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Abstract 

 Over time there has been an increase in speed and density of Field Programmable 

Gate Arrays (FPGAs), this has enabled more complex designs to be constructed within a 

short time frame. In addition, the flexibility of FPGA devices has also eased the 

integration of a design with a wide variety of components on a single chip. The aim of 

this study was to design and implement an FPGA based direct digital frequency 

synthesizer (DDFS) signal generator. The focus was on spectral purity improvement. 

Since phase and amplitude samples in a DDFS are represented using a finite word 

length, the output signal of a DDFS is usually faced by a spectral purity challenge. The 

details of this challenge and how to deal with it is also covered in this thesis. The design 

flow used in this work entailed modeling and simulation at the software level using 

SystemC and prototyping in hardware using Actel’s fusion field programmable gate array 

(FPGA). 

The resulting FPGA prototype had spurious free dynamic range (SFDR) improved 

from 48 dBc to 85 dBc and a noise floor of -116 dBc. Four signal types could be 

generated: sine, square, saw tooth and triangle. The frequency resolution was 0.047 Hz 

and the maximum output frequency was 25 MHz. Therefore, due to its high frequency 

resolution and spectral purity the proposed signal generator design can be useful in 

performing a wide range of laboratory experiments. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Preamble 

 A signal generator is an electronic instrument that generates repeating voltage 

waveforms. This important device finds a wide range of applications in any electronics 

laboratory, such as characterizing analogue and digital systems. In order for a signal 

generator to be suitable for a wide range of purposes, it should provide a wide frequency 

range, high frequency resolution, high spectral purity and the ability to generate different 

types of waveforms.  A variety of methods can be employed for generating waveforms in 

signal generators, these include resistor capacitor (RC) oscillator, inductor capacitor (LC) 

oscillator, multivibrators, direct digital frequency synthesizers (DDFS), phase locked 

loops (PLL) and other variations of these methods. The DDFS has been chosen for use in 

this study because it provides many significant advantages over the other approaches. 

Some of these benefits are that DDFS designs are tunable to many different frequencies 

with the use of a constant operating frequency, it has a fast settling time, Sub-hertz 

frequency resolution, continuous phase-switching response, low phase noise and its 

implementation allows for a standalone precise, fast frequency changing device capable 

of generating different types of waveforms (Vankka, 2001). 

The DDFS technique of waveform generation can be implemented using several 

technologies. This includes the use of a microcontroller (MCU) (Popa and Sorana, 2007), 

an application specific integrated circuit (ASIC) (Analog devices, 2003), a digital signal 

processor (DSP) (Sia et al., 2007) and a field programmable gate array (FPGA) (Sharma 

and Upadhyaya, 2010). An FPGA offers several advantages over the other technologies 
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such as: the ability to integrate a large part of the DDFS based signal generator in a single 

chip, reconfigurability and the ability to implement parallel circuits which operate at a 

high speed. In addition, it allows design decisions to be made when sufficient information 

is available. The purpose of this study was to design and implement an FPGA based 

DDFS signal generator that has optimized spectral purity. The optimization investigation 

was carried out through modeling and simulation techniques based on SystemC. 

 

1.2 Problem Statement 

The direct digital frequency synthesizer (DDFS) is a method of signal generation 

that has many advantages. DDFS designs are able to generate signals that have high 

frequency resolution, provide precise frequency control and fast frequency switching. 

However, the generation of high frequency resolution signals in a DDFS necessitates the 

use of a large phase accumulation register and subsequent truncation of the resulting 

phase information so that a smaller and fast memory can be used. Due to the truncation of 

phase information, the output signals of a DDFS usually contain spurs (unwanted 

frequency components). Additional spurs are introduced if truncation of amplitude 

information is done so that narrower data paths and coarse resolution digital to analog 

converters can be used. These spurs cause a reduction in spectral purity of the output 

signals. Accordingly there is a need for the inclusion of a mechanism to reduce the level 

of spurs in the design of a DDFS. One of the ways of reducing the spurs of a DDFS is by 

using the dithering technique of spur reduction; it involves the addition of a low-level 

random noise, or dither signal to the amplitude or the phase samples. Some of the 

methods of dithering available include phase information dithering, amplitude 
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information dithering and a combination of both phase and amplitude dithering. This 

work intended to design and implement a high frequency resolution DDFS based signal 

generator, whose output signal quality has been optimized using the most appropriate 

method of dithering for the proposed DDFS. 

 

1.3 Aim 

 The aim of this work was to design and implement on FPGA a spectral purity 

optimized DDFS based signal generator. 

 

1.4 Specific Objectives 

(1) To investigate the effect of the following methods of dithering on the spurious 

free dynamic range and signal to noise ratio of the proposed DDFS signal 

generator:  

a) Phase dithering only 

b) Amplitude dithering only 

c) Combination of  phase and amplitude dithering  

(2) To compare the results obtained in (1) and select a dithering method that offers 

the optimal spurious free dynamic range and signal to noise ratio for the proposed 

DDFS. 

(3) To implement on FPGA a DDFS based signal generator whose spectral purity has 

been optimized using the dithering method selected in (2). 
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1.5 Justification and Significance of the study 

 FPGAs enable complex designs to be implemented within a short time frame in 

addition to facilitating the integration of a wide variety of a design’s components in a 

single chip. These benefits have the potential to result in a low cost and a fast to 

implement signal generator like the one proposed in this study.  

 

1.6 Thesis organization 

 The organization of this thesis is as follows. In chapter 2 previous work related to 

DDFS implementation technologies, modeling and simulation tools and spectral purity 

optimization methods is reviewed. Chapter 3 covers some background on how a DDFS 

based signal generator operates, spectral purity of DDFS signals and the dithering 

spectral purity improvement method. Chapter 4 presents the design, modeling, simulation 

of the DDFS signal generator using SystemC and results of simulating the models.  

Chapter 5 presents FPGA implementations of the DDFS signal generator and results of 

testing the FPGA prototype. Chapter 6 presents the conclusion, summary and 

recommendation. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter reviews previous publications related to DDFS implementation 

technologies, sine wave DDFS spectral purity improvement methods and modeling and 

simulation tools. 

 

2.1 DDFS implementation technologies 

The DDFS technique of waveform generation can be implemented using several 

technologies. This section will examine previous implementations reported in the 

literature; microcontroller, an application specific integrated circuit (ASIC), a digital 

signal processor (DSP) and a field programmable gate array (FPGA). 

(Popa and Sorana, 2007) describe a programmable signal generator implemented 

using the pulse width modulation (PWM) method on the advanced 32-bit microcontroller 

family. It is capable of generating sine, pulse, saw tooth and custom waveforms. Output 

frequency range is between 1 Hz and 600 Hz. One major disadvantage of using a 

microcontroller for the implementation of a DDFS based signal generator is that every 

additional instruction executed by the microprocessor reduces the maximum output 

frequency of the design; because of the sequential execution of instructions. 

(Analog devices, 2003) is an Application Specific Integrated Circuit (ASIC) 

technology application note from Analog Devices; this document exhaustively discusses 

the AD9833 DDFS ASIC which is a low power, programmable waveform generator. 

Among other things it presents the features, possible applications and a detailed 

description of how to make use of the AD9833. The frequency range of this DDS IC is 0 
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MHz to 12.5 MHz. The drawback of ASICs is that they typically take months to fabricate 

and cost hundreds of thousands to millions of dollars to obtain the first device. 

 (Sia et al., 2007) present a digital-signal-processor-based waveform generator. 

The device can generate a sine wave up to 24 kHz, a square wave, up to 5 kHz and a 

triangular wave of up to 12 kHz. Due to the fact that a DSP is a highly specialized 

microprocessor, it can impose a low limit on the maximum signal generator output 

frequency because the processor must use shared resources like memory busses, or even 

the processor core which can be prevented from taking interrupts for some time. 

Although signal generator designs utilizing the DDFS technique of waveform 

generation can be implemented using a microcontroller, digital signal processor and an 

application specific integrated circuit, this thesis proposes the use of an FPGA because it 

offers the following advantages over the other technologies (Dubey, 2009); 

 Reconfigurability: Field programmable devices can be reconfigured at anytime. 

Designers can add modifications or do complete behavior changes. 

 Parallelism: Circuits implemented in an FPGA can be designed in a totally 

parallel manner. This is analogous to using multi-path analogue circuits. A user 

can instantiate numerous hardware implementations on the same chip without 

cross-module interference or computation loading.  

 High speed: Because an FPGA is a hardware implementation running with rapid 

clock rates, designers can achieve very high speeds. Coupled with parallelism, 

FPGA implementation can do better than processor-based systems. 
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2.2 Modeling and Simulation tools 

From the examination of previous work it is evident that modeling and simulation 

of a DDFS can be done using the MATLAB/Simulink environment (Vankka, 2001), 

(Chimakurthy et al., 2006) and (Kamboj and Mehra, 2012) or hardware description 

languages (HDLs) such as VHDL (Xiaoqin and Yin, 2007). Although modeling and 

simulating designs using the MATLAB/Simulink environment or HDLs is a possible 

option, this work proposes a different tool; the SystemC language (Open SystemC 

initiative [online], 2012). The major reason for using SystemC is that SystemC is capable 

of offering an order of magnitude faster simulation for abstract models (Agostinelli et al, 

2010), (Vachoux and Grimm, 2003). In addition MATLAB supports behavioral modeling 

and simulation, while HDLs tend to support architectural modeling and simulation. 

SystemC supports both. 

 

2.3 Spectral purity optimization methods 

The spectral purity of a signal generated by a DDFS can be measured using two 

quantities, which are the spurious free dynamic range (SFDR) and the noise floor (NF). 

The noise floor (NF) is commonly understood as the average (sometimes also maximal) 

power of random noise (i.e. the noise that is freed of any harmonic, spurious and DC 

components) in frequency spectrum. The value of the SNR determines the noise floor 

level, in decibels with respect to full-scale (dBfs); the relationship is as follows (Slepička, 

2000):  

NF (dBfs) = − SNR (dBfs) = - (6.02m + 1.76) dB            2.1 

 Where m is the word length of the output amplitude word in bits.  
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SFDR is the difference between the carrier amplitude level (which is the desired 

signal) and the maximum level of spurs in the output spectrum of a DDFS. SFDR of a 

DDFS can be calculated using the equation (Cordeses, 2004 (part 1)):  

SFDR = 6.02k - 3.92 dB              2.2 

 Where k is the number of phase bits. 

 SFDR of a DDFS can be improved by one of the techniques covered in (Vankka, 

2001), (Cordeses, 2004 (part 1)) and (Cordeses, 2004 (part 2)), which include:  

a) Increasing the size in bits of the phase information.  

b) Using the odd-number spur reduction technique. 

c) Using the dithering spur reduction technique. 

d) Using the noise shaping spur reduction. 

 

2.3.1 Increasing the size in bits of the phase information 

The SFDR of a DDFS is related to the number of phase bits as follows:  SFDR = 

6.02k dBc, where k is the number of phase bits, increasing the size in bits of the phase 

information is the easiest method of increasing the SFDR of a DDFS. It is stated in 

(Cordeses, 2004 (part 1)) that a value of 9 phase bits would be ideal. However, for larger 

values the memory requirements would become impractical at high frequency or for 

embedded system applications, because the size of a look up table in a DDFS depends 

exponentially on the number of phase bits and linearly on the number of amplitude bits 

(Flanagan and Zimmerman, 1995). This can be expressed by the equation: 

                                                                                      2.3 
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Where: 

 w is the size in bits of the look up table 

  m is the size in bits of the amplitude word 

   k is the number of phase bits used by the look up table 

 

2.3.2 The odd-number approach 

 The odd-number approach involves making the phase increment word (ΔP) an 

odd number; this improves SFDR by a maximum of 3.9 dB according to reference 

(Cordeses, 2004 (part 2)). 

 

2.3.3 The noise shaping approach  

The noise shaping approach improves the SFDR of a DDFS by filtering out the 

quantization noise. Noise shaping can be applied to phase or amplitude signals. The noise 

shaping approach is usually faced with a difficulty of implementing analog filters with 

variable pass bands (Vankka, 2001). 

 

2.3.4 Dithering  

Dithering is a technique that allows the decrease of phase or amplitude word 

length without escalating spur magnitudes by first adding a low-level random noise, or 

dither signal to the phase and/or the amplitude samples, which are at first expressed in a 

longer word length. The resultant sum, a dithered phase or amplitude value, is truncated 

or rounded to the smaller, preferred word length (Flanagan and Zimmerman, 1995). 
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Selection of a spectral purity optimization technique for this work 

 In this study the dithering technique was selected as the suitable SFDR 

optimization technique, the main reasons being that the dithering technique offers a larger 

spur reduction (12 dB per phase bit) than the odd number approach (fixed 3.9 dB). In 

addition dithering does not require the use of analog filters with changeable pass bands 

(they are difficult to implement) unlike the noise shaping approach.  

 Studies in (Vankka, 2001) on dithering indicate that the expense of phase 

dithering is an increased noise floor while the penalty of amplitude dithering is a reduced 

dynamic range and a loss of the amplitude information caused by the need to scale the 

amplitude information so that the original signal plus the dither will stay within the non-

saturating region. In (Flanagan and Zimmerman, 1995) these drawbacks are mentioned to 

be a small price to pay for the large increase in SFDR offered by the dithering technique. 

 

2.4 Summary 

 The DDFS was first proposed by J. Tierney in 1971. Since then there has been 

major developments in; 

 DDFS implementation technologies.  

 Modeling and simulation tools.  

 Spectral purity improvement methods.   

This work sought to design and implement a DDFS based signal generator that 

benefits from the advances in the above three areas. From the review of recent work 

FPGA has been identified as the most appropriate implementation technology because it 

offers the ability to integrate a large part of the design in one chip. SystemC was used for 
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modeling and simulation due to its relatively faster simulation time while dithering was 

selected for spur reduction because of its capability to offer a large improvement in 

spectral purity. 
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CHAPTER 3 

THEORETICAL BACKGROUND 

This chapter presents the basic aspects of a direct digital frequency synthesizer 

(DDFS), such as the DDFS technique of signal generation, waveform generation, 

frequency resolution and range, factors affecting the spectral purity of DDFS signals and 

the dithering spectral purity improvement method. 

