DESIGN AND DEVELOPMENT OF AN FPGA BASED
DDFS SIGNAL GENERATOR

BY

WALTER MAINA MUTEITHIA
156/72200/2008

A thesis submitted in partial fulfillment of the requirement for
the degree of Master of Science in Physics, University of

Nairobi.

APRIL 2014

Declaration

This work is an original thesis submitted for the Degree of
Master of Science (M.Sc) in the Department of Physics, University of
Nairobi, and has not been submitted before for examination at any
other institution/University.

Walter Maina Muteithia
156/72200/2008
Department of Physics, University of Nairobi.

Signature.................ooee.. Date......ooovviviiiiiii

This thesis is submitted with our approval as University of Nairobi
Supervisors
Mr. Mjomba A.C. Kale.
Department of Physics, University of Nairobi.

Signature...............coeee.. Date......ooovvvviiiiiiii

Dr. Kenneth. A. Kaduki
Department of Physics, University of Nairobi.

Signature................c.oene.. Date......ooovvviiiiiiii

Dedicated to my family

ACKNOWLEDGEMENT

| am grateful to my supervisors Mr. Mjomba A.C. Kale and Dr. Kenneth Amiga
Kaduki for their guidance and support throughout the research period. I am thankful to all
my friends and colleagues who contributed to my thesis with their continuous
encouragement. | would also like to express my profound appreciation to my family for

their continuous support.

Abstract

Over time there has been an increase in speed and density of Field Programmable
Gate Arrays (FPGAS), this has enabled more complex designs to be constructed within a
short time frame. In addition, the flexibility of FPGA devices has also eased the
integration of a design with a wide variety of components on a single chip. The aim of
this study was to design and implement an FPGA based direct digital frequency
synthesizer (DDFS) signal generator. The focus was on spectral purity improvement.

Since phase and amplitude samples in a DDFS are represented using a finite word
length, the output signal of a DDFS is usually faced by a spectral purity challenge. The
details of this challenge and how to deal with it is also covered in this thesis. The design
flow used in this work entailed modeling and simulation at the software level using
SystemC and prototyping in hardware using Actel’s fusion field programmable gate array
(FPGA).

The resulting FPGA prototype had spurious free dynamic range (SFDR) improved
from 48 dBc to 85 dBc and a noise floor of -116 dBc. Four signal types could be
generated: sine, square, saw tooth and triangle. The frequency resolution was 0.047 Hz
and the maximum output frequency was 25 MHz. Therefore, due to its high frequency
resolution and spectral purity the proposed signal generator design can be useful in

performing a wide range of laboratory experiments.

TABLE OF CONTENTS

N o1 = Tod SR %
LIST OF ABBREVIATIONSttt viil
LIST OF FIGURESottt e e ae e et e e e nnaeeennreeens X
LIST OF TABLES ...ttt e e e xiil
RO NI (@ 151 L O I []\ R 1
LI PreambBIeo ettt 1
1.2 Problem STAtEMENTcviiiieiiie e 2
G N 114 OSSPSR 3
1.4 SPECITIC ODJECHIVES.....ccuieii ettt et sre e re e 3
1.5 Justification and Significance of the Study..........ccccveiieiiiic i 4
1.6 THeSIS OFganiZAtiONccouiiieiie ettt sreesreenee s 4
2.0 LITERATURE REVIEWooiiiiiiieeet et 5
2.1 DDFS implementation teChNOIOGIEScceevviiieieeieiec e 5
2.2 Modeling and SIMulation t00ISccccciiiiiiiiiccee e 7
2.3 Spectral purity optimization Methodsc.coeiieiiiic e 7
2.4 SUMMIAIY ..ottt ettt e et e et e e s bt e e sab et e e st e e e sab e e e nbbe e e bt e e e nbb e e e nbneeenees 10
3.0 THEORETICAL BACKGROUND.......ccciieiie ettt 12
3.1 Direct Digital Frequency Synthesizer (DDFS) Theory.........cccoovieieneieneiinininns 12
3.2 Generation of different Wave Shapes...........coieiieiiieieee e 16
3.3 Spectral purity of DDFS SIgNalS.........ccccoiiiiiiiiiieiene e 21
3.4 Phase dItheriNgooeiiiiiii e 24
3.5 AMPIitude dItheriNgoceiiiieee e 26
3.6 Phase and amplitude ditheringccooeiiiiiieieieiee e 27
3.7 Dither Signal geNEratiONccooiiiriiiiisieeeee e 28
4.0 SYSTEM DESIGN ...ttt enae e nee s 30
4.1 SyStemC deSIgN FIOW.......c.oiiiiiiiieie s 30
4.2 Software resources used in modeling and Simulationccocevvveneie i, 35
4.3 DDFS signal generator SPecifiCationS..........ccccveiieiiieiie i 36
4.4 Design model of DDFS signal generatorcccccovveiieiiieeiie e 42
4.5 SystemC implementation of the signal generatorcccccvveeviiiie s 44

Vi

4.6 Signal generator design with truncation and without dithercccccoeeiiennn 60

4.7 Signal generator design with phase ditheringccccociininiicicie 61
4.8 Signal generator design with Amplitude ditheringccccoovvniiieienii 62
4.9 Signal generator design with phase and amplitude dithering...........ccccccovniiinnnn. 63
4.10 Wave form generation SImulation reSUlLS............ccooveviiiiiieninie e 64
4.11 SystemC simulation output SPECLrum reSUltScccoeviiiiiniiniiicce e 66
4.12 Expected SFDR and NF reSUlLS.........cooveiiiieiicc e 67
4.13 SystemC simulation SFDR VAIUESccccovveiiiiieiieie e 72
4.14 DiSCUSSION OF FESUILS.....c.uiiiiiiiiieieee s 72
4.15 CoNCIUSION OF FESUIES ..o s 76
5.0 FPGA IMPLEMENTATION OF DDFS SIGNAL GENERATORccccccovvvvieiine. 77
5.1 OVErVIEW OF FPGA JEVICES.cuviieiiiiiiieiiisieeieeiieie ettt sneeneas 77
5.2 FPGA implementation methodologycccoveiiieiicie e 79
5.3 TeStING MELNOMccveiiiiie e 99
5.4 FPGA implementation output sSpectrum resultscccocoveveieeviicciie e 104
5.5 Discussion of FPGA implementation testing results...........cccocoevviviiiiiic i 105
5.6 CONCIUSION OF FESUILS ..o 109
6.0 CONCLUSION AND RECOMMENDATION......ccoiiieiec e 110
REFERENGES ...ttt st e ena e e e e e e snae e e snaeeenneeeans 112
APPENDICES ...ttt et e e e nn e e e 115
Appendix A: SystemC header file for the phase accumulator module. 115
Appendix C: DAC5652A digital to analog CONVEITer...........ccocvvvviiieieiene e 117
Appendix D: fusion embedded development Kit............ccocooiiiiiniiiiiiien e 118
Appendix E: Specifications of the Desktop computer Used in the FFT analysis........ 120

vii

ASIC
DAC
dB
dBc
DDFS
FPGA
HDL
IDE

IP

LC
LFSR PN
LPF
LUT
MHz
mHz
NF
OSCl
FFT
PLL
PSM
RC
ROM
RTL
SFDR
SNR
UART
VCD
VHDL
VHSIC
VLSI

LIST OF ABBREVIATIONS

Application Specific Integrated Circuit
Digital to Analog Converter

decibel

decibels with respect to the carrier
Direct Digital Frequency Synthesizer
Field Programmable Gate Array
Hardware Description Language
Integrated Development Environment
Intellectual Property

Inductor Capacitor

Linear Feedback Shift Register Pseudo-noise
Low Pass Filter

look up table

Megahertz

milihertz

Noise Floor

Open SystemC Initiative

Fast Fourier Transform

Phase Locked Loop

Process State Machine

Resistor Capacitor

Read Only Memory

Register Transfer Level

Spurious Free Dynamic Range

Signal to Noise Ratio

Universal Asynchronous Receiver / Transmitter
Value Change Dump

VHSIC Hardware Description Language
Very High Speed Integrated Circuit
Very Large Scale Integrated Circuit

viii

GPIO General Purpose Input Output

LIST OF FIGURES

Figure 3.1: Basic Direct Digital Frequency SYyntheSizercccccvoveviveveiiciiene e 12
Figure 3.2: Simplified DDFS block diagram with phase quantization..............c.ccccceue.... 22
Figure 3.3: Addition of a dither signal to the phase information............ccccccoooinininnnn. 24
Figure 3.4: Addition of a dither signal to the amplitude information.............ccccccceevuennen. 27
Figure 3.5: LFSR dither geNerator...........cccoviieiieiieiie e e ettt 28
FIgure 4.1: DeSIgN FIOWcc.oiiiiiiieiee s 32
Figure 4.2: Verification Flow used for the SystemC Designscccccevveieieeneeiiesnenn 34
Figure 4.3: DDFS signal generator block diagramcccccevvveiiiieiiececic e 43
Figure 4.4: sc_module (INErfACE)coeiiiiiiiiee s 46
Figure 4.5: sc_module (interface) simulation for 1 MHz output frequency..................... 47
Figure 4.6: sc_module (phase acCUMUIALON)ccccvveiieiiiiece e 48
Figure 4.7: Simulation result of the phase accumulator modulecccccceevveviiieinenne. 48
Figure 4.8: Simulation result for the overflow of the phase accumulation register.......... 49
Figure 4.9: sc_module (phase to amplitude)ooeieiiiiiinineee e 49
Figure 4.10: Simulation result of the phase to amplitude module...............ccccoveeveiennnnnne. 51
Figure 4.11: Simulation result for frequency period testingcccccovveveeieiiecicieceee, 51
Figure 4.12: SC_mOdUle (IMONITOT)oviiiiiiiiiieieeieee e 53
Figure 4.13: sc_module (phase dithering)cccooererereneieseseseee s 53
Figure 4.14: Simulation result of the phase dithering module.............c.cccoooeiiiiiininn. 54
Figure 4.15: sc_module (amplitude dithering)..........ccccovveveiiieiiieie e 54
Figure 4.16: Simulation result of the amplitude dithering module............cccocooeiininene. 55
Figure 4.17: sc_module (sawtooth_square_triangle_waveform_generator)..................... 56
Figure 4.18: Simulation result of the saw tooth, square and triangle waveform generator
000 U] PSPPSRI 57
Figure 4.19: sc_module (waveform_selection_mulitpleXxor)cccccevvvereniicicninnne. 58
Figure 4.20: square wave simulation result of the waveform_selection_mulitplexor
MOUUIB....c ettt et et e bt et e e st e s beebeennesreees 58
Figure 4.21: sine wave simulation result of the waveform_selection_mulitplexor module
... 58

Figure 4.22:

Saw tooth wave simulation result of the waveform_selection_mulitplexor

MOTUIE...... ettt bbbttt bbb b e b e st e st e et et st nbesne e 59
Figure 4.23: Triangle wave simulation result of the waveform_selection_mulitplexor
0o [0 1= SO 59
Figure 4.24: signal generator model without dither..............ccooveii i, 61
Figure 4.25: Signal generator design with phase dithering...........cccccoveviviieiienicve s, 62
Figure 4.26: Signal generator design with amplitude dithering...........cccoceveiiinniinnn. 63
Figure 4.27: Signal generator design with phase and amplitude dithering....................... 64
Figure 4.28: Square wave simulation of signal generator designccccceevvvevvcvieseennn. 65
Figure 4.29: Sine wave simulation of signal generator designccccoeeveveiivevecvieseene. 65
Figure 4.30: Saw tooth wave simulation of signal generator designcccccocevvrvnnne. 65
Figure 4.31: Triangle wave simulation of signal generator design...........ccccoeceverervninne. 65
Figure 4.32: DDFS output spectra (a) with no dither signal, (b) with phase dithering 66
Figure 5.1:Fusion Device ArchiteCture OVEIVIEWcccoceiiririninieieereese e 78
Figure 5.2: DDFS signal generator block diagramcccooevviiiiiieieieienc e 82
Figure 5.3: Block diagram of the cortex'™-M1 processor System (Actel Corporation,
2009) ..ttt R e et E et Re Rt s ettt ne et et eneere st s 84
Figure 5.4: Main software routing flIowccooeiiiiiiii 85
Figure 5.5: Simulation result of the phase accumulator modulecccccooiiiiniinne. 86
Figure 5.6: Simulation result for the overflow of the phase accumulation register.......... 87
Figure 5.7: Sample VHDL code forthe LUTccoiiiiiiieceece e 88
Figure 5.8: Simulation result of the phase_to_amplitude module..............cccooeviiininnn. 88
Figure 5.9: Simulation result for frequency period testingccccevvererencneniresene 89
Figure 5.10: Block diagram of the saw tooth, square and Triangle wave generator 90
Figure 5.11: Simulation result of the saw tooth, square and triangle wave generator
0o 10 =SSR 91
Figure 5.12: Waveform mUItIPIEXOTcccoiiiiiiiieieee s 92
Figure 5.13: Square wave simulation for the waveform multiplexor module................... 93
Figure 5.14: Sine wave simulation for the waveform multiplexor module....................... 93
Figure 5.15: Saw tooth wave simulation for the waveform multiplexor module 94

Xi

Figure 5.16: Triangle wave simulation for the waveform multiplexor module................ 94
Figure 5.17: Phase dithering Mmodule ..o e 95
Figure 5.18: Simulation result of the phase dithering module..............cccccoiiininnnnnn. 95
Figure 5.19: FPGA implementation of the phase dithering module................ccccoceninnne. 96
Figure 5.20: Amplitude dithering Modulecovieiieie e 97
Figure 5.21: Simulation result of the amplitude dithering module.............c.ccoeeviiernnnnnn. 97
Figure 5.22: FPGA implementation of the amplitude dithering module..............c.cc....... 98
Figure 5.23: Signal generator MOTUIEScooiiieiiiiiec s 98
Figure 5.24: Hardware TSt SEIUDccveiieieiierie ettt 99
Figure 5.25: 1 MHZ Sine Wave OUIPULcoieiiiieiecc e 101
Figure 5.26: 1 MHZ SQUAre Wave OULPULceveieieieienie st 101
Figure 5.27: 1 MHz Saw t00th WaVe QULPULccoiieiiiiicie e 101
Figure 5.28: 1 MHz Triangle Wave OULPUL.............ccoviieieeie e 101
Figure 5.29: 0.047 Hz Sine WaVe OULPUL...........coueieeiiiiicieece e 101
Figure 5.30: 10 MHZ Sine WaVe OUEPUL.........ccuiieieieieiiesie e 102
Figure 5.31: 10 MHZ SqQuare Wave OULPULccoueierieienenie e 102
Figure 5.32: 10 MHz Saw tooth Wave OULPULcccocoveiieii e 102
Figure 5.33: 10 MHz Triangle Wave OUIPUL...........ccoviieieeie e 102
Figure 5.34: 25 MHZ Sine WaVe OUEPULcciiiiieieieiiesie e 103
Figure 5.35: 25 MHZ Square Wave OULPULccoveirriiieneresescseeee e 103
Figure 5.36: 25 MHz Saw tooth Wave OULPULcccocoviiieii e 103
Figure 5.37: 25 MHz Triangle Wave OUIPUL...........c.coviiiieece e 103
Figure 5.38: DDFS output spectra (a) FPGA prototype testing result, (b) SystemC

0 T0] P U o =] S 104
Figure 5.39: Graph of FPGA prototype SFDR versus output frequency........................ 106
Figure 5.40: Graph of FPGA prototype NF versus output frequency..........c.cccocvevveenen. 107
Figure B-1: circuit diagram 0f the DACccoiiiiiiie e 117

Figure C-1: Fusion Embedded Development Kit Evaluation Board with LCPS Attached

xii

Figure C-2: A picture of the Hardware Test setup

Xiii

LIST OF TABLES

Table 4-1: DDFS signal Generator non-functional requirements............ccccoveveveiiveneenns 38
Table 4-2: SFDR FESUILS.......ccuiiiiiiiee et 74
TaDIE 4-3: NF FESUILS ..ottt sre e 75
TADIE B L ettt nre s 92
Table 5-2: SFDR FESUILS.couiiiiiiiiee e 105
TaDIE 5-3: NF FESUILS ... et 106

Xiv

CHAPTER 1

INTRODUCTION

1.1 Preamble

A signal generator is an electronic instrument that generates repeating voltage
waveforms. This important device finds a wide range of applications in any electronics
laboratory, such as characterizing analogue and digital systems. In order for a signal
generator to be suitable for a wide range of purposes, it should provide a wide frequency
range, high frequency resolution, high spectral purity and the ability to generate different
types of waveforms. A variety of methods can be employed for generating waveforms in
signal generators, these include resistor capacitor (RC) oscillator, inductor capacitor (LC)
oscillator, multivibrators, direct digital frequency synthesizers (DDFS), phase locked
loops (PLL) and other variations of these methods. The DDFS has been chosen for use in
this study because it provides many significant advantages over the other approaches.
Some of these benefits are that DDFS designs are tunable to many different frequencies
with the use of a constant operating frequency, it has a fast settling time, Sub-hertz
frequency resolution, continuous phase-switching response, low phase noise and its
implementation allows for a standalone precise, fast frequency changing device capable
of generating different types of waveforms (Vankka, 2001).

The DDFS technique of waveform generation can be implemented using several
technologies. This includes the use of a microcontroller (MCU) (Popa and Sorana, 2007),
an application specific integrated circuit (ASIC) (Analog devices, 2003), a digital signal
processor (DSP) (Sia et al., 2007) and a field programmable gate array (FPGA) (Sharma

and Upadhyaya, 2010). An FPGA offers several advantages over the other technologies

such as: the ability to integrate a large part of the DDFS based signal generator in a single
chip, reconfigurability and the ability to implement parallel circuits which operate at a
high speed. In addition, it allows design decisions to be made when sufficient information
is available. The purpose of this study was to design and implement an FPGA based
DDFS signal generator that has optimized spectral purity. The optimization investigation

was carried out through modeling and simulation techniques based on SystemC.

