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Abstract

There are two main objectives in this project. First, to construct Power Series Distri-
butions and obtain their properties. Speci�cally, to express the Power Series Distri-
butions in explicit form, in recursive form (in Katz recursive form), special function
form (in terms of Con�uent and Gauss hypergeometric functions), expectation form
(in terms of probability generating functions)
Secondly, to generalize Power Series Distributions by introducing an in�ated para-

meter. Speci�cally,

(i) To construct an in�ated Poisson, Binomial, Negative Binomial and Logarithmic
distributions.

(ii) To obtain the moments and the maximum likelihood estimators of the zero in�ated
power series distributions.

(iii) To obtain Compound Poisson distributions for the in�ated power series distrib-
utions.

(iv) Application of the in�ated models described above to migration data.
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Chapter 1

General Introduction

1.1 Introduction

One way of constructing discrete probability distributions is based on power series
expansions resulting into Poisson, Binomial, Negative Binomial and Logarithmic dis-
tributions forming a family of Power Series Distributions (PSDs).
The power series distributions have been generalized to what is called Generalized

Power Series Distributions (GPSDs) andModi�ed Power Series Distributions (MPSDs)
By introducing a parameter to these distributions we have in�ated PSDs, GPSDs

and MPSDs. The in�ated distributions can also be seen as �nite mixtures consisting
of a degenerate and a non-degenerate distribution.

1.2 Problem Statement

In applications involving count data, it is common to encounter the frequency of ob-
served zeros signi�cantly higher than predicted by the model based on the standard
parametric family of discrete distributions. In such situations, zero-in�ated Poisson
and zero-in�ated negative binomial distribution have been widely used in modelling
the data, yet other models may be more appropriate in handling the data with excess
zeros. The consequences of this is misspecifying the statistical model leading to er-
roneous conclusions and bring uncertainty into research and practice. Therefore the
problem is to identify by constructing other alternatives, to the models already present
in the literature that may be more appropriate for modelling data with excess zeros.

1.3 Objectives of the Study

There are two main objectives in this project. First, is to express Power Series Distri-
butions in explicit form, in recursive form, special function form, and in expectation
form. Speci�cally to express Poisson, Binomial, Negative Binomial and Logarithmic
series distributions.

(i) In explicit form.

(ii) In Katz recursive form.

(iii) In terms of Con�uent and Gauss hypergeometric functions.
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(iv) In terms of probability generating functions (pgf).

Secondly, to generalize Power Series Distributions by introducing an in�ated para-
meter. Speci�cally,

(i) To construct an in�ated Poisson, Binomial, Negative Binomial and Logarithmic
distributions.

(ii) To obtain the moments and maximum likelihood estimators of the zero-in�ated
power series distributions.

(iii) To obtain Compound Poisson distributions for the in�ated power series distrib-
utions.

(iv) To apply the in�ated models described above to migration data.

1.4 Literature Review

1.4.1 Power series distribution

A number of attempts have been made during the past decades to study power se-
ries Distributions, Noak (1950) considered a class of random variable with discrete
distributions. He de�ned power series distributions and investigated its moment and
cumulant properties. He also, constructed the special cases of important discrete dis-
tributions belong to this class with their moment and cumulant properties that is; the
binomial, Poisson, negative binomial, and logarithmic series distributions.
Khatri (1959) on certain properties of power series distribution extended what

was done by Noak (1950) to multivariate distributions. He established the recurrence
relations for cumulants and factorial cumulant, which are utilized to show that any
power series distribution in a single parameter is determined uniquely from its �rst two
moments. He further derives the multivariate extensions of powers series distributions
with the illustration of multinomial distributions and extended it to truncated powers
series distributions.
Patil (1962) studied on certain properties of generalized power series distribution.

He allowed the set of values that the variate can take to be any non-empty enumerable
set S of non-negative integers and called this extended class generalized power series
distributions (GPSDs). He also studied estimation and other properties of GPSDs. He
noted that among the distributions of major importance belonging to this class are the
binomial, Poisson, negative binomial, and logarithmic series distributions and related
multivariate distributions. Furthermore, if a GPSD is truncated, then the truncated
version is also a GPSD. He also noted that the sum of n mutually independent random
variables each having the same GPSD, has a distribution of the same class, with series
function [� (�)]n.

1.4.2 Zero-In�ated models

A zero-in�ated model is a statistical model based on a zero-in�ated probability distri-
bution. Zero-in�ated models has become fairly popular in the research literature with
a number of attempts being made during the past decades to study it, Katti and Rao
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(1966) used a criterion for �exibility and showed that there is a distribution called
the log-zero-Poisson distribution (l.z.P.) which has more �exibility than the Neyman
type A, the negative binomial, and the Poisson binomial distribution. They derived
some basic properties of the I.z.P. distribution and compared it with other distribu-
tions, �tted using the 35 sets of data given in Martin and Katti (1965). In their study
they regard the l.z.P. as a �one-distribution summary�of Neyman type A, the negative
binomial, and the Poisson binomial distribution.
David Kemp and Adrienne Kemp (1988) examined the construction of rapid esti-

mation procedures for discrete distributions, using the empirical probability generating
function (epgf), mathematical approximations to the maximum likelihood equations,
and bounds for the maximum likelihood estimators. They reviewed some standard
rapid estimation procedures for discrete distributions, placed in the context of epgf
estimation, and developed a new methods. They also, considered a number of distri-
butions in depth and found that di¤erent distributions require di¤erent procedures of
estimation as shown in their illustrative example of zero-in�ated binomial distribution
with large and small to moderate sized sample in their simulation.
Farewell and Sprott (1988) studied the use of a mixture model in the analysis of

count data. They analyzed data on the e¤ect of a drug with antiarrythmic proper-
ties on patients who experienced frequent premature ventricular contractions (PVCs).
Where the number of PVCs per minute was recorded before and after the drug was
administered. They noted that a wide range of counts were observed during the pre-
drug measurements but that 7 of the 12 patients experienced no PVCs during the
postdrug measurement. They assume that any non-zero count is considered abnor-
mal. Individuals with no PVCs may be "cured," in which case their zero count is
assured; otherwise, the observed zero is a sampling zero. The observations occur as
paired data (xi; yi) which are the predrug and postdrug count, respectively, for the
ith patient. Assuming that xi is a Poisson variate with mean �i and that for patients
who are not cured yi is independently Poisson with mean ��i; then the conditional
distribution of yi given ti = xi + yi is zero-in�ated binomial distribution.
Lambert (1992) studied Zero-In�ated Poisson Regression, with an application to

defects in manufacturing. She observed that when a reliable manufacturing process
is in control, the number of defects on an item should be Poisson distributed. If the
Poisson mean is �, a large sample of n items should have about ne�� items with
no defects. Some times, however, there are many more items without defects than
would be predicted from the numbers of defects on imperfect items. She gives an
interpretation that slight, unobserved changes in the environment cause the process to
move randomly back and forth between a perfect state in which defects are extremely
rare and an imperfect state in which defects are possible but not inevitable.
Gupta et al., (1995) studied the zero in�ated modi�ed power series distributions

(IMPSD) which include among others the generalized Poisson and the generalized neg-
ative binomial distributions and hence the Poisson, binomial and negative binomial
distributions. They also considered the structural properties along with the distribu-
tion of the sum of independent IMPSD variables, the maximum likelihood estimators
of the parameters of the model and obtained the variance-covariance matrix of the
estimators. Finally they gave examples on the generalized Poisson distribution to il-
lustrate the results. Murat and Szynal (1998) have extended the results of Gupta et
al., (1995) to the discrete distributions in�ated at any of the support points.
Gupta et al., (1996) considered a zero adjusted discrete model. Such a situation
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arises when the proportion of zeros in the data is higher (lower) than that predicted by
the original model. They also, studied the e¤ect of such an adjustment and compared
the failure rates and the survival functions of the adjusted and the non-adjusted mod-
els. As an example, they studied an adjusted generalized poisson distribution and the
three parameters of the model estimated by the maximum likelihood method. They
recommended that in order to obtain more accurate results for zero-in�ated data, the
model should be adjusted for the number of zeros.
Dowling and Nakamura (1997) studied estimating parameters for discrete distrib-

utions via the empirical probability generating function. They considered parameter
estimation for a family of discrete distributions characterized by probability generating
functions (pgf�s). Kemp (1988) suggest estimators based on the empirical probability
generating function (epgf); the methods involve solving estimating equations obtained
by equating functions of the epgf and pgf on a �xed, �nite set of values. They pro-
vide an asymptotic theory for these epgf-based methods that allows computation of
asymptotic e¢ ciency in a uni�ed setting, and suggests asymptotic estimates of stan-
dard errors. They considered some examples as used by Kemp (1988) and based on
the theory, they gave graphical techniques that are shown to be useful for exploratory
analysis.
Nikolai et al., (2001, 2002) studied an extension of the generalized power series

distributions by including an additional parameter �. This parameter has a natural
interpretation in terms of both "zero in�ated" proportion and correlation coe¢ cient,
and because of this they called this family In�ated-parameter generalized power series
distributions. They presented probability mass functions (pmf) and probability gener-
ating functions (pgf) of the corresponding in�ated-parameter distributions, with two
di¤erent representations of the corresponding pmf�s of the r.v�s belonging to the in-
�ated parameter family of the generalized power series distributions. They successfully
�tted a real frequency data using in�ated-parameter poisson and in�ated-parameter
negative binomial models.
Jansakul et al., (2002) studied score tests for zero-In�ated Poisson Models. They

considered a situation where the count data have a large proportion of zeros than
speci�ed by the Poisson model. Thus for data of this form they adopted the use of the
zero-in�ated Poisson (ZIPo) model. ZIPo model with a constant proportion of excess
zeros to a standard Poisson regression model, was given by van den Broek (Biometrics,
51 (1995) 738�743). They extend this test to the more general situation where the
zero probability is allowed to depend on covariates and evaluated the performance of
this test using a simulation study. They also proposed a composite test to identify
potentially important covariates in the zero-in�ation model. lastly, they illustrated
the use of the general score test and the composite procedure on some real datasets
and showed that the composite tests are useful for suggesting appropriate models.
Inuwor (2004) considered a model that takes into account zero observation. He

assumed the Poisson distribution for the number of clusters migrating, and that the
number of migrants in a cluster follows each of the members of the class of one-In�ated
power series distributions namely: the binomial, the Poisson, the negative binomial,
the geometric, the log-series, and the mis-recorded Poisson. At least one person is
expected to migrate in household is exposed to the risk of migration thus, the use of
the one-in�ated distributions. This is justi�ed by the need to reduce the risk of under-
estimation of the probability that one person migrates in households are exposed to
the risk of migration. Hence the use of zero-truncated distributions as proposed by
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Yadava and Singh (1991) is not justi�able since the zeros are real zeros are real and
observable as there is the possibility that nobody migrates in a cluster in a household.
Perakis and Xekalaki (2005) proposed process capability index useful for both the

discrete and continuous processes. They further provided a process capability index for
Poisson and attribute data. Notably these indices are based on maximum likelihood
estimate of the Poisson parameter as well as on minimum variance unbiased estima-
tor (MVUE). The simulation study performed by them reveals that indices based on
maximum likelihood estimates perform better than the one based on MVUE. In the
recent years, due to adoption of technology, production processes produce extremely
good products. Thus, zero-in�ated models have been found useful in statistical process
control.
Patil and Shirke (2007) considered testing parameter of a zero in�ated power series

model. They provided three asymptotic tests for testing the parameters of power se-
ries distribution, using an unconditional (standard) likelihood approach, a conditional
likelihood approach and a test based on sample mean, respectively. They illustrated
this by using zero in�ated Poisson distribution (ZIPo).
Perumean et al., (2012) studied Zero-in�ated and overdispersed. They recom-

mended that when there is evidence of overdispersion, other models (e.g. zero-in�ated
Poisson and zero-in�ated negative binomial) may replace the Poisson model in han-
dling excessive zeros in count data and that the modi�cation of the Poisson or Negative
binomial procedure is to avoid the incorrect estimation of the model parameters and
standard errors and the incorrect speci�cation of the distribution of the test statis-
tic. If ignored these misspeci�cations may easily lead to erroneous conclusions about
the data and bring uncertainty into research and practice. They utilized simulation
methods in educating researchers on the importance of accounting for zero in�ation in
count data and the consequences of misspecifying the statistical model.

1.5 Signi�cance of the Study

The study is signi�cant to various �elds in expanding on the previous research in
addressing the problems encountered in data modelling. A brief description and an
illustration on the signi�cances of the study in various �elds are given below:
The study will be bene�cial to those in the �eld of demography in understanding

population history of areas and drivers of regional change. One of the applications is
in the analysis of migration data. Researchers studying migration have widely used
probability models with the primary purpose of modelling being simpli�cation and to
reduce a confusing mass of numbers to a few intelligible basic parameters, to make
possible an approximate representation of reality without its complexity. Moreover,
by doing so bring policy makers and development planners to a new level of awareness
in the formulation of their policies. Several studies have been proposed for modelling
rural out migration at household level with Inuwor (2004) proposing a model that takes
into account zero observation. He assumed the Poisson distribution for the number of
clusters migrating, and that the number of migrants in a cluster follows each of the
members of the class of one-In�ated power series distributions. He �tted the various
distributions and tested their adequacy for various villages using data contained in
Sharma (1995) and found that the distributions that takes into consideration variations
in the probability of a person migrating in a cluster in a household (The log-series,
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and the geometric) performed better.
The study will also be useful to Actuaries in enriching their knowledge to develope

and use statistical and �nancial models to inform �nancial decisions, pricing, estab-
lishing the amount of liabilities, and setting capital requirements for uncertain future
events. In actuarial applications zero-in�ated distributions have been widely used for
modeling observed situations whose various characteristics as re�ected by the data
di¤er from those that would be anticipated under the simple component distribution.
For example, observed data on the number of claims often exhibit a variance that no-
ticeably exceeds their mean. Hence, assuming a Poisson form (or any other form that
would imply equality of the mean to the variance) for the claim frequency distribution
is not appropriate in such cases, (Karlis and Xekalaki, 2005). To have over-dispersion,
then there is need to have models whose variance is greater than the mean. This is
where zero-in�ated models are adopted to handle the excess zeros in modelling.
Furthermore, the study will be helpful to analyst in environmental studies in their

