j=t−1+2

λ̃j =

(
1−

t∑
j=t−i+2

S̃j

)−1

the estimate of total expected outstanding claims for

row i,

Ci,t−i+1

t∏
j=t−i+2

λ̃j
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can be written as

t−i+1∑
j=1

Zij

1−
t∑

j=t−i+2

S̃j

.

This can be written as
t−i+1∑
j=1

Zij

/
t−i+1∑
j=1

S̃j (4.10)

since 1−
t∑

j=t−i+2

S̃j = 1−
t−i+1∑
j=i

S̃j . �

Lemma 4.3 Using the estimation method of Lemma 3.1, an estimate of total expected claims
for accident year i, Ûi, is given by

Ûi =

[
t−i+1∏
j=1

Zij
wj

] 1
t−i+1

·
t−i+1∑
j=1

wj (4.11)

where

wj =

[
t−i+1∏
j=1

Zij

] 1
t−j+1

t−j+1∏
i=1

(
t−i+1∏
l=1

Zil

) 1
t−i+1

/(
t−i+1∏
l=

wl

) 1
t−i+1


1

t−j+1

(4.12)

Further,

Ûi =

[
t−i+1∏
j=1

Zij

] 1
t−i+1

[
t−i+1∏
j=1

Ŝj

] 1
t−i+1

(4.13)

This lemma can be used to show that the estimates of expected total outstanding claims for each
row have similar forms using each method, and can be expected to behave in similar ways. The
estimate of Ui is obtained by “hatting” the parameters in the identity

Ui = eαieµ
t∑

j=1

eβj

which is derived in the proof of this lemma. The resulting estimate of Ui is not the maxi-
mum likelihood estimate, neither is it unbiased, but it does serve the purpose of illustrating the
similarity between the chain ladder technique and the two-way analysis of variance.
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Proof: The equations (3.17) to (3.19) imply that

eαi =
Ui
U1

(4.14)

eβj =
Sj
S1

(4.15)

and
eµ = U1S1. (4.16)

Since
t∑

j=1

Sj = 1, S1 =

(
t∑

j=1

eβj

)−1

.

This, together with equations (4.14) and (4.16) gives

Ui = eαieµ
t∑

j=1

eβj (4.17)

Now let wj = eβ̂j ; then equation (3.22) is equivalent to equation (4.12).

The best linear unbiased estimate of αi + µ is obtained from equation (3.27). Substituting the
estimates of αi + µ and βj into equation (4.17) gives the estimate of Ui in equation (4.11).

Now, equation (4.15) implies that Ŝj = wj

/
t∑
l=1

wl and so equations (4.11) and (4.12) can be

written as

Ûi =

[
t−i+1∏
j=1

Zij

] 1
t−i+1

[
t−i+1∏
j=1

Ẑj

] 1
t−i+1

and

Ŝj =

[
t−i+1∏
j=1

Zij

] 1
t−j+1

t−j+1∏
i=1

(
t−i+1∏
l=1

Zil

) 1
t−i+1

/(
t−i+1∏
l=

Ŝl

) 1
t−i+1


1

t−j+1

(4.18)

Now, if all the geometric means are replaced by arithmetic means in equation (4.18), the re-
currence relation for the estimators of becomes the same as that in Lemma 4.2. Similarly the
estimators of Ui are equivalent if geometric means are replaced by arithmetic means. Thus
the two estimation methods, the chain ladder method and the linear model, will produce sim-
ilar results. The structure of the models is identical and the only difference is the estimation
technique. It can be argued that the linear model estimates are best in a statistical sense, but it
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should be emphasized that in using the linear model instead of the crude chain ladder technique,
there are no radical changes.

5. Unbiased Estimation of Reserves and Variances of Reserves
It has been shown that the chain ladder can be considered as a two-way analysis of variance.
This linear model, and other linear models, can be used effectively for analyzing claims data
and producing estimates of expected total outstanding claims for each year of business. The
methods have in common the assumption that the data is lognormally distributed, and the linear
models are therefore applied to the logged incremental claims rather than the raw incremental
claims data. The problem therefore arises of reversing the log transformation to produce esti-
mates on the original scale. It is this problem which is addressed in this section; in particular the
unbiasedness of the estimates is considered. It is important that estimates should be unbiased
in order that they are aiming at the correct target and do not yield values which consistently
under- or over-estimate. It is also important to consider unbiased estimation of the standard
error of the estimates of expected total outstanding claims, in order that some measure of the
order of the errors can be attached to the predictions. The procedure for analyzing claims data
using loglinear models is illustrated by Figure 1.

The final stage in this procedure reversing the log transformation is considered here and
unbiased estimates of total outstanding claims are derived. Unbiased estimates of the variances
of these estimates are derived. The theory is applied to claims data (obtained from [7]) using the
analysis of variance linear model and the unbiased estimates compared with some alternatives.
In order to make the analysis more easily assimilable, a sample of independently, identically
distributed observations is considered first. The theory is then extended to the more general
case of independent, but not necessarily identically distributed observations. It is the more
general theory which is applicable to claims data.

5.1 Unbiased Estimates of Total Outstanding Claims

The purpose of the analysis of the claims data is to produce estimates of the expected total
outstanding claims, Ri, for each year of business, and the total outstanding claims, R, for the
whole triangle.

An unbiased estimate of Ri is R̂i, where

R̂i =
t∑

j=t−i+2

θ̂ij. (5.1)

and
θ̂ij = exp(X ijβ̂ + σ̂2) (5.2)

is the maximum likelihood estimate of the expected value of the lognormally distributed data,
θij , which is related to the mean and variance of the normally distributed data by

θij = exp(X ijβ + σ2/2).

The variance of R̂i can be calculated from

Var(R̂i) = Var

[
t∑

j=t−i+2

θ̂ij

]
=

t∑
j=t−i+2

[
Var(θ̂ij) + 2

t∑
k=j+1

Cov(θ̂ij, θ̂ik)

]
. (5.3)
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By extending the limits of the summations, the total outstanding claims for the whole triangle
can also be considered.

5.2 Prediction Intervals

Having found an unbiased estimate of total outstanding claims, it is now possible to produce a
prediction interval for total outstanding claims. The purpose of the analysis so far has been to
produce an estimate of total outstanding claims and an estimate of the variance of this estimate.
It is often desirable to find a safe value which is unlikely to be exceeded by the total actual
claims.

Let R = total outstanding claims for the whole triangle, and
R̂ be an unbiased estimate of E(R).

Suppose that a (1− α)× 100% upper confidence bound on total claims, R, is required, then it
can be found from

R̂ + Za/2

√
Var(R) + Var(R̂) (5.4)

where
√

Var(R) + Var(R̂) is the root mean square error of prediction, and an unbiased estimate
is used.

6. Numerical Example
This example illustrates and compares the two methods of claims reserving considered in this
paper: the chain ladder method and the two-way analysis of variance. For the analysis of
variance model, both the unbiased and maximum likelihood estimates of outstanding claims
are given. The data used is that from [7]. The estimates of the parameters in the analysis of
variance model and their standard errors are shown in Table 1.

The standard errors are obtained from the estimates of the estimates of the variance-covariance
matrix of the parameter estimates:

(X ′X)−1Xσ̂2

where is the estimate of the residual variance. For example, . Since the data is in the form of a
triangle (there are the same number of rows and columns) and the matrix X is based solely on
the design matrix, the standard errors are the same for each row and column parameter.

The row parameters are contained within a much smaller range than the column parameters:
(0.149, 0.673) compared with (-1.393, 0.965). It is to be expected that the row parameters
should be contained within a fairly small range, since the rows are expected to be similar. Any
pattern in the row parameters gives an insight into, and depends upon, the particular claims
experience. It is thus quite common to observe that the row parameters lie in a small range, but
not typical that they follow a trend.

The fitted values for the analysis of variance model are shown in Table 2. These are unbiased
estimates and are shown with the actual observations for comparison. In this table, the top
entries are the estimates and those underneath are the actual observations.

Of most interest to practitioners are the predicted outstanding claims for each year of business,
which are the row totals of predicted values. Table 3 shows the maximum likelihood predictions
of the outstanding claims in the lower triangle, and Table 4 shows the unbiased predictions.
The method does not produce any predictions for the first row, and each row contains one more
predicted value.
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Table 3: Maximum likelihood predictions of outstanding claims
101269

357398 93599

217465 319835 83761

335047 243001 357392 93597

386433 345088 250283 368102 96402

617309 418743 373941 271209 398880 104462

1206369 674243 457364 408430 296223 435668 114097

1026594 1053911 589034 399564 356813 258787 380610 99678

888831 913640 937951 524224 355600 317554 230313 338732 88710

Table 4: Unbiased predictions of outstanding claims
96238

350362 88841

215218 313105 79394

332848 240075 349268 88564

384305 342028 246696 358900 91006

613257 415031 369373 266419 387593 98281

1193906 666126 450811 401216 289387 421005 106752

1006382 1031734 575643 389575 346716 250077 363813 92248

844677 867203 889047 496032 335695 298762 215487 313486 79483
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Table 1: Estimates of the row and column and their standard errors
Estimate Standard Error

Overall mean 6.106 0.165
Row parameters 0.194 0.161

0.149 0.168
0.153 0.176
0.299 0.186
0.412 0.198
0.508 0.214
0.673 0.239
0.495 0.281
0.602 0.379

Column parameters 0.911 0.161
0.939 0.168
0.965 0.176
0.383 0.186
-0.005 0.198
-0.118 0.214
-0.439 0.239
-0.054 0.281
-1.393 0.379

It can be seen that the maximum likelihood estimates are all higher than the unbiased estimates,
as was to be expected.

The total predicted outstanding claims for each year of business (the row totals of the pre-
dicted outstanding claims) are shown in Table 5. There are three estimates given, the maximum
likelihood and unbiased estimates from the analysis of variance model, and the chain ladder
estimate.

It can be seen that the maximum likelihood estimates differ most significantly from the unbi-
ased estimates in the early and late rows. The estimates for the middle rows are the closest
together, which is where the number of observations are used in the estimation is the greatest.
The maximum likelihood estimate is asymptotically unbiased, and the greater the number of
observations used to estimate the parameters, the closer are the two. The chain ladder estimates
are sometimes higher and sometimes lower than the analysis of variance estimates. There is
nothing significant that can be inferred from the differences. This confirms that the crude chain
ladder method is a reasonable rough and ready method for calculating outstanding claims, al-
though the more proper method, statistically, is the analysis of variance method (using unbiased
estimation).

The total predicted outstanding claims are:

Analysis of Maximum Likelihood 18186154
Variance Unbiased 17652064

Chain Ladder 18619916
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Table 2: Fitted values and the actual observations

286170 711785 731359 750301 418911 283724 252756 182559 266237 67948
357848 766940 610542 482940 527326 574398 146342 139950 227229 67948

410587 1021245 1049329 1076506 601040 407078 362646 261930 381987
352118 884021 933894 1183289 445745 320996 527804 266172 425046

379337 943516 969461 994572 555294 376094 335044 241994
290507 1001799 926219 1016654 750816 146923 495992 280405

339233 843767 866971 889425 496588 336334 299624
310608 1108250 776189 1562400 272482 352053 206286

378676 941872 967773 992840 554327 375439
443160 693190 991983 769488 504851 470639

389421 968599 995234 1021012 570056
396132 937085 847498 805037 705960

420963 1047052 1075844 1103710
440832 847631 1131398 1063269

457887 1138894 1170213
359480 1061648 1443370

396651 986582
376686 986608

344014
344014

Table 6 below shows the unbiased estimates of the total outstanding claims for each year of
business, the standard errors of these estimates and the root mean square error of prediction.
This table can be used in setting safe reserves, and gives an idea of the likely variation of
outstanding claims.

The unbiased estimate of total outstanding claims is 17652064 and the root mean square error
of prediction is 2759258. Thus a 95% upper bound on total outstanding claims is

17652064 + 1.645× 2759258 = 22191043.

This is a safe reserve for this triangle according to the chain ladder linear model using unbiased
estimation.
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Table 5: Total predicted outstanding claims
Analysis of Variance

Row Maximum Likelihood Unbiased Chain Ladder
2 101269 96238 94630
3 450997 439203 464668
4 621061 607717 702101
5 1029037 1010755 965576
6 1446307 1422934 1412202
7 2184544 2149953 2176089
8 3592393 4520202 3897142
9 4164990 4056189 4289473

10 4595556 4339873 4618035

Table 6: Unbiased estimates, standard errors and root MSE for each year
Unbiased Standard Mean Square Error
Estimate Error of prediction
96238 35105 47202
439203 108804 163217
607717 127616 182847
1010755 195739 269224
1422934 273082 357593
2149953 429669 538533
3529202 775256 942851
4056189 1052049 1197009
4339873 1534943 1631306
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7. Conclusion
In conclusion, some practical aspects of claims reserving have been considered. These are the
stability of the estimation and predictions, the use of the predictions, their standard errors and
the safe reserves in practice. The connection between the linear model and the chain ladder
technique has been outlined.
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Abstract

This paper examined the heat transfer characteristic of a steady state convecting and ra-
diating two step exothermic reactive slab of combustible materials, taking the diffusion of
the reactant into account and assuming a variable (temperature dependent) pre-exponential
factor. The nonlinear differential equation governing the reaction-diffusion problem is ob-
tained and tackled numerically using Runge-Kutta- Fehlberg method with shooting tech-
nique. The effects of various embedded thermophysical parameters on the temperature
field are presented graphically and discussed quantitatively.

Keywords: Rectangular slab; Two steps exothermic reaction; Convective heat loss,
Radiative heat loss; Hermite-Pad approximants

1. Introduction
Heat transfer in a reactive slab of combustible materials due to exothermic chemical reaction
plays a significant role in improving the design and operation of many industrial and engineer-
ing devices and find applications in power production, jet and rocket propulsion, fire prevention
and safety, pollution control, material processing industries and so on [1–3]. For instance, solid
propellants used in rocket vehicles are capable of experiencing exothermic reactions without
the addition of any other reactants. The theory of heat transfer in reactive materials has long
been a fundamental topic in the field of combustion. The chemical reaction may be modelled
by considering either a single step or multi step reaction kinetics. For instance catalytic con-
verter used in an automobile’s exhaust system provides a platform for a two step exothermic
chemical reaction where unburned hydrocarbons completely combust. This helps to reduce the
emissions of toxic car pollutant such as carbon monoxide (CO) into the environment. The main
chemical reaction schemes in an autocatalytic converter are [4],

2NO =⇒ N2 +O2 or 2NO2 =⇒ N2 + 2O2 (Reduction process)
2CO +O2 =⇒ 2CO2 (Oxidation process).

Similarly, the combustion taking place within k-fluid is treated as a two step irreversible chem-
ical reaction of methane oxidation as follows [5]:

CH4 + 1.5(O2 + 3.76N2) = CO + 2H2O + 5.6N2

CO + 0.5(O2 + 3.76N2) = CO2 + 1.88N2.

The vast majority of studies on chemically reactive materials have been concerned with homo-
geneous boundary conditions ranging from the infinite Biot number case [6] (Frank-Kamenetskii
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conditions) to a range of Biot numbers [7] (Semenov conditions). Mathematical models of the
problem relating to exothermic reaction in a reactive slab may be extremely stiff owing to the
temperature dependence of the chemical reactions. Moreover, the differential equation for the
temperature distribution in a convectiveradiative reactive slab with temperature dependent pre-
exponential factor is highly nonlinear and does not admit an exact analytical solution [8]. Con-
sequently, the equation has been solved either numerically or using a variety of approximate
semi-analytical methods [9–11]. The preceding literature clearly shows the work on reacting
slab has been confined to convective surface heat loss. No attempt has been made to study
the combined effects of convective and radiative heat losses at the slab surface despite its rele-
vance in various technological applications such as aerothermodynamic heating of spaceships
and satellites, nuclear reactor thermohydraulics and glass manufacturing. Thermal radiation is
characteristic of any material system at temperatures above the absolute zero and becomes an
important form of heat transfer in devices that operate at high-temperatures. Radiation is the
dominant form of heat transfer in applications such as furnaces, boilers, and other combustion
systems.

The present investigation aims to extend the recent work of Makinde [11, 12] to include com-
bined effects of convective and radiative heat losses on a slab of combustible material with
internal heat generation due to a two step exothermic reaction. It is hoped that the results ob-
tained will not only provide useful information for applications, but also serve as a complement
to the previous studies.

2. Mathematical Model
Let us consider the dynamical thermal behaviour of a rectangular slab of combustible materi-
als with internal heat generation due to a two step exothermic chemical reaction, taking into
account the diffusion of the reactant and the temperature dependent variable pre-exponential
factor. The geometry of the problem is depicted in Fig. 1. It is assumed that the slab surface is
subjected to both convective and radiative heat losses to the environment.

Figure 1: Sketch of the physical model.

The one-dimensional heat balance equation in the original variables together with the boundary
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conditions can be written as [1, 3, 10, 11]:

k
d2T

dȳ2
+ Q1C1A1

(
KT

νg

)m
e
E1
RT +Q2C2A2

(
KT

νg

)m
e
E2
RT − εσ[T − T 4

∞] = 0, (2.1)

k
dT

dȳ
(0) = h1[T (0)− T∞], k

dT

dȳ
= −h2[T (a)− T∞], (2.2)

where T is the absolute temperature, T∞ is the ambient temperature, h1 is convective the heat
transfer coefficient at the lower surface, h2 is convective the heat transfer coefficient at the
upper surface, k is the thermal conductivity of the material, ε is the slab surface emissivity, σ is
the StefanBoltzmann constant; Q1 is the first step heat of reaction, Q2 is the second step heat of
reaction, A1 is the first step reaction rate constant, A2 is the second step reaction rate constant,
E1 is the first step reaction activation energy, E2 is the second step reaction activation energy,
ρ is the density, R is the universal gas constant, C1 is the first step reactant species initial
concentration, C2 is the second step reactant species initial concentration, g is the Plancks
number, K is the Boltzmanns constant, ν is vibration frequency, a is the slab half width, ȳ is
distance measured in the normal direction to the plane cp is the specific heat at constant pressure
and m is the numerical exponent such that m = {−2, 0, 1

2
} represent numerical exponent

for Sensitised, Arrhenius and Bimolecular kinetics respectively [1, 3, 9–11]. The following
dimensionless variables are introduced into Eqs. (2.1) - (2.3):

θ =
E1(T − T∞)

RT 2
∞

, γ =
RT∞
E1

, y =
ȳ

a
, β =

Q2C2A2

Q1C1A1

e
E1−E2
RT∞ , r =

E2

E1

, (2.3)

Bi1 =
ha

k
, Bi2 =

ha

k
, λ =

E1a
2Q1C1A1

kRT 2
∞

[
KT∞
νg

]m
e−

E1
RT∞ , Nr =

εσaE1T
3
∞

kR
,

and we obtain the dimensionless governing equation as

d2θ

dy2
+ λ(1 + γθ)m

[
e(

θ
1+γθ ) + βe(

rθ
1+γθ )

]
−Nr

[
(γθ + 1)4 − 1

]
= 0 (2.4)

with
dθ

dy
(0) = Bi1θ(0),

dθ

dy
(1) = −Bi2θ(1) (2.5)

where λ, γ, β, r,Nr,Bi1, Bi2, represent the Frank-Kamenetskii parameter, activation energy
parameter, two step exothermic reaction parameter, activation energy ratio parameter, ther-
mal radiation parameter, the Biot numbers for the slab lower and upper surfaces respectively.
Equations (2.4) and (2.5) represent a nonlinear boundary value problem. This nonlinear na-
ture precludes its exact solution, using Runge-Kutta-Fehlberg method with shooting technique,
the problem is tackled numerically and the slab surface heat transfer rate Nu = −θ′(1) is
determined.

3. Results and Discussion
We have assigned numerical values to the parameters encountered in the problem in order to
get a clear insight into the thermal development in the system. It is very important to note that
β = 0 corresponds to a one step chemical reaction case; an increase in the value β > 0 signifies
an increase in the two step chemical reaction activities in the system.
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Table 1: Computation showing the critical values of the reaction rate parameter, Bi1 = 1.
Nr Bi2 β r m γ Nu λc
1 1 0.1 0.1 0.5 0.1 1.0825 0.8179
5 1 0.1 0.1 0.5 0.1 1.1927 1.5468
10 1 0.1 0.1 0.5 0.1 1.2486 2.4632
1 5 0.1 0.1 0.5 0.1 2.3721 1.3129
1 100 0.1 0.1 0.5 0.1 3.0569 1.6614
1 1 0 0.1 0.5 0.1 1.0358 0.8476
1 1 1 0.1 0.5 0.1 1.3910 0.6415
1 1 0.1 1 0.5 0.1 1.0421 0.7706
1 1 0.1 2 0.5 0.1 0.8331 0.6669
1 1 0.1 0.1 0 0.1 1.1662 0.8713
1 1 0.1 0.1 −2 0.1 1.7903 1.1941
1 1 0.1 0.1 0.5 0.2 4.2475 1.3531
1 1 0.1 0.1 0.5 0.4 1.4386 2.6350

Table 1, illustrates the variation in the values of thermal criticality conditions (λc) for differ-
ent combination of embedded parameters. The magnitude of thermal criticality decreases with
increasing values of two step reaction rate parameter β > 0 and the activation energies ratio pa-
rameter r > 0. This implies that thermal runaway is enhanced by two step exothermic reaction
as well as increasing second step activation energy. At very large activation energy (γ = 0),
thermal criticality is independent of the type of reaction as shown in Eq. (2.4). It is interesting
to note from the table (1) that thermal runaway will occur faster in bimolecular reaction than
in Arrhenius and sensitized reactions. This is reflected in table 1 with lower criticality value
for bimolecular reaction. The magnitude of thermal criticality increases with an increase in the
Biot number and thermal radiation parameter, thus preventing the early development of thermal
runaway and enhancing thermal stability of the system. In figures 2 - 4, we observed that the
slab temperature generally increases with increasing values of Frank-Kamenetskii parameter
(λ), two step reaction parameter (β) and the activation energy ratio parameter. This can be
attributed to an increase in the rate of internal heat generation due to chemical kinetics in the
system. Moreover, it is noteworthy that the slab temperature decreases with increasing convec-
tive and radiative heat loss as illustrated in figures 5 and 6. Figures 7-9 represent the variation
of slab surface heat transfer rate Nu = −θ′(1) with respect to Frank-Kamenetskii parameter
(λ) for different parameter values. In particular, for a given set of parameters value, a thermal
critical value λc exist such that the thermal system has real solution for 0 ≤ λ < λc. When
λc < λ the system has no real solution nd displays a classical form indicating thermal run-
away. It is interesting to note that the heat transfer rate in the slab is enhanced with increasing
radiative and convective heat loss.
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Figure 2: Effects of increasing reaction rate on temperature profiles.

Figure 3: Effects of increasing two stjpg reaction parameter on temperature profiles
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Figure 4: Effects of increasing activation energy ratio parameter on temperature profiles

Figure 5: Effects of increasing radiative heat loss on temperature profiles
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Figure 6: Effects of asymmetrical convective heat loss on temperature profiles

Figure 7: Effects of increasing radiative heat loss on critical value of λc
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Figure 8: Effects of increasing convective heat loss on critical value of λc

Figure 9: Effects of two step reaction parameter on critical value of lambdac
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4. Conclusions
Heat transfer analysis in a convecting and radiating two step reactive slab is presented. The
model nonlinear governing differential equation is tackled numerically using Runge-Kutta-
Fehlberg method with shooting iteration technique. Our results reveal among others, that the
thermal runaway in the system is enhanced by two step exothermic reaction, while an increase
in the convective and radiative heat loss stabilizes the system.
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Abstract

We study the non-definite Sturm-Liouville problem with a weight function having two
turning points on a finite closed interval. We find the piecewise smooth solution over the
closed interval and give the dispersion relation for the eigenvalues. The dispersion relation
is then solved numerically using Maple software in order to calculate some eigenvalues.
We also find the piecewise smooth eigenfunctions associated with each of the eigenvalues.
Moreover, we present graphs of some of the eigenfunctions to check oscillation numbers
of the eigenvalues associated with these functions. Finally, we point out a number of
interesting open questions for further research

1. Introduction
1.1 General Sturm-Liouville Theory

The Sturm-Liouville equation, named after Jacques Charles François Sturm (1803-1855) and
Joseph Liouville (1809-1882) is a real second-order linear differential equation of the form

− (p (x)u′ (x))
′
+ q (x)u (x) = λw (x)u (x) , (1.1)

on the bounded or unbounded interval (α, β). The endpoints α and β can be finite or infinite,
and u is a function of the independent variable x. The parameter λ (generally complex) for
which the equation (1.1) has a solution u (non-identically zero) in (α, β) is called an eigenvalue
and the corresponding function u is called an eigenfunction. In the case of a regular Sturm-
Liouville problem, u is required to satisfy the boundary conditions

α1u (α) + α2p (α)u′ (α) = 0, (1.2)

β1u (β) + β2p (β)u′ (β) = 0, (1.3)

α1 and α2 are not both zero, similarly for β1 and β2. The functions p, q, w : [α, β] → <, have
the following properties:

p(x) > 0, q, w,
1

p
∈ L(α, β) and

β∫
α

|w(s)|ds > 0.

Suppose that w(x) > 0, p(x), p′(x), q(x), and w(x) are continuous functions over the finite
interval [α, β], then the eigenvalues λ1, λ2, λ3, . . . of problem (1.1),(1.2),(1.3) are real and can
be ordered such that λ1 < λ2 < λ3 < . . . < λn < . . . <∞. Also,corresponding to each eigen-
value λn is a unique (up to a normalization constant) eigenfunction un(x), which has exactly n
zeros in (α, β). The eigenfunction un(x) is called the nth fundamental solution satisfying the
regular Sturm-Liouville problem (1.1)-(1.2)-(1.3).
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Much has been written on Sturm-Liouville theory since the work of Sturm and Liouville in the
19th century. In the period 1836−38, Sturm and Liouville published a remarkable set of papers
which initiated the subject, which led to what is now called the qualitative theory of differential
equations, (see [3]). In the same book, the authors point out that, Sturm was mainly concerned
with the qualitative behavior of the eigenfunctions, while Liouville was more concerned with
the eigenfunction expansions.

This theory is important in applied mathematics, where SturmLiouville problems occur very
commonly. The differential equations considered here arise directly as mathematical models of
motion according to Newton’s law, but more often as a result of using the method of separation
of variables to solve the classical partial differential equations of physics, such as Laplace’s
equation, the heat equation, and the wave equation. Sturm-Liouville problems have been dis-
covered as describing the mathematics underlying a variety of physical phenomena. Thus they
have been applied in various fields of study like Engineering and Physics.

1.2 General Non-Definite Sturm-Liouville Problems

Let (1.1) be written as

Tu = λwu, where T = − d

dx
(p(x)

d

dx
) + q(x). (1.4)

Then the problem (1.4)-(1.2)-(1.3) is called left-definite if the form (Tu,u) is definite on the
domain of definition for each u 6= 0. The problem is called right-definite if the form (wu,u)
is definite. In the case that neither (Tu,u) nor (wu,u) is definite, then the problem is called
non-definite. Here, (,) denotes the inner product of the usual Hilbert space L2[α, β].

If we consider problem (1.1)-(1.2)-(1.3), and assume that w(x) changes sign on [α, β] and the
problem is non-definite, then the spectrum is discrete, always consists of a doubly infinite se-
quence of real eigenvalues, has no finite limit point, and has at most a finite and even number
of non real eigenvalues (necessarily occurring in complex conjugate pairs) along with at most
finitely many real non-simple eigenvalues (see e.g, [7]). Furthermore, the eigenfunction corre-
sponding to the smallest positive eigenvalue need not necessarily be of one sign in (α, β). Let
M be the number of pairs of distinct non-real eigenvalues of the problem and N be the number
of distinct negative eigenvalues of the same problem, then M ≤ N .

Moreover, there is an integer nR, called the Richardson index having the property that whenever
n ≥ nR, there are exactly two eigenfunctions of the problem oscillating n-times in (α, β) (see
e.g [7]). There is a positive number λ+, called the Richardson number defined as
λ+ = inf{x ∈ < : ∀λ > x,

∫ β
α
|u(x, λ)|2w(x) dx > 0} (see [4]). Generally speaking, a non

definite problem will tend not to have a real ground state (positive eigenfunction) (see e.g [7]).
If the positive eigenvalues λ+

n of a given non definite problem are labeled in such a way that λ+
n

has an eigenfunction with precisely n zeros in (α, β), then

λ+
n

n2
∼ π2(∫ β

α

√
(w(x)

p
)+ dx

)2 , n→∞,

where (w(x)
p

)+ = max{w(x)
p
, 0} is the positive part of w(x).

It is shown in [8] that if w(x) changes sign only once, then the roots of real and imaginary parts
u, v of any non real eigenfuntion y = u + iv corresponding to a non real eigenvalue, separate
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one another. Consequently, any non-real eigenfunction u of the problem cannot have a zero for
x ∈ (α, β).

In this paper, we briefly present and discuss some of the results from my Master thesis [6]
(see Section 2). Furthermore, a final discussion and conclusion can be found in section 3. In
particular, a number of interesting open questions are pointed out.

2. A Non definite Sturm-Liouville problem with weight function having
two turning points
We consider the Dirichlet problem

u′′ (x) + (λw (x) + q (x))u (x) = 0 (2.1)

on [-1,2] given by the boundary conditions

u (−1) = 0 = u (2) . (2.2)

Here, q (x) = q0 ∈ < for all x ∈ [−1, 2] and w(x) is a piecewise constant step-function
described by the relations

w(x) =


a, if x ∈[-1,0],
b, if x ∈(0,1],
c, if x ∈(1,2],

where we assume, without loss of generality that, a < 0, b > 0, c < 0. We note that (2.1) is in
Sturm-Liouville form with q(x) replaced by −q(x).

Let H2[−1, 2] be the subspace of L2[−1, 2] consisting of all continuously differentiable func-
tions u ∈ C ′[−1, 2] such that u′ is absolutely continuous on [-1,2] and u′′+ q(x)u ∈ L2[−1, 2].
Let T be the linear operator in L2[−1, 2] defined by

D(T ) =
{
u ∈ H2[−1, 2] |u(−1) = 0 = u(2)

}
Tu = u′′ + q(x)u. (2.3)

We have the following result:

Theorem 2.4 The forms (Tu, u) and (wu, u) arising from the operator T defined by (2.3) are
generally indefinite.
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Proof: We have

(Tu, u) =

2∫
−1

(u′′ + q(x)u)udx

=

2∫
−1

u′′udx+

2∫
−1

q(x)|u|2dx

= −
2∫

−1

u′u′dx+

2∫
−1

q(x)|u|2dx

=

2∫
−1

(q(x)|u|2 − |u′|2)dx.

From the above result, we deduce that for q ≤ 0, (Tu, u) < 0 for all u ∈ D(T ) which means
that −T ≥ 0. However, when q > 0, we see that the form (Tu, u) may be sign-indefinite.
By Sturm-Liouville theory we recall that there are always infinitely many eigenvalues having
a fixed sign (positive or negative). Let us choose q so that T has both positive and negative
eigenvalues. Then, it is easy to see that if we choose u to be an eigenfunction corresponding
to a positive eigenvalue of T (defined by (2.3)) then (Tu, u) > 0. On the other hand, by
assumption, since T has a negative eigenvalue with eigenfunction v then (Tv, v) < 0. So, fixing
such a general value of q, there may exist functions u for which (Tu, u) > 0 and a possibly
different set of u’s for which (Tu, u) < 0 and so the form (Tu, u) is generally indefinite.

Similarly,

(wu, u) =

2∫
−1

w|u|2dx

= −|a|
0∫

−1

|u|2dx+ b

1∫
0

|u|2dx− |c|
2∫

1

|u|2dx.

It is clear that the sign of λ(wu, u) is indefinite since it generally depends on the relative sizes
of a, b, c. Thus, both forms are indefinite.

The proof is complete. �

Therefore, in accordance with accepted terminology (see [8]), the problem (2.1),(2.2) is non-
definite.