1.2 Problem Statement

The direct digital frequency synthesizer (DDFS) is a method of signal generation
that has many advantages. DDFS designs are able to generate signals that have high
frequency resolution, provide precise frequency control and fast frequency switching.
However, the generation of high frequency resolution signals in a DDFS necessitates the
use of a large phase accumulation register and subsequent truncation of the resulting
phase information so that a smaller and fast memory can be used. Due to the truncation of
phase information, the output signals of a DDFS usually contain spurs (unwanted
frequency components). Additional spurs are introduced if truncation of amplitude
information is done so that narrower data paths and coarse resolution digital to analog
converters can be used. These spurs cause a reduction in spectral purity of the output
signals. Accordingly there is a need for the inclusion of a mechanism to reduce the level
of spurs in the design of a DDFS. One of the ways of reducing the spurs of a DDFS is by
using the dithering technique of spur reduction; it involves the addition of a low-level
random noise, or dither signal to the amplitude or the phase samples. Some of the

methods of dithering available include phase information dithering, amplitude

information dithering and a combination of both phase and amplitude dithering. This
work intended to design and implement a high frequency resolution DDFS based signal
generator, whose output signal quality has been optimized using the most appropriate

method of dithering for the proposed DDFS.

1.3 Aim
The aim of this work was to design and implement on FPGA a spectral purity

optimized DDFS based signal generator.

1.4 Specific Objectives
(1) To investigate the effect of the following methods of dithering on the spurious
free dynamic range and signal to noise ratio of the proposed DDFS signal
generator:
a) Phase dithering only
b) Amplitude dithering only
c) Combination of phase and amplitude dithering
(2) To compare the results obtained in (1) and select a dithering method that offers
the optimal spurious free dynamic range and signal to noise ratio for the proposed
DDFS.
(3) Toimplement on FPGA a DDFS based signal generator whose spectral purity has

been optimized using the dithering method selected in (2).

1.5 Justification and Significance of the study

FPGAs enable complex designs to be implemented within a short time frame in
addition to facilitating the integration of a wide variety of a design’s components in a
single chip. These benefits have the potential to result in a low cost and a fast to

implement signal generator like the one proposed in this study.

1.6 Thesis organization

The organization of this thesis is as follows. In chapter 2 previous work related to
DDFS implementation technologies, modeling and simulation tools and spectral purity
optimization methods is reviewed. Chapter 3 covers some background on how a DDFS
based signal generator operates, spectral purity of DDFS signals and the dithering
spectral purity improvement method. Chapter 4 presents the design, modeling, simulation
of the DDFS signal generator using SystemC and results of simulating the models.
Chapter 5 presents FPGA implementations of the DDFS signal generator and results of
testing the FPGA prototype. Chapter 6 presents the conclusion, summary and

recommendation.

CHAPTER 2
LITERATURE REVIEW
This chapter reviews previous publications related to DDFS implementation
technologies, sine wave DDFS spectral purity improvement methods and modeling and

simulation tools.

2.1 DDFS implementation technologies

The DDFS technique of waveform generation can be implemented using several
technologies. This section will examine previous implementations reported in the
literature; microcontroller, an application specific integrated circuit (ASIC), a digital
signal processor (DSP) and a field programmable gate array (FPGA).

(Popa and Sorana, 2007) describe a programmable signal generator implemented
using the pulse width modulation (PWM) method on the advanced 32-bit microcontroller
family. It is capable of generating sine, pulse, saw tooth and custom waveforms. Output
frequency range is between 1 Hz and 600 Hz. One major disadvantage of using a
microcontroller for the implementation of a DDFS based signal generator is that every
additional instruction executed by the microprocessor reduces the maximum output
frequency of the design; because of the sequential execution of instructions.

(Analog devices, 2003) is an Application Specific Integrated Circuit (ASIC)
technology application note from Analog Devices; this document exhaustively discusses
the AD9833 DDFS ASIC which is a low power, programmable waveform generator.
Among other things it presents the features, possible applications and a detailed

description of how to make use of the AD9833. The frequency range of this DDS IC is 0

MHz to 12.5 MHz. The drawback of ASICs is that they typically take months to fabricate
and cost hundreds of thousands to millions of dollars to obtain the first device.

(Sia et al., 2007) present a digital-signal-processor-based waveform generator.
The device can generate a sine wave up to 24 kHz, a square wave, up to 5 kHz and a
triangular wave of up to 12 kHz. Due to the fact that a DSP is a highly specialized
microprocessor, it can impose a low limit on the maximum signal generator output
frequency because the processor must use shared resources like memory busses, or even
the processor core which can be prevented from taking interrupts for some time.

Although signal generator designs utilizing the DDFS technique of waveform
generation can be implemented using a microcontroller, digital signal processor and an
application specific integrated circuit, this thesis proposes the use of an FPGA because it
offers the following advantages over the other technologies (Dubey, 2009);

e Reconfigurability: Field programmable devices can be reconfigured at anytime.
Designers can add modifications or do complete behavior changes.

e Parallelism: Circuits implemented in an FPGA can be designed in a totally
parallel manner. This is analogous to using multi-path analogue circuits. A user
can instantiate numerous hardware implementations on the same chip without
cross-module interference or computation loading.

e High speed: Because an FPGA is a hardware implementation running with rapid
clock rates, designers can achieve very high speeds. Coupled with parallelism,

FPGA implementation can do better than processor-based systems.

2.2 Modeling and Simulation tools

From the examination of previous work it is evident that modeling and simulation
of a DDFS can be done using the MATLAB/Simulink environment (Vankka, 2001),
(Chimakurthy et al., 2006) and (Kamboj and Mehra, 2012) or hardware description
languages (HDLs) such as VHDL (Xiaogin and Yin, 2007). Although modeling and
simulating designs using the MATLAB/Simulink environment or HDLs is a possible
option, this work proposes a different tool; the SystemC language (Open SystemC
initiative [online], 2012). The major reason for using SystemC is that SystemC is capable
of offering an order of magnitude faster simulation for abstract models (Agostinelli et al,
2010), (Vachoux and Grimm, 2003). In addition MATLAB supports behavioral modeling
and simulation, while HDLs tend to support architectural modeling and simulation.

SystemC supports both.

2.3 Spectral purity optimization methods

The spectral purity of a signal generated by a DDFS can be measured using two
quantities, which are the spurious free dynamic range (SFDR) and the noise floor (NF).
The noise floor (NF) is commonly understood as the average (sometimes also maximal)
power of random noise (i.e. the noise that is freed of any harmonic, spurious and DC
components) in frequency spectrum. The value of the SNR determines the noise floor
level, in decibels with respect to full-scale (dBfs); the relationship is as follows (Slepicka,
2000):

NF (dBfs) = — SNR (dBfs) = - (6.02m + 1.76) dB 2.1

Where m is the word length of the output amplitude word in bits.

SFDR is the difference between the carrier amplitude level (which is the desired
signal) and the maximum level of spurs in the output spectrum of a DDFS. SFDR of a
DDFS can be calculated using the equation (Cordeses, 2004 (part 1)):

SFDR =6.02k - 3.92 dB 2.2

Where k is the number of phase bits.

SFDR of a DDFS can be improved by one of the techniques covered in (Vankka,
2001), (Cordeses, 2004 (part 1)) and (Cordeses, 2004 (part 2)), which include:

a) Increasing the size in bits of the phase information.
b) Using the odd-number spur reduction technique.
c) Using the dithering spur reduction technique.

d) Using the noise shaping spur reduction.

2.3.1 Increasing the size in bits of the phase information

The SFDR of a DDFS is related to the number of phase bits as follows: SFDR =
6.02k dBc, where k is the number of phase bits, increasing the size in bits of the phase
information is the easiest method of increasing the SFDR of a DDFS. It is stated in
(Cordeses, 2004 (part 1)) that a value of 9 phase bits would be ideal. However, for larger
values the memory requirements would become impractical at high frequency or for
embedded system applications, because the size of a look up table in a DDFS depends
exponentially on the number of phase bits and linearly on the number of amplitude bits
(Flanagan and Zimmerman, 1995). This can be expressed by the equation:

w=m=2k 2.3

Where:
w is the size in bits of the look up table
m is the size in bits of the amplitude word

k is the number of phase bits used by the look up table

2.3.2 The odd-number approach
The odd-number approach involves making the phase increment word (AP) an
odd number; this improves SFDR by a maximum of 3.9 dB according to reference

(Cordeses, 2004 (part 2)).

2.3.3 The noise shaping approach

The noise shaping approach improves the SFDR of a DDFS by filtering out the
quantization noise. Noise shaping can be applied to phase or amplitude signals. The noise
shaping approach is usually faced with a difficulty of implementing analog filters with

variable pass bands (Vankka, 2001).

2.3.4 Dithering

Dithering is a technique that allows the decrease of phase or amplitude word
length without escalating spur magnitudes by first adding a low-level random noise, or
dither signal to the phase and/or the amplitude samples, which are at first expressed in a
longer word length. The resultant sum, a dithered phase or amplitude value, is truncated

or rounded to the smaller, preferred word length (Flanagan and Zimmerman, 1995).

Selection of a spectral purity optimization technique for this work

In this study the dithering technique was selected as the suitable SFDR
optimization technique, the main reasons being that the dithering technique offers a larger
spur reduction (12 dB per phase bit) than the odd number approach (fixed 3.9 dB). In
addition dithering does not require the use of analog filters with changeable pass bands
(they are difficult to implement) unlike the noise shaping approach.

Studies in (Vankka, 2001) on dithering indicate that the expense of phase
dithering is an increased noise floor while the penalty of amplitude dithering is a reduced
dynamic range and a loss of the amplitude information caused by the need to scale the
amplitude information so that the original signal plus the dither will stay within the non-
saturating region. In (Flanagan and Zimmerman, 1995) these drawbacks are mentioned to

be a small price to pay for the large increase in SFDR offered by the dithering technique.

2.4 Summary
The DDFS was first proposed by J. Tierney in 1971. Since then there has been

major developments in;

e DDFS implementation technologies.

e Modeling and simulation tools.

e Spectral purity improvement methods.

This work sought to design and implement a DDFS based signal generator that
benefits from the advances in the above three areas. From the review of recent work
FPGA has been identified as the most appropriate implementation technology because it

offers the ability to integrate a large part of the design in one chip. SystemC was used for

10

modeling and simulation due to its relatively faster simulation time while dithering was
selected for spur reduction because of its capability to offer a large improvement in

spectral purity.

11

CHAPTER 3
THEORETICAL BACKGROUND

This chapter presents the basic aspects of a direct digital frequency synthesizer
(DDFS), such as the DDFS technique of signal generation, waveform generation,
frequency resolution and range, factors affecting the spectral purity of DDFS signals and

the dithering spectral purity improvement method.

3.1 Direct Digital Frequency Synthesizer (DDFS) Theory

The DDFS was first proposed by J. Tierney in 1971 (Vankka, 2001). A typical
DDFS system uses a fixed reference clock, a phase accumulator, phase to amplitude
converter, digital to analog converter and smoothing filter to generate a constant
frequency signal (Flanagan and Zimmerman, 1995). This work focused on the phase
accumulator and phase to amplitude converter presented in Figure 3.1. In the figure AP is
the phase increment word, j is the number of phase accumulator bits, f.y is the clock
frequency, k is the number of phase bits used as address for the phase to amplitude
converter and m is the word length of the amplitude word.

PHASE AMPLITUDE

AP j k m
PHASE PHASE TO

———>| ACCUMULATOR v AMPLITUDE ~———F——>

CONVERTER

Y

fclk

Figure 3.1: Basic Direct Digital Frequency Synthesizer

12

3.1.1 Phase Accumulator

The phase accumulator is made up of a j-bit frequency register that stores a digital
phase increment word followed by a j-bit full adder and a phase register. The digital input
phase increment word is entered in the frequency register. At each clock cycle the phase
increment value is added to the data previously held in the phase register; this results in
the production of a linearly rising digital value.

The frequency of the data generated by the phase accumulator depends on the
reference clock frequency, the phase increment register value and length of phase
accumulator as shown in equation 3.1. From the equation it can be inferred that
increasing the phase increment for a constant clock frequency and size of phase
accumulator results in an increase in output frequency.

_AP*f

fout 2 j

3.1

Where:
AP is the phase increment word
j is the number of phase accumulator bits
fok is the clock frequency
fout IS the output frequency
The frequency resolution, maximum output frequency and frequency range can

also be obtained from equation 3.1 in the following way:

Frequency Resolution
Frequency resolution refers to the smallest step in frequency that a DDFS can

achieve. It is a function of the reference clock frequency and number of bits employed in

13

phase accumulator. For a fixed reference clock and size of the phase accumulation
register, the frequency resolution can be calculated using equation 3.2; this equation is
derived from equation 3.1 by setting AP = 1. Digit one is the minimum value that AP can
assume because it is an integer. In order to have an improved frequency resolution for a
fixed clock frequency, the number of bits employed in the phase accumulator can be

increased.

Af :L'.k 3.2
2J

Where:
Af is the frequency resolution
j is the number of phase accumulator bits

foi is the clock frequency

Maximum output frequency

The highest frequency that a DDFS can produce digitally is determined by its
sampling frequency; increasing the sampling frequency increases the maximum output
frequency. The Nyquist Theorem states that the highest frequency which can be
generated accurately is less than half of the sampling rate. As a result, the highest

frequency that can be generated by a DDFS module is:
F =_ck 3.3

Where:

Fomax IS the maximum output frequency

14

fok is the clock frequency
Equation 3.3 can also be obtained from equation 3.1 by setting AP = 2/, Using
equation 3.3 the maximum output frequency can only be increased by increasing the

clock frequency.

Frequency Range

The output frequency range of a DDFS based signal generator is determined by
the frequency resolution of the DDFS and its maximum output frequency. The frequency
resolution determines the lower limit of the frequency range while the maximum output
frequency sets the upper limit. Thus from equations 3.2 and 3.3 used in calculating
frequency resolution and maximum output frequency respectively, the frequency range
of a DDFS can be increased by increasing the number of phase accumulator bits and or

the clock frequency.

3.1.2 Phase to amplitude converter

The phase to amplitude converter is a periodic wave look up table (LUT) which
converts the phase accumulator value to an amplitude value. This periodic wave lookup
table is generally implemented using a read only memory (ROM) which stores the
periodic waveform samples. The look up table maps the full scale of the phase value
output by the phase accumulator to one cycle of a periodic wave. As the phase value
increases from O to full scale, one periodic wave is created.

The phase to amplitude converter can also be implemented without a ROM; in

this case the amplitude values are computed; some examples of these techniques include

15

sine-phase difference algorithm, Sunderland techniques, first order Taylor series
expansion and higher order Taylor series expansion. The simplicity of the ROM circuit
makes the ROM LUT easier to implement. In addition a sine ROM LUT has been shown
in (Vankka, 2001) to provide a better SFDR than any ROMlIess architecture for same bit

width.

3.2 Generation of different wave shapes
The common waveforms that a DDFS based signal generator can produce
include: Sine, Square, Saw tooth and triangle. The following section describes how each

of these waveforms is generated.

3.2.1 Sine Wave

The generation of a sine wave in a DDFS based signal generator can be done
using the phase accumulator and a phase to amplitude converter that has a full sine wave
samples stored in its look up table (LUT). The phase accumulator generates phase values
for the sine wave while the phase to amplitude converter uses the phase values as address
for the look up table. Every time the phase accumulator register overflows, sampled
values of a full sine wave are generated. The samples are then converted to analog form
using a digital to analog converter. Samples used to create this kind of waveform can be

generated using the equation:
Amplitude(i) = (sin (i * 2 x Zn—k)) x 2m-1 3.4
Where:

Amplitude(i) is the corresponding amplitude value for the i™ phase value, i

16

assumes values between 0 and 2*- 1.

sin is the sine function

k is the number of phase bits used in the phase to amplitude conversion

m is the size of the amplitude word in bits

From equation 3.4 it can be observed that increasing the value of k will cause an
increase in the number of samples stored in the LUT while increasing m will result in an

increase in bits of the amplitude resolution of the sine samples.

3.2.2 Square Wave

The generation of a square wave in a DDFS based signal generator does not entail
a lot of effort because that waveform is already available as the most significant bit of the
phase accumulator.

The generation of a square wave in a DDFS based signal generator can also be
done using the phase accumulator and a phase to amplitude converter that has a full
square wave stored in its look up table (LUT). The phase accumulator generates phase
values for the square wave while the phase to amplitude converter uses the phase values
as address for the look up table. Every time the phase accumulator register overflows,
sampled values of a full square wave are generated. The samples are then converted to
analog form using a digital to analog converter. Samples used to create this kind of
waveform can be generated by setting the amplitude register at its maximum value if the
phase accumulator is in the first half of the cycle and setting the amplitude register to its
minimum value if the phase accumulator is in the second half of the cycle. Equations 3.5

and 3.6 summarize this relationship.

17

Square(i) is the maximum value of the 2™ amplitude register ;for i <= 21t 3.5

Square(i) is the minimum value of the 2™ amplitude register ;for i > 21" 3.6
Where:

Square(i) is the amplitude value of the square wave for the i phase value, i can

only assume values between 0 and 2/,

m is the number of amplitude bits

J is the number of phase bits used

From equation 3.5 and 3.6 it can be inferred that increasing j will cause an
increase in the number of samples stored in the LUT while increasing m will cause an

increase in bits of the square wave amplitude resolution.

3.2.3 Saw tooth Wave

The output of the phase accumulator in a DDFS is usually a linearly increasing
digital value generated by using the modulo 2! overflowing property of a j-bit phase
accumulator. This property allows the output of the phase accumulator to be used for the
generation of a saw tooth waveform in a DDFS based signal generator. The output
sequence of the phase accumulator is usually given by:

P(n) = (P(n— 1) + AP)mod2’ 3.7

Where:

P(n) is the phase register value at the nth clock period (present value of the phase

accumulation register).

P(n-1) is the phase register value at the n-1 clock period (previous value of the

phase accumulation register).

18

AP is the phase increment word.

The digital values generated by the phase accumulator can be converted to analog
form using a digital to analog converter.