 

3.1 Direct Digital Frequency Synthesizer (DDFS) Theory 

 The DDFS was first proposed by J. Tierney in 1971 (Vankka, 2001). A typical 

DDFS system uses a fixed reference clock, a phase accumulator, phase to amplitude 

converter, digital to analog converter and smoothing filter to generate a constant 

frequency signal (Flanagan and Zimmerman, 1995). This work focused on the phase 

accumulator and phase to amplitude converter presented in Figure 3.1. In the figure ΔP is 

the phase increment word, j is the number of phase accumulator bits, fclk is the clock 

frequency, k is the number of phase bits used as address for the phase to amplitude 

converter and m is the word length of the amplitude word. 

 

Figure 3.1: Basic Direct Digital Frequency Synthesizer 

 

 

 

 

 
PHASE 

ACCUMULATOR 

 

 
PHASE TO 

AMPLITUDE 

CONVERTER 

ΔP j 

PHASE 

k 

AMPLITUDE 

m 

fclk 



 

 

13 

3.1.1 Phase Accumulator 

 The phase accumulator is made up of a j-bit frequency register that stores a digital 

phase increment word followed by a j-bit full adder and a phase register. The digital input 

phase increment word is entered in the frequency register. At each clock cycle the phase 

increment value is added to the data previously held in the phase register; this results in 

the production of a linearly rising digital value.  

 The frequency of the data generated by the phase accumulator depends on the 

reference clock frequency, the phase increment register value and length of phase 

accumulator as shown in equation 3.1. From the equation it can be inferred that 

increasing the phase increment for a constant clock frequency and size of phase 

accumulator results in an increase in output frequency. 

      
j

clk
out

fP
f

2

*
 

Where:    

ΔP  is the phase increment word 

j  is the number of phase accumulator bits 

fclk  is the clock frequency 

fout is the output frequency 

 The frequency resolution, maximum output frequency and frequency range can 

also be obtained from equation 3.1 in the following way: 

 

Frequency Resolution  

Frequency resolution refers to the smallest step in frequency that a DDFS can 

achieve. It is a function of the reference clock frequency and number of bits employed in 
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phase accumulator. For a fixed reference clock and size of the phase accumulation 

register, the frequency resolution can be calculated using equation 3.2; this equation is 

derived from equation 3.1 by setting ΔP = 1. Digit one is the minimum value that ΔP can 

assume because it is an integer. In order to have an improved frequency resolution for a 

fixed clock frequency, the number of bits employed in the phase accumulator can be 

increased.  

                          
j

clkf
f

2
       3.2 

 

Where: 

Δf  is the frequency resolution 

j is the number of phase accumulator bits 

fclk is the clock frequency 

 

Maximum output frequency 

The highest frequency that a DDFS can produce digitally is determined by its 

sampling frequency; increasing the sampling frequency increases the maximum output 

frequency. The Nyquist Theorem states that the highest frequency which can be 

generated accurately is less than half of the sampling rate. As a result, the highest 

frequency that can be generated by a DDFS module is: 

2max

clk

O

f
F        3.3 

Where: 

FOmax is the maximum output frequency 
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 fclk is the clock frequency 

Equation 3.3 can also be obtained from equation 3.1 by setting ΔP = 2
j-1

. Using 

equation 3.3 the maximum output frequency can only be increased by increasing the 

clock frequency. 

 

Frequency Range 

The output frequency range of a DDFS based signal generator is determined by 

the frequency resolution of the DDFS and its maximum output frequency. The frequency 

resolution determines the lower limit of the frequency range while the maximum output 

frequency sets the upper limit. Thus from equations 3.2 and 3.3 used in calculating 

frequency resolution and maximum output frequency respectively,  the frequency range 

of a DDFS can be increased by increasing the number of phase accumulator bits and or 

the clock frequency. 

 

3.1.2 Phase to amplitude converter  

 The phase to amplitude converter is a periodic wave look up table (LUT) which 

converts the phase accumulator value to an amplitude value. This periodic wave lookup 

table is generally implemented using a read only memory (ROM) which stores the 

periodic waveform samples. The look up table maps the full scale of the phase value 

output by the phase accumulator to one cycle of a periodic wave. As the phase value 

increases from 0 to full scale, one periodic wave is created. 

 The phase to amplitude converter can also be implemented without a ROM; in 

this case the amplitude values are computed; some examples of these techniques include 
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sine-phase difference algorithm, Sunderland techniques, first order Taylor series 

expansion and higher order Taylor series expansion. The simplicity of the ROM circuit 

makes the ROM LUT easier to implement. In addition a sine ROM LUT has been shown 

in (Vankka, 2001) to provide a better SFDR than any ROMless architecture for same bit 

width. 

 

3.2 Generation of different wave shapes 

 The common waveforms that a DDFS based signal generator can produce 

include: Sine, Square, Saw tooth and triangle. The following section describes how each 

of these waveforms is generated. 

 

3.2.1 Sine Wave 

 The generation of a sine wave in a DDFS based signal generator can be done 

using the phase accumulator and a phase to amplitude converter that has a full sine wave 

samples stored in its look up table (LUT). The phase accumulator generates phase values 

for the sine wave while the phase to amplitude converter uses the phase values as address 

for the look up table. Every time the phase accumulator register overflows, sampled 

values of a full sine wave are generated.  The samples are then converted to analog form 

using a digital to analog converter. Samples used to create this kind of waveform can be 

generated using the equation:  

            ( )  (   (    
 

  
))         3.4 

Where:  

Amplitude(i) is the corresponding amplitude value for the i
th

 phase value, i      
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assumes values between 0 and 2
k
- 1. 

 sin is the sine function 

 k is the number of phase bits used in the phase to amplitude conversion 

 m is the size of the amplitude word in bits 

From equation 3.4 it can be observed that increasing the value of k will cause an 

increase in the number of samples stored in the LUT while increasing m will result in an 

increase in bits of the amplitude resolution of the sine samples. 

 

3.2.2 Square Wave 

The generation of a square wave in a DDFS based signal generator does not entail 

a lot of effort because that waveform is already available as the most significant bit of the 

phase accumulator.  

The generation of a square wave in a DDFS based signal generator can also be 

done using the phase accumulator and a phase to amplitude converter that has a full 

square wave stored in its look up table (LUT). The phase accumulator generates phase 

values for the square wave while the phase to amplitude converter uses the phase values 

as address for the look up table. Every time the phase accumulator register overflows, 

sampled values of a full square wave are generated.  The samples are then converted to 

analog form using a digital to analog converter. Samples used to create this kind of 

waveform can be generated by setting the amplitude register at its maximum value if the 

phase accumulator is in the first half of the cycle and setting the amplitude register to its 

minimum value if the phase accumulator is in the second half of the cycle. Equations 3.5 

and 3.6 summarize this relationship. 
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Square(i) is the maximum value of the 2
m

 amplitude register ;for i <= 2
j-1

      3.5 

Square(i) is the minimum value of the 2
m

 amplitude register ;for i > 2
j-1

       3.6 

Where: 

Square(i) is the amplitude value of the square wave for the i
th

 phase value, i can 

only assume values between 0 and 2
j-1

. 

m is the number of amplitude bits 

j is the number of phase bits used 

From equation 3.5 and 3.6 it can be inferred that increasing j will cause an 

increase in the number of samples stored in the LUT while increasing m will cause an 

increase in bits of the square wave amplitude resolution. 

 

3.2.3 Saw tooth Wave 

 The output of the phase accumulator in a DDFS is usually a linearly increasing 

digital value generated by using the modulo 2
j
 overflowing property of a j-bit phase 

accumulator. This property allows the output of the phase accumulator to be used for the 

generation of a saw tooth waveform in a DDFS based signal generator. The output 

sequence of the phase accumulator is usually given by: 

    ( )  ( (   )    )         3.7 

Where: 

P(n) is the phase register value at the nth clock period (present value of the phase 

accumulation register). 

 P(n-1) is the phase register value at the n-1 clock period (previous value of the 

 phase accumulation register). 
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 ΔP is the phase increment word. 

 The digital values generated by the phase accumulator can be converted to analog 

form using a digital to analog converter. 

The generation of a saw tooth wave in a DDFS based signal generator can also be 

done using the phase accumulator and a phase to amplitude converter that has a full saw 

tooth wave stored in its look up table (LUT). The phase accumulator generates phase 

values for the saw tooth wave while the phase to amplitude converter uses the phase 

values as address for the look up table. Every time the phase accumulator register 

overflows, sampled values of a full saw tooth wave are generated.  The samples are then 

converted to analog form using a digital to analog converter. Samples used to create this 

kind of waveform can be generated by using the equation of a straight line that has a 

slope of 1. Equations 3.8 summarizes this relationship. 

        ( )   ( )     3.8 

Where: 

Sawtooth(n) is the amplitude value of the saw tooth wave for the n
th

 phase register 

value.  

p(n) is the n
th 

output of the phase accumulation register, n can only assume values 

between 0 and 2
j-1

. The value of p(n) at any time is given by equation 3.7. 

j is the number of phase bits used 

From equation 3.7 and 3.8 it can be inferred that increasing j will cause an 

increase in the number of samples stored in the LUT and an increase in bits of the 

amplitude resolution of the saw tooth wave. 

 



 

 

20 

3.2.4 Triangle Wave 

Triangle waveform can be generated by performing logic operations on the output 

of the phase accumulator. This process involves inverting all values below one half of the 

full scale. 

The generation of a triangle wave in a DDFS based signal generator can also be 

done using the phase accumulator and a phase to amplitude converter that has a full 

triangle wave stored in its look up table (LUT). The phase accumulator generates phase 

values for the triangle wave while the phase to amplitude converter uses the phase values 

as address for the look up table. Every time the phase accumulator register overflows, 

sampled values of a full triangle wave are generated.  The samples are then converted to 

analog form using a digital to analog converter. For the two mentioned methods of 

creating a triangle wave, samples used to create the waveform can be generated by using 

the equations of two lines with opposite slope. Equations 3.9 and 3.10 summarize this 

relationship. 

        ( )     ( )                    3.9 

        ( )      ( )                    3.10  

Where: 

 triangle (i) is the amplitude value of the triangle wave for the i
th

 phase value. 

p(i) is the i
th

 phase value, i can only assume values between 0 and 2
j
-1.The value 

of p(i) at any time is given by equation 3.7. 

g is the gradient of the line. 

j is the number of phase bits used. 

c is the y intercept. 
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From equation 3.9 and 3.10 it can be inferred that increasing j will cause an 

increase in the number of samples stored in the LUT and an increase in bits of the 

amplitude resolution of the triangle wave. 

 

3.3 Spectral purity of DDFS signals 

The quality of a signal generated by a DDFS is determined by the following (Vankka, 

2001): 

1) Truncation of the phase accumulator bits addressing the read only memory 

(ROM).  

2) Distortion from compressing the ROM. 

3) The finite precision of the binary word stored in the ROM. 

4) Digital-to-analog conversion. 

5) Post-filter error. 

6) Phase noise of the clock frequency and the frequency error. The frequency error 

causes a frequency offset, but not noise and spurs. 

In this thesis attention will be focused on truncation of the phase accumulator bits 

addressing the sine ROM and the finite precision of the sine samples stored in the ROM. 

The main reason for this course of action is that the spectral purity of a signal generated 

by a DDFS largely depends on digital errors (truncation and quantization) (Vankka, 

2001). 

 

3.3.1 Phase truncation 

Phase truncation occurs when the phase information is reduced from j to k bits as 
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shown in Figure 3.2. The reason behind this truncation is to keep the memory 

requirements of the phase to amplitude converter low. 

 

Figure 3.2: Simplified DDFS block diagram with phase quantization 

 

Phase truncation is a vital feature of DDFS designs. Consider a DDFS with a 30-

bit phase accumulator. To directly translate 30 bits of phase to matching amplitude would 

require 2
30

 entries in a lookup table. If each entry were stored with 16 bit precision, then 

2-gigabytes of lookup table memory would be necessary. Such a huge lookup table would 

lead to high power utilization, lesser speed and significantly increased costs. The solution 

is to utilize a fraction of the most significant bits of the Phase accumulator output to offer 

phase information. For example, in a 30-bit DDFS design, only the upper most 8 bits 

might be used for phase information. The lower 22 bits would be truncated in this case. 

 Regrettably, the phase errors introduced by truncating the accumulator result in 

errors in amplitude during the phase-to-amplitude conversion process inbuilt in the 

DDFS. Since these amplitude errors are cyclic in the time domain, they emerge as line 

spectra (spurs) in the frequency domain and are what is known as phase truncation spurs 

(Xinguang et al., 2009). The maximum spur level power for a phase truncated DDFS is 

approximated by equation 3.11. A detailed derivation of this formula is covered in 

(Vankka, 2001): 

             dB     3.11 

Where: 

Phase 

Accumulator 

Phase 

Truncation 

Phase to 

amplitude 

converter 

ΔP Phase 
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Output 

m 
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Smax is the maximum spur power level  

 k is the number of bits in the phase information after quantization 

dB = decibels  

The difference between the carrier power level (which is the desired signal) and 

the maximum power level of spurs is called spurious free dynamic range (SFDR) 

(Cordeses, 2004 (part 1)); SFDR should be large for spectrally pure sinusoids. Using this 

definition of SFDR and equation 3.12, SFDR can be calculated as follows when the 

carrier level is 0 dB 

SFDR  =  0- (-6.02k) 

     = 6.02k dBc    3.12 

Where dBc means decibels with respect to the carrier (tuning word frequency) 

 

3.3.2 Amplitude Quantization 

Amplitude quantization occurs when the output of the phase to amplitude 

converter is represented using finite resolution for instance m bits, with m being the word 

length of the output amplitude word. Amplitude quantization results in a quantization 

error and gives rise to an effect known as quantization distortion. In the frequency 

domain, quantization distortion errors appear as discrete spurs in the DDFS signal output 

spectrum. The relationship between the amplitude resolution in bits and the carrier power 

(desired frequency) to spur power ratio as presented in (Vankka, 2001) is: 

                  
  

 
 (          )  dBc     3.13 

Where: 

 m is the word length of the output amplitude word 
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 C is the carrier power 

 S is the spur power 

 

3.4 Phase dithering 

Truncating phase information in a DDFS leads to an error in the phase 

information which in turn results in phase truncation spurs in the synthesizers’ output 

spectrum. Phase dithering is capable of suppressing these spurs by breaking up the 

regularity of the phase error with an additive randomizing signal. The result is a higher 

spurious free dynamic range (SFDR). Phase dithering is accomplished by adding a dither 

signal to each phase value generated by the phase accumulator as shown in Figure 3.3. In 

the figure b is the number of bits of the dither signal, j is the size of the phase information 

in bits before truncation while k is the size of the phase information in bits after 

truncation.       