2.1 Explicit solution for the problem(2.1),(2.2) and results

For the special case with a = −1, b = 2, c = −1, we found the explicit solution of (2.1),(2.2)
given below

u(x) =


X(x), if x ∈[-1,0],
Y (x), if x ∈(0,1],
Z(x), if x ∈(1,2],
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Table 1: Summary of results of the spectrum of problem (2.1)-(2.2)
q0 ] of complex pairs ] of negative eigenvalues total ] of eigenvalues Smallest oscillation ]
π2 1 9 18 2
2π2 3 6 18 3
3π2 3 7 18 3
5π2 4 6 20 4
6π2 4 7 20 5

where a < 0, b > 0, c < 0, and

X(x) =
sin(
√
−λ|a|+ q0(x+ 1))√
−λ|a|+ q0

Y (x) =

√
λb+ q0 sin(

√
−λ|a|+ q0) cos(

√
λb+ q0x)√

−λ|a|+ q0

√
λb+ q0

+

√
−λ|a|+ q0 cos(

√
−λ|a|+ q0) sin(

√
λb+ q0x)√

−λ|a|+ q0

√
λb+ q0

Z(x) =
sin(
√
−λ|a|+ q0) cos(

√
λb+ q0) cos(

√
−λ|c|+ q0(x− 1))√

−λ|a|+ q0

+
cos(

√
−λ|a|+ q0) sin(

√
λb+ q0) cos(

√
−λ|c|+ q0(x− 1))√

λb+ q0

+
cos(

√
−λ|a|+ q0) cos(

√
λb+ q0) sin(

√
−λ|c|+ q0(x− 1))√

−λ|c|+ q0

−
√
λ|b| − q0 sin(

√
−λ|a|+ q0) sin(

√
λb+ q0) sin(

√
−λ|c|+ q0(x− 1))√

−λ|a|+ q0

√
−λ|c|+ q0

.

The solution is found by piecing together the various solutions on the intervals (-1,0), (0,1) and
(1,2) so as to obtain a continuously differentiable function on (-1,2). By solving the dispersion
relation

0 =
√
−λ|c|+ q0

√
λb+ q0 sin(

√
−λ|a|+ q0) cos(

√
λb+ q0) cos(

√
−λ|c|+ q0)

+
√
−λ|c|+ q0

√
−λ|a|+ q0 cos(

√
−λ|a|+ q0) sin(

√
λb+ q0) cos(

√
−λ|c|+ q0)

+
√
−λ|a|+ q0

√
λb+ q0 cos(

√
−λ|a|+ q0) cos(

√
λb+ q0) sin(

√
−λ|c|+ q0)

−(λb+ q0) sin(
√
−λ|a|+ q0) sin(

√
λb+ q0) sin(

√
−λ|c|+ q0).

we calculated a few eigenvalues in the cases q0 = π2, 2π2, 3π2, 5π2 and 6π2 in the rectangle
D = {λ ∈ C : |<λ| < 300 and |=λ| < 300} using the Maple package RootFinding[Analytic].
Tables 1 and 2 show summaries of the results on the spectrum.
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Table 2: Non-real eigenvalues obtained inside the rectangle D for the cases q0 =
π2, 2π2, 3π2, 5π2, 6π2

No. of zeros of
q0 Eigenvalues Re u(x, λi) Im u(x, λi)

π2 3.2465± 5.6334i 3 1

2π2

−8.307± 5.5991i 4 2
−4.220± 5.7435i 3 3
12.940± 6.6651i 4 2

3π2 5.1614± 7.7537i 4 4
−2.452± 10.506i 5 3

5π2

7.0223± 10.935i 6 4
20.750± 12.134i 5 5
−19.75± 7.2174i 6 4
−16.37± 10.338i 5 5

6π2

−6.434± 14.431i 6 6
−13.40± 13.525i 7 5
52.026± 7.0997i 6 4
21.552± 15.247i 7 5

5π2

7.0223± 10.935i 6 4
20.750± 12.134i 5 5
−19.75± 7.2174i 6 4
−16.37± 10.338i 5 5

6π2

−6.434± 14.431i 6 6
−13.40± 13.525i 7 5
52.026± 7.0997i 6 4
21.552± 15.247i 7 5

2.2 Example( the case q0 = 6π2)

The asymptotic distribution of the eigenvalues satisfies

λ+
n

n2
∼ π2(∫ 2

−1

√
w+(x) dx

)2 ≈ 4.9348, n→∞.

In this case, the Richardson index is 5 and from the data we see that λ+ ≤ 106.4765 while the
oscillation number for λ = 106.4765 is 5, and so the Richardson index is 5, as expected.

3. Discussion and conclusion
3.1 Discussion

In all the cases considered in this paper, we have both real and non-real eigenvalues. It can
be seen from the graphs of the eigenfunctions that generally oscillation numbers decrease as
the parameter value increases, but then oscillations will stabilize and then the usual oscillation
theorem may be claimed. This leads to the estimation of λ+ and nR.

For example in figure 1, we see that the oscillation number of the smallest positive eigenvalue
is greater than that of the second one. However, oscillations stabilize from the third onwards,
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(a) λ = 22.801778 (b) λ = 49.348022 (c) λ = 106.476595

(d) λ = 166.681017 (e) λ = 235.752859

Figure 1: eigenfunctions corresponding to positive eigenvalues for the case q0 = 6π2

(a) Real Part (b) Imaginary Part (c) Real Part (d) Imaginary Part

Figure 2: The cases λ = −6.4344− 14.4314i, λ = −13.4034− 13.5248i

(a) Real Part (b) Imaginary Part (c) Real Part (d) Imaginary Part

Figure 3: The casesλ = 21.5520− 15.2468i, λ = 52.0258 + 7.0997i

that is, for all positive eigenvalues such that λ ≥ 106.476595 each eigenvalue has a unique
oscillation number. This shows that λ+ ≤ 106.476595 and nR = 5.

Generally speaking, the number of non-real eigenvalues seems to increase with increasing q0.
The number of pairs of distinct non-real eigenvalues of the problem does not exceed the number
of negative eigenvalues in all the cases considered. For all values of q0 considered (cases

58



where there are non-real eigenvalues), the smallest oscillation number is 2 and so there is no
positive eigenfunction in (-1,2). Furthermore, the real and imaginary parts of the non-real
eigenfunctions do not have interlacing zeros. It is evident from the graphs in figures 2 and 3
that the number of zeros of the imaginary part is less than that of the real part by 2 in some
cases, and equal in other cases. However, the non-real eigenfunctions do not vanish in (-1,2).

3.2 Conclusion

A huge number of papers by mathematicians and others, have been published on Sturm-Liouville
problems since their origins in 1836. Yet, remarkably, this subject is still an intensely active
field of research today. In this paper, we undertook a numerical study of the non-real eigen-
functions and eigenvalues of a non-definite Sturm-Liouville problem with two turning points,
paralleling the study in [4] in the case of one turning point. Ultimately, our aim was to examine
the behavior of the eigenfunctions, both real and non-real, of this non-definite Sturm-Liouville
problem.

One feature of the non-definite problem is the possible existence of non-real eigenvalues. This
may sound paradoxical, as the equation is (formally) self-adjoint and so all eigenvalues should
be real. However, this is where the problem lies: the formal self-adjointness of an equation
does not necessarily imply the self-adjointness of the corresponding operator. It follows that
whenever there is a non-real eigenvalue the corresponding operator cannot be self-adjoint in a
Hilbert space.

We have indeed verified that if the problem (3.1)-(3.2) has at least one (complex conjugate)
pair of non-real eigenvalues, then there is no real eigenvalue whose corresponding eigenfunc-
tion has one zero in the interval (−1, 2) (in conformity with the results in [2], [1]). We also
showed that, in the cases considered here, the complex eigenfunctions (corresponding to non-
real eigenvalues) are never zero in (−1, 2). Whether this is an accident or the result of a more
general yet unproven theorem, is unknown, but we strongly believe it is so and pose this as an
open question for future research.

For these same examples, we also showed that the real and imaginary parts of these eigenfunc-
tions do not have interlacing zeros (although they are expected to since the non real eigenfunc-
tions do not vanish). In fact, these zeros interlace in the one-turning-point case as shown by
Richardson (see [8]). However, in the case of two turning points we see that there are examples
where the zeros do not interlace at all. This fact too, raises an interesting open question for
future research.

Furthermore, the number of zeros of the real part of each of the non-real eigenfunctions con-
sidered is greater than or equal to the number of zeros of the imaginary part. This may also
be a consequence of a more general theorem which we don’t know, so then, we have a third
interesting open question. In future studies on this subject, there is need for the formulation
of general theorems that could explain some or all of these observations. Finally, we observed
that even for real eigenvalues the corresponding eigenfunctions do not behave in conformity
with the Sturm oscillation theorem as was postulated and proved by Haupt (1911) in [5], and
Richardson [8].
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Abstract

This paper is part of ongoing PhD research work. The three layers, namely plants,
distribution centers and customers, are considered in a two level location routing problem
(LRP). The flow of maize from plants to customers via distribution centers(DC) is designed
at a minimum cost. The application of LRP is studied for maize production, storage and
distribution to the customers in Tanzania at minimum cost. The capacity of plants and
distribution centers are subject to constraints in an optimization problem where cost for
transporting maize in three layers is computed optimally using CPLEX software. The four
regions, five DCs and seventeen regions (customers) in Tanzania have been modeled using
actual data from respective departments. The results give the optimal allocation of DCs to
plants and customers to DCs with a decrease in cost of 8.2%− 10.3%.

Keywords: optimal distribution, Tanzanian maize crop, location routing problem.

1. Introduction
Distribution network design problems consist of determining the best way to transfer goods from supply
to demand points by choosing the structure of the network such that the overall cost is minimized [3].
Here, the network is considered from a graph theory point of view. It is a connected graph with sets of
vertices and edges. Production centers, warehouses (distribution centers) and customer zones/demand
zones are assumed to be vertices while edges are roads and/or railways. Associated with this network,
there are two problems: facility location [6, 12, 18, 20] and vehicle routing problem (VRP) [13, 18].
There are a number of papers that deal with these two problems, both individually and combined forms
[4, 6, 13, 17, 19, 20].

In the classical facility location problem (FLP), it is required to determine the optimal location of fa-
cilities or resources so as to minimize costs, time, distance and risks in relation to supply and demand
points. Some examples of such facilities are schools, warehouses, hospitals, markets, industries, post
offices and worship places. In FLP, the constraints such as distance between facilities and customers
are often imposed. Other typical constraints are the number of customers (people using these facilities),
number of facilities and their capacities [20].
On the other hand, VRP can be defined as the problem of designing least-cost delivery routes from a
depot to a set of geographically scattered customers, subject to side constraints (capacity, distance, time,
etc). In VRP the number of vehicle routes created are such that (i) each route starts and ends at a depot,
(ii) each customer is visited exactly once by a single vehicle, (iii) the total demand of a route does not
exceed vehicle capacity, and (iv) the total length of a route does not exceed a preset limit [13].

The location routing problem (LRP) integrates FLP and VRP in a single framework. It is an optimization
problem that has attracted many academicians and practitioners in recent years. LRP have been studied
with different mathematical approaches in the literature [4, 9, 18]. The models, solution procedures, and
applications of LRP began to appear in the literature in the 1970’s. LRP models can be deterministic or
stochastic [4]. The two main solution approaches to LRP are exact and approximate (heuristic). LRP
arises in many applications in various forms. Many recent papers on LRP focus on the distribution of
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consumer goods [2, 6, 10, 12, 15–18, 22]. This network is a two level LRP as the routes occur between
the first layer (plants) and the second layer (distribution centers), and also between the second layer and
the third layer (customers). If there is more than one level of routing involved in LRP, then it is called
multi-level LRP. The problem we study here is a two-level LRP.

The practical problem at hand is a deterministic model which is part of a PhD work in progress.

The problem is formulated mathematically as a mixed integer linear programming problem which was
then solved using actual data. The considered practical example has a number of unique features which
make the research worthwhile . In particular, maize crop (single commodity) transportation in Tanzania
is considered as an application of the two-level LRP. So our study is three folds: First, we model the
optimization problem as a two-level LRP; Second, we design an algorithm to solve such model and third
we consider its practical application. This is the first application of LRP to a practical and real problem
in Tanzania.

In the next section we present the deterministic mathematical model for a multi-level LRP. Section 3
presents the maize production and distribution network in Tanzania, and the research data and solution
approach is in Section 4. The last section, 5, presents conclusion and recommendations.

In this research, we use plant and production center, warehouse and distribution center, and customer and
demand zones, interchangeably. The distribution centers or warehouses are also referred to as depots.

2. The deterministic mathematical model for multi-level LRP
The multi-level LRP models explored in the literature, are either single-commodity or multi-commodity.
We now present the mathematical model for a multi-level LRP dealing with a single commodity. The
model is adapted from Elhedhli et al [7] and the references [8, 12, 14]. The multi-commodity model
used by Elhedhli.

Data for the model:
j: index for plants, where j = 1, 2, ..., J . J is the total number of plants.
k: index for possible distribution center sites, where k = 1, 2, ...,K. K is the total number of the candi-
date distribution center sites.
l: index for customer demand zones, where l = 1, 2, ..., L. L is the total number of customer demand
zones.
Sj : supply (production capacity) for a product at plant j.
Dl: demand of product at customer zone l.
Vk: maximum capacity for DC at site k
Cjk: average unit cost of shipping (routing) a product from plant j to DC k.
Ckl: average unit cost of shipping a product from DC k to customer zone l.
fk: fixed cost of the annual possession and operating cost for a DC at site k.

Decision variables for the model:
Xjk: amount of product shipped from plant j to DC k.
Ykl: 1 if the DC k serves customer zone l, and 0 otherwise.
Zk: 1 if a DC k is opened at site k, and 0 otherwise.

The formulated mixed integer linear programming model is as follows:

min
∑
jk

CjkXjk +
∑
kl

CklDlYkl +
∑
k

fkZk (2.1)
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Subject to:

∑
k

Xjk ≤ Sj , ∀j, (2.2)∑
j

Xjk ≤ VkZk,∀k, (2.3)

∑
j

Xjk =
∑
l

DlYkl,∀k, (2.4)

∑
k

Ykl = 1,∀l, (2.5)

Xjk ≥ 0,∀j, k. (2.6)

Ykl ∈ {0, 1}, ∀k, l. (2.7)

Zk ∈ {0, 1},∀k. (2.8)

The objective function (2.1) minimize the total distribution cost, including transportation costs and fixed
costs for DC. Constraints (2.2) are the supply constraints. Constraints (2.3) refer to DCs capacity and
allows the use of opened DCs only. Constraints (2.4) ensure that demands are met at customer zone.
Constraints (2.5)(single-sourcing constraints) specify that each customer zone must be served by a single
DC. Constraints (2.6) are the non-negativity conditions. Constraints (2.7) and (2.8) are binary variables.

The tasks involved are the determination of the number, size and locations of distribution centers, allo-
cation of distribution centers to production centers and customers to the distribution centers.

3. Maize production and distribution network in Tanzania
The real life application that we considered here is maize crop in Tanzania. In Tanzania, physical access
to food is affected by inadequate transportation infrastructure. Maize production is concentrated in
the southern highland regions (Rukwa, Mbeya, Iringa, Morogoro and Ruvuma) and peripheral areas of
the country, while the traditional food deficit areas are located mostly in the central corridor (Singida,
Dodoma and Tabora) and northern part (Arusha, Manyara, Kilimanjaro and Tanga), and other parts as
shown in the map of Tanzania (Figure 1). Before reaching the customers, maize is stored in DCs which
are allocated in different parts of the country. There are seven DCs with a total capacity of 241 thousands
tons which are Arusha (39 tons capacities), Dar Es Salaam (52 tons), Dodoma (39 tons), Shinyanga (14.5
tons), Makambako-Iringa (34 tons), Songea (24 tons) and Sumbawanga (38.5 tons). The first five DCs
are used in this study as per actual data collected and their existing distribution system.

Due to long distances between food producing centers, DCs and deficit areas, together with inadequate
and unreliable transportation network, high transportation costs are unavoidable. This results in high
food prices in deficit areas, and therefore affects access to food by both low income, rural and urban
populations [21].
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Figure 1: The map of Tanzania showing the food production centers, warehouses and deficit
areas

This study is useful as it provides a mechanism for reducing food prices within the country. This will
contribute to the June 2009 Tanzania policy involving priority of agriculture also known as ‘Agriculture
First’ (Kilimo Kwanza) and as stipulated in ten implementation pillars. For instance, one of the pillars
involves identification of priority areas for strategic food commodities to increase the country’s food
self sufficiency. The pillars mention a price stabilization mechanism, which includes the expansion of
storage capacity and improvement of railway and road systems [1]. In the 2012/2013 Ministry of Agri-
culture budget speech, the price stabilization for maize flour in cities was addressed, after the price had
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decreased by 38% to 40%. This was as a result of about 41,000 tons of maize from warehouses being
sold to public markets in regional cities/municipal to cater for a maize deficit [5].

4. Research data and solution approach
The two-level LRP model is a commodity customer delivery model with the following assumptions:
(i) demands in each customer zone is known, (ii) number of plants, capacities and their locations are
known, (iii) all possible warehouses, their capacities and locations are to be redetermined optimally, (iv)
transportation costs from plants to warehouses and from warehouses to customers are known.

Optimization is carried out to determine the values of the decision variables in the model. The optimal
decisions to be made are: (i) number of distribution centers, capacities and their locations, (ii) allocation
of distribution centers to plants, (iii) allocation of customers to distribution centers, (iv) routes designing
from plants to distribution centers and from distribution centers to customers with their associated costs.

4.1 Research data

The food security system in Tanzania is based on maize production, storage and final distribution to the
customers. The required data for the model is from several sources; .
All sources of data are based in Tanzania

• Tanzania National Roads Agency (TANROADS: Road distances between regions as per March
2009 and road classification (collected in January, 2011).

• Ministry of Agriculture, Food Security and Cooperatives: Maize production capacity and surplus
from ”Volume 1: The 2010/11 Final Food Crop Production Forecast for 2011/12 Food Security
EXECUTIVE SUMMARY”. This is accessible from
http://www.kilimo.go.tz/publications.

• National Food Reserve Agency (NFRA): Warehouses capacity and transfer quantities from plants
to warehouses in 2009/2010 (Obtained in January, 2011).

• Prime Minister Office-Disaster Department: Regional demand quantities of maize between 2004
and 2010 and distances between DCs and demand zones (districts). The maximum annual demand
in each region had been considered in this work. The data is as presented in Table 1 and 2.

Table 1: Plants and DCs: Distances (’000km) and Capacities (’000Mt)
Plants DCs - Road Distances Capacity No of DCs

Arusha D’Salaam Dodoma Makambako Shinyanga
Iringa 0.689 0.492 0.264 0.12 0.802 100 3
Mbeya 1.02 0.822 0.594 0.21 0.761 251 7
Rukwa 1.348 1.15 0.922 0.538 0.79 140 4
Ruvuma 1.144 0.947 0.719 0.335 1.257 41 1
DC ca-
pacity.

39 52 39 34 14.5

Total production capacity 532
Total DCs Capacity 178.5
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Table 2: DCs and Customers: Distances (’000’km) and demands (’000’Mt)
S/N Cust/DC Arusha Dar Dodoma Makambako Shinyanga Customer

Demand
1 Arusha 0.071 0.717 0.496 0.88 0.695 14.378
2 Coast 0.734 0.088 0.539 0.7 1.077 8.626
3 Dodoma 0.495 0.521 0.07 0.454 0.608 15.216
4 Iringa 0.728 0.621 0.403 0.139 0.941 7.008
5 Kagera 1.137 1.502 1.051 1.433 0.513 1.559
6 Kilimanjaro 0.125 0.611 0.55 0.934 0.749 8.940
7 Lindi 1.185 0.539 0.99 1.151 1.528 4.093
8 Manyara 0.229 0.875 0.318 0.809 0.517 15.214
9 Mara 1.133 1.498 1.047 1.431 1.509 11.497

10 Mbeya 0.997 0.8 0.572 0.188 1.11 2.835
11 Morogoro 0.814 0.385 0.452 0.613 0.89 7.689
12 Mtwara 1.256 0.61 1.061 1.17 1.599 3.876
13 Mwanza 0.863 1.228 0.777 1.161 0.289 10.398
14 Shinyanga 0.725 1.19 0.639 1.024 0.101 9.702
15 Singida 0.662 0.688 0.237 0.621 0.493 9.434
16 Tabora 0.807 1.209 0.721 1.105 0.183 5.773
17 Tanga 0.772 0.337 0.788 0.756 1.066 8.906

DC Customer
Capacity

5 6 5 4 2

Average demand 8.538
Total Demand 145.144
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In table 1 the values in the last column (No of DCs) were obtained by dividing the relevant plant capacity
by average DC capacity. The demands in the last column of table 2, were obtained from 93 districts’
demands in Tanzania. The given districts demand were then summed in each region to have a regional
customer demand. The last row of this table gives the number of customers (from 17 customers) that
can be saved by the particular DC (DC customer capacity). The serial number, 1-17 in table 2 is coded
as corresponding customer (customers saved) in the programming results from table 3, 4 and 5.

4.2 Solution approach and computational results

The solution of a mixed integer linear programming deterministic model is obtained by using CPLEX
software. The real life data from Tanzania in tables 1 and 2 was used. The problem was solved in
two stages. The first stage is solved as a FLP or DC location problem, where DCs and customers are
involved. The second stage considered all three layers simultaneously as a two level LRP. The solution
obtained is optimal, hence it is an exact method.

Facility Location Problem solution
In the FLP, the target is to find the optimal number and location of warehouses with respect to distance
from customers and their capacities while satisfying customers’ demands at minimum cost. The model
for this case is:

min
∑
kl

CklDlYkl +
∑
k

fkZk (4.1)

Subject to constraint sets (2.4), (2.5),(2.7) and (2.8). Using CPLEX software (IBM ILOG CPLEX
Optimization Studio), several results were obtained by changing the capacity of warehouses from the
existing capacities and observing the influence on the fixed cost. Some important results are summarised
below.

Table 3: Results for changing capacities of DC while fixed cost is ZERO
DC/RUN R1 (6,5,5,4,2: Existing

Cap). Customers saved
R2 (4,5,3,1,5: Actual
max use). Customers
saved

R3 (6,5,5,2,4 =
6,5,4,2,5). Customers
saved

Dar 2, 7, 11, 12, 17 2, 7, 12, 17 2, 7, 11, 12, 17
Arusha 1, 6, 8 1, 6, 8, 9 1, 6, 8
Dodoma 3, 5, 9, 13, 15 3, 4, 11 3, 9, 15
Makambako 4, 10 10 4, 10
Shinyanga 14, 16 5, 13, 14,15, 16 5, 13, 14, 16
Objective
Value (km)

6.177 5.824 5.151

Run Time
(Sec)

8 16 10

NOTE: All warehouses are open and all customers are saved

From table 3 where fixed cost is zero, R1, R2 and R3 are three runs (computations) with different results
from different capacities of DCs. R1 consider the existing capacities as constructed, R2 is maximum
use of the DC as per 2004-2010 demands. R3 is optimal location and capacities as from objective value
(last but one row). First it shows all DCs are open, and all customers (total 17) are allocated to DCs.
The optimal capacities require the Makambako DC to save 2 customers and Shinyanga DC to save 4 or
5 customers with objective value of 5.151km. This result of having 1.026km (1,026km) (savings) for
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Table 4: Results for changing capacities of DC while fixed (f) cost is 10 for each DC.
DC/RUN R1 (6,5,5,4,2:

Existing Cap).
Customers
saved

R2 (4,5,3,1,5:
Actual max use).
Customers saved

R3 (6,5,5,2,4).
Customers saved

R4 (6,5,6,1,4).
Customers saved

Dar 2, 7, 11, 12, 17 2, 7, 12, 17 2, 7, 11, 12, 17 2, 4, 7, 11, 12, 17
Arusha 1, 6, 8, 9, 16 1, 4, 6, 8, 9 1, 6, 8 1, 6, 8, 9, 16
Dodoma 3, 4, 10, 13, 15 3, 10, 11 3, 4, 9, 10, 15 3, 5, 10, 13, 14,

15
Makambako - - - -
Shinyanga 5, 14 5, 13, 14,15, 16 5, 13, 14, 16 -
Objective Value
(km)

46.997 46.533 45.799 38.291

Run Time (Sec) 17 9 17 8
NOTE: At least one warehouse is closed for f ≥ 0.3 and all customers are saved

constructed capacity and 673km for maximum use DC capacity. The customers as per each DC can be
designed a direct route from allocated DC.

Table 4 results indicates the influence of fixed costs in FLP where only 3 DC are to be opened in the
optimal costs. As shown in last column, the objective value is 38.291km, that is less by 8.706km and
8.242km from constructed capacities and maximum use capacities respectively.

The two level LRP solution
This is a second stage solving where plants, warehouses and customers distribution cost are now con-
sidered simultaneously. Minimum cost attained by optimal location of warehouses to plants and also
customers to open warehouses. In this case, all the five warehouses are open for both capacities and
fixed cost consideration contract to first stage.

The whole model (2.1) to (2.8) is used with some modification of decision variable from quantities to
a binary. Xjk is now 1 if a transfer from plants to open warehouse, and 0 otherwise. So we have an
additional single source constraints to link plants and warehouses as:∑

j

Xjk = 1, ∀k. (4.2)

The most important computational results are summarised in the table 5.

From all runs conducted, the optimal DCs allocation to plants are; Iringa plant supplies to Dar, Arusha
and Dodoma, and Makambako and Shinyanga supplied by Mbeya plant. This is from the fact that the
plants capacities are more than sufficient as compared to DCs’ capacities (See table 1). The Ruvuma
and Rukwa plants remain untouched!

Table 5 results as indicated, optimal location and allocation attained with objective value of 7.567km for
zero fixed costs and 57.567km for f = 10 where capacities of Makambako and Shinyanga in particular
are redetermined. The optimal computed objective value is 11.9% and 8.2% less than constructed and
maximum use capacities respectively. For both zero and non zero fixed costs, all DCs are to be opened.
So the two level LRP is solved with 8.2% - 11.2% saving costs. The direct routes are then designed from
optimal location and allocation as resulted from computations.
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Table 5: The results for two level LRP with variation of capacities and fixed costs
DC/RUN R1

(6,5,5,4,2:
Existing
Cap). Cus-
tomers
saved

R2
(4,5,3,1,5:
Actual max
use). Cus-
tomers saved

R3 (6,5,5,2,4
= 6,5,4,2,5)
Customers
saved

R4
(6,5,5,4,2).
Customers
saved

R5 (6,5,5,2,4
= 6,5,4,2,5).
Customers
saved

Dar 2, 7, 11, 12,
17

2, 7, 12, 17 2, 7, 11, 12,
17

2, 7, 11, 12,
17

2, 7, 11, 12, 17

Arusha 1, 6, 8 1, 6, 8, 9 1, 6, 8 1, 6, 8 1, 6, 8
Dodoma 3, 5, 9, 13, 15 3, 4, 11 3, 9, 15 3, 5, 9, 13, 15 3, 9, 15
Makambako 4, 10 10 4, 10 4, 10 4, 10
Shinyanga 14, 16 5, 13, 14,15,

16
5, 13, 14, 16 14, 16 5, 13, 14, 16

Objective
Value (km)

8.593 8.24 7.567 58.593 57.567

Run Time
(Sec)

15 10 8 14 13

Fixed cost 0 0 0 10 10
NOTE: All DCs are open and all customers are saved for capacities and fixed cost variations

5. Conclusion and recommendations
The optimal costs of the two stages (FLP and LRP) are of great importance to distribution network
design for food security in Tanzania. As far as food security in Tanzania is concerned, the FLP is more
important to Prime Minister’s office (Disaster Department) as they work as independent to NFRA that
store foods in DCs. In order to meet minimum cost, they might ask NFRA to use only Dar Es Salaam,
Arusha and Dodoma DCs in order reduce cost by 11.2%. And from optimal LRP, NFRA can buy only
maize from Iringa for that matter and save 8.2% of their costs.

The given saving cost which is in km distance, can be converted to money value. For example the unit
cost in 2010 was Tshs 148 per Km per Kg (NFRA source), equivalent to 673km x 1000kg (one ton) x 148
= Tshs 99,604,000 at least. It is an important cost savings to consider. From the fact that only maize has
been stored in DC and not other cereals (Rice, Sorghum, Millet and Wheat), it is recommended to store
and trade all cereals. This can be done by having enough DCs. For example in 2010/11 cereal surplus
was 714,543 tons and only 241,000 can be stored (only 34%). This is only maize from four regions.
So re-evaluation of the storage strategies is highly needed. For the current and future DCs expansion
as mentioned theoretically to have total capacity of 400,000 (construction of 159,000 capacity DCs),
two strategic places or zones as per this study are Shinyanga and Arusha. This is drawn from actual
maximum usage of the DCs (each 5 customers to service). The second reason is a frequent food deficit
in our neighbour countries which are Somalia, South Sudan and Kenya as from 2012/13 budget speech
[5].

Generally, the food storage infrastructure, capacity and location is still alarming to most crops and hence
a serious address is highly needed. Further research should be done by considering distances from each
demand district to the DCs.
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A Survey of the Development of Fixed Point Theory
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Santosh Kumar
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Abstract

In this survey paper, we collected the developmental history of fixed point theory. Some
important results from beginning up to now are incorporated in this paper.

1. Introduction
The fixed point theorem states the existence of fixed points under suitable conditions. Recall that in a
case f : X → X is a function then y is a fixed point of f if fy = y is satisfied. The topological fixed
point theorem started by L. E. J. Brouwer. The famous Brouwer fixed point theorem was given in 1912
[5].

2. Brouwer fixed point theorem:
The theorem states that if f : B → B is a continuous function and B is a ball in Rn, then f has a fixed
point. This theorem simply guarantees the existence of a solution, but gives no information about the
uniqueness and determination of the solution. For example, if f : [0, 1] → [0, 1] is given by fx = x2 ,
then f0 = 0 and f1 = 1, that is, f has 2 fixed points.

Several proofs of this theorem are given. Most of them are of topological in nature. A classical proof
due to Birkhoff and Kellog was given in 1922, Similar classical proof was given in Linear Operators
Volume 1, Dunford and Schwartz 1958. Brouwer theorem gives no information about the location of
fixed points. However, effective methods have been developed to approximate the fixed points. Such
tools are useful in calculating zeros of functions.

A polynomial equation px = 0 can be written as Fx = x where Fx − x = Px. For example,
consider x2 − 7x+ 12, where Px = x2 − 7x+ 12. We can write Fx− x = Px = x2 − 7x+ 12 , so
x = (x2 + 12)/7 = Fx. Here F has two fixed points, F3 = 3 and F4 = 4.

The following books cover a good deal of fixed point theorems. [1], [2], [4] and [31]. This theorem is
not true in infinite dimensional spaces. For example, if B is a unit ball in an infinite dimensional Hilbert
space and f : B → B is a continuous function, then f need not have a fixed point. This was given by
Kakutani in 1941 [18]. The first fixed point theorem in an infinite dimensional Banach space was given
by [29]. It is stated below.

3. Schauder fixed point theorem
If B is a compact, convex subset of a Banach space X and f : B → B is a continuous function, then f
has a fixed point [29]. The Schauder fixed point theorem has applications in approximation theory, game
theory and other scientific area like engineering, economics and optimization theory. The compactness
condition on B is a very strong one and most of the problems in analysis do not have compact setting. It
is natural to prove the theorem by relaxing the condition of compactness. Schauder proved the following
theorem [29].

Theorem 3.5 If B is a closed bounded convex subset of a Banach space X and f : B → B is continu-
ous map such that f(B) is compact, then f has a fixed point.
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The above theorem was generalized to locally convex topological vector spaces by Tychonoff in 1935
[32].

Theorem 3.6 If B is a nonempty compact convex subset of a locally convex topological vector space X
and f : B → B is a continuous map, then f has a fixed point.

Further extension of Tychonoff’s theorem was given by Ky Fan [10]. A very interesting useful result in
fixed point theory is due to Banach known as the Banach contraction principle [3].

Theorem 3.7 Recall that a map f : X → X is said to be a contraction map, if d(fx, fy) ≤ kd(x, y)
where X is a metric space, x, y ∈ X and 0 ≤ k < 1 . Every contraction map is a continuous map, but
a continuous map need not be a contraction map.

For example, fx = x is a continuous map but it is not a contraction map. The method of successive
approximation introduced by Liouville in 1837 and systematically developed by Picard in 1890 culmi-
nated in formulation by Banach known as the Banach contraction principle (BCP) is stated as below
[3].

Theorem 3.8 If X is a complete metric space and fX → X is a contraction map, then f has a unique
fixed point or fx = x has a unique solution.

Proof:
The proof of this theorem is constructive. Let xn+1 = fxn, n = 1, 2, 3, .... Then the sequence {xn} is
a Cauchy sequence to y in X . It is easy to show that y = fy , that is, y is a fixed point of f . Since f is a
contraction map so y is a unique fixed point. �

The Banach contraction principle is important as a source of existence and uniqueness theorems in
different branches of sciences. This theorem provides an illustration of the unifying power of functional
analytic methods and usefulness of fixed point theory in analysis.

The important feature of the Banach contraction principle is that it gives the existence, uniqueness and
the sequence of the successive approximation converges to a solution of the problem. The important
aspect of the result is that existence, uniqueness and determination, all are given by Banach contraction
principle.

Definition 3.9 If f : X → X such that d(fx, fy) ≤ d(x, y), for all x, y ∈ X , then f is asid to be a
nonexpansive map.