e¤orts to raise public awareness regarding the environment and conservation of natural
resources. An application example is the use of zero-in�ated models by Viviano et al
(2004) to analyze environmental data sets with many zeroes. The �rst data set refers
to a daily time series (1997-1999) data to study the e¤ect of air pollution on health in
Palermo. Their interest lies in estimating the e¤ect of PM10 which is one of the major
causes of health problems in air pollution studies, and the second data set referred to a
study of bathing water quality in the district of Palermo. Their goal was to analyze the
e¤ect of some covariates (Month, Water Temperature, Oxygen, Sea Condition) on the
response variable �Number of Fecal Streptococcus�(counts in 100 ml of water), that
ranges from 0 to 200 and presents a great percentage of zeroes (� 54%). Results from
the �tted models con�rmed that that in the mortality data set, the classical Poisson
model is the best choice, while in the second data set. Zero-in�ated negative binomial
is preferable.
Moreover, this study will be important to those in the �eld of engineering. One ap-

plication is in the process of manufacturing items, the explanation o¤ered by Lambert
(1992) for the defects produced is that the system randomly changes its state from
perfect to imperfect. The system is said to be perfect when there can be no defects
manufactured. The system is said to be imperfect when defects are possible but not
inevitable. Gupta et. al. (1995) have given another explanation to the above situa-
tion. Their explanation refers to the situation in which the items are manufactured by
di¤erent machines out of which some machines do not produce any defectives; when
the items are mixed up, the information is not available as to which item is produced
by which machine. Thus is di¢ cult to give a simple explanation for the excess ze-
ros, hence the use of in�ated model has been adopted to handle the excess zero and
to e¤ectively check on the quality of production thus, producing output according to
speci�ed requirements.
The study will also be of great importance for those in Biomedical �eld in adopting

the recommended statistical models to evaluate the e¤ectiveness of treatment and to
diagnose disease. Their success in modern health care relies on the accuracy of the
models and their e¢ ciency. One of the applications is given by Böhning et al., (1999)
in dental epidemiology the DMF-index is an important and well-known indicator and
overall measure for the dental status of a person. It is a count number standing for the
number of DECAY, MISSING, and FILLED Teeth (in which case it is called DMFT-
Index) or Tooth Surfaces (in which case it is called DMFS-Index). They showed that
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DMFT-index is a special mixture model having two classes, where the �rst class has
a �xed value at 0. This class consists of children with no caries at all. In the case
of the DMFT, this zero-class corresponds to those children showing no improvement.
As an their application, they considered data coming from a prospective study of
school children from an urban area of Belo Horizonte (Brazil) and from their study
the zero-in�ated Poisson distributions has been described to �t the data, since 90% of
the over-dispersion is explained by the model.
Moreover, this study will bene�t and help future researcher in Tra¢ c Accident

Research as a guide in modelling accident data, with the focus in their studies and
numerous others of similar kind, is on evaluating public policy on how successful
was past (tra¢ c) safety legislation in reducing the number of accidents. Kuan et
al., (1991), as one example considers data coming from the California Department of
Motor Vehicles master driver license �le. Here the variable of interest is the number of
accidents per driver. From the data we see that there is excess number of zero counts
and the frequency of X is greater than or equal to 3 is 21. Generally such data is
modeled by Poisson distribution. But Poisson distribution does not �t well for the
data. They �tted the above data for zero-in�ated Poisson (ZIPo) and observed that
the ZIPo provides the best �t.
Lastly, the output from this study will be helpful to the retail industry and business

practitioners in marketing by using the probability models to understand and pro�le
individual behavior, understand market-level patterns, and their origin in individual
behaviors, provide norms or benchmarks for comparison and Prediction or forecasting
of: Aggregate results beyond current observation period and Individual behavior, given
knowledge of past actions.
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Chapter 2

Power Series Distributions

2.1 Introduction

A numbers of researchers have worked on these class of power series distributions.
Noak (1950) considered a class of random variable with discrete distribution. Where
he de�ned power series distributions and showed that many important discrete distrib-
utions belong to this class. Khatri (1959) studied the multivariate extensions of powers
series distributions with the illustration of multinomial distributions and extended it
to truncated powers series distributions. Patil (1961, 1962) studied on certain proper-
ties of generalized power series distribution. Where he allowed the set of values that
the variate can take to be any non-empty enumerable set T of non-negative integers
and called this extended class generalized power series distributions (GPSDs). He also
studied estimation and other properties of GPSDs.
In this chapter, we de�ne Power Series Distributions (PSD) and provide an overview

of some of its structural properties that includes; probability generating function,
moments and their recurrence relation, central moments, the recurrence relation for
cumulants and factorial cumulants. Lastly, the special cases of discrete probability dis-
tributions belonging to the class of power series distributions with their corresponding
structural properties will be covered.

2.2 De�nition

A large class of random variables with discrete probability distributions can be derived
from certain power series.
Let

f(�) =
1X
k=0

ak�
k (2.1)

be a power series.
Therefore,

1 =

1X
k=0

ak�
k

f(�)

That is
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Pr (X = k) =
ak�

k

f(�)
for k = 0; 1; 2; ::: and � > 0; ak > 0 (2.2)

is called a power series distribution (PSD). A power series distribution belongs to the
exponential family, since

Pr (X = k) =
ak�

k

f(�)
= exp

�
ln

�
ak�

k

f(�)

��
= exp

�
ln ak�

k � ln f(�)
	

= exp fln ak + k ln � � ln f(�)g (2.3)

The �rst and second derivatives of f(�) are

f 0(�) =
df

d�
=

1X
k=0

kak�
k�1 =

1X
k=1

kak�
k�1 (2.4)

and

f 00(�) =
d2f

d�2
=

1X
k=1

k(k � 1)ak�k�2 =
1X
k=2

k(k � 1)ak�k�2 (2.5)

Therefore it follows that

E(X) =

1X
k=0

k
ak�

k

f(�)
=

�

f(�)

1X
k=1

kak�
k�1 =

�

f(�)
f 0(�) (2.6)

E [X(X � 1] =
1X
k=0

k(k � 1)ak�
k

f(�)
=

�2

f(�)

1X
k=2

k(k � 1)ak�k�2

=
�2

f(�)
f 00(�)

and

V ar(X) = E [X(X � 1] + E(X)� [E(X)]2

=
�2

f(�)
f 00(�) +

�

f(�)
f 0(�)�

�
�

f(�)
f 0(�)

�2
(2.7)

2.3 Probability Generating Function(pgf)

The pgf of X is given by

G(s) = E(sX) =

1X
k=0

pks
k =

1X
k=0

ak(�s)
k

f(�)
=
f(�s)

f(�)
(2.8)

See Feller (1968, Chap. XI and Chap. XII).
Thus,
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G0(s) =
dG

ds
= �

f 0(�s)

f(�)
(2.9)

and

G00(s) =
d2G

ds2
= �2

f 00(�s)

f(�)
(2.10)

Hence the mean and the variance is given by

E(X) = G0(1) = �
f 0(�)

f(�)
(2.11)

and

V ar(X) = G00(1) +G0(1)� [G0(1)]2

= �2
f 00(�)

f(�)
+ �

f 0(�)

f(�)
�
�
�
f 0(�)

f(�)

�2
(2.12)

As given by Feller (1968: 266)

2.4 Moments and their recurrence relations

The rth moment is de�ned by

�0r = E (X
r) =

1X
k=0

kr Pr(X = k) =

1X
k=0

kr
ak�

k

f(�)

=
1

f(�)

1X
k=0

krak�
k (2.13)

Therefore taking the derivative of �0r with respect to � we obtain

d

d�
�0r =

1

f(�)

d

d�

1X
k=0

krak�
k +

�
d

d�

1

f(�)

� 1X
k=0

krak�
k

=
1

f(�)

1X
k=0

kr+1ak�
k�1 +

�
� 1

[f(�)]2
d

d�
f(�)

� 1X
k=0

krak�
k

=
1

f(�)

1X
k=0

kr+1ak�
k�1 � f 0(�)

[f(�)]2

1X
k=0

krak�
k

multiplying d
d�
�0r by � we obtain
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�
d

d�
�0r =

1

f(�)

1X
k=0

kr+1ak�
k � � f

0(�)

[f(�)]
� 1

f(�)

1X
k=0

krak�
k

=

1X
k=0

kr+1
ak�

k

f(�)
� � f

0(�)

[f(�)]

1X
k=0

kr
ak�

k

f(�)

= �0r+1 � �
f 0(�)

[f(�)]
�0r (2.14)

but

E(X) =
1X
k=0

k
ak�

k

f(�)
= �01

=
1X
k=0

k
ak�

k

f(�)
=

�

f(�)

1X
k=1

kak�
k�1 = �

f 0(�)

f(�)

Hence,

�
f 0(�)

f(�)
= �01 (2.15)

equation (2:14) then becomes

�
d

d�
�0r = �

0
r+1 � �01�0r

Thus the recurrence relation for the rth moments of a PSD is given as

�0r+1 = �
d

d�
�0r + �

0
1�
0
r (2.16)

The rth central moment. i.e., the rth moment about the mean is de�ned by

�r = E [X � �01]
r
=

1X
k=0

(k � �01)r
ak�

k

f(�)

=
1

f(�)

1X
k=0

(k � �01)rak�k (2.17)

Therefore taking the derivative of �r with respect to � we obtain
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d

d�
�r =

�
d

d�

1

f(�)

� 1X
k=0

(k � �01)rak�k +
1

f(�)

d

d�

1X
k=0

(k � �01)rak�k

= � f 0(�)

[f(�)]2

1X
k=0

(k � �01)rak�k +
1

f(�)

1X
k=0

(k � �01)rak
d

d�
�k

+
1

f(�)

1X
k=0

�
d

d�
(k � �01)r

�
ak�

k

= �f
0(�)

f(�)

1X
k=0

(k � �01)r
ak�

k

f(�)
+

1

f(�)

1X
k=0

k(k � �01)rak�k�1

+
1

f(�)

1X
k=0

r(k � �01)r�1
�
� d
d�
�01

�
ak�

k

= �f
0(�)

f(�)
�r +

1

f(�)

1X
k=0

(k � �01 + �01)(k � �01)rak�k�1

� r d
d�
�01

1X
k=0

(k � �01)r�1
ak�

k

f(�)

= �f
0(�)

f(�)
�r +

1

f(�)

1X
k=0

�
(k � �01)r+1 + �01(k � �01)r

�
ak�

k�1 � r d
d�
�01�r�1

multiplying d
d�
�r by � we obtain,

�
d

d�
�r = ��

f 0(�)

f(�)
�r +

1X
k=0

(k � �01)r+1
ak�

k

f(�)
+ �01

1X
k=0

(k � �01)r
ak�

k

f(�)
� r� d

d�
�01�r�1

= ��01�r + �r+1 + �01�r � r�
d

d�
�01�r�1

= �r+1 � r�
d

d�
�01�r�1

Therefore, it follows that the recurrence relation for the central moments of a PSD is
given as

�r+1 = �

�
d

d�
�r + r�r�1

d

d�
�01

�
(2.18)

putting r = 1 in (2.18) we get

�2 = �

�
d

d�
�1 + �0

d

d�
�01

�
but

�0 = E(X � �01)0 = 1
and

�1 = E(X � �01) = E(X)� �01 = �01 � �01 = 0
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As a result,

�2 = �

�
0 +

d

d�
�01

�
= �

d

d�
�01 (2.19)

substituting (2.19) in (2.18)

�r+1 = �

�
d

d�
�r + r�r�1

�2
�

�
= �

d

d�
�r + r�r�1�2 (2.20)

Also from (2.19)

�2 = �
d

d�
�01 = �

d

d�
�
f 0(�)

f(�)

= �

�
1:
f 0(�)

f(�)
+ �

d

d�

f 0(�)

f(�)

�
= �

(
f 0(�)

f(�)
+ �

"
f(�)f 00(�)� [f 0(�)]2

[f(�)]2

#)

= �

(
f 0(�)

f(�)
+ �

f 00(�)

f(�)
� �

�
f 0(�)

f(�)

�2)

= �
f 0(�)

f(�)
+ �2

f 00(�)

f(�)
�
�
�
f 0(�)

f(�)

�2
The variance of X will be given by

V ar(X) = �2 = �
2f

00(�)

f(�)
+ �

f 0(�)

f(�)
�
�
�
f 0(�)

f(�)

�2

2.5 Moment Generating Functions (mgf)

The mgf of X is given by

MX(t) = E
�
eXt
�
=

1X
k=0

etkpk =
1X
k=0

ak(�e
t)k

f(�)

=
f(�et)

f(�)
(2.21)

To obtain the rth moment
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MX(t) = E
�
etX
�

= E

"
1 +

(tX)

1!
+
(tX)2

2!
+
(tX)3

3!
+ � � �

#

= E [1] + tE [X] +
t2

2!
E
�
X2
�
+
t3

3!
E
�
X3
�
+ � � �

= 1 + t�01 +
t2

2!
�02 +

t3

3!
�03 + � � �

=
1X
r=0

tr

r!
�0r (2.22)

From (2:22) it is observed that �0r = coe¢ cient of
tr

r!
in the expansion of MX(t). Also,

the rth moment is the rth derivative of MX(t) w.r.t t and setting t = 0 i.e.

�0r =
drMX(t)

dtr
jt=0

2.6 Factorial Moments

rth factorial moment is de�ned by

�[r] = E [X(X � 1)(X � 2) : : : (X � r + 1)] (2.23)

when
r = 1 we have

�[1] = E [X] = �
0
1

r = 2
�[2] = E [X(X � 1)] = �02 � �01

r = 3

�[3] = E [X(X � 1)(X � 2)]
= E

�
X3
�
� 3E

�
X2
�
+ 2E [X]

= �03 � 3�02 + 2�01

r = 4

�[4] = E [X(X � 1)(X � 2)(X � 3)]
= E

�
X4
�
� 6E

�
X3
�
+ 11E

�
X2
�
� 6E [X]

= �04 � 6�03 + 11�02 � 6�01

2.7 Factorial Moment Generating Function (fmgf)

The fmgf of X is given by
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M[X](t) = E [1 + t]
X

=

1X
k=0

[1 + e]k pk =

1X
k=0

ak(� [1 + e])
k

f(�)

=
f(� + �t)

f(�)
(2.24)

The rth factorial moment is given by the rth derivative of M[X](t) w.r.t t and setting
t = 0

�[r] =
drM[X](t)

dtr
jt=0

or the coe¢ cient of t
r

r!
in the expansion of M[X](t):

2.8 Cumulant and Cumulant Generating Function
(cgf)

The cgf of X is given by

KX(t) = logMX(t)

provided E
�
etX
�
exist. Therefore to obtain the rth cumulant

KX(t) = logMX(t)

= log

(
E

"
1 + tX +

(tX)2

2!
+
(tX)3

3!
+ � � �

#)

= log

�
E [1] + tE [X] +

t2

2!
E
�
X2
�
+
t3

3!
E
�
X3
�
+

�
= log

�
1 + t�01 +

t2

2!
�02 +

t3

3!
�03 + � � �

�
=

�
t�01 +

t2

2!
�02 +

t3

3!
�03 + � � �

�
� 1
2

�
t�01 +

t2

2!
�02 +

t3

3!
�03 + � � �

�
+
1

3

�
t�01 +

t2

2!
�02 +

t3

3!
�03 + � � �

�
� � � �

= t�01 + �2
t2

2!
+ �3

t3

3!
+ � � �

= k1t+ k2
t2

2!
+ k3

t3

3!
+ � � �

=
1X
r=1

krt
r

r!
(2.25)

Thus, kr(rth cumulant of X) is the coe¢ cient of t
r

r!
in the expansion of KX(t). The

rth cumulant can also be obtained from the rth derivative of KX(t) w.r.t t and setting
t = 0: That is
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kr =
drKX(t)

dtr
jt=0

2.9 Special Cases

2.9.1 Poisson Distribution

f(�) = e� =

1X
k=0

�k

k!