 

Figure 3.3: Addition of a dither signal to the phase information 

 

The maximum spur power level relative to the desired signal after phase dithering 

as provided in (Vankka, 2001) is: 

 
kS 04.1284.7max  dBc.                                3.14 

Where: 

 Smax is the maximum spur power level 

Phase 

Accumulator 
Phase truncation 

j j 

    b 

k 

Dither 

generator 
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 k is the number of bits remaining after truncating the phase accumulator word. 

 dBc is a unit representing decibels with respect to the carrier. 

The constants 7.84 and 12.04 arise from the derivation of equation 3.14, which is 

presented in (Vankka, 2001) 

From equation 3.14 it can be observed that phase dithering leads to spur 

attenuation because after dithering, the spurs follow a 12 dB per phase bit law instead of 

the 6 dB per phase bit of a DDFS without phase dithering given in equation 3.12.  

 The carrier-to-noise power spectral density after phase dithering as derived in (Vankka, 

2001) is 

))(log1094.902.6( 10 Pek
N

C
 dBc     3.15 

Where: 

k is the number of bits remaining after truncating the phase accumulator word. 

C is the carrier power 

N is the noise power 

 dBc is a unit representing decibels with respect to the carrier. 

Pe is the number of points in the output spectrum of the DDFS. It is equal to the 

numerical period of the phase accumulator; which is calculated using the 

equation. 

  
)2,(

2
j

j

PGCD
Pe


        3.16 

Where: 

 ΔP  is the phase increment word. 

GCD (ΔP, 2
j
) is the greatest common divisor of ΔP and 2

j
. 
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 j is the number of bits in the phase accumulator word before truncation. 

The carrier-to-noise power spectral density in equation in (3.15) can be raised by 

increasing the number of the samples (Pe). 

 

3.5 Amplitude dithering 

 Amplitude dithering involves the addition of a dither signal to the amplitude 

information as shown in Figure 3.4. This allows the amplitude information word length 

decrease without introducing additional spurs. Because after dithering the magnitude of 

the spurs will depend on the original (longer) word length and not the output (shorter) 

word length (Flanagan and Zimmerman, 1995). For amplitude dithering to be done the 

amplitude information stored in the look up table is usually reduced (scaled) so that the 

original signal plus the dither will stay within the non-saturating region. Scaling involves 

normalizing each of the b bit entries in the look up table so that the sinusoid amplitude 

equals 2
(b-m)

 b-bit quantization steps less than the full scale value (Flanagan and 

Zimmerman, 1995), where b is the number of bits representing the amplitude information 

before truncation and m is the number of bits used in the final output amplitude word 

after truncation. In Figure 3.4, x is the size of the dither signal in bits (x=b-m). The 

addition of a dither signal to the amplitude information does not lead to an increase in the 

number of amplitude bits as shown in Figure 3.4, this is possible because the amplitude 

information is scaled in order to make sure that the sum of the dither signal and the 

amplitude information does not exceed the maximum value that can be represented by the 

amplitude information register.   
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Figure 3.4: Addition of a dither signal to the amplitude information 

 

This dithering technique works by spreading the spurs throughout the available 

bandwidth. The carrier-to-noise power spectral density after amplitude dithering is given 

as follows in (Vankka, 2001). 

))
4

(log1002.676.1( 10

Pe
m

N

C
 dBc                             3.17 

Where: 

m is the word length of the Output amplitude word. 

Pe is the numerical period of the phase accumulator output sequence, it can be 

calculated using equation 3.16. 

C is the carrier power. 

N is the noise power. 

 

3.6 Phase and amplitude dithering 

 The phase and amplitude method of dithering involves the addition of a dither 

signal to the phase and amplitude samples before truncation. The dither signals are added 

to the phase and amplitude samples in the manner described in section 3.4 and 3.5. The 

phase and amplitude method of dithering can be useful in reducing phase and amplitude 

quantization spurs. 
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3.7 Dither signal generation 

 Dither signal can be generated using a linear feedback shift register pseudo 

random number generator. A linear feedback shift register is a shift register whose input 

bit is a linear function of its previous state; it is a shift register whose input bit is driven 

by the exclusive-or (xor) of some bits of the shift register. The sequence of values 

generated by the register is completely determined by its current (or previous) state. Since 

a shift register has a finite number of possible states, the output sequence eventually 

repeats itself. In spite of this, an LFSR with a well selected feedback function can 

generate a sequence of bits which looks random and which has a very long cycle.  

 

Figure 3.5: LFSR dither generator 

 

 The bit positions that affect the subsequent state are called the taps. In Figure 3.5 

the taps are 10, 12, 13 and 15. The rightmost bit of the LFSR is called the output bit. The 

taps are XOR'd sequentially with the output bit and then fed back into the leftmost bit. 

The sequence of bits in the rightmost position is called the output stream. An output bus 

can also be formed by connecting the outputs of the entire register chain. 

http://en.wikipedia.org/wiki/Linear_transformation
http://en.wikipedia.org/wiki/Exclusive-or
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 A maximum-length LFSR produces a y-sequence (i.e. it cycles through all 

possible 2
y
 − 1 states within the shift register excluding the state where all bits are zero), 

if it contains all zeros, the output sequence will never change.  

 The arrangement of taps for feedback in an LFSR can be expressed in finite field 

arithmetic as a polynomial mod 2. This means that the coefficients of the polynomial 

must be 1's or 0's. This is called the feedback polynomial or characteristic polynomial. 

For example, if the taps are at the 15th, 13th, 12th and 10th bits (as shown), the feedback 

polynomial is 

110121315  xxxx     3.18 

 The 'one' in the polynomial does not correspond to a tap; it corresponds to the 

input to the first bit (i.e. x
0
, which is equivalent to 1). The powers of the terms represent 

the tapped bits, counting from the left. The first and last bits are always connected as an 

input and tap respectively. A table of primitive polynomials from which maximum-length 

LFSRs can be constructed is given in (Xilinx, 2007). 

 The size in bits of a dither signal is usually given by the equation: 

              3.19 

Where: 

 b is the size in bits of the dither signal 

j is the number of bits in the phase accumulator or amplitude word before 

truncation. 

k is the number of bits remaining after truncating the phase accumulator or 

amplitude word. 

http://en.wikipedia.org/wiki/Finite_field_arithmetic
http://en.wikipedia.org/wiki/Finite_field_arithmetic
http://en.wikipedia.org/wiki/Polynomial
http://en.wikipedia.org/wiki/Modular_arithmetic
http://en.wikipedia.org/wiki/Primitive_polynomial
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CHAPTER 4 

 

SYSTEM DESIGN 

 This chapter covers design flow: specifications, modeling and simulation 

(verification) of the DDFS based signal generator using SystemC. Implementation and 

testing will be covered in chapter 5. 

Modeling and simulation is an important part of the design process in electronic 

systems because it provides an early understanding of the design in addition to assisting 

in verifying that the design will function the way it was intended. In this work, modeling 

and simulation has also been used to examine the performance of a DDFS that employs 

the dithering technique of spur reduction. The objective was to identify a method of 

dithering that would result in the largest spur reduction. The models which were created 

and used for this investigation include: a model without dither signal, a model with phase 

dithering only, a model with amplitude dithering only and a model that had a 

combination of both phase and amplitude dithering. The performance figures used in 

comparing the four models are spurious free dynamic range (SFDR) and noise floor 

(NF); SFDR is used to indicate the level of spurs while NF indicates the level of noise of 

a system.  

 

4.1 SystemC design flow 

 SystemC is a set of C++ classes and macros with event-driven simulation kernel 

in C++. These facilities enable a designer to simulate concurrent processes, each 

described using plain C++ syntax. SystemC processes can communicate in a simulated 
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real-time environment, using signals of all the data types offered by C++, some additional 

ones offered by the SystemC library, as well as user defined. SystemC is applied to: 

 System-level modeling 

 Architectural exploration 

 Performance modeling 

 Software development 

 Functional verification 

 High-level synthesis 

 Modules are the principal building blocks of a SystemC design hierarchy. A 

SystemC model usually consists of several modules which communicate through ports. 

Processes are the principal computation elements which fulfill necessary sequential 

behavior. They run concurrently with other processes. Events allow the synchronization 

between processes. 

 Ports of a module are the external interfaces that pass information to and from a 

module. They trigger actions within the module. Signals create the connections between 

the module ports allowing the modules to communicate. Channels are the communication 

elements of SystemC. They are generalized form of signals. Complex communication 

structures can be modeled using channels. 

 The major steps followed when carrying out modeling and simulation using 

SystemC include developing specifications for the models, creating the models and 

verifying them using simulation. Figure 4.1 shows the design flow that was followed 

when carrying out modeling and simulation using SystemC in this work. 



 

 

32 

 

Figure 4.1: Design flow 

 

4.1.1 Specifications 

 The first step in designing a SystemC model involves determining the 

specifications of the design. The design specifications of the proposed signal generator 

are given in section 4.3. The defined specifications contain necessary information about 

the types of waveforms, frequency resolution, frequency range and the size of the Look-

up Table. 

 

4.1.2 Modeling  

 After determination of the specifications, the structural and behavioral models of 

the signal generator are formed. In the structural model, the hierarchy of the modules and 

their interfaces are specified using a high level of abstraction. In the functional model, the 

processes and variables within the modules are specified. 

  To make a SystemC model, the designer writes the model in C++ using functions 

and data types defined in the SystemC class library following the methodology of 

describing a design in SystemC. The model, which is the executable specification, can 

then be compiled and linked to the SystemC simulation kernel and SystemC library to 

SPECIFICATIONS 

SYSTEMC 

MODELING 

SIMULATION 
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create an executable (Bhasker, 2002). SystemC DDFS signal generator models used in 

this study are presented in section 4.6 to 4.9. 

 

4.1.3 Verification 

 Once the behavioral models have been made, the next step involves verification 

of the models. Verification of a SystemC model is usually done to make sure that the 

model reflects the original intent of the design and that it performs efficiently, safely and 

successfully. Verification of models can be done using simulation based methods or 

formal methods (Gajski et al., 2009). Simulation based approach has been used in this 

study because SystemC only supports simulation. Simulation in this work was done by 

the use of a test bench. A test bench is a model that is used to exercise and verify the 

correctness of a design under test. A test bench has three main purposes. 

a) To generate stimulus for simulation. 

b) To apply the stimulus to the design under test and collect output responses. 

c) To compare output responses with expected results. 

 In this study the test bench generates a frequency value for the signal generator 

module and receives output signals for the sine wave, square wave, triangle and saw tooth 

wave generated by the signal generator module. The generated and received signals are 

observed using GTK viewer. If the received signals have frequency corresponding to the 

value of the phase increment and expected shape, the signal generator module is 

considered capable of generating correct signals. 

 The test bench for this project was written using separate modules as shown in 

Figure 4.2.  
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Figure 4.2: Verification Flow used for the SystemC Designs 

 

  The stimulus generation and the design under test were written in the module 

signal_gen.h and signal_gen.cpp. This is because the stimulus generation i.e. the driver 

serves the same purpose as the interface. Output monitoring and comparison was done in 

another module monitor.h and monitor.cpp. A main program main.cpp linked the various 

modules and interconnected them to form the testbench. 

The sequence of events in the verification flow shown in Figure 4.2 is as follows: 

the main file was compiled and if there was no compilation error, the design project was 
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built. The design environment then generated an executable file. The executable file was 

run, resulting in the generation of a Value Change Dump (VCD) file and text files. The 

VCD file was used to hold the samples of simulated waveforms while the text files had 

sine, square and saw tooth wave form data. GTKWave Wave Analyzer V1.3.19 software 

was used to open the VCD file in order to observe simulation waveform. The results of 

this analysis are presented in section 4.11 for the signal generator module i.e. without 

dither signal, with phase dithering only, with amplitude dithering only and with a 

combination phase and amplitude dithering. QtiPlot data analysis tool was used to 

perform a Fast Fourier Transform (FFT) on the sine wave form data so that spectral 

information could be obtained. The results from this analysis are presented in section 

4.11 for the four signal generator designs. 

 

4.2 Software resources used in modeling and simulation 

 For this project SystemC version 2.2.0 was used together with Eclipse version 

3.2.2 to carry out the modeling task. Eclipse is a multi-language software development 

platform. It consists of an Integrated Development Environment (IDE) with a flexible 

plug-in system. The IDE provides a source code editor with a rich set of source 

annotation and browsing capabilities, integrates a compiler, a source code debugger and 

many more facilities to aid the software development process. Eclipse’s primary focus is 

the Java language, however with various plug-ins it addresses many other languages as 

well, such as C/C++, Cobol, Python, Perl and PHP. Eclipse’s well defined plug in system 

makes it very attractive for customized extensions (Gajski et al., 2009). 
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4.3 DDFS signal generator specifications 

 The signal generator specifications that were used to create models of the DDFS 

based signal generator are presented in section 4.3.1 and 4.3.2. The specifications were 

arrived at after considering the need to have a device that can generate various 

waveforms of high resolution, high spectral purity, wide frequency range and optimal 

cost of resources. The specifications were placed under two categories i.e. functional and 

non-functional requirements. The functional requirements define what the signal 

generator is supposed to do while the non-functional requirements define the constraints 

of the signal generator. 

 

4.3.1 Functional requirements 

The proposed DDFS based signal generator is expected to meet the following 

requirements: 

1. Receiving of signal parameters such as frequency, wave shape and amplitude. 

2. Calculation of a phase increment value.  

3. Continuous addition of the phase increment value to the phase accumulation 

register. 