A nonexpansive map need not have a fixed point in a complete metric space. For example, if f : R→ R
given by fx = x+ k where k is any number, then f has no fixed point.

A translation map has no fixed point. In case we have an identity map I : R → R, then each point of
I is a fixed point. The above examples illustrate that a nonexpansive map, unlike contraction map, need
not have a fixed point and if it has a fixed point, then it may not be unique.

The famous fixed point theorem for nonexpansive maps was given by Browder [6], Kirk [19] and Godhe
[13] independently in 1965.

Theorem 3.10 IfB is a closed bounded convex subset of a Hilbert spaceH and is a nonexpansive map,
then f has a fixed point.
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The following interesting question was proved by Browder in 1967 [7].

If B is closed convex subset of a Banach space X and f : B → B is a nonexpansive map. If for each
ri ∈ [0, 1) and any y ∈ B, we define frix = rix + (1 − ri)y for all x ∈ B , then fri : B → B, and
each fri is a contraction map with Lipschitz constant ri. For ri sufficiently close to 1, fri is a contractive
approximation of f .

By Banach contraction principle, each has a unique fixed point say frixri = xri for each ri , that is
xri = frixri = rifxri + (1− r)y. It is natural to ask if the sequence {xri} converges to a fixed point of
f .

Since a nonexpansive map need not have a fixed point so in general the result is not affirmative. However,
the following is due to Browder [7].

Theorem 3.11 If C is a closed bounded convex subset of a Hilbert space H and f : C → C is a
nonexpansive map. Define frx = rfx + (1 − r)y for some y ∈ C and 0 < r < 1. Let xr = frxr .
Then, the sequence {xr} converges to a fixed point of f , closest to y.

In case C is not bounded and f is not a self map, then a similar result is given in [30]. In the study of
fixed point theorems of nonexpansive mappings the following topics are of interest.

(i) The sequence of iterates xn+1 = fxn need not converge.

For example, if we consider fx = −x , for x ∈ R , then the sequence of iterates is an oscillatory
sequence.

(ii) The nonexpansive map need not have a fixed point. Therefore for the study of nonexpansive map
it is important to find that under what conditions the mapping is going to have a fixed point.

Here we give a brief development of the above areas.

The method of successive approximation is useful in determining the solutions of equations. An early
result dealing with the convergence of the sequence of iterates was given by Krasnoselskii in 1955. It is
stated below [20].

Theorem 3.12 If C is a closed bounded convex subset of a Banach space X and f : C → C a
nonexpansive mapping with closure of f(C) compact, then the sequence of iterates given by (f1/2)nx

where f1/2x = 1
2fx+ 1

2x, converges to a fixed point of f .

We note here that the fixed point of f and f1/2 is the same. For example, if fy = y , then f1/2y = y
The limit of the sequence {(f1/2)nx} converges to a fixed point of f .

More generally, if C is a closed bounded convex subset of a Banach space X , then for f : C → C, we
consider frx = rfx+ (1− r)x. In this case it is easy to see that fy = y if and only if fry = y and the
sequence of iterates (f1/2)nx converges to a fixed point of f .

Further extensions of iteration process due to Mann [21], Ishikawa [15], and Rhoades [27] are worth
mentioning. Recently several interesting results for sequence of iterates are used to find the solutions of
the Variational Inequality Problems (VIP). In most of the cases the basic tool has been the sequence of
successive approximation used in the study of fixed point theory. A good deal of work has been associ-
ated with the nonexpansive maps. As the sequence of iterates for a nonexpansive map need not always
converge therefore several researchers have tried to give techniques for convergence of the sequence of
iterates. The following result deals with the contraction maps in the study of variational inequality [23].
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Theorem 3.13 Let C be a nonempty closed convex subset of a Hilbert space H and f : C → H a
continuous map such that I − rf is a contraction map. Then the sequence of iterates

un+1 = Po(I − rf)unu0 ∈ C

converges to u where u satisfies the variational inequality 〈fu, y − u〉 ≥ 0 for all y ∈ C.

Singh et. al. proved the following result for nonexpansive maps [31].

Theorem 3.14 Let C be a closed convex subset of a Hilbert space H and f : C → H a continuous
function such that I − f is a nonexpansive map and let (I − f)C be bounded. Then the sequence
of iterates un+1 = Po(I − f)un, n = 1, 2, ..., ui ∈ C converges to u where u is a solution of the
variational inequality 〈fu, x− u〉 ≥ 0 for all x ∈ C , provided that limn→∞ d(un, F ) = 0 , where F is
the set of fixed points of Po(I − f) : C → C.

The VIP is also closely associated with the best approximation problem so this technique can be applied
to problems in approximation theory.

The following example is worth mentioning [8].

Theorem 3.15 Let C1 and C2 be two closed convex sets in Hilbert space H and g = P1P2 of proximity
maps. Convergence of {xn} to a fixed point of g is guaranteed if either

(i) one set is compact or

(ii) one set is finite dimensional and the distance between the sets is attained.

The contraction, contractive and nonexpansive maps have been further extended to densifying, and 1- set
contraction maps in 1969. Several interesting results of fixed points were proved recently. A few results
were proved separately for contraction maps and compact mappings (A continuous map with compact
image is called a compact mapping). Both maps are densifying maps. Thus a fixed point theorem for
densifying maps includes both for contraction and compact maps.

If f : B → Rn , then f is said to be a nonself map. Most of the fixed point theorems have been given
for self-maps. In 1937 Rothe [9] gave a fixed point theorem for nonself maps [see also [2], [32].

Theorem 3.16 If f : B → Rn is a continuous map, such that

f(∂B) ⊆ B

then f has a fixed point.

The following condition for nonself map is called the Altman’s condition (1955)

|fx− x|2 ≥ |fx|2 − |x|2.

. There were a few results in fixed point theory dealing with combination for two maps- say one is
contraction and the other one is compact.
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Note that if we have f and g both continuous functions, then f + g is also a continuous map and the
fixed point theorem for continuous map is applicable for f + g. However, if f is a contraction map, then
Banach contraction theorem is applied and if g is a compact map, then Schauder fixed point theorem is
applicable. However, in such a case when f is contraction and g is a compact map, then for f + g the
fixed point theorem of densifying map is applicable.

We record a few definitions [2], [31]:

Definition 3.17 Let C be a bounded subset of a metric spaceX . Define the measure of noncompactness
α(C) = inf{ε > 0/C has a finite covering of subsets of diameter ≤ ε}.

The following properties of α are well known.

Let A be a bounded subset of a metric space X . Then
α(A) ≤ δ(A), δ(A) is the diameter of A.
If A ⊆ B , then α(A) ≤ α(B) ,
α(closure of A) = α(A)
α(A ∪B) = max{α(A), α(B)}
α(A) = 0 if and only if A is a precompact.

Definition 3.18 A continuous mapping f : X → X is called a densifying map if for any bounded set A
with α(A) > 0, we have αf(A) < α(A).

In case αf(A) ≤ α(A), then f is said to be 1-set contraction. Note that a nonexpansive map is an
example of 1-set contraction.
A contraction map is densifying and so is the compact mapping, that is, a function mapping closed sets
to compact sets.
The following is a well known result [12], [24], [28].

Theorem 3.19 Let f : C → C be a densifying map, where C is closed bounded and convex subset of a
Banach space X . Then f has at least one fixed point in C.

The contraction, contractive and nonexpansive maps have been further extended to densifying, and 1-
set contraction maps in 1969. Several interesting results of fixed points were proved recently [26]. A
few results were proved separately for contraction maps and compact mappings (A continuous map
with compact image is called a compact mapping). Both maps are densifying maps. Thus a fixed point
theorem for densifying maps includes both for contraction and compact maps.

In 1966 Hartman and Stampacchia [14] gave the following interesting result in variational inequalities.

Theorem 3.20 If B is a unit ball in Rn and f : B → Rn a continuous function, then there is a y such
that

〈fy, x− y〉 ≥ 0 for all x ∈ B. (3.1)

Note: Let P be a metric projection onto B. Then P (I − f) has a fixed point in B if and only if (1) has
a solution.
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The variational inequality theory is a very effective tool for handling problems in different branches
of mathematics, engineering and theoretical physics. Hartman and Stampacchia [14] theorem yields
Brouwer fixed point theorem as an easy corollary.

Let g : B → B be a continuous function, where B is a closed ball in Rn . We have to show that g has a
fixed point.
Let f = I − g. Then f is continuous and f : B → Rn. Hence by using Hartman and Stampacchia
theorem we get that there is a y ∈ B such that 〈fy, x− y〉 ≥ 0 for all x ∈ B .

Thus, 〈(I − g)y, x− y〉 ≥ 0, that is 〈y − gy, x− y〉 ≥ 0 . Since g : B → B , so by taking x = gy , we
have 〈y − gy, gy − y〉 ≥ 0. This is true only when y = gy. Hence g has a fixed point.

In 1969 the following result was given by Ky Fan commonly known as the best approximation theorem
[11].

Theorem 3.21 If C is a nonempty compact convex subset of a normed linear space X and f : C → X
is a continuous function, then there is a y ∈ C such that

|fy − y| = inf |x− fy| for all x ∈ C. (3.2)

If P is a metric projection onto C, then Pof has a fixed point if and only if 3.2 holds.
Recall that d(x,C) = inf‖x− y‖ for all y ∈ C, x /∈ C.

The Ky Fan’s theorem has been widely used in approximation theory, fixed point theory, variational
inequalities, and other branches of mathematics.

Theorem 3.22 If f : B → X is a continuous function and one of the following boundary condi-
tions are satisfied, then f has a fixed point. Here B is a closed ball of radius r and center 0 ( δB
stands for the boundary of the ball B).

(i) f(δB) ⊆ B (Rothe condition)

(ii) |fx− x|2 ≥ |fx|2 − |x|2, (Altman’s condition)

(iii) If fx = kx for x ∈ δB then k ≤ 1 , (Leray Schauder condition)

(iv) If f : B → X and fy 6= y, then the line segment [y, fy] has at least two elements of B. (Fan’s
condition).

In this survey we have restricted our presentation to single valued maps only. A vast literature is available
for the fixed point theorems of multivalued maps. In Kakutani [18] gave the following generalization of
the Brouwer fixed point theorem to multivalued maps.

Theorem 3.23 If F is a multivalued map on a closed bounded convex C subset of Rn , such that F is
upper semicontinuous with nonempty closed convex values, then F has a fixed point.
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Recall that x is a fixed point of F if x ∈ Fx.

The fixed point theory of multivalued maps is useful in economics, game theory and minimax theory.

An important application of Kakutani fixed point theorem was made by Nash [17] in the proof of ex-
istence of an equilibrium for a finite game. Other applications of fixed point theorem of multivalued
mapping are in mathematical programming, control theory and theory of differential equations.

Popa [33],[34] introduced implicit functions which are proving fruitful due to their unifying power
besides admitting new contraction conditions. We also introduce an implicit function to prove our results
[22]. The main theorem is listed below:

Theorem 3.24 Let {S1, S2, ..., Sm}, {T1, T2, ....., Tn}, {I1, I2, ...., Ip} and {J1, J2, ....., Jq} be four fam-
ilies of self-mappings of a metric space (X, d) with S = S1S2....Sm, T = T1T2....Tn, I = I1I2....Ip, J =
J1J2....Jq satisfying the following conditions:

(a) S(X) ⊂ J(X), T (X) ⊂ I(X),

(b) one of S(X), T (X), I(X) and J(X) is complete subspace of X ,

(c) F (d(Sx, Ty), d(Ix, Jy), d(Ix, Sx), d(Jy, Ty), d(Ix, Ty), d(Jy, Sx) ≤ 0 for all x, y ∈ X and
F ∈ τ . Then

(d) (S, I) have a point of coincidence,

(e) (T, J) have a point of coincidence.

Moreover if SiSj = SjSi, IkIl = IlIk, TrTs = TsTr, JtJu = JuJt, SiIk = SkIi, IkTr = TrIk, TrJt =
JtTr, SiJt = JtSi, SiTr = TrSi and JtIk = IkJt for all i, j ∈ I1 = {1, 2, ....,m}, k, l ∈ I2 =
{1, 2, ...., p}, r, s ∈ I3 = {1, 2, ...., n} and t, u ∈ I4 = {1, 2, ...., q}.
Then (for all i ∈ I1, k ∈ I2, r ∈ I3 and t ∈ I4), Si, Ik, Tr and Jt have a common fixed point.

The most recent result for implicit functions is due to Javid Ali and M. Imdad [16]. They introduce
an implicit function to prove their results because of their versatility of deducing several contraction
conditions in one go.
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Epediomological Modelling at Macro and Micro Levels: The Case of
HIV/AIDS

by

Livingstone S. Luboobi

Makerere University, Uganda.

Ecological epidemiology (macro and micro levels)

Ecological models are very important in Epidemiology:

• No disease or epidemic can progress without a population or individual.

• Population dynamics in single/multi-species communities facilitate the epidemiological studies
through processes of:

– Births/reproduction;

– Deaths;

– Immigration/immigration.

• Interactions between individuals/species:

– Prey-predator relationships;

– Competition;

– Symbiosis;

– Obligatory cooperation;

– Food chain.

Modelling at macro level

• Requires a community/ecosystem

– Individuals

– Species

• There are interactions between individuals/species

• Hence ecological considerations are important

Concerned with what happens to/within an individual

• Interplay of different systems of cells within body such as the immune system, the nervous system
(the brain), hear, liver, etc.

• Thus an “ecosystem” within an individual/organ.
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Models of Interactions of Multi-species communities

Inter-interactions as well as intra-interactions: The rate of growth of i-th species sub-population and n
species community through an equation such as:

dNi

dt
= gi(N1, N2, · · · , Nn); i = 1, 2, · · · , n

The form of gi depends on the type of interaction.

Stage/Age structured models

• Human populations

– Immature age-group

– Mature age-group (i.e. the adults capable of reproduction)

– Even a third age-group that have stopped giving births

– Sex-age structured model could be closer to reality

• Application to HIV/AIDS epidemic: 0− 5, 5− 12/15 years, adults sub-populations.

• Method of analysis” delay differential equations.

Stochastic models

Why?

• Can derive details

– Expectation

– Variance

– Probability distributions

• E.g. in the birth-death process {N(t), t ≥ 0}

– Deterministic model indicates exponential growth or decline N(t) = N0e
(λ−µ)t

– In the corresponding stochastic process {N(t), t ≥ 0} we can show:

∗ There is a possibility of extinction of the population
∗ Extinction is certain when the birth rate is equal or less than the death rate

Epediomological

At macro level

• Infectious diseases cannot spread or be transmitted without a population(s)

• Mode of transmission is key in study of the epidemiology of a disease

• Examples
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– Compartmentalised/structured populations such as Susceptibles–Latents–Infectives– Recovered–
immunes

– There may be other stages

HIV/AIDS Macro Level Model

Simple model (early stages)

where

• S(t)= number of suspectibles (i.e., the ’non-infected’) at time t

• I(t)= number of infectives (i.e. the infected and are infectious) at time t;

• A(t)= number of the AIDS cases (bedridden or too weak to interact) at time t.

The equations:

dS

dt
= λS + ελI − βcS I

N
− µS

dI

dt
= βcS

I

N
+ (1− ε)λI − νI − µI

dA

dt
= νI − µA− γA

Quick analysis of early stages of HIV in a community:

S(t) ≈ N(t) hence

dI

dt
≈ (βc+ (1− ε)λ− ν − µ)I

Thus if

R0 =
βc+ (1− ε)λ

µ+ ν
< 1

then HIV/AIDS epidemic would not develop in that community.

HIV/AIDS micro level model

• The development of AIDS is associated with the depletion of the CD4+ helper T lymphocyte.

• HIV relies on a host to assist reproduction.
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• Since the CD4+ cells are depleted over time, strengthening cytotoxic responses cannot occur.

• Initially the transformation of immun-sensitivity to resistant genotypes occurs by the generation
of mutations primarily due to reverse transcripase.

• The extreme heterogeneity and diversity of HIV makes the design of effective vaccines extremely
difficult.

• The understanding of the dynamics of antigenic escape from immunological response has been
that a mutation may enable the virus to have a selection advantage.

• Because there is an asymmetric interaction between immunological specificity and viral diversity,
the antigen diversity makes it difficult for the immune system to control the different mutants
simultaneously and the virus runs ahead of the immune response.

• While most productively infected cells have a relatively short life span, many cells are latently
infected and are very long lived.

• A simple model for the interaction between the human immune system and HIV was developed
by Perelson (2002).

• A stochastic model for the HIV pathogenesis under anti-viral drugs has been developed.

• Thus:

– The immune system offers a natural and the most reliable defense mechanism against HIV:

∗ Interactions of the Virions, CD4+ and CD8+ T-cells of the immune system
∗ Hence the terms viral load and “CD4 cell count”

– HIV also infects the liver cells: the hepatocytes.

where X is the uninfected CD4 cells, Y the infected CD4 cells and V the free HIV virions.

The parameters are decribed as follows:
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• β= CD4+ T-cell infection rate by HIV.

• a = the death rate of infected CD4+ T-cells.

• α = the rate of removal of free virus from the system.

• r=number of free virus particles from an infected cell as result of bursting.

• λ = constant rate of production of uninfected CD4+ T-cells.

• µ = death rate of uninfected CD4+ T-cells.

The model equations are

dX

dt
= λ− βXV − µX

dY

dt
= βXV − aY

dV

dt
= arY

Combined macro-micro epidemiologic dynamics of HIV/AIDS

Micro level intracellular level kinetics

Intervention Strategies:

• Inhibition of binding. Blocking of the gp41 conformational changes that permit viral fusion

• Nucleoside/Nucleotide Reverse Transcriptase Inhibitors (NRTIs) & Non-Nucleotide Reverse Tran-
scriptase Inhibitors

• Integrase inhibitors

• Antisense antivirals or transcription Inhibitors (TIs)

• Protease inhibitors (PI) [Tameru et al., 2010: in Ethnicity & Disease,vol.20, pp SI-207-210]
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Therapy

• The ARVs are used as drugs to control the effects of HIV

• But they are toxic to the hepatocytes hepatoxicity

• Hence an optimal therapeutic programme is the concern of the Research team:

Best way of generating models in epidemiological research

There is need to work with: Ecologists, public health officers, physicians, pharmacologists, hematolo-
gists, gastrosurgeons etc
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Analysis of Cell Phone User’s Loyalty in Tanzania Using Markov Chains
by

Christian Baruka Alphonce

University of Dar es salaam, Tanzania

Abstract

Markov chains, applied in marketing problems, are principally used for Brand Loyalty
studies. Especially, Markov chains are strong techniques for forecasting long term market
shares in oligopolistic markets. The concepts of marketing studies are thought as discrete
from the time and place view point. And so finite Markov chains are applicable for this
kind of process. The aim of this study was to examine the cell phone user’s Loyalty using
Markov chains. In this study, the data to examine cell phone user’s Loyalty were obtained
by interviewing 400 subscribers from ten out of twenty seven wards of Kinondoni District
in Dar es salaam, Tanzania.

1. Introduction
The Tanzanian mobile communication market has enjoyed impressive growth in terms of numbers of
operators as well as number of subscribers over the past few years. As illustrated in Table 1. Currently
there are eight licensed companies, out of which six are currently operational. There are over 10 million
voice subscribers [11]. The operational companies are Vodacom, Airtel(zain,celtel) Tigo(Buzz, Mobi-
tel), zantel, TTCL and Benson. The first company to provide mobile phone services in Tanzania was
Mobitel. Tritel company, which no longer exists, was the second mobile operator. Four more operators
joined later: Vodacom, Celtel(Airtel), TTCLMobile and Benson. These operators and their subscriber
bases are shown in Table 2.

Table 1: Voice Telecommunication Operators in Tanzania since 2000
Years Voice Telecom Application Service

Operators (Internet and other Data)
2000 5 11
2001 6 17
2002 6 20
2003 5 22
2004 5 23
2005 5 23
2006 6 25
2007 8∗ 34

June− 08 8∗ 42
Source: Tanzania Communications Regulatory Authority (2008)

8∗ licensed and 6 operational.

Tanzania has the second largest mobile communications market in East Africa with 11% penetration
rate while Uganda and Kenya have 6% and 15% penetration rate respectively [13]. The rate at which
Tanzanians are embracing mobile communications technology indicates that there is significant potential
for future growth. On the other hand landline telephone growth is insignificant over the past eight years
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Table 2: Number of Mobile and Fixed Phone Voice Subscribers

Source: Tanzania Communications Regulatory Authority (2008)

if compared to mobile phone growth. This is due to problems with land line technology; problems such
as unreliable fixed lines, common fixed lines faults, frequent connection break downs, frequent wrong
bills, lack of innovative ideas and poor maintenance services. In the past it used to take a very long time
to get a fixed telephone line installed, while today a walk to a mobile shop is all it takes to get a reliable
affordable mobile phone.

The increase of voice subscribers and teledensity (Figures 1 and 2) could be attributed, firstly, to af-
fordability and ease of maintenance of mobile phones, but, secondly, to the introduction of value added
services in the mobile phone services, such as caller number display, voice mail, call forwarding, call
waiting, conference calls, long distance Internet Protocol (IP) telephony, and short message services
(SMS). In an effort to keep up with mobile commerce worldwide, these operators are aiming at launch-
ing nation-wide wireless application protocol (WAP) services. WAP is expected to offer mobile banking,
stock trading, news, weather reports, and email services to a wide audience of subscribers.

2. Brand Loyalty
Customer loyalty has been a major focus of strategic marketing planning and offers an important basis
for developing a sustainable competitive advantage - an advantage that can be realized through marketing
efforts [1]. It is reported that academic research on loyalty has largely focused on measurement issues
[2] and correlations of loyalty with consumer property in a segmentation context.

Many studies have been conducted on brand loyalty. However, in all of these studies brand loyalty
(e.g. repeat purchase) has been measured from the behavioural aspect without considering the cognitive
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Figure 1: Voice Telecommunication Subscribers.

Figure 2: Teledensity in Tanzania.

aspects.

However, brand loyalty is not a simple uni-dimensional concept, but a very complex multi-dimensional
concept. Wilkie [3] defines brand loyalty as a ”favourable attitude toward, and consistent purchase of
a particular brand”. But such a definition is too simple for understanding brand loyalty in the context
of consumer behaviour. This definition implies that consumers are brand loyal only when both attitudes
and behaviours are favourable. However, it does not clarify the intensity of brand loyalty, because it
excludes the possibility that a consumer’s attitude may be unfavourable, even if he/she is making repeat
purchases. In such a case, the consumer’s brand loyalty would be superficial and shallow - rooted.

Another definition of brand loyalty that compensates for the incompleteness of Wilkie’s definition [3]
was offered by Jacobs and Chestnut [4]. They provided a conceptual definition where brand loyalty is
(1) biased (i.e. non random), (2) behavioural response (i.e. purchase), (3) expressed over time, (4) by
some decision making unit, (5) with respect to one or more brands out of a set of such brands, and is a
function of psychological (decision-making, evaluative) processes.

Based on the behavioural element of brand loyalty, Lyong [5] provides an operational definition that
”brand loyalty is a function of a brands’ relative frequency of purchase in both time-independent and
time dependent situations”.

Brand loyalty represents a favourable attitude toward a brand resulting in consistent purchase of the
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brand over time [6]. Two approaches to the study of brand loyalty have dominated marketing literature.
The first is an instrumental conditioning approach, that views consistent purchasing of one brand over
time as an indication of brand loyalty. Repeat purchasing behaviour is assumed to reflect reinforcement
and a strong stimulus-to-response link. The research that takes this approach uses probabilistic models
of consumer learning to estimate the probability of a consumer buying the same brand again, given a
number of past purchases of that brand. This is a stochastic model rather than a deterministic model of
consumer behaviour, as it does not predict one specific course of action. Rather, the prediction is always
in probability terms.

The second approach to the study of brand loyalty is based on cognitive theories. Some researchers
believe that behaviour alone does not reflect brand loyalty. Loyalty implies a commitment to a brand
that may not be reflected by just measuring continuous behaviour.

Several authors have made distinctions between brand loyalty (in terms of repeat purchasing), and brand
commitment (implying some degree of high involvement). The brand loyalty that is defined here is the
observed behaviour of repeat purchasing of the same brand.

Behavioural measures have defined loyalty by the sequence of purchases (purchased Brand A give times
in a row) and/or the proportion of purchases, in the event that the customer is satisfied with the brand
purchase and repeats it in a relatively short period of time [7].

In order for managers to cope with the forces of disloyalty among consumers, there is a need to have an
accurate method to measure and predict brand loyalty. However it was impossible to obtain an objective
and general measurement of brand loyalty, because brand loyalty has been defined in many different
ways and operationalized by a number of scholars. The diverse definition and operationalization of
brand loyalty in the past has been due to the various aspects of brand loyalty (e.g. behavioural and
attitudinal brand loyalty).

A transition matrix was used as a forecasting instrument for determining the market environment in the
future by Stan and Smith in a research conducted in 1964. This paper shows the potential of using
Markov Chains in determining the intensive transitional probabilities for a new product. These proba-
bilities may help marketing management by comparing the intensiveness gained in a certain period of
time with product life cycle. Thereby it may be possible to take the situation under control by taking
corrective action.

Although the Markov Chains Method is quite successful in forecasting (predicting) brand switching, this
model still has some limitations:

1. Customers do not always buy products in certain intervals and they do not always buy the same
amount of a certain product. This means that in the future, two or more brands may be bought at
the same time.

2. Customers always enter and leave markets, and therefore markets are never stable.

3. The transition probabilities of a customer switching from an i brand to an j brand are not constant
for all customers, these probabilities may change from customer to customer and from time to
time. These transitional probabilities may change according to the average time between buying
situations.

4. The time between different buying situations may be a function of the last brand bought.

5. The other areas of the marketing environment such as sales promotions, advertising, competition
etc. were not included in these models.
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3. Markov Chains Method
The basic concepts of Markov Chains Method has been introduced by the Russian mathematician, An-
drey Andreyevich Markov, in 1970. After this date many mathematicians have conducted research on
Markov Matrix and has helped it to develop. Markov Chains Method is used intensively for research
conducted on such social topics as the brand selection of customers, income distribution, immigration
as a geographic structure, and the occupational mobility (for examples and references please see [8],
[9], [10]). In marketing, Markov Chains Model is frequently used for topics such as ”brand loyalty”
and ”brand switching dynamics”. Although it is very complicated to transform marketing problems in
to mathematical equations, Markov Chains Method comes out as the primary and most powerful tech-
nique in predicting the market share a product will achieve in the long term especially in an oligopolistic
environment and in finding out the brand loyalty for a product.

The stochastic process is defined as a set of random variables {Xt} where the unit time parameter t
is taken from a given set T . All the special values the random variables take on are named as a state.
Therefore, a state variable name is given to theXt random variable. The set that accepts eachXt random
variable is called an ”example space” or a ”state space”. If the S state space includes whole number
discontinuous values then it is called a stochastic process that is separate stated and these separate stated
spaces may be countable and finite or countable and infinite. If Xt is defined in the t ∈ (−∞,∞)
interval it is classified as a stochastic process that is real valued. Being a special type of stochastic
process, the Markov Chain,

P (Xt+1 = xt|X0 = x0, X1 = x1, ..., Xt = xt) = P (Xt+1 = xt+1|Xt = xt); (t = 0, 1, 2, ...)

is a chain that has Markovian property and the Markovian property stresses that given the present (or
preceding) state, the conditional probability of the next state is independent of the preceding states.
P (Xt+1 = xt+1|Xt = xt) are conditional probabilities and are named as transitional probabilities.

If the relationship

P (Xt+1 = xt+1|Xt = xt) = P (X1 = Xt+1|X0 = xt); (t = 0, 1, 2, ...)

exists, the one step transitional probabilities are usually shown as Pij and named as stationary and the
transitional probabilities that have this property do not change in time and the relationship

P (Xt+n = xt+1|Xt = xt) = P (Xn = xt+1|X0 = xt); (n = 0, 1, 2, ...)

becomes valid. These conditional probabilities are named as n-step transitional probabilities and are
shown as Pnij . P

n
ij explains that the process that is in the i state, will be in the j state n steps later. This is

because Pnij are conditional probabilities and must be non-negative and also the relationship given below
is valid.

Σm
j=1P

(n)
ij = 1 ; i = 1, 2, ..., n = 0, 1, 2, ....

At this point n-step transitional probabilities matrix, S = {S0, S1, ...., Sm} state space may be shown as

P (n) =


S0 S1 . . . Sm

S0 P
(n)
00 P

(n)
01 . . . P

(n)
0m

S1 P
(n)
10 P

(n)
11 . . . P

(n)
1m

...
...

...
. . .

...
Sm P

(n)
m0 P

(n)
1m . . . P

(n)
mm
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If n = 1 is taken, then a stochastic process is a Markov Chain that has Markovian properties’. In this
research, only the Markov Chains that are finite and have stationary transitional probabilities will be
considered.

4. Chapman - Kolmogorov Equations
The P (n)

ij n-stepped transitional probabilities stress the probability of transition from the i state to the j
state at the n(> 1) step. The Chapman -Kolmogorov equations,

P
(n)
ij = Σm

k=oPikP
(n−1)
kj ∀ij and 0 ≤ m ≤ n

helps in forming a method for calculating the n-step transitional probabilities. In the special occasions
where m = 1 and m = n− 1, the equations

P
(n)
ij = Σm

k=oPikP
(n−1)
kj ; (∀ij and n) and P

(n)
ij = Σm

k=oP
(n−1)
ik Pkj

are obtained. These equations stress the fact that the n-step transitional probabilities may be calculated
from the one step transitional probabilities. For example, for n = 2

P
(2)
ij = Σm

k=oPikPkj

is obtained and a P 2
ij are the elements of the P 2 matrix. P 2 is obtained from the multiplication of P by

P . Therefore, the n-step probabilities matrix may be calculated from the

Pn = P ∗ · P (n−1) = P (n−1) · P

relationship.

5. The long-term Behaviour of the Markov Chain
The ergodic chain (matrix) is defined as a chain where from one state it is possible to transform into all
other states and where it contains no zero element that is at the powers of the P regular chain (matrix).
Therefore it can be concluded that a regular matrix is ergodic but the opposite is not true. For the case
where a T matrix is obtained by P having sufficiently big powers, if all of the line vectors of this T
matrix are the same, it could be said that the P transitional matrix reaches a balance and there exists a
balancing vector. A regular Markov Chain contains a single balance vector.

If v = [v1, v2, · · · vm] is a probability vector, then the relationship vp = v is valid and v is named as a
balance vector.

6. Research Methodology
The purpose of this study was to examine the cell phone users loyalty using the Markov Chains Method.
For this study data has been collected for cell phone users loyalty for 400 subscribers from ten out of
twenty seven wards of Kinondoni District in Dar es salaam, Tanzania.
For the purpose of this study, seven states were considered which stand for the network operators repre-
sented in the form of a set as follows:

S = {tiGO, Zantel, Vodacom, Airtel, Sasatel, Benson on Line, TTCLMobile}

The data from the interviews was used to study cell phone users loyalty in two corresponding periods.

Following the two months interval, the switching behaviour of customers as well as their likelihood to
exist in a given state was studied and the results were summarised in tabular form. The obtained results
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Table 3: The transition results showing customers behaviour from July - August 2010
NETWORK Vodacom tiGO Airtel Zantel TTCLMobile Total

Vodacom 60 2 0 0 0 62
tiGO 3 288 2 0 0 293
Airtel 0 0 34 0 0 34
Zantel 0 0 0 9 0 9

TTCLMobile 0 0 0 0 2 2
Total 63 290 36 9 2 400

shown in Tables 3 up to 8 were used to verify the hypothesis that cell phone users loyalty can be analysed
using Ergodic Transition Probability Matrices.

From Table 3, the sixth and seventh states, which stand for Benson on line and Sasatel companies, were
assumed to be redundant states because the results show that there were no chances for customers to
exist into those states. As a result a reduced table made up of five states was obtained.

In addition, the non communicating states (also known as dominant states) were abandoned in the search
for an Ergodic transition matrix. Table 4 is the transition probability matrix obtained from Table 3 after
removing the dominant states.

Table 4: The transition Probability Matrix from July to August, 2010
NETWORK Vodacom tiGO Airtel Total

Vodacom 0.9677 0.0323 0.0000 1.0000
tiGO 0.0102 0.9829 0.0068 1.0000
Airtel 0.0000 0.0000 1.0000 1.0000

The Transition probability matrix in Table 4 above is not Ergodic as it violates the condition of ergodicity
[14], [15] hence it was not used in the analysis.

The transitions from September to October 2010 are summarized in Table 5.

Table 5: The transition results showing customers behaviour from September - October 2010
NETWORK Vodacom tiGO Airtel Total

Vodacom 58 1 1 60
tiGO 1 290 2 293
Airtel 0 0 36 36
Total 59 291 39 389

From Table 5 the following transition probability matrix was obtain.