Then

i.

Pr (X = k) =
e���k

k!
; k = 0; 1; 2; :::

which is a Poisson Distribution.

ii.
ak =

1

k!

iii.
f 0(�) = e�

iv.
f 00(�) = e�

v. The mean is given by

E(X) = �
f 0(�)

f(�)
= �

vi. The variance is given by

V ar (X) = �2
f 00(�)

f(�)
+ �

f 0(�)

f(�)
�
�
�
f 0(�)

f(�)

�2
= �2 + � � �2 = �

vii.

�r+1 = �

�
d

d�
�r + r�r�1

d

d�
�01

�
but

�01 = E(X) = �

Hence the recurrence relation for the central moments of Poisson Distribution is
given by

�r+1 = �

�
d

d�
�r + r�r�1

�
setting: r = 1

�2 = �

�
d

d�
�1 + �0

�
= � [0 + 1] = �
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r = 2

�3 = �

�
d

d�
�2 + 2�1

�
= �

�
d

d�
� + 2 � 0

�
= �

r = 3

�4 = �

�
d

d�
�3 + 3�2

�
= �

�
d

d�
� + 3 � �

�
= � (1 + 3�)

viii. Probability generating function for Poisson Distribution is given by

G(s) =
f(�s)

f(�)
=
e�s

e�

Taking the �rst and second derivative w.r.t s and setting s = 1; we obtain

G0(s) = �
e�s

e�

G00(s) = �2
e�s

e�

G0(1) = �

G00(1) = �2

Thus, to obtain the mean and variance

E (X) = G0(1) = �

V ar(X) = G00(1) +G
0
(1)�

h
G

0
(1)
i2

= �2 + � � �2

= �

ix. The moment generating function of Poisson Distribution is given by

MX (t) =
f(�et)

f(�)
=
e�e

t

e�
= e�(e

t�1)

The rth moment about the origin is obtained from the rth derivative of MX(t)
w.r.t t and setting t = 0

That is for r = 1; we have

�01 =
dMX(t)

dt
jt=0=

d

dt

h
e�(e

t�1)
i
= �ete�(e

t�1) jt=0= �
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for r = 2

�02 =
d

dt

h
�e�(e

t�1)+t
i
jt=0= �

�
�et + 1

�
e�(e

t�1)+t jt=0= �2 + �

Also,
�2 = �

0
2 � �021 = �2 + � � �2 = �

for r = 3

�03 =
d

dt

�
�
�
�et + 1

�
exp

�
t+ �

�
et � 1

��	
jt=0

=
n
�2et exp

�
t+ �

�
et � 1

��
+ �

�
�et + 1

�2
exp

�
t+ �

�
et � 1

��o
jt=0

= � + 3�2 + �3

when r = 4

�04 =
d

dt

n
�2et exp

�
t+ �

�
et � 1

��
+ �

�
�et + 1

�2
exp

�
t+ �

�
et � 1

��o
jt=0

=

�
�2et exp [t+ � (et � 1)] + � (�et + 1)3 exp [t+ � (et � 1)]

+3�2et (�et + 1) exp [t+ � (et � 1)]

�
jt=0

= �2 + � (� + 1)3 + 3�2 (� + 1)

= � + 7�2 + 6�3 + �4

x. The factorial moment generating function of Poisson Distribution is given by

M[X] (t) =
f(� + �t)

f(�)
= e�t

= 1 + �t+
�2t2

2!
+
�3t3

3!
+ � � �

The rth factorial moment is the coe¢ cient of tr

r!
in the expansion of M[X] (t) :

Thus
�[r] = �

r; r � 1
That is

�[1] = � = �
0
1; �[2] = �

2; �[3] = �
3; �[4] = �

4

The recursive relationship between factorial moments of Poisson Distribution is
given by

�[r] = ��[r�1]

xi. The cumulant generating function of Poisson Distribution is given by

KX(t) = logMX(t) = log
h
e�(e

t�1)
i

= �
�
et � 1

�
= �

�
1 + t+

t2

2!
+
t3

3!
+ � � �

�
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The rth cumulant of the distribution is the coe¢ cient of t
r

r!
in the expansion of

KX(t):

Thus
kr = � for all r � 1

The recursion formula for the cumulants of Poisson Distribution is given by

kr =
dr

dtr
�
�
et � 1

�
jt=0

d

d�
kr =

dr

dtr
�
et � 1

�
jt=0 (� � �)

Multiply equation (� � �) by � to obtain

�
d

d�
kr =

dr

dtr
�
�
et � 1

�
jt=0

Also,

kr+1 =
dr+1

dtr+1
�
�
et � 1

�
jt=0

=
dr

dtr
�et jt=0

Subtracting kr+1 � � dd�kr we obtain

kr+1 � �
d

d�
kr =

dr

dtr
�
�et � �et + �

	
= 0

Therefore it follows that

kr+1 = �
d

d�
kr

2.9.2 Binomial Distribution

f(�) = (1 + �)n =
1X
k=0

�
n

k

�
�k

Then

i.

Pr (X = k) =

�
n

k

�
�k

(1 + �)n

=

�
n

k

��
�

1 + �

�k �
1

1 + �

�n�k
; k = 0; 1; 2; :::; n

which is Binomial with parameters n and �
(1+�)

:

ii.

ak =

�
n

k

�
; k = 0; 1; 2; :::; n
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iii.
f 0(�) = n(1 + �)n�1; n = 1; 2; :::

iv.
f 00(�) = n(n� 1)(1 + �)n�2;n = 2; 3; :::

v. The mean is given by

E(X) = �
f 0(�)

f(�)
= �

n(1 + �)n�1

(1 + �)n
= n

�

1 + �

vi. And the variance

V ar (X) = �2
f 00(�)

f(�)
+ �

f 0(�)

f(�)
�
�
�
f 0(�)

f(�)

�2
= �2

n(n� 1)(1 + �)n�2
(1 + �)n

+ n
�

1 + �
�
�
n

�

1 + �

�2
= �2

n(n� 1)
(1 + �)2

+ n
�

1 + �
� n2�2

(1 + �)2

=
�2n2

(1 + �)2
� n�2

(1 + �)2
+ n

�

1 + �
� n2�2

(1 + �)2

= n
�

1 + �

�
1� �

1 + �

�
= n

�
�

1 + �

��
1� �

1 + �

�
= n

�
�

1 + �

��
1

1 + �

�
vii.

�r+1 = �

�
d

d�
�r + r�r�1

d

d�
�01

�
but

�01 = E(X) = n
�

1 + �

Hence the recurrence relation for the central moments of Binomial Distribution
is given by

�r+1 = �

�
d

d�
�r + r�r�1

d

d�
n

�

1 + �

�
= �

�
d

d�
�r + nr�r�1

�
(1 + �) � 1� � � 1

(1 + �)2

��
= �

�
d

d�
�r + nr�r�1

1

(1 + �)2

�
= �

�
d

d�
�r +

nr�r�1

(1 + �)2

�
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As a result, when r = 1

�2 = �
d

d�
�1 +

n��0

(1 + �)2
= 0 + n

�

(1 + �)2
= n

�
�

1 + �

��
1

1 + �

�
r = 2

�3 = �

�
d

d�
�2 +

2n�1

(1 + �)2

�
= �

d

d�

�
n

�

(1 + �)2

�
=

�
n (� + 1)� 2n�

(� + 1)3

�
�

= n� (1� �) 1

(� + 1)3

r = 3

u4 = �

�
d

d�
�3 +

3n�2

(1 + �)2

�
= �

(
d

d�

�
n� (� + 1)� 2n�2

(� + 1)3

�
+
3n � n �

(1+�)2

(1 + �)2

)

= �

�
(n� 2n�) (� + 1)� 3 (n� � n�2) + 3n2�

(� + 1)4

�
=
n� � 4n�2 + n�3 + 3n2�2

(� + 1)4

viii. Probability generating function for Binomial Distribution is given by

G(s) =
f(�s)

f(�)
=
(1 + �s)n

(1 + �)n

G0(s) = n�
(1 + �s)n�1

(1 + �)n

G00(s) = n(n� 1)�2 (1 + �s)
n�2

(1 + �)n

setting s = 1 we obtain

G0(1) = n
�

(1 + �)

G00(1) = n(n� 1) �2

(1 + �)2

To obtain the mean and variance

E (X) = G0(1) = n
�

(1 + �)
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V ar(X) = G00(1) +G
0
(1)�

h
G

0
(1)
i2

= n(n� 1) �2

(1 + �)2
+ n

�

(1 + �)
� n2

�
�

(1 + �)

�2
=

�2n2

(1 + �)2
� n�2

(1 + �)2
+ n

�

1 + �
� n2�2

(1 + �)2

= n

�
�

1 + �

��
1� �

1 + �

�
= n

�
�

1 + �

��
1

1 + �

�
ix. The moment generating function for Binomial Distribution is given by

MX (t) =
f(�et)

f(�)
=
(1 + �et)n

(1 + �)n

The rth moment about the origin is obtained from the rth derivative of MX(t)
w.r.t t and setting t = 0: That is

�0r =
drMX(t)

dtr
jt=0

Hence setting r = 1

�01 =
dMX(t)

dt
jt=0

=
d

dt

��
1 + �et

1 + �

�n�
jt=0

= n

�
1 + �et

1 + �

�n�1
�et

1 + �
jt=0

= n
�

1 + �

for r = 2

�02 =
d

dt

"
n

�
1 + �et

1 + �

�n�1
�et

1 + �

#
jt=0

=

(
n (n� 1)

�
1 + �et

1 + �

�n�2�
�et

1 + �

�2
+

�
1 + �et

1 + �

�n�1
n�et

1 + �

)
jt=0

= n (n� 1)
�

�

1 + �

�2
+ n

�

1 + �

Also,

�2 = n (n� 1)
�

�

1 + �

�2
+ n

�

1 + �
�
�
n

�

1 + �

�2
=

n2�2

(1 + �)2
� n�2

(1 + �)2
+

n�

1 + �
� n2�2

(1 + �)2

= n

�
�

1 + �

��
1

1 + �

�
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for r = 3

�03 = n (n� 1)
d

dt

(�
1 + �et

1 + �

�n�2�
�et

1 + �

�2
+ n

�
1 + �et

1 + �

�n�1
�et

1 + �

)
jt=0

=

8>><>>:
n (n� 1)

�
2�2e2t

(�+1)2

�
�et+1
�+1

�n�2
+ �3e3t(n�2)

(�+1)3

�
�et+1
�+1

�n�3�
+n

�
�et

�+1

�
�et+1
�+1

�n�1
+ �2e2t(n�1)

(�+1)2

�
�et+1
�+1

�n�2�
9>>=>>; jt=0

= n (n� 1)
�

2�2

(� + 1)2
+
(n� 2) �3

(� + 1)3

�
+ n

�
1

� + 1
+
(n� 1) �2

(� + 1)2

�

x. The factorial moment generating function of Binomial Distribution is given by

M[X] (t) =
f(� + �t)

f(�)
=

�
1 + (� + �t)

1 + �

�n
The rth factorial moment is obtained by from the rth derivative of M[X](t) w.r.t
t and setting t = 0: i.e.,

�[r] =
drM[X](t)

dtr
jt=0

When; r = 1;

�[1] =
dM[X](t)

dt
jt=0=

d

dt

�
1 + (� + �t)

1 + �

�n
jt=0

= n

�
1 + (� + �t)

1 + �

�n�1�
�

1 + �

�
jt=0

= n
�

1 + �

for r = 2

�[2] = n

�
�

1 + �

�
d

dt

(�
1 + (� + �t)

1 + �

�n�1)
jt=0

= n (n� 1)
�
1 + (� + �t)

1 + �

�n�2�
�

1 + �

�2
jt=0

= n (n� 1)
�

�

1 + �

�2
for r = 3

�[3] = n (n� 1)
�

�

1 + �

�2
d

dt

"�
1 + (� + �t)

1 + �

�n�2#
jt=0

= n (n� 1) (n� 2)
�

�

1 + �

�3�
1 + (� + �t)

1 + �

�n�3
jt=0

= n (n� 1) (n� 2)
�

�

1 + �

�3
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and for r = 4

�[4] = n (n� 1) (n� 2)
�

�

1 + �

�3
d

dt

"�
1 + (� + �t)

1 + �

�n�3#
jt=0

= n (n� 1) (n� 2) (n� 3)
�

�

1 + �

�4
The recursive relationship between the factorial moments of Binomial Distribu-
tion is given by

�[r] = (n� r + 1)
�

�

1 + �

�
�[r�1]

xi. The cumulant generating function of Binomial Distribution is given by

KX(t) = logMX(t) = log

�
1 + �et

1 + �

�n
The rth cumulant of the distribution is the rth derivative of Kx(t) w.r.t t and
setting t = 0

kr =
drKX(t)

dtr
jt=0

When r = 1; we have

k1 =
dKX(t)

dt
jt=0=

d

dt
n log

�
1 + �et

1 + �

�
jt=0

= n

�
1 + �

1 + �et

��
�et

1 + �

�
jt=0

= n

�
�

1 + �

�
for r = 2

k2 =
d

dt

�
n

�
1 + �

1 + �et

��
�et

1 + �

��
jt=0

= n

�
��e

t (1 + �)

(1 + �et)2

�
�et

1 + �

�
+

�
1 + �

1 + �et

��
�et (1 + �)

(1 + �)2

��
jt=0

= � n�2

(1 + �)2
+

�n

(1 + �)

= n

�
�

1 + �

��
1� �

1 + �

�
= n

�
�

1 + �

��
1

1 + �

�
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for r = 3

k3 =
d

dt
n

�
� �2e2t

(1 + �et)2
+

�et

1 + �et

�
jt=0

= n

(
�2�2e2t (1 + �et)2 + 2 (�3e3t) (1 + �et)

(1 + �et)4
+
�et (1 + �et)� �2e2t

(1 + �et)2

)

= n

(
�2�2 (1 + �)2 + 2�3 (1 + �)

(1 + �)4
+

�

(1 + �)2

)

= n

�
�2�2 � 2�3 + 2�3

(1 + �)3
+

�

(1 + �)2

�
= n

�
�2�2 + � (1 + �)

(1 + �)3

�
= n

�
�2�2 + � + �2

(1 + �)3

�
= n�

(1� �)
(1 + �)3

and for r = 4

k4 = n
d

dt

(
�2�2e2t (1 + �et)2 + 2�3e3t (1 + �et)

(1 + �et)4
+
�et [(1 + �et)� �et]

(1 + �et)2

)
jt=0

= n
d

dt

(
�2�2e2t (1 + �et)2 + 2�3e3t (1 + �et)

(1 + �et)4
+
�et [� (1 + �et)� �]

(1 + �et)2

)
jt=0

= n

8<: 6�3e3t � 4�3e3t � 4�2e2t
4�et + 6�2e2t + 4�3e3t + �4e4t + 1

+

24 (�et(�et+1)�2�2e2t+�2e2t)
(�et+1)2

�2�et(�et(�et+1)��2e2t)
(�et+1)3

359=; jt=0

= n

�
6�3 � 4�3 � 4�2

4� + 6�2 + 4�3 + �4 + 1
+

�

(� + 1)2
� 2�2

(� + 1)3

�
= n

(
2�3 � 4�2 � 2�2 (� + 1) + � (� + 1)2

(� + 1)4

)

=
n�2 (�2 � 4� + 1)

(� + 1)4

The recursion formula for cumulants of Binomial Distribution is given by

kr+1 = �
d

d�
kr; r � 1

2.9.3 Negative Binomial Distribution (NB)

f(�) = (1� �)�� =
1X
k=0

�
��
k

�
(��)k

Therefore

25



i.