4. Generation of a dither signal to be used in phase dithering.  

5. Addition of a dither signal to the phase information. 

6. Conversion of phase information to amplitude information. 

7. Generation of a dither signal to be used in amplitude dithering.  

8. Addition of a dither signal to the amplitude information. 
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9. Generating common waveforms such as Sine Wave, Square Wave, Triangular 

Wave and Saw tooth Wave. 

10. Facilitate the selection of output waveform. 

11. Conversion of digital waveform samples into analog form. 

 

4.3.2 Non-functional requirements 

 In order to meet the functional requirements stated in section 4.3.1, the constraints 

provided in table 4-1 were arrived at for the DDFS based signal generator. The 

specifications were made after identifying the maximum clock frequency of the used 

FPGA and the specifications of previous DDFS implementations such as a commercially 

available DDFS integrated circuit (Analog devices, 2003) and a microcontroller based 

signal generator (Silicon laboratories, 2003).  

The FPGA that was used imposed three major constraints on the signal generator 

design: the size of lookup table, the clock frequency and the size of the phase 

accumulation register. Once these were set, they controlled most of the other constraints 

since:  

 For a given lookup table size, there can be a tradeoff between phase quantization 

and amplitude quantization. 

 For a given clock frequency there is an upper limit on the output frequency. 

 The clock frequency and phase accumulation register size set the frequency 

resolution limit. 

A more detailed explanation of the constraints is provided in section 4.3.3. 
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Table 4-1: DDFS signal Generator non-functional requirements 

Frequency range 0.047 Hz to 25 MHz 

Clock frequency  50 MHz 

Number of Output Channel 1 

Frequency Resolution 0.047 HZ 

Phase word size after truncation 8-bit 

Look-up Table Size 256 x 16 bit 

Amplitude 0 to 1 VPP 

Spurious Free Dynamic Range (SFDR)  88 dBc 

Output impedance 50 Ω 

 

 

4.3.3 Explanation of DDFS signal generator specifications 

 The following section discusses the specifications presented in table 4-1. 

 

4.3.3.1 Clock frequency and Upper frequency Limit 

 From theory,  

   2max

clk

O

f
F 

       4.1 

Where: 

 FO max  is the maximum output frequency 

 fclk is the clock frequency 

The maximum clock frequency limit imposed by the used FPGA was 50 MHz, 

hence using equation 4.1 the maximum output frequency expected therefore would be 25 

MHz. 
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4.3.3.2 Types of waveforms and dithering 

 The proposed signal generator is expected to have a wide range of use hence four 

types of wave forms were selected for generation; sine, square, triangular and saw tooth. 

The square, triangular and saw tooth wave form were generated directly from the phase 

information as described in section 3.2. Direct generation of these waveforms was 

preferred because it would not impose additional memory requirements. The sine wave 

was generated from a look up table as described in section 3.2.1. The generation of a sine 

wave using a lookup table was preferred because it has been shown in (Vankka, 2001) to 

offer the best spectral purity over other techniques. The parameters of the used look up 

table and their justification is provided in section 4.3.3.4. Dithering was only applied to 

the sine wave due to the fact that the technique requires a phase to amplitude converter to 

be present. 

 

4.3.3.3 Frequency resolution 

Frequency resolution is influenced by the size of the phase accumulation register 

and the clock frequency as can be seen in the equation: 

     
j

clkf
f

2
                                                                4.2 

where: 

 Δf  is the frequency resolution 

 j is the number of phase accumulator bits 

fclk is the clock frequency 
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For a standard 32 bit register, 2 bits were reserved for waveform selection and the 

remaining 30 bits were used for the phase accumulation. Since the maximum clock 

frequency of the used FPGA is 50MHz, the frequency resolution is: 

  Hzf 047.0
50000000

2
30

                                                                       4.3 

 

4.3.3.4 Size of the Look up Table 

 The size of a look up table in a DDFS depends exponentially on the number of 

phase bits and linearly on the number of amplitude bits. This can be summarized by the 

equation 

           4.4 

Where: 

 w is the size in bits of the look up table 

 m is the size in bits of the amplitude word 

 k is the number of phase bits used by the look up table 

 The 30-bit phase accumulator used in this work would require 2
30

 entries in a 

lookup table in order to directly convert 30 bits of phase to corresponding amplitude. If 

each entry were stored with 16-bit accuracy, then using equation 4.4, two gigabytes of 

lookup table memory would be required. Such a large lookup table would have resulted 

in high power consumption, lower speed and greatly increased costs. Therefore a smaller 

memory that has been shown to be capable of fitting in a commercially available 

microcontroller (Silicon laboratories, 2003) was preferred. The look up table had 8 phase 

bits (2
8
 = 256 entries) and each entry was 16 bits in size. Since the look up had 8 phase 

bits, only the 8 most significant bits of the 30 bit phase accumulator output were used to 
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provide phase information; truncation of the phase information was expected to result in 

spurs. Therefore, dithering was used to reduce these spurs.  

 

4.3.3.5 Number of output channels 

The number of output channels for the proposed signal generator was fixed at one 

because one channel was adequate for verifying the performance of the signal generator. 

 

4.3.3.6 Output signal resolution and amplitude 

 The resolution in bits of the signal generator output signal was set at ten bits. This 

figure was found to be acceptable because it has been previously used in the popular and 

commercially available DDFS integrated circuit AD9833. In addition 10 bit DACs are 

readily available.  

The maximum amplitude that the signal generator can produce is 1 volt peak to 

peak. The value was arrived at after considering the DAC transfer function (Texas 

Instruments, 2009): 

                                    4.5 

Where: 

 VOUT is the output voltage 

 IOUT is the output current 

 RLOAD is the load resistance 

The maximum value for IOUT is 20 mA while a typical value for RLOAD is 50Ω, 

applying these two values in the DAC transfer function 4.5 implies that the maximum 

output voltage would be: 50 x 20/1000 = 1 volt. 
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4.3.3.7 Spurious Free Dynamic Range (SFDR) 

The SFDR of 88 dBc was determined using the equation for calculating the SFDR 

for a DDFS that uses the dithering technique of spur reduction: 

)04.1284.7( kSFDR  dBc.                                                             4.6 

Where k is the number of bits remaining after truncating the phase accumulator 

word. Using 8 as the value of k in equation 4.6 (see section 4.3.3.4) for an explanation of 

this value of k) the expected value of SFDR would be: - (7.84 -12.04 x 8) = 88 dBc. 

Besides dithering the resulting SFDR was also a result of a tradeoff between the size of 

the lookup table and spectral purity; when one is fixed the other follows. This 

relationship is summarized by equation 4.6; where for a given size of the phase address 

(k) the SDFR is fixed.  

 

4.3.3.7 Output impedance 

 The output impedance of 50 Ω was used because it is the value of a load 

resistance that would allow the DAC to provide the maximum 1 volt peak to peak output 

voltage as specified in the DAC’s datasheet (Texas Instruments, 2009).  

 

4.4 Design model of DDFS signal generator 

 Figure 4.3 shows a block diagram of the designed DDFS based signal generator. 

The design was arrived at using the theory of a DDFS provided in section 3.1. The 

description of how dithering can be done is provided in section 3.4 and 3.5 while the 

signal generator’s functional requirements are presented in section 4.3.1. 
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Figure 4.3: DDFS signal generator block diagram 

As shown in Figure 4.3 the systems’ interface receives waveform configuration 

parameters from the user, it then generates a phase increment value and waveform 

selection data. The phase increment is used by the phase accumulator to generate a 

continuously increasing phase value that can be used by the phase to amplitude converter 

to generate sine wave samples or by the saw tooth, square and triangle wave generator to 

generate the mentioned waveforms. The waveform selection data is used by the 

waveform selection multiplexor as a control signal for determining the type of waveform 

that should constitute its current output. The phase dithering and amplitude dithering 

modules generate and add a dither signal to each of the phase and amplitude samples 

respectively. The DAC converts the digital samples of the generated waveforms to an 

analog format.   
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4.5 SystemC implementation of the signal generator 

 This section describes how the DDFS based signal generator design was 

implemented using SystemC. Each of the blocks shown in Figure 4.3 was implemented 

using SystemC modules while communication between the modules was achieved using 

SystemC signals. The Specifications provided in table 4-1 and the functional 

requirements of the proposed DDFS signal generator guided the implementation of the 

modules.  

Sections 4.5.1 to 4.5.8 present a detailed description of the signal generators’ 

modules. GTK Wave viewer simulation results of the modules have also been presented. 

Four models of the signal generator design presented in Figure 4.3 were implemented; a 

model with no dithering, with phase dithering, with amplitude dithering and with phase 

and amplitude dithering. Sample code for the SystemC phase accumulator module is 

provided in appendix A. 

 

Objective 

The objective of creating the signal generator models was: 

1) Architecture exploration – i.e. to get an early understanding of the signal 

generator design and also to verify that the design will function the way it was 

intended. 

2) To examine the effects of phase and amplitude bits truncation on the output 

spectrum of the signal generator. 

3) To examine the effect of phase dithering, amplitude dithering and combination of 

phase and amplitude dithering on the output spectrum of the signal generator. 
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4) To identify the dithering method that would result in the optimal reduction in 

spurs for the proposed signal generator. 

 

4.5.1 Interface module 

 This module is responsible for receiving a frequency and waveform selection 

value from the user. It then calculates and outputs the phase increment value. The 

waveform selection value is passed on without any further processing. As shown in 

Figure 4.4 it has two output ports identified with sc_out. An input port is not required for 

this module because the frequency and wave selection values are entered by the user 

directly through the keyboard. The module has one process which is of kind 

SC_METHOD.  Equation 4.7 is used in calculating the phase increment, this equation is 

obtained by making ΔP in equation 3.1 the subject of the equation. 

clk

j

out
f

fP
2

        4.7 

Where: 

ΔP is the phase increment word (30 bits) and it is an integer 

  j is  the number of phase accumulator bits (30) 

  fclk is  the clock frequency (50MHz) 

  fout is the required output frequency 

Table 4-2 shows a mapping of the waveforms that can be generated by the signal 

generator to a unique number; which the user supplies in order to determine the current 

output waveform. 
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Table 4-2 Waveform selection codes 

Waveform 

selection value 

Waveform 

1 Square 

2 Sine 

3 Saw tooth 

4 Triangle 

 

 

 

 
 

Figure 4.4: sc_module (interface) 

 

Using equation 4.7 the expected phase increment rounded to the nearest integer for a 

frequency of 1 MHz is:  

    21474836
50000000

1000000*230

P  

 Note that the phase increment does not have units because the denominator and 

numerator have the same units (Hz). Rounding off the phase increment results in a 

frequency error that is less than the smallest step in frequency which in this case is 0.047 
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(prc_interface) 
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Hz. Hence the percentage error in the generated frequency decreases as the output 

frequency value gets larger. 

After simulating the interface module it was observed that the module can 

generate the correct phase increment value for any frequency and also receive the wave 

selection value as shown in Figure 4.5, where the module generated an expected phase 

increment of 21474836 for a frequency of 1 MHz and recorded a wave selection value of 

2 which corresponds to a sine wave. 

 

Figure 4.5: sc_module (interface) simulation for 1 MHz output frequency 

 

4.5.2 phase accumulator module 

 This module is an implementation of the phase accumulator; it adds the phase 

increment value to the phase accumulation register on every positive clock edge. If the 

resulting sum exceeds the maximum value of the phase accumulation register, it 

overflows and the process begins all over again. As shown in Figure 4.6 it has two input 

ports identified with sc_in and one output port identified with sc_out. The module has 

one process which is of kind SC_METHOD. 
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Figure 4.6: sc_module (phase accumulator) 

 

 Figure 4.7 shows the simulation result of the phase accumulator module. As 

shown in the figure the module phase accumulator is capable of adding the phase 

increment value to the previous content of the phase accumulation register on every clock 

pulse, the phase increment value used for this test is 21474836, the size of the phase 

accumulation was 30 bits and the clock frequency was 50 MHz. 

 

Figure 4.7: Simulation result of the phase accumulator module 

 

 The phase accumulator module was also tested to confirm whether the phase 

accumulation register over flows at the correct time for any particular frequency, as 

shown in Figure 4.8 the phase accumulation register overflowed every microsecond as 

expected for a frequency of 1 MHz. 
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Figure 4.8: Simulation result for the overflow of the phase accumulation register 

 

4.5.3 phase_to_amplitude module 

 This module is an implementation of a sine wave phase to amplitude converter; it 

represents the look up table (LUT) of a DDFS. The module uses the phase values to 

access the members of an array holding the values representing a sine wave. Only the 8 

most significant bits of the 30 bit phase accumulation register are used to generate sine 

wave amplitude values. The output amplitude information is 16 bits in size. As shown in 

Figure 4.9 it has one input port identified with sc_in and one output port identified with 

sc_out. The module has one process which is of kind SC_METHOD. 

 
 

Figure 4.9: sc_module (phase to amplitude) 

 

The output sequence of the array in the ph_to_amplitude module is given by: 

           [ ]  ((   (    
 

   
)   )  (     ))  4.8 

Where:  

sc_method(prc_phase_to_

amplitude) 

 

sc_out 

(amplitude) 

sc_in (phase) 
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amplitude[i] is the amplitude value (for the i
th

 phase value) 

 Sin is the sine function 

 256 is the number of quantization levels achievable using an 8 bit register 

 The +1 in the equation is used to ensure that only positive values are 

 generated; a unipolar output was preferred because most DACs are designed to 

 output unipolar voltages. 

 The 32768 is half the number of quantization levels achievable using a 16 bit 

register. 

 Equation 4.8 is used for initializing the look up table only. The amplitude values 

in the look up table are rounded off to integer values no bigger than 2
16

-1 = 65535. 

Thereafter the values are simply looked up from the table. The output sequence is: 

    [ ]           [ ]      4.9 

Where:  i is the phase value 

S[i] is the i
th 

amplitude sample 

amplitude[i] is the amplitude value at the i
th

 position in the look up table. 

 The number of sine wave reconstruction samples generated by the phase to 

amplitude converter is inversely proportional to the output frequency or the phase 

increment value. 