The generation of a saw tooth wave in a DDFS based signal generator can also be
done using the phase accumulator and a phase to amplitude converter that has a full saw
tooth wave stored in its look up table (LUT). The phase accumulator generates phase
values for the saw tooth wave while the phase to amplitude converter uses the phase
values as address for the look up table. Every time the phase accumulator register
overflows, sampled values of a full saw tooth wave are generated. The samples are then
converted to analog form using a digital to analog converter. Samples used to create this
kind of waveform can be generated by using the equation of a straight line that has a
slope of 1. Equations 3.8 summarizes this relationship.

Sawtooth(n) = p(n) 3.8
Where:
Sawtooth(n) is the amplitude value of the saw tooth wave for the n™ phase register
value.
p(n) is the n™ output of the phase accumulation register, n can only assume values
between 0 and 2X. The value of p(n) at any time is given by equation 3.7.
J is the number of phase bits used

From equation 3.7 and 3.8 it can be inferred that increasing j will cause an

increase in the number of samples stored in the LUT and an increase in bits of the

amplitude resolution of the saw tooth wave.

19

3.2.4 Triangle Wave

Triangle waveform can be generated by performing logic operations on the output
of the phase accumulator. This process involves inverting all values below one half of the
full scale.

The generation of a triangle wave in a DDFS based signal generator can also be
done using the phase accumulator and a phase to amplitude converter that has a full
triangle wave stored in its look up table (LUT). The phase accumulator generates phase
values for the triangle wave while the phase to amplitude converter uses the phase values
as address for the look up table. Every time the phase accumulator register overflows,
sampled values of a full triangle wave are generated. The samples are then converted to
analog form using a digital to analog converter. For the two mentioned methods of
creating a triangle wave, samples used to create the waveform can be generated by using

the equations of two lines with opposite slope. Equations 3.9 and 3.10 summarize this

relationship.
triangle(i) = g *p(i) + c; fori < 2/71 3.9
triangle(i) = —g * p(i) + c; fori > 2/71 3.10
Where:

triangle (i) is the amplitude value of the triangle wave for the i phase value.

p(i) is the i™ phase value, i can only assume values between 0 and 2!-1.The value
of p(i) at any time is given by equation 3.7.

g is the gradient of the line.

j is the number of phase bits used.

c is the y intercept.

20

From equation 3.9 and 3.10 it can be inferred that increasing j will cause an
increase in the number of samples stored in the LUT and an increase in bits of the

amplitude resolution of the triangle wave.

3.3 Spectral purity of DDFS signals

The quality of a signal generated by a DDFS is determined by the following (Vankka,
2001):

1) Truncation of the phase accumulator bits addressing the read only memory

(ROM).

2) Distortion from compressing the ROM.

3) The finite precision of the binary word stored in the ROM.

4) Digital-to-analog conversion.

5) Post-filter error.

6) Phase noise of the clock frequency and the frequency error. The frequency error
causes a frequency offset, but not noise and spurs.

In this thesis attention will be focused on truncation of the phase accumulator bits
addressing the sine ROM and the finite precision of the sine samples stored in the ROM.
The main reason for this course of action is that the spectral purity of a signal generated
by a DDFS largely depends on digital errors (truncation and quantization) (Vankka,

2001).

3.3.1 Phase truncation

Phase truncation occurs when the phase information is reduced from j to k bits as

21

shown in Figure 3.2. The reason behind this truncation is to keep the memory

requirements of the phase to amplitude converter low.

AP Phase Phase | Phasej ,| Phaseto Output
Accumulator j Truncation K amplitude —
converter m

Figure 3.2: Simplified DDFS block diagram with phase quantization

Phase truncation is a vital feature of DDFS designs. Consider a DDFS with a 30-
bit phase accumulator. To directly translate 30 bits of phase to matching amplitude would
require 2%° entries in a lookup table. If each entry were stored with 16 bit precision, then
2-gigabytes of lookup table memory would be necessary. Such a huge lookup table would
lead to high power utilization, lesser speed and significantly increased costs. The solution
is to utilize a fraction of the most significant bits of the Phase accumulator output to offer
phase information. For example, in a 30-bit DDFS design, only the upper most 8 bits
might be used for phase information. The lower 22 bits would be truncated in this case.

Regrettably, the phase errors introduced by truncating the accumulator result in
errors in amplitude during the phase-to-amplitude conversion process inbuilt in the
DDFS. Since these amplitude errors are cyclic in the time domain, they emerge as line
spectra (spurs) in the frequency domain and are what is known as phase truncation spurs
(Xinguang et al., 2009). The maximum spur level power for a phase truncated DDFS is
approximated by equation 3.11. A detailed derivation of this formula is covered in
(Vankka, 2001):

Smax = —6.02k dB 3.11

Where:

22

Smax 1S the maximum spur power level

k is the number of bits in the phase information after quantization

dB = decibels

The difference between the carrier power level (which is the desired signal) and
the maximum power level of spurs is called spurious free dynamic range (SFDR)
(Cordeses, 2004 (part 1)); SFDR should be large for spectrally pure sinusoids. Using this
definition of SFDR and equation 3.12, SFDR can be calculated as follows when the
carrier level is 0 dB

SFDR = 0- (-6.02K)
= 6.02k dBc 3.12

Where dBc means decibels with respect to the carrier (tuning word frequency)

3.3.2 Amplitude Quantization

Amplitude quantization occurs when the output of the phase to amplitude
converter is represented using finite resolution for instance m bits, with m being the word
length of the output amplitude word. Amplitude quantization results in a quantization
error and gives rise to an effect known as quantization distortion. In the frequency
domain, quantization distortion errors appear as discrete spurs in the DDFS signal output
spectrum. The relationship between the amplitude resolution in bits and the carrier power

(desired frequency) to spur power ratio as presented in (Vankka, 2001) is:

C

<= (1.76 + 6.02m) dBc 3.13

Where:

m is the word length of the output amplitude word

23

C is the carrier power

S is the spur power

3.4 Phase dithering

Truncating phase information in a DDFS leads to an error in the phase
information which in turn results in phase truncation spurs in the synthesizers’ output
spectrum. Phase dithering is capable of suppressing these spurs by breaking up the
regularity of the phase error with an additive randomizing signal. The result is a higher
spurious free dynamic range (SFDR). Phase dithering is accomplished by adding a dither
signal to each phase value generated by the phase accumulator as shown in Figure 3.3. In
the figure b is the number of bits of the dither signal, j is the size of the phase information

in bits before truncation while k is the size of the phase information in bits after

truncation.
Dither
generator
b
Phase j /‘ '\ ; Phase truncation k
Accumulator 7 SN WA L4 s

Figure 3.3: Addition of a dither signal to the phase information

The maximum spur power level relative to the desired signal after phase dithering

as provided in (Vankka, 2001) is:
S, = 7.84—-12.04k dBc. 3.14
Where:

Smax 1S the maximum spur power level

24

k is the number of bits remaining after truncating the phase accumulator word.
dBc is a unit representing decibels with respect to the carrier.

The constants 7.84 and 12.04 arise from the derivation of equation 3.14, which is
presented in (Vankka, 2001)

From equation 3.14 it can be observed that phase dithering leads to spur

attenuation because after dithering, the spurs follow a 12 dB per phase bit law instead of

the 6 dB per phase bit of a DDFS without phase dithering given in equation 3.12.

The carrier-to-noise power spectral density after phase dithering as derived in (Vankka,

2001) is

Where:

Where:

% ~ (6.02k —9.94 +10log,, (Pe)) dBc 3.15

k is the number of bits remaining after truncating the phase accumulator word.
C is the carrier power

N is the noise power

dBc is a unit representing decibels with respect to the carrier.

Pe is the number of points in the output spectrum of the DDFS. It is equal to the
numerical period of the phase accumulator; which is calculated using the

equation.

2J'

Pe=— - 3.16
GCD(AP,2))

AP is the phase increment word.

GCD (AP, 2)) is the greatest common divisor of AP and 2.

25

J is the number of bits in the phase accumulator word before truncation.
The carrier-to-noise power spectral density in equation in (3.15) can be raised by

increasing the number of the samples (Pe).

3.5 Amplitude dithering

Amplitude dithering involves the addition of a dither signal to the amplitude
information as shown in Figure 3.4. This allows the amplitude information word length
decrease without introducing additional spurs. Because after dithering the magnitude of
the spurs will depend on the original (longer) word length and not the output (shorter)
word length (Flanagan and Zimmerman, 1995). For amplitude dithering to be done the
amplitude information stored in the look up table is usually reduced (scaled) so that the
original signal plus the dither will stay within the non-saturating region. Scaling involves
normalizing each of the b bit entries in the look up table so that the sinusoid amplitude
equals 2®™ b-bit quantization steps less than the full scale value (Flanagan and
Zimmerman, 1995), where b is the number of bits representing the amplitude information
before truncation and m is the number of bits used in the final output amplitude word
after truncation. In Figure 3.4, x is the size of the dither signal in bits (x=b-m). The
addition of a dither signal to the amplitude information does not lead to an increase in the
number of amplitude bits as shown in Figure 3.4, this is possible because the amplitude
information is scaled in order to make sure that the sum of the dither signal and the
amplitude information does not exceed the maximum value that can be represented by the

amplitude information register.

26

Dither

generator
X
b \ 4 b j m
Phasgto , /1 , | Amplitude word >
amplitude AU "| length reduction
converter

Figure 3.4: Addition of a dither signal to the amplitude information

This dithering technique works by spreading the spurs throughout the available
bandwidth. The carrier-to-noise power spectral density after amplitude dithering is given

as follows in (Vankka, 2001).

%; (1.76 + 6.02m +10 Ioglo(%))dBc 3.17

Where:
m is the word length of the Output amplitude word.
Pe is the numerical period of the phase accumulator output sequence, it can be
calculated using equation 3.16.
C is the carrier power.

N is the noise power.

3.6 Phase and amplitude dithering

The phase and amplitude method of dithering involves the addition of a dither
signal to the phase and amplitude samples before truncation. The dither signals are added
to the phase and amplitude samples in the manner described in section 3.4 and 3.5. The
phase and amplitude method of dithering can be useful in reducing phase and amplitude

guantization spurs.

27

3.7 Dither signal generation

Dither signal can be generated using a linear feedback shift register pseudo
random number generator. A linear feedback shift register is a shift register whose input
bit is a linear function of its previous state; it is a shift register whose input bit is driven
by the exclusive-or (xor) of some bits of the shift register. The sequence of values
generated by the register is completely determined by its current (or previous) state. Since
a shift register has a finite number of possible states, the output sequence eventually
repeats itself. In spite of this, an LFSR with a well selected feedback function can

generate a sequence of bits which looks random and which has a very long cycle.

0 10 12 13 15

—_ [
=

Figure 3.5: LFSR dither generator

The bit positions that affect the subsequent state are called the taps. In Figure 3.5
the taps are 10, 12, 13 and 15. The rightmost bit of the LFSR is called the output bit. The
taps are XOR'd sequentially with the output bit and then fed back into the leftmost bit.
The sequence of bits in the rightmost position is called the output stream. An output bus

can also be formed by connecting the outputs of the entire register chain.

28

http://en.wikipedia.org/wiki/Linear_transformation
http://en.wikipedia.org/wiki/Exclusive-or

A maximum-length LFSR produces a y-sequence (i.e. it cycles through all
possible 2¥ — 1 states within the shift register excluding the state where all bits are zero),
if it contains all zeros, the output sequence will never change.

The arrangement of taps for feedback in an LFSR can be expressed in finite field
arithmetic as a polynomial mod 2. This means that the coefficients of the polynomial
must be 1's or 0's. This is called the feedback polynomial or characteristic polynomial.
For example, if the taps are at the 15th, 13th, 12th and 10th bits (as shown), the feedback

polynomial is

15 18, ,12 .10 4

XU 4+XY+XT+X 3.18

The 'one' in the polynomial does not correspond to a tap; it corresponds to the
input to the first bit (i.e. x°, which is equivalent to 1). The powers of the terms represent
the tapped bits, counting from the left. The first and last bits are always connected as an
input and tap respectively. A table of primitive polynomials from which maximum-length
LFSRs can be constructed is given in (Xilinx, 2007).

The size in bits of a dither signal is usually given by the equation:

b=j—k 3.19

Where:

b is the size in bits of the dither signal

J is the number of bits in the phase accumulator or amplitude word before
truncation.

k is the number of bits remaining after truncating the phase accumulator or

amplitude word.

29

http://en.wikipedia.org/wiki/Finite_field_arithmetic
http://en.wikipedia.org/wiki/Finite_field_arithmetic
http://en.wikipedia.org/wiki/Polynomial
http://en.wikipedia.org/wiki/Modular_arithmetic
http://en.wikipedia.org/wiki/Primitive_polynomial

CHAPTER 4
SYSTEM DESIGN

This chapter covers design flow: specifications, modeling and simulation
(verification) of the DDFS based signal generator using SystemC. Implementation and
testing will be covered in chapter 5.

Modeling and simulation is an important part of the design process in electronic
systems because it provides an early understanding of the design in addition to assisting
in verifying that the design will function the way it was intended. In this work, modeling
and simulation has also been used to examine the performance of a DDFS that employs
the dithering technique of spur reduction. The objective was to identify a method of
dithering that would result in the largest spur reduction. The models which were created
and used for this investigation include: a model without dither signal, a model with phase
dithering only, a model with amplitude dithering only and a model that had a
combination of both phase and amplitude dithering. The performance figures used in
comparing the four models are spurious free dynamic range (SFDR) and noise floor
(NF); SFDR is used to indicate the level of spurs while NF indicates the level of noise of

a system.

4.1 SystemC design flow
SystemC is a set of C++ classes and macros with event-driven simulation kernel
in C++. These facilities enable a designer to simulate concurrent processes, each

described using plain C++ syntax. SystemC processes can communicate in a simulated

30

real-time environment, using signals of all the data types offered by C++, some additional
ones offered by the SystemC library, as well as user defined. SystemC is applied to:

e System-level modeling

e Architectural exploration

e Performance modeling

e Software development

e Functional verification

e High-level synthesis

Modules are the principal building blocks of a SystemC design hierarchy. A
SystemC model usually consists of several modules which communicate through ports.
Processes are the principal computation elements which fulfill necessary sequential
behavior. They run concurrently with other processes. Events allow the synchronization
between processes.

Ports of a module are the external interfaces that pass information to and from a
module. They trigger actions within the module. Signals create the connections between
the module ports allowing the modules to communicate. Channels are the communication
elements of SystemC. They are generalized form of signals. Complex communication
structures can be modeled using channels.

The major steps followed when carrying out modeling and simulation using
SystemC include developing specifications for the models, creating the models and
verifying them using simulation. Figure 4.1 shows the design flow that was followed

when carrying out modeling and simulation using SystemC in this work.

31

SPECIFICATIONS

A

A\ 4

SYSTEMC
MODELING

A

\ 4

SIMULATION

Figure 4.1: Design flow

4.1.1 Specifications

The first step in designing a SystemC model involves determining the
specifications of the design. The design specifications of the proposed signal generator
are given in section 4.3. The defined specifications contain necessary information about
the types of waveforms, frequency resolution, frequency range and the size of the Look-

up Table.

4.1.2 Modeling

After determination of the specifications, the structural and behavioral models of
the signal generator are formed. In the structural model, the hierarchy of the modules and
their interfaces are specified using a high level of abstraction. In the functional model, the
processes and variables within the modules are specified.

To make a SystemC model, the designer writes the model in C++ using functions
and data types defined in the SystemC class library following the methodology of
describing a design in SystemC. The model, which is the executable specification, can

then be compiled and linked to the SystemC simulation kernel and SystemC library to

32

create an executable (Bhasker, 2002). SystemC DDFS signal generator models used in

this study are presented in section 4.6 to 4.9.

4.1.3 Verification

Once the behavioral models have been made, the next step involves verification
of the models. Verification of a SystemC model is usually done to make sure that the
model reflects the original intent of the design and that it performs efficiently, safely and
successfully. Verification of models can be done using simulation based methods or
formal methods (Gajski et al., 2009). Simulation based approach has been used in this
study because SystemC only supports simulation. Simulation in this work was done by
the use of a test bench. A test bench is a model that is used to exercise and verify the
correctness of a design under test. A test bench has three main purposes.

a) To generate stimulus for simulation.
b) To apply the stimulus to the design under test and collect output responses.
c) To compare output responses with expected results.

In this study the test bench generates a frequency value for the signal generator
module and receives output signals for the sine wave, square wave, triangle and saw tooth
wave generated by the signal generator module. The generated and received signals are
observed using GTK viewer. If the received signals have frequency corresponding to the
value of the phase increment and expected shape, the signal generator module is
considered capable of generating correct signals.

The test bench for this project was written using separate modules as shown in

Figure 4.2.

33

LSignal_gen.h LMonitor.h

Signal_gen.cpp Monitor.cpp

Main.cpp

Run executable file

A 4 A 4
Text files Trace.vcd
(time and amplitude (ved format
waveform data) waveform data)
Spectral analysis Waveform analysis
A 4 Y

Signats
Tine
clock=

hase it~ I I P

150 arplitude out[:0]

~200 T T T T 1
0 Se406 1e407 15e+07 2e407 25e+07

Power spectral density (dBc)

square_out

Figure 4.2: Verification Flow used for the SystemC Designs

The stimulus generation and the design under test were written in the module
signal_gen.h and signal_gen.cpp. This is because the stimulus generation i.e. the driver
serves the same purpose as the interface. Output monitoring and comparison was done in
another module monitor.h and monitor.cpp. A main program main.cpp linked the various
modules and interconnected them to form the testbench.

The sequence of events in the verification flow shown in Figure 4.2 is as follows:

the main file was compiled and if there was no compilation error, the design project was

34

built. The design environment then generated an executable file. The executable file was
run, resulting in the generation of a Value Change Dump (VCD) file and text files. The
VCD file was used to hold the samples of simulated waveforms while the text files had
sine, square and saw tooth wave form data. GTKWave Wave Analyzer VV1.3.19 software
was used to open the VCD file in order to observe simulation waveform. The results of
this analysis are presented in section 4.11 for the signal generator module i.e. without
dither signal, with phase dithering only, with amplitude dithering only and with a
combination phase and amplitude dithering. QtiPlot data analysis tool was used to
perform a Fast Fourier Transform (FFT) on the sine wave form data so that spectral
information could be obtained. The results from this analysis are presented in section

4.11 for the four signal generator designs.