Pr (X = k) =

�
��
k

�
(��)k

(1� �)��

= (�1)k
�
��
k

�
�k (1� �)�

=

�
�+ k � 1

k

�
�k (1� �)� ; for k = 0; 1; 2; :::

which is a Negative Binomial Distribution.

ii.

ak =

�
�+ k � 1

k

�
iii.

f 0(�) = � (1� �)���1

iv.
f 00(�) = �(�+ 1) (1� �)���2

v. The mean is given by

E(X) = �
f 0(�)

f(�)
= ��

(1� �)���1

(1� �)��
= �

�

1� � ; 0 < � < 1

vi. The variance is given by

V ar(X) = �2
f 00(�)

f(�)
+ �

f 0(�)

f(�)
�
�
�
f 0(�)

f(�)

�2
= �2

�(�+ 1) (1� �)���2

(1� �)��
+ �

�

1� � � �
2 �2

(1� �)2

= �(�+ 1)
�2

(1� �)2
+ �

�

1� � � �
2 �2

(1� �)2

=
�2�2

(1� �)2
+

��2

(1� �)2
+

��

1� � �
�2�2

(1� �)2

= �
�

1� �

�
1 +

�

1� �

�
= �

�

1� � �
1

1� � =
��

(1� �)2

vii.

�r+1 = �

�
d

d�
�r + r�r�1

d

d�
�01

�
but

�01 = E(X) = �
�

1� �
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Thus the recurrence relation for the central moments of NB is given by

�r+1 = �

�
d

d�
�r + r�r�1

d

d�
�

�

1� �

�
= �

�
d

d�
�r + �r�r�1

�
(1� �) � 1 + � � 1

(1� �)2
��

= �

�
d

d�
�r + �r�r�1

�
1

(1� �)2
��

= �
d

d�
�r +

�r��r�1

(1� �)2

setting r = 1

�2 = �

�
d

d�
�1 +

��0

(1� �)2
�

= �

�
0 + �

1

(1� �)2
�
= �

�

(1� �)2

setting r = 2

�3 = �

�
d

d�
�2 + 2��1

1

(1� �)2
�

= �

�
d

d�

��

(1� �)2
+ 2� � 0 � 1

(1� �)2
�

= ��
d

d�

�

(1� �)2
= ��

"
(1� �)2 � 1 + 2�(1� �)

(1� �)4

#

= ��

"
(1� �)2 + 2� � 2�2)

(1� �)4

#

=
�� (1� �) (1� � + 2�)

(1� �)4
=
�� (1� �) (1 + �)

(1� �)4

= ��
(1 + �)

(1� �)3

using (2.20), setting r = 2 we obtain

�3 = �
d

d�
�2 + 2�1�2 = �

d

d�
�2 + 0

= ��
d

d�

�

(1� �)2

= ��

"
(1� �)2 � 1 + 2�(1� �)

(1� �)4

#

=
�� (1� �) (1� � + 2�)

(1� �)4

= ��
(1 + �)

(1� �)3
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and for r = 3; again using (2.20) we obtain

�4 = �
d

d�
�3 + 3�2�2

= �
d

d�
��
(1 + �)

(1� �)3
+ 3

�
�

�

(1� �)2
�2

= ��
d

d�

(� + �2)

(1� �)3
+

3�2�2

(1� �)4

= ��

"
(1� �)3 (1 + 2�) + 3(� + �2)(1� �)2

(1� �)6

#
+

3�2�2

(1� �)4

= ��

�
(1� �) (1 + 2�) + 3(� + �2)

(1� �)4
�
+

3�2�2

(1� �)4

=
��

(1� �)4
�
1 + 2� � � � 2�2 + 3� + 3�2) + 3(� + �2)

�
+

3�2�2

(1� �)4

=
��

(1� �)4
�
1 + 4� + �2

�
+

3�2�2

(1� �)4

=
��

(1� �)4
�
1 + 4� + �2 + 3��

�
viii. Probability generating function for NB is given by

G(s) =
f(�s)

f(�)
=
(1� �s)��

(1� �)��

G0(s) = ��
(1� �s)���1

(1� �)��

G00(s) = �(�+ 1)�2
(1� �s)���2

(1� �)��

setting s = 1 we obtain

G0(1) = �
�

1� �

G00(1) = �(�+ 1)
�2

(1� �)2

To obtain the mean and variance

E (X) = G0(1) = �
�

1� �
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V ar(X) = G00(1) +G
0
(1)�

h
G

0
(1)
i2

= �(�+ 1)
�2

(1� �)2
+ �

�

1� � � �
2

�
�

�

1� �

�2
=

�2�2

(1� �)2
+

��2

(1� �)2
+

��

1� � �
�2�2

(1� �)2

= �
�

1� �

�
1 +

�

1� �

�
=

��

(1� �)2

ix. The moment generating function for NB is given by

MX (t) =
f(�et)

f(�)
=
(1� �et)��

(1� �)��

The rth moment about the origin is obtained from the rth derivative of MX (t)
w.r.t t and setting t = 0: i.e.,

�0r =
drMX (t)

dtr
jt=0

Therefore setting r = 1

�01 =
dMX (t)

dt
jt=0

=
d

dt

�
(1� �et)��

(1� �)��
�
jt=0

= ��et
(1� �et)���1

(1� �)��
jt=0= �

�

1� �
for r = 2

�02 =
d

dt

"
��et

(1� �et)���1

(1� �)��

#
jt=0

= ��et
(1� �et)���1

(1� �)��
jt=0 +

� (�+ 1) �2e2t (1� �et)���2

(1� �)��
jt=0

= �(�+ 1)
�2

(1� �)2
+ �

�

1� �
Also,

�2 = �
0
2 � �021

= �(�+ 1)
�2

(1� �)2
+ �

�

1� � �
�
�

�

1� �

�2
=

�2�2

(1� �)2
+

��2

(1� �)2
+

��

1� � �
�2�2

(1� �)2

= �
�

1� �

�
1 +

�

1� �

�
=

��

(1� �)2
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for r = 3

�03 =
d

dt

(
��et (1� �et)���1

(1� �)��
+
� (�+ 1) �2e2t (1� �et)���2

(1� �)��

)
jt=0

=

(
��et(1��)�

(1��et)�+1 + � (�+ 1)
2�2e2t(1��)�

(1��et)�+2 � � (��� 1)
�2e2t(1��)�

(1��et)�+2

�� (�+ 1) (��� 2) e3t�3 (1��)�

(1��et)�+3

)
jt=0

=

�
��

(1� �) +
2�2� (�+ 1)

(1� �)2
� �

2� (��� 1)
(1� �)2

� �
3� (�+ 1) (��� 2)

(1� �)3
�

r = 4

�04 =
d

dt

(
��et(1��)�

(1��et)�+1 + � (�+ 1)
2�2e2t(1��)�

(1��et)�+2 � � (��� 1)
�2e2t(1��)�

(1��et)�+2

�� (�+ 1) (��� 2) e3t�3 (1��)�

(1��et)�+3

)
jt=0

=

(
��

(1��) +
4�2�(�+1)

(1��)2 � 2�2�(���1)
(1��)2 � �2�(���1)

(1��)2 � 2�3�(�+1)(���2)
(1��)3

+ �3�(���1)(���2)
(1��)3 + �4�(�+1)(���2)(���3)

(1��)4 � 3�3�(�+1)(���2)
(1��)3

)

x. The factorial moment generating function of NB is given by

M[X] (t) =
f(� + �t)

f(�)
=

�
1� � � �t
1� �

���
The rth factorial moment is obtained by from the rth derivative of M[X] (t) w.r.t
t and setting t = 0; i.e.

�[r] =
drM[X] (t)

dtr
jt=0

When r = 1

�[1] =
dM[X] (t)

dt
jt=0=

d

dt

�
1� � � �t
1� �

���
jt=0

= ��
�
1� � � �t
1� �

����1� ��
1� �

�
jt=0

= �
�

1� �

for r = 2

�[2] = �
�

1� �
d

dt

�
1� � � �t
1� �

����1
jt=0

= �
�

1� �

(
(�+ 1)

�

1� �

�
1� � � �t
1� �

����2)
jt=0

= � (�+ 1)
�2

(1� �)2
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for r = 3

�[3] = � (�+ 1)
�2

(1� �)2
d

dt

�
1� � � �t
1� �

����2
jt=0

= � (�+ 1)
�2

(1� �)2

(
(�+ 2)

�

1� �

�
1� � � �t
1� �

����3)
jt=0

= � (�+ 1) (�+ 2)
�3

(1� �)3

and for r = 4

�[4] = � (�+ 1) (�+ 2)
�3

(1� �)3
d

dt

�
1� � � �t
1� �

����3
jt=0

= � (�+ 1) (�+ 2)
�3

(1� �)3

(
(�+ 3)

�

1� �

�
1� � � �t
1� �

����4)
jt=0

= � (�+ 1) (�+ 2) (�+ 3)
�4

(1� �)4

The recursive relationship between the factorial moments of NB is given by

�[r] = (�+ r � 1)
�

�

1� �

�
�[r�1]

xi. The cumulant generating function of Negative Binomial Distribution is given
by

KX(t) = logMx(t) = log

�
1� �et
1� �

���
The rth cumulant of the distribution is the rth derivative of Kx(t) w.r.t t and
setting t = 0

kr =
drKX(t)

dtr
jt=0

When r = 1; we have

k1 =
dKX(t)

dt
jt=0

= �� d
dt
log

�
1� �et
1� �

�
jt=0

= ��
�
1� �
1� �et

��
��et
1� �

�
jt=0

= �

�
�

1� �

�
r = 2

k2 = ��
d

dt

�
et

1� �et

�
jt=0

= ��

�
et (1� �et) + �et(et)

(1� �et)2
�
jt=0

= �
�

(1� �)2
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r = 3

k3 = ��
d

dt

�
et

(1� �et)2
�
jt=0

= ��

(
et (1� �et)2 + 2�e2t (1� �et)

(1� �et)4

)

= ��

(
(1� �)2 + 2� (1� �)

(1� �)4

)

= ��

�
(1� �) + 2�
(1� �)3

�
= ��

(1 + �)

(1� �)3

r = 4

k4 = ��
d

dt

(
et (1� �et)2 + 2�e2t (1� �et)

(1� �et)4

)
jt=0

= ��

�
et + 4�e2t + �2e3t

6�2e2t � 4�et � 4�3e3t + �4e4t + 1

�
jt=0

= ��

�
1 + 4� + �2

6�2 � 4� � 4�3 + �4 + 1

�
=
�� (4� + �2 + 1)

(� � 1)4

The recursion formula for cumulants of Negative Binomial Distribution is given
by

kr+1 = �
d

d�
kr

xii. Re-parameterization

Writing,

� =
�

1 + �
; � =

h

�
; � > 0; h > 0

We get Polya-Eggenberger Distribution with

Pr (X = k) =

�h
�
+ k � 1
k

��
�

1 + �

�k �
1� �

1 + �

�h
�

; k = 0; 1; 2; :::

=

�h
�
+ k � 1
k

��
�

1 + �

�k �
1

1 + �

�h
�

; k = 0; 1; 2; :::

To obtain mean and variance

�01 = E(X) = �
�

1� � =
h

�
� �

1 + �
� 1�
1� �

1+�

�
=

h

1 + � � � = h
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�2 = V ar(X) =
��

(1� �)2 =
h

�
� �

1 + �
� 1�
1� �

1+�

�2
=

h

1 + �

(1 + �)2

(1 + � � �)2
= h(1 + �)

�3 = ��
(1 + �)

(1� �)3
=
h

�
� �

1 + �
�

�
1 + �

1+�

�
�
1� �

1+�

�3 = h

1 + �
� (1 + 2�)�

1
1+�

�2
= h (1 + 2�) (1 + �) = h(1 + �) (1 + 2�)

and

�4 =
��

(1� �)4
�
1 + 4� + �2 + 3��

�
=
h

�
� �

1 + �
� 1�
1� �

1+�

�4
"
1 + 4

�

1 + �
+

�
�

1 + �

�2
+ 3

h

�
� �

1 + �

#

=
h

1 + �
(1 + �)4

"
1 + 4

�

1 + �
+

�
�

1 + �

�2
+ 3

h

1 + �

#

= h(1 + �)3

"
(1 + �)2 + 4�(1 + �) + �2 + 3h(1 + �)

(1 + �)2

#
= h(1 + �)

�
(1 + �) (1 + � + 4� + 3h) + �2

�
= h(1 + �)

�
(1 + �) (1 + 5� + 3h) + �2

�
= h(1 + �)

�
(1 + �) (1 + 5� + 3h) + (� + 1� 1)2

�
= h(1 + �)

�
(1 + �) (1 + 5� + 3h) + (� + 1)2 � 2(� + 1) + 1

�
= h(1 + �) [1 + (1 + �) f1 + 5� + 3h+ � + 1� 2g]
= h(1 + �) [1 + (1 + �) f6� + 3hg]
= h(1 + �) [1 + 3(1 + �) f2� + hg]