 Figure 4.10 shows the simulation result of the phase to amplitude module. As 

shown in the figure the module is capable of generating an amplitude value for any phase 

value on every clock pulse.  
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Figure 4.10: Simulation result of the phase to amplitude module 

 

 The phase to amplitude module was also tested to confirm whether it can generate 

signals with the expected period for any particular frequency, as shown in Figure 4.11 the 

module generates a complete sine wave every microsecond as expected for a frequency 

of 1 MHz. 

 

Figure 4.11: Simulation result for frequency period testing 

 

 For the signal generator designs that make use of amplitude dithering, the 

amplitude information stored in the look up table was reduced (scaled) so that the original 

signal plus the dither would stay within the non-saturating region. Scaling involved 

normalizing each of the 16 bit entries in the look up table so that the sinusoid amplitude 

equals 64 16-bit quantization steps less than the full scale value (Flanagan and 

Zimmerman, 1995). Equation 4.10 was used to generate the samples required to initialize 

the scaled look up table: 

          [ ]  ((   (    
 

   
)   )  (     )            ) 4.10            
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Where:  

amplitude[i] is the amplitude value (for the i
th

 phase value). 

 Sin is the sine function. 

 256 is the number of quantization steps achievable using an 8 bit register. 

The 32768 is half the number of quantization levels achievable using a 16 bit 

register. 

 1.000977532 is the figure used to scale each of the amplitude samples, so that 

 each of them is 64 16-bit quantization steps less than the full scale value. The 

 removal of 64 16-bit quantization steps is required to prevent an overflow of the 

 16-bit register used in holding the sum of the amplitude and a dither signal whose 

 maximum value is 2
6 

= 64. The size of the dither signal (6 bits) is explained in 

 section 4.5.5.  

 

4.5.4 Monitor module 

 This module helps in recording the various values generated by the signal 

generator model i.e. frequency, phase, amplitude and the phase accumulator output value. 

The values are sent out to the console and also saved in a text file. As shown in Figure 

4.12 it has four input ports identified with sc_in and one process which is of kind 

SC_METHOD. 
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Figure 4.12: sc_module (monitor) 

 

 

4.5.5 phase dithering module 

 This module is an implementation of the phase dithering process; it is responsible 

for the generation and addition of a dither signal to the phase information. As shown in 

Figure 4.13 it has two input ports identified with sc_in and one output port identified with 

sc_out. The module has one process which is of kind SC_METHOD, it implements a 

linear feedback shift register pseudo-random number generator and an adder. A 

discussion on phase dithering is given in section 3.4. 

 

Figure 4.13: sc_module (phase dithering) 
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Using equation 3.20, the size of the phase dithering signal for this module would 

be 30-8 = 22 bits. Figure 4.14 shows the simulation result of the phase dithering module. 

As shown in the figure the module is capable of generating and adding a random number 

to a phase value on every clock pulse.  

 

Figure 4.14: Simulation result of the phase dithering module 

 

4.5.6 Amplitude dithering module 

 This module is an implementation of the amplitude dithering process; it is 

responsible for the generation and addition of a dither signal to the amplitude 

information. As shown in Figure 4.15 it has two input ports identified with sc_in and one 

output port identified with sc_out.  

 
 

Figure 4.15: sc_module (amplitude dithering) 
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 The module has one process which is of kind SC_METHOD; it implements a 

linear feedback shift register pseudo-random number generator and an adder. A 

discussion on dither signal generation is given in section 3.7. 

Figure 4.16 shows the simulation result of the amplitude dithering module. As 

shown in the figure the module is capable of generating and adding a random number to 

the amplitude information on every clock pulse. The size of the dither signal is 6 bits 

while the clock frequency used is 50 MHz. 

Using equation 3.20, the size of the amplitude dithering signal for this module 

would be 16-10 = 6 bits. A discussion on amplitude dithering is given in section 3.5. 

 

Figure 4.16: Simulation result of the amplitude dithering module 

 

4.5.7 Saw tooth, square and triangle wave generator 

This module generates the saw tooth, square and triangle waveforms using the 

phase information as follows: 

1) The square wave is generated using the most significant bit of the phase value; 

when it is high the 10 bit square waveform amplitude register is set to its 

maximum value otherwise it is set to zero. 
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2) The saw tooth waveform is directly generated from the 10 most significant bits of 

the 30 bit phase accumulator because the phase accumulator output consists of an 

increasing value which rolls over when the phase accumulation register is full. 

3) The triangle wave is generated using 10 most significant bits of the 30 bit phase 

accumulator; when the phase accumulator value is below half its maximum value 

the value is channeled directly to the triangle wave amplitude register otherwise it 

is inverted before being channeled to the register. 

As shown in Figure 4.17 the saw tooth, square and triangle waveform generator 

has one input port identified with sc_in and three output ports identified with sc_out. The 

module has one process which is of kind SC_METHOD. 

 
 

Figure 4.17: sc_module (sawtooth_square_triangle_waveform_generator) 

 

 Figure 4.18 shows the simulation result of the saw tooth, square and triangle 

waveform generator module. As shown in the figure the module is capable of generating 

saw tooth, square and triangle waveforms. The frequency value used for this test is 1 

MHz, the size of the phase information was 30 bits and the waveform amplitude registers 

are 10 bits is size.  
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Figure 4.18: Simulation result of the saw tooth, square and triangle waveform generator 

module 

 

4.5.8 Waveform selection multiplexor 

This module receives the sine, saw tooth, square and triangle waveforms data and 

outputs only one of this waveforms depending on the control signal received from the 

interface. Table 4-3 shows the waveform selection control signal and the corresponding 

output waveform. 

 

Table 4-3 Waveform selection control signals 

Waveform selection value Waveform 

1 Square 

2 Sine 

3 Saw tooth 

4 Triangle 

 

As shown in Figure 4.19 the waveform selection multiplexor has four input ports 

identified with sc_in and one output port identified with sc_out. The module has one 

process which is of kind SC_METHOD. 
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Figure 4.19: sc_module (waveform_selection_mulitplexor) 

 

 Figure 4.20 to 4.23 shows the simulation result of the waveform multiplexor 

module. As shown in the figure the module capable of generating square, sine, saw tooth 

and triangle waveforms depending on the wave selection control signal as defined in 

Table 4-3. The frequency value used for this test is 1 MHz and the waveform amplitude 

registers is 10 bits in size.  

 

Figure 4.20: square wave simulation result of the waveform_selection_mulitplexor 

module 

 

 

Figure 4.21: sine wave simulation result of the waveform_selection_mulitplexor module 
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Figure 4.22: Saw tooth wave simulation result of the waveform_selection_mulitplexor 

module 

 

 

Figure 4.23: Triangle wave simulation result of the waveform_selection_mulitplexor 

module 

 

4.5.9 Integration of signal generator modules 

 Four versions of the signal generator were created depending on how the modules 

discussed in section 4.5.1 to 4.5.8 were integrated: 

1. Signal generator design without dither 

2. Signal generator design with phase dithering 

3. Signal generator design with amplitude dithering 

4. Signal generator design with phase and amplitude dithering. 

 

Objective 

 The main objective of creating four different versions of the signal generator 

design was to identify the design that would result in the optimal spur reduction. Sections 

4.6 to 4.9 describe each of the four modules and the results obtained from their 

simulation. 
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 The following are the attributes that are common to the four signal generator 

designs; these and other constraints are also presented and explained in section 4.3: 

a) The phase information which is 30 bits in size is truncated to 8 bits to facilitate   

the use of a small look up table (LUT) in the phase to amplitude converter. This is 

done for the sine wave only; for the other waveforms, the phase information is 

truncated to ten bits. The ten bits limit was determined by the resolution of the 

DAC to be used, see section 4.3.3.6 for an explanation of this figure. 

b) The sine amplitude word length is 16 bits before truncation to 10 bits, truncating 

the amplitude word length was necessary because it would result in a narrower 

data path compatible with low cost and readily available digital to analog 

converters. 

c) 50 MHz clock was used. 

d) The DAC has not been included in the models because the investigation on the 

signal generator design that will result in the largest spur reduction mainly focuses 

on the spurs that are caused by the digital part of a DDFS and not the analog part 

which consists of the DAC. 

e) Dithering was only applied in the generation of the sine wave. 

 

4.6 Signal generator design with truncation and without dither 

 The main attribute of this design is that no dither signal was applied to the phase 

or amplitude information; as a result spurs caused by truncating the phase and amplitude 

information are expected in the output spectrum of this model. The model was used as a 

control in identifying the contribution of the various methods of dithering on the output 
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spectrum of a DDFS based signal generator. This was done by comparing its SFDR and 

noise floor performance to that of models that made use of dithering. 

 Figure 4.24 shows how some of the modules discussed in section 4.5.1-8 were 

interconnected in order to create the signal generator design without dither; for clarity the 

figure shows the part related to the sine wave generation only. The model was simulated 

as described in section 4.2.Wave form generation and output spectrum simulation results 

for this model will be discussed in section 4.11. 

 
Figure 4.24: signal generator model without dither 

 

4.7 Signal generator design with phase dithering 

 The main attributes of this design is that a 22 bit dither signal is added to the 

phase information before truncation; it is expected to reduce the level of spurs caused by 

phase information truncation. A discussion on phase dithering is provided in section 3.4. 

The design was used in identifying the contribution of the phase dithering technique on 

the output spectrum of the DDFS based signal generator. This was done by comparing its 

performance to that of the design that had no dithering used.  
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Figure 4.25 shows how the modules discussed in section 4.5.1-8 were 

interconnected in order to create the signal generator design with phase dithering; for 

clarity the figure shows the part related to the sine wave generation only. The module was 

simulated as described in section 4.2; wave form generation and output spectrum 

simulation results for this module will be presented in section 4.11. 

 

Figure 4.25: Signal generator design with phase dithering 

 

 

 

4.8 Signal generator design with Amplitude dithering 

 The main attributes of this design is that a 6 bit dither signal is added to the 

amplitude information before truncation to 10 bits, it is expected to reduce the level of 

spurs caused by amplitude quantization, a discussion on amplitude dithering is provided 

in section 3.5. The design was used in identifying the contribution of amplitude dithering 

on the output spectrum of a DDFS based signal generator. This was done by comparing 

its SFDR and noise floor performance to that of a design that had no dithering used. 
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simulated as described in section 4.2; wave form generation and output spectrum 

simulation results for this module will be presented in section 4.11. 

 

Figure 4.26: Signal generator design with amplitude dithering 

 

4.9 Signal generator design with phase and amplitude dithering 

The main attribute of this design are as follows: 

a) A 6 bit dither signal is added to the amplitude information before truncation to 10 

bits. It is expected to reduce the level of spurs caused by amplitude quantization. 

b) A 22 bit dither signal is added to the phase information before truncation. 

The design was used to identify the contribution of a combination of phase and 

amplitude dithering on the output spectrum of the proposed DDFS based signal 

generator. This was done by comparing its SFDR and noise floor performance to that of 

the model that did not have dithering. 
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Figure 4.27: Signal generator design with phase and amplitude dithering  

Figure 4.27 shows how the modules discussed in section 4.5.1-8 were interconnected 

in order to create the DDFS module with phase and amplitude dithering; for clarity the 

figure shows the part related to the sine wave generation only. The module was simulated 

as described in section 4.2; wave form generation and output spectrum simulation results 

for this module will be presented in section 4.11. 

 

4.10 Wave form generation simulation results 

Figure 4.28 to 4.31 shows the waveforms that were generated after simulating the 

signal generator model without dither, with phase dithering, with amplitude dithering and 

with a combination of phase and amplitude dithering. Only one figure has been presented 

for the four models because no difference was observed in the wave forms generated by 

the four modules for the test frequency used. From the figures it can be observed that the 

four signal generator designs were capable of generating sine, square, triangle and saw 

PHASE 
ACCUMULATOR 

SINE WAVE 
PHASE TO 

AMPLITUDE 
CONVERTER 

PHASE 
INCREMENT 

DITHERED
PHASE 

DITHERED  
AMPLITUDE 

 
ADDER 

30 

 

CLOCK 

8 

    6 

LFSR DITHER 
SIGNAL 

SOURCE 

  22 

LFSR DITHER 
SIGNAL 

SOURCE 

 
ADDER 

16 10 



 

 

65 

tooth waveforms depending on the wave type control signal. The output signal was at an 

expected test frequency of 1 MHz. 

 

Figure 4.28: Square wave simulation of signal generator design 

 

 

Figure 4.29: Sine wave simulation of signal generator design 

 

 

Figure 4.30: Saw tooth wave simulation of signal generator design 

 

 

Figure 4.31: Triangle wave simulation of signal generator design 
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4.11 SystemC simulation output spectrum results 

 Four SystemC models of the signal generator were created; a model with no 

dither signal, with phase dithering only, with amplitude dithering only and one that had a 

combination of both phase and amplitude dithering. Figure 4.32 (a), (b), (c) and (d) show 

the observed output spectrum results for these models. In the figures, e + n on the x axis, 

where n is an integer has the same meaning as 10 raised to power +n.  

 

 

(a) 

 

                                    (b) 

 

(c) 

 

(d) 

Figure 4.32: DDFS output spectra (a) with no dither signal, (b) with phase dithering 

(c) with amplitude dithering and (d) with both phase and amplitude dithering. 
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The spectrums in Figure 4.32 were obtained by taking a Fast Fourier Transform 

(FFT) of the output sine wave data using QtiPlot. QtiPlot is a program used for two- and 

three-dimensional graphical presentation of data sets and for data analysis. The 

simulation parameters used were j=30, k=8, m=10, fclk=50MHz, fout=1MHz (five more 

results for different frequencies are presented in table 4-4). For the DDFS with no dither 

signal the observed SFDR was 48 dBc and the noise floor was at -130 dBc, for the DDFS 

with phase dithering an increase in SFDR to 68 dBc was observed and the noise floor 

also increased to -88 dBc. For the DDFS with amplitude dithering no increase in SFDR 

was observed since it was at 48 dBc however the noise floor increased to -99dBc. For the 

DDFS with both phase and amplitude dithering an increase in SFDR to 88 dBc was 

observed, the noise floor also increased to -88 dBc. 

 

4.12 Expected SFDR and NF results 

 This section presents the calculation of expected SFDR and NF results for the 

proposed DDFS based signal generator design. 