4.2 Software resources used in modeling and simulation

For this project SystemC version 2.2.0 was used together with Eclipse version
3.2.2 to carry out the modeling task. Eclipse is a multi-language software development
platform. It consists of an Integrated Development Environment (IDE) with a flexible
plug-in system. The IDE provides a source code editor with a rich set of source
annotation and browsing capabilities, integrates a compiler, a source code debugger and
many more facilities to aid the software development process. Eclipse’s primary focus is
the Java language, however with various plug-ins it addresses many other languages as
well, such as C/C++, Cobol, Python, Perl and PHP. Eclipse’s well defined plug in system

makes it very attractive for customized extensions (Gajski et al., 2009).

35

4.3 DDFS signal generator specifications

The signal generator specifications that were used to create models of the DDFS
based signal generator are presented in section 4.3.1 and 4.3.2. The specifications were
arrived at after considering the need to have a device that can generate various
waveforms of high resolution, high spectral purity, wide frequency range and optimal
cost of resources. The specifications were placed under two categories i.e. functional and
non-functional requirements. The functional requirements define what the signal
generator is supposed to do while the non-functional requirements define the constraints

of the signal generator.

4.3.1 Functional requirements
The proposed DDFS based signal generator is expected to meet the following
requirements:
1. Receiving of signal parameters such as frequency, wave shape and amplitude.
2. Calculation of a phase increment value.
3. Continuous addition of the phase increment value to the phase accumulation
register.

4. Generation of a dither signal to be used in phase dithering.

5. Addition of a dither signal to the phase information.

6. Conversion of phase information to amplitude information.

7. Generation of a dither signal to be used in amplitude dithering.

8. Addition of a dither signal to the amplitude information.

36

9. Generating common waveforms such as Sine Wave, Square Wave, Triangular
Wave and Saw tooth Wave.
10. Facilitate the selection of output waveform.

11. Conversion of digital waveform samples into analog form.

4.3.2 Non-functional requirements

In order to meet the functional requirements stated in section 4.3.1, the constraints
provided in table 4-1 were arrived at for the DDFS based signal generator. The
specifications were made after identifying the maximum clock frequency of the used
FPGA and the specifications of previous DDFS implementations such as a commercially
available DDFS integrated circuit (Analog devices, 2003) and a microcontroller based
signal generator (Silicon laboratories, 2003).

The FPGA that was used imposed three major constraints on the signal generator
design: the size of lookup table, the clock frequency and the size of the phase
accumulation register. Once these were set, they controlled most of the other constraints
since:

e For a given lookup table size, there can be a tradeoff between phase quantization
and amplitude quantization.

e For agiven clock frequency there is an upper limit on the output frequency.

e The clock frequency and phase accumulation register size set the frequency
resolution limit.

A more detailed explanation of the constraints is provided in section 4.3.3.

37

Table 4-1: DDFS signal Generator non-functional requirements

Frequency range 0.047 Hz to 25 MHz
Clock frequency 50 MHz

Number of Output Channel 1

Frequency Resolution 0.047 HZ

Phase word size after truncation 8-bit

Look-up Table Size 256 x 16 bit
Amplitude 0to1 Vpp

Spurious Free Dynamic Range (SFDR) 88 dBc

Output impedance 50Q

4.3.3 Explanation of DDFS signal generator specifications

The following section discusses the specifications presented in table 4-1.

4.3.3.1 Clock frequency and Upper frequency Limit

From theory,

O 2 41
Where:
Fomax 1S the maximum output frequency
fo 1S the clock frequency
The maximum clock frequency limit imposed by the used FPGA was 50 MHz,
hence using equation 4.1 the maximum output frequency expected therefore would be 25

MHz.

38

4.3.3.2 Types of waveforms and dithering

The proposed signal generator is expected to have a wide range of use hence four
types of wave forms were selected for generation; sine, square, triangular and saw tooth.
The square, triangular and saw tooth wave form were generated directly from the phase
information as described in section 3.2. Direct generation of these waveforms was
preferred because it would not impose additional memory requirements. The sine wave
was generated from a look up table as described in section 3.2.1. The generation of a sine
wave using a lookup table was preferred because it has been shown in (Vankka, 2001) to
offer the best spectral purity over other techniques. The parameters of the used look up
table and their justification is provided in section 4.3.3.4. Dithering was only applied to
the sine wave due to the fact that the technique requires a phase to amplitude converter to

be present.

4.3.3.3 Frequency resolution
Frequency resolution is influenced by the size of the phase accumulation register

and the clock frequency as can be seen in the equation:

Af = Jec 4.2
2J

where:
Af is the frequency resolution
j is the number of phase accumulator bits

fclk is the clock frequency

39

For a standard 32 bit register, 2 bits were reserved for waveform selection and the
remaining 30 bits were used for the phase accumulation. Since the maximum clock
frequency of the used FPGA is 50MHz, the frequency resolution is:

50000000

30

Af =0.047Hz 4.3

4.3.3.4 Size of the Look up Table

The size of a look up table in a DDFS depends exponentially on the number of
phase bits and linearly on the number of amplitude bits. This can be summarized by the
equation

w = m 2" 4.4

Where:

w is the size in bits of the look up table

m is the size in bits of the amplitude word

k is the number of phase bits used by the look up table

The 30-bit phase accumulator used in this work would require 2% entries in a
lookup table in order to directly convert 30 bits of phase to corresponding amplitude. If
each entry were stored with 16-bit accuracy, then using equation 4.4, two gigabytes of
lookup table memory would be required. Such a large lookup table would have resulted
in high power consumption, lower speed and greatly increased costs. Therefore a smaller
memory that has been shown to be capable of fitting in a commercially available
microcontroller (Silicon laboratories, 2003) was preferred. The look up table had 8 phase
bits (2° = 256 entries) and each entry was 16 bits in size. Since the look up had 8 phase

bits, only the 8 most significant bits of the 30 bit phase accumulator output were used to

40

provide phase information; truncation of the phase information was expected to result in

spurs. Therefore, dithering was used to reduce these spurs.

4.3.3.5 Number of output channels
The number of output channels for the proposed signal generator was fixed at one

because one channel was adequate for verifying the performance of the signal generator.

4.3.3.6 Output signal resolution and amplitude

The resolution in bits of the signal generator output signal was set at ten bits. This
figure was found to be acceptable because it has been previously used in the popular and
commercially available DDFS integrated circuit AD9833. In addition 10 bit DACs are
readily available.

The maximum amplitude that the signal generator can produce is 1 volt peak to
peak. The value was arrived at after considering the DAC transfer function (Texas
Instruments, 2009):

Vour = lour X Rpoap 4.5
Where:

Vour is the output voltage

lout is the output current

RLoap is the load resistance

The maximum value for loyt is 20 mA while a typical value for R oap is 50Q,
applying these two values in the DAC transfer function 4.5 implies that the maximum

output voltage would be: 50 x 20/1000 = 1 volt.

41

4.3.3.7 Spurious Free Dynamic Range (SFDR)
The SFDR of 88 dBc was determined using the equation for calculating the SFDR

for a DDFS that uses the dithering technique of spur reduction:

SFDR =—(7.84—12.04k) dBk. 4.6

Where k is the number of bits remaining after truncating the phase accumulator
word. Using 8 as the value of k in equation 4.6 (see section 4.3.3.4) for an explanation of
this value of k) the expected value of SFDR would be: - (7.84 -12.04 x 8) = 88 dBc.
Besides dithering the resulting SFDR was also a result of a tradeoff between the size of
the lookup table and spectral purity; when one is fixed the other follows. This
relationship is summarized by equation 4.6; where for a given size of the phase address

(K) the SDFR is fixed.

4.3.3.7 Output impedance
The output impedance of 50 Q was used because it is the value of a load
resistance that would allow the DAC to provide the maximum 1 volt peak to peak output

voltage as specified in the DAC’s datasheet (Texas Instruments, 2009).

4.4 Design model of DDFS signal generator

Figure 4.3 shows a block diagram of the designed DDFS based signal generator.
The design was arrived at using the theory of a DDFS provided in section 3.1. The
description of how dithering can be done is provided in section 3.4 and 3.5 while the

signal generator’s functional requirements are presented in section 4.3.1.

42

INPUT FROM

USER
INTERFACE
WAVEFORM
PHASE SELECTION DATA
INCREMENT
Y A 4
PHASE SAWTOOTH, .| WAVEFORM » DAC
ACCUMULATOR SQUAREAND ”| SELECTION
» TRIANGLE » MULTIPLEXOR
WAVE -~
GENERATOR >
A
Y
PHASE SINE WAVE AMPLITUDE
DITHERING PHASE TO DITHERING
> AMPLITUDE >
CONVERTER
(ROM)

Figure 4.3: DDFS signal generator block diagram

As shown in Figure 4.3 the systems’ interface receives waveform configuration
parameters from the user, it then generates a phase increment value and waveform
selection data. The phase increment is used by the phase accumulator to generate a
continuously increasing phase value that can be used by the phase to amplitude converter
to generate sine wave samples or by the saw tooth, square and triangle wave generator to
generate the mentioned waveforms. The waveform selection data is used by the
waveform selection multiplexor as a control signal for determining the type of waveform
that should constitute its current output. The phase dithering and amplitude dithering
modules generate and add a dither signal to each of the phase and amplitude samples

respectively. The DAC converts the digital samples of the generated waveforms to an

analog format.

43

OUTPUT
SIGNAL

4.5 SystemC implementation of the signal generator

This section describes how the DDFS based signal generator design was
implemented using SystemC. Each of the blocks shown in Figure 4.3 was implemented
using SystemC modules while communication between the modules was achieved using
SystemC signals. The Specifications provided in table 4-1 and the functional
requirements of the proposed DDFS signal generator guided the implementation of the
modules.

Sections 4.5.1 to 4.5.8 present a detailed description of the signal generators’
modules. GTK Wave viewer simulation results of the modules have also been presented.
Four models of the signal generator design presented in Figure 4.3 were implemented; a
model with no dithering, with phase dithering, with amplitude dithering and with phase
and amplitude dithering. Sample code for the SystemC phase accumulator module is

provided in appendix A.

Objective
The objective of creating the signal generator models was:

1) Architecture exploration — i.e. to get an early understanding of the signal
generator design and also to verify that the design will function the way it was
intended.

2) To examine the effects of phase and amplitude bits truncation on the output
spectrum of the signal generator.

3) To examine the effect of phase dithering, amplitude dithering and combination of

phase and amplitude dithering on the output spectrum of the signal generator.

44

4) To identify the dithering method that would result in the optimal reduction in

spurs for the proposed signal generator.

4.5.1 Interface module

This module is responsible for receiving a frequency and waveform selection
value from the user. It then calculates and outputs the phase increment value. The
waveform selection value is passed on without any further processing. As shown in
Figure 4.4 it has two output ports identified with sc_out. An input port is not required for
this module because the frequency and wave selection values are entered by the user
directly through the keyboard. The module has one process which is of kind
SC_METHOD. Equation 4.7 is used in calculating the phase increment, this equation is

obtained by making AP in equation 3.1 the subject of the equation.

j
AP=f 2 4.7

out
fclk

Where:
AP is the phase increment word (30 bits) and it is an integer
j is the number of phase accumulator bits (30)
fak is the clock frequency (50MHz)
fout IS the required output frequency
Table 4-2 shows a mapping of the waveforms that can be generated by the signal
generator to a unique number; which the user supplies in order to determine the current

output waveform.

45

Table 4-2 Waveform selection codes

Waveform Waveform

selection value

1 Square

2 Sine

3 Saw tooth
4 Triangle

sc_out
(phase_increment)

A 4

sc_method
(prc_interface)

sc_out
(waveform)

Figure 4.4: sc_module (interface)
Using equation 4.7 the expected phase increment rounded to the nearest integer for a

frequency of 1 MHz is:

~ 2%*1000000
~ 50000000

= 21474836

Note that the phase increment does not have units because the denominator and
numerator have the same units (Hz). Rounding off the phase increment results in a

frequency error that is less than the smallest step in frequency which in this case is 0.047

46

Hz. Hence the percentage error in the generated frequency decreases as the output
frequency value gets larger.

After simulating the interface module it was observed that the module can
generate the correct phase increment value for any frequency and also receive the wave
selection value as shown in Figure 4.5, where the module generated an expected phase
increment of 21474836 for a frequency of 1 MHz and recorded a wave selection value of

2 which corresponds to a sine wave.

4930 ns

Time
clock =

+ Freguency =

+ Wave_type =

+ phase_increment = 21474836

Figure 4.5: sc_module (interface) simulation for 1 MHz output frequency

4.5.2 phase accumulator module

This module is an implementation of the phase accumulator; it adds the phase
increment value to the phase accumulation register on every positive clock edge. If the
resulting sum exceeds the maximum value of the phase accumulation register, it
overflows and the process begins all over again. As shown in Figure 4.6 it has two input
ports identified with sc_in and one output port identified with sc_out. The module has

one process which is of kind SC_METHOD.

47

I
sc_in
(phase_increment)

sc_method
(prc_phase_accumulator)

sc_out (phase) >

sc_in_clk (clock)

Figure 4.6: sc_module (phase accumulator)

Figure 4.7 shows the simulation result of the phase accumulator module. As
shown in the figure the module phase accumulator is capable of adding the phase
increment value to the previous content of the phase accumulation register on every clock
pulse, the phase increment value used for this test is 21474836, the size of the phase

accumulation was 30 bits and the clock frequency was 50 MHz.

Signals
Time
clock =

+ phase_increment =| E¥EES

+ phase_accumulation_register =

Figure 4.7: Simulation result of the phase accumulator module
The phase accumulator module was also tested to confirm whether the phase
accumulation register over flows at the correct time for any particular frequency, as
shown in Figure 4.8 the phase accumulation register overflowed every microsecond as

expected for a frequency of 1 MHz.

48

Signals Waves
T1me
+ phase

Figure 4.8: Simulation result for the overflow of the phase accumulation register

4.5.3 phase_to_amplitude module

This module is an implementation of a sine wave phase to amplitude converter; it
represents the look up table (LUT) of a DDFS. The module uses the phase values to
access the members of an array holding the values representing a sine wave. Only the 8
most significant bits of the 30 bit phase accumulation register are used to generate sine
wave amplitude values. The output amplitude information is 16 bits in size. As shown in
Figure 4.9 it has one input port identified with sc_in and one output port identified with

sc_out. The module has one process which is of kind SC_METHOD.

sc_method(prc_phase_to_
amplitude)

Figure 4.9: sc_module (phase to amplitude)

sc_in (phase) sc_out

(amplitude)

The output sequence of the array in the ph_to_amplitude module is given by:
amplitude(i] = ((sin (i * 2 % 2%) + 1) * (32768)) 4.8

Where:

49

amplitude[i] is the amplitude value (for the i"" phase value)

Sin is the sine function

256 is the number of quantization levels achievable using an 8 bit register

The +1 in the equation is used to ensure that only positive values are

generated; a unipolar output was preferred because most DACs are designed to

output unipolar voltages.

The 32768 is half the number of quantization levels achievable using a 16 bit
register.

Equation 4.8 is used for initializing the look up table only. The amplitude values
in the look up table are rounded off to integer values no bigger than 2*°-1 = 65535.
Thereafter the values are simply looked up from the table. The output sequence is:

S[i] = amplitudeli] 4.9
Where: i is the phase value
S[i] is the i amplitude sample
amplitude[i] is the amplitude value at the i" position in the look up table.

The number of sine wave reconstruction samples generated by the phase to
amplitude converter is inversely proportional to the output frequency or the phase
increment value.

Figure 4.10 shows the simulation result of the phase to amplitude module. As
shown in the figure the module is capable of generating an amplitude value for any phase

value on every clock pulse.

50

Signals Waves
Time '
clock =

+ phase=

+ amplitude=

Figure 4.10: Simulation result of the phase to amplitude module
The phase to amplitude module was also tested to confirm whether it can generate
signals with the expected period for any particular frequency, as shown in Figure 4.11 the
module generates a complete sine wave every microsecond as expected for a frequency

of 1 MHz.

Signals
Time
+ amplitude

Figure 4.11: Simulation result for frequency period testing
For the signal generator designs that make use of amplitude dithering, the
amplitude information stored in the look up table was reduced (scaled) so that the original
signal plus the dither would stay within the non-saturating region. Scaling involved
normalizing each of the 16 bit entries in the look up table so that the sinusoid amplitude
equals 64 16-bit quantization steps less than the full scale value (Flanagan and
Zimmerman, 1995). Equation 4.10 was used to generate the samples required to initialize

the scaled look up table:

amplitudel[i] = ((sin (i 2% 2”;) + 1) « (32768)/1.000977532) 4.10

51

Where:
amplitude[i] is the amplitude value (for the i phase value).
Sin is the sine function.
256 is the number of quantization steps achievable using an 8 bit register.
The 32768 is half the number of quantization levels achievable using a 16 bit
register.
1.000977532 is the figure used to scale each of the amplitude samples, so that
each of them is 64 16-bit quantization steps less than the full scale value. The
removal of 64 16-bit quantization steps is required to prevent an overflow of the
16-bit register used in holding the sum of the amplitude and a dither signal whose
maximum value is 2° = 64. The size of the dither signal (6 bits) is explained in

section 4.5.5.

4.5.4 Monitor module

This module helps in recording the various values generated by the signal
generator model i.e. frequency, phase, amplitude and the phase accumulator output value.
The values are sent out to the console and also saved in a text file. As shown in Figure
4.12 it has four input ports identified with sc_in and one process which is of kind

SC_METHOD.