The transition probability matrix in Table 6 above could not be used in the analysis of cell phone users
loyalty due to the existence of the dominant state Airtel. Customers switching behavior for the period
from November to December 2010 were summarized in Table 7.

From Table 7 the following transition probability matrix was obtained. Up to this point TCCLMobile
was still acting as a dominant state so it was excluded in the construction of the following transition
probability matrix:

The above table indicated that during this period cell phone users were loyal to tiGO, followed by Airtel,
then Vodacom and lastly Zantel with probabilities 0.9732, 0.9697, 0.9310 and 0.8750 respectively.

93



Table 6: The transition Probability Matrix from September to October, 2010
NETWORK Vodacom tiGO Airtel Total

Vodacom 0.9667 0.0167 0.0167 1.0000
tiGO 0.0034 0.9898 0.0068 1.0000
Airtel 0.0303 0.0000 1.0000 1.0000

Table 7: The transition results showing customers behaviour from November - December 2010
NETWORK Vodacom tiGO Airtel Zantel Total

Vodacom 54 3 1 0 58
tiGO 5 291 2 1 299
Airtel 1 0 32 0 33
Zantel 0 1 0 7 8
Total 60 295 35 8 398

Finally the switching behavior of cell phone users for four months of January to April 2011 were ob-
tained as summarized in Table 9 below: This was because the switching behaviors of cell phone users
for the months of January to February showed close similarity to that of March to April 2011. Also
TTCLMobile was still a dominant state.

Table 9: The transition results showing customers behaviour from January - April 2011
NETWORK Vodacom tiGO Airtel Zantel Total

Vodacom 46 12 2 0 60
tiGO 4 284 7 0 295
Airtel 1 6 28 0 35
Zantel 0 2 0 6 8
Total 51 304 37 6 398

The transition probability matrix constructed from Table 9 is as follows:

From Table 10 it was found that the leading company in terms of likelihood of having loyal customers
was respectively tiGo, Airtel, Vodacom, and lastly Zantel with probabilities 0.9627, 0.8000, 0.7667 and
0.7500 respectively. The results in Table 10 shows only the existing situation of customer preferences,
but the future stand or the long run forecast of the cell phone users distribution was analyzed by applying
the Chapman-Kolmogorov equation.

7. Steady State Probability Vector
MATLAB software was used in conjunction with the Chapman-Kolmogorov equation to perform itera-
tions on the transition probability matrix obtained from July, 2010 to April, 2011. The analysis resulted
in a steady state probability matrix called the stability situation. This result was obtained after 44 iter-
ations which is equivalent to 7 years and 4 months. This result verified the hypothesis that a stabilized
Ergodic Transition Probability Matrix plays a significant role in determining the steady state probability
vector shown in table 11 below:

From Table 11 the results show that if things continue as they are now in the long run the most preferred
network company will be tiGO with the probability of 0.8297. The next preferred network will be Airtel
with the probability of 0.1086. Then Vodacom will follow with probability of 0.0617. Finally Zantel
will lose all its customers.
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Table 8: The transition Probability Matrix from November to December, 2010
NETWORK Vodacom tiGO Airtel Zantel Total

Vodacom 0.9310 0.0517 0.0172 0.0000 1.0000
tiGO 0.0167 0.9732 0.0067 0.0033 1.0000
Airtel 0.0303 0.0000 0.9697 0.0000 1.0000
Zantel 0.0000 0.1250 0.0000 0.8750 1.0000

Table 10: The transition Probability Matrix from December, 2010 to April 2011
NETWORK Vodacom tiGO Airtel Zantel Total

Vodacom 0.7667 0.2000 0.0333 0.0000 1.0000
tiGO 0.0136 0.9627 0.0237 0.0000 1.0000
Airtel 0.0286 0.1714 0.8000 0.0000 1.0000
Zantel 0.0000 0.2500 0.0000 0.7500 1.0000

Finally the graphical analysis was done and the general network - customer status show that for the
period from July 2010 to April 2011, the leading network was tiGO followed in descending order by
Vodacom, Airtel, Zantel, and lastly TTCLMobile as seen in the following figure:

Figure 3: The data for the graph were collected from Kinondoni District.

8. Conclusion
According to the results discussed above, it was observed that Transition Probability Matrix for the
periods from July to August 2010 and September to October 2010 shown in Table ?? and 4 were not
Ergodic due to the existence of the absorbing state (i.e. the switching from Airtel to Airtel). On contrary,
for the periods December 2010 to January 2011 the Transition probability Matrices were Ergodic and
the analysis from these matrices showed that cell phone users were loyal to tiGo network followed by
Airtel then Vodacom and finally Zantel.

The graphical analysis shown in Figure 1 reveals that the number of cell phone users loyal to tiGO is
significantly larger than those loyal to Vodacom, Airtel Zantel and TTCLMobile. However in April 2011
customers loyal to Airtel company seemed to approach those loyal to Vodacom, indicating the existence
of customer competition among the two networks.
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Table 11: The steady state probability vector
NETWORK OPERATOR PROBABILITY

tiGO 0.8297
Airtel 0.1086

Vodacom 0.0617
Zantel 0.0000

The steady state vector computed from the Ergodic transition probability matrix using the Chapman-
Kolmongorov equation revealed that in the long run tiGo network company will have a large share with
about 82.56 percent of cell phone users, followed by Airtel and Vodacom with 11.27 percent and 6.17
percent respectively. On the other hand, the predictions show that Zantel network is going to lose all its
customers and may go out of business.

9. Recommendations
The results and conclusions above were based on a small sample of 400 cell phone users in Kinondoni
District. The reasons for using such a small sample were lack of time and budgetary constraints. We
recommend that a study using a large sample from a large area of Tanzania should be done to get more
reliable results. In fact, instead of using a two months interval a six months interval could be used.

Further studies should be done to analyze customers loyalty to other companies in Tanzania such as
insurance companies, banks etc. Another potential area where such analysis can play a significant role
is investigating the long time voters loyalty to current political parties in Tanzania to see which will
survive and which are likely to die out.
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Abstract

We introduce a derivative of a relation over the ring of integers modulo an odd number
which is base on the very fundamental concepts which helped in the evolution of derivative
of a function over the real number field, namely slope. Then, for a prime field GF (p), we
use the derivatives to construct an algorithm that find all the directions, in the sense of [9],
of graphs of certain exponential relations over R.

1. Introduction
Derivatives plays a very fundamental role in the analysis of functions over the real and the complex
number fields. In these fields, their properties and applications are well-studied, since they reflect well
on our every day lives. Over finite rings the notion of a derivative first appeared some 75 year ago in the
paper [7] by H. Hasse. This derivative is the so called Hasse derivative, and has been successfully used
in areas where finite fields play an important role, such as Coding Theory [8].

Suppose that R is a commutative ring and let f(x) =
∑n

i=0 aix
i be a polynomial over R. Then the

rth-Hasse derivative of f(x) is f [r](x) =
∑n

i=0 ( ir ) aix
i−r with ( ir ) = 0 for i < r. It is well-known

that over a finite field K all functions are polynomial. In fact, if |K| = m, then there are mm functions
over K. In addition, there is a 1-1 correspondence between a function f : K → K and polynomial of
degree less than m. So with Hasse derivatives one has every thing as far as a derivative of a function
over K.

If R is a finite commutative ring, then only a fraction of functions on R are polynomials [6]. So for a
function f on R which can not be represented by a polynomial over R, its Hasse derivative can not be
determined. The aim of this paper is to introduce a derivative on a set of relations on certain rings.

Suppose that R is a finite ring and consider a relation ρ on R in a variable x, which shall be usually
denoted by ρ(x). Then the image of ρ may sometimes be an array [10]. For instance, the image of a
function onR is an s×1-array. In Section 2 we will look into exponential relations and their arrays over
the ring R = Zn for an integer n, and then we give sufficient conditions for an exponential relation to
be a function over R.

Let R be the finite ring Zn, where n is an odd integer. Given a relation ρ, and a point a ∈ R, what
should be the derivative of ρ at a? In real analysis we take the slope of a tangent line at a, provided it
exists. Moreover for a relation on the real number fields, we have at lest one slope at a point: one along
“each column” (picture the derivative of

√
(x)). Over a finite field this is not possible, because a point

has more than one tangent! In addition, slopes of tangents can be computed along a column of ρ as well
as across it. In Section 3 we show that the slope of the “closest” secant to a point x ∈ R along a column
k is the “best candidate” for the derivative of ρ at x, which shall be denoted by Dr

(1)
k (ρ(x)) or simply

ρ
(1)
k (x), the k-th derivative of ρ at x. This derivative has similar properties as the derivative of the real

number field, like: linearity; product and quotient rules and how it acts on polynomials and exponential
relations. The definition of the derivative requires some ordering of the elements of R. In Section 1, we
consider the ring R as cyclically ordered set, which is very natural since R is a finite set.
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Let R = Fq be a finite field with q elements and let ρ : R→ R be a relation. Define the set of directions
of ρ (slopes of secants of the graph of ρ) by:

D(ρ) :=

{
ρ(a)− ρ(b)

a− b
| a 6= b ∈ R

}
(1.1)

The problem of determining the bound on the size ofD(ρ) has be studied extensively both geometrically
and combinatorically. The references [1], [3], [4] are some of the papers where this has been done.
However, there has not been any attempt on computing the directions themselves, so far.

Given a graph of a column of a relation ρ over R, the size s of the graph is the number of elements in
the domain of ρ. Note that s is less than or equal to q. Now, ideally if one want to find all directions, one
may have to compute up to s(s− 1)/2 directions. The algorithm is as follow: you start at the first point
and then find s − 1 directions, then move to the second point and compute s − 2 directions, and so on.
Since D(ρ) is a subset of R [3], there is a lot of unnecessary computations in this algorithm. In Section
4 we show that for some relations ρ over prime fields, the derivatives of ρk is all one needs to find all the
directions of the graph of ρ.

2. Preliminaries
In this section we collect some of the preliminaries that will be needed in this paper. We fix the following
notation: If R is a ring with unity, then R∗ will denote the group of units of R. Unless otherwise
specified,by order of an element a ∈ R we mean the multiplicative order of a.

2.1 Immediate successor and predecessor

Most “people” are very familiar with linear ordering. However, cyclic order is not a household term. We
give a formal definition of cyclic order and use it to define some terminologies.

LetX be a set of at least 3 elements. A ternary relationC is a subset of the Cartesian productX×X×X
which satisfies the following axioms:

1. Cyclicity: if [a, b, c] is in C, then [b, c, a] is in C

2. Asymmetry: if [a, b, c] is in C, then [c, b, a] is not in C

3. Transitivity: if [a, b, c] and [a, c, d] are in C, then [a, b, d] is in C.

4. Totality or Completeness: if a, b and c are distinct, then either [a, b, c] is in C or [c, b, a] is in C.

If C satisfies the first three axioms, then it is called partial cyclic ordering on X , and consequently the
pair (X,C) is a partially cyclically ordered set. If C satisfies all four axioms, it is called (total) cyclic
ordering on X , as a result we get cyclically ordered set (X,C).

If a cyclically ordered set X is finite of cardinality n, then there is a 1-1 correspondence between X
and the cyclically ordered set {1, 2, . . . , n, 1}. We can use this correspondence to identify positions
on X . Now, let X be a finite cyclically ordered set and let x ∈ X be at position i (using the above
correspondence), where i is an integer. Then the element in the position i+1 will be called an immediate
successor of x, and will be denoted by x+, while that in the position i − 1 will be called immediate
predecessor of x and will be denoted by x−.

2.2 Unity ordering

Let G be a finite group. The cyclic orderings on G which are of interest to us, are those that depend on
generators of the group and the binary operation of the group. For example, for the additive group Z5,
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we have the orderings {1, 2, 3, 4, 0}, {3, 1, 4, 2, 0}, {2, 4, 1, 3, 0} and {4, 3, 2, 1, 0}, while for the multi-
plicative group Z∗5 we have orderings {2, 4, 3, 1} and {3, 4, 2, 1}. Given a generator g of a finite cyclic
group, if the group is additive, then the ordering determined by g will be referred to g-additive cyclic
ordering, where as if the group is multiplicative, then the ordering will be referred to as g-multiplicative
cyclic ordering

Suppose that G is a finite cyclically ordered group of order n ≥ 3 with a binary operation ∗. Then G has
at least one cyclic ordering, namely the one determined by each generator of G. For a, b ∈ G, define the
length from a to b, denoted by l(a, b), to be b ∗ a−1 ∈ G, where a−1 is the inverse of a. For example,
in the cyclically ordered set Z5 = {0, 4, 3, 2, 1}, we have that l(0, 3) = 3, l(2, 2) = 0, while for the
multiplicative group Z∗5 = {1, 3, 4, 2} modulo 5 which is cyclically ordered, we have l(1, 3) = 3 and
l(3, 2) = 4.

Now, for our group G above, we have that every element a ∈ G has an immediate predecessor and
successor. Then the length l(a, a+) will be referred to as the least length of a, and will be denoted by
δ(a). For example, for multiplicative cyclically ordered group Z∗5 = {1, 2, 4, 3}, we have that δ(x) = 3
for all x ∈ Z∗5. The following fact can be easily proved.

Fact 2.25 Let R be a ring with unity 1R and isomorphic to the ring Zn.

i. For any additive ordering on R the least length δ(a) = δ is constant for all a ∈ R.

ii. There is an additive ordering on R such that δ(a) = δ = 1R

The cyclic ordering of Fact 2.25 (ii.) on a ring R will be called the unity ordering.

For the rest of the paper, we impose the following assumption on our ring R:

Assumption 1 R is the ring Zq where q is an odd integer. Moreover, the ordering onR is the associated
additive cyclic ordering.

Remark 1 Under the above assumption our ring R will have a canonical cyclic ordering, which will
be fundamental throughout the paper. Moreover, no matter what additive cyclic ordering one takes on
R, the element x+ − x− ∈ R will be a unit, since the ordering is determined by a generator of R.

3. Exponential and Hyperbolic Relations over R
In real analysis, exponential functions αx are very fundamental, and they can easily be used to define
other functions. Over finite ring, the mapping determined by αx, for a unit α, is not necessarily a
function. We have the following definition, which is motivated from [5].

Definition 3.26 Let α ∈ R be a unit of order N . Then, the exponential relation ρ : R → R is the rela-
tion ρ(x) = αx. The image of ρ is anN×t-array [ρi(x)] with the a-th row, ρ(a) = {αa, αa+q, . . . , αa+(t−1)q},
where t ≤ N . The k-th column of ρ, ρk(x) = αx+kq, where x = 0, 1, . . . N − 1, will be called the k-th
exponential relation of ρ.

Example 3.27 We consider examples:

1. Let R = Z7 and consider the relation ρ(x) = 2x mod 7. Then the array of ρ is

[ρk(x)] =

20 27 214 . . .
21 28 215 · · ·
22 29 216 · · ·

 =

20 21 22

21 22 23

22 23 21

 =

1 2 4
2 4 1
4 1 2
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2. If R = Z9 and our relation is ρ(x) = 2x, then the array of ρ is

[ρk(x)] =



20 29 218 . . .
21 210 219 · · ·
22 211 220 · · ·
23 212 221 · · ·
24 213 222 · · ·
25 214 223 · · ·

 =



1 8
2 7
4 5
8 1
7 2
5 4


Computation of the array of the relation in Example 3.27 (1.) looks easy, because along columns and
rows one just increases the power by one. This is generally true for prime fields.

Lemma 3.28 If R is a prime field, and ρ(x) = αx is a relation on R, then the k-th relation of ρ is
ρk(x) = αx+k.

Proof
We have that kq mod N = kq−k+k mod N = k(q−1)+k mod N = k mod N , sinceN |q−1.
� Consider the relation ρ(x) = αx, where α ∈ R has order N . Then ρi(x) has N rows. However, as
shown in the example above the number of columns may vary. If certain condition are satisfied, then the
number of columns of the array of ρ can easily be obtained.

Theorem 3.29 Let α be a unit in R of order N , and let ρ(x) = αx be a relation.

(i) If a perfect square is not a factor of q and gcd(N, q) = 1, then [ρi(x)] is an N ×N -array.

(ii) If q = pm for a prime p, where m is a positive integer, then there are gcd(N, p − 1) columns in
[ρi(x)].

Proof
Suppose that [ρi(x)] is an s× t-array, and let the a-th row be ρ(a) = {αa, αa+q, αa+2q, . . . , αa+(t−1)q}.
Then ρ(a) is a coset of the subgroup H = 〈αiq〉 of R∗ of order t. One can then observe that for both
cases, s = N and t ≤ N .

(i) Now αa = αa+tq means that tq = 0 mod N which is implies that N |tq. But since N does not
divide q, it must divide t. Hence t = N .

(ii) We have that H ≤ 〈α〉, since H contains power of α. Let K be a subgroup of R∗ of order p − 1.
Since gcd(pn−1, p − 1) = 1, then R∗ ' Zpn−1 ⊕ Zp−1, and hence K is unique. From this we infer
that if β ∈ R∗ is such that βp−1 = 1, then β ∈ K. Now we have that (αiq)p−1 = (αφ(q))ip = 1 for
i = 1, . . . t, so that H ≤ K. Hence t|N and t|p − 1, which implies that t ≤ gcd(N, p − 1) = d. If
d < t, then αdq = αsNq+r(p−1)q = 1, so that |H| < t, a contradiction. � The following corollary gives
a sufficient condition for an exponential relation on R to be a function.

Corollary 3.30 Suppose that α ∈ R is unit of order N .

(i) If a perfect square is not a factor of q and N |q, then the relation ρ(x) = αx is a function.

(ii) If q = pm for a prime p and α has order pi for i = 1, . . .m− 1, then the relation ρ(x) = αx is a
function.
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Proof
(i) For all a ∈ R and some positive integer t, we have that ρ(a) = {αa, αa+q, . . . , αa+(t−1)q} = {αa},
since N |q.

(ii) Follows from Theorem 3.29, since gcd(pi, p− 1) = 1 for i = 1, . . .m− 1. �

Let α ∈ R be a unit of order N , and consider the relation ρ(x) = αx. Then ρ is periodic of period N .
More precisely, for a positive integer s each subset Sj = {jN, jN+1, . . . , (j+1)N−1} of the domain
of ρ, where j = 0, 1, . . . s − 1, determines the same image ρ(Sj) = {ρ(jN), ρ(jN + 1), . . . , ρ((j +
1)N − 1)}. The subset Sj is referred to as the j-th steps of ρ. As expected, starting at a point in R, there
are only a finite number of steps of ρ before one gets back to the same point.

Proposition 3.31 Let α ∈ R be a unit of order N , and consider the relation ρ(x) = αx. If gcd(N, q) =
d, then ρ has q/d steps.

Proof
Let ν be the least positive integer with the property that the set T = {0, N, 2N, . . . , (ν − 1)N} taken
mod q has distinct elements. Observe that find number of steps of ρ is the same as finding the cardinality
ν of T . Also note that ν ≤ q/d. If ν > q/d, then |T | < ν, a contradiction. �

Corollary 3.32 Let α ∈ R be a unit of order N , and consider the relation ρ(x) = αx. Then the map
π = ρ|Sj

: Sj → im ρ is a permutation.

Proof
Only need to show that π is 1-1. Suppose that π(jN) = π(jN + k) for k 6= 0 mod N . Then
αjN = αjN+k which is equivalent to k = 0 mod N , a contradiction. �We now define hyperbolic
relations over R.

Definition 3.33 Let α ∈ R be a unit of order N ≥ 3. Then

1. The k-th hyperbolic sine and cosine relations to the base α over R, denoted by sinhα,k(x) and
sinhα,k(x) are respectively

coshα,k(x) :=
αx+kq + α−(x+kq)

x+ − x−
; sinhα,k(x) :=

αx+kq − α−(x+kq)

x+ − x−
.

2. The hyperbolic since and cosine relations to the base α, denoted by coshα(x) and sinhα(x) are
the relations with images the N × t-arrays made by the columns coshα,k(x) and sinhα,k(x)
respectively, where t < N .

Under certain assumption on R, hyperbolic relations on R behave like those over the real.

Proposition 3.34 Suppose that R has the unity ordering, and let α ∈ R be a unit of order N ≥ 3. Then
for k = 0, 1, . . . N − 1:

(i) the identity cosh2
α,k(x)− sinh2

α,k(x) = 1R holds,

(ii) coshα,k(−x) = coshα,k(x) and sinhα,k(−x) = − sinhα,k(x)
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Proof
Follows from the definition. �

4. Derivatives and their Properties
Denote the set of relations from R to R whose image are s× t-arrays by Relst(R) , and by Fun(R) the
set of all functions from R to R.

Let q be the order of the ring R and let x ∈ R. For a positive integer k and a relation ρ ∈ Relst(R),
define a map Dr

(1)
k : Relst(R)→ Relst(R) on the k-th relation ρk of ρ by

Dr
(1)
k (ρ)(x) :=

ρk(x+ + kq)− ρk(x− + kq)

x+ − x−
. (4.1)

If the context is clear, then Dr
(1)
k (ρ)(x) will be just denoted by ρ(1)

k (x).

If one looks closely at the this map one will notice that its value at a point x ∈ R is the slope of the
“closest” secant to the point x along ρk. It can be also interpreted as the “average” of the two “closest
slopes” to x along ρk. The result below show that the transformation has good properties too.

Theorem 4.35 Let ρ, γ ∈ Relst(R), x ∈ R and let c ∈ Z. Then

(i) the transformation Dr
(1)
k is linear.

(ii) Product Rule:

(ρkγk)
(1)(x) = ρk(x− + kq)γ

(1)
k (x) + γk(x+ + kq)f (1)(x)

= ρk(x+ + kq)γ
(1)
k (x) + γk(x− + kq)ρ

(1)
k (x).

(iii) If γk(x) 6= 0 for all x ∈ R, then(
ρk
γk

)(1)

(x) =
γk(x− + kq)ρ

(1)
k (x)− ρk(x− + kq)γ

(1)
k (x)

γk(x+ + kq)γk(x− + kq)
.

Proof
(i) Follows easily.

(ii) We use the elementary “+- tricks”.

(ρkγk)
(1)(x) =

(ρkγk)(x+ + kq)− (ρkγk)(x− + kq)

x+ − x−

=
ρk(x+ + kq)γk(x+ + kq)− ρk(x− + kq)γk(x− + kq)

x+ − x−
= ρk(x− + kq)γ

(1)
k (x) + γk(x+ + kq)ρ

(1)
k (x)

(iii) Exercise. �

Remark 2 If R is a prime field, then (4.1) and its subsequent formulas in Theorem 4.35 become much
easier, by the use of Lemma 3.28.

Example 4.36 Let us look into examples:

103



(i) Let p be an odd prime number and consider the ring Zp with the associated additive cyclic order-
ing. Let f(x) = ax mod p. Then for each x ∈ Zp, δ(x) = 1 ∈ Zp, so that x+−x− = 2 is a unit
in Zp. So, f (1)(x) = a(x+1)−a(x−1)

2 = a. For g(x) = bx2 mod p, we have that g(1)(x) = 2bx.

(ii) Let R = Z9 has the unity ordering, and consider the relation ρ ∈ Rel(R) given by ρ(x) =
2x. Then the image of ρ is 6 × 2-array with columns ρ0(x) = {20, 21, 22, 23, 24, 24} and
ρ1(x) = {23, 24, 25, 20, 21, 22}. One can verify that ρ(1)

0 (x) = {3, 6, 3, 6, 3, 6} and ρ(1)
1 (x) =

{6, 3, 6, 3, 6, 3} for x ∈ R.

(iii) Consider the ring Z35, and let R = 5Z35 = {0, 5, 10, 15, 20, 25, 30}. Then R is a ring modulo
35 whose unity 1R = 15. If one considers the given cyclic ordering on R, then for each x ∈ R,
δ(x) = δ = 5 and x+ − x− = 2δ = 10 which is a unit in R. Consider the relation ρ(x) = 255x

mod 35 on R. Then the image of ρ is a 3 × 3-array, and we have that ρ(1)
0 (x) = {25, 15, 30},

ρ
(1)
1 (x) = {15, 30, 25} and ρ(1)

2 (x) = {30, 25, 15} for x ∈ R.

The computation in Example 4.36 (i) and (ii) would not be very clear as far as ρ(1)
k (0) is concerned. But

we used the following result.

Lemma 4.37 Suppose α ∈ R is a unit of order N ≥ 3, and let ρ(x) = αx be a relation on R.
Then ρ(k) = ρ(sN + j), for all integers j, s. In particular, ρ(0) = ρ(N), ρ(−1) = ρ(N − 1) and
ρ(N + 1) = ρ(1)

Proof
We have that ρ(j) = αj = αsN+j = ρ(sN + j). �

From the above theorem we see that the transformation ρ(1)
k looks indeed like a derivative on Relst(R).

For, when applied to a constant function it vanishes, and when applied to a polynomial of degree two it
gives a polynomial of degree one, and so on. Also, when the transformation is applied to an exponential
relation over R, it produces the relation times a constant. The above behavior are similar to those seen
in the derivative transformation of real functions.

Definition 4.38 Let ρ be a relation on R and let x ∈ R. If ρ(1)
k (x) is defined, then it will be called the

k-th derivative of the relation ρ at x, and will be denoted by ρ(1)
k (x).

In the real analysis case we are used to very nice derivative formulas for functions. The situation here is
the similar, and we have the following result.

Corollary 4.39 LetR has unity 1R and let δ be the least length. If α ∈ R is a unit and n is a nonnegative
integer greater than 1, then

(i) (αx)
(1)
k (x) = (α2δ−1R)

2δαδ
αx+kq

(ii) (xn)(1)(x) =
∑s

i=0 ( n
2i+1 )xn−(2i+1)δ2i; s =

{
n
2 − 1 n even
n−1

2 n odd

(iii) (sinhα,h(x))(1)(x) = (α2δ−1R)
2δαδ

coshα,h(x)

(iv) (coshα,h(x))(1)(x) = (α2δ−1R)
2δαδ

sinhα,h(x)
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Proof
One just uses the definition of the derivative. �

Remark 3 1. If the ordering of R in Corollary 4.39 is the unity ordering, then δ = 1R and the formulas
become much simpler.

2. Theorem 4.35 and Corollary 4.39 can be used to find k-th derivatives of all relations which are linear
combinations or products of the set of k-th relations {xn, αxk, sinhα,k(x), coshα,k(x)} for a unit α ∈ R.

3. The derivative of a monomial function whose degree is divisible q is not zero in R.

The derivative is a linear transformation on Relst(R). So it can be applied on a relation ρmore that once
and still preserve the linearity property. The following result, which is a consequence of Theorem 4.35
and Corollary 4.39, gives formulas for computing k-th derivatives of certain relations ρ, t times, which
will be called (t, k)-th derivative of ρ. If the array of ρ has only one column, then the (t, 0)-th derivative
will be just called t-th derivative.

Corollary 4.40 Let α ∈ R be a unit, and let δ is the least length. Then for a nonnegative integer t:

(i)

(xn)(t)(x) =
s∑
i=0

( n
2i+1 ) (xn−(2i+1))(t−1)(x)δ2i; s =

{
n
2 − 1 n even
n−1

2 n odd

(ii) (αx)
(t)
k (x) = (α

2δ−1R
2δαδ

)tαx+kq

Proof
(i) Follows from (4.1) and Theorem 4.35.

(ii) Exercise. � Over the real the derivative transformation
is not necessarily periodic for exponential functions. Over prime fields the derivative transformation on
an exponential relation is periodic for most of the bases.

Theorem 4.41 Let R = GF (q) for a prime number q, and let α ∈ R be a unit which is not a square
root of unity. If ρ(x) = αx, then

ρ
(t)
h (x) = ρh(x) for some positive integer t

Proof
By the assumption α2 − 1 6= 0 ∈ R, so that α

2−1
2α ∈ R∗, which implies that (α

2−1
2α )t = 1 ∈ R∗ some

positive integer t. �

4.1 “The Exponential Values e”

In real analysis the exponential relation exp(x) = ex is characterized by its derivative, in the sense that
it is the only relation with derivative equals the relation itself. Given a finite ring with additive cyclically
ordering, do we have an analog of the exponential relation with respect the derivative we have defined?
The answer is not necessarily! But some rings have indeed got a pair of e’s. The result below gives a
sufficient condition for that to happen.

Theorem 4.42 Let R = GF (q), where q ≥ 3 is prime. If 2 is a quadratic residue in R, then the
elements e = 1±

√
2 has the property that ρ(1)

k (x) = ρk(x), where ρk is the k-th relation of the relation
ρ(x) = ex.
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Proof
Consider the relation ρ(x) = ex, where e is in R. Suppose that ρ(x) has the property that ρ(1)

k (x) =
ρk(x) for all k. Then one has that e2 − 2e− 1 = 0 ∈ R, which means e = 1±

√
2. �

5. Finding Directions
Throughout this section R = GF (q) for an odd prime q, and the ordering of R is the unity ordering.
Recall that for a relation ρ : R → R, the set of directions of ρ is denoted by D(f) (see (1.1)). Let us
denote the set of all (i, k)-th derivatives of ρ by Dr

(i)
k (ρ) i.e.

Dr
(i)
k (ρ) := {ρ(i)

k (x) | x ∈ R} (5.1)

From the definition of derivative we see that Dr
(i)
k (ρ) ⊆ D(ρ) for all i, k.

For a relation ρ : R → R, the bound on the size of D(ρ) has be well studied. But there are only few
relations ρ over R whereby the exact size of D(ρ) is known. So far these are the known ones: linear
functions f [|D(f)| = 1] (see [9]); functions f(x) = x(q+1)/2 [|D(f)| = (q+ 3)/2)] (see [3]). We will
try to add to this collection. We need the following lemma.

Lemma 5.43 Let α ∈ R be a unit of order N ≥ 3, and consider the relation ρ(x) = αx. Then for all
x ∈ R, ρ(i)

k (x) 6= 0 ∈ R for all i, k.

Proof
For x ∈ R such that jN + 1 ≤ x ≤ (j + 1)N − 1, we have that ρ(i)

k (x) 6= 0 for all j, k, by Corollary
3.32. One can easily verify that ρ(i)

k (jN) 6= 0, for all i, j, k. � Suppose that α ∈ R is a unit, and
let ρ(x) = αx be a relation. Then by Theorem 4.41, applying the derivative transformation repeatedly
gives back ρ(x). We have two cases for β = α2−1

2α :

Case 1: If β is in 〈α〉, then we get a permutation of 〈α〉 whose order it the order of subgroup generated
by β.

Case 2: If β is not in 〈α〉, then the collection {Dr
(i)
k (ρ)} partitions a bigger subgroup of R∗ containing

〈α〉. If this happens, then we say that α partitions the subgroup.

We have the following result.

Lemma 5.44 Let α be a unit in R, and let ρ(x) = αx be a relation. Then the order of Dr
(i)
k (ρ) divides

q − 1 for all i, k. In particular, if α is a generator of R∗, then |Dr
(i)
k (ρ)| = q − 1 for all i, k.

Proof
We know that the set Dr

(i)
k (ρ) is a coset of 〈α〉 in R∗ for all i, k. Then the result follows, since all cosets

of a subgroup have the same size. �

Now we have our main result of this section, which establishes a connection between D(ρ) and Dr(i)(ρ)
for exponential relations ρ(x).

Theorem 5.45 Suppose that α is a unit in R of order N ≥ 3, consider the relation ρ(x) = αx, and let
s be the order of α

2−1
2α .

(i) If α partitions R∗, then for all k

D(ρ) = Dr
(1)
k (ρ) tDr

(2)
k (ρ) t · · · tDr

(s)
k (ρ) t {0},
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(ii) If α is a generator of R∗, then

D(ρ) = Dr
(i)
k (ρ) t {0} for all i, k.

Proof
(i) Let T = Dr

(1)
k (ρ) t Dr

(2)
k (ρ) t · · · t Dr

(s)
k (ρ). Then |T | = q − 1, since α partitions R∗. We also

have that 0 is not in Dr
(i)
k (ρ) for all i, k, by Lemma 5.43. Since Dr

(i)
k (ρ) ⊆ D(ρ) and D(ρ) ≤ q for all

i, the result follows.

(ii) By Lemma 5.44 we have that |Dr
(i)
k (ρ)| = q−1 and 0 /∈ Dr

(i)
k (ρ) by Lemma 5.43, for all i, k. Since

Dr
(i)
k (ρ) ⊂ D(ρ) for all i, k, and D(ρ) ≤ q, the result follows. �
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Bifurcation results on symplectic manifolds
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Universitá degli Studi di Roma Tor Vergata, Italy

1. Introduction
Existence and multiplicity of periodic trajectories of Hamiltonian vector fields on symplectic manifolds
is a traditional field of research, which found new input from the work on Arnold’s conjecture. Fitz-
patrick, Pejsachowicz and Recht in [8],[9] studied bifurcation of periodic solutions of one-parameter
families of (time dependent) periodic Hamiltonian systems in R2n relating the spectral flow to the bi-
furcation of critical points of strongly indefinite functionals.