 

4.12.1 Expected SFDR and NF results for DDFS without phase and amplitude 

truncation 

When phase truncation does not exist in a DDFS, the level of spurs in its output 

spectrum is determined by the errors resulting from the finite precision of the samples 

stored in the look up table. For such a DDFS design it is assumed that the energy of 

amplitude quantization spurs is concentrated in one spur, the resulting SFDR can be 

determined using the equation: 
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        (          )  dBc    4.11 

Where m is the number of bits in the amplitude word without truncation and dBc 

is a unit representing decibels with respect to the carrier. Using 16 as the number of 

amplitude bits for the proposed signal generator design, the expected SFDR for the signal 

generator model without phase and amplitude truncation would be:  

       (            )        dBc 

 A noise floor is not expected for a DDFS model that does not have phase and 

amplitude information truncation because the energy of the spurs caused by amplitude 

quantization will be concentrated in one spur. 

 

4.12.2 Expected SFDR and NF results for DDFS with truncation (without dithering) 

The maximum level of spurs for a DDFS whose phase information is truncated 

can be estimated by (Vankka, 2001): 

               dBc     4.12 

Where: 

 SFDR is the spurious free dynamic range 

 k is the number of phase bits used 

 The expected SFDR value for the DDFS model with truncation is:  

                      dBc 

The expected noise floor (which in this case is a noise to signal ratio) can be 

calculated from an equation given in (Vankka, 2001): 

   ))
4

(log1002.676.1( 10

Pe
m

N

C
NF  dBc  4.13 

Where: 
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 NF is the noise floor. 

m is the word length of the output amplitude word. 

 dBc represents decibels with respect to the carrier. 

 C is the carrier power 

 N is the noise power 

Pe is the numerical period of the phase accumulator output sequence; it can be 

calculated using equation 3.16.     

Using equation 4.13 the expected noise floor is: 

      (                     (
   

 

 
))       dBc 

The size of the word length used for the phase address and amplitude register is 8 

and 10 bits respectively. These values were selected because they have previously been 

used in commercially available DDFS designs and hence they were perceived to be 

acceptable sizes of phase and amplitude information. By extension, the acceptable SFDR 

and Noise Floor values for a DDFS design with such figures would be 48 dBc and -140 

dBc respectively as calculated using equation 4.12 and 4.13.  

 

4.12.3 Expected SFDR and NF results for DDFS with phase dithering 

 The maximum level of spurs for a DDFS model with phase dithering can be 

estimated by (Vankka, 2001): 

     kSFDR 04.1284.7  dBc   4.14 

Where: 

k is the number of bits remaining after truncating the phase accumulator word  

dBc is a unit representing decibels with respect to the carrier.  
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SFDR is the spurious free dynamic range. 

 The expected SFDR for the DDFS model with phase dithering is:  

         (            )        dBc 

The expected noise floor for the DDFS model with phase dithering (which in this 

case is a noise to signal ratio) can be calculated from an equation given in (Vankka, 

2001): 

  ))(log1094.902.6( 10 Sk
N

C
  dBc    4.15 

k is the number of bits remaining after truncating the phase accumulator word while S is 

the number of points in the output spectrum of the DDFS, S is equal to the numerical 

period of the phase accumulator (Pe); it is calculated using equation 3.16.   

Using equation 4.15 the expected noise floor is: 

     (                    (
   

 
))       dBc 

 

4.12.4 Expected SFDR and NF results for DDFS with amplitude dithering 

The SFDR of a DDFS model with amplitude dithering can be estimated by 

(Vankka, 2001): 

        (          ) dBc    4.16 

Where m is the number of bits in the amplitude word before truncation and dBc is 

a unit representing decibels with respect to the carrier. The expected SFDR for the DDFS 

model with amplitude dithering and phase truncation is:  

                           dBc  
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 The expected noise floor (which in this case is a noise to signal ratio) can be 

calculated from an equation given in (Vankka, 2001): 

  ))
4

(log1002.676.1( 10

Pe
m

N

C
 dBc    4.17 

Where: 

 m is the  word length of the Output amplitude word. 

 dBc represents decibels with respect to the carrier. 

Pe is the numerical period of the phase accumulator output sequence, it can be 

calculated using equation 3.16.  

Using equation 4.17 the expected noise floor with amplitude truncation is: 

      (                     (
   

 

 
))       dBc 

 

4.12.5 Expected SFDR and NF results for DDFS with phase and amplitude dithering 

The equations used to calculate the expected value of spurious free dynamic range 

and noise floor for the DDFS model with phase and amplitude dithering are similar to 

those used for the model with phase dithering only. The assumption made here is that 

since the figures of SFDR and noise floor for the model with phase dithering are higher 

than those of the model with amplitude dithering, they would be the ones observed in the 

output spectrum of the DDFS with both phase and amplitude dithering. Hence the 

expected SFDR and NF values for the signal generator model with phase and amplitude 

dithering would be 88 and -123 respectively. 
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4.13 SystemC simulation SFDR values 

 The SystemC simulation SFDR and NF values were obtained using the following 

steps; 

1. Storing time and corresponding amplitude sine wave data generated after 

simulating a SystemC model. 

2. Using QtiPlot (data analysis tool) to perform a Fast Fourier Transform (FFT) on 

the sine wave form data so that spectral information could be obtained. 

3. Plotting a graph of power spectral density versus frequency using the FFT data 

generated in step 2. 

4. The SFDR reading corresponded to the second largest peak in the graph 

described in step 3. 

5. The NF reading was identified after ignoring any harmonic, spurious and DC 

components in the frequency spectrum. 

 

4.14 Discussion of results 

 Table 4-2 and 4-3 contain a summary of SFDR and NF results respectively that 

were obtained from simulating the SystemC models of the signal generator and expected 

theoretical values derived from the appropriate equations as presented in section 4.12. 

From the figures presented in the table 4-2 and 4-3 it can be observed that: 

1.The SystemC model with phase dithering results in an SFDR that is higher than the 

one observed in the model without dither and lower than the theoretical value. The 

increase in SFDR is expected of DDFS models that use phase dithering. However, the 

failure to meet the expected theoretical SFDR value can be attributed to the presence 
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of amplitude quantization spurs in the output signal. The observed noise floor when 

compared to the case without dithering and the theoretical value is observed to 

increase; this is consistent with theory because dithering leads to an increase in the 

noise floor. 

2.The SystemC model with amplitude dithering leads to an SFDR that is similar to the 

one observed in the model without dither and lower than the expected theoretical value. 

This could have been caused by the presence of phase truncation spurs in the output 

signal. The observed noise floor when compared to the case without dithering and its 

corresponding theoretical value is observed to increase, this is consistent with theory 

because dithering leads to an increase in the noise floor. 

3.The System model with both phase and amplitude dithering results in a SFDR that is 

higher than the one observed in the model without dither and similar to the expected 

theoretical value. This is possible because phase dithering reduced the spurs caused by 

phase truncation while amplitude dithering minimized the spurs caused by amplitude 

quantization. The noise floor of the model with both phase and amplitude dither is 

higher than that of the model without dither, this is expected because dithering leads to 

an increase in the noise floor. 

4. The observed values of noise floor are generally higher than their corresponding 

theoretical values. The cause of this difference is the number of points used in the FFT 

analysis; 500,000 points were used instead of the required 268,435,456 (using equation 

4.23). The use of more than 500,000 points was observed to cause computational 

challenges for the ordinary desktop computer used, specifications of the desktop 
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computer used for the FFT analysis is provided in appendix D. The used numbers of 

points were enough to avoid masking the expected improvement in SFDR. 

 

Table 4-2: SFDR results 

 SYSTEMC 

SIMULATION 

SFDR VALUE 

THEORETICAL 

SFDR VALUE  

DEVIATION OF 

SYSTEMC SFDR FROM 

THEORETICAL VALUE 

WITHOUT PHASE AND 

AMPLITUDE 

INFORMATION 

TRUNCATION 

Not done 98 N/A 

WITHOUT DITHERING    

1 MHz 48 48 0 

5 MHz 45 48 3 

10 MHz 47 48 1 

15 MHz 43 48 5 

20 MHz 43 48 5 

24 MHz 48 48 0 

WITH PHASE 

DITHERING 
   

1 MHz 68 88 20 

5 MHz 62 88 26 

10 MHz 61 88 27 

15 MHz 62 88 26 

20 MHz 61 88 27 

24 MHz 68 88 20 

WITH AMPLITUDE 

DITHERING 
   

1 MHz 48 98 50 

5 MHz 45 98 53 

10 MHz 45 98 53 

15 MHz 45 98 53 

20 MHz 45 98 53 

24 MHz 48 98 50 

WITH PHASE AND 

AMPLITUDE 

DITHERING 
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1 MHz 88 88 0 

5 MHz 88 88 0 

10 MHz 88 88 0 

15 MHz 88 88 0 

20 MHz 88 88 0 

24 MHz 88 88 0 

 

 

Table 4-3: NF results 

 SYSTEMC 

SIMULATION NF 

VALUE 

THEORETICAL 

NF VALUE 
DEVIATION OF 

SYSTEMC NF FROM 

THEORETICAL VALUE 

WITHOUT PHASE AND 

AMPLITUDE 

INFORMATION 

TRUNCATION 

Not done NF is not 

expected 

 

WITHOUT DITHERING    

1 MHz -130 -140 -10 

5 MHz -118 -140 -22 

10 MHz -110 -140 -30 

15 MHz -104 -140 -36 

20 MHz -97 -140 -43 

24 MHz -108 -140 -32 

WITH PHASE DITHERING    

1 MHz -88 -123 -35 

5 MHz -88 -123 -35 

10 MHz -88 -123 -35 

15 MHz -88 -123 -35 

20 MHz -88 -123 -35 

24 MHz -88 -123 -35 

WITH AMPLITUDE 

DITHERING 
   

1 MHz -99 -140 -41 

5 MHz -99 -140 -41 

10 MHz -99 -140 -41 

15 MHz -99 -140 -41 

20 MHz -99 -140 -41 
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24 MHz -99 -140 -41 

WITH PHASE AND 

AMPLITUDE DITHERING 
   

1 MHz -88 -123 -35 

5 MHz -88 -123 -35 

10 MHz -88 -123 -35 

15 MHz -88 -123 -35 

20 MHz -88 -123 -35 

24 MHz -88 -123 -35 

 

 

4.15 Conclusion of results 

 From the examination of previous DDFS designs, it was observed that a phase 

address of 8 bits is considered to be not too large or too small, hence by extension an 

acceptable figure of SFDR calculated using the 8 bit phase address would be 48 dBc. One 

of the purposes of carrying out modeling and simulation in this study was to identify the 

method of dithering that would lead to the largest improvement in the SFDR. From table 

4-2 it was observed that the SystemC model that had phase and amplitude dithering 

resulted in the largest SFDR (largest reduction in spurs), the resulting SFDR was also the 

one closest to the expected SFDR when phase truncation is not used. This led to the 

conclusion that the phase and amplitude method of dithering would be the best for 

spectral purity improvement in the DDFS based signal generator. 
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CHAPTER 5 

FPGA IMPLEMENTATION OF DDFS SIGNAL GENERATOR 

 The DDFS technique of waveform generation can be implemented using several 

technologies. This includes the use of a microcontroller (MCU) (Popa and Sorana, 2007), 

an application specific integrated circuit (ASIC) (Analog devices, 2003), a digital signal 

processor (DSP) (Sia et al., 2007) and a field programmable gate array (FPGA) (Sharma 

and Upadhyaya, 2010). FPGA Implementation was found necessary for this work 

because better performance could be achieved by avoiding inter-chip connections (Hsieh 

et al., 2003) and also because the additional hardware required by the dithering technique 

could easily be made inside the FPGA at no extra cost. This chapter describes how the 

signal generator was implemented in an FPGA. 

 

5.1 Overview of FPGA devices 

 A field-programmable gate array (FPGA) is a semiconductor device that can be 

configured by the designer after manufacturing, hence the name field-programmable. 

FPGAs are programmed using a logic circuit diagram or a source code in a hardware 

description language (HDL) to specify how the FPGA will work. 

 
FPGAs contain programmable logic components called logic blocks, and a 

hierarchy of reconfigurable interconnects that allow the blocks to be wired together 

somewhat like a one-chip programmable breadboard. Logic blocks can be configured to 

perform complex combinational functions, or merely simple logic gates like AND and 

XOR. In most FPGAs, the logic blocks also include memory elements, which may be 

simple flip-flops or more complete blocks of memory. 
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 The FPGA used for this work (M1AFS 1500) belongs to the Actel fusion family 

of mixed-signal FPGAs. Figure 5.1 shows the architecture of the fusion device as 

provided in (Actel Corporation, 2007).The following is a summary of some of the 

features that made this FPGA (Actel Corporation, 2010) suitable for the implementation 

of the signal generator design: 

 1,500,000 system gates 

 350 MHz system performance 

 Internal 100 MHz RC Oscillator (accurate to 1%) 

 Low Power Consumption 

 Soft ARM
®
 Cortex™-M1 Fusion Devices (M1) 

 

Figure 5.1:Fusion Device Architecture Overview 
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5.2 FPGA implementation methodology 

 The signal generator design preferred for implementation at the FPGA level was 

the one with phase and amplitude dithering; the main reason being that this design was 

observed to result in the largest improvement in SFDR at the modeling and simulation 

stage in chapter four. The comparison was made between a signal generator design 

without dither, with phase dithering and with amplitude dithering. 

 Actel Libero IDE version 9.0 design tools were used to synthesize, place-and-

route the signal generator design. The FPGA used was M1AFS 1500 in the FGG484 

package, it was on the Fusion Embedded Development Kit (Appendix C). The major 

parts of the DDFS signal generator design were cortex
TM

-M1 processor,  digital to analog 

converter (DAC) outside the FPGA, a DDFS module which contained; a  phase 

accumulator, phase to amplitude converter read only memory (ROM), waveform 

multiplexor, phase dithering module and an amplitude dithering module. The external 

DAC used for this project was DAC5652A. It is a dual, 10-bit 275 MSPS digital to 

analog converter. A description of the signal generator prototypes’ modules is presented 

in section 5.2.2.1-7 

 

5.2.1 Libero IDE Design Flow 

 To implement the design on FPGA, the Libero IDE Design flow was used. It 

consists of six steps (Actel Corporation, 2010): 

 

Step One-Design Creation 

 This step involves planning the design and using Design Entry tools (such as 
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SmartDesign) to enter it as HDL (VHDL or Verilog), structural schematic, or mixed-

mode (schematic and RTL). 