52

sc_in (frequency)

sc_in (amplitude)

sc_in (phase)

sc_in_clk (clock)

sc_method
(prc_monitor)

Figure 4.12: sc_module (monitor)

4.5.5 phase dithering module

This module is an implementation of the phase dithering process; it is responsible
for the generation and addition of a dither signal to the phase information. As shown in
Figure 4.13 it has two input ports identified with sc_in and one output port identified with
sc_out. The module has one process which is of kind SC_METHOD, it implements a
linear feedback shift register pseudo-random number generator and an adder. A

discussion on phase dithering is given in section 3.4.

sc_in (phase)

sc_method
(prc_phase_dithering)

sc_out
(dithered_phase)

sc_in_clk (clock)

Figure 4.13: sc_module (phase dithering)

53

Using equation 3.20, the size of the phase dithering signal for this module would
be 30-8 = 22 bits. Figure 4.14 shows the simulation result of the phase dithering module.
As shown in the figure the module is capable of generating and adding a random number

to a phase value on every clock pulse.

Signals Wawves
Time

clock

+ phase 450971556 472446392] 515396054 536870900

+ dither signal

+ dithered_phase 450971556 472446393 493921231

truncated phase[7:0] 26

Figure 4.14: Simulation result of the phase dithering module

4.5.6 Amplitude dithering module

This module is an implementation of the amplitude dithering process; it is
responsible for the generation and addition of a dither signal to the amplitude
information. As shown in Figure 4.15 it has two input ports identified with sc_in and one

output port identified with sc_out.

sc_in (amplitude)

sc_method
(prc_amplitude_dithering)

sc_out
(dithered_amplitude)

sc_in_clk (clock)

Figure 4.15: sc_module (amplitude dithering)

54

The module has one process which is of kind SC_METHOD; it implements a
linear feedback shift register pseudo-random number generator and an adder. A
discussion on dither signal generation is given in section 3.7.

Figure 4.16 shows the simulation result of the amplitude dithering module. As
shown in the figure the module is capable of generating and adding a random number to
the amplitude information on every clock pulse. The size of the dither signal is 6 bits
while the clock frequency used is 50 MHz.

Using equation 3.20, the size of the amplitude dithering signal for this module

would be 16-10 = 6 bits. A discussion on amplitude dithering is given in section 3.5.

Signals Waves
Time
clock
+ amplitude 64842 65383 64989 64062
+ dither signal : 0 20
+ dithered amplitude 64844 65 65009 64103
truncated_amplitude[S:0] 013 1015

Figure 4.16: Simulation result of the amplitude dithering module

4.5.7 Saw tooth, square and triangle wave generator
This module generates the saw tooth, square and triangle waveforms using the
phase information as follows:
1) The square wave is generated using the most significant bit of the phase value;
when it is high the 10 bit square waveform amplitude register is set to its

maximum value otherwise it is set to zero.

55

2) The saw tooth waveform is directly generated from the 10 most significant bits of
the 30 bit phase accumulator because the phase accumulator output consists of an
increasing value which rolls over when the phase accumulation register is full.

3) The triangle wave is generated using 10 most significant bits of the 30 bit phase
accumulator; when the phase accumulator value is below half its maximum value
the value is channeled directly to the triangle wave amplitude register otherwise it
is inverted before being channeled to the register.

As shown in Figure 4.17 the saw tooth, square and triangle waveform generator
has one input port identified with sc_in and three output ports identified with sc_out. The

module has one process which is of kind SC_METHOD.

sc_out (square) >

sc_out (saw tooth>

sc_out (triangle)>

Figure 4.17: sc_module (sawtooth_square_triangle waveform_generator)

A\ 4

sc_method

sc_in (phase) (prc_ waveform _generator)

A 4

Figure 4.18 shows the simulation result of the saw tooth, square and triangle
waveform generator module. As shown in the figure the module is capable of generating
saw tooth, square and triangle waveforms. The frequency value used for this test is 1
MHz, the size of the phase information was 30 bits and the waveform amplitude registers

are 10 bits is size.

56

Time
clock

+ Square
+ Sawtooth

+ Triangle

Figure 4.18: Simulation result of the saw tooth, square and triangle waveform generator

module

4.5.8 Waveform selection multiplexor

This module receives the sine, saw tooth, square and triangle waveforms data and
outputs only one of this waveforms depending on the control signal received from the
interface. Table 4-3 shows the waveform selection control signal and the corresponding

output waveform.

Table 4-3 Waveform selection control signals

Waveform selection value | Waveform
1 Square
2 Sine
3 Saw tooth
4 Triangle

As shown in Figure 4.19 the waveform selection multiplexor has four input ports
identified with sc_in and one output port identified with sc_out. The module has one

process which is of kind SC_METHOD.

57

sc_in (square)

| !
sc_in (sine)

sc_in (sawtooth)

sc_in_clk (triangle)

sc_in
(wave_selector)

sc_method
(prc_waveform_multiplexor)

sc_out (amplitude>

_/

Figure 4.19: sc_module (waveform_selection_mulitplexor)

Figure 4.20 to 4.23 shows the simulation result of the waveform multiplexor
module. As shown in the figure the module capable of generating square, sine, saw tooth
and triangle waveforms depending on the wave selection control signal as defined in
Table 4-3. The frequency value used for this test is 1 MHz and the waveform amplitude

registers is 10 bits in size.

Time
+ wave_selector

+ Square

Figure 4.20: square wave simulation result of the waveform_selection_mulitplexor
module

Tine
+ wave_selector

+ sine

Figure 4.21: sine wave simulation result of the waveform_selection_mulitplexor module

58

Tinme
+ wave_selector

+ sawtooth

Figure 4.22: Saw tooth wave simulation result of the waveform_selection_mulitplexor
module

Signals
Time

+ wave_selector

+ triangle

Figure 4.23: Triangle wave simulation result of the waveform_selection_mulitplexor

module

4.5.9 Integration of signal generator modules
Four versions of the signal generator were created depending on how the modules
discussed in section 4.5.1 to 4.5.8 were integrated:
1. Signal generator design without dither
2. Signal generator design with phase dithering
3. Signal generator design with amplitude dithering

4. Signal generator design with phase and amplitude dithering.

Objective

The main objective of creating four different versions of the signal generator
design was to identify the design that would result in the optimal spur reduction. Sections
4.6 to 4.9 describe each of the four modules and the results obtained from their

simulation.

59

The following are the attributes that are common to the four signal generator

designs; these and other constraints are also presented and explained in section 4.3:

a)

b)

d)

The phase information which is 30 bits in size is truncated to 8 bits to facilitate
the use of a small look up table (LUT) in the phase to amplitude converter. This is
done for the sine wave only; for the other waveforms, the phase information is
truncated to ten bits. The ten bits limit was determined by the resolution of the
DAC to be used, see section 4.3.3.6 for an explanation of this figure.

The sine amplitude word length is 16 bits before truncation to 10 bits, truncating
the amplitude word length was necessary because it would result in a narrower
data path compatible with low cost and readily available digital to analog
converters.

50 MHz clock was used.

The DAC has not been included in the models because the investigation on the
signal generator design that will result in the largest spur reduction mainly focuses
on the spurs that are caused by the digital part of a DDFS and not the analog part
which consists of the DAC.

Dithering was only applied in the generation of the sine wave.

4.6 Signal generator design with truncation and without dither

The main attribute of this design is that no dither signal was applied to the phase

or amplitude information; as a result spurs caused by truncating the phase and amplitude

information are expected in the output spectrum of this model. The model was used as a

control in identifying the contribution of the various methods of dithering on the output

60

spectrum of a DDFS based signal generator. This was done by comparing its SFDR and
noise floor performance to that of models that made use of dithering.

Figure 4.24 shows how some of the modules discussed in section 4.5.1-8 were
interconnected in order to create the signal generator design without dither; for clarity the
figure shows the part related to the sine wave generation only. The model was simulated
as described in section 4.2.Wave form generation and output spectrum simulation results

for this model will be discussed in section 4.11.

PHASE
INCREMENT

PHASE

PHASE 8 SINE WAVE 10
ACCUMULATOR Y PHASE TO

> 4% AMPLITUDE
7 » AMPLITUDE

CONVERTER

A A

1 L

CLOCK

Figure 4.24: signal generator model without dither

4.7 Signal generator design with phase dithering

The main attributes of this design is that a 22 bit dither signal is added to the
phase information before truncation; it is expected to reduce the level of spurs caused by
phase information truncation. A discussion on phase dithering is provided in section 3.4.
The design was used in identifying the contribution of the phase dithering technique on
the output spectrum of the DDFS based signal generator. This was done by comparing its

performance to that of the design that had no dithering used.

61

Figure 4.25 shows how the modules discussed in section 4.5.1-8 were
interconnected in order to create the signal generator design with phase dithering; for
clarity the figure shows the part related to the sine wave generation only. The module was
simulated as described in section 4.2; wave form generation and output spectrum

simulation results for this module will be presented in section 4.11.

PHASE

INCREMENT DITHERED
DHASE PHASE AMPLITUDE
PHASE 30 8 SINE WAVE 10
ACCUMULATOR y y PHASE TO
7 —> ADDER 7 »| AMPLITUDE +’
CONVERTER
A A
22
cLock LFSR DITHER
> SIGNAL
SOURCE

Figure 4.25: Signal generator design with phase dithering

4.8 Signal generator design with Amplitude dithering

The main attributes of this design is that a 6 bit dither signal is added to the
amplitude information before truncation to 10 bits, it is expected to reduce the level of
spurs caused by amplitude quantization, a discussion on amplitude dithering is provided
in section 3.5. The design was used in identifying the contribution of amplitude dithering
on the output spectrum of a DDFS based signal generator. This was done by comparing
its SFDR and noise floor performance to that of a design that had no dithering used.

Figure 4.26 shows how the modules discussed in section 4.5.1-8 were
interconnected in order to create the signal generator design with amplitude dithering; for

clarity the figure shows the part related to the sine wave generation only. The design was

62

simulated as described in section 4.2; wave form generation and output spectrum

simulation results for this module will be presented in section 4.11.

PHASE

INCREMENT DITHERED
PHASE AMPLITUDE
PHASE 8 SINE WAVE 16 10
ACCUMULATOR by PHASE TO y ADDER
7 » AMPLITUDE 7 > +’
CONVERTER
A A
6
CLOCK LFSR DITHER
> SIGNAL
SOURCE

Figure 4.26: Signal generator design with amplitude dithering

4.9 Signal generator design with phase and amplitude dithering
The main attribute of this design are as follows:
a) A 6 bit dither signal is added to the amplitude information before truncation to 10
bits. It is expected to reduce the level of spurs caused by amplitude quantization.
b) A 22 bit dither signal is added to the phase information before truncation.
The design was used to identify the contribution of a combination of phase and
amplitude dithering on the output spectrum of the proposed DDFS based signal
generator. This was done by comparing its SFDR and noise floor performance to that of

the model that did not have dithering.

63

PHASE
INCREMENT

DITHERED DITHERED
PHASE AMPLITUDE
PHASE 30 8 SINE WAVE 16 10
ACCUMULATOR |, | ADDER , | pHasETO , ADDER
7> 7 » AMPLITUDE 7> —F—>
CONVERTER
A A A A
2 6
LFSR DITHER LFSR DITHER
SIGNAL SIGNAL
SOURCE SOURCE
cLOCK 4 4

Figure 4.27: Signal generator design with phase and amplitude dithering
Figure 4.27 shows how the modules discussed in section 4.5.1-8 were interconnected
in order to create the DDFS module with phase and amplitude dithering; for clarity the
figure shows the part related to the sine wave generation only. The module was simulated
as described in section 4.2; wave form generation and output spectrum simulation results

for this module will be presented in section 4.11.

4.10 Wave form generation simulation results

Figure 4.28 to 4.31 shows the waveforms that were generated after simulating the
signal generator model without dither, with phase dithering, with amplitude dithering and
with a combination of phase and amplitude dithering. Only one figure has been presented
for the four models because no difference was observed in the wave forms generated by
the four modules for the test frequency used. From the figures it can be observed that the

four signal generator designs were capable of generating sine, square, triangle and saw

64

tooth waveforms depending on the wave type control signal. The output signal was at an

expected test frequency of 1 MHz.

Time
+ Frequency

+ wave_type

+ output_signal
Figure 4.28: Square wave simulation of signal generator design
Signals Waves
Time
+ Frequency

+ wave_type

+ output_signal

Tine
+ Frequency

+ wave_type

+ output_signal

Time
+ Frequency

+ wave_type

+ output_signal

Figure 4.31: Triangle wave simulation of signal generator design

65

4.11 SystemC simulation output spectrum results

Four SystemC models of the signal generator were created; a model with no
dither signal, with phase dithering only, with amplitude dithering only and one that had a
combination of both phase and amplitude dithering. Figure 4.32 (a), (b), (c) and (d) show
the observed output spectrum results for these models. In the figures, e + n on the x axis,

where n is an integer has the same meaning as 10 raised to power +n.

DDFS output spectrum without dither DDFS output spectrum with phase dithering
0 04
20 20 4
40 - -a0
T z
3 60 S -s0
5 -
80 E
5 H
=100 b
H g
2 2
g-uo— B
= H
-140 -
160
M7 7 -180 4———— — T T
0 Se+06 le+07 1.5e+07 2e+07 2.5e+07 0 Se+06 1e+07 1.5e+07 2e+07 2.5e+07
Frequency (Hz) Frequency (Hz)
DDFS output spectrum with amplitude dithering DDFS output spectrum with both phase and
0 amplitude dither
0
20
-20
-40
g . 40
T 60 i
Z T 60
8 p
-80
H $ 80
s 2
-100
H o -100
E 2
. =
= -120 ®-120
@ g
-140 -140
-160 -160
-180 : R -180 T T T T T T T T T T T T T T T
0 5e+06 le+07 158+07 2e+07 2.5e+07 0 5e+06 1e+07 1.5e+07 2e+07 2.5e-+07
Frequency (Hz) Frequency (Hz)

Figure 4.32: DDFS output spectra (a) with no dither signal, (b) with phase dithering
(c) with amplitude dithering and (d) with both phase and amplitude dithering.

66

The spectrums in Figure 4.32 were obtained by taking a Fast Fourier Transform
(FFT) of the output sine wave data using QtiPlot. QtiPlot is a program used for two- and
three-dimensional graphical presentation of data sets and for data analysis. The
simulation parameters used were j=30, k=8, m=10, f;k=50MHz, f,,=1MHz (five more
results for different frequencies are presented in table 4-4). For the DDFS with no dither
signal the observed SFDR was 48 dBc and the noise floor was at -130 dBc, for the DDFS
with phase dithering an increase in SFDR to 68 dBc was observed and the noise floor
also increased to -88 dBc. For the DDFS with amplitude dithering no increase in SFDR
was observed since it was at 48 dBc however the noise floor increased to -99dBc. For the
DDFS with both phase and amplitude dithering an increase in SFDR to 88 dBc was

observed, the noise floor also increased to -88 dBc.

4.12 Expected SFDR and NF results
This section presents the calculation of expected SFDR and NF results for the

proposed DDFS based signal generator design.

4.12.1 Expected SFDR and NF results for DDFS without phase and amplitude
truncation

When phase truncation does not exist in a DDFS, the level of spurs in its output
spectrum is determined by the errors resulting from the finite precision of the samples
stored in the look up table. For such a DDFS design it is assumed that the energy of
amplitude quantization spurs is concentrated in one spur, the resulting SFDR can be

determined using the equation:

67

SFDR = (6.02M + 1.76) dBc 4.11

Where m is the number of bits in the amplitude word without truncation and dBc
IS a unit representing decibels with respect to the carrier. Using 16 as the number of
amplitude bits for the proposed signal generator design, the expected SFDR for the signal
generator model without phase and amplitude truncation would be:

SFDR = (6.02 x 16 + 1.76) = 98.08 dBc

A noise floor is not expected for a DDFS model that does not have phase and

amplitude information truncation because the energy of the spurs caused by amplitude

quantization will be concentrated in one spur.

4.12.2 Expected SFDR and NF results for DDFS with truncation (without dithering)
The maximum level of spurs for a DDFS whose phase information is truncated
can be estimated by (Vankka, 2001):
SFDR = 6.02k dBc 4.12
Where:
SFDR is the spurious free dynamic range
k is the number of phase bits used
The expected SFDR value for the DDFS model with truncation is:
SFDR = 6.02 x 8 = 48.16 dBc
The expected noise floor (which in this case is a noise to signal ratio) can be
calculated from an equation given in (Vankka, 2001):

NF :—%;—(1.76+6.02m +10 Ioglo(%))dBc 4.13

Where:

68

NF is the noise floor.

m is the word length of the output amplitude word.

dBc represents decibels with respect to the carrier.

C is the carrier power

N is the noise power

Pe is the numerical period of the phase accumulator output sequence; it can be
calculated using equation 3.16.

Using equation 4.13 the expected noise floor is:

230

NF = —(1.76 + 6.02 X 10 + 10 X log4g (%)) = —140 dBc

The size of the word length used for the phase address and amplitude register is 8
and 10 bits respectively. These values were selected because they have previously been
used in commercially available DDFS designs and hence they were perceived to be
acceptable sizes of phase and amplitude information. By extension, the acceptable SFDR
and Noise Floor values for a DDFS design with such figures would be 48 dBc and -140

dBc respectively as calculated using equation 4.12 and 4.13.

4.12.3 Expected SFDR and NF results for DDFS with phase dithering
The maximum level of spurs for a DDFS model with phase dithering can be

estimated by (Vankka, 2001):
SFDR = —(7.84-12.04k)dBc 4.14
Where:

k is the number of bits remaining after truncating the phase accumulator word

dBc is a unit representing decibels with respect to the carrier.
69

SFDR is the spurious free dynamic range.
The expected SFDR for the DDFS model with phase dithering is:
SFDR = —(7.84 — 12.04 x 8) = 88.48 dBc
The expected noise floor for the DDFS model with phase dithering (which in this
case is a noise to signal ratio) can be calculated from an equation given in (Vankka,

2001):
—% ~ —(6.02k —9.94 +10l0g,,(S)) dBc 4.15

k is the number of bits remaining after truncating the phase accumulator word while S is
the number of points in the output spectrum of the DDFS, S is equal to the numerical
period of the phase accumulator (Pe); it is calculated using equation 3.16.