In [6] we extended their results to families of time dependent Hamiltonian vector fields acting on sym-
plectic manifolds and the related problems of bifurcation of fixed points of one parameter families of
symplectomorphisms were discussed. Namely we proved that for a 1-parameter family of time depen-
dent Hamiltonian vector fields, acting on a symplectic manifold M which possesses a known trivial
branch uλ of 1-periodic solutions if the relative Conley Zehnder index of the monodromy path along
uλ(0) is defined and does not vanish then any neighborhood of the trivial branch contains 1-periodic
solutions not in the branch.

Fixed points of Hamiltonian symplectomorphisms are in one to one correspondence with 1-periodic
orbits of the corresponding vector field. Hence as a consequence we obtained, assuming that (M,ω)
is a closed symplectic manifold with trivial first De Rham cohomology group, for a path φ : [0, 1] →
Symp0(M) of symplectomorphisms with a known smooth path p : [0, 1]→ U of fixed points, i.e. , p(λ)
is a fixed point of φλ. If the Conley-Zehnder index CZ(φ, p) of φ along p is defined and does not vanish
then there is a bifurcation of fixed points of φ from the trivial branch p.

The Arnold conjecture states that a generic Hamiltonian symplectomorphism has more fixed points that
could be predicted from the fixed point index. More precisely, by the fixed point theory a diffeomorphism
isotopic to the identity with non-degenerate fixed points must have at least as many fixed points as
the Euler-Poincaré characteristic of the manifold. But the number of fixed points of a Hamiltonian
symplectomorphism verifying the same non-degeneracy assumptions is bounded bellow by the sum of
the Betti numbers. Roughly speaking, this can be explained by the presence of a variational structure in
the problem. Fixed points viewed as periodic orbits of the corresponding vector field are critical points
of the action functional either if the orbits are contractible or when the symplectic form is exact.

Applied to bifurcation of fixed points of one parameter families of Hamiltonian symplectomorphisms
our result shows a similar influence on the presence of a variational structure. In order to see the analogy
consider a one parameter family of diffeomorphisms ψλ;λ ∈ [0, 1] of an oriented manifoldM , assuming
for simplicity that ψλ(p) = p and that p is a non degenerate fixed point of ψi; i = 0, 1. The work of Ize
[11] implies that the only homotopy invariant determining the bifurcation of fixed points in terms of the
family of linearizations L ≡ {Tpψλ} at p is given by the parity

π(L) = sign det(Tpψ0) · sign det(Tpψ1) ∈ Z2 = {1,−1}.

Here det is the determinant of an endomorphism of the oriented vector space TpM . In other words
bifurcation arise whenever the det(Tpψλ) change sign at the end points of the interval. Moreover, any
family of diffeomorphisms close enough to ψ in the C1-topology and having p as fixed point undergoes
bifurcation as well. On the contrary if both sign coincide one can find a perturbation as above with
no bifurcation points at all. The integer valued Conley-Zehnder index provides a stronger bifurcation
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invariant for one parameter families of Hamiltonian symplectomorphisms. It forces bifurcation of fixed
points whenever the Conley-Zehnder index CZ(L) is non zero even when π(L) = 1. The relation
between the two invariants is π(L) = (−1)CZ(L).

A natural generalization of the classical Arnold’s conjecture estimates the number of intersection points
of two Lagrangian submanifolds of a symplectic manifold.

The cause that forces Hamiltonian deformation L1 = φ(L) of a compact Lagrangian submanifold L of
M to have a huge intersection withL can be explained as follows: by a well known theorem of Weinstein
the submanifold L has a neighborhood symplectomorphic to a neighborhood of the zero section in the
cotangent bundle T ∗(L). If L is simply connected and if L1 is a Lagrangian submanifold that is C1

close to L then L1 is given by the image of the differential dS : L → T ∗(L) of a smooth function
S : L → R2n and therefore will have as many intersection points with L as critical points has the
function S on L. The latter is bounded from below by Lusternik-Schnirelmann inequalities or by Morse
inequalities if the critical points are non-degenerate. Of course L1 need not be C1-close to L. But when
M = T ∗(N) using an Hamiltonian isotopy φλ with φ1 = φ one can still produce a family of generating
functions S : N ×Rk → R with k big enough such that critical points of S correspond to intersections
of N with L1. This is a Theorem of Sikorav [18]. Using this theorem one can still get estimates on the
number of intersection points but weaker than in the previous case. Functions S as before are usually
called generating families.

In [7] we showed that intersections of one parameter families of Lagrangian submanifolds with a given
one have stronger bifurcation properties than the intersections of general submanifolds of right codi-
mension essentially for the same reason as above. For families Lλ close enough in the C1 topology to a
given Lagrangian submanifold L0 bifurcation of intersection points of Lλ with L0 reduces, by the above
described process, to bifurcation of critical points of one parameter families of smooth functions. In
this setting bifurcation arises whenever the spectral flow, or what is the same, the difference between the
Morse indexes of the end points of the trivial branch is non-zero. This gives a stronger invariant than the
usual bifurcation index obtained by comparing the sign of the determinant of the Jacobian matrix of the
gradient at the end points of the trivial branch. Via generating functions we showed that the assumption
of being C1 close can be substituted with a more general one without modifying the conclusions.

Namely the main result in [7] is as follows. Let N be a closed manifold and let L = {Lλ} be an exact,
compactly supported family of Lagrangian submanifolds of the symplectic manifold M = T ∗(N) such
that L0 admits a generating family quadratic at infinity. Let p : [0, 1] → M be a path of intersection
points of Lλ with N . Assume that Lλ is transversal to N at p(λ) for λ = 0, 1 and that the Maslov
intersection index µ(L,N ; p) is different from zero. Then arbitrarily close to the branch p there are
intersection points of Lλ with N such that do not belong to p.

The results exposed here were obtained in collaboration with J. Pejsachowicz. Symplectic features
nedeed for our purpose are collected in section §2. In section §3 we extend the definitions of the Maslov
and Conley-Zehnder indeces to manifolds. This relies on the existence of symplectic trivializations of
symplectic vector bundles over an interval. In §4 we outline how the bifurcation results of Fitzpatrick,
Pejsachowicz and Recht are applied to the situations described above.

I would like to thank Ramadas Ramakrishnan from ICTP and the EAUMP’s coordinators John Mango,
Egbert Mujuni, Sylvester Rugeihyamu for inviting me to take part on the EAUMP project. I also wish
to thank Velleda Baldoni for finantial support.

2. Symplectic features
A symplectic manifold M is a differentiable manifold together with a closed nondegenerate differen-
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tiable two form ω, i.e. ,

dω = 0 and ∀Y 6= 0 ∃X : ω(X,Y ) 6= 0, X, Y ∈ TmM.

HenceM must have even dimension and because ωn/n! gives the canonical volumen form it is oriented.

The non-degeneracy condition induces an isomorphism between the tangent T (M) and the cotangent
space of the manifold T ∗(M) that assigns to each vector field X a 1-form ιXω = ω(X, .).

A diffeomorphism φ : (M,ω) → (M,ω) that satisfies φ∗ω = ω is called symplectomorphism. In
particular, a simplectomorphism preserves the volumen.

The requirement on the 2-form ω to be closed provides a correspondence between closed 1-forms and
conservative vector fields since in this case LXω = 0 if and only if d(ιXω) = 0, such vector fields are
called symplectic. The flow generated by a symplectic vector field consist of symplectomorphisms, i.e. ,
φ∗tω = ω ∀t. A vector field is called Hamiltonian if the 1-form ιXω is exact.

Because on a manifold there are many 1-forms the dimension of the group of symplectomorphisms of
M , Symp(M,ω) is infinity. To the subset of exact 1-forms α = dH corresponds a normal subgroup
Ham(M,ω) of Symp(M,ω).

In symplectic geometry there are no local invariants like for instance the curvature in Riemannian ge-
ometry. Darboux Theorem states that in some neighborhood of a given point one can choose a coor-
dinate system (U ;x1, . . . xn, y1, . . . , yn) such that the restriction of the form to the neighborhood U is
ω|U = ω0 :=

∑n
i=1 dxi ∧ dyi. Hence the universal local model of a symplectic form is the standard

symplectic form ω0 in R2n. In this case the isomorphism between the tangent and cotangent space is
given explicity by X = ∂/∂xj → ιXω0 = dyj , X = ∂/∂yj → ιXω0 = −dxj .

An important example of symplectic manifolds is the cotangent bundle of any manifold. Let N be an
n-dimensional differentiable manifold. Let T ∗(N) be the cotangent bundle of N and π : T ∗N → N the
projection on N . There is a canonical 1-form λN on T ∗N defined as follows: let ξ be a tangent vector
to T ∗N at the point p ∈ T ∗N (ξ ∈ Tp(T ∗(N))). Since the element p is a cotangent vector on Tx(N)
where x = π(p) and π∗(ξ) ∈ Tx(N) define λN (ξ) := p(π∗(ξ)). In local coordinates λN (ξ) = pdq and
the symplectic 2-form is Ω = dλN . Being exact it is closed and it is non-degenerate because in local
coordinates Ω = dp ∧ dq.

Let W be a vector subspace of a symplectic vector space (V, ω), the symplectic orthogonal to W is the
vector subspace Wω := {v ∈ V/ω(v, w) = 0 ∀v, w ∈ W}. W is said to be isotropic if W ⊂ Wω. It is
said to be coisotropic if W ⊃Wω. If it is both isotropic and coisotropic it is called Lagrangian.

If W is isotropic, then Wω is coisotropic and the symplectic form ω induces a symplectic form $
on the quotient space Wω/W defined by $(v + W,w + W ) = ω(v, w) ∀v, w ∈ Wω. The space
(Wω/W,$) is called the isotropic redution. Moreover if L is a Lagrangian subspace of (V, ω) then
LW = (L ∩Wω)/(L ∩W ) is a Lagrangian subspace of Wω/W .

Lagrangian submanifolds of a symplectic manifold (M,ω) are the submanifolds of maximal dimension
where the symplectic form vanishes. They are characterized by TL = (TL)ω. Examples of Lagrangian
submanifolds are the vertical fibers of a cotangent bundle T ∗N . As for submanifolds transverse to the
fibers, any such submanifold is locally the graph of a 1-form α : N → T ∗N . The graph of a 1-form α
is Lagrangian if and only if α is closed. If the 1-form is exact, i.e. , if α = dS the funtion S is called a
generating function for the corresponding submanifold.

Any Lagrangian submanifold can be generated locally by a function on the product of N with a para-
menter space, in which case it is called generating family.

110



The definition goes as follows (see [21]). Let V be a finite dimensional vector space. Consider a smooth
function S : N × V → R such that the differential dS is transversal to the submanifold

N0 = T ∗(N)× V × {0} of T ∗(N × V ) ≡ T ∗(N)× V × V

Denote by Sn the function Sn : V → R defined by Sn(v) = S(n, v) and by Sv the function Sv : N → R
defined by Sv(n) = S(n, v). By the implicit function theorem, the set C = {(n, v)/dSn(v) = 0} of
vertical critical points of S is a submanifold of N × V of the same dimension as N .

Let e : C → T ∗(N) defined by e(n, v) = dSv(n). The map e is a Lagrangian immersion (but generally
not an embedding) of the manifold C into T ∗N . Given a Lagrangian submanifold L of T ∗(N), S is said
to be a generating family for L if there is a diffeomorphism h from C onto L such that e = ih, where
i : L→ T ∗(N) denotes the inclusion. The generating family S is said to be quadratic at infinity if there
is a non-degenerate quadratic form Q on V such that S(n, v) = Q(v) for ‖v‖ big enough.

Diffeomorphisms of a manifold may be identified with their graphs, that is, with submanifolds ofM×M
which are mapped diffeomorphically onto M by the projections π1, π2. If M carries a symplectic
structure ω, the form π∗1ω − π∗2ω defines a symplectic structure on the product manifold M ×M . A
diffeomorphism φ of a symplectic manifold (M,ω) is a symplectomorphism if and only if its graph is a
Lagrangian submanifold of (M ×M,π∗1ω − π∗2ω). Fixed points of φ correspond to intersections of the
graph with the diagonal ∆ of M ×M .

On a closed symplectic manifold (M2n, ω) every smooth time dependent (Hamiltonian) functionH : R×
M → R gives rise to a family of time dependent Hamiltonian vector fields X : R×M → TM defined
by

ω(X(t, x), ξ) = dxH(t, x)ξ

for ξ ∈ TxM . If H is periodic in time with period 1, then so is X . By compactness and periodicity the
solutions u(t) of the initial value problem for the Hamiltonian differential equation

{
d
dtu(t) = X(t, u(t)),

u(s) = x
(2.1)

are defined for all times t. The flow (or evolution map) associated to X is the two-parameter family of
symplectomorphisms ψ : R2 → Symp(M) defined by

ψs,t(x) = u(t)

where u is the unique solution of (2.1).

By the uniqueness and smooth dependence on initial value theorems for solutions of differential equa-
tions the map ψ : R2×M →M is smooth. The diffeomorphisms ψs,t verify the usual cocycle property
of an evolution operator i .e. ,ψs,r ◦ ψr,t = ψs,t and ψt,t = Id . From this property it follows that for
each fixed s, the map sending u into u(s) is a bijection between the set of 1-periodic solutions of the
time dependent vector field X and the set of all fixed points of ψs,s+1. Hence in order to find periodic
trajectories of (2.1) we can restrict our attention to the fixed points of P = ψ0,1. The map P = ψ0,1 is
called the period or Poincaré map of X.

A 1-periodic trajectory is called non degenerate if p = u(0) is a non degenerate fixed point of P ,
i.e. , if the monodromy operator Sp ≡ TpP : TpM → TpM has no 1 as eigenvalue. Consistently, the
eigenvalues of the monodromy operator will be called Floquet multipliers of the periodic trajectory.
The particular choice of s = 0 is irrelevant to the property of being non degenerate since the Floquet
multipliers do not depend on this choice. (see [1])
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Every symplectomorphism that can be represented as a time 1-map of such a time dependent Hamilto-
nian flow is called a Hamiltonian map. IfM is simply connected the connected component of the identity
map Symp0(M,ω) in the space of symplectic diffeomorphisms Symp(M,ω) consists of Hamiltonian
maps (see [12]).

3. The Maslov index and the Conley-Zehnder index
Before going to the manifold setting let us discuss the case of R2n = T ∗Rn with the standard symplectic
form ω0 =

∑
dxi ∧ dyi. The group of real 2n× 2n symplectic matrices will be denoted by Sp(2n,R).

The relative Conley-Zehnder index is a homotopy invariant associated to any pathψ : [0, 1]→ Sp(2n,R)
of symplectic matrices with no eigenvectors corresponding to the eigenvalue 1 at the end points. This
invariant counts algebraically the number of parameters t in the open interval (0, 1) for which ψ(t) has
1 as an eigenvalue. One of the possible constructions uses the Maslov index for non-closed paths. We
shall define it along the lines of Arnold [3] for closed paths. For an alternative construction see Robbin
and Salamon [15].

The Lagrangian Grassmaniann Λ(n) consists of all Lagrangian subspaces of R2n considered as a topo-
logical space with the topology it inherits as a subspace of the ordinary Grassmanian of n-planes. Let J
be the selfadjoint endomorphism representing the form ω0 with respect to the standard scalar product in
R2n. Namely, ω0(u, v) ≡< Ju, v >. Then J is a complex structure, it is indeed the standard one. It
coincides with multiplication by i under the isomorphism sending (x, y) ∈ R2n into x + iy in Cn. In
terms of this representation, a Lagrangian subspace is characterized by JL = L⊥.

Using the above description one can identify Λ(n) with the homogeneous space U(n)/O(n). This
can be done as follows: given any orthonormal basis of a Lagrangian subspace L there exist a unique
unitary endomorphism A ∈ U(n) sending the canonical basis of L0 = Rn × {0} into the given one
and in particular sending L0 into L. Moreover the isotropy group of L0 can be easily identified with
O(n). Hence we obtain a diffeomorphism between U(n)/O(n) and Λ(n) sending the class [A] into
A(L0). Since the determinant of an element in O(n) is ±1, the map sending A into the square of the
determinant of A factorizes through Λ(n) ≡ U(n)/O(n) and hence induces a one form Θ ∈ Ω1

(
Λ(n)

)
given by Θ = [det2]∗θ, where θ ∈ Ω1(S1) is the standard angular form on the unit circle. This form is
called the Keller-Maslov-Arnold form.

The Maslov index of a closed path γ in Λ(n) is the integer defined by µ(γ) =
∫
γ Θ. In other words µ(γ)

is the winding number of the closed curve t→ det2
(
γ(t)

)
. The Maslov index induces an isomorphism

between π1(Λ) and Z.

The construction can be extended to non-closed paths as follows: fix L ∈ Λ(n). If L′ is any Lagrangian
subspace transverse to L then L′ can be identified with the graph of a symmetric transformation from
JL into itself. It follows from this that the set ΛL of all Lagrangian subspaces L′ transverse to L is an
affine space diffeomorphic to the space of all symmetric forms on Rn and hence it is contractible.

We shall say that a path in Λ(n) is admissible with respect to L if the end points of the path are transverse
to L. The Maslov index µ(γ, L) of an admissible path γ with respect to L is defined as follows: take
any path δ in ΛL joining the end points of γ and define

µ(γ;L) ≡ µ(γ′) =

∫
γ′

Θ.

where γ′ is the path γ followed by δ. The result is independent of the choice of δ. Moreover, since ΛL
is contractible, µ(γ;L) is invariant under homotopies keeping the end points in ΛL.

Geometricaly, the Maslov index µ(γ;L) can be interpreted as an intersection index of the path γ with the
one codimensional analytic set Σl = Λ(n)−ΛL (see [16]). From the definition it follows that the index
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is additive under concatenation of paths. Namely, given two admissible paths α and β with α(1) = β(0)

µ(α ? β;L) = µ(α;L) + µ(β;L).

Since Sp(2n,R) is connected it follows from the homotopy invariance that

µ(Sγ;SL) = µ(γ;L)

for any symplectic isomorphism S. This allows to extend the notion of Maslov Index to paths of La-
grangian subspaces in Λ(V ), where (V, ω) is any finite dimensional symplectic vector space.

Graphs of symplectic endomorphisms are Lagrangian subspaces of the symplectic vector space V × V
endowed with the symplectic form ω×(−ω). The graph of P ∈ Sp(2n,R) is transversal to the diagonal
∆ ⊂ V × V if and only if 1 is not an eigenvalue of P . A path φ : [0, 1] → Sp(2n,R) will be called
admissible if 1 is not in the spectrum of its end points. For such a path the relative Conley-Zehnder index
is defined by

CZ(φ) = µ(Graphφ,∆). (3.1)

From the above discussion it follows that CZ(φ) is invariant under admissible homotopies and it is
additive with respect to concatenation of paths. If the fixed point space of φ(λ) reduces to {0} for all λ
then CZ(φ) = 0 .

There is one more property of the Conley-Zehnder index that we use in the sequel. Namely, that for any
α : [0, 1]→ Sp(2n,R) and any admissible path φ

CZ(α−1φα) = CZ(φ). (3.2)

This can be seen as follows. Since the spectrum is invariant by conjugation, the homotopy (t, s) →
α−1(s)φ(t)α(s) shows that CZ(α−1φα) = CZ(α−1(0)φα(0)). Now (3.2) follows by the same argu-
ment applied to any path joining α(0) to the identity.

The property (3.2) allows to associate a Conley-Zehnder index to any admissible symplectic automor-
phism of a symplectic vector-bundle over an interval. Let I be the interval [0, 1], then any symplectic
bundle π : E → I over I has a symplectic trivialization. If S : E → E is a symplectic endomorphism of
E over I well behaved at the end points, then we can define the Conley-Zehnder index of S as follows:
if T : E → I ×R2n is any symplectic trivialization, then TST−1(λ, v) has the form (λ, φT (λ)v) where
φT is an admissible path on Sp(2n,R). Any change of trivialization induces a change on φT that has
the form of the left hand side in (3.2) and hence CZ(φT ) is independent of the choice of trivialization.
Thus the Conley-Zehnder index of S is defined to be CZ(S) ≡ CZ(φT ).

Now let’s define the relative Conley-Zehnder index of a path of symplectomorphisms along a path of
fixed points: let M be a closed symplectic manifold and let Symp(M) be the group of all symplecto-
morphisms endowed with the C1 topology. Let φ : I → Symp(M) be a smooth path of symplectomor-
phisms of M . Let p : I →M be a path in M such that p(λ) is a fixed point of φ(λ). Floquet multipliers
of φ(λ) at p(λ) are by definition the eigenvalues of Sλ = Tp(λ)φ(λ) : Tp(λ)(M) → Tp(λ)(M). A fixed
point will be called non degenerate if none of its Floquet multipliers is one. Consistently, we will call
the pair (φ, p) admissible whenever p(i) is a non degenerate fixed point of φ(i) for i = 0, 1.

Let E = p∗[T (M)] be the pullback by p of the tangent bundle of M (we use the same notation for
the bundle and its total space). The family of tangent maps Sλ = Tp(λ)φ(λ) induces a symplectic
automorphism S : E → E over I . Define the relative Conley-Zehnder index of φ along p by

CZ(φ; p) ≡ CZ(S). (3.3)
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From the properties discussed above it follows that the relative Conley-Zehnder index CZ(φ; p) of φ
along p is invariant by smooth pairs of homotopies (φ(s, t), p(s, t)) such that φ(s, t)(p(s, t)) = p(s, t)
and such that for i = 0, 1; p(s, i) is a non degenerate fixed point of φ(s, i).

The index is additive under concatenation. It follows from (3.2) that it has another interesting property,
which for simplicity we state in the case of a constant path p(t) ≡ p. If φ, ψ : I → Symp(M) are two
admissible paths in the isotropy subgroup of p then

CZ(ψ ◦ φ, p) = CZ(φ ◦ ψ, p).

In other words CZ is a trace.

Finally let us define the Maslov intersection index of two families of Lagrangian submanifolds Lλ and
Nλ of a symplectic manifold M along a given path p : I →M of intersection points.

Since the interval I is contractible, the pullback p∗(TM) by p of the tangent bundle of M is a trivial
bundle whose fiber over λ is the tangent space Tp(λ)M. Taking any trivialization T : p∗(TM)→ I×R2n

of this bundle the images under the trivialization maps Tλ : Tp(λ)M → R2n of the tangent spaces TpLλ
and TpNλ determine two paths l(λ) and n(λ) in the space Λn of all Lagrangian subspaces of R2n.
Assuming that the paths l, n have transverse intersection at the end points, the path l × n has endpoints
transversal to the diagonal ∆ in (R2n × R2n). Since the space of Lagrangian subspaces transversal to
a given one is contractible, if we take any path δ joining the endpoints of l × n the Maslov index of a
close path made by l × n followed by δ, is independent of the choice of δ. The index of this closed
path is by definition the relative Maslov index µ(l, n) (cf. [15]). This index is an integer which counts
with appropriate multiplicities the points in (0, 1) where l(λ) ∩ n(λ) 6= {0}. From the invariance of
the Maslov index under the action of the symplectic group it follows that µ(l, n) is independent of the
choice of trivialization. We call it (once more!) the Maslov intersection index of the family L = {Lλ}
with N = {Nλ} along p, and we denote it by µ(L,N, p).

The last crucial property that we need to mention is the invariance of the Maslov index under isotropic
reduction. Consider a Lagrangian subspace L ⊂ (V, ω) and a path of Lagrangian subspaces l : [0, 1]→
Λ(V ) such that the endpoints l(0) and l(1) are transverse to L. If W is an isotropic subspace such
that W ⊂ L which has transverse intersection with l(t) for all t ∈ [0, 1] then following the lines of
Viterbo (cf. Proposition 3 of [20]) it can be proved that the path lW : [0, 1] → Λ(Wω/W ) defined
by lW (t) := l(t)/W is continuous and that the Maslov index of the path lW relative to the Lagrangian
subspaceLW := L/W ofWω/W coincide with the Maslov index of the path l relative to the Lagrangian
subspace L, that is,

µLW (lW ) = µL(l).

4. Bifurcations
a) FROM PERIODIC ORBITS OF 1-PARAMETER FAMILIES OF TIME DEPENDENT HAMILTONIAN SYS-
TEMS

Bifurcation theory deals with the problem of existence of nontrivial solutions arbitrary closed to a known
family of solutions. For this purpose one takes into consideration a smooth one parameter family of time
dependent Hamiltonian functions H : I × R×M → R, where I = [0, 1] is the parameter set and each
Hλ : R ×M → R is one periodic in time. Let X ≡ {Xλ}λ∈[0,1] be the corresponding one parameter
family of Hamiltonian vector fields. Then the flows ψλ,s,t associated to eachXλ depend smoothly on the
parameter λ ∈ I. Suppose also that the 1-parameter family of Hamiltonian vector fields Xλ possesses
a known smooth family of 1-periodic solutions uλ; uλ(t) = uλ(t+ 1). Solutions uλ in this family are
called trivial and we seek for sufficient conditions in order to find nontrivial solutions arbitrarily close
to the given family. Identifying R/Z with the circle S1 we regard the family of trivial solutions either as
a path τ : I → C1(S1;M) defined by τ(λ) = uλ or as a smooth map u : I × S1 →M.
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A point λ∗ ∈ I is called a bifurcation point of periodic solutions from the trivial branch uλ if every
neighborhood of (λ∗, uλ∗) in I ×C1(S1;M) contains pairs of the form (λ, vλ) where vλ is a nontrivial
periodic trajectory of Xλ.

A necessary condition for a point λ∗ to be of bifurcation is that 1 is a Floquet multiplier of uλ∗ . This
condition is not sufficient (See for example [2] Proposition 26.1). Thus non degenerate orbits cannot be
bifurcation points of the branch. In what follows we will assume that u(0) and u(1) are non degenerate
and we will seek for bifurcation points in the open interval (0, 1).

Consider the path p : I → M given by p(λ) = uλ(0). Each p(λ) is a fixed point of the symplec-
tomorphism Pλ = ψλ,0,1. Under our hypothesis, the pair (P, p) is admissible. The number CZ(P, p)
constructed in the previous section will be called the relative Conley-Zehnder index ofX ≡ {Xλ}λ∈[0,1]

along the trivial family u. We denote it by CZ(X,u). If this index is not zero one has the following

THEOREM A: Let X ≡ {Xλ}λ∈[0,1] be a one parameter family of 1-periodic Hamiltonian vector fields
on a closed symplectic manifold (M,ω). Assume that the family Xλ possesses a known, trivial, branch
uλ of 1-periodic solutions such that u(0) and u(1) are non degenerate. If the relative Conley-Zehnder
index CZ(X,u) 6= 0 then the interval I contains at least one bifurcation point for periodic solutions
from the trivial branch u.

For the proof (see [6]) we followed an idea of Salamon and Zehnder [17] (Lemma 9.2.) in the nonpara-
metric case. It consist in using appropiate symplectic trivializations and applying Moser’s Method [14]
to construct local Darboux coordinates (V, ψλ,t) on the manifold M adapted to the λ-parameter family
uλ(t) of periodic solutions of the Hamiltonian differential equation{

d
dtuλ(t) = Xλ(t, uλ(t)),

uλ(s) = x
(4.1)

i.e. , we showed the existence of an open neighborhood V of 0 in R2n and of a family of symplecto-
morphisms ψλ,t : V → M that satisfies ψλ,t(0) = uλ(t) and ψ∗λ,tω = ω0 on V . The new coordinates
allowed us to reduce our problem to the Fitzpatrick, Pejsachowicz and Recht’s bifurcation theorem in
[9].

b) FROM INTERSECTION POINTS OF 1-PARAMETER FAMILIES OF LAGRANGIAN SUBMANIFOLDS

Let T ∗(N) be the cotangent bundle of a closed manifold N endowed with the standard symplectic
structure. We will consider bifurcations of intersections of N ≡ 0N identified with the zero section of
the bundle T ∗(N) with an exact one-parameter family of Lagrangian submanifolds L = {Lλ}λ∈[0,1]

such that Lλ coincides with L0 outside of a compact subset of T ∗(N). More precisely we consider
families Lλ = iλ(L0) where iλ : L0 → T ∗(N) is a smooth family of Lagrangian embeddings with
iλ ≡ i0 outside of a compact subset of L0. Such a family is said to be compactly supported. Moreover
L is called exact if the one-form i∗ω( ∂

∂λ ,−) is exact on [0, 1]×L0. The natural topology in the space of
all Lagrangian submanifolds of a given manifold is discussed in [22]. Remark that a family iλ as above
induces a continuous path in the space C∞(L0, T

∗(N)) with respect to the fine C1 topology. Therefore
Lr is C1 close to Ls whenever r is close enough to s.

Let I = [0, 1] and let p : I → T ∗(N) be a smooth path such that p(λ) ∈ Lλ ∩ N . A point p(λ∗) ∈
Lλ∗ ∩N is called bifurcation point from the given path p of intersection points if any neighborhood of
(λ∗, p(λ∗)) in [0, 1]× T ∗(N) contains points (λ, q) with q ∈ Lλ ∩N, q 6= p(λ).

It follows from the implicit function theorem that a necessary condition for p(λ∗) to be a bifurcation
point of intersection is that the manifold Lλ∗ fails to be transversal to N at p(λ∗). This means that for
p∗ = p(λ∗) one has that Tp∗Lλ∗ + Tp∗N is a proper subset of the tangent space Tp∗(T

∗(N)). Since
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dim Tp∗Lλ∗ = dim Tp∗N = 1
2dim T ∗(N) this turns out to be equivalent to

Tp∗Lλ∗ ∩ Tp∗N 6= {0}.

This condition is not sufficient. Assuming that the manifolds L0, L1 are transverse to N , under some
extra assumption the nonvanishing of µ(L,N, p) provides a sufficient condition for the existence of at
least one bifurcation point.

THEOREM B: Let N be a closed manifold and let L = {Lλ} be an exact, compactly supported family
of Lagrangian submanifolds of T ∗(N) such that L0 admits a generating family quadratic at infinity. Let
p : [0, 1]→ T ∗(N) be a path of intersection points of Lλ with N . Assume Lλ is transverse to N at p(λ)
for λ = 0, 1 and that the Maslov intersection index µ(L,N, p) 6= 0, then there exist a λ∗ ∈ (0, 1) such
that p(λ∗) is a point of bifurcation for intersection points of Lλ with N from the trivial branch p.

If L0 = N then the first assumption of the theorem holds by taking S = 0.

The basic idea of the proof of Theorem B is to convert our problem to that of finding bifurcations of
critical points of one parameter families of functionals. We used a result of Sikorav which guarantees
the existence of generating families for deformations of Lagrangian submanifolds under Hamiltonian
isotopies (see proposition 1.2 and Remark 1.7 in [18]). More precisely, if φλ is a Hamiltonian isotopy of
T ∗(N) and ifL0 ⊂ T ∗(N) is generated by a family quadratic at infinity then there exists a smooth family
of functions Sλ : N × Rk → R quadratic at infinity such that φλ(L0) is generated by the family Sλ.
On the other hand Chaperon [4] [5] proved that any one parameter exact compactly supported family of
Lagrangian embeddingsLλ = iλ(L0) can be extended to a Hamiltonian isotopy of the ambient manifold.
Putting both results toghether we have that for any smooth family Lλ of Lagrangian submanifolds of
T ∗(N) there exists a smooth family

S : [0, 1]×N × Rk → R

quadratic at infinity such that Sλ generates Lλ, where Sλ(n, v) = S(λ, n, v).

Thus each Lλ = eλ(Cλ) where Cλ = {(u, v)/v is critical of Sλ,n}, the functions Sλ,n : Rk → R and
Sλ,v : N → R are given by Sλ,n(v) = Sλ(n, v) and Sλ,v(n) = Sλ(n, v) and eλ : Cλ → T ∗(N) is
defined by eλ(n, v) = dSλ,v(n).

Since here each eλ is an embedding it induces a bijection between critical points of Sλ : N × Rk → R
and intersection points in Lλ ∩ N . Therefore the path of intersection points p has a corresponding
path τ : I → N × Rk of critical points of Sλ. Because L0, L1 are transversal to N at p(0), p(1) it
follows that τ(0) and τ(1) are non-degenerate critical points. This is a direct consequence of the linear
algebra of symplectic reductions. Indeed, let N ′ = N × Rk and consider the symplectic manifold
T ∗(N ′) = T ∗(N)×R2k. The manifold {0} ×Rk is an isotropic submanifold of T ∗(N ′) and T ∗(N) is
the symplectic reduction of T ∗(N ′) modulo the isotropic submanifold {0} × Rk. On the other hand N ′

and dSλ are lagrangian submanifolds of T ∗(N ′) whose symplectic reductions areN andLλ respectively.
Since Lλ intersects transversally N at p(λ), for λ = 0, 1, then dSλ intersects transversally N ′. But this
is equivalent to the non-degeneracy of the critical point τ(λ) for λ = 0, 1.