 

Step Two-Design Verification-Functional Simulation 

 After defining the design, verifying that it functions the way it was intended is 

done. Its testbench is created using WaveFormer Pro, while functional simulation of the 

schematic or HDL design is done using ModelSim VHDL or Verilog simulator. 

 

Step Three – Synthesis/EDIF Generation 

 Synplify Pro AE is used to generate an Electronic Design Interchange Format 

(EDIF) netlist of the design. It is possible to re-verify the design "post-synthesis" using 

the VHDL or Verilog ModelSim simulator used in step two. While all RTL code must be 

synthesized, pure schematic designs are automatically "netlisted" out via the Libero IDE 

tools to create a structural VHDL or structural Verilog netlist. 

 

Step Four – Design Implementation 

 After functionally verifying that the design works, the next step is to implement 

the design using the Actel Designer software. The Designer software automatically places 

and routes the design and returns timing information. The tools that come with Designer 

can further be used to optimize the design. SmartTime is used to perform static timing 

analysis on the design, ChipEditor or ChipPlanner to customize the I/O macro placement, 

MultiView Navigator for I/O customization, SmartPower for power analysis, and 

NetlistViewer to view the netlist. 
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Step Five – Timing Simulation 

 After completing the design implementation, verification that the design meets 

timing specifications is done. The testbench is created using WaveFormer Pro while 

ModelSim VHDL or Verilog simulator is used to perform timing simulation. 

 

Step Six – Device Programming 

 Once the design is complete, and the results from timing simulation are good, 

creation of a programming file follows. Depending upon the device family in use Fuse, 

Bitstream, or Standard Test and Programming Language (STAPL) programming file can 

be generated. 

 

5.2.2 Description of the DDFS signal generator design implemented in the FPGA 

 Figure 5.2 shows a block diagram of the DDFS signal generator implemented in 

FPGA. As shown in Figure 5.2 the systems’ communication interface receives waveform 

configuration parameters from the user, it then generates a phase increment value and 

waveform selection data. The phase increment is used by the phase accumulator to 

generate a continuously increasing phase value that can be used by the phase to amplitude 

converter to generate sine wave samples or by the saw tooth, square and triangle wave 

generator to generate the mentioned waveforms. The waveform selection data is used by 

the waveform selection multiplexor as a control signal for determining the type of  
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Figure 5.2: DDFS signal generator block diagram 
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waveform that should constitute its current output. The phase dithering and amplitude dithering 

modules add a dither signal to each of the phase and amplitude samples respectively. The DAC 

converts the digital samples of the generated waveforms to an analog format. The following 

section discusses the signal generator prototype’s modules. 

 

5.2.2.1 Communication Interface 

 The interface is made up of an UART in the Cortex-M1 processor system which connects 

to an off-chip USB-to-UART chip. This allows communication with the target system via a 

COM port on a desktop computer using the HyperTerminal. It facilitates the selection of 

frequency and wave form. It is also possible to use a combination of a liquid crystal display 

(LCD) and three buttons on the Fusion Embedded Development Kit to control the signal 

generator as an alternative to the desktop computer; this is achieved by loading software 

corresponding to the preferred method of communication in the processor’s memory. 

 

5.2.2.2 Cortex
TM

-M1 processor System description 

 The DDFS signal generator design contains a Cortex-M1 processor system; its main tasks 

are to receive the desired frequency and type of waveform from the user. The frequency 

information is used to calculate the phase increment value while the waveform information is 

used to determine the type of waveform to be generated. The 32 bit GPIO block of the processor 

system is used to send out this data. The phase increment value is sent out using the first 30 bits 

of GPIO output port and connected to the phase accumulator, the remaining two bits of GPIO 

output port are used to send out the waveform type information to the waveform multiplexor. 
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 The Cortex-M1 processor system hardware was created using smart design, as described 

in (Actel Corporation, 2009). The software was made using Actel SoftConsole IDE v3.1 as 

described in (Actel Corporation, 2009). The main operation flow of the software in the cortex
TM

-

M1 processor System is illustrated in Figure 5.4. 

 

Figure 5.3: Block diagram of the cortex
TM

-M1 processor System (Actel Corporation, 2009) 
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Figure 5.4: Main software routine flow 

 

5.2.2.3 Digital to Analog Converter (DAC) 

 The DAC is responsible for converting waveform samples generated inside the FPGA 

from digital format to analog. It was connected externally to the FPGA as shown in Figure 5.2. 

Ten bits containing the waveform data are connected to the inputs of the DAC, subsequently the 

DAC converts this data to an analog signal of peak to peak voltage one volt. The DAC used in 

this project is DAC5652A; it is a dual, 10-bit 275 MSPS digital to analog converter. Reference 

(Texas Instruments, 2009) gives a detailed description of the DAC. The circuit diagram and 

printed circuit board (PCB) layout for this DAC was made using Proteus schematic capture 

software release 7.1. The circuit diagram is presented in appendix B. 
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5.2.2.4 Phase accumulator 

 This module receives a 30 bit phase increment word from the cortex
TM

-M1 processor 

System and uses it to produce a linearly increasing digital value. The accumulator is an 

intellectual property (IP) core found in the libero IDE catalog. It was instantiated in a 

SmartDesign canvas named DDFS for interconnection with other modules. 8 Most Significant 

Bits (MSBs) of the accumulator are used by the phase to amplitude converter, 10MSBs are used 

to generate a saw tooth and a triangle wave while the MSB is used to create a square wave. 

 Figure 5.5 shows the simulation result of the phase accumulator module. As shown in the 

figure the phase accumulator module is capable of adding the phase increment value to the 

previous content of the phase accumulation register on every clock pulse, the phase increment 

value used for this test is 21474836, the size of the phase accumulation was 30 bits and the clock 

frequency was 50 MHz. 

 

Figure 5.5: Simulation result of the phase accumulator module 

 

 The phase accumulator was also tested to confirm whether the phase accumulation 

register over flows at the correct time for any particular frequency.  As shown in Figure 5.6 the 

phase accumulation register overflowed every 1000 nanoseconds as expected for a frequency of 

1 MHz. 
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Figure 5.6: Simulation result for the overflow of the phase accumulation register 

 

 

5.2.2.5 Phase to amplitude converter (ROM) 

 The phase to amplitude converter is a sine wave look up table (LUT) which converts the 

phase accumulator value to an amplitude value. The look up table maps the full scale of the 

phase value output by the phase accumulator to one cycle of a sine wave. As the phase value 

increases from 0 to full scale, one sine wave is created. This sine wave lookup table is generally 

implemented using a read only memory (ROM) which stores the sine trigonometric function. In 

this project the ROM was created using VHDL and then instantiated in a SmartDesign canvas 

named DDFS for interconnection with other modules. The ROM uses an 8 bit address value 

obtained from the phase accumulator and outputs a 16 bit value representing the sine wave; only 

10 bits of this data are used to generate the analog signal. Figure 5.7 shows a part of the VHDL 

code for the LUT, the full code is available in appendix A. The VHDL LUT is similar to the 

phase to amplitude converter described earlier in section 4.5.3. 
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Figure 5.7: Sample VHDL code for the LUT 

 

 Figure 5.8 shows the simulation result of the phase to amplitude converter module. As 

shown in the figure the module phase to amplitude converter is capable of generating an 

amplitude value for any phase value on every clock pulse.  

 

Figure 5.8: Simulation result of the phase_to_amplitude module 

 

 The phase to amplitude converter module was also tested to confirm whether it can 

generate signals with the expected period for any particular frequency, as shown in Figure 5.9 
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the module generates a complete sine wave every 1000 nanoseconds as expected for a frequency 

of 1 MHz. 

 

Figure 5.9: Simulation result for frequency period testing 

 

5.2.2.6 Saw tooth, Square and Triangle wave generator 

 This module receives 10 MSBs from the phase accumulator and uses them to generate 

saw tooth, square and triangle wave form as follows: 

1) The square wave is generated by connecting the most significant bit of the 10 bit phase 

value to all the bits of a ten bit register; when the MSB of the phase value is high the 10 

bit square waveform amplitude register is set to its maximum value otherwise it is set to 

zero. 

2) The saw tooth waveform is directly generated from the 10 most significant bits of the 30 

bit phase accumulator because the phase accumulator output consists of an increasing 

value which rolls over when the phase accumulation register is full. 

3) The triangle wave generation process involves inverting all values below one half of the 

10 bit full scale value, then subtracting one quarter of the full scale value. The one quarter 

scale shift is performed to keep the signal swing centered on the one half scale value 
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(Landry, 1999). The triangle wave logic was implemented using a multiplexor and 

inverter IP cores which were instantiated in the square, saw tooth and triangle wave 

generator SmartDesign canvas. 

Figure 5.10 shows how the square, saw tooth and triangle wave generator was 

implemented. It was instantiated in a SmartDesign canvas named DDFS for interconnection 

with other modules. 

 

Figure 5.10: Block diagram of the saw tooth, square and Triangle wave generator 

 

 Figure 5.11 shows the simulation result of the saw tooth, square and triangle wave 

generator module. As shown in the figure the module is capable of generating the saw tooth, 

square and triangle waveforms from the phase information. The size of the phase information 

used is 10 bits, the size of the triangle wave amplitude is 10 bits and the clock frequency is 50 

MHz. 

SAW 

TOOTH 

INPUT 

INVERTER 

 

A 

 
 

 

B 
 

 

      SEL 

INVERTER 

10 bits 

9 bits 

MSB 

LOWER 

BITS 

NMSB 

MSB 

NMSB 

8 bits 

TRIANGLE 

OUTPUT 

10 BIT SAWTOOTH 

WAVE 

10 BIT 

REGISTER 

10 BIT SQUARE 

WAVE 

MULTIPLEXOR 

 

9 bits 



 

 

91 

 

Figure 5.11: Simulation result of the saw tooth, square and triangle wave generator module 

 

5.2.2.7 Waveform multiplexor  

 The waveform multiplexor receives two bits (2 MSBs) from the cortex
TM

-M1 processor 

System and uses their value to determine which type of waveform is going to be channeled to the 

DAC. Digits 0,1,2,3 are used to choose between a square wave, sine wave, saw tooth wave and a 

triangle wave respectively. The other set of inputs to the multiplexor are sine, square, saw tooth 

and triangle waveform data from their respective generators. The waveform multiplexor was 

implemented using an IP core found in the libero IDE catalog, it was instantiated in a 

SmartDesign canvas named DDFS for interconnection with other modules. Figure 5.12 shows 

the block diagram of the waveform multiplexor. 
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Figure 5.12: Waveform multiplexor 

 

 Figures 5.13 to 5.16 show the simulation results of the Waveform multiplexor module. 

As shown in the figures the module Waveform multiplexor is capable of allowing only the 

selected waveform at its output. The bits sel0 and sel1 are used to choose between the 

waveforms as shown in table 5-1 below. 

Table 5- 1: Waveform selection codes 

Sel0 Sel1 Waveform 

0 0 Square 

0 1 Saw tooth 

1 0 Sine 

1 1 Triangle 
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Figure 5.13: Square wave simulation for the waveform multiplexor module 

 

 

Figure 5.14: Sine wave simulation for the waveform multiplexor module 
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Figure 5.15: Saw tooth wave simulation for the waveform multiplexor module 

 

 

Figure 5.16: Triangle wave simulation for the waveform multiplexor module 

 

5.2.2.8 Phase dithering module 

   The phase dithering module shown in Figure 5.17 is responsible for generating a dither 

signal and adding this dither signal to the phase information. It consists of an adder and a linear 
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feedback shift register pseudo random number generator that is composed of a Serial-In/Parallel-

Out shift register and two exclusive or gates. A discussion on phase dithering and dither signal 

generation is presented in section 3.4 and 3.7 respectively. The adder, shift register and exclusive 

or gates are IP cores that were instantiated in the phase dithering module SmartDesign canvas 

and interconnected. The phase dithering module was also instantiated in a SmartDesign canvas 

named DDFS and connected to the phase accumulator.  

 

Figure 5.17: Phase dithering module 

 

 Figure 5.18 shows the simulation result of the phase dithering module. As shown in the 

figure the phase dithering module is capable of generating and adding a dither signal to the phase 

information on every clock pulse, the size of the dither signal used is 22 bits, the size of the 

phase information was 30 bits and the clock frequency was 50 MHz. 

 

Figure 5.18: Simulation result of the phase dithering module 
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Figure 5.19: FPGA implementation of the phase dithering module 

 

5.2.2.9 Amplitude dithering module 

 The amplitude dithering module shown in Figure 5.20 is responsible for generating a 

dither signal and adding this dither signal to the amplitude information obtained from ROM. It 

consists of an adder and a linear feedback shift register pseudo random number generator that is 

composed of a Serial-In/Parallel-Out shift register and two exclusive OR gates. A discussion on 

amplitude dithering and dither signal generation is presented in section 3.5 and 3.7 respectively. 

The adder, shift register and exclusive OR gates are IP cores that were instantiated in the 

amplitude dithering module smart design canvas and interconnected; the amplitude dithering 

module was also instantiated in a SmartDesign canvas named DDFS and connected to the phase 

to amplitude converter and waveform multiplexor. 
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Figure 5.20: Amplitude dithering module 

  

 

 Figure 5.21 shows the simulation result of the amplitude dithering module. As shown in 

the figure the amplitude dithering module is capable of adding a dither signal to the amplitude 

information on every clock pulse, the size of the dither signal used is 6 bits, the size of the 

amplitude information was 16 bits and the clock frequency was 50 MHz. 

 

Figure 5.21: Simulation result of the amplitude dithering module 
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Figure 5.22: FPGA implementation of the amplitude dithering module 

 

 Figure 5.23 shows how the various modules (presented in section 5.2.2.1-9) of the signal 

generator prototype were interconnected in the SmartDesign canvas named DDFS. 