Using equation 4.15 the expected noise floor is:

NF = — (6.02 X 8—9.94 + 10 x logy, (273:’)) = —123 dBc

4.12.4 Expected SFDR and NF results for DDFS with amplitude dithering
The SFDR of a DDFS model with amplitude dithering can be estimated by
(Vankka, 2001):
SFDR = (6.02M + 1.76) dBc 4.16
Where m is the number of bits in the amplitude word before truncation and dBc is
a unit representing decibels with respect to the carrier. The expected SFDR for the DDFS
model with amplitude dithering and phase truncation is:

SFDR =6.02x 16 + 1.76 = 98.08 dBc

70

The expected noise floor (which in this case is a noise to signal ratio) can be
calculated from an equation given in (Vankka, 2001):

—% ~ _(1.76+6.02m+10 |oglo(%)) dBc 417

Where:
m is the word length of the Output amplitude word.
dBc represents decibels with respect to the carrier.
Pe is the numerical period of the phase accumulator output sequence, it can be
calculated using equation 3.16.

Using equation 4.17 the expected noise floor with amplitude truncation is:

230

NF = —(1.76 4+ 6.02 x 10 + 10 X logy, <%>) = —140 dBc

4.12.5 Expected SFDR and NF results for DDFS with phase and amplitude dithering

The equations used to calculate the expected value of spurious free dynamic range
and noise floor for the DDFS model with phase and amplitude dithering are similar to
those used for the model with phase dithering only. The assumption made here is that
since the figures of SFDR and noise floor for the model with phase dithering are higher
than those of the model with amplitude dithering, they would be the ones observed in the
output spectrum of the DDFS with both phase and amplitude dithering. Hence the
expected SFDR and NF values for the signal generator model with phase and amplitude

dithering would be 88 and -123 respectively.

71

4.13 SystemC simulation SFDR values
The SystemC simulation SFDR and NF values were obtained using the following
steps;
1. Storing time and corresponding amplitude sine wave data generated after
simulating a SystemC model.
2. Using QtiPlot (data analysis tool) to perform a Fast Fourier Transform (FFT) on
the sine wave form data so that spectral information could be obtained.
3. Plotting a graph of power spectral density versus frequency using the FFT data
generated in step 2.
4. The SFDR reading corresponded to the second largest peak in the graph
described in step 3.
5. The NF reading was identified after ignoring any harmonic, spurious and DC

components in the frequency spectrum.

4.14 Discussion of results

Table 4-2 and 4-3 contain a summary of SFDR and NF results respectively that
were obtained from simulating the SystemC models of the signal generator and expected
theoretical values derived from the appropriate equations as presented in section 4.12.

From the figures presented in the table 4-2 and 4-3 it can be observed that:

1.The SystemC model with phase dithering results in an SFDR that is higher than the
one observed in the model without dither and lower than the theoretical value. The
increase in SFDR is expected of DDFS models that use phase dithering. However, the

failure to meet the expected theoretical SFDR value can be attributed to the presence

72

of amplitude quantization spurs in the output signal. The observed noise floor when
compared to the case without dithering and the theoretical value is observed to
increase; this is consistent with theory because dithering leads to an increase in the
noise floor.

2.The SystemC model with amplitude dithering leads to an SFDR that is similar to the

one observed in the model without dither and lower than the expected theoretical value.
This could have been caused by the presence of phase truncation spurs in the output
signal. The observed noise floor when compared to the case without dithering and its
corresponding theoretical value is observed to increase, this is consistent with theory
because dithering leads to an increase in the noise floor.

3.The System model with both phase and amplitude dithering results in a SFDR that is

higher than the one observed in the model without dither and similar to the expected
theoretical value. This is possible because phase dithering reduced the spurs caused by
phase truncation while amplitude dithering minimized the spurs caused by amplitude
quantization. The noise floor of the model with both phase and amplitude dither is
higher than that of the model without dither, this is expected because dithering leads to
an increase in the noise floor.

4. The observed values of noise floor are generally higher than their corresponding
theoretical values. The cause of this difference is the number of points used in the FFT
analysis; 500,000 points were used instead of the required 268,435,456 (using equation
4.23). The use of more than 500,000 points was observed to cause computational

challenges for the ordinary desktop computer used, specifications of the desktop

73

computer used for the FFT analysis is provided in appendix D. The used numbers of

points were enough to avoid masking the expected improvement in SFDR.

Table 4-2: SFDR results

SYSTEMC THEORETICAL DEVIATION OF
SIMULATION SFDR VALUE SYSTEMC SFDR FROM
SFDR VALUE THEORETICAL VALUE
WITHOUT PHASE AND Not done 98 N/A
AMPLITUDE
INFORMATION
TRUNCATION
WITHOUT DITHERING
1 MHz 48 48 0
5 MHz 45 48 3
10 MHz 47 48 1
15 MHz 43 48 5
20 MHz 43 48 5
24 MHz 48 48 0
WITH PHASE
DITHERING
1 MHz 68 88 20
5 MHz 62 88 26
10 MHz 61 88 27
15 MHz 62 88 26
20 MHz 61 88 27
24 MHz 68 88 20
WITH AMPLITUDE
DITHERING
1 MHz 48 98 50
5 MHz 45 98 53
10 MHz 45 98 53
15 MHz 45 98 53
20 MHz 45 98 53
24 MHz 48 98 50
WITH PHASE AND
AMPLITUDE
DITHERING

74

1 MHz 88 88 0
5 MHz 88 88 0
10 MHz 88 88 0
15 MHz 88 88 0
20 MHz 88 88 0
24 MHz 88 88 0
Table 4-3: NF results
SYSTEMC THEORETICAL DEVIATION OF
SIMULATION NF NF VALUE SYSTEMC NF FROM
VALUE THEORETICAL VALUE
WITHOUT PHASE AND Not done NF is not
AMPLITUDE expected
INFORMATION
TRUNCATION
WITHOUT DITHERING
1 MHz -130 -140 -10
5 MHz -118 -140 -22
10 MHz -110 -140 -30
15 MHz -104 -140 -36
20 MHz -97 -140 -43
24 MHz -108 -140 -32
WITH PHASE DITHERING
1 MHz -88 -123 -35
5 MHz -88 -123 -35
10 MHz -88 -123 -35
15 MHz -88 -123 -35
20 MHz -88 -123 -35
24 MHz -88 -123 -35
WITH AMPLITUDE
DITHERING
1 MHz -99 -140 -41
5 MHz -99 -140 -41
10 MHz -99 -140 -41
15 MHz -99 -140 -41
20 MHz -99 -140 -41

75

24 MHz -99 -140 -41
WITH PHASE AND

AMPLITUDE DITHERING

1 MHz -88 -123 -35
5 MHz -88 -123 -35
10 MHz -88 -123 -35
15 MHz -88 -123 -35
20 MHz -88 -123 -35
24 MHz -88 -123 -35

4.15 Conclusion of results

From the examination of previous DDFS designs, it was observed that a phase
address of 8 bits is considered to be not too large or too small, hence by extension an
acceptable figure of SFDR calculated using the 8 bit phase address would be 48 dBc. One
of the purposes of carrying out modeling and simulation in this study was to identify the
method of dithering that would lead to the largest improvement in the SFDR. From table
4-2 it was observed that the SystemC model that had phase and amplitude dithering
resulted in the largest SFDR (largest reduction in spurs), the resulting SFDR was also the
one closest to the expected SFDR when phase truncation is not used. This led to the
conclusion that the phase and amplitude method of dithering would be the best for

spectral purity improvement in the DDFS based signal generator.

76

CHAPTERS
FPGA IMPLEMENTATION OF DDFS SIGNAL GENERATOR

The DDFS technique of waveform generation can be implemented using several
technologies. This includes the use of a microcontroller (MCU) (Popa and Sorana, 2007),
an application specific integrated circuit (ASIC) (Analog devices, 2003), a digital signal
processor (DSP) (Sia et al., 2007) and a field programmable gate array (FPGA) (Sharma
and Upadhyaya, 2010). FPGA Implementation was found necessary for this work
because better performance could be achieved by avoiding inter-chip connections (Hsieh
et al., 2003) and also because the additional hardware required by the dithering technique
could easily be made inside the FPGA at no extra cost. This chapter describes how the

signal generator was implemented in an FPGA.

5.1 Overview of FPGA devices

A field-programmable gate array (FPGA) is a semiconductor device that can be
configured by the designer after manufacturing, hence the name field-programmable.
FPGAs are programmed using a logic circuit diagram or a source code in a hardware
description language (HDL) to specify how the FPGA will work.

FPGAs contain programmable logic components called logic blocks, and a
hierarchy of reconfigurable interconnects that allow the blocks to be wired together
somewhat like a one-chip programmable breadboard. Logic blocks can be configured to
perform complex combinational functions, or merely simple logic gates like AND and
XOR. In most FPGAs, the logic blocks also include memory elements, which may be

simple flip-flops or more complete blocks of memory.

77

The FPGA used for this work (M1AFS 1500) belongs to the Actel fusion family
of mixed-signal FPGAs. Figure 5.1 shows the architecture of the fusion device as
provided in (Actel Corporation, 2007).The following is a summary of some of the
features that made this FPGA (Actel Corporation, 2010) suitable for the implementation
of the signal generator design:

e 1,500,000 system gates

e 350 MHz system performance

e Internal 100 MHz RC Oscillator (accurate to 1%)
e Low Power Consumption

e Soft ARM® Cortex™-M1 Fusion Devices (M1)

“ Bank 0 : Bank 1 .
Hﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ oooooooooooooooooon ﬂﬂﬂﬂuﬂ-— CCC
2l || || | 11 11 Il 11 11 Il ||E
all 11 11 | 11 11 || 11 11 | 2—— SRAM Block
alE P e e g 4,608-Bit Dual-Port SRAM
olg I o or FIFO Block
B | Eoeeeeen) Eeeeeen ERereen) BRereeen) e CEEEEEH EEREreen) Ere g|o
=] .rr" mnnmmifan . amm] I n snnnnnnnfanansnnnfurnnn o
osc —E g g
o|H a
alE Gf— I/Os
O | 1
o B o
CCUPLL — b | gz A
ol
Ol B H|2
ok o ,
o|g = VersaTile
olg H|2
E H H H E
%E :t:h:::: ..::::ﬁ e T E g
'EE H::::: ::::11! ::1:!:::1?:::1.:!:: ﬂ:::ﬂ: EEEEEEE B 1:!:::1.:!: :1:!::::1?::::::: E :
olk H B HH HHHH CHt | o
all 1l 1l Il Il Il Il Il Il Il 5
all 11 11 Il Il Il Il Il Il J_H2—— SRAM Block
a -Bi |
g ISP AES User Nonvolatile Charae Pumps g 4,608-Bit Dual-Port SRAM
o Decryption FlashROM 9 P 2 or FIFO Block
g 8
E =]
E Flash Memory Blocks ADC Flash Memory Blocks g
o g
O] |analog| JAnalog] [Analog| |Analog] |Anzlog| |Analog] |Analog| |Analog| |Analeg| |Analog E
g Quad Quad Quad Quad Quad Quad Quad Quad | | Quad Quad E
cCccC —-.-ﬂ O0OODO0OO0O00O00OO0O000OOOOOO000OOOoOOoOoOooOoooooaono
- Bank 3 t

Figure 5.1:Fusion Device Architecture Overview

78

5.2 FPGA implementation methodology

The signal generator design preferred for implementation at the FPGA level was
the one with phase and amplitude dithering; the main reason being that this design was
observed to result in the largest improvement in SFDR at the modeling and simulation
stage in chapter four. The comparison was made between a signal generator design
without dither, with phase dithering and with amplitude dithering.

Actel Libero IDE version 9.0 design tools were used to synthesize, place-and-
route the signal generator design. The FPGA used was M1AFS 1500 in the FGG484
package, it was on the Fusion Embedded Development Kit (Appendix C). The major
parts of the DDFS signal generator design were cortex'-M1 processor, digital to analog
converter (DAC) outside the FPGA, a DDFS module which contained; a phase
accumulator, phase to amplitude converter read only memory (ROM), waveform
multiplexor, phase dithering module and an amplitude dithering module. The external
DAC used for this project was DAC5652A. It is a dual, 10-bit 275 MSPS digital to
analog converter. A description of the signal generator prototypes’ modules is presented

in section 5.2.2.1-7

5.2.1 Libero IDE Design Flow
To implement the design on FPGA, the Libero IDE Design flow was used. It

consists of six steps (Actel Corporation, 2010):

Step One-Design Creation

This step involves planning the design and using Design Entry tools (such as

79

SmartDesign) to enter it as HDL (VHDL or Verilog), structural schematic, or mixed-

mode (schematic and RTL).

Step Two-Design Verification-Functional Simulation
After defining the design, verifying that it functions the way it was intended is
done. Its testbench is created using WaveFormer Pro, while functional simulation of the

schematic or HDL design is done using ModelSim VHDL or Verilog simulator.

Step Three — Synthesis/EDIF Generation

Synplify Pro AE is used to generate an Electronic Design Interchange Format
(EDIF) netlist of the design. It is possible to re-verify the design "post-synthesis" using
the VHDL or Verilog ModelSim simulator used in step two. While all RTL code must be
synthesized, pure schematic designs are automatically "netlisted” out via the Libero IDE

tools to create a structural VHDL or structural Verilog netlist.

Step Four — Design Implementation

After functionally verifying that the design works, the next step is to implement
the design using the Actel Designer software. The Designer software automatically places
and routes the design and returns timing information. The tools that come with Designer
can further be used to optimize the design. SmartTime is used to perform static timing
analysis on the design, ChipEditor or ChipPlanner to customize the 1/0 macro placement,
MultiView Navigator for 1/0 customization, SmartPower for power analysis, and

NetlistViewer to view the netlist.

80

Step Five — Timing Simulation
After completing the design implementation, verification that the design meets
timing specifications is done. The testbench is created using WaveFormer Pro while

ModelSim VHDL or Verilog simulator is used to perform timing simulation.

Step Six — Device Programming

Once the design is complete, and the results from timing simulation are good,
creation of a programming file follows. Depending upon the device family in use Fuse,
Bitstream, or Standard Test and Programming Language (STAPL) programming file can

be generated.

5.2.2 Description of the DDFS signal generator design implemented in the FPGA
Figure 5.2 shows a block diagram of the DDFS signal generator implemented in
FPGA. As shown in Figure 5.2 the systems’ communication interface receives waveform
configuration parameters from the user, it then generates a phase increment value and
waveform selection data. The phase increment is used by the phase accumulator to
generate a continuously increasing phase value that can be used by the phase to amplitude
converter to generate sine wave samples or by the saw tooth, square and triangle wave
generator to generate the mentioned waveforms. The waveform selection data is used by

the waveform selection multiplexor as a control signal for determining the type of

81

INPUT FROM
USER

|

SECTION IN FPGA

SECTION OUTSIDE
THE FPGA

|
]
:
WAVEFORM
USB-to-UART AND SELECTION 2
CORTEX-M1 PROCESSOR DATA :
COMMUNICATION !
INTERFACE E
1
PHASE |
INCREMENT
A \ 4
30 BIT PHASE 10 SAWTOQTH, 10 WAVEFORM 10
ACCUMULATOR s | SQUAREAND / SELECTION /)
7 TRIANGLE WAVE / MULTIPLEXOR 4
GENERATOR
A
A
30 10
/
/
DITHERED
AMPLITUDE
\ 4
PHASE SINE WAVE 16 AMPLITUDE
DITHERING , PHASE TO , DITHERING
7 » AMPLITUDE 7
DITHERED CONVERTER
50 MHz PHASE
A A A
CLOCK

Figure 5.2: DDFS signal generator block diagram

10 BIT AD5652
DAC

ANALOG
OUTPUT
SIGNAL

»
>

waveform that should constitute its current output. The phase dithering and amplitude dithering
modules add a dither signal to each of the phase and amplitude samples respectively. The DAC
converts the digital samples of the generated waveforms to an analog format. The following

section discusses the signal generator prototype’s modules.

5.2.2.1 Communication Interface

The interface is made up of an UART in the Cortex-M1 processor system which connects
to an off-chip USB-to-UART chip. This allows communication with the target system via a
COM port on a desktop computer using the HyperTerminal. It facilitates the selection of
frequency and wave form. It is also possible to use a combination of a liquid crystal display
(LCD) and three buttons on the Fusion Embedded Development Kit to control the signal
generator as an alternative to the desktop computer; this is achieved by loading software

corresponding to the preferred method of communication in the processor’s memory.

5.2.2.2 Cortex'™-M1 processor System description

The DDFS signal generator design contains a Cortex-M1 processor system; its main tasks
are to receive the desired frequency and type of waveform from the user. The frequency
information is used to calculate the phase increment value while the waveform information is
used to determine the type of waveform to be generated. The 32 bit GPIO block of the processor
system is used to send out this data. The phase increment value is sent out using the first 30 bits
of GPIO output port and connected to the phase accumulator, the remaining two bits of GP1O

output port are used to send out the waveform type information to the waveform multiplexor.

83

The Cortex-M1 processor system hardware was created using smart design, as described
in (Actel Corporation, 2009). The software was made using Actel SoftConsole IDE v3.1 as
described in (Actel Corporation, 2009). The main operation flow of the software in the cortex™™-

M1 processor System is illustrated in Figure 5.4.

Debug
Interface |+—f— | Cortex-M1
| AHB-Lite Bus
On-Chip on-chi Off-Chip < SRAM Chi
Flash (VM) | | sRam ‘ SRAM P
AHB-APB
Bridge
Analog
Sources on Analog LEDs and
Target Board N Block GPIO Switchas
} \)\
| APE Bus |
USE-to-UART
Chip UART
RC
Oscillator |~ PLL System Clock
Actel Fusion FPGA

Figure 5.3: Block diagram of the cortex'™-M1 processor System (Actel Corporation, 2009)

84

.