At any critical point the Hessian H(Sλ, τ(λ)) of Sλ at τ(λ) is a well defined symmetric bilinear
form. The Morse index m(S, x) of S at a nondegenerate critical point is the dimension of the nega-
tive eigenspace of H(S, x). From Morse theory the inequality m(S1, τ(1)) 6= m(S0, τ(0)) guarantees
the existence of bifurcation critical points [13].

Since Lλ is the image of dSλ,v : N → T ∗(N), identifying N with the zero section we have that Lλ is
transversal to N for λ = 0, 1 and by the localization properties of the relative Maslov index (Theorem
2.3 in [16]) it equals the difference of the Morse indeces at the endpoints of the path, that is,

µ(dS,N ′, τ) = m(S1, τ(1))−m(S0, τ(0)).
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But the Maslov index is invariant under isotropic reduction thus

µ(dS,N ′, τ) = µ(L,N, p).

Hence the hypothesis of Theorem B implies that it is possible to find a sequence of critical points of Sλ
bifurcating from the trivial branch. Via eλ those critical points correspond to nontrivial intersections of
Lλ with N

c) FROM FIXED POINTS OF A ONE PARAMETER FAMILY OF SYMPLECTOMORPHISMS

We discusse now bifurcations of a path of fixed points of a one parameter family of symplectomor-
phisms. Consider a closed symplectic manifold (M,ω). We assume here that the first Betti number
β1(M) of M vanishes, since in this case any symplectic diffeomorphism belonging to the connected
component of the identity Symp0(M) of the group of all symplectic diffeomorphisms can be realized
as the time one map of a 1-periodic Hamiltonian vector field. The following result can be obtain as a
consequence either of Theorem A or of Theorem B.

COROLLARY: Assume that β1(M) = 0. Let φλ be a path in Symp0(M) such that φλ(p) = p for all
λ and such that as fixed point of φ0 and φ1, p is non degenerate. Then if CZ(φ, p) 6= 0, there exist a
λ∗ ∈ (0, 1) such that any neighborhood of (λ∗, p) in I ×M contains a point (λ, q) such that q is a fixed
point of φλ different from p (i.e λ∗ is a bifurcation point for fixed points of φλ from the trivial branch p).

Moreover the same is true for any close enough path in the C1-topology lying in the isotropy group of p.

To each symplectomorphism φλ there corresponds a time dependent family of vector fields Xλ, and to
each of this it corresponds a time dependent family of Hamiltonian function Hλ. In [6] we proved that
there exist a family of time dependent hamiltonian functionsH ′ : I×I×V → R that depends smoothly
on the parameter λ such that φλ is the time-one map of the corresponding time-dependent Hamiltonian
vector field X ′λ : I ×M → TM . Then because of the one to one correspondence between 1-periodic
orbits of the Hamiltonian vector field with fixed points of the period map we can apply Theorem A.

Let us discuss now the relationship with intersection points of lagrangian submanifolds. Consider M ×
M with the symplectic form π∗1ω − π∗2ω. Given a path of symplectomorphisms φλ and a path of fixed
points p(λ) of φλ having non-degenerate end points (i.e. , such that Tp(λ)φλ is nonsingular for λ = 0, 1),
the path of fixed points corresponds to a path of intersection points of the graph of φλ with the diagonal
∆ and the Maslov intersection index µ(Graph φ,∆, p × p) along the intersection path is well defined
and coincides with the relative Conley-Zehnder index of φ along p.

By Weinstein’s theorem [22] any Lagrangian submanifold of a symplectic manifold has a neighborhood
that is symplectomorphic to a neighborhood of the zero section of its own cotangent bundle. We apply
Weinstein’s theorem to the diagonal ∆ in M ×M and then modify the Hamiltonian and the flow φλ,t
outside of a neighborhood of p in such a way that the new flow equals the identity outside of a compact
neighborhood of p. There the graph of φλ coincide with ∆ and thus it can be viewed as a one parameter
family of Lagrangian submanifolds of T ∗∆ with compact support.

Since H1(M,R) = 0 we get that L ≡ Lλ is exact. Moreover by Sikorav’s theorem L0 possesses a
generating family being φ0 isotopic by a Hamiltonian isotopy to the identity map of T∗N . Hence we
can apply Theorem B to the family L and ∆.

We close this section with a formula that allows to compute the individual contribution of a regular
point in the trivial branch to the Conley-Zehnder index and give an example where bifurcation cannot
be detected using the parity.

Assume that λ0 is an isolated point in the set

Σ = {λ/p(λ)is a degenerate fixed point of φ(λ)}.
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Define CZλ0(φ) ≡ limε→0 CZ(φ; p|[−ε,ε]). The point λ0 is called regular (cf. [16]) if the quadratic
form Qλ0 on the eigenspace E1(Sλ0) = Ker(Sλ0 − Id) corresponding to the eigenvalue 1 defined by
Qλ0(v) = ω(Ṡλ0v, v) is nondegenerate.

Here Sλ = Tp(λ)φ(λ) as before and Ṡλ0 denotes the intrinsic derivative of the vector bundle endomor-
phism S (See [10] chap 1 sect 5). If t0 is a regular point then it is an isolated point in Σ and

CZλ0(φ) = −σ(Qλ0) (4.2)

where σ denotes the signature of a quadratic form. This formula follows from the definition of the
intrinsic derivative and formula (2.8) in [9].

EXAMPLE: Let M be the symplectic manifold S2 = C ∪ {∞}. Consider the closed path of symplectic
maps φθ : S2 → S2; θ ∈ [0, 1] defined by

φθ(z) =

{
ei2π(θ−1/2) · z if z ∈ C,
∞ if z =∞

φθ is a rotation of angle θ− 1/2 so it leaves fixed only the points z = 0 and z =∞ except for θ = 1/2,
in which case the fixed point set is the sphere S2. For each θ the tangent map T0φθ of φθ at the fixed
point z = 0 equals φθ. The only value of θ for which 1 is an eigenvalue of the tangent map T0φθ is
θ = 1/2 for which the corresponding eigenspace is C. Moreover 0 is a regular degenerate fixed point
of φ1/2. The relative Conley-Zehnder index CZ0(φ; 0) of the symplectic isotopy φ along the constant
path of fixed points p = 0 coincides with the signature of the quadratic form Q1/2 = ω(φ̇1/2−,−) that
is non degenerate on the eigenspace E1(φ1/2). Then since

φ̇(1/2) = i2πId

it follows from (4.2) that

CZ0(φ; 0) = −σ[v → ω(φ̇(1/2)v, v)] = σ[v → 2π < v, v > ] = 2.

Therefore any closed path of symplectomorphisms on the sphere keeping 0 fixed and homotopic to φ
has nontrivial fixed points close to zero.
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Three Systems of Orthogonal Polynomials and Associated Operators
by

John Musonda

Uppsala University, Sweden

Abstract

In this report, three systems of polynomials, that are orthogonal systems for three differ-
ent but related inner product spaces, are presented. Three basic operators that are related to
the systems are described, and boundedness of two other operators on a few Hilbert spaces
is proven.

1. Introduction
More than a decade ago, Professor Sten Kaijser happened to discover two remarkable systems of or-
thogonal polynomials. The most interesting of the systems was in fact not a standard system, but it had
some other useful properties. These discoveries led to a dissertation by Tsehaye K. Araaya [4, 5]. In
March this year, Professor Lars Holst [7] presented a new way to calculate the Euler sum,

∑ 1
n2 = π2

6 .
His calculations inspired Professor Kaijser to calculate a third system of polynomials, a system that
turned out to fill a gap related to the previous systems. In this report, we present these three systems of
orthogonal polynomials, and discuss some operators related to them.

The weight function that is used in one of the first two systems is the function ω1(x) = 1/(2 cosh π
2x),

while for the third system we use the self convolution of this function, that is, ω2 = ω1 ∗ ω1. The
function, ω1, has three interesting properties that make it useful as a weight function. The first is that
it is the density function of a probability measure, and the second is that it is up to a dilation its own
Fourier transform, that is, it is the Fourier transform of the function 1/ cosh t. The third is that it is
closely related to the Poisson kernel for a strip of width two. The second property makes it possible to
interpret its moments as values at zero of successive derivatives, while the third can be used for direct
computations of many integrals.

This report is organised as follows: In section (), we present preliminaries needed to study and un-
derstand the work in the subsequent sections. This section has four subsections. In the first, some of
the notation used throughout the report is explained. The second reviews those aspects of the theory of
Hilbert spaces which are particularly relevant to our study, while the third reviews different aspects of the
theory of orthogonal polynomials of one real variable. In the fourth subsection, we introduce the spaces
that are of interest to our study. Our first system which we call the σ-system is presented in section (),
while our second system which we call the τ -system is presented in section (). As aforementioned, these
two systems were studied in Araaya papers [4, 5], and here we just take an overview of the results so
that this report can be self contained. Also in section (), we introduce three operators R, J and Q, which
are related to the systems. The third system which we call the ρ-system is presented in section (), and
we study this system in detail since it is a new addition filling a gap related to the previous systems. This
system of orthogonal polynomials is obtained by applying the Gram-Schmidt procedure to the sequence
{xn}∞n=0 on the real line with the ω2-weighted L2 inner product. It turns out that the system has a sim-
ple recurrence formula, so that the exponential generating function is easily computed. Using this the
orthogonality is proven. In section () we discuss some useful connections between the systems, in terms
of the operators. Finally in section (), we present two operators, T = R−1 and S = JR−1, where J and
R are the operators intoduced in section (). Boundedness of these two operators on five Hilbert spaces
(defined in subsection ()) is proven.
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2. Preliminaries
2.1 Some Notations

We use the Kronecker’s delta: δnm = 0 or 1, according as n 6= m, or n = m. The symbol F is used
to denote the field of either real numbers R or complex numbers C. By Re(z), Im(z), |z| and z̄, we
mean the real part, the imaginary part, the absolute and the conjugate complex value, respectively, of a
complex number z. Closed intervals are denoted by [a, b], open intervals by (a, b) and half-open intervals
by (a, b] or [a, b).

We use S to denote the strip {z ∈ C : −1 ≤ Im(z) ≤ 1}, ∂S for the boundary of the strip S and P for
the Poisson kernel for the strip S.

More notation will be introduced as we go on.

2.2 Elementary Theory of Hilbert Spaces

In this subsection, we review those aspects of the theory of separable Hilbert spaces which are particu-
larly relevant to our study.

Definition 2.46 A normed linear space is a pair (V, || · ||) where V is a vector space over F, and || · ||
is a function || · || : V → R called a norm on V that satisfies the following conditions for all x, y ∈ V
and α ∈ F:

1. ||x|| ≥ 0 and ||x|| = 0 if and only if x = 0.

2. ||αx|| = |α| ||x||.

3. ||x+ y|| ≤ ||x||+ ||y||.

Definition 2.47 A bounded linear operator from a normed linear space (V1, || · ||1) to a normed linear
space (V2, || · ||2) is a function L from V1 to V2 that satisfies the following for all x, y ∈ V1 and α, β ∈ F:

1. L(αx+ βy) = αL(x) + βL(y).

2. For some M ≥ 0, ||Lx||2 ≤M ||x||1.

The smallest such M is called the norm of L, written ||L||. Thus,

||L|| = sup
||x||1≤1

||Lx||2.

If in the second condition equality holds with M = 1, then the operator L is called an isometry and the
normed linear spaces (V1, || · ||1) and (V2, || · ||2) are said to be isometric. Isometric normed linear spaces
can be regarded as the same as far as their normed linear space properties are concerned.

Definition 2.48 An inner product space is a pair (V, 〈·, ·〉) where V is a vector space over F, and 〈·, ·〉
is a function 〈·, ·〉 : V ×V → F called an inner product on V that satisfies the following four conditions
for all x, y, z ∈ V and α ∈ F:

1. 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 if and only if x = 0.

2. 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉.
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3. 〈αx, y〉 = α〈x, y〉.

4. 〈 x, y〉 = 〈y, x〉.

Example 2.49 Let C[a, b] denote the set of complex-valued continuous functions on the interval [a, b].
For f, g ∈ C[a, b], define

〈f, g〉 =

b∫
a

f(x)g(x)dx.

Then (C[a, b], 〈·, ·〉) is an inner product space.

Given any inner product space V , we can define ||x|| =
√
〈x, x〉. This is, in fact, a norm on V , and

to show this, we need what is known as the Schwarz inequality, that is, |〈x, y〉| ≤ ||x|| ||y|| for any two
vectors x, y ∈ V [9, lemma 4.2]. We formally present this result in the following proposition.

Proposition 2.50 Every inner product space V is a normed linear space with the norm ||x|| =
√
〈x, x〉.

Proof:
We verify only the triangle inequality since the other properties follow immediately from definition
(2.48). Let x, y ∈ V . Then,

||x+ y||2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= ||x||2 + 2 Re〈x, y〉+ ||y||2

≤ ||x||2 + 2 |〈x, y〉|+ ||y||2

≤ ||x||2 + 2 ||x|| ||y||+ ||y||2, by Schwarz inequality

= (||x||+ ||y||)2,

which proves the triangle inequality. �

Definition 2.51 A complete inner product space is called a Hilbert space. (Complete here means that
every Cauchy sequence converges.)

Example 2.52 Let L2[a, b] be the set of complex-valued measurable functions on a finite interval [a, b]

that satisfy
∫ b
a |f(x)|2dx <∞. For f, g ∈ L2[a, b] define

〈f, g〉 =

b∫
a

f(x)g(x)dx.

It can be shown that L2[a, b] equipped with this inner product is complete and therefore is a Hilbert
space.

Definition 2.53 Let V be an inner product space. Two vectors x, y ∈ V are said to be orthogonal if
〈x, y〉 = 0. A sequence of vectors {xn}∞n=0 in V is called an orthogonal system if

〈xn, xm〉 = hnδnm. (2.1)

The system is called orthonormal if hn = 1.
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Definition 2.54 A sequence of vectors {xn}∞n=0 in a Hilbert space H is complete if 〈y, xn〉 = 0 for all
n ≥ 0 implies that y = 0.

Definition 2.55 An orthonormal basis is a complete orthonormal system.

The following theorem is standard and can be found in many books, for example, in Reed and Simon
[11].

Proposition 2.56 Let {xn}∞n=0 be an orthonormal basis in a Hilbert space H . Then for each y ∈ H ,

y =
∞∑
n=0

〈y, xn〉xn and ||y||2 =
∞∑
n=0

|〈y, xn〉|2. (2.2)

The equality in the first expression means that the sum on the right-hand side converges, regardless of
order, to y. Proof
See Reed and Simon [11, thm. II.6]. �

Corollary 2.57 If {xn}∞n=0 is an orthogonal basis in a Hilbert space H then for each y ∈ H ,

y =

∞∑
n=0

〈y, xn〉
||xn||2

xn and 〈y, z〉 =

∞∑
n=0

〈y, xn〉〈z, xn〉
||xn||2

. (2.3)

2.3 Elementary Theory of Orthogonal Polynomials

We review different aspects of the theory of orthogonal polynomials of one real variable. We require
that the domain X ⊂ R of polynomials be measurable. X is most commonly either the infinte interval
(−∞,∞), a semi-infinite interval [a,∞) or a finite interval [a, b]. We also need a weight function
described in the following definition.

Definition 2.58 LetX ⊂ R be a finite or infinite interval. A functionw is called a polynomially bounded
weight function if it satifies the following conditions:

1. w is everywhere nonnegative, integrable over X , and non-zero over a subset of X of positive
measure, that is,

0 <

∫
X

w(x)dx <∞.

2. For every n ∈ N, ∫
X

xnw(x)dx <∞.

The quantity
∫
X x

nw(x)dx is often called the nth moment of w(x), and is symbolized by µn.

Now for a given polynomially bounded weight function w, let L2(w) denote the space of functions
f : X → R whose w-weighted squares have finite integral, that is,

f ∈ L2(w) ⇐⇒
∫
X

f2(x)w(x)dx <∞. (2.4)

It follows from condition (2) of definition (2.58) that all polynomials are included in the space L2(w).
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Definition 2.59 Let {pn}∞n=0 be a system of polynomials in the space L2(w) described above, where
the nth polynomial pn has degree n. Then {pn}∞n=0 is called an orthogonal system with respect to w if∫

X

pn(x)pm(x)w(x)dx = hnδnm. (2.5)

The system is called orthonormal if hn = 1.

More generally if µ is a monotonic non-decreasing function (usually called the distribution function),
then we can write equation (2.5) in terms of the Stieltjes integral,∫

X

pn(x)pm(x)dµ(x) = hnδnm. (2.6)

which is reduced back to (2.5) in case µ is absolutely continuous, that is, if dµ(x) = w(x)dx.

Definition 2.60 If p is a polynomial of degree m and

p(x) = cmx
m + cm−1x

m−1 + · · ·+ c2x
2 + c1x+ c0, (2.7)

then cm is called the leading coefficient of p. If cm = 1, we say that p is a monic polynomial.

A useful property of real orthogonal polynomials is that they obey a three-term recurrence relation as
described in the next proposition [14].

Proposition 2.61 For a weight function w described as in definition (), there exists a unique system of
monic orthogonal polynomials {pn}∞n=0. In particular, we can construct {pn}∞n=0 as follows:

p0(x) = 1, p1(x) = x− a1 with a1 =

∫
X xw(x)dx∫
X w(x)dx

and

pn+1(x) = xpn(x)− an+1pn(x)− bn+1pn−1(x), (2.8)

where

an+1 =

∫
X xp

2
n(x)w(x)dx∫

X p
2
n(x)w(x)dx

and bn+1 =

∫
X xpn(x)pn−1(x)w(x)dx∫

X p
2
n−1(x)w(x)dx

.

Remark 4 If w is an even measure, then an+1 = 0 since then its integrals with odd polynomials are all
zero.

Proof
We begin by proving the existence of monic orthogonal polynomials. The first polynomial p0 should be
monic and of degree zero, and so,

p0(x) = 1.
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The next polynomial p1 should be monic and of degree one. It should therefore take the form

p1(x) = x− a1,

and this orthogonal to p0 implies that

0 = 〈p1, p0〉 =

∫
X

xw(x)dx− a1

∫
X

w(x)dx.

Since w is nonzero on X , it follows that

a1 =

∫
X xw(x)dx∫
X w(x)dx

.

an+1 and bn+1 are found following the same procedure. To prove uniqueness of the sequence {pn}∞n=0

of monic orthogonal polynomials of degree n, assume that {qn}∞n=0 is another sequence of monic or-
thogonal polynomials of degree n. Then

deg(pn+1 − qn+1) ≤ n,

and since pn+1 and qn+1 are orthogonal to any polynomial of degree n or less, we have

〈pn+1, pn+1 − qn+1〉 = 0 and 〈qn+1, pn+1 − qn+1〉 = 0.

But this implies that

〈pn+1 − qn+1, pn+1 − qn+1〉 = 0,

and so, pn+1 − qn+1 ≡ 0 for all n ≥ 0. �

2.4 Spaces of Interest

The following spaces are of particular interest to our study:

L2(ω2), L2(ω1), H2(S,P), L2(R), H2(S). (2.9)

Other useful spaces are:

A0(S), L2
R(ω2), L2

R(ω1), H2
R(S,P), L2

R(R), H2
R(S). (2.10)

In the above, and indeed throughout this paper, ω1 denotes the weight function 1/(2 cosh π
2x) while

ω2 denote the self convolution of ω1, that is, ω2 = ω1 ∗ ω1. In fact, it can be shown that ω2(x) =
x/(2 sinh π

2x).

L2(ω1) denotes the Hilbert space of measurable functions on R that satisfy
∫∞
−∞ |f(x)|2ω1(x)dx < ∞

equipped with the inner product

〈f, g〉 =

∞∫
−∞

f(x)g(x)ω1(x)dx =

∞∫
−∞

f(x)g(x)
dx

2 cosh π
2x
. (2.11)

The Hilbert space L2(ω2) is like the space L2(ω1) but with the weight fuction ω2 in place of ω1.
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L2(R) denotes the Hilbert space of measurable functions on R that satisfy
∫∞
−∞ |f(x)|2dx <∞ equipped

with the inner product

〈f, g〉 =

∞∫
−∞

f(x)g(x)dx. (2.12)

H2(S,P) denotes the Hilbert space of analytic functions on S that satisfy
∫
∂S |f(z)|2dP(z) < ∞

equipped with the inner product

〈f, g〉 =

∫
∂S

f(z)g(z)dP(z)

=

∞∫
−∞

f(x+ i)g(x+ i)

(
ω1(x)

2

)
dx+

∞∫
−∞

f(x− i)g(x− i)
(
ω1(x)

2

)
dx

=

∞∫
−∞

f(x+ i)g(x+ i) + f(x− i)g(x− i)
2

ω1(x)dx

=

∞∫
−∞

f(x+ i)g(x+ i) + f(x− i)g(x− i)
2

dx

2 cosh π
2x
. (2.13)

The Hilbert space H2(S) is like the space H2(S,P) but without any weight function.

A0(S) is the space of functions f that are analytic in S, continuous on ∂S and f(x+iy)→ 0 as |x| → ∞.

The spaces L2
R(ω2), L2

R(ω1) and L2
R(R) are like the corresponding spaces but restricted to real-valued

functions. For the spaces, H2
R(S,P) and H2

R(S), we talk of real-valued functions on the real axis.

3. The τ -System
In this section, we present our first system of orthogonal polynomials which we call the τ -system. This
system was studied in Araaya’s paper [4], and it was found that it has a simple recurrence relation

τ−1 = 0, τ0 = 1 and τn+1(x) = xτn(x)− n2τn−1(x).

The first few polynomials for this system are shown below.

τ0 = 1

τ1 = x

τ2 = x2 − 1

τ3 = x3 − 5x

τ4 = x4 − 14x2 + 9

...

The weight function for this system is ω1(x) = 1/(2 cosh π
2x), and as such, we start by looking at two

interesting properties of this function that make it useful for this purpose.

Proposition 3.62 The function ω1 is a probability density function.
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Proof
This follows from the integration,

∞∫
−∞

ω1(x)dx =

∞∫
−∞

dx

2 cosh π
2x

=

[
1

π
arctan(sinh

π

2
x)

]∞
−∞

= 1.

�

The following property makes it possible to interpret the moments of ω1 as values at zero of successive
derivatives.

Proposition 3.63 The function ω1 is up to a dilation its own Fourier transform. In particular, it is a
Fourier transform of 1/ cosh t, that is,

ω1(x) =
1

2π

∞∫
−∞

e−ixtdt

cosh t

Proof
Using the Fourier inversion theorem, we can write

ω̂1(t) =

∞∫
−∞

eixtω1(x)dx =

∞∫
−∞

e(it+π
2

)x

eπx + 1
dx

and show that ω̂1(t) = 1/ cosh t. For the complete proof, see similar calculations in lemma (3.65). �

We now present the main results for this section. The calculations in proving these results are crucial for
proving the main results for the other two systems.

Theorem 3.64 Let the system {τn}∞n=0 be given by the recurrence relation

τ−1 = 0, τ0 = 1 and τn+1(x) = xτn(x)− n2τn−1(x). (3.1)

Then

1. The function τn is a monic polynomial of degree n for n ≥ 0.
2. The exponential generating function1, Gτ (x, s) =

∑∞
n=0

τn(x)
n! sn, is given by the function

Gτ(x, s) =
ex arctan s

√
1 + s2

.

3. The polynomials { τnn! }
∞
n=0 are an orthonormal basis in the Hilbert space L2(ω1).

As aforementioned, the calculations for this proof are similar to those for the other two systems, and
since will shall provide a complete proof for the system of section (), we omit this proof. Instead, we
provide some tools needed to do this proof and these will also be needed in section ().

1The exponential generating function of a squence {an} is defined as G(x) =
∑∞

n=0 an
xn

n! .
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Lemma 3.65 If Re(α) < π
2 , then

∞∫
−∞

eαxω1(x)dx =
1

cosα
.

Proof
The complex-valued function ω1(z) = 1/(2 cosh π

2 z) has a simple pole z = i, and so we consider a
rectangular contour with vertices (−R, 0), (R, 0), (R, 2i) and (−R, 2i), that is, a contour containing the
simple pole. Call this contour C. Then, by the residue theorem, we have∮

C

eαzω1(z)dz = 2πi · Res(i) = 2πi

(
eαz

π sinh π
2 z

∣∣∣∣
z=i

)
= 2eαi. (3.2)

Now

eαzω1(z) = eαz
1

2 cosh π
2 z

= eαz
2e

π
2
z

2(eπz + 1)
=
e(α+π

2
)z

eπz + 1
,

and so, we can integrate around the contour C as follows:∮
C

eαzω1(z)dz =

∫
I1

+ · · ·+
∫
I4

=

R∫
−R

e(α+π
2

)x

eπx + 1
dx+ i

2∫
0

e(α+π
2

)(R+iy)

eπ(R+iy) + 1
dy

−
R∫
−R

e(α+π
2

)(x+2i)

eπ(x+2i) + 1
dx− i

2∫
0

e(α+π
2

)(−R+iy)

eπ(−R+iy) + 1
dy.

Alone the side I2, we have

|eαzω1(z)| =

∣∣∣∣∣e(α+π
2

)(R+iy)

eπ(R+iy) + 1

∣∣∣∣∣ ≤ e(α+π
2

)R

eπR − 1
=
e−

π
2
ReαR

1− e−πR

so that by Darboux inequality,∣∣∣∣∣∣
∫
I2

eαzω1(z)dz

∣∣∣∣∣∣ ≤ 2e−
π
2
ReαR

1− e−πR
→ 0 as R→∞.

Similarly, the integral alone I4 vanish as R→∞.
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Thus, taking R→∞ and combining with (3.2), we have

2eαi = lim
R→∞

∮
C

eαzω1(z)dz

= lim
R→∞

R∫
−R

e(α+π
2

)x

eπx + 1
dx− lim

R→∞

R∫
−R

e(α+π
2

)(x+2i)

eπ(x+2i) + 1
dx

= lim
R→∞

(
1 + ei2α

) R∫
−R

e(α+π
2

)x

eπx + 1
dx

=
(
1 + ei2α

) ∞∫
−∞

e(α+π
2

)x

eπx + 1
dx

which implies that

∞∫
−∞

e(α+π
2

)x

eπx + 1
dx =

2eαi

1 + ei2α

=
1

cosα
.

�

Lemma 3.66 The following identity holds:

cos(α+ β) =
1− tanα tanβ

√
1 + tan2 α

√
1 + tan2 β

.

Proof
It is a well known fact that cos2 x+ sin2 x = 1. Dividing through by cos2 x gives 1 + tan2 x = sec2 x.
Thus,

1− tanα tanβ
√

1 + tan2 α
√

1 + tan2 β
=

1− tanα tanβ

secα secβ

= cosα cosβ(1− sinα sinβ

cosα cosβ
)

= cosα cosβ − sinα sinβ

= cos(α+ β).

�

4. The σ-System and Some Useful Operators
Like the τ -system, this system was studied in Araaya’s paper [4], and it was found that it has a simple
recurrence relation

σ−1 = 0, σ0 = 1 and σn+1(x) = xσn(x)− n(n− 1)σn−1(x).
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The first few polynomials for this system are shown below.

σ0 = 1

σ1 = x

σ2 = x2

σ3 = x3 − 2x

σ4 = x4 − 8x2

...

The first two properties of the function ω1(x) = 1/(2 cosh π
2x) were discussed in section (). The third

useful property is that, it is closely related to the Poisson kernel for a strip of width two in the manner
of the following proposition.

Proposition 4.67 Let the function f be continuous and harmonic in the strip S = {z ∈ C : −1 ≤
Im(z) ≤ 1}, and suppose further that |f(z)| < Cea|z| for some a ∈ [0, π2 ). Then

f(0) =

∞∫
−∞

f(x+ i)
dx

4 cosh π
2x

+

∞∫
−∞

f(x− i) dx

4 cosh π
2x

=

∞∫
−∞

f(x+ i) + f(x− i)
2

dx

2 cosh π
2x

=

∞∫
−∞

f(x+ i) + f(x− i)
2

ω1(x)dx.

Proof
This is simply the Poisson integral. �

In the preceding proposition, we used the operator,

Rf(x) =
1

2
(f(x+ i) + f(x− i)), (4.1)

which is densely defined in L2(ω1). For symmetry, we also consider the operator,

Jf(x) =
1

2i
(f(x+ i)− f(x− i)). (4.2)

It is clear from the definition of these two operators that

(R± iJ)f(x) = f(x± i). (4.3)

In the next section, we shall see that multipying the ρ-system by x gives a relation to this system, and
this is the reason to define the third operator,

Qf(x) = xf(x). (4.4)

The notation for this operator is inspired by analogies with quantum mechanics, an analogy which seems
natural in the light of the following easily verified relations between the operators.
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Proposition 4.68 The operators R, J and Q satisfy the following relations:

RQ−QR = −J (4.5)

JQ−QJ = R (4.6)

RJ − JR = 0 (4.7)

R2 + J2 = I (4.8)

where I is the identity operator.

Proof
Use the definition of the operators involved. �

We now present the main results for this section which describe an orthogonal basis for the space
H2(S,P) where P is the Poisson measure for 0.

Theorem 4.69 Let the system {σn}∞n=0 be given by the recurrence relation.

σ−1 = 0, σ0 = 1 and σn+1(x) = xσn(x)− n(n− 1)σn−1(x). (4.9)

Then

1. The function σn is a monic polynomial of degree n for n ≥ 0.
2. The exponential generating function, Gσ(x, s) =

∑ σn(x)
n! sn, is given by the function

Gσ(x, s) = ex arctan s.

3. The norm of the polynomial σnn! is 1 for n = 0 and
√

2 for n ≥ 1.
4. The polynomials {σnn! }

∞
n=0 are an orthogonal basis in the Hilbert space H2(S,P).

Proof
See similar calculations in the proof of theorem (5.73) in the next section. �

5. The ρ-System
We study this system in detail since it is a new addition, filling a gap related to the previous systems. In
fact, it is the main motivation behind this thesis. Unlike the two previous systems, the weight function for
this system is ω2 = ω1∗ω1, the self convolution of ω1(x) = 1/(2 cosh π

2x). By the convolution theorem
and proposition (3.63) , the Fourier transform ω̂2 of ω2 is given by ω̂2(t) = ω̂1(t) · ω̂1(t) = 1/ cosh2 t.
Abramowitz [1] gives the Maclaurin series expansion

1

cosh2 t
=

( ∞∑
n=0

E2nt
2n

(2n)!

)2

=

(
1− t2

2
+

5t4

24
− 61t6

720
+

1385t8

40320
+ · · ·

)2

= 1− t2 +
2t4

3
− 17t6

45
+ · · · (5.1)

where En is the nth Euler number2.

2The first few Euler numbers are: 1, -1, 5, -61, 1385, -50521 with alternating signs. For the explicit definition
and formula, see [1, p. 804].
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Now using the Fourier inversion theorem, ω̂2(t) =
∫∞
−∞ e

ixtω2(x)dx, we derive the nth derivative of ω̂2

evaluated at zero as follows:

ω̂2(t) =

∞∫
−∞

eixtω2(x)dx, ω̂2(0) =

∞∫
−∞

ω2(x)dx

ω̂′2(t) =

∞∫
−∞

ixeixtω2(x)dx, ω̂′2(0) =

∞∫
−∞

ixω2(x)dx

ω̂′′2(t) =

∞∫
−∞

(ix)2eixtω2(x)dx, ω̂′′2(0) =

∞∫
−∞

(ix)2ω2(x)dx

...
...

ω̂
(n)
2 (t) =

∞∫
−∞

(ix)neixtω2(x)dx, ω̂
(n)
2 (0) =

∞∫
−∞

(ix)nω2(x)dx

Since ω̂2 is an even function, it is orthogonal to all odd polynomials. Thus all odd derivatives vanish,
and we can rewrite the expression for the nth derivative of ω̂2 evaluated at zero as

∞∫
−∞

x2nω2(x)dx = (−i)2nω̂
(2n)
2 (0) = (−i)2n

(
d

dt

)2n ( 1

cosh2 t

)∣∣∣∣
t=0

, (5.2)

which is then used together with equation (5.1) to find the moments as follows:

n = 0,

∞∫
−∞

ω2(x)dx = (−i)0ω̂2(0) = 1

n = 1,

∞∫
−∞

x2ω2(x)dx = (−i)2ω̂′′2(0) = (−i)2 (−2!× 1) = 2

n = 2,

∞∫
−∞

x4ω2(x)dx = (−i)4ω̂
(4)
2 (0) = (−i)4

(
4!× 2

3

)
= 16

n = 3,

∞∫
−∞

x6ω2(x)dx = (−i)6ω̂
(6)
2 (0) = (−i)6

(
−6!× 17

45

)
= 272

...