Next consider the recurrence relation (2.18)

�r+1 = �

�
d

d�
�r + r�r�1

d

d�
�01

�
= �

d

d�
�r + �r��r�1 :

1

(1� �)2

for Negative Binomial Distribution.

but
d

d�
�r =

d�r
d�

� d�
d�
+
d�r
dh

� dh
d�

� =
�

1 + �
) � + �� = � ) � = (1� �) � ) � =

�

1� �
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Therefore,
d�

d�
=
1� � + �
(1� �)2

=
1

(1� �)2

i.e.,
d�

d�
=

1�
1� �

1+�

�2 = (1 + �)2
� =

h

�
) 1

�
=
�

h

h = �� = �
�

1� �
Thus,

dh

d�
=

�

(1� �)2
= � (1 + �)2

= h � 1
�
(1 + �)2

=
h

�
(1 + �)2

so,

d

d�
�r =

d�r
d�

� (1 + �)2 + d�r
dh

� h
�
(1 + �)2

= (1 + �)2
�
d�r
d�

+
h

�

d�r
dh

�
The recurrence relation for the central moments of Polya-Eggenberger Distribu-
tion is given by

�r+1 = �

�
d

d�
�r +

r�

(1� �)2
�r�1

�
=

�

1 + �

�
(1 + �)2

d�r
d�

+ (1 + �)2
h

�

d�r
dh

+ r�(1 + �)2�r�1

�
= (1 + �)

�
�
d�r
d�

+ h
d�r
dh

+ �r��r�1

�
= (1 + �)

�
�
d�r
d�

+ h
d�r
dh

+ rh�r�1

�
The pgf of Polya-Eggenberger Distribution is given by

G(s) =
f(�s)

f(�)
=
(1� �s)��

(1� �)��
=

h
1� �

1+�
s
i�h

�

h
1� �

1+�

i�h
�

= [1 + � � �s]�
h
�
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G0(s) = �h
�
[1 + � � �s]�

h
�
�1 (��) = h [1 + � � �s]�

h
�
�1

G00(s) = h

�
�h
�
� 1
�
[1 + � � �s]�

h
�
�2 (��)

= h�

�
h

�
+ 1

�
[1 + � � �s]�

h
�
�2

setting s = 1; we obtain
G0(1) = h

G00(1) = h�

�
h

�
+ 1

�
= h2 + �h

To obtain the mean and variance

E (X) = G0(1) = h

V ar(X) = G00(1) +G
0
(1)�

h
G

0
(1)
i2

= h2 + �h+ h� h2

= h (� + 1)

xiii. Special case. When � = 1 we have

Pr (X = k) = �k (1� �) ; for k = 0; 1; 2; :::
which is a Geometric Distribution.

The mean and the variance is given by

�01 =
�

1� � ; 0 < � < 1

�2 =
�

(1� �)2
The recurrence relation is given by

�r+1 = �

�
d

d�
�r + r�r�1

d

d�
�01

�
but

�01 = E(X) =
�

1� �
Thus the recurrence relation for the central moments of Geometric Distribution
is given by

�r+1 = �

�
d

d�
�r + r�r�1

d

d�

�

1� �

�
= �

�
d

d�
�r + r�r�1

�
(1� �) � 1 + � � 1

(1� �)2
��

= �

�
d

d�
�r + r�r�1

�
1

(1� �)2
��

= �
d

d�
�r +

r�

(1� �)2
�r�1
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setting r = 1

�2 = �

�
d

d�
�1 +

��0

(1� �)2
�

= �

�
0 +

1

(1� �)2
�
=

�

(1� �)2

setting r = 2

�3 = �

�
d

d�
�2 + 2�1

1

(1� �)2
�

= �

�
d

d�

�

(1� �)2
+ 2 � 0 � 1

(1� �)2
�

= �
d

d�

�

(1� �)2
= �

"
(1� �)2 � 1 + 2�(1� �)

(1� �)4

#

= �

"
(1� �)2 + 2� � 2�2)

(1� �)4

#

=
� (1� �) (1� � + 2�)

(1� �)4
=
� (1� �) (1 + �)

(1� �)4

= �
(1 + �)

(1� �)3

And for r = 3; using (2.20) we obtain

�4 = �
d

d�
�3 + 3�2�2

= �
d

d�
�
(1 + �)

(1� �)3
+ 3

�
�

(1� �)2
�2

= �
d

d�

(� + �2)

(1� �)3
+

3�2

(1� �)4

= �

"
(1� �)3 (1 + 2�) + 3(� + �2)(1� �)2

(1� �)6

#
+

3�2

(1� �)4

= �

�
(1� �) (1 + 2�) + 3(� + �2)

(1� �)4
�
+

3�2

(1� �)4

=
�

(1� �)4
�
1 + 2� � � � 2�2 + 3� + 3�2) + 3(� + �2)

�
+

3�2

(1� �)4

=
�

(1� �)4
�
1 + 4� + �2

�
+

3�2

(1� �)4

=
�

(1� �)4
�
1 + 7� + �2

�
Probability generating function for Geometric Distribution is given by

G(s) =
(1� �s)�1

(1� �)�1
=
(1� �)
(1� �s)
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G0(s) = �
(1� �s)�2

(1� �)�1
= �

(1� �)
(1� �s)2

G00(s) = 2�2
(1� �s)�3

(1� �)�1
= 2�2

(1� �)
(1� �s)3

setting s = 1; we obtain

G0(1) =
�

1� �

G00(1) =
2�2

(1� �)2

To obtain the mean and variance

E (X) = G0(1) =
�

1� �

V ar(X) = G00(1) +G
0
(1)�

h
G

0
(1)
i2

=
2�2

(1� �)2
+

�

1� � �
�
�

1� �

�2
=

2�2

(1� �)2
+

�

1� � �
�2

(1� �)2

=
�2

(1� �)2
+

�

1� �

=
�

1� �

�
1 +

�

1� �

�
=

�

(1� �)2

The moment generating function for Geometric Distribution is given by

MX (t) =
(1� �)
(1� �et)

The rth moment about the origin is obtained from the rth derivative of MX (t)
w.r.t t and setting t = 0 i.e.,

�0r =
drMX (t)

dtr
jt=0

Therefore setting r = 1

�01 =
dMX (t)

dt
jt=0

=
d

dt

�
(1� �et)�1

(1� �)�1
�
jt=0

= �et
(1� �et)�2

(1� �)�1
jt=0=

�

1� �
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for r = 2

�02 =
d

dt

"
�et
(1� �et)�2

(1� �)�1

#
jt=0

= ��et
(1� �et)�2

(1� �)�1
jt=0 +

� (�+ 1) �2e2t (1� �et)���2

(1� �)��
jt=0

= 2
�2

(1� �)2
+

�

1� �

Also,

�2 = �
0
2 � �021

= 2
�2

(1� �)2
+

�

1� � �
�

�

1� �

�2
=

�

(1� �)2

The factorial moment generating function of Geometric Distribution is given by

M[X] (t) =
f(� + �t)

f(�)
=

�
1� � � �t
1� �

��1
=

1� �
1� � � �t

The rth factorial moment is obtained by from the rth derivative of M[X] (t) w.r.t
t and setting t = 0; i.e.

�[r] =
drM[X] (t)

dtr
jt=0

When r = 1

�[1] =
dM[X] (t)

dt
jt=0

=
d

dt

�
1� � � �t
1� �

���
jt=0

= �
�
1� � � �t
1� �

��2� ��
1� �

�
jt=0

=
�

1� �

r = 2

�[2] =
�

1� �
d

dt

�
1� � � �t
1� �

��2
jt=0

=
�

1� �

(
2
�

1� �

�
1� � � �t
1� �

��3)
jt=0

=
2�2

(1� �)2
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r = 3

�[3] = 2
�2

(1� �)2
d

dt

�
1� � � �t
1� �

��3
jt=0

= 2
�2

(1� �)2

(
3
�

1� �

�
1� � � �t
1� �

��4)
jt=0

=
6�3

(1� �)3

r = 4

�[4] = 6
�3

(1� �)3
d

dt

�
1� � � �t
1� �

��4
jt=0

= 6
�3

(1� �)3

(
4
�

1� �

�
1� � � �t
1� �

��5)
jt=0

= 24
�4

(1� �)4

The recursive relationship between the factorial moments of Geometric Distrib-
ution is given by

�[r] = r

�
�

1� �

�
�[r�1]

The cumulant generating function of Geometric Distribution is given by

KX(t) = logMx(t) = log

�
1� �et
1� �

��1
The rth cumulant of the distribution is the rth derivative of Kx(t) w.r.t t and
setting t = 0

kr =
drKX(t)

dtr
jt=0

When r = 1; we have

k1 =
dKX(t)

dt
jt=0= �

d

dt
log

�
1� �et
1� �

�
jt=0

= �
�
1� �
1� �et

��
��et
1� �

�
jt=0

=

�
�

1� �

�
r = 2

k2 = �
d

dt

�
et

1� �et

�
jt=0

= �

�
et (1� �et) + �et(et)

(1� �et)2
�
jt=0

=
�

(1� �)2
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r = 3

k3 = �
d

dt

�
et

(1� �et)2
�
jt=0

= �

(
et (1� �et)2 + 2�e2t (1� �et)

(1� �et)4

)

= �

(
(1� �)2 + 2� (1� �)

(1� �)4

)

= �

�
(1� �) + 2�
(1� �)3

�
= �

(1 + �)

(1� �)3

r = 4

k4 = �
d

dt

(
et (1� �et)2 + 2�e2t (1� �et)

(1� �et)4

)
jt=0

= �

�
et + 4�e2t + �2e3t

6�2e2t � 4�et � 4�3e3t + �4e4t + 1

�
jt=0

= �

�
1 + 4� + �2

(� � 1)4
�

The recursion formula for cumulants of Geometric Distribution is given by

kr+1 = �
d

d�
kr

2.9.4 Logarithmic Series Distribution

f(�) = � log(1� �)
To obtain the power series of � log(1� �); we start by expanding (1� �)�1 : i.e.

1

1� � = 1 + � + �
2 + � � �

Integrating both sides w.r.t � we getZ
d�

1� � =
Z �

1 + � + �2 + � � �
�
d�

� log(1� �) = � + �
2

2
+
�3

3
+ � � �

=

1X
k=1

�k

k

Therefore,

1 =

1X
k=1

�k

�k log(1� �)
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i.

Pr (X = k) =
�k

�k log(1� �) ; k = 1; 2; : : :

which is called Logarithmic Series Distribution.

ii.
ak =

1

k

iii.
f 0(�) =

1

1� �

iv.
f 00(�) =

1

(1� �)2

v. The mean is given by

E(X) = �
f 0(�)

f(�)
=

�

1� � �
1

� log(1� �) =
�

� (1� �) log(1� �)

vi. The variance is given by

V ar(X) = �2
f 00(�)

f(�)
+ �

f 0(�)

f(�)
�
�
�
f 0(�)

f(�)

�2
=

��2

(1� �)2 log(1� �)
+

��
(1� �) log(1� �) �

�2

[(1� �) log(1� �)]2

=
��2

(1� �)2 log(1� �)
+

��
(1� �) log(1� �) �

�2

[(1� �) log(1� �)]2

=
��2 log(1� �) + � [� (1� �) log(1� �)]� �2

[� (1� �) log(1� �)]2

=
��2 log(1� �)� � (1� �) log(1� �)� �2

[� (1� �) log(1� �)]2

=
[� log(1� �)] [�� � (1� �)]� �2

[� (1� �) log(1� �)]2

=
�� log(1� �)� �2

[(1� �) log(1� �)]2

=
� [�2 + � log(1� �)]
[(1� �) log(1� �)]2

vii. The recurrence relation for the central moments of Logarithmic series distribution
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is given by

�r+1 = �

�
d

d�
�r + r�r�1

d

d�
�01

�
= �

�
d

d�
�r + r�r�1

d

d�

�

� (1� �) log(1� �)

�
= �

(
d

d�
�r + r�r�1

"
� (1� �) log(1� �) + � d

d�
(1� �) log(1� �)

(1� �)2 (log(1� �))2

#)

= �

(
d

d�
�r + r�r�1

"
� (1� �) log(1� �)� �

�
log(1� �)� 1��

1��
�

(1� �)2 [log(1� �)]2

#)

= �

�
d

d�
�r + r�r�1

�
� (1� �) log(1� �)� � log(1� �)� �

(1� �)2 [log(1� �)]2
��

= �

�
d

d�
�r + r�r�1

�
(�1 + � � �) log(1� �)� �
(1� �)2 [log(1� �)]2

��
= �

�
d

d�
�r + r�r�1

�
� log(1� �)� �

(1� �)2 [log(1� �)]2
��

= �

�
d

d�
�r � r

�
� + log(1� �)

(1� �)2 [log(1� �)]2
�
�r�1

�
When r = 1 we obtain,

�2 = �

�
d

d�
�1 �

�
� + log(1� �)

(1� �)2 [log(1� �)]2
�
�0

�
= �

�
0�

�
� + log(1� �)

(1� �)2 [log(1� �)]2
�
�0

�
= �

�
�2 + � log(1� �)

(1� �)2 [log(1� �)]2
�

for r = 2

�3 = �

�
d

d�
�2 � 2

�
� + log(1� �)

(1� �)2 [log(1� �)]2
�
�1

�
= �

�
� d
d�

�
�2 + � log(1� �)

(1� �)2 [log(1� �)]2
�
� 0
�

= ��
(
2 [�2 + � ln (1� �)]
(1� �)3 ln2 (1� �)

+
2 [�2 + � ln (1� �)]
(1� �)3 ln3 (1� �)

+

�
2� + ln (1� �)� �

1��
�

(1� �)2 ln2 (1� �)

)

viii. Probability generating function for Logarithmic series distribution is given by

G(s) =
f(�s)

f(�)
=
log(1� �s)
log(1� �)

G0(s) =
��
1� �s �

1

log(1� �)
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G00(s) =
��2

(1� �s)2
� 1

log(1� �)
setting s = 1 we obtain

G0(1) =
��
1� � �

1

log(1� �) =
�

� (1� �) log(1� �)

G00(1) =
��2

(1� �)2
� 1

log(1� �)
To obtain the mean and variance

E(X) = G0(1) =
�

� (1� �) log(1� �)