A 4

Initialize GP10O port for output
e Initialize UART

A 4

e Request for frequency from the
user

e Calculate the phase increment

e Send the phase increment to the
lower 30 bits of GPIO port

\4

A 4

e Request for type of wave form
from the user

e Send a value corresponding to the
requested frequency to the 2 most
significant bits of the GPIO port

Figure 5.4: Main software routine flow

5.2.2.3 Digital to Analog Converter (DAC)

The DAC is responsible for converting waveform samples generated inside the FPGA
from digital format to analog. It was connected externally to the FPGA as shown in Figure 5.2.
Ten bits containing the waveform data are connected to the inputs of the DAC, subsequently the
DAC converts this data to an analog signal of peak to peak voltage one volt. The DAC used in
this project is DAC5652A,; it is a dual, 10-bit 275 MSPS digital to analog converter. Reference
(Texas Instruments, 2009) gives a detailed description of the DAC. The circuit diagram and
printed circuit board (PCB) layout for this DAC was made using Proteus schematic capture

software release 7.1. The circuit diagram is presented in appendix B.

85

5.2.2.4 Phase accumulator

This module receives a 30 bit phase increment word from the cortex™-M1 processor
System and uses it to produce a linearly increasing digital value. The accumulator is an
intellectual property (IP) core found in the libero IDE catalog. It was instantiated in a
SmartDesign canvas named DDFS for interconnection with other modules. 8 Most Significant
Bits (MSBs) of the accumulator are used by the phase to amplitude converter, 10MSBs are used
to generate a saw tooth and a triangle wave while the MSB is used to create a square wave.

Figure 5.5 shows the simulation result of the phase accumulator module. As shown in the
figure the phase accumulator module is capable of adding the phase increment value to the
previous content of the phase accumulation register on every clock pulse, the phase increment
value used for this test is 21474836, the size of the phase accumulation was 30 bits and the clock

frequency was 50 MHz.

Irestbenchyacl

Cursor 1 3649.011 ns
Figure 5.5: Simulation result of the phase accumulator module
The phase accumulator was also tested to confirm whether the phase accumulation
register over flows at the correct time for any particular frequency. As shown in Figure 5.6 the
phase accumulation register overflowed every 1000 nanoseconds as expected for a frequency of

1 MHz.

86

Jtestbench/aclr

frestbench/clock
frestbench/sell

phase_increment

phase_accumulatar -Z1474905

3000000 ns

Figure 5.6: Simulation result for the overflow of the phase accumulation register

5.2.2.5 Phase to amplitude converter (ROM)

The phase to amplitude converter is a sine wave look up table (LUT) which converts the
phase accumulator value to an amplitude value. The look up table maps the full scale of the
phase value output by the phase accumulator to one cycle of a sine wave. As the phase value
increases from 0 to full scale, one sine wave is created. This sine wave lookup table is generally
implemented using a read only memory (ROM) which stores the sine trigonometric function. In
this project the ROM was created using VHDL and then instantiated in a SmartDesign canvas
named DDFS for interconnection with other modules. The ROM uses an 8 bit address value
obtained from the phase accumulator and outputs a 16 bit value representing the sine wave; only
10 bits of this data are used to generate the analog signal. Figure 5.7 shows a part of the VHDL
code for the LUT, the full code is available in appendix A. The VHDL LUT is similar to the

phase to amplitude converter described earlier in section 4.5.3.

87

—

Dresign Explorar T x

oo —— eight_bit_rom. vhd ~
Show: |Comp0nents ﬂ ooz libragv isee.
- “ work a0z uze iee=.=td_logic 1164 all;
004
+- @ BLACKBOx_PA 005 | entity ROM is
+- @ components [co Qo0& port { address : in std_logic_wector(? downto 0
; oo7 data : out std_logic vector(lS downto 03 3
! 005 | end entity ROM:
@ MM _contents (alal=]
@ shift_reg 010 | architecture behavioral of ROM i=
. 011 type mem i= arravy (0 to 2#%8 — 1) of =td_logic_wector{l5 downto 0
“ CoreAHBLite_LIB 012 constant my_Rom : mem := {
+}-fifi} COREAI_LIE o012 |0 = "0111111111111111",
5 “ COREMEMCTRL .. o014 (1 =: "1000001000111010",
- 015 | 2 =» "1000010001110110",
+/ i} COREUARTAPE_ . oie | 3 => *1000100011101100" .
017 | 4 =» "l000101100100110",
018 | 5 =3 "1000111110011000",
019 | 6 =3 "1001000111001111",
ozo | 7 =» "l001010000000100",
0z g =» "lo001100001101011",
Ozz |9 =3 "1001101010011011",
oz= (10 =» "1001111011110110",
0z4 |11 =» "1010000100011111",
0zs5 |12 =» "1010001101000110",
0z8 |13 =» "10100111i0001100",
0z7 |14 =» "1010100110101010",
ozs | 15 =» "1010110111011101",
oz9 |16 =» "1010111111110001",
os0 (17 =» "1011001000000010",
031 18 =» "1011011000010110",
03z [19 =» "1011100000011011",
0=3 | 20 =» "10111i0000010110", v
£ >

Project Flow ROM.vhd

Figure 5.7: Sample VHDL code for the LUT
Figure 5.8 shows the simulation result of the phase to amplitude converter module. As
shown in the figure the module phase to amplitude converter is capable of generating an

amplitude value for any phase value on every clock pulse.

44561 154773 [52389 R5447 J54125 5., |
B truncated amplitude[3:0] 51.1 /556 855 f574 Iz 1001 Ja07

Figure 5.8: Simulation result of the phase_to_amplitude module
The phase to amplitude converter module was also tested to confirm whether it can

generate signals with the expected period for any particular frequency, as shown in Figure 5.9

88

the module generates a complete sine wave every 1000 nanoseconds as expected for a frequency

of 1 MHz.

4 Ikestbenchfacl
4 ftestbenchjclock

B Jtestbenchjdataa

B Jtestbenchjdata_0

1000 ns

Figure 5.9: Simulation result for frequency period testing

5.2.2.6 Saw tooth, Square and Triangle wave generator
This module receives 10 MSBs from the phase accumulator and uses them to generate
saw tooth, square and triangle wave form as follows:

1) The square wave is generated by connecting the most significant bit of the 10 bit phase
value to all the bits of a ten bit register; when the MSB of the phase value is high the 10
bit square waveform amplitude register is set to its maximum value otherwise it is set to
zero.

2) The saw tooth waveform is directly generated from the 10 most significant bits of the 30
bit phase accumulator because the phase accumulator output consists of an increasing
value which rolls over when the phase accumulation register is full.

3) The triangle wave generation process involves inverting all values below one half of the
10 bit full scale value, then subtracting one quarter of the full scale value. The one quarter

scale shift is performed to keep the signal swing centered on the one half scale value

89

(Landry, 1999). The triangle wave logic was implemented using a multiplexor and

inverter IP cores which were instantiated in the square, saw tooth and triangle wave

generator SmartDesign canvas.

Figure 5.10 shows how the square, saw tooth and triangle wave generator was
implemented. It was instantiated in a SmartDesign canvas named DDFS for interconnection
with other modules.

SAW
TOOTH

TRIANGLE

10 bi OUTPUT
0 bts MULTIPLEXOR

8 bits
9 bits »L.OWER

BITS

INVERTER —»NMSB
NMSB

SEL
MSB Yy » MSB

INVERTER

A 4

\ 4
>

9 bits

\ 4
w

10 BIT SAWTOOTH
WAVE

v

10 BIT SQUARE
WAVE

10BIT
REGISTER

A 4

v

Figure 5.10: Block diagram of the saw tooth, square and Triangle wave generator

Figure 5.11 shows the simulation result of the saw tooth, square and triangle wave
generator module. As shown in the figure the module is capable of generating the saw tooth,
square and triangle waveforms from the phase information. The size of the phase information
used is 10 bits, the size of the triangle wave amplitude is 10 bits and the clock frequency is 50

MHz.

90

phase

sQuare

sawkooth |-62

kriangle

Figure 5.11: Simulation result of the saw tooth, square and triangle wave generator module

5.2.2.7 Waveform multiplexor

The waveform multiplexor receives two bits (2 MSBs) from the cortex™™-M1 processor
System and uses their value to determine which type of waveform is going to be channeled to the
DAC. Digits 0,1,2,3 are used to choose between a square wave, sine wave, saw tooth wave and a
triangle wave respectively. The other set of inputs to the multiplexor are sine, square, saw tooth
and triangle waveform data from their respective generators. The waveform multiplexor was
implemented using an IP core found in the libero IDE catalog, it was instantiated in a
SmartDesign canvas named DDFS for interconnection with other modules. Figure 5.12 shows

the block diagram of the waveform multiplexor.

91

SQUARE >
SINE > SELECTED
OUT PUT
WAVEFORM WAVEFORM
SAW MULTIPLEXOR v
TOOTH >
TRIANGLE >

WAVEFORM SELECTION
DATA (2 bits)

Figure 5.12: Waveform multiplexor
Figures 5.13 to 5.16 show the simulation results of the Waveform multiplexor module.
As shown in the figures the module Waveform multiplexor is capable of allowing only the
selected waveform at its output. The bits sel0 and sell are used to choose between the
waveforms as shown in table 5-1 below.

Table 5- 1: Waveform selection codes

Sel0 Sell Waveform
0 0 Square

0 1 Saw tooth
1 0 Sine

1 1 Triangle

92

Jtestbench)acl

Jrestbench/seld

ftestbench/sell

Jtestbench)aclr

Jtestbench)clock.
Jrestbenchisel0
Jrestbenchisell

phase_increment

multiple:

3000 ns

Zursor 1 0.00 ns

Figure 5.14: Sine wave simulation for the waveform multiplexor module

93

ftestbenchiacl

ftestbench)clock,
ftestbench)sel0
ftestbench/sell

Itestbenchidataa

ftestbenchfmultiple... 1003

3000000 ns

Jtestbenchfaclr
Jtestbenchclock
Jrestbench/seld

Jtestbench)sell

B multiplexor output | 747
000000 ns

Figure 5.16: Triangle wave simulation for the waveform multiplexor module

5.2.2.8 Phase dithering module
The phase dithering module shown in Figure 5.17 is responsible for generating a dither

signal and adding this dither signal to the phase information. It consists of an adder and a linear

94

feedback shift register pseudo random number generator that is composed of a Serial-In/Parallel-
Out shift register and two exclusive or gates. A discussion on phase dithering and dither signal
generation is presented in section 3.4 and 3.7 respectively. The adder, shift register and exclusive
or gates are IP cores that were instantiated in the phase dithering module SmartDesign canvas
and interconnected. The phase dithering module was also instantiated in a SmartDesign canvas

named DDFS and connected to the phase accumulator.

30 BITS FROM 8 MSBs
THE PHASE > 30 BITS >
ACCUMULATOR ADDER DITHERED PHASE

A

22 BITS FROM THE
LINEAR FEED BACK
SHIFT REGISTER
RANDOM NUMBER
GENERATOR

Figure 5.17: Phase dithering module

Figure 5.18 shows the simulation result of the phase dithering module. As shown in the
figure the phase dithering module is capable of generating and adding a dither signal to the phase

information on every clock pulse, the size of the dither signal used is 22 bits, the size of the

phase information was 30 bits and the clock frequency was 50 MHz.

Figure 5.18: Simulation result of the phase dithering module

95

adder_0

phaze[29:0] s D ataAlz... Sum[z9:0]
- DataBlz...

[z1:01
& [28:22]

ﬁ phase_info_latch_0

adder
Clock p—-o Gate Q[28:0] dithered_phasze[29:0]
D ata[29:0]
XORZ_0 %

shift_register_0

akase_infa_latch
A i
B
| C
]

shift_egister XOR3_1

Al p—ro

HKORZ

Figure 5.19: FPGA implementation of the phase dithering module

5.2.2.9 Amplitude dithering module

The amplitude dithering module shown in Figure 5.20 is responsible for generating a
dither signal and adding this dither signal to the amplitude information obtained from ROM. It
consists of an adder and a linear feedback shift register pseudo random number generator that is
composed of a Serial-In/Parallel-Out shift register and two exclusive OR gates. A discussion on
amplitude dithering and dither signal generation is presented in section 3.5 and 3.7 respectively.
The adder, shift register and exclusive OR gates are IP cores that were instantiated in the
amplitude dithering module smart design canvas and interconnected; the amplitude dithering
module was also instantiated in a SmartDesign canvas named DDFS and connected to the phase

to amplitude converter and waveform multiplexor.

96

16 BITS FROM
THE PHASE TO
AMPLITUDE
CONVERTER

16 BITS ADDER

10 MSBs

A\ 4

6 BITS FROM THE
LINEAR FEED BACK
SHIFT REGISTER
RANDOM NUMBER
GENERATOR

v

DITHERED
AMPLITUDE

Figure 5.20: Amplitude dithering module

Figure 5.21 shows the simulation result of the amplitude dithering module. As shown in

the figure the amplitude dithering module is capable of adding a dither signal to the amplitude

information on every clock pulse, the size of the dither signal used is 6 bits, the size of the

amplitude information was 16 bits and the clock frequency was 50 MHz.

Figure 5.21: Simulation result of the amplitude dithering module

97

amplitude[15:0] i

Al
Clock

adder_0
Cratasfi...
CataB[1...
shiftregi=t_0 [5:0]
h-4 [15:6]
Shitten Q[1:0] =
Shittin 0] adder
FAuclr [3]
Clock 5]
[11:8]
[11] 1 A0OR3_0
shiftregist g‘ Al
C
|
HORS
XORZ_1
o o o
L_pa v p—
B o
Hfpt
A
o o o
HOR3

Figure 5.22: FPGA implementation of the amplitude dithering module

Sum[15:0] h‘dltheredamphtudeﬁﬁﬂ]

Figure 5.23 shows how the various modules (presented in section 5.2.2.1-9) of the signal

generator prototype were interconnected in the SmartDesign canvas named DDFS.

TRIANGLE_O

MSE
HNMSE
Result[f...
SQUAR..
SAWTO...

b SAN_IN...
b SOUAR...

TRIANGLE_ SQUARE_S...

WAFM_MLTPLY_O

Seld

Sell

B Datad_p...
B Datal_p...
B Dataz_p...

WAFR N TR

Result[a...

data_0[15:6]

&

dithering_module_0

ROM_0

Clodk

address[...

Seld
Sell
ACCUMULATOR_O
| Sum[29:0] = |
—p Clock [29:20]
D atas[z9:0] Datas[z... [29]
ACCLUWLLA TOR
phase_dithering_maodule_0
Aclr [§
Clodk [}
ahaze_dithedng_module

RO

,_l—» a[15:0]
datal15:0] [§

Aclr dithered...l>

14

k!

Fmalitude_dithedng_m...

Figure 5.23: Signal generator modules

98

b Sum

5.3 Testing Method

Testing of the signal generator prototype was done in order to verify whether it could
generate wave forms of correct shape and expected frequency. In addition, figures of SFDR and
noise floor for this prototype were to be obtained at this stage. The test setup included the Fusion
FPGA Embedded Development Kit Evaluation Board, DAC5652module, USB 2.0 high-speed

cable, oscilloscope and desktop computer.

FUSION
DESKTOP usB R EMBEDDED DAC OSCILLOSCOPE
COMPUTER "| DEVELOPMENT
KIT
EVALUATION
BOARD

Y
Y

Figure 5.24: Hardware Test Setup

In order to test the signal generator, frequency and waveform data are sent to the FPGA.
The interface used to request and send the data is made up of an UART in the Cortex-M1
processor system which connects to an off-chip USB-to-UART chip. This allows communication
with the Fusion Embedded Development Kit Evaluation Board via a COM port on a desktop
computer using the HyperTerminal. The routine for the software used to request and send wave
form data is discussed in section 5.2.2.2.

Two sets of results were collected from testing the signal generator prototype with phase
and amplitude dithering. The first set was for waveform analysis while the second was for
spectral analysis. Waveforms generated after testing the signal generator prototype with phase
and amplitude dithering are shown in Figures 5.25 to 5.29. From the figures it can be seen that
the model with phase and amplitude dithering was able to generate sine, square, triangle and saw
tooth wave forms. The waveforms were observed to be of expected frequency (1 MHz) and

expected shape. In addition the prototype was capable of generating signals at the targeted

99

resolution of 0.047 Hz as can be observed in Figure 5.29. Output spectrum results are presented

in section 5.4.

Figures 5.30 to 5.33 show 10 MHz sample waveforms while Figures 5.34 to 5.37 show
additional samples at a frequency of 25 MHz. When the sample waveforms are compared it can
be observed that the waveforms generated get distorted as the frequency increases from 1 MHz
to 25 MHz. One possible explanation of the sine, saw tooth and triangle wave distortion is that
the samples used in generating these waveforms reduce as the output frequency of the DDFS
increases. The deterioration in the quality of the square wave can be attributed to stray
capacitances in the circuit which cause it to behave like a low pass filter, thereby eliminating the

high frequency components of the square wave.

100

M 400ns A £ 490my

18 Mar 2011
+¥ 0.00000s 12:47:26

M 400ns | A S 490mv,

+¥ 0.00000 s

Figure 5.25: 1 MHz Sine wave output

M 400ns A 5 490mV M 400ns A £ 490mv

18 Mar 2011 -
W+~ 0.00000 s 12:50:50 i+~ 0.00000 s

Figure 5.27: 1 MHz Saw tooth wave output Figure 5.28: 1 MHz Triangle wave output

M 10.0s A S 490mvy

23 Mar 2011
17:07:24

Figure 5.29: 0.047 Hz Sine wave output

101

M40.0ns A S 520mv Md40.0ns A £ 520mV

18 Mar 2011 _ 18 Mar 2011
+¥ 0.00000 s 13:04:41 1+ ¥ 0.00000s 13:02:10

Figure 5.30: 10 MHz Sine wave output Figure 5.31: 10 MHz Square wave output

M40.0ns A £ 500my|

M40.0ns A £ 500mV
. 18 Mar 2011
1+~ 0.00000 s 13:14:35

. 18 Mar 2011
i+ 0.00000 s 13:12:25

Figure 5.32: 10 MHz Saw tooth wave Figure 5.33: 10 MHz Triangle wave output
output

102

M 20.0ns A S 440mv M 20.0ns A £ 440mVy
18 Mar 2011 _ 18 Mar 2011
+¥ 0.00000 s 14:59:08 1+ ¥ 0.00000s 14:57:49

Figure 5.34: 25 MHz Sine wave output Figure 5.35: 25 MHz Square wave output

M 20.0ns A £ 440mv M20.0ns A £ 440my|

18 Mar 2011

18 Mar 2011 =
i+¥ 0.00000 s 15:01:30

-+~ 0.00000 s 15:00:08

Figure 5.36: 25 MHz Saw tooth wave Figure 5.37: 25 MHz Triangle wave output
output

103

5.4 FPGA implementation output spectrum results

Figure 5.38 (a) shows the observed output spectrum result for the signal generator
prototype. The spectrum was obtained using the math function of the TDS3014B oscilloscope.
The parameters used to generate the sine waves whose spectral properties are shown in Figure
5.38 (a) were j = 30, k = 8, m = 10, fo,: =1MHz. The observed SFDR was 85 dBc and the noise
floor was at -116dBc. More SFDR and NF results for different frequencies are presented in Table
5-2.