We can now use proposition (2.61) to construct a unique system of monic orthogonal polynomials
{ρn}∞n=0. Set ρ0(x) = 1 and since this has an even power of x, it is orthogonal to all odd polynomials
and in particular to ρ1(x) = x. To find the third polynomial, set ρ2(x) = x2 + a and this orthogonal to
ρ0 implies that

0 =

∞∫
−∞

(x2 + a)ω2(x)dx =

∞∫
−∞

x2ω2(x)dx+ a

∞∫
−∞

ω2(x)dx = 2 + a.
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Thus a = −2. To find the fourth polynomial, set ρ3(x) = x3 + bx and this orthogonal to ρ1 implies that

0 =

∞∫
−∞

(x3 + bx)xω2(x)dx =

∞∫
−∞

x4ω2(x)dx+ b

∞∫
−∞

x2ω2(x)dx = 16 + 2b.

Thus b = −8. To find the fifth polynomial, set ρ4(x) = x4 + cx2 + d and this orthogonal to ρ0 implies
that

0 =

∞∫
−∞

(x4 + cx2 + d)ω2(x)dx

=

∞∫
−∞

x4ω2(x)dx+ c

∞∫
−∞

x2ω2(x)dx+ d

∞∫
−∞

ω2(x)dx

= 16 + 2c+ d. (5.3)

ρ4 should also be orthogonal to ρ2, and so,

0 =

∞∫
−∞

(x4 + cx2 + d)(x2 − 2)ω2(x)dx

=

∞∫
−∞

(x6 + cx4 + dx2)ω2(x)dx

=

∞∫
−∞

x6ω2(x)dx+ c

∞∫
−∞

x4ω2(x)dx+ d

∞∫
−∞

x2ω2(x)dx

= 272 + 16c+ 2d

= 272 + 16c+ 2(−16− 2c), by (5.3)

= 240 + 12c.

Thus, c = −20 and d = 24. The rest of the ρ-polynomials are obtained following the same procedure,
and we have

ρ0(x) = 1

ρ1(x) = x

ρ2(x) = x2 − 2

ρ3(x) = x3 − 8x

ρ4(x) = x4 − 20x2 + 24

...

We now establish the relationship between these polynomials. Setting ρ−1 = 0, we note that

ρ1(x) = xρ0(x)− ρ−1(x) 0 = 0× 1

ρ2(x) = xρ1(x)− 2ρ0(x) 2 = 1× 2

ρ3(x) = xρ2(x)− 6ρ1(x) 6 = 2× 3

ρ4(x) = xρ3(x)− 12ρ2(x) 12 = 3× 4

...
...
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where the second column shows the pattern of the coefficients of the second terms on the right hand
side of the polynomial equations. This pattern of the coefficients motivates us to define the system of
polynomials {ρn}∞n=0 by the recurrence relation

ρ−1 = 0, ρ0 = 1, and ρn+1(x) = xρn(x)− n(n+ 1)ρn−1(x),

which we will later use to compute the exponential generating function for proving orthogonality of our
system.

Before proceeding further, we present two lemmas that will be useful in proving the main results of this
section.

Lemma 5.70 If the function f is integrable on (−∞,∞) and

f̂(x) =

∞∫
−∞

f(t)eixtdt ≡ 0,

then f = 0 almost everywhere.

Proof
See Andrews, Askey and Roy [3, thm. 6.5.1]. �

Lemma 5.71 If Re(α) < π
2 , then

∞∫
−∞

eαxω2(x)dx =

(
1

cosα

)2

. (5.4)

Proof
Bearing in mind that ω2 = ω1 ∗ ω1, a self convolution, we have

∞∫
−∞

eαxω2(x)dx =

∞∫
−∞

∞∫
−∞

eαxω1(x− y)ω1(y)dydx

=

∞∫
−∞

∞∫
−∞

eα(t+y)ω1(t)ω1(y)dtdy if we let x− y = t

=

∞∫
−∞

 ∞∫
−∞

eαtω1(t)dt

 eαyω1(y)dy

=

∞∫
−∞

eαtω1(t)dt

∞∫
−∞

eαyω1(y)dy

=

 ∞∫
−∞

eαxω1(x)dx

2

if we let t = y = x

=

(
1

cosα

)2

, by lemma (3.65) .

�

134



Lemma 5.72 For |x| < 1,

1

(1− x)2
=

∞∑
n=0

(n+ 1)xn.

Proof
Differentiate the geometric series, 1

1−x =
∑∞

n=0 x
n, with respect to x, that is,

1

(1− x)2
=
∞∑
n=1

nxn−1 =
∞∑
n=0

(n+ 1)xn.

�

We now have all the necessary definitions and lemmas needed to present and prove the main results of
this section.

Theorem 5.73 Let the system {ρn}∞n=0 be given by the recurrence relation

ρ−1 = 0, ρ0 = 1 and ρn+1(x) = xρn(x)− n(n+ 1)ρn−1(x). (5.5)

Then

1. The function ρn is a monic polynomial of degree n for n ≥ 0.
2. The exponential generating function, Gρ(x, s) =

∑∞
n=0

ρn(x)
n! sn, is given by the function

Gρ(x, s) =
ex arctan s

1 + s2
.

3. The sequence of polynomials {ρnn! }
∞
n=0 is an orthogonal basis in the Hilbert space L2(ω2).

Proof
(1) follows immediately from the definition of the recurrence relation. To prove (2), we multiply the
recurrence by sn/n! and sum over n so that

0 =
∞∑
n=0

[ρn+1(x)− xρn(x) + n(n+ 1)ρn−1(x)]
sn

n!

=

∞∑
n=0

ρn+1(x)
sn

n!
− x

∞∑
n=0

ρn(x)
sn

n!
+

∞∑
n=1

n(n+ 1)ρn−1(x)
sn

n!

= G′ρ(x, s)− xGρ(x, s) +
∞∑
n=0

(n+ 1)(n+ 2)ρn(x)
sn+1

(n+ 1)!

= G′ρ(x, s)− xGρ(x, s) + 2s

∞∑
n=0

ρn(x)
sn

n!
+

∞∑
n=1

nρn(x)
sn+1

n!

= G′ρ(x, s)− xGρ(x, s) + 2sGρ(x, s) +

∞∑
n=0

(n+ 1)ρn+1(x)
sn+2

(n+ 1)n!

= G′ρ(x, s)− xGρ(x, s) + 2sGρ(x, s) + s2G′ρ(x, s)

= (1 + s2)G′ρ(x, s) + (2s− x)Gρ(x, s).
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Thus,

G′ρ(x, s) +
2s− x
1 + s2

Gρ(x, s) = 0. (5.6)

This is a first-order linear differential equation where all derivatives are with respect to s, holding x
fixed. The integrating factor is

exp

(∫
2s− x
1 + s2

ds

)
= exp

(∫
2s

1 + s2
ds−

∫
x

1 + s2
ds

)
= exp(ln(1 + s2)− x arctan s))

= (1 + s2)e−x arctan s.

Multiplying both sides of equation (5.6) by this factor gives

d

ds

(
(1 + s2)e−x arctan sGρ(x, s)

)
= 0

which implies that

Gρ(x, s) = c
ex arctan s

1 + s2
.

Now since Gρ(x, s) =
∑∞

n=0
ρn(x)
n! sn, it implies that Gρ(x, 0) = 1. Thus c=1 and (2) follows.

To prove (3), we first show that

∞∫
−∞

Gρ(x, s)Gρ(x, t)ω2(x)dx =
1

(1− st̄)2
.

Now

Gρ(x, s)Gρ(x, t) =
ex arctan s

1 + s2

ex arctan t̄

1 + t̄2
=

1

(1 + s2)(1 + t̄2)
ex(arctan s+arctan t̄).

Set u = 1
(1+s2)(1+t̄2)

, α = arctan s, β = arctan t̄ and assume that Re(α+ β) < π
2 . Then we have

∞∫
−∞

Gρ(x, s)Gρ(x, t)ω2(x)dx = u

∞∫
−∞

e(α+β)xω2(x)dx

= u

(
1

cos(α+ β)

)2

, by lemma (5.71)

= u

(√
1 + tan2 α

√
1 + tan2 β

1− tanα tanβ

)2

, by lemma (3.66)

= u

(√
1 + s2

√
1 + t̄2

1− st̄

)2

= u · (1 + s2)(1 + t̄2)

(1− st̄)2

=
1

(1− st̄)2
. (5.7)
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Next, by lemma (5.72) we see that this implies that

∞∫
−∞

Gρ(x, s)Gρ(x, t)ω2(x)dx =
∞∑
n=0

(n+ 1)(st̄)n. (5.8)

But using the definition, Gρ(x, s) =
∑∞

n=0
ρn(x)
n! sn, gives

∞∫
−∞

Gρ(x, s)Gρ(x, t)ω2(x)dx =

∞∫
−∞

( ∞∑
n=0

ρn(x)

n!
sn

)( ∞∑
n=0

ρk(x)

k!
t̄k

)
ω2(x)dx

=

∞∑
n=0

∞∑
k=0

snt̄k
∞∫
−∞

ρn(x)ρk(x)

n!k!
ω2(x)dx. (5.9)

It therefore follows from (5.8) and (5.9) that

∞∑
n=0

∞∑
k=0

snt̄k
∞∫
−∞

ρn(x)ρk(x)

n!k!
ω2(x)dx =

∞∑
n=0

(n+ 1)(st̄)n.

Comparing the coefficients of the powers of s and t̄ proves orthogonality, that is,

〈ρn(x)

n!
,
ρk(x)

k!
〉 = (n+ 1)δnk (5.10)

To show that this system of polynomials {ρnn! }
∞
n=0 is a basis in the Hilbert space L2(ω2), we need to

show that it is complete. But since the span of {ρnn! }
∞
n=0 is the space of all polynomials, it suffices to

show density of the system {xn}∞n=0. Let 〈f, xn〉 = 0 for some f ∈ L2(ω2) and all n ≥ 0. Then

∞∫
−∞

f(x)eitxω2(x)dx =

∞∑
n=0

(it)n

n!

∞∫
−∞

f(x)xnω2(x)dx

= lim
N→∞

N∑
n=0

(it)n

n!

∞∫
−∞

f(x)xnω2(x)dx

= lim
N→∞

N∑
n=0

(it)n

n!
· 0

= 0.

By Lemma (5.70), fω2 = 0 almost everywhere. But ω2 6= 0 and so f = 0 almost everywhere which by
definition (2.54) implies that {xn}∞n=0 is dense in L2(ω2). Therefore, the system {ρnn! }

∞
n=0 is complete,

and in particular, it is an orthogonal basis in the Hilbert space L2(ω2). �

6. Some Connections Between the Systems
Having presented the three systems of polynomials in the previous sections, we can now discuss some
useful connections between them, in terms of the operators R, J and Q. To start with, let us write a few
terms for each system. By definition, σ−1 = τ−1 = ρ−1 = 0, σ0 = τ0 = ρ0 = 1, and σn+1(x) =
xσn(x)−n(n−1)σn−1(x), τn+1(x) = xτn(x)−n2τn−1(x) and ρn+1(x) = xρn(x)−n(n+1)ρn−1(x).
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We thus have

σ τ ρ

σ0 = 1 τ0 = 1 ρ0 = 1

σ1 = x τ1 = x ρ1 = x

σ2 = x2 τ2 = x2 − 1 ρ2 = x2 − 2

σ3 = x3 − 2x τ3 = x3 − 5x ρ3 = x3 − 8x

σ4 = x4 − 8x2 τ4 = x4 − 14x2 + 9 ρ4(x) = x4 − 20x2 + 24

...
...

...

Our three operators are defined by Rf(x) = 1
2(f(x + i) + f(x − i)), Qf(x) = xf(x) and Jf(x) =

1
2i(f(x+ i)− f(x− i)). Comparing columns 1 and 3, we see that xρn = σn+1 which by definition of
Q implies that Qρn = σn+1. In what follows below, we check the operations of R, J and Q on the three
systems of polynomials. We start with the operator R. On the first column, we have

Rσ0 =
σ0(x+ i) + σ0(x− i)

2
=

1 + 1

2
= 1

Rσ1 =
(x+ i) + (x− i)

2
=

2x

2
= x

Rσ2 =
(x+ i)2 + (x− i)2

2
=

2x2 − 2

2
= x2 − 1

Rσ3 =
(x+ i)3 − 2(x+ i) + (x− i)3 − 2(x− i)

2
= x3 − 5x

...

This indicates that the operation of R on column 1 gives column 2. We can therefore claim that Rσn =
τn which we will prove later. On column 2, we have

Rτ0 = 1

Rτ1 = x

Rτ2 =
(x+ i)2 − 1 + (x− i)2 − 1

2
=

2x2 − 4

2
= x2 − 2

Rτ3 =
(x+ i)3 − 5(x+ i) + (x− i)3 − 5(x− i)

2
= x3 − 8x

...

This indicates that the operation of R on column 2 gives column 3. We can therefore claim that Rτn =
ρn which we will prove later. We now turn to the operator J . On column 1, we have

Jσ0 =
τ0(x+ i)− τ0(x− i)

2i
=

1− 1

2i
= 0

Jσ1 =
(x+ i)− (x− i)

2i
=

2i

2i
= 1

Jσ2 =
(x+ i)2 − (x− i)2

2i
=

4xi

2i
= 2x

Jσ3 =
(x+ i)3 − 2(x+ i)− (x− i)3 + 2(x− i)

2i
= 3x2 − 3 = 3(x2 − 1)

...
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From this, we can claim that Jσn = nτn−1 which will be proved later. On column 2, we have

Jτ0 = 0

Jτ1 = 1

Jτ2 =
(x+ i)2 − 1− (x− i)2 + 1

2i
=

4xi

2i
= 2x

Jτ3 =
(x+ i)3 − 5(x+ i)− (x− i)3 + 5(x− i)

2i
= 3x2 − 6 = 3(x2 − 3)

...

From this, we can claim that Jτn = nρn−1 which will be proved later.

We can now state the main results of this section.

Theorem 6.74 The following connections between the three systems of orthogonal polynomials {σn},
{τn} and {ρn} hold:

Rσn = τn (6.1)

Jσn = nτn−1 (6.2)

Rτn = ρn (6.3)

Jτn = nρn−1 (6.4)

Qρn = σn+1 (6.5)

Proof
We shall prove only (6.3) and (6.4) since the proofs for the rest follow the same procedure. The idea of
the proof is that, given (6.3), we prove by induction (6.4), and viceversa.
We start with (6.3). For n = 0, the statement is true since we have

Rτ0(x) =
τ0(x+ i) + τ0(x− i)

2
=

1 + 1

2
= 1 = ρ0(x).

Now assume that both (6.3) and (6.4) hold for all τk, k ≤ n, then

Rτn+1(x) = R[xτn(x)− n2τn−1(x)], by recurrence relation

=
(x+ i)τn(x+ i) + (x− i)τn(x− i)

2
− n2 τn−1(x+ i) + τn−1(x− i)

2

= x
τn(x+ i) + τn(x− i)

2
+ i

τn(x+ i)− τn(x− i)
2

− n2Rτn−1(x)

= xRτn(x)− τn(x+ i)− τn(x− i)
2i

− n2Rτn−1

= xRτn(x)− Jτn(x)− n2Rτn−1

= xRτn(x)− nρn−1(x)− n2Rτn−1, by (6.4) assumption

= xρn(x)− nρn−1(x)− n2ρn−1(x), by induction assumption

= xρn(x)− n(n+ 1)ρn−1(x)

= ρn+1(x).

139



Therefore, since the statement is also true for n+ 1, it follows by induction that it is true for all integers
n ≥ 0.
The proof for (6.4) follows the same procedure, and as such, we omit it. �

We now introduce some notations related to the three systems of polynomials. Denote the polynomials
σn
n! ,

τn
n! ,

ρn
n! by σ̃n, τ̃n, ρ̃n respectively. It follows from Theorems (3.64), (4.69) and (5.73) that the systems

{σ̃n}∞n=0, {τ̃n}∞n=0 and {ρ̃n}∞n=0 are orthogonal bases for the Hilbert spaces H2(S,P), L2(ω1) and
L2(ω2) respectively. In fact, the system {τ̃n}∞n=0 is orthonormal. In what follows, we look at some
consequences of the relations in Theorem (6.74).

Corollary 6.75 The following connections between the three systems of orthogonal polynomials {σ̃n},
{τ̃n} and {ρ̃n} hold:

Rσ̃n = τ̃n (6.6)

Jσ̃n = τ̃n−1 (6.7)

Rτ̃n = ρ̃n (6.8)

Jτ̃n = ρ̃n−1 (6.9)

Qρ̃n = (n+ 1)σ̃n+1 (6.10)

Proof
Divide the equations in Theorem (6.74) through by n!. For instance, we have for relation (6.9),

Jτn = nρn−1

Jτn
n!

=
nρn−1

n!
⇒ Jτ̃n =

ρn−1

(n− 1)!
⇒ Jτ̃n = ρ̃n−1.

�

Corollary 6.76 Let the operators K, L, M, A, B and C be defined as follows: K = RRQ, L =
QRR, M = RQR, A = RQJ , B = QJR and C = RJQ. Then the following relations hold:

Kn(ρ0) = ρn (6.11)

Ln(σ0) = σn (6.12)

Mn(τ0) = τn (6.13)

A(τn) = nτn (6.14)

B(σn) = nσn (6.15)

C(ρn) = nρn (6.16)

Proof
We prove only (6.11) and (6.16). The proofs for the rest follow the same procedure.
For (6.11), we proceed by induction. For n = 0, the statement is trivially true. Now assume that it is
true for some integer n ≥ 0, then

Kn+1(ρ0) = KKn(ρ0)

= Kρn, by induction assumption

= RRQρn

= ρn+1, by Theorem (6.74).
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Therefore, since the statement is also true for n+ 1, it follows by induction that it is true for all integers
n ≥ 0.
For (6.16), we use the definition of C and the relations in Theorem (6.74),

C(ρn) = RJQ(ρn)

= RJσn+1

= Rnτn

= nρn.

�

Corollary 6.77 The following relations hold:

τ̃n(x± i) = ρ̃n(x)± iρ̃n−1(x) (6.17)

σ̃n(x± i) = τ̃n(x)± iτ̃n−1(x) (6.18)

Proof
We prove only (6.17) since the proof for (6.18) follows the same procedure. From corollary (6.75),
ρ̃n = Rτ̃n and ρ̃n−1 = Jτ̃n. Thus,

ρ̃n(x)± iρ̃n−1(x) = Rτ̃n(x)± iJτ̃n(x)

= (R± iJ)τ̃n(x)

= τ̃n(x± i), by relation (4.3).

�

7. Two Bounded Operators
In this section, we study two more operators, namely T = R−1 and S = JR−1, where J and R are
the operators that where defined and presented in section (). It is clear from the connections in corollary
(6.75) that

T ρ̃n = τ̃n (7.1)

T τ̃n = σ̃n (7.2)

Sτ̃n = τ̃n−1 (7.3)

Sρ̃n = ρ̃n−1 (7.4)

Also by relation (4.3),

Tf(x± i) = (R+ iJ)Tf(x)

= RTf(x) + iJTf(x)

= f(x) + iSf(x). (7.5)

The integral representations of these two operators, S and J , were developed and presented in Araaya’s
paper [5]. For the operator T , we have

Tf =
1

2 cosh π
2x
∗ f, (7.6)
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and for the operator S, we have

Sf = − 1

2 sinh π
2x
∗ f, (7.7)

where in both cases ∗ denotes convolution. Using the convolution theorem, the Fourier transforms for T
and S were shown to be

T̂ f(t) = sech tf̂(t) (7.8)

and

Ŝf(t) = −i tanh tf̂(t) (7.9)

respectively. We shall also make use of what is known as the Plancherel theorem which states that
||f̂ || = ||f || for any f ∈ L2(R). See [13, thm. 9.13].

Proposition 7.78 For the operator T , we have the following:

1. T is linear and bounded from L2(ω2) to L2(ω1).

2. If L2
0(ω1) = {f ∈ L2(ω1) : 〈f, 1〉 = 0} and H2

0 (S,P) = {f ∈ H2(S,P) : f(0) = 0}, then
T/
√

2 is a unitary operator from L2
0(ω1) onto H2

0 (S,P).

Remark 5 Let f ∈ L2(ω1) and bn = 〈f, τ̃n〉. Then the operator U : L2(ω1) → H2(S,P) defined by
Uf = b0 + 1√

2

∑∞
n=1 bnσ̃n is unitary.

Proof
Since all other properties are clear, we prove only boundedness.

1. Let f ∈ L2(ω2) and an = 〈f, ρ̃n〉. By Theorem (5.73), the system {ρ̃n}∞n=0 is an orthogonal
basis in L2(ω2) with norm

√
n+ 1, and so, by proposition (2.56),

f =

∞∑
n=0

anρ̃n and ||f ||2L2(ω2) =

∞∑
n=0

(n+ 1)|an|2.

By relation (7.1),

Tf =
∞∑
n=0

anτ̃n.

Since by Theorem (3.64) the system {τ̃n}∞n=0 is an orthonormal basis in L2(ω1), we have

||Tf ||2L2(w) =
∞∑
n=0

|an|2

≤
∞∑
n=0

(n+ 1)|an|2

= ||f ||2L2(ω2),

which proves boundedness of T from L2(ω2) to L2(w) with norm 1.
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2. Let f ∈ L2
0(ω1) and bn = 〈f, τ̃n〉. Then b0 = 〈f, τ̃0〉 = 〈f, 1〉 = 0, and since by Theorem (3.64)

the system {τ̃n}∞n=0 is an orthonormal basis in L2(ω1), we have

f =

∞∑
n=1

bnτ̃n and ||f ||2L2
0(ω1) =

∞∑
n=1

|bn|2.

By relation (7.2),

Tf =
∞∑
n=1

bnσ̃n.

Since by Theorem (4.69) the system {σ̃n}∞n=0 is an orthogonal basis in H2(S,P) with norm 1 for
n = 0 and

√
2 for n ≥ 1, we have

|| 1√
2
Tf ||2H2

0 (S,P) =
∞∑
n=1

|bn|2 = ||f ||2L2(ω1).

This proves that T/
√

2 is an isometry.

�

Before proceeding further, we present three lemmas that will be useful in proving the main results of this
section. The proof of the next lemma depends on Cauchy’s theorem [2, thm. 1.4.2] which says that if
two different paths connect the same two points, and a function is holomorphic everywhere in between
the two paths, then the two path integrals of the function will be the same.

Lemma 7.79 If f ∈ H2(S) then f̂ ∈ L2(R, cosh 2t dt) where f̂ is the Fourier transform of an analytic
function f . Furthermore, ||f ||2H2(S) = ||f̂ ||2L2(R,cosh 2t dt).

Proof
Recall from subsection () that analytic functions in the Hilbert space H2(S) have the norm

||f ||H2(S) =

∞∫
−∞

|f(x+ i)|2 + |f(x− i)|2

2
dx.

For f(x+ i), we have the Fourier transform

1

2π

∞∫
−∞

f(x+ i)e−ixtdx =
1

2π

∞∫
−∞

f(x+ i)e−i(x+i)tetdx

= et
1

2π

∞∫
−∞

f(x)e−ixtdx, by Cauchy’s theorem

= etf̂(t).

Similarly for f(x− i),

1

2π

∞∫
−∞

f(x− i)e−ixtdx = e−tf̂(t).
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It therefore follows by the Plancherel theorem that

||f ||H2(S) =

∞∫
−∞

|f(x+ i)|2 + |f(x− i)|2

2
dx

=
1

2π

∞∫
−∞

|etf̂(t)|2 + |e−tf̂(t)|2

2
dt

=
1

2π

∞∫
−∞

|f̂(t)|2
(
e2t + e−2t

2

)
dt

=
1

2π

∞∫
−∞

|f̂(t)|2 cosh 2t dt

= ||f̂ ||L2(R,cosh 2t dt).

�

The proof of the next lemma depends on the Hadamard three-lines theorem [13, thm. 12.8] which for our
particular case says that if f ∈ A0(S) and if M(n) = max |f(x+ in)| then M(0) ≤ (M(−1)M(1))

1
2 .

Lemma 7.80 If f ∈ H2(S) then ||f ||0 ≤ (||f ||+1 · ||f ||−1)
1
2 where we have used the notation ||f ||2n =∫∞

−∞ |f(x+ in)|2dx.

Proof
Define the convolution F = f ∗ f̃ ∈ A0(S) where f̃(x) = f(−x), that is,

F (z) =

∞∫
−∞

f(z − x)f̃(x)dx.

Then

F (0) =

∞∫
−∞

|f(−x)|2dx = ||f ||20.

Recall from subsection () that A0(S) is the space of functions that are analytic in S, continuous on ∂S
and f(x+ iy)→ 0 as |x| → ∞. Thus f(x+ in) attains a maximum, say, F (n) = maxx∈R |f(x+ in)|.
Then by the Hadamard three-lines theorem [13, thm. 12.8],

F (0) ≤ (F (+1)F (−1))
1
2 ,

and by the Schwarz inequality,

F (+1) ≤ ||f ||+1 · ||f ||0 and F (−1) ≤ ||f ||−1 · ||f ||0.

Therefore,

||f ||20 = F (0) ≤ (F (+1)F (−1))
1
2

≤ (||f ||+1 · ||f ||0 · ||f ||−1 · ||f ||0)
1
2

≤ (||f ||+1 · ||f ||−1)
1
2 ||f ||0
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so that

||f ||0 ≤ (||f ||+1 · ||f ||−1)
1
2

�

Lemma 7.81 For all x ≥ 0,
√
x2 + 1

2 cosh π
2x
≤ π

2

x

2 sinh π
2x

Proof
This is equivalent to proving the inequality

tanh
π

2
x ≤ π

2

x√
1 + x2

.

For all x ≥ 0, define

f(x) =
π

2

x√
1 + x2

− tanh
π

2
x.

Then,

f(0) = 0 and f ′(x) =
π

2

(
1

(1 + x2)3/2
− sech2 π

2
x

)
.

We need to show that f ′ > 0 for all x > 0. This is equivalent to proving the inequality(
1

(1 + x2)3/2
− sech2 π

2
x

)
> 0

cosh2 π

2
x > (1 + x2)3/2

cosh4 π

2
x > (1 + x2)3 (7.10)

Inequality (7.10) can be proved using Maclaurin series expansion, that is,

(cosh
πx

2
)4 > (1 +

π2x2

8
)4 > (1 + x2)4 > (1 + x2)3.

We have thus showed that f ′(x) > 0 for all x > 0, and since f(0) = 0, it follows that for all x ≥ 0,

f(x) ≥ 0
π

2

x√
1 + x2

− tanh
π

2
x ≥ 0

tanh
π

2
x ≤ π

2

x√
1 + x2

√
x2 + 1

2 cosh π
2x
≤ π

2

x

2 sinh π
2x
.

�

We now have all the necessary definitions and lemmas needed to present and prove the main results of
this section. In fact, they are the final results for this project thesis, and they will be presented in two
separate theorems, one for the operator T and the other for the operator S.
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Theorem 7.82 The operator S is linear and bounded on the following Hilbert spaces with norm 1:

1. L2(ω2)

2. L2(ω1)

3. L2(R)

4. H2(S,P)

5. H2(S)

Proof
Since linearity follows immediately from the fact that S is a convolution, we shall prove only bounded-
ness.

1. Let ˜̃ρn = ρ̃n√
n+1

, f ∈ L2(ω2) and an = 〈f, ˜̃ρn〉. Since by equation (5.10)
√
n+ 1 is the norm of

the polynomial ρ̃n in the Hilbert space L2(ω2), it follows from Theorem (5.73) that { ˜̃ρn}∞n=0 is
an orthonormal basis in L2(ω2). Thus by proposition (2.56),

f =
∞∑
n=0

an ˜̃ρn and ||f ||2 =

∞∑
n=0

|an|2.

By relation (7.4),

Sf =

∞∑
n=1

an

(
ρ̃n−1√
n+ 1

)

=
∞∑
n=0

an+1

(
ρ̃n√
n+ 2

)

=

∞∑
n=0

an+1

(√
n+ 1

n+ 2

)(
ρ̃n√
n+ 1

)

=
∞∑
n=0

(√
n+ 1

n+ 2

)
an+1

˜̃ρn.

Thus,

||Sf ||2 =
∞∑
n=0

(
n+ 1

n+ 2

)
|an+1|2 =

∞∑
n=1

(
n

n+ 1

)
|an|2 ≤

∞∑
n=1

|an|2 ≤ ||f ||2,

which proves boundedness of S on L2(ω2) with norm 1.

2. Let f ∈ L2(ω1) and bn = 〈f, τ̃n〉. By Theorem (3.64), the system {τ̃n}∞n=0 is an orthonormal
basis in L2(ω1) so that by proposition (2.56),

f =
∞∑
n=0

bnτ̃n and ||f ||2 =
∞∑
n=0

|bn|2.

By relation (7.3),

Sf =

∞∑
n=1

bnτ̃n−1 =

∞∑
n=0

bn+1τ̃n.
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Thus,

||Sf ||2 =

∞∑
n=0

|bn+1|2 =
∞∑
n=1

|bn|2 ≤
∞∑
n=0

|bn|2 = ||f ||2,

which boundedness of S on L2(ω1) with norm 1.

3. Let f ∈ L2(R). Using the Plancherel theorem, we have

||Sf ||2 = ||Ŝf ||2 =
1

2π

∞∫
−∞

|Ŝf(t)|2 dt

=
1

2π

∞∫
−∞

| tanh tf̂(t)|2 dt, by (7.9)

≤ 1

2π

∞∫
−∞

|f̂(t)|2 dt, since | tanh t| ≤ 1

= ||f ||2

which proves boundedness of S on L2(R) with norm 1.

4. Let ˜̃σn = 1 if n = 0, and ˜̃σn = σ̃n√
2

for all n ≥ 1. Then by Theorem (4.69), the system {˜̃σn}∞n=0

is an orthonormal basis in H2(S,P). Let f ∈ H2(S,P) and cn = 〈f, ˜̃σn〉. By proposition (2.56),

f =

∞∑
n=0

cn ˜̃σn and ||f ||2 =

∞∑
n=0

|cn|2.

Since RJ = JR by proposition (4.68), it follows that S = JR−1 = R−1J . Thus Sσ̃n = σ̃n−1

by corollary (6.75) so that

Sf =
∞∑
n=1

cn

(
σ̃n−1√

2

)

=

∞∑
n=0

cn+1

(
σ̃n√

2

)

=
c1√

2
+
∞∑
n=1

cn+1
˜̃σn.

Thus,

||Sf ||2 =
|c1|2

2
+

∞∑
n=1

|cn+1|2 =
|c1|2

2
+

∞∑
n=2

|cn|2 ≤
∞∑
n=1

|cn|2 ≤ ||f ||2,

which proves boundedness of S on H2(S,P) with norm 1.
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5. Let f ∈ H2(S). Then by Lemma (7.79),

||Sf ||2H2(S) = ||Ŝf ||2L2(R,cosh 2t dt)

=
1

2π

∞∫
−∞

|Ŝf(t)|2 cosh 2t dt

=
1

2π

∞∫
−∞

| tanh tf̂(t)|2 cosh 2t dt, by (7.9)

≤ 1

2π

∞∫
−∞

|f̂(t)|2 cosh 2t dt, since | tanh t| ≤ 1

= ||f̂ ||2L2(R,cosh 2t dt)

= ||f ||2H2(S),

which proves boundedness of S on H2(S) with norm 1.

�

Theorem 7.83 The operator T is linear and bounded on the following Hilbert spaces:

1. L2(ω2) with norm less than or equal to
√
π.

2. L2(ω1) with norm less than or equal to 2.

3. L2(R) with norm 1.

4. H2(S) with norm 1.

Proof
Since linearity follows immediately from the fact that S is a convolution, we shall prove only bounded-
ness.