V ar(X) = G00(1) +G
0
(1)�

h
G

0
(1)
i2

=
��2

(1� �)2 log(1� �)
� �

(1� �) log(1� �) �
�2

(1� �)2 [log(1� �)]2

=
��2

(1� �)2 log(1� �)
� �

(1� �) log(1� �) �
�2

(1� �)2 [log(1� �)]2

=
��2 log(1� �)� � (1� �) log(1� �)� �2

(1� �)2 [log(1� �)]2

=
��2 log(1� �)� � log(1� �) + �2 log(1� �)� �2

(1� �)2 [log(1� �)]2

= �
�

�2 + � log(1� �)
(1� �)2 [log(1� �)]2

�
ix. The moment generating function for Logarithmic series distribution is given by

MX(t) =
f(�et)

f(�)
=
log(1� �et)
log (1� �)

The rth moment about the origin is obtained from the rth derivative of MX(t)
w.r.t t and setting t = 0:That is

�0r =
drMX(t)

dtr
jt=0

As a result when r = 1

�01 =
dMX(t)

dt
jt=0

=
1

log (1� �)
d

dt
log(1� �et) jt=0

=
1

� log (1� �) �
�et

1� �et jt=0

=
�

� (1� �) log (1� �)
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r = 2

�02 =
�

� log (1� �)
d

dt

�
et

1� �et

�
jt=0

=
�

� log (1� �)

�
et

1� �et +
�e2t

(1� �et)2
�
jt=0

=
�

� log (1� �)

�
1

1� � +
�

(1� �)2
�

=
�

� (1� �)2 log (1� �)
Also,

�2 = �
0
2 � �021

=
�

� (1� �)2 log (1� �)
�
�

�

� (1� �) log (1� �)

�2
=
�� log (1� �)� �2

[(1� �) log (1� �)]2

=
� [�2 + � log (1� �)]
[(1� �) log (1� �)]2

r = 3

�03 =
�

� log (1� �)
d

dt

�
et

1� �et +
�e2t

(1� �et)2
�
jt=0

=
�

� log (1� �)

�
et

1� �et +
�e2t

(1� �et)2
+

2�2e2t

(1� �et)2
+

2�2e3t

(1� �et)3
�
jt=0

=
�

� log (1� �)

�
1

(1� �)2
+

2�

(1� �)3
�
=

� (1 + �)

� (1� �)3 log (1� �)

x. The factorial moment generating function of Logarithmic series distribution is
given by

M[X] (t) =
f(� + �t)

f(�)
= log

�
1� � � �t
1� �

�
The rth factorial moment is obtained by from the rth derivative of M[X](t) w.r.t
t and setting t = 0

�[r] =
drM[X](t)

dtr
jt=0

Thus when r = 1

�[1] =
dM[X](t)

dt
jt=0=

d

dt
log

�
1� � � �t
1� �

�
jt=0

=

�
1

� log (1� �) �
d

dt
[� log (1� � � �t)]

�
jt=0

=

�
1

� log (1� �) �
1

1� � (1 + t) � �
�
jt=0

=
�

� (1� �) log (1� �)

44



r = 2

�[2] =
�

� log (1� �)
d

dt

�
1

1� � (1 + t)

�
jt=0

=
�

� log (1� �)

�
�

f1� � (1 + t)g2
�
jt=0

=
�2

� (1� �)2 log (1� �)
r = 3

�[3] =
�2

� log (1� �)
d

dt

�
1

[1� � (1 + t)]2
�
jt=0

=
�2

� log (1� �)

�
2�

[1� � (1 + t)]3
�
jt=0

=
2�3

� (1� �)3 log (1� �)
r = 4

�[4] =
2�3

� log (1� �)
d

dt

�
1

[1� � (1 + t)]3
�
jt=0

=
2�3

� log (1� �)

�
3�

[1� � (1 + t)]4
�

=
6�4

� (1� �)4 log (1� �)
The recursive relationship between the factorial moments of Logarithmic series
distribution is given by

�[r] =

�
�

1� �

�
(r � 1)�[r�1]

xi. The cumulant generating function of Logarithmic series distribution is given by

KX(t) = logMX(t) = log

�
log

�
1� �et
1� �

��
The rth cumulant of the distribution is the rth derivative of Kx(t) w.r.t t and
setting t = 0

kr =
drKX(t)

dtr
jt=0

When r = 1 we have

k1 =
dKX(t)

dt
jt=0

=
d

dt
log

�
log

�
1� �et
1� �

��
jt=0

=
log (1� �)
log (1� �et)

�
�et

� (1� �et) log (1� �)

�
jt=0

=
�

� (1� �) log (1� �)
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r = 2

k2 =
d

dt

�et

� (1� �et) log (1� �et) jt=0

=
�et [� (1� �et) log (1� �et)]� �et [�et + �et log (1� �et)]

[(1� �et) log (1� �et)]2
jt=0

=
�� (1� �) log (1� �)� � [� + � log (1� �)]

[(1� �) log (1� �)]2

=
� [�2 + � log (1� �)]
[(1� �) log (1� �)]2

r = 3

k3 =
d

dt

��et log (1� �et)� (�et)2

[(1� �et) log (1� �et)]2
jt=0

=

8<:
�
��et log (1� �et) + (�et)

2

(1��et) � 2 (�e
t)
2

�
[(1� �et) log (1� �et)]2

+2�et [log (1� �et) + 1] [(1� �et) log (1� �et)]

9=;
[(1� �et) log (1� �et)]4

jt=0

=

( h
�� log (1� �) + �2

1�� � 2�
2
i
[(1� �) log (1� �et)]2

+2 [� log (1� �) + �] [(1� �) log (1� �)]

)
[(1� �) log (1� �)]4

The recursion formula for cumulants of Logarithmic series distribution is given
by

kr+1 = �
d

d�
kr

2.9.5 When

f (�) = log(1 + �)� log(1� �)

f (�) = log(1 + �)� log(1� �) = log
�
1 + �

1� �

�
but

� log(1� �) = � + �
2

2
+
�3

3
+
�4

4
+ � � �

replace � by �� to obtain,

� log(1 + �) = �� + �
2

2
� �

3

3
+
�4

4
� � � �

Thus,

� log(1� �) � [� log(1 + �)] = 2� + 2�
3

3
+
2�5

5
+ � � �
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i.e.

log(1 + �)� log(1� �) = 2
�
� +

�3

3
+
�5

5
+ � � �

�
log

�
1 + �

1� �

�
= 2

1X
k=0

�2k+1

2k + 1

1 = 2

1X
k=0

�2k+1

(2k + 1) log
�
1+�
1��
�

Therefore

i.

Pr (X = 2k + 1) =
2�2k+1

(2k + 1) log
�
1+�
1��
� ; k = 0; 1; 2; : : :

ii.
ak =

2

(2k + 1)

iii.

f 0(�) =

�
1� �
1 + �

�
d

d�

�
1 + �

1� �

�
=

�
1� �
1 + �

��
(1� �) + (1 + �)

(1� �)2
�

=
1� �
1 + �

:
2

(1� �)2
=

2

(1� �2) = 2
�
1� �2

��1
iv.

f 00 (�) = �2
�
1� �2

��1
(�2�) = 4�

(1� �2)2

v. The mean is given by

E (X) = �
f 0 (�)

f(�)
= 2�

(1� �2)�1

log
�
1+�
1��
� = 2�

(1� �2) �
1

log
�
1+�
1��
�
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vi. The variance is given by

V ar(X) = �2
f 00(�)

f(�)
+ �

f 0(�)

f(�)
�
�
�
f 0(�)

f(�)

�2
=

4�3

(1� �2)2 log
�
1+�
1��
� + 2�

(1� �2) log
�
1+�
1��
� � 4�2

(1� �2)2
�
log
�
1+�
1��
��2

=
4�3

(1� �2)2 log
�
1+�
1��
� + 2�

(1� �2) log
�
1+�
1��
� � 4�2

(1� �2)2
�
log
�
1+�
1��
��2

=
2�
�
2�2 log

�
1+�
1��
�
+ (1� �2) log

�
1+�
1��
�
� 2�

	
(1� �2)2

�
log
�
1+�
1��
��2

= 2�

(
2�2 log

�
1+�
1��
�
+ log

�
1+�
1��
�
� �2 log

�
1+�
1��
�
� 2�

(1� �2)2
�
log
�
1+�
1��
��2

)

= 2�

(
�2 log

�
1+�
1��
�
+ log

�
1+�
1��
�
� 2�

(1� �2)2
�
log
�
1+�
1��
��2

)

= 2�

(
(1 + �2) log

�
1+�
1��
�
� 2�

(1� �2)2
�
log
�
1+�
1��
��2

)

vii.

�r+1 = �

�
d

d�
�r + r�r�1

d

d�
�01

�
= �

�
d

d�
�r + r�r�1

d

d�
E (X)

�
= �

(
d

d�
�r + r�r�1

d

d�

2�

(1� �2) �
1

log
�
1+�
1��
�)

= �

(
d

d�
�r + r�r�1

"
2 (1� �2) log

�
1+�
1��
�
� 2� d

d�
(1� �2) log

�
1+�
1��
�

(1� �2)2
�
log
�
1+�
1��
��2

#)

but

d

d�

�
1� �2

�
log

�
1 + �

1� �

�
= �2� log 1 + �

1� � +
�
1� �2

� 1� �
1 + �

d

d�

1 + �

1� �

= �2� log 1 + �
1� � +

(1� �) (1� �2)
1 + �

� 2

(1 + �) (1� �)2

= �2� log 1 + �
1� � + 2

�3 � �2 � � + 1
�3 � �2 � � + 1

= �2� log 1 + �
1� � + 2
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Thus the recurrence relation for the central moments is given by

�r+1 = �

(
d

d�
�r + r�r�1

"
2 (1� �2) log

�
1+�
1��
�
� 2�

�
�2� log 1+�

1�� + 2
�

(1� �2)2
�
log
�
1+�
1��
��2

#)

= �

(
d

d�
�r + r�r�1

"
(2� 2�2 + 4�2) log

�
1+�
1��
�
� 4�

(1� �2)2
�
log
�
1+�
1��
��2

#)

= �

(
d

d�
�r + r�r�1

"
(2 + 2�2) log

�
1+�
1��
�
� 4�

(1� �2)2
�
log
�
1+�
1��
��2

#)

= �

(
d

d�
�r + 2r

(1 + �2) log
�
1+�
1��
�
� 2�

(1� �2)2
�
log
�
1+�
1��
��2 �r�1

)
putting r = 1

�2 = �

(
2

"
(1 + �2) log

�
1+�
1��
�
� 2�

(1� �2)2
�
log
�
1+�
1��
��2

#)

= 2�

"
(1 + �2) log

�
1+�
1��
�
� 2�

(1� �2)2
�
log
�
1+�
1��
��2

#

viii. The probability generating function is given by

G(s) =
f(�s)

f(�)
=

1

log
�
1+�
1��
� log�1 + �s

1� �s

�
=
log(1 + �s)� log(1� �s)
log (1 + �)� log (1� �)

G0(s) =

�
�

1 + �s
+

�

1� �s

�
1

log (1 + �)� log (1� �)

G00(s) =

�
��2

(1 + �s)2
+

�2

(1� �s)2
�

1

log (1 + �)� log (1� �)
setting s = 1; we obtain

G0(1) =

�
�

1 + �
+

�

1� �

�
1

log (1 + �)� log (1� �)

=
2�

1� �2 �
1

log
�
1+�
1��
�

G00(1) =

�
��2

(1 + �)2
+

�2

(1� �)2
�

1

log (1 + �)� log (1� �)

=
4�3

[1� �2]2
� 1

log 1+�
1��

The mean and the variance is given by,

E(X) = G0(1) =
2�

1� �2 �
1

log
�
1+�
1��
�

and
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V ar(X) = G00(1) +G0(1)� [G0(1)]2

=
4�3

[1� �2]2
� 1

log 1+�
1��

+
2�

1� �2 �
1

log 1+�
1��

� 4�2�
(1� �2) log

�
1+�
1��
��2

=
4�3 log 1+�

1�� + 2� (1� �
2) log 1+�

1�� � 4�
2

(1� �2)2
�
log 1+�

1��
�2

=
4�3 log 1+�

1�� + 2� log
1+�
1�� � 2�

3 log 1+�
1�� � 4�

2

(1� �2)2
�
log 1+�

1��
�2

=
2�3 log 1+�

1�� + 2� log
1+�
1�� � 4�

2

(1� �2)2
�
log 1+�

1��
�2

= 2�

"
(1 + �2) log 1+�

1�� � 2�
(1� �2)2

�
log 1+�

1��
�2
#

ix. The moment generating function of the distribution is given by

MX (t) =
f(�et)

f(�)
=
log(1 + �et)� log(1� �et)
log(1 + �)� log(1� �)

The rth moment about the origin is obtained from the rth derivative of MX(t)
w.r.t t and setting t = 0

That is for r = 1

�01 =
dMX(t)

dt
jt=0

=
d

dt

�
log(1 + �et)� log(1� �et)
log(1 + �)� log(1� �)

�
jt=0

=
1

log
�
1+�
1��
� d
dt

�
log

�
1 + �et

1� �et

��
jt=0

=
1

log
�
1+�
1��
� �1� �et

1 + �et

��
�et � �2e2t + �et + �2e2t

(1� �et)2

�
jt=0

=
1

log
�
1+�
1��
� �1� �et

1 + �et

��
2�et

(1� �et)2

�
jt=0

=
1

log
�
1+�
1��
� � 2�

(1� �2)

�
For r = 2

�02 =
1

log
�
1+�
1��
� d
dt

�
2�et

(1 + �et) (1� �et)

�
jt=0

=
1

log
�
1+�
1��
� � 2�et + 2�3e3t

�4e4t � 2�2e2t + 1

�
jt=0

=
1

log
�
1+�
1��
� � 2� + 2�3

�4 � 2�2 + 1

�
=

1

log
�
1+�
1��
� � 2� + 2�3

(1� �2)2
�
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Also,

�2 = �
0
2 � �021

=
1

log
�
1+�
1��
� ( 2� + 2�3

�4 � 2�2 + 1 �
1

log
�
1+�
1��
� � 2�

(1� �2)

�2)

=
1

log
�
1+�
1��
� ( 2� + 2�3

�4 � 2�2 + 1 �
1

log
�
1+�
1��
� � 4�2

�4 � 2�2 + 1

�)

=
1

log
�
1+�
1��
� (2� log �1+�1��

�
+ 2�3 log

�
1+�
1��
�
� 4�2

log
�
1+�
1��
�
[�4 � 2�2 + 1]

)

=
2�

log
�
1+�
1��
� ( log �1+�1��

�
+ �2 log

�
1+�
1��
�
� 2�

log
�
1+�
1��
�
[�4 � 2�2 + 1]

)