For comparison purposes, the output spectrum result of the signal generator prototype
(Figure 5.38 (a)) and that of the corresponding SystemC signal generator design (Figure 5.38 (b))
are presented together. From the two figures it can be observed that the performance of the signal

generator prototype closely matches that of the SystemC simulation model.

DDFS output spectrum with both phase and amplitude DDFS output spectrum with both phase and
dithering amplitude dither

Relative power (dBc)

Relative power (dBc)

T L —— LI B B s
0 S5e+08 le+07 1.5e+07 2e+07 2.5e+07
4] Sa408 1e+07 1.5e407 20407 280407 Frequency (Hz)

(a) (b)
Figure 5.38: DDFS output spectra (a) FPGA prototype testing result, (b) SystemC simulation

result

104

5.5 Discussion of FPGA implementation testing results

Tables 5-2 and 5-3 contain a summary of SFDR and NF results respectively that were
obtained from simulating the SystemC models, the expected theoretical values derived from the
appropriate equations as presented in section 4.12, and those obtained from testing the signal
generator FPGA implementation.

Table 5-2: SFDR results

OUTPUT | THEORETICAL SYSTEMC FPGAPROTOTYPE | DEVIATION OF
FREQUENCY| SFDRVALUE |SIMULATIONSFDR | TESTINGSFDR | FPGAPROTOTYPE
(dBc) VALUE (dBc) VALUE (dBc) SFDR FROM
THEORETICAL
VALUE (dBc)
1 kHz 88 88 102 -14
1 MHz 88 88 102 -14
5 MHz 88 88 85
10 MHz 88 88 79
15 MHz 88 88 79 9
20 MHz 88 88 62 26
24 MHz 88 88 60 28
25 MHz 88 88 59 29

Mean deviation of FPGA prototype SFDR value from the theoretical value;

_ —14-14+34+9+9+26+28+29

= = 9.5dBc

8

105

GRAPH OF FPGA PROTOTYPE SFDR VERSUS OUTPUT
FREQUENCY

120

100 i
80 =

)
[«]
3 \7
= 60
=)
Ll
v 40
20
0
0 5000 10000 15000 20000 25000 30000

Output Frequency (MHz)

SFDR Trendline

Figure 5.39: Graph of FPGA prototype SFDR versus output frequency

Table 5-3: NF results

OUTPUT THEORETICAL SYSTEMC FPGAPROTOTYPE | DEVIATION OF
FREQUENCY| NFVALUE (dBc) | SIMULATIONNF | TESTING NFVALUE | FPGA PROTOTYPE
VALUE (dBc) (dBc) NF FROM
THEORETICAL
VALUE (dBc)

1 kHz -123 -88 -116 -7

1 MHz -123 -88 -116 -7

5 MHz -123 -88 -115 -8

10 MHz -123 -88 -111 -12

15 MHz -123 -88 -106 -17

20 MHz -123 -88 -101 -22

25 MHz -123 -88 -101 -22

Mean deviation of FPGA prototype NF value from the theoretical value;

_ —7—7—8—127—17—22_22 = —13.6 dBc

106

GRAPH OF FPGA PROTOTYPE NOISE FLOOR VERSUS
OUTPUT FREQUENCY

98
100 (L 5000 10000 15000 20000 25000 30000

-102

-104 /
-106

/s

-110 /

-112

-114 /

-116 /

-118

NOISE FLOOR (dBc)

Frequency (MHz)

=== NOISE FLOOR ——Trendline

Figure 5.40: Graph of FPGA prototype NF versus output frequency

From the figures presented in the table 5-2 and 5-3 it can be observed that:

1. The FPGA prototype with both phase and amplitude dithering had an SFDR that differed
slightly from the one observed in the corresponding SystemC model and the estimated
theoretical value by an average of 9.5 dBc. The observed high SFDR is anticipated because
phase dithering was expected to reduce the spurs caused by phase truncation while amplitude
dithering was used to minimize the spurs caused by amplitude quantization. However the
SFDR reduces as the output frequency increases as can be observed in Figure 5.39. A
possible explanation of why the SFDR gets lower as the output frequency increases is that

the number of samples generated by the DDFS for reconstructing the sine wave reduces as

107

the output frequency increases; hence the waveforms get distorted gradually as the output
frequency increases. The distortion is observed as spurs in the frequency domain. Equation
5.1 shows how the output frequency is related to the number of samples. From the equation it
can be observed that for a constant clock frequency, the number of samples decrease as the

output frequency increases.

n = fetk 5.1

Fout

Where:

n is the number of samples in waveform

Fei is the clock or sampling frequency

Fout IS the output frequency
. The observed values of noise floor are on average —13.6 dBc higher than their corresponding
theoretical values; for example it can be seen in table 5-3 that at frequency of 5 MHz the NF
is -115 dBc while the theoretical NF value is -123 dBc. The cause of this difference is the
number of points used in the FFT analysis; 10,000 points were used instead of the required
268,435,456 (using equation 4.23). The use of more than 10,000 points was not possible
because the oscilloscope used (TDS3014B) for the FFT analysis could support the FFT
analysis of 10,000 points only. However the used numbers of points were enough to avoid
masking the expected improvement in SFDR.
From Figure 5.40 the noise floor is observed to increase as the output frequency increases.
One possible cause could be the deterioration of the quality of the waveform as the output

frequency increases, as explained in the first observation.

108

5.6 Conclusion of results

From Table 5-2 it can be observed that the FPGA prototype that had phase and amplitude
dithering resulted in an SFDR that is close to the one observed at the modeling and simulation
level and the expected theoretical value. However, the SFDR decreased as output frequency
increased mainly due to the fact that the number of samples in the output waveform decreased as

the output frequency increased.

109

CHAPTER 6
CONCLUSION AND RECOMMENDATION

6.1 Conclusion

The aim of this research was to design and implement a spectral purity optimized DDFS
based signal generator in an FPGA, but the research also includes an investigation on the
dithering technique of DDFS spur reduction and the use of the relatively new modeling and
simulation language called SystemC. Although there is a lot of material on DDFS, dithering and
SystemC that already exists in the literature, the author believes that this research is the first to
do the following;

1. Demonstrate how to use SystemC in the modeling and simulation of DDFS designs that
use phase dithering, amplitude dithering and a combination of phase and amplitude
dithering. The models can be useful to someone who wants to understand the dithering
technique of spur reduction or to carry out more research on dithering. In addition, use of
these SystemC models would enable the user to benefit from the advantages of SystemC
over other languages such as faster simulation time and the ability to model both at the
behavior and architecture level of the design.

2. Compare using the same DDFS design the performance of three methods of dithering
namely; phase dithering, amplitude dithering and a combination of phase and amplitude
dithering. The results of this comparison showed that the phase and amplitude method of
dithering resulted in the most reduction in spurs. This information could be useful to a
designer who wants to apply the dithering technique of spur reduction but is not sure

which method of dithering to choose.

The results of the investigation in dithering proved that the phase and amplitude method

110

of dithering provided the largest reduction in spurs when compared to phase dithering only or
amplitude dithering only. One possible explanation for this observation is that truncating the
phase information and finite word length representation of amplitude information in a DDFS
results in two sets of spurs; those caused by phase information truncation and the ones caused by
finite precision of the amplitude samples, hence spur reduction efforts in such a DDFS design
should target the two sets of spurs.

The implemented FPGA prototype of the signal generator had phase and amplitude
dithering due to the fact that this design was observed to offer the highest spectral purity at the
modeling and simulation level. The prototype was capable of generating sine, square, saw tooth
and triangle wave forms, the frequency resolution was 0.047 Hz, maximum output frequency
was 25 MHz, sine wave SFDR was improved from 48 dBc to 85 dBc and the noise floor was -

116 dBc.

6.2 Recommendation

The expense of phase dithering is an increased noise floor while the penalty of amplitude
dithering is a reduced dynamic range and a loss of the amplitude information caused by the need
to scale the amplitude information so that the original signal plus the dither will stay within the
non-saturating region. Future studies can focus on trying to overcome these challenges faced by
dithering.

While SystemC was used for modeling and simulation, the crafting of the signal
generator on FPGA used vendor specific tools which were not related to SystemC. There is
therefore a need to integrate SystemC all the way down to realization of the signal generator on

FPGA.

111

REFERENCES

Vankka, J., 2001, Direct Digital Synthesizers: Theory, Design and Applications, Kluwer

Academic Publishers, London.

Popa, M., and Sorana, A., 2007, Programmable signal generator based on advanced
tricore microcontrollers, IEEE international conference on signal processing and communication
(ICSPC 2007) , 24-27 November 2007 , Dubai United Arab Emirates.

Analog devices, 2003, AD9833, application note, www.analog.com, last accessed on 27
august 2009.

Sia, L. H., Jamuar S. S., Sidek, R. M., and Marhaban, M., H., 2007, Digital signal-
Processor-Based waveform generator, Measurement science and technology 18, 35- 40.

Sharma, R. K., and Upadhyaya G., 2010, Memory Reduced and Fast DDS Using FPGA,

International Journal of Computer Theory and Engineering, vol. 2, no. 4, pp 1793-8201.
Dubey, R., 2009, Introduction to Embedded System Design Using Field Programmable

Gate Arrays, Springer, London.

Chimakurthy, L. S. J., Ghosh, M., Dai, F. F., and Jaeger, R. C., 2006, A Novel DDS
Using Nonlinear ROM Addressing With Improved Compression Ratio and Quantization Noise,
IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 53, no. 2,pp 274-283.

Kamboj, B., and Mehra, R., 2012, Efficient FPGA Implementation of Direct Digital
Frequency Synthesizer for Software Radios, International Journal of Computer Applications,
Volume 37, N0.10, pp 0975 — 8887.

Xiaogin, W., and Yin, S., 2007, Design and Implementation of DDS Based on VHDL,
The Eighth International Conference on Electronic Measurement and Instruments, ICEMI’2007,
pp2-33-2-37, Aug. 16 2007-July 18.

“Open SystemC initiative” [online]. Available: http://www.sytemc.org, last accessed on
20 July 2012.

Agostinelli, M., Priewasser, R., Huemer, M., Marsili S., and Straeussnigg, D., 2010,

SystemC-AMS modeling and simulation of digitally Controlled DC-DC converters, Applied
Power Electronics Conference and Exposition (APEC), 2010 Twenty-Fifth Annual IEEE, pp 170-
175, 21-25 Feb. 2010.

112

http://www.analog.com/
http://www.sytemc.org/
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5426413
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5426413

Vachoux, A., and Grimm, C., 2003, Analog and Mixed Signal Modelling with SystemC-
AMS, IEEE International Symposium on Circuits and Systems (ISCAS).

Slepicka, D., 2000, Noise floor in ADC testing, Measurement (2000) VVolume: 2, Issue: 4,
Pages: 4-8.

Cordeses, L., 2004, Direct digital synthesis: A tool for periodic waveform generation
(part 1), IEEE signal processing magazine, pp 50-54.

Cordeses, L., 2004, Direct digital synthesis: A tool for periodic waveform generation
(part 2), IEEE signal processing magazine, pp 110-117.

Flanagan, M. J. , and Zimmerman, G. A., 1995, Spur-Reduced Digital Sinusoid
Synthesis, IEEE transactions on communications, vol. 43, No. 7, pp2254-2262.

Xinguang, T., et al, 2009, DDFS spurious signals due to amplitude quantization in
absence of phase-accumulator truncation, Journal of Systems Engineering and Electronics, Vol.
20, No. 3, pp 485-492.

Xilinx, 2007, XAPP210 (v1.3), Linear Feedback Shift Registers in Virtex Devices,
www.xilinx.com, last accessed on 27 august 2009.

Bhasker, J., 2002, A SystemC Primer, Star Galaxy Publishing, Allen town.
Gajski, D. D., Abdi, S., Gerstlauer, A., and Schirner, G., 2009, Embedded System Design,
Springer, London.
Silicon laboratories, 2003, AN123-DS11, using the DAC as a function generator

application note. www.silabs.com, last accessed on 27 august 20009.

Texas Instruments, 2009, SLAS535A, DAC5652A datasheet, www.ti.com, last accessed
on 3 June 2011.

Hsieh, J., Tsai, G., and Lin, M., 2003, Using FPGA to implement a N-channel Arbitrary
Waveform Generator with Various Add-on Functions, proceedings of 2003 international
conference ,15-17 December 2003, pp 296-298.

Actel Corporation, 2007, 51700092-011-0, Actel Fusion Handbook, www.actel.com, last

accessed on 10 July 2011.
Actel Corporation, 2010, 5-02-9124-25, Libero IDE v9.0 User’s Guide, www.actel.com,

last accessed on 10 July 2011.

113

http://www.xilinx.com/
http://www.silabs.com/
http://www.ti.com/
http://www.actel.com/
http://www.actel.com/

Actel Corporation, 2009, 50200154-2, ARM® Cortex™-M1 Embedded Processor Hardware

Development Tutorial for Fusion Mixed-Signal FPGAs, www.actel.com, last accessed on 10 July

2011.

Actel Corporation, 2009, 50200162-1, ARM® Cortex™-M1 Embedded Processor
Software Development Tutorial for Fusion Mixed-Signal FPGAs, www.actel.com, last accessed

on 10 July 2011.
Landry, M. W., 1999, Digital frequency synthesizer, United States patent number 5, 931,891.

114

http://www.actel.com/
http://www.actel.com/

APPENDICES
Appendix A: SystemC header file for the phase accumulator module
/*

* phase_accumulator.h

*

* Created on: Nov 4, 2012
* Author: maina
*/

#ifndef PHASE_ACCUMULATOR H_
#define PHASE_ACCUMULATOR_H_

#include "systemc.h"

SC_MODULE (phase_accumulator) {
sc_in<sc_uint<30> > phase_increment;
sc_in_clk clock;

SC_out<sc_uint<30> > phase;

sc_uint<30> phase_var, phase_increment_var;

void prc_phase_accumulator();

SC_CTOR (phase_accumulator) {
SC_METHOD (prc_phase_accumulator);
sensitive << clock.pos();
dont_initialize();

)3

#endif /* PHASE_ACCUMULATOR_H_ */

115

Appendix B: SystemC implementation file for the phase accumulator module
/*

* phase_accumulator.cpp

*

* Created on: Nov 4, 2012

* Author: maina

*/

#include "phase_accumulator.h”
#include <iostream>

void phase_accumulator:: prc_phase_accumulator() {

/Isc_uint<30> phase_var,phase_increment_var;
phase_increment_var = phase_increment.read();
phase_var=(phase_increment_var + phase_var);

phase.write(phase_var);

116

Appendix C: DAC5652A digital to analog converter

The following are the features and circuit diagram of the DAC used in this project (Texas
Instruments, 2009):

e 275 MSPS Update Rate

e Single Supply: 3.0 Vto 3.6 V

e HighSpurious-FreeDynamicRange (SFDR):
80 dBc at 5 MHz

e Signal to noise ratio: 63 dB

e High Third-Order Two-Tone Intermodulation)
(IMD3): 78 dBc at 15.1 MHz and 16.1 MHz

e Independent or Single Resistor Gain Control
e Dual or Interleaved Data
e On-Chip 1.2-V Reference
e Low Power: 290 mW
e Power-Down Mode: 9 mW
e Package: 48-Pin Thin-Quad Flat Pack (TQFP)
Wi
o—— YouUT
CLk_1 i [1]5;1 [
H'N cz [—d] GND
DM im 1o :
FIN —‘T ZTZ U1 " 28R PIN
' ; Gy e Rl L p2, o
= e L[| A e = SR
a1 | eTee Loy m
9 :!: |——-: :g:::r:ggﬁn“".ggélwﬂ pAGgEL I
@ (] 1 EE i%ﬁﬁﬁz rTCK -5 %5. ‘%.ﬁ
2 Ra ! e Tan T T
O ! e L -
J = pO22w000 waaT 0
O—f | oanin: 2R
jlg R& 5| :ggﬁ:us;cmzn e
O | S TR
O [e ﬂ
J R7 c19
@ F ‘ A0
J8 Ra ‘
i r
or1
5':rn oo Lsgg'
() F

Figure B-1: circuit diagram of the DAC

117

Appendix D: fusion embedded development kit

Fusion Embedded Development Kit Contents
e Fusion Embedded Development Kit board (Figure C-1) with M1-Enabled Fusion
FPGA(M1AFS1500)
e Low-Cost Programming Stick (LCPS) for programming the M1AFS1500 FPGA
External 5 V Power Supply
USB 2.0 high-speed cables
Packet of jJumpers
Quick Start Guide
Actel Libero® Integrated Design Environment (IDE) software DVD

Figure C-1: Fusion Embedded Development Kit Evaluation Board with LCPS Attached

118

Figure C-2: A picture of the Hardware Test setup

119

Appendix E: Specifications of the Desktop computer Used in the FFT analysis

Computer model HP Compaq

Operating system Debian Linux

CPU Pentium Dual-Core E5200
Speed 2.50 GHz

RAM 1.96 GB

120