1. We first show that if f ∈ L2
R(ω2) and ψ =

√
ω2, then Tfψ ∈ H2(S). In particular, we show that

||Tfψ||2H2(S) =

∞∫
−∞

|Tf(x+ i)ψ(x+ i)|2 + |Tf(x− i)ψ(x− i)|2

2
dx

is finite. Now,

|ψ(x± i)|2 =

∣∣∣∣ x± i
2 sinh π

2 (x± i)

∣∣∣∣ =

∣∣∣∣ x± i
±i 2 cosh π

2x

∣∣∣∣ =

√
x2 + 1

2 cosh π
2x
, (7.11)

and by relation (7.5),

|Tf(x± i)|2 = |f(x) + iSf(x)|2 = |f(x)|2 + |Sf(x)|2. (7.12)
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Thus by (7.11) and (7.12),

|Tf(x+ i)ψ(x+ i)|2 = |Tf(x− i)ψ(x− i)|2 (7.13)

=
(
|f(x)|2 + |Sf(x)|2

) √x2 + 1

2 cosh π
2x
. (7.14)

Therefore,

||Tfψ||2H2(S) =

∞∫
−∞

|Tf(x+ i)ψ(x+ i)|2 + |Tf(x− i)ψ(x− i)|2

2
dx

=

∞∫
−∞

|Tf(x+ i)ψ(x+ i)|2dx, by (7.13)

=

∞∫
−∞

(
|f(x)|2 + |Sf(x)|2

) √x2 + 1

2 cosh π
2x
dx, by (7.14)

≤ π

2

∞∫
−∞

(
|f(x)|2 + |Sf(x)|2

) x

2 sinh π
2x
dx, by lemma (7.81)

=
π

2

∞∫
−∞

|f(x)|2ω2dx+
π

2

∞∫
−∞

|Sf(x)|2ω2dx

=
π

2
||f ||2L2

R(ω2) +
π

2
||Sf ||2L2

R(ω2)

≤ π

2
||f ||2L2

R(ω2) +
π

2
||f ||2L2

R(ω2), by Theorem (7.82) part(1)

= π ||f ||2L2
R(ω2), (7.15)

which proves that Tfψ ∈ H2(S) for any f ∈ L2
R(ω2).

Next, we show that T is bounded on L2
R(ω2). Let f ∈ L2

R(ω2), then

||Tf ||2L2
R(ω2) =

∞∫
−∞

|Tf(x)|2ω2(x)dx

=

∞∫
−∞

|Tf(x)
√
ω2(x)|2dx

=

∞∫
−∞

|Tf(x)ψ(x)|2dx

≤

 ∞∫
−∞

|Tf(x+ i)ψ(x+ i)|2dx

 1
2
 ∞∫
−∞

|Tf(x− i)ψ(x− i)|2dx

 1
2

=

∞∫
−∞

|Tf(x+ i)ψ(x+ i)|2dx, by (7.13)

≤ π ||f ||2L2
R(ω2), by (7.15)
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where the first inequality follows by Lemma (7.80) since Tfψ ∈ H2(S).

We have shown that T is bounded on L2
R(ω2) with norm

√
π. Now since every analytic function

g can be written as g = f + i h for f, h ∈ L2
R(ω2), it follows that T is bounded on L(ω2) with

norm
√
π.

Remark 6 Since T and S map functions that are real on the real line to functions that also have
this property and therefore T (f + ih) = Tf + iTh, the same bounds hold for complex-valued
functions as for real-valued.

2. We first show that if f ∈ L2
R(ω1) and ϕ = 1/(2 cosh π

4x), then Tfϕ ∈ H2(S). In particular, we
show that

||Tfϕ||2H2(S) =

∞∫
−∞

|Tf(x+ i)ϕ(x+ i)|2 + |Tf(x− i)ϕ(x− i)|2

2
dx

is finite. Now, ∣∣∣2 cosh
π

4
(x± i)

∣∣∣2 =
∣∣∣√2 cosh

π

4
x± i

√
2 sinh

π

4
x
∣∣∣2

=
(√

2 cosh
π

4
x
)2

+
(√

2 sinh
π

4
x
)2

= 2 cosh
π

2
x,

and so,

|ϕ(x± i)|2 =
1

2 cosh π
2x
. (7.16)

By relation (7.5),

|Tf(x± i)|2 = |f(x) + iSf(x)|2 = |f(x)|2 + |Sf(x)|2. (7.17)

Thus by (7.16) and (7.17),

|Tf(x+ i)ϕ(x+ i)|2 = |Tf(x− i)ϕ(x− i)|2 (7.18)

=
(
|f(x)|2 + |Sf(x)|2

) 1

2 cosh π
2x
. (7.19)
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Therefore,

||Tfϕ||2H2(S) =

∞∫
−∞

|Tf(x+ i)ϕ(x+ i)|2 + |Tf(x− i)ϕ(x− i)|2

2
dx

=

∞∫
−∞

|Tf(x+ i)ϕ(x+ i)|2dx, by (7.18)

=

∞∫
−∞

(
|f(x)|2 + |Sf(x)|2

) dx

2 cosh π
2x
, by (7.19)

=

∞∫
−∞

|f(x)|2ω1dx+

∞∫
−∞

|Sf(x)|2ω1dx

= ||f ||2L2
R(ω1) + ||Sf ||2L2

R(ω1)

≤ ||f ||2L2
R(ω1) + ||f ||2L2

R(ω1), by Theorem (7.82) part(2)

= 2||f ||2L2
R(ω1), (7.20)

which proves that Tfϕ ∈ H2(S) for any f ∈ L2
R(ω1).

Next, we show that T is bounded on L2
R(ω1). Let f ∈ L2

R(ω1), then

∞∫
−∞

|Tf(x)ψ(x)|2dx =

∞∫
−∞

|Tf(x)|2(
2 cosh π

4x
)2dx

=

∞∫
−∞

|Tf(x)|2

2
(
cosh π

2x+ 1
)dx

≥
∞∫
−∞

|Tf(x)|2

2
(
cosh π

2x+ cosh π
2x
)dx, since cosh

π

2
x ≥ 1

=

∞∫
−∞

|Tf(x)|2

4 cosh π
2x
dx

=
1

2

∞∫
−∞

|Tf(x)|2ω1(x)dx
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so that

||Tf ||2L2
R(ω1) =

∞∫
−∞

|Tf(x)|2ω1(x)dx

≤ 2

∞∫
−∞

|Tf(x)ϕ(x)|2dx

≤ 2

 ∞∫
−∞

|Tf(x+ i)ϕ(x+ i)|2dx

 1
2
 ∞∫
−∞

|Tf(x− i)ϕ(x− i)|2dx

 1
2

= 2

∞∫
−∞

|Tf(x+ i)ϕ(x+ i)|2dx, by (7.18)

≤ 4||f ||2L2
R(ω1), by (7.20)

where the second inequality follows by the Lemma (7.80) since Tfϕ ∈ H2(S).

We have shown that T is bounded on L2
R(ω1) with norm 2. Now since every analytic function g

can be written as g = f + i h for f, h ∈ L2
R(ω1), it follows by Remark (6) that T is bounded on

L(ω1) with norm 2.

3. Let f ∈ L2(R). Using the Plancherel theorem, we have

||Tf ||2 = ||T̂ f ||2 =
1

2π

∞∫
−∞

|T̂ f(t)|2 dt

=
1

2π

∞∫
−∞

| sech tf̂(t)|2 dt, by (7.8)

≤ 1

2π

∞∫
−∞

|f̂(t)|2 dt, since | sech t| ≤ 1

= ||f ||2

which proves boundedness of T on L2(R) with norm 1.
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4. Let f ∈ H2(S). Then by Lemma (7.79),

||Tf ||2H2(S) = ||T̂ f ||2L2(R,cosh 2t dt)

=
1

2π

∞∫
−∞

|T̂ f(t)|2 cosh 2t dt

=
1

2π

∞∫
−∞

| sech tf̂(t)|2 cosh 2t dt, by (7.8)

≤ 1

2π

∞∫
−∞

|f̂(t)|2 cosh 2t dt, since | sech t| ≤ 1

= ||f̂ ||2L2(R,cosh 2t dt)

= ||f ||2H2(S),

which proves boundedness of T on H2(S) with norm 1.

�
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ABSTRACTS

Asymptotic Properties of The Delannoy Numbers and Similar Arrays
by

Christer Kiselman
kiselman@math.uu.se

Uppsala University, Department of Mathematics, Uppsala, Sweden

Abstract: Abstract: The Delannoy numbers were introduced and studied by Henri-Auguste Delannoy
(1833-1915). He investigated the possible moves on a chessboard: the numbers under consideration
appear when one studies “la marche de la Reine,” i.e., how the queen moves (the binomial coefficients
appear similarly for the moves of the rook). The asymptotic behavior of the array of Delannoy numbers
is studied. The regularized upper and lower radial indicators of the array are determined, proved to
coincide, and to be concave. We also describe the radial indicator as an infimum of linear functions,
which amounts to determining its Fenchel transform. Since the methods developed for this study apply
to more general convolution equations, we prove results also for these equations.

The (Dis)connectedness of Products in the Box Topology
by

Vitalij A. Chatyrko
Department of Mathematics, Linkoping University, Linkoping, Sweden

Abstract: In this talk we suggest two independent sufficient conditions on topological connected spaces
which imply disconnectedness, and one sufficient condition which implies connectedness, of products
of spaces endowed with the box topology. Some applications of that will be also presented.

Identification of Coefficients in Parabolic Equations Using Measurements on the Boundary
by

Frerik Berntsson
Linkping University, Sweden

Abstract: To determine the thermal conductivity in the interior of a body using measurements on
the boundary is an important problem. Applications arise, e.g., in methods for non-destructive testing
of adhesive bonds, or crack detection in metallic materials. In our application we measure the time-
dependent temperature and heat-flux at certain locations on the boundary, or inside the domain, and
attempt to reconstruct the thermal conductivity as accurately as possible. The coefficient identification
problem is severely ill-posed in the sense that small changes in the measured data can lead to large
changes in the computed solution. The ill-posedness is analyzed using the singular value decomposition.
Also, the recorded data may not contain any information about the unknown coefficient. We propose to
formulate the coefficient identification problem as a non-linear least squares problem. The problem can
be solved using the Gauss-Newton method. The dimension of the least squares problem is reduced by
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modelling the unknown coefficient using only a small number of parameters. Numerical tests show that
the method works well.

Multidisciplinary Research in Mathematical Sciences With Applications to Real World Problems
in Biological, Bio-Inspired and Engineering Systems

by
Padmanabhan Seshaiyer

George Mason University, USA Email: pseshaiy@gmu.edu

Abstract: Computational mathematics, which comprises of mathematical modeling, analysis and sim-
ulation, is quickly becoming the foundation for solving most complex applications in biological, bio-
inspired and engineering systems. Breakthrough research required to solve such complex problems
involves transformative and multidisciplinary efforts spanning scientific and engineering disciplines.
In this talk, we will describe research methods using mathematical modeling, analysis and computa-
tional techniques to explain fundamental mechanisms needed to understand the quantitative behavior
underlying real-world applications. Specific examples of interdisciplinary projects involving analytical
and numerical solutions to partial differential equations that can help to encourage students to learn by
discovery to enhance their understanding of the multidisciplinary role of mathematics in engineering,
science and medicine will be presented.

Epidemic Potential for Malaria in Epidemiological Zones in Kenya
by

Wandera Ogana
School of Mathematics, University of Nairobi, Kenya

Abstract: Malaria is a vector-borne disease which annually results in over one million deaths and
five hundred million clinical episodes, most of which occur in sub-Sahara Africa. Since the disease
is influenced by climate factors, it is important to assess the possible risk posed by climate change on
malaria transmission. A number of indices can be used to assess this risk but the most appropriate
appears to be the epidemic potential, which is derived from the basic reproduction number, R0. We
determine the epidemic potential for selected areas within the four epidemiological zones in Kenya,
using modeled temperature and rainfall data. For the years 2009 to 2011, for which detailed malaria
data is available, we compare the variation in epidemic potential with malaria incidence. Results show
that the variation in epidemic potential, from month to month, reflects a pattern similar to the variation
in malaria incidence.

How to Manipulate Derangements
by

Fanja Rakotondrajao,
University of Antananarivo, Madagascar

Abstract: We are living in a period of change or/and of conflict: for example, the climate change,
the trend to electronic systems, and so on. All these changes will also change our way of life. In
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combinatorial word, we say that there are derangements. But ”derangements are like a rose bush, when
you touch them; you need to be careful of thorns.” We will give different methods how to manipulate
derangements combinatorially and how to analyze them.

The Dynamics of Populations in Wetlands
by

Abdou Sene
Gaston Berger University

Abstract: Some wetlands are centers of important migrations of populations of various species. These
interdependent migrations, caused by economic and environmental factors, are governed by Mathemati-
cal nonlinear complexe systems. This work consists in developing and analysing a Mathematical model
of interconnection among:

• The quantity and quality of the water available in the wetland

• The size of the population of fish in the waterways

• The dynamics of migrating birds population

• The size of the tourists population

• The dynamics of human populations going to or coming from the sorrounding towns or villages.

Adaptive Markov Chain Monte Carlo Using Variational Bayesian Adaptive Kalman Filter
by

Isambi Sailon Mbalawata and Simo Sarkka
Lappeenranta, Finland

Abstract: When we analyze the high dimensional complex models, the computation of the normal-
ized posterior density and its expectations are intractable hence we employ the numerical approximation
techniques such as Markov chain Monte Carlo methods. Markov chain Monte Carlo (MCMC) method
is a powerful computational tool for analysis of complex statistical problems; it requires proper tuning
of proposal distribution for better mixing of chains and suitable acceptance rate. However, in practice
the selection of a proper proposal distribution is not a trivial task because manual tuning of proposal
distribution is time consuming and laborious. The most used proposal distribution is the Gaussian distri-
bution, due to its attractive computational and theoretical properties. One problem of Gaussian proposal
distribution is how to find a suitable covariance matrix. One way to overcome this problem is to use the
adaptive Markov chain Monte Carlo algorithm. The algorithm automatically tunes the covariance matrix
during MCMC run. In this work, we propose a new adaptive MCMC algorithm where the covariance
matrix is adapted using variational Bayesian adaptive Kalman filter. Numerical results for simulated
examples are presented and discussed in detail.
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Linear Estimation of Location and Scale Parameters for Logistic Distribution Based on
Consecutive Order Statistics

by
Patrick G. O. Weke

School of Mathematics University of Nairobi, Kenya

Abstract: Linear estimation of the scale parameter of the logistic population based on the sum of
consecutive order statistics when the location parameter is unknown is discussed. A method based on a
pair of single spacing and the ’zero-one’ weights rather than the optimum weights is presented and used
to compute the bias, variance and relative efficiencies with respect to variance Cramer-Rao lower bound
and best linear unbiased estimators (BLUE’s) for sample size . Finally, a comparison of these estimators
is discussed.

A Stochastic Model for Planning a Compartmental Education System and Supply of Manpower
by

Lydia Musiga
University of Nairobi, Nairobi, Kenya

Abstract: This paper describes a Markov Chain transition model that encompasses the different com-
partments of an education system. The model clearly shows transition rates within compartments and
also between compartments, thus planners in the country will understand better the flow of students
from primary school to university level. Also, the theory of Absorbing Markov Chains, specifically the
Chapman-Kolmogorov result, assists in predicting future enrolments. Hence, the model will facilitate
more effective planning in the country’s education system and in the supply of manpower.

Financial Sector Performance Enhancers
by

Emma Anyika and Patrick Weke
University of Nairobi, Nairobi, Kenya

Abstract: In any state or country there are certain sectors that are relied upon to drive its economy.
For many of these countries the financial sector is seen as the driving force of the economy. This is
witnessed in many World economic crises which commence with the large organisations in the financial
sector. This should aid entrepreneurs to be aware of the areas of emphasis and factors for consideration
for positive growth of their organisations. Existing organisations will also benefit by improving the said
areas and adopting the factors for continued growth and sustainability. A multiple regression model
will be used to relate performance to its causes. Tests of hypothesis will then be made to allow for the
generalization of the findings to the whole population
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Estimating the List Size Using Bipartite Graph for Colouring Problems
by

Mashaka Mkandawile
University of Dar es Salaam

Abstract: In graph theory a bipartite graph is a graph whose vertices can be divided into two disjoint
sets U and V such that every edge connects a vertex in U to one in V ; that is, U and V are independent
sets. Bipartite graphs show up in many places and are therefore often used tool to model and calculate
with. Let B(n,m) be a bipartite graph with n vertices in each side and m edges. For each vertex we
draw uniformly at random a list of size k from a base set N of size n. In this paper we estimate the sizes
of n and k so that B(n,m) has a perfect matching with high probability.

Mathematical Modeling of Pneumonia Transmission Dynamics
by

Emaline Joseph, Kgosimore and Teresia Marijani
.

Department of Mathematics, University of Dar-es-Salaam Tanzania . Abstract: Pneumonia is one
of the leading causes of serious illness and deaths among children and adults around the world. We
therefore, formulate and analyze a mathematical model of the transmission dynamics of pneumonia
with the aim of understanding its transmission dynamics. The study also evaluates the impact of control
and prevention strategies in curtailing or mitigating against the spread of disease. We derive conditions
for the clearance or persistence of the pneumonia infection through the stability of the equilibria. We
infer the impact of control strategies on the dynamics of the disease through sensitivity analysis of the
reproduction number, R0. Numerical simulations are carried out to illustrate the analytical results and
test the influence of certain parameters. The result of study showed that treatment and vaccination have
the effect of reducing the disease provided that the control reproduction number is reduced to a value
below one

Hydrodynamics of Shallow Water Equations: A Case Study of Lake Victoria
by

David Ddumba Walakira
Mathematics Department, Makerere University

Abstract: A three dimensional hydrodynamic model has been applied to lake Victoria. We have as-
sumed a vertical coriolis dominance because of the geographical location of lake Victoria at the equator,
leading to a non-hydrostatic approximation. To capture not only the dis-continuities, but also the physi-
cal and numerical shocks in the shallow water flow of the second largest fresh water body in the world,
a min-mod flux limiter has been employed as a numerical finite volume high resolution method to solve
a 3D model with Boussines and swallow water approximations. An energy method is applied for the
well-posedeness of this non-linear hyperbolic system of equations.
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Boundary Layer Flow Over a Moving at Surface With Temperature Dependent Viscosity
by

J.W. Mwaonanji
Mathematics and Statistics Dept, The Polytechnic, University of Malawi, Malawi

Abstract: Numerical investigation of two-dimensional laminar boundary layer flow over a moving
flat surface with temperature dependent viscosity is studied. The flow is divided into two regimes: with
viscous dissipation and without viscous dissipation. The flow is also restricted to a region where both the
free-stream and the flat surface are moving in the same direction i.e no reverse flow within the boundary
layer. Thus the velocity ratio, ξ, has generally been chosen in such a way that 0 < ξ < 1. The governing
boundary layer equations of the flow are transformed to a dimensionless system of equations using a
similarity variable ζ(x, y). The resulting set of coupled non-linear ordinary differential equations are
solved numerically by applying shooting iteration technique together with fourth-order Runge-Kutta
integration scheme. The effects of the various parameters of the flow e.g velocity variation variable, ξ,
viscosity variation parameter, ε, etc. on velocity and temperature distribution in the boundary layer, on
the local skin friction and local heat transfer coefficients are investigated.

Absolute-Convective Instability of Mixed Forced-Free Convection Boundary Layers
by

Eunice Mureithi
Mathematics Department, University of Dar es salaam

Abstract: A spatio-temporal inviscid instability of a mixed forced-free convection boundary layer
is investigated. The base flow considered is the self-similar flow with free-stream velocity µ ∼ xn.
Such a boundary layer flow presents the unusual behaviour of generating a region of velocity overshoot,
in which the stream-wise velocity within the boundary layer exceeds the free-stream speed. A linear
stability analysis has been carried out. Saddle points have been located and a critical value for the
buoyancy parameter, G0 = G0C ≈ 3.6896, has been determined below which the flow is convectively
unstable and above which the flow becomes absolutely unstable. Two families of spatial modes have
been obtained, one family being of convective nature and the other of absolute nature. The convective
type spatial mode shows mode crossing behaviour at lower frequencies. Thermal buoyancy has been
shown to be destabilizing to absolutely unstable spatial mode.

Optimal Premium Policy of an Insurance Firm With Delay
by

Moses Mwale
University of Dar es Salaam, Tanzania

Abstract: In this work, we study the optimization problem confronted by an insurance firm whose
management can control its cash-balance dynamics by adjusting the underlying premium rate. The firm’s
objective is to minimize the total deviation of its cash-balance process to some pre-set target levels by
selecting an appropriate premium policy. We make two inclusions to the problem; Firstly, we introduce
the aspect of time delay to the system. Delay systems may occur in several situations, e.g. in finance
and biology where the growth of the state depends not only on the current value of the state but also
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on previous state values. Stochastic delay differential equations (SDDE’s) model systems with delay.
The second inclusion is that we replace the standard expected additive utility function with a Stochastic
differential utility (SDU). A SDU is an extension of the notion of recursive utility to a continuous-
time, stochastic setting. It allows us to disentangle risk aversion and inter temporal substitution. The
paper is devoted to the study of optimal control of stochastic differential delay equations in a firstly in
general framework. The Martingale Representation Theorem is applied to obtain a Backward Stochastic
Differential Equation (BSDE) which represents the utility function. The resulting system is a Forward-
Backward Stochastic Differential Equation which is not fully coupled and we also assume that it is
quadratic in the cash-balance and control variables. We establish existence and prove for uniqueness of
the solution to our FBSDE. We then also establish sufficient and necessary maximum principles for an
optimal control of such systems. We end with a case study of two particular works which fit into our
general model.

On the Coexistence of Distributional and Rational Solutions for Ordinary Differential Equations
With Polynomial Coefficients

by
G.I. Mirumbe, Vincent SSembatya, Rikard Bgvad and Jan Erik Bjork

Abstract: Given an ordinary differential equation with polynomial coefficients, Wiener & Cooke (1990)
gave a necessary and sufficient condition for the simultaneous existence of solutions to ordinary dif-
ferential equations with polynomial coefficients in the form of finite order linear combination of the
Dirac-delta function and its derivatives and the rational function solutions using the Laplace transform
and functional differential equations techniques. In this paper, we prove a similar result using the the-
ory of boundary values and the Cauchy transform. This method has an advantage as it gives a closed
form expression for the polynomial q(t) in case the finite order distributional solution and the rational
function solution do not satisfy the same differential equation but in different variables

On Modelling and Pricing Index Linked Catastrophe Derivatives
by

Philip Ngare
School of Mathematics, University of Nairobi, Kenya

.

Abstract: We consider the problem of indifference pricing of derivatives written on CAT bonds. The
industrial loss index is modeled by a compound Poisson process and the number of claims as doubly
stochastic process, such that its intensity varies over time. The insurer can adjust her portfolio by choos-
ing the risk loading, which in turn determines the demand. We probably restrict the policies of the
insurance company in a way that does not permit changing the risk loading during catastrophe times.
We compute the price of a CAT option written on that index using utility indifference pricing.
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Optimal Portfolio Management When Stocks are Driven by Mean Reverting Processes
by

Lusungu Mbiliri, Charles Mahera, and Sure Mataramvura

Abstract: In this paper we present and solve the problem of portfolio optimization within the context of
continuous-time stochastic model of financial variables. We consider an investment problem where an
investor has two assets, namely, risk-free assets (eg bonds) and risky assets (eg stocks) to invest on and
tries to maximize the expected utility of the wealth at some future time . The evolution of the risk-free
asset is described deterministically while the dynamics of the risky asset is described by the geometric
mean reversion (GMR) model. The controlled wealth stochastic differential equations (SDE) as well as
the portfolio problem are formulated. Therefore the portfolio optimization problem is then successfully
formulated and solved with the help of the theory of stochastic control technique where the Dynamic
programming principle (DPP) and the HJB theory are the perfect tools. We obtain the very interesting
results including the solution of the HJB equation which is the non-linear second order partial differential
equation and the optimal policy which is the optimal control strategy of the investment process. So we
have considered utility functions which are members of HARA, called power and exponential utility. In
both cases, the optimal control (investment strategy) has explicit forms and is wealth dependant, in the
sense that, as the investor becomes richer, the less he invests on the risky assets.

On Hub Number of Hypercube and Grid Graphs
by

Egbert Mujuni
Mathematics Department, University of Dar es Salaam, Tanzania

Abstract: A set H ⊂ V is a hub set of a graph G = (V,E) if, for every pair of vertices u, v ∈ V −H ,
there exists a path from u to v such that all intermediate vertices are in H . The hub number of G is
the minimum size of a hub set in G. In this talk we derive the hub numbers of hypercube and grid
graphs. Meanwhile, new results on the size of maximum leaf spanning tree of grid graph problem are
also obtained.

Fixed Points of Homeomorphisms of Knaster Continua
by

Vincent A Ssembatya
Makerere University, Uganda

Abstract: J. Aarts and R. Fokkink proved that every homeomorphism of the standard (dyadic) Knaster
continuum has two fixed points. This answered in the affirmative a question asked by W. Mahavier. In
this paper we show that for generalized Knaster continua defined by an arbitrary sequence of primes,
this result may be false. On the other hand, there are many circumstances where homeomorphisms on
generalized Knaster continua do have more than one fixed point. In certain cases, one can give a lower
bound to the number of fixed points of a homeomorphism. Very often this lower bound is in fact very
large. We also discuss a generalization of Knaster continua defined for dimensions greater than one. We
show that some of the properties of Knaster continua hold for these generalized examples
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Continuity of Inversion in the Algebra of Locality - Measurable Operators
by

Isaac Daniel Tembo
University of Zambia, Zambia

Abstract: Let M be a semi-finite von Neumann algebra in a Hilbert space H and τ be a faithful
normal semi-finite trace on M . Let Mp denote the lattice of self-adjoint projections in M , I denote the
identity of M , and ||.|| denote the C∗-norm on M . The set of all measurable operators M̃ with sum
and product defined as the respective closures of the algebraic sum and product is ∗-algebra. Equipped
with a metrisable vector topology called the topology of convergence in measure τm, M̃ is a complete
metrisable topological ∗-algebra in which M is dense. For M , it has been shown that [1]

Proposition LetQ be the set of invertible elements in M̃ , and (Sn) a sequence inQ such that Sn →τm I .
Then S−1

n →τm I , that is to say inversion is τm-continuous on Q.

In this talk we present a similar result but for the topology of local convergence in measure, whose
definition we shall present.

Uniquely Hamiltonian Graphs
by

Herbert Fleischner
Vienna Technical University, Austria

Abstract: To decide whether a graphG has a hamiltonian cycle is an NP-complete problem. However, if
G has no vertices of even degree, then by a theorem of Thomason, every edge belongs to an even number
of hamiltonian cycle. In fact, J.Sheehan asked whether there exists a 4-regular uniquely hamiltonian
graph (i.e., with precisely one hamiltonian cycle), and J.A. Bondy posed the more general question
whether there is a uniquely hamiltonian graph of minimum degree 3. In this talk we show how one can
construct uniquely hamiltonian graphs of minimum degree 4 and arbitrary large maximum degree.

The Role of Backward Mutations on the Within Host Dynamics Of HIV-1
by

Kitayimbwa M. John, Joseph Y. T. Mugisha and Robert A. Saenz

Abstract: The quality of life for patients infected with human immunodeficiency virus (HIV-1) has
been positively impacted by the use of antiretroviral therapy (ART). However, the benefits of ART are
usually halted by the emergence of drug resistance. Drug-resistant strains arise from virusmutations,
as HIV-1 reverse transcription is prone to errors, with mutations normally carrying fitness costs to the
virus. When ART is interrupted, the wild-type drug-sensitive strain rapidly out-competes the resistant
strain, as the former strain is fitter than the latter in the absence of ART. One mechanism for sustaining
the sensitive strain during ART is given by the virus mutating from resistant to sensitive strains, which
is referred to as backward mutation. This is important during periods of treatment interruptions as
prior existence of the sensitive strain would lead to replacement of the resistant strain. In order to
assess the role of backward mutations in the dynamics of HIV-1 within an infected host, we analyze
a mathematical model of two interacting virus strains in either absence or presence of ART. We study
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the effect of backward mutations on the definition of the basic reproductive number, and the value
and stability of equilibrium points. The analysis of the model shows that, thanks to both forward and
backward mutations, sensitive and resistant strains co-exist. In addition, conditions for the dominance
of a viral strain with or without ART are provided. For this model, backward mutations are shown to be
necessary for the persistence of the sensitive strain during ART.

Comparative Study of the Distributions Used To Model Dispersion
by

Kipchirchir, I. C.
School of Mathematics, University of Nairobi, Nairobi Kenya

Abstract: The negative binomial distribution has been widely used and to a lesser extent the Ney-
man Type A distribution, whereas the Polya-Aeppli distribution has received no attention in modeling
overdispersed (clustered) populations. On the other hand, the Poisson distribution is naturally used to
model random populations. The aim of this paper is to carry out a comparative study of the aforemen-
tioned distributions based on index of patchiness, correlation, skewness and kurtosis. The study revealed
that the negative binomial, the Neyman Type A and the Polya-Aeppli distributions are equivalent in de-
scribing dispersion and they have Poisson as a limiting distribution. However, the distributions differ
in terms of skewness and kurtosis, though the Polya-Aeppli is closer to the negative binomial than the
Neyman Type A. Thus, in order to discriminate probability models for over dispersion, an index which
incorporates skewness and kurtosis need to be devised.

A Within Host Model of Blood Stage Malaria
by

Theresia Marijani
University of Dar es Salaam, Tanzania

Abstract: Malaria is a deadly tropical disease caused by protozoa of the genus plasmodium. The
malaria parasite life cycle involves three cycles namely the sporogony (mosquito stages), exoerythrocytic
schizogony (human liver stages), and the erythrocytic schizogony (human blood stage). We consider a
mathematical model for malaria involving, susceptible red blood cells, latent infected red blood cells,
active infected red blood cells, intracellular parasites, extracellular parasites and effector cells. The
models is analysed mathematically and numerically. One of the question addressed in our study is: what
replicative characteristics offer the parasite opportunities to evade the host immune system? The results
showed that the longer it takes to produce the parasites, the higher the chance that an infected red blood
cell will be identified and apoptosised by the effector cells. Our sensitivity analysis results show that
poor parametric estimation has serious implications on the prognosis of the disease. Treatment results
suggest that a high drug efficacy can stop the development of the disease. The study has revealed that
the parasite replicative characteristics enable the parasite to evade the immune response during the red
blood stage malaria. We have found that the parasite has a strategy of infecting older red blood cells
as a strategy to evade immune surveillance. We recommend treatment to be used in areas where anti-
malarial drugs do not show resistance to the parasites. We also recommend that individuals with malaria
or showing some symptoms should be treated for both malaria and chronic infections.
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Application of Stochastic Differential Equations to Model Dispersion of Pollutants in Shallow
Water

by
Wilson Mahera Charles

University of Dar-es-salaam, Tanzania

Abstract: A two dimensional stochastic differential equations(SDEs) to describe the dispersion of pol-
lutants in shallow water is developed. By deriving the Kolmogorov’s forward partial differential equa-
tion or commonly called Fokker-Planck equation, the SDEs model is shown to be consistent with the
two-dimensional advection-diffusion equation. To improve the behaviour of the model shortly after the
deployment of the pollutant, the SDEs called random flight model is developed too. It is shown that over
long simulation periods, this model is again consistent with the advection diffusion equation. The simu-
lated results in an ideal two dimensional domain are presented to predict the dispersion of a pollutant in
the shallow waters.

Stochastic Model for In-Host HIV Virus Dynamics With Therapeutic Intervention
by

R. W. Mbogo, L. LuboobiJ. W. Odhiambo

Abstract: Mathematical models are used to provide insights into the mechanisms and dynamics of
the progression of viral infection in vivo. Untangling the dynamics between HIV and CD4+ cellular
populations and molecular interactions can be used to investigate the effective points of interventions
in the HIV life cycle. With that in mind, we develop and analyze a stochastic model for In-Host HIV
dynamics that includes combined therapeutic treatment and intracellular delay between the infection
of a cell and the emission of viral particles, which describes HIV infection of CD4+ T-cells during
therapy. The unique feature is that both therapy and the intracellular delay are incorporated into the
model. Models of HIV infection that include intracellular delays are more accurate representations of
the biological data. We show the usefulness of our stochastic approach towards modeling combined
HIV treatment by obtaining probability distribution, variance and co-variance structures of the healthy
CD4+ cell, and the virus particles at any time t. Our analysis show that, when it is assumed that the drug
is not completely effective, as is the case of HIV in vivo, the predicted rate of decline in plasma HIV
virus concentration depends on three factors: the death rate of the virons, the efficacy of therapy and the
length of the intracellular delay.

An Alternating Iterative Procedure for the Cauchy Problem for the Helmholtz Equation
by

F. Berntsson, V. Kozlov, L. Mpinganzima, and B.O. Turesson
Department of Mathematics, Linkoping University, Sweden

Abstract: Let ω be a bounded domain in R2with a Lipschitz boundary Γ divided into two parts Γ0

and Γ1 which do not intersect one another and have a common Lipschitz boundary. We consider the
following Cauchy problem for the Helmholtz equation

M u+ k2u = 0 in ω
U = f on Γ0

∂vu = g on Γ1
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where k is the wave number, ∂v denotes the outward normal derivative, and f and g are specified Cauchy
data on Γ0. This problem is ill-posed.

The alternating iterative algorithms for solving this problem are developed and studied. These algorithms
are based on the alternating iterative schemes suggested in [1] and [2]. Since these original alternating
iterative algorithms diverge for a large constant k2in the Helmholtz equation, we develop a modification
of the alternating iterative algorithms which converge for such k2. We also perform numerical tests. The
numerical experiments confirm that the proposed modification works.
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