= 2�

"
(1 + �2) log

�
1+�
1��
�
� 2�

(1� �2)2
�
log
�
1+�
1��
��2

#
r = 3

�03 =
1

log
�
1+�
1��
� d
dt

�
2�et + 2�3e3t

�4e4t � 2�2e2t + 1

�
jt=0

=

�
2�et + 6�3e3t

�4e4t � 2�2e2t + 1 �
2�et + 2�3e3t

(�4e4t � 2�2e2t + 1)2
�
4�4e4t � 4�2e2t

��
jt=0

=
1

log
�
1+�
1��
� �(2� + 6�3) (�4 � 2�2 + 1)� (2� + 2�3) (4�4 � 4�2)

(�4 � 2�2 + 1)2
�

=
1

log
�
1+�
1��
� � �2� � 12�3 � 2�5

3�2 � 3�4 + �6 � 1

�
=

1

log
�
1+�
1��
� ��2� � 12�3 � 2�5

(1� �2)3
�

r = 4

�04 =
1

log
�
1+�
1��
� d
dt

8>><>>:
�
(2�et + 6�3e3t) (�4e4t � 2�2e2t + 1)
� (2�et + 2�3e3t) (4�4e4t � 4�2e2t)

�
(�4e4t � 2�2e2t + 1)2

9>>=>>; jt=0

=
1

log
�
1+�
1��
�
8<:

[(2�+18�3)(�4�2�2+1)�(2�+2�3)(16�4�8�2)]
(�4�2�2+1)2

�2(4�4�4�2)[(2�+6�3)(�4�2�2+1)�(2�+2�3)(4�4�4�2)]
(�4�2�2+1)3

9=;
=

1

log
�
1+�
1��
� � 2� + 30�3 � 50�5 � 14�7

6�4 � 4�2 � 4�6 + �8 + 1 �
�16�3 � 96�5 � 16�7

6�4 � 4�2 � 4�6 + �8 + 1

�
=

1

log
�
1+�
1��
� �2� + 30�3 � 50�5 � 14�7 + 16�3 + 96�5 + 16�7

6�4 � 4�2 � 4�6 + �8 + 1

�
=

1

log
�
1+�
1��
� � 2� + 46�3 + 46�5 + 2�7

6�4 � 4�2 � 4�6 + �8 + 1

�
=

1

log
�
1+�
1��
� �2� + 46�3 + 46�5 + 2�7

(1� �2)4
�
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x. The factorial moment generating function of the distribution is given by

M[X] (t) =
f(� + �t)

f(�)
=
log(1 + � + �t)� log(1� � � �t)

log(1 + �)� log(1� �)

The rth factorial moment is obtained by from the rth derivative of M[X](t) w.r.t
t and setting t = 0: i.e.,

�[r] =
drM[X](t)

dtr
jt=0

When r = 1

�[1] =
dM[X](t)

dt
jt=0

=
1

log
�
1+�
1��
� d
dt
flog(1 + � + �t)� log(1� � � �t)g jt=0

=
1

log
�
1+�
1��
� � �

� + t� + 1
+

�

1� t� � �

�
jt=0

=
1

log
�
1+�
1��
� � �

� + 1
+

�

1� �

�
=

1

log
�
1+�
1��
� �� (1� �) + � (1 + �)

(1 + �) (1� �)

�
=

1

log
�
1+�
1��
� � 2�

(1� �2)

�
r = 2

�[2] =
1

log
�
1+�
1��
� � d

dt

�
�

� + t� + 1

�
+
d

dt

�
�

1� t� � �

��
jt=0

=
1

log
�
1+�
1��
� � ��2

(� + 1)2
+

�2

(� � 1)2
�
jt=0

=
1

log
�
1+�
1��
� (��2 (� � 1)2 + �2 (� + 1)2

�4 � 2�2 + 1

)

=
1

log
�
1+�
1��
� � 4�3

�4 � 2�2 + 1

�
=

1

log
�
1+�
1��
� � 4�3

(1� �2)2
�
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r = 3

�[3] =
1

log
�
1+�
1��
� d
dt

(
� �2

2�+2t�+�2+2t�2+t2�2+1

+ �2

�2�2t��2�+2t�2+t2�2+1

)
jt=0

=
1

log
�
1+�
1��
� � � d

dt

�
�2

(� + t� + 1)2

�
+
d

dt

�
�2

(� + t� � 1)2
�
jt=0

=
1

log
�
1+�
1��
� � 2�3

(� + 1)3
� 2�3

(� � 1)3
�

=
1

log
�
1+�
1��
� (2�3 (� � 1)3 � 2�3 (� + 1)3

(1� �2)3

)

=
1

log
�
1+�
1��
� ��4�3 � 12�5

(1� �2)3
�

r = 4

�[4] =
1

log
�
1+�
1��
� d
dt

�
� 2�3

(� + t� � 1)3
+

2�3

(� + t� + 1)3

�
jt=0

=
1

log
�
1+�
1��
� d
dt

�
�2�3

(� + t� � 1)3
+

2�3

(� + t� + 1)3

�
jt=0

=
1

log
�
1+�
1��
� (6�4 (� + t� + 1)4 � 6�4 (� + t� � 1)4

(� + t� � 1)4 (� + t� + 1)4

)
jt=0

=
1

log
�
1+�
1��
� (6�4 (� + 1)4 � 6�4 (� � 1)4

(� � 1)4 (� + 1)4

)

=
1

log
�
1+�
1��
� �48�5 + 48�7

(1� �2)4
�

xi. The cumulant generating function of the distribution is given by

KX(t) = logMX(t) = log

�
log(1 + �et)� log(1� �et)
log(1 + �)� log(1� �)

�
The rth cumulant of the distribution is the rth derivative of Kx(t) w.r.t t and
setting t = 0

kr =
drKX(t)

dtr
jt=0
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When r = 1; we have

k1 =
dKX(t)

dt
jt=0

=
d

dt

�
log

�
log (1 + �et)� log (1� �et)
log (1 + �)� log (1� �)

��
jt=0

=

�
2�et

ln (�et + 1)� ln (1� �et)� �2e2t ln (�et + 1) + �2e2t ln (1� �et)

�
jt=0

=

(
2�

ln
�
�+1
1��
�
� �2 ln

�
�+1
1��
�)

=
1

log
�
1+�
1��
� � 2�

(1� �2)

�
r = 2

k2 =
d2

dt2

�
log

�
log (1 + �et)� log (1� �et)
log (1 + �)� log (1� �)

��
jt=0

=
2� ln (� + 1)� 4�2 � 2� ln (1� �) + 2�3 ln (� + 1)� 2�3 ln (1� �)24 ln2 (� + 1) + ln2 (1� �)� 2 ln (� + 1) ln (1� �)

�2�2 ln2 (� + 1) + �4 ln2 (� + 1)� 2�2 ln2 (1� �)+
�4 ln2 (1� �) + 4�2 ln (� + 1) ln (1� �)� 2�4 ln (� + 1) ln (1� �)

35
=

2�
�
ln
�
�+1
1��
�
� 2� + �2 ln

�
�+1
1��
�	

f1� 2�2 + �4g
�
ln2 (� + 1)� 2 ln (� + 1) ln (1� �) + ln2 (1� �)

�
=

2�
�
ln
�
�+1
1��
�
� 2� + �2 ln

�
�+1
1��
�	

f1� 2�2 + �4g (ln (1 + �)� ln (1� �))2

= 2�

(
(1 + �2) log 1+�

1�� � 2�
(1� �2)2

�
log 1+�

1��
�2
)

2.9.6 Inverse Sine

f(�) = sin�1 �:

To obtain the power series of sin�1 �; we start by expanding (1� �2)�
1
2 i.e.,

�
1� �2

�� 1
2 =

1X
k=0

�
�1
2

k

��
��2

�k
=

1X
k=0

(�1)k
�
�1
2

k

�
�2k

Intergrating both sides w.r.t �; we have
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Z �
1� �2

�� 1
2 d� =

1X
k=0

(�1)k
�
�1
2

k

�Z
�2kd�

=

1X
k=0

(�1)k
�
�1
2

k

�
�2k+1

2k + 1

Solving the left hand side(LHS)

LHS =

Z �
1� �2

�� 1
2 d�

Let � = sinu ) d� = cosudu and sin�1 � = u

LHS =

Z �
1� sin2 u

�� 1
2 cosudu

=

Z �
cos2 u

�� 1
2 cosudu

=

Z
(cosu)�1 cosudu

=

Z
1du

= u

= sin�1 �

Therefore,

sin�1 � =
1X
k=0

(�1)k
�
�1
2

k

�
�2k+1

2k + 1
(2.26)

= � +
1X
k=1

(�1)k
�
�1
2

� �
�1
2
� 1
� �
�1
2
� 1
�
� � �
�
�1
2
� (k � 1)

�
1 � 2 � 3 � � � k

�2k+1

2k + 1

= � +

1X
k=1

(�1)k
�
�1
2

� �
�3
2

� �
�5
2

�
� � �
�
�2k�1

2

�
1 � 2 � 3 � � � k

�2k+1

2k + 1

= � +
1X
k=1

(�1)k (�1)k
1
2
� 3
2
� 5
2
� � � 2k�1

2

1 � 2 � 3 � � � k
�2k+1

2k + 1

= � +
1X
k=1

(�1)k (�1)k 1 � 3 � 5 � � � (2k � 1)
2 � 4 � 6 � � � (2k)

�2k+1

2k + 1

implying that

1 =
�

sin�1 �
+

1X
k=1

(�1)k (�1)k 1 � 3 � 5 � � � (2k � 1)
2 � 4 � 6 � � � (2k) sin�1 �

�2k+1

2k + 1

Therefore
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i.

Pr (X = 1) =
�

sin�1 �

and

Pr (X = 2k + 1) =
1 � 3 � 5 � � � (2k � 1)
2 � 4 � 6 � � � (2k) sin�1 �

�2k+1

2k + 1
; k = 1; 2; ::: and 0 < � < 1

Alternatively, from (2:21)

1 =
1X
k=0

(�1)k
�
�1
2

k

�
1

sin�1 �

�2k+1

2k + 1

Therefore,

Pr (X = 2k + 1) = (�1)k
�
�1
2

k

�
1

sin�1 �

�2k+1

2k + 1
; k = 1; 2; ::: and 0 < � < 1

ii.

ak = (�1)k
�
�1
2

k

��
1

2k + 1

�
iii.

f(�) =
1X
k=0

(�1)k
�
�1
2

k

�
�2k+1

2k + 1
= sin�1 �

f 0(�) =
1X
k=0

(�1)k
�
�1
2

k

�
�2k

=
1X
k=0

�
�1
2

k

��
��2

�k
=
�
1� �2

�� 1
2

iv.

f 00(�) = �1
2

�
1� �2

�� 1
2
�1
(�2�)

= �
�
1� �2

�� 3
2

v. The mean is given by

E (X) = �
f 0 (�)

f(�)

= �
(1� �2)�

1
2

sin�1 �
=

�p
1� �2 sin�1 �
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vi. The variance is given by

V ar(X) = �2
f 00(�)

f(�)
+ �

f 0(�)

f(�)
�
�
�
f 0(�)

f(�)

�2
=
�2 � � (1� �2)�

3
2

sin�1 �
+

�p
1� �2 sin�1 �

� �2�p
1� �2

�2 �
sin�1 �

�2
=
�3 (1� �2)�

3
2

sin�1 �
+

�p
1� �2 sin�1 �

� �2�p
1� �2

�2 �
sin�1 �

�2
=

�3�p
1� �2

�3
sin�1 �

+
�p

(1� �2) sin�1 �
� �2�p

1� �2
�2 �
sin�1 �

�2
=
�3 sin�1 � + �

�p
1� �2

�2
sin�1 � � �2

p
(1� �2)�p

1� �2
�3 �
sin�1 �

�2
=
�3 sin�1 � + � (1� �2) sin�1 � � �2

p
(1� �2)�p

1� �2
�3 �
sin�1 �

�2
=
� sin�1 � � �2

p
(1� �2)�p

1� �2
�3 �
sin�1 �

�2
= �

"
sin�1 � � �

p
(1� �2)�p

1� �2
�3 �
sin�1 �

�2
#
:

vii. From (2:18) the recurrence relation is given by

�r+1 = �

�
d

d�
�r + r�r�1

d

d�
�01

�
but

�01 = E (X) =
�p

1� �2 sin�1 �
Di¤erentiate w.r.t � to obtain,

d

d�
�01 =

p
1� �2 sin�1 � � � d

d�

p
1� �2 sin�1 ��p

1� �2
�2 �
sin�1 �

�2
=

p
1� �2 sin�1 � � �

n
(�2�)
2
(1� �2)�

1
2 sin�1 � +

p
1� �2 d

d�
sin�1 �

o
�p
1� �2

�2 �
sin�1 �

�2
but

d

d�
sin�1 � =

d

d�
f (�) = f (�) =

�
1� �2

�� 1
2
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Therefore,

d

d�
�01 =

p
1� �2 sin�1 � � �

n
(�2�)
2
(1� �2)�

1
2 sin�1 � +

p
1� �2 (1� �2)�

1
2

o
�p
1� �2

�2 �
sin�1 �

�2
=

p
1� �2 sin�1 � + �2 (1� �2)�

1
2 sin�1 � � ��p

1� �2
�2 �
sin�1 �

�2
=

p
1� �2p
1� �2

"p
1� �2 sin�1 � + �2 (1� �2)�

1
2 sin�1 � � ��p

1� �2
�2 �
sin�1 �

�2
#

=
(1� �2) sin�1 � + �2 sin�1 � � �

p
1� �2�p

1� �2
�3 �
sin�1 �

�2
=

sin�1 � � �
p
1� �2�p

1� �2
�3 �
sin�1 �

�2
)

�r+1 = �

"
d

d�
�r + r

(
sin�1 � � �

p
1� �2�p

1� �2
�3 �
sin�1 �

�2
)
�r�1

#
;

setting r = 1 we obtain,

�2 = �

"
sin�1 � � �

p
1� �2�p

1� �2
�3 �
sin�1 �

�2
#

viii. The pgf is given by

G(s) =
f(�s)

f(�)
=
sin�1 �s

sin�1 �

G0(s) =
� d
ds
sin�1 �s

sin�1 �

=
�
�
1� (�s)2

�� 1
2

sin�1 �

and

G00(s) =
�1
2
�
�
1� (�s)2

�� 1
2
�1
(�2� (�s))

sin�1 �

=
�3s
�
1� (�s)2

�� 3
2

sin�1 �

Therefore,

G0(1) =
� (1� �2)�

1
2

sin�1 �
=

�p
1� �2

� 1

sin�1 �

G00(1) =
�3 (1� �2)�

3
2

sin�1 �
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To obtain mean and variance we have,

E(X) = G0(1) =
�p
1� �2

1

sin�1 �

and

V ar(X) = G00(1) +G0(1)� [G0(1)]2

=
�3 (1� �2)�

3
2

sin�1 �
+

�p
1� �2 sin�1 �

� �2�p
1� �2

�2 �
sin�1 �

�2
=
�
�
sin�1 � � �

p
(1� �2)

�
�p
1� �2

�3 �
sin�1 �

�2
ix. The moment generating function of the distribution is given by

MX (t) =
f(�et)

f(�)
=

P1
k=0 (�1)

k �� 1
2
k

�(�et)2k+1
2k+1

sin�1 �

The rth moment about the origin is obtained from the rth derivative of MX(t)
w.r.t t and setting t = 0

That is for r = 1

�01 =
dMX(t)

dt
jt=0

=

P1
k=0 (�1)

k �� 1
2
k

�
d
dt

�
(�et)

2k+1

2k+1

�
jt=0

sin�1 �

=

P1
k=0 (�1)

k �� 1
2
k

�n
�et (�et)

2k
o
jt=0

sin�1 �

=

P1
k=0 (�1)

k �� 1
2
k

�
�2k�

p
1� �2 sin�1 �

=

P1
k=0

�� 1
2
k

�
(��2)k �

sin�1 �

=
�p

1� �2 sin�1 �
For r = 2

�02 =

P1
k=0 (�1)

k �� 1
2
k

�
d
dt

n
�et (�et)

2k
o
jt=0

sin�1 �
jt=0

=

P1
k=0 (�1)

k �� 1
2
k

�n
�et (�et)

2k
+ 2k�et (�et)

2k
o

sin�1 �
jt=0

=

P1
k=0 (�1)

k �� 1
2
k

�n
� (�)2k + 2k� (�)2k

o
sin�1 �

=

P1
k=0 (�1)

k �� 1
2
k

�n
� (�2)

k
+ 2k� (�2)

k
o

sin�1 �
=

� [2k + 1]p
1� �2 sin�1 �
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A summary of the univariate discrete probability distributions belonging to the class
of power series distributions are illustrated in table 2.1 below.