 

Figure 5.23: Signal generator modules 
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5.3 Testing Method 

 Testing of the signal generator prototype was done in order to verify whether it could 

generate wave forms of correct shape and expected frequency. In addition, figures of SFDR and 

noise floor for this prototype were to be obtained at this stage. The test setup included the Fusion 

FPGA Embedded Development Kit Evaluation Board, DAC5652module, USB 2.0 high-speed 

cable, oscilloscope and desktop computer. 

 

Figure 5.24: Hardware Test Setup 

 

 In order to test the signal generator, frequency and waveform data are sent to the FPGA. 

The interface used to request and send the data is made up of an UART in the Cortex-M1 

processor system which connects to an off-chip USB-to-UART chip. This allows communication 

with the Fusion Embedded Development Kit Evaluation Board via a COM port on a desktop 

computer using the HyperTerminal. The routine for the software used to request and send wave 

form data is discussed in section 5.2.2.2. 

 Two sets of results were collected from testing the signal generator prototype with phase 

and amplitude dithering. The first set was for waveform analysis while the second was for 

spectral analysis. Waveforms generated after testing the signal generator prototype with phase 

and amplitude dithering are shown in Figures 5.25 to 5.29. From the figures it can be seen that 

the model with phase and amplitude dithering was able to generate sine, square, triangle and saw 

tooth wave forms. The waveforms were observed to be of expected frequency (1 MHz) and 

expected shape. In addition the prototype was capable of generating signals at the targeted 
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resolution of 0.047 Hz as can be observed in Figure 5.29. Output spectrum results are presented 

in section 5.4. 

 Figures 5.30 to 5.33 show 10 MHz sample waveforms while Figures 5.34 to 5.37 show 

additional samples at a frequency of 25 MHz. When the sample waveforms are compared it can 

be observed that the waveforms generated get distorted as the frequency increases from 1 MHz 

to 25 MHz. One possible explanation of the sine, saw tooth and triangle wave distortion is that 

the samples used in generating these waveforms reduce as the output frequency of the DDFS 

increases. The deterioration in the quality of the square wave can be attributed to stray 

capacitances in the circuit which cause it to behave like a low pass filter, thereby eliminating the 

high frequency components of the square wave. 
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Figure 5.25: 1 MHz Sine wave output 

 

Figure 5.26: 1 MHz Square wave output 

 

 

 

Figure 5.27: 1 MHz Saw tooth wave output 

 

 

 

Figure 5.28: 1 MHz Triangle wave output 

 

 

 

Figure 5.29: 0.047 Hz Sine wave output 
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Figure 5.30: 10 MHz Sine wave output 

 

Figure 5.31: 10 MHz Square wave output 

 

 

 

Figure 5.32: 10 MHz Saw tooth wave 

output 

 

 

 

Figure 5.33: 10 MHz Triangle wave output 
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Figure 5.34: 25 MHz Sine wave output 

 

Figure 5.35: 25 MHz Square wave output 

 

 

 

Figure 5.36: 25 MHz Saw tooth wave 

output 

 

 

 

Figure 5.37: 25 MHz Triangle wave output 
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5.4 FPGA implementation output spectrum results 

 Figure 5.38 (a) shows the observed output spectrum result for the signal generator 

prototype. The spectrum was obtained using the math function of the TDS3014B oscilloscope. 

The parameters used to generate the sine waves whose spectral properties are shown in Figure 

5.38 (a) were j = 30, k = 8, m = 10, fout =1MHz. The observed SFDR was 85 dBc and the noise 

floor was at -116dBc. More SFDR and NF results for different frequencies are presented in Table 

5-2. 

 For comparison purposes, the output spectrum result of the signal generator prototype 

(Figure 5.38 (a)) and that of the corresponding SystemC signal generator design (Figure 5.38 (b)) 

are presented together. From the two figures it can be observed that the performance of the signal 

generator prototype closely matches that of the SystemC simulation model.  

 

(a) 

 

(b) 

Figure 5.38: DDFS output spectra (a) FPGA prototype testing result, (b) SystemC simulation 

result 
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5.5 Discussion of FPGA implementation testing results 

 Tables 5-2 and 5-3 contain a summary of SFDR and NF results respectively that were 

obtained from simulating the SystemC models, the expected theoretical values derived from the 

appropriate equations as presented in section 4.12, and those obtained from testing the signal 

generator FPGA implementation. 

Table 5-2: SFDR results 

OUTPUT 

FREQUENCY 

THEORETICAL 

SFDR VALUE 

(dBc) 

SYSTEMC 

SIMULATION SFDR 

VALUE (dBc) 

FPGA PROTOTYPE 

TESTING SFDR 

VALUE (dBc) 

DEVIATION OF 

FPGA PROTOTYPE 

SFDR FROM 

THEORETICAL 

VALUE (dBc) 

1 kHz 88 88 102 -14 

1 MHz 88 88 102 -14 

5 MHz 88 88 85 3 

10 MHz 88 88 79 9 

15 MHz 88 88 79 9 

20 MHz 88 88 62 26 

24 MHz 88 88 60 28 

25 MHz 88 88 59 29 

 

 

Mean deviation of FPGA prototype SFDR value from the theoretical value; 

   
                     

 
     dBc 
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Figure 5.39: Graph of FPGA prototype SFDR versus output frequency 

 

Table 5-3: NF results 

 

OUTPUT 

FREQUENCY 

THEORETICAL 

NF VALUE (dBc) 

SYSTEMC 

SIMULATION NF 

VALUE (dBc) 

FPGA PROTOTYPE 

TESTING NF VALUE 

(dBc) 

DEVIATION OF 

FPGA PROTOTYPE 

NF FROM 

THEORETICAL 

VALUE (dBc) 

1 kHz -123 -88 -116 -7 

1 MHz -123 -88 -116 -7 

5 MHz -123 -88 -115 -8 

10 MHz -123 -88 -111 -12 

15 MHz -123 -88 -106 -17 

20 MHz -123 -88 -101 -22 

25 MHz -123 -88 -101 -22 

 

Mean deviation of FPGA prototype NF value from the theoretical value; 
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Figure 5.40: Graph of FPGA prototype NF versus output frequency 

From the figures presented in the table 5-2 and 5-3 it can be observed that: 

1. The FPGA prototype with both phase and amplitude dithering had an SFDR that differed 

slightly from  the one observed in the corresponding SystemC model and the estimated 

theoretical value by an average of  9.5 dBc. The observed high SFDR is anticipated because 

phase dithering was expected to reduce the spurs caused by phase truncation while amplitude 

dithering was used to minimize the spurs caused by amplitude quantization. However the 

SFDR reduces as the output frequency increases as can be observed in Figure 5.39. A 

possible explanation of why the SFDR gets lower as the output frequency increases is that 

the number of samples generated by the DDFS for reconstructing the sine wave reduces as 
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the output frequency increases; hence the waveforms get distorted gradually as the output 

frequency increases. The distortion is observed as spurs in the frequency domain. Equation 

5.1 shows how the output frequency is related to the number of samples. From the equation it 

can be observed that for a constant clock frequency, the number of samples decrease as the 

output frequency increases. 

     
    

    
        5.1 

 Where: 

  n is the number of samples in waveform 

  Fclk is the clock or sampling frequency 

  Fout is the output frequency 

2. The observed values of noise floor are on average       dBc higher than their corresponding 

theoretical values; for example it can be seen in table 5-3 that at frequency of 5 MHz the NF 

is -115 dBc while the theoretical NF value is -123 dBc. The cause of this difference is the 

number of points used in the FFT analysis; 10,000 points were used instead of the required 

268,435,456 (using equation 4.23). The use of more than 10,000 points was not possible 

because the oscilloscope used (TDS3014B) for the FFT analysis could support the FFT 

analysis of 10,000 points only. However the used numbers of points were enough to avoid 

masking the expected improvement in SFDR. 

3. From Figure 5.40 the noise floor is observed to increase as the output frequency increases. 

One possible cause could be the deterioration of the quality of the waveform as the output 

frequency increases, as explained in the first observation. 
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5.6 Conclusion of results 

 From Table 5-2 it can be observed that the FPGA prototype that had phase and amplitude 

dithering resulted in an SFDR that is close to the one observed at the modeling and simulation 

level and the expected theoretical value. However, the SFDR decreased as output frequency 

increased mainly due to the fact that the number of samples in the output waveform decreased as 

the output frequency increased. 
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CHAPTER 6 

CONCLUSION AND RECOMMENDATION 

6.1 Conclusion 

The aim of this research was to design and implement a spectral purity optimized DDFS 

based signal generator in an FPGA, but the research also includes an investigation on the 

dithering technique of DDFS spur reduction and the use of the relatively new modeling and 

simulation language called SystemC. Although there is a lot of material on DDFS, dithering and 

SystemC that already exists in the literature, the author believes that this research is the first to 

do the following; 

1. Demonstrate how to use SystemC in the modeling and simulation of DDFS designs that 

use phase dithering, amplitude dithering and a combination of phase and amplitude 

dithering. The models can be useful to someone who wants to understand the dithering 

technique of spur reduction or to carry out more research on dithering. In addition, use of 

these SystemC models would enable the user to benefit from the advantages of SystemC 

over other languages such as faster simulation time and the ability to model both at the 

behavior and architecture level of the design. 

2. Compare using the same DDFS design the performance of three methods of dithering 

namely; phase dithering, amplitude dithering and a combination of phase and amplitude 

dithering. The results of this comparison showed that the phase and amplitude method of 

dithering resulted in the most reduction in spurs. This information could be useful to a 

designer who wants to apply the dithering technique of spur reduction but is not sure 

which method of dithering to choose. 

The results of the investigation in dithering proved that the phase and amplitude method 
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of dithering provided the largest reduction in spurs when compared to phase dithering only or 

amplitude dithering only. One possible explanation for this observation is that truncating the 

phase information and finite word length representation of amplitude information in a DDFS 

results in two sets of spurs; those caused by phase information truncation and the ones caused by 

finite precision of the amplitude samples, hence spur reduction efforts in such a DDFS design 

should target the two sets of spurs.  

The implemented FPGA prototype of the signal generator had phase and amplitude 

dithering due to the fact that this design was observed to offer the highest spectral purity at the 

modeling and simulation level. The prototype was capable of generating sine, square, saw tooth 

and triangle wave forms, the frequency resolution was 0.047 Hz, maximum output frequency 

was 25 MHz, sine wave SFDR was improved from 48 dBc to 85 dBc and the noise floor was -

116 dBc. 

  

6.2 Recommendation 

The expense of phase dithering is an increased noise floor while the penalty of amplitude 

dithering is a reduced dynamic range and a loss of the amplitude information caused by the need 

to scale the amplitude information so that the original signal plus the dither will stay within the 

non-saturating region. Future studies can focus on trying to overcome these challenges faced by 

dithering. 

 While SystemC was used for modeling and simulation, the crafting of the signal 

generator on FPGA used vendor specific tools which were not related to SystemC. There is 

therefore a need to integrate SystemC all the way down to realization of the signal generator on 

FPGA. 
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APPENDICES 

Appendix A: SystemC header file for the phase accumulator module 

 

/* 

 * phase_accumulator.h 

 * 

 *  Created on: Nov 4, 2012 

 *      Author: maina 

 */ 

 

#ifndef PHASE_ACCUMULATOR_H_ 

#define PHASE_ACCUMULATOR_H_ 

 

#include "systemc.h" 

 

SC_MODULE (phase_accumulator) { 

 

 sc_in<sc_uint<30> > phase_increment; 

 

 sc_in_clk clock; 

 

 sc_out<sc_uint<30> > phase; 

 

 sc_uint<30> phase_var, phase_increment_var; 

 

 void prc_phase_accumulator(); 

 

 SC_CTOR (phase_accumulator) { 

 

  SC_METHOD (prc_phase_accumulator); 

 

  sensitive << clock.pos(); 

 

  dont_initialize(); 

 } 

}; 

 

 

#endif /* PHASE_ACCUMULATOR_H_ */ 
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Appendix B: SystemC implementation file for the phase accumulator module 

 

/* 

 * phase_accumulator.cpp 

 * 

 *  Created on: Nov 4, 2012 

 *      Author: maina 

 */ 

#include "phase_accumulator.h" 

 

#include <iostream> 

 

void phase_accumulator:: prc_phase_accumulator() { 

 

 

 //sc_uint<30> phase_var,phase_increment_var;             

 

 phase_increment_var = phase_increment.read(); 

 

 phase_var=(phase_increment_var + phase_var); 

 

 phase.write(phase_var); 

 

  

 

} 
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Appendix C: DAC5652A digital to analog converter 

The following are the features and circuit diagram of the DAC used in this project (Texas 

Instruments, 2009): 

 

 275 MSPS Update Rate  

 Single Supply: 3.0 V to 3.6 V 

 HighSpurious-FreeDynamicRange (SFDR): 

 80 dBc at 5 MHz 

 Signal to noise ratio: 63 dB 

 High Third-Order Two-Tone Intermodulation) 

 (IMD3): 78 dBc at 15.1 MHz and 16.1 MHz  

 Independent or Single Resistor Gain Control 

 Dual or Interleaved Data 

 On-Chip 1.2-V Reference 

 Low Power: 290 mW 

 Power-Down Mode: 9 mW 

 Package: 48-Pin Thin-Quad Flat Pack (TQFP) 

 

 

 
Figure B-1: circuit diagram of the DAC 
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Appendix D: fusion embedded development kit  

Fusion Embedded Development Kit Contents 

 Fusion Embedded Development Kit board (Figure C-1) with M1-Enabled Fusion 

FPGA(M1AFS1500) 

 Low-Cost Programming Stick (LCPS) for programming the M1AFS1500 FPGA 

 External 5 V Power Supply 

 USB 2.0 high-speed cables 

 Packet of jumpers 

 Quick Start Guide 

 Actel Libero® Integrated Design Environment (IDE) software DVD 

 

 

 

Figure C-1: Fusion Embedded Development Kit Evaluation Board with LCPS Attached 
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Figure C-2: A picture of the Hardware Test setup 
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Appendix E: Specifications of the Desktop computer Used in the FFT analysis 

Computer model HP Compaq 

Operating system Debian Linux 

CPU Pentium Dual-Core E5200 

Speed 2.50 GHz 

RAM 1.96 GB 

 

 