Table 2.1 Summary of univariate discrete probability distributions

60



Chapter 3

Power Series Distributions in terms
of Hypergeometric functions

3.1 Introduction

This chapter entails expressing of power series distribution interms of Hypergeomet-
ric functions, that is; the Con�uent and Gauss Hypergeometric functions with their
construction and properties of the discrete Hypergeometric functions. Further, A Gen-
eralized form of Hypergeometric function with it�s construction and properties will also
be covered. Lastly, Special cases of con�uent and Gauss Hypergeometric distributions,
that includes; Power Series Distributions based on exponential expansion, and those
based on binomial expansions with their construction and properties will be covered.

3.2 Con�uent Hypergeometric Distribution

3.2.1 Introduction

Con�uent Hypergeometric (Kummers�s) function denoted by the symbol 1F1 (a; c;x)
represents the series

1F1 (a; c;x) = 1 +
a

c

x

1!
+
a (a+ 1)

c (c+ 1)

x2

2!
+
a (a+ 1) (a+ 2)

c (c+ 1) (c+ 2)

x3

3!
+ � � �

=
1X
k=0

a (a+ 1) (a+ 2) � � � (a+ k � 1)
c (c+ 1) (c+ 2) � � � (c+ k � 1)

xk

k!
for c 6= 0;�1;�2; : : : (3.1)

d

dx
(1F1 (a; c;x)) =

a

c

1

1!
+
a (a+ 1)

c (c+ 1)

2x

2!
+
a (a+ 1) (a+ 2)

c (c+ 1) (c+ 2)

3x2

3!
+ � � �

=
a

c
+
a (a+ 1)

c (c+ 1)

x

1!
+
a (a+ 1) (a+ 2)

c (c+ 1) (c+ 2)

x2

2!
+ � � �

=
a

c

�
1 +

(a+ 1)

(c+ 1)

x

1!
+
(a+ 1) (a+ 2)

(c+ 1) (c+ 2)

x2

2!
+ � � �

�
=
a

c
1F1 (a+ 1; c+ 1; x) (3.2)
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d2

dx2
(1F1 (a; c;x)) =

a

c

�
0 +

(a+ 1)

(c+ 1)
+
(a+ 1) (a+ 2)

(c+ 1) (c+ 2)

x

1!
+ � � �

�
=
a

c

�
(a+ 1)

(c+ 1)
+
(a+ 1) (a+ 2)

(c+ 1) (c+ 2)

x

1!
+ � � �

�
=
a

c

(a+ 1)

(c+ 1)

�
1 +

(a+ 2)

(c+ 2)

x

1!
+ � � �

�
=
a

c

(a+ 1)

(c+ 1)
1F1 (a+ 2; c+ 2; x) (3.3)

In applied Mathematics, special functions are used in solving di¤erential equa-
tions. Thus 1F1 (a; c;x) is a solution to certain di¤erential equation which is derived
as follows:-
Let us use the operator

� = x
d

dx

Therefore,

�xk = x
d

dx
xk = xkxk�1 = kxk (3.4)

(� + c� 1)xk = �xk + (c� 1)xk

= kxk + (c� 1)xk

= (k + c� 1)xk (3.5)

� (� + c� 1)xk = � (k + c� 1)xk

= �xk (k + c� 1)
= kxk (k + c� 1)
= k (k + c� 1)xk (3.6)

(� + a) (� + b)xk = (� + a)
�
�xk + bxk

�
= (� + a)

�
kxk + bxk

�
= (� + a) kxk + (� + a) bxk

= k�xk + akxk + b�xk + abxk

= k2xk + akxk + bkxk + abxk

= xk
�
ab+ ak + bk + k2

�
= xk [k (k + a) + b (k + a)]

= (k + a) (k + b)xk (3.7)
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Let � (� + c� 1) 1F1 (a; c;x) = AB: Therefore,

AB = � (� + c� 1)
1X
k=0

a (a+ 1) (a+ 2) � � � (a+ k � 1)
c (c+ 1) (c+ 2) � � � (c+ k � 1)

xk

k!

=
1X
k=0

a (a+ 1) (a+ 2) � � � (a+ k � 1)
c (c+ 1) (c+ 2) � � � (c+ k � 1) � (� + c� 1)

xk

k!

=

1X
k=0

a (a+ 1) (a+ 2) � � � (a+ k � 1)
c (c+ 1) (c+ 2) � � � (c+ k � 1) k (k + c� 1)

xk

k!

=
1X
k=0

a (a+ 1) (a+ 2) � � � (a+ k � 1)
c (c+ 1) (c+ 2) � � � (c+ k � 2)

xk

(k � 1)!

= x
1X
k=0

a (a+ 1) (a+ 2) � � � (a+ k � 1)
c (c+ 1) (c+ 2) � � � (c+ k � 2)

xk�1

(k � 1)!

= x
1X
k=0

a (a+ 1) (a+ 2) � � � (a+ k)
c (c+ 1) (c+ 2) � � � (c+ k � 1)

xk

k!
by replacing k with (k + 1)

= x
1X
k=0

a (a+ 1) (a+ 2) : : : (a+ k � 1)
c (c+ 1) (c+ 2) : : : (c+ k � 1) (a+ k)

xk

k!

= x
1X
k=0

a (a+ 1) (a+ 2) : : : (a+ k � 1)
c (c+ 1) (c+ 2) : : : (c+ k � 1) (a+ �)

xk

k!

= x (a+ �)
1X
k=0

a (a+ 1) (a+ 2) � � � (a+ k � 1)
c (c+ 1) (c+ 2) � � � (c+ k � 1)

xk

k!
(3.8 a)

Thus replacing the value of AB in (3.8 a) we obtain

� (� + c� 1) 1 F1 (a; c;x) = x (a+ �) 1 F1 (a; c;x) (3.8 b)

i.e., � (� + c� 1) y = x (a+ �) y where y = 1F1 (a; c;x) (3.8 c)

)

�2y + � (c� 1) y = x (a+ �) y
�2y + [� (c� 1)� x (a+ �)] y = 0
�2y + � (c� 1) y � xay � x�y = 0
�2y + (c� 1� x) �y � xay = 0

� (�y) + (c� 1� x) �y � xay = 0

�

�
x
d

dx
y

�
+ (c� 1� x)x d

dx
y � xay = 0

x
d

dx

�
x
d

dx
y

�
+ (c� 1� x)x d

dx
y � xay = 0

x
d2y

dx2
+
dy

dx
+ (c� 1� x) dy

dx
� ay = 0

x
d2y

dx2
+ (c� x) dy

dx
� ay = 0 (3.9)

Which is the di¤erential equation.
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3.2.2 Construction and Properties of Discrete Con�uent Hy-
pergeometric Distribution

By de�nition,

1F1 (a; c; �) =
1X
k=0

a (a+ 1) (a+ 2) � � � (a+ k � 1)
c (c+ 1) (c+ 2) � � � (c+ k � 1)

�k

k!
is a power series

Therefore,

1 =
1X
k=0

a (a+ 1) (a+ 2) � � � (a+ k � 1)
c (c+ 1) (c+ 2) � � � (c+ k � 1) k!

�k

1F1 (a; c; �)

Therefore

i.

Pr (X = k) =
a (a+ 1) (a+ 2) � � � (a+ k � 1)
c (c+ 1) (c+ 2) � � � (c+ k � 1) k!

�k

1F1 (a; c; �)
; k = 0; 1; 2; : : :

(3.10)

This is the Con�uent Hypergeometric Probability Mass Function. It belongs to
the class of a power series distribution given by

Pr (X = k) =
ak�

k

f(�)
for k = 0; 1; 2; ::: and � > 0; ak > 0

In this case

ii.

ak =
a (a+ 1) (a+ 2) � � � (a+ k � 1)
c (c+ 1) (c+ 2) � � � (c+ k � 1) (3.11)

iii.
f (�) = 1F1 (a; c; �) (3.12)

iv.
f 0 (�) =

a

c
1F1 (a+ 1; c+ 1; �) as in (3:2)

v.

f 00 (�) =
a

c

(a+ 1)

(c+ 1)
1F1 (a+ 2; c+ 2; �) as in (3:3)

vi.

E(X) =
�

f(�)
f 0(�) =

�a

c
1F1 (a+ 1; c+ 1; �)

1F1 (a; c; �)
(3.13)

vii. To obtain V ar (X) ; consider the di¤erential equation (3:9) by letting

x = � and y = f(�) = 1F1 (a; c; �)

�f 00 (�) + (c� �) f 0 (�)� af (�) = 0

)
�f 00 (�) = af (�)� (c� �) f 0 (�) (��)
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multiply equation (��) with � to obtain

�2f 00 (�) = �af (�)� � (c� �) f 0 (�)
�2f 00 (�)

f (�)
= �a� � (c� �) f

0 (�)

f (�)

)

V ar (X) =
�2f 00 (�)

f (�)
+ �

f 0 (�)

f (�)
�
�
�
f 0 (�)

f (�)

�2
= �a� � (c� �) f

0 (�)

f (�)
+ �

f 0 (�)

f (�)
�
�
�
f 0 (�)

f (�)

�2
= �a+ [1� (c� �)] �f

0 (�)

f (�)
�
�
�
f 0 (�)

f (�)

�2
= �a+ [1� c+ �] �a

c
1F1 (a+ 1; c+ 1; �)

1F1 (a; c; �)
�
�
�a

c
1F1 (a+ 1; c+ 1; �)

1F1 (a; c; �)

�2
(3.14)

viii. Probability Generating Function (pgf) of X is given by

G(s) =
f(�s)

f(�)
=

1F1 (a; c; �s)

1F1 (a; c; �)
(3.15)

To derive the di¤erential equation whose solution is G(s) given in (3:15)

let

� = s
d

ds
an operator
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Then

� (� + c� 1)G (s) = � (� + c� 1)
1X
k=0

pks
k

=

1X
k=0

pk� (� + c� 1) sk

=
1X
k=0

pk
�
�
�
�sk + (c� 1) sk

�	
=

1X
k=0

pk

�
�

�
s
d

ds
sk + (c� 1) sk

��
=

1X
k=0

pk
�
�
�
sksk�1 + (c� 1) sk

�	
=

1X
k=0

pk
�
�
�
ksk + (c� 1) sk

�	
=

1X
k=0

pk
�
� [k + c� 1] sk

	
=

1X
k=0

pk
�
[k + c� 1] �sk

	
=

1X
k=0

pk

�
[k + c� 1] s d

ds
sk
�

=
1X
k=0

pk
�
[k + c� 1] sksk�1

	
=

1X
k=0

pk
�
[k + c� 1] ksk

	
=

1X
k=0

k [k + c� 1] pksk (3.16*)

Therefore (3.16*) becomes

� (� + c� 1)G (s) =
1X
k=0

k [k + c� 1] a (a+ 1) (a+ 2) � � � (a+ k � 1)
c (c+ 1) (c+ 2) � � � (c+ k � 1)

�ksk

f (�) k!

=

1X
k=0

a (a+ 1) (a+ 2) � � � (a+ k � 1)
c (c+ 1) (c+ 2) � � � (c+ k � 2)

(�s)k

f (�) (k � 1)!

= �s

1X
k=0

a (a+ 1) (a+ 2) � � � (a+ k � 1)
c (c+ 1) (c+ 2) � � � (c+ k � 2)

(�s)k�1

(k � 1)!
1

f (�)

Replace k by k + 1 to obtain

� (� + c� 1)G (s) = �s
1X
k=0

a (a+ 1) (a+ 2) � � � (a+ k)
c (c+ 1) (c+ 2) � � � (c+ k � 1)

(�s)k

k!

1

f (�)
(3:16 � �)
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but

(a+ �) (�s)k = a (�s)k + � (�s)k

= a (�s)k + s
d

ds
(�s)k

= a (�s)k + sk� (�s)k�1

= a (�s)k + k (�s)k

= (a+ k) (�s)k

Therefore (3:16 � �) becomes

� (� + c� 1)G (s) = �s
1X
k=0

a (a+ 1) (a+ 2) � � � (a+ k � 1)
c (c+ 1) (c+ 2) � � � (c+ k � 1)

h
(a+ k) (�s)k

i
k!f (�)

= �s
1X
k=0

a (a+ 1) (a+ 2) � � � (a+ k � 1)
c (c+ 1) (c+ 2) � � � (c+ k � 1)

h
(a+ �) (�s)k

i
k!f (�)

= �s (a+ �)
1X
k=0

a (a+ 1) (a+ 2) � � � (a+ k � 1)
c (c+ 1) (c+ 2) � � � (c+ k � 1)

(�s)k

k!

1

f (�)

= �s (a+ �)
f (�s)

f (�)

= �s (a+ �)G (s) (3.16)

Therefore

� [�G (s) + (c� 1)G (s)] = �saG (s) + �s�G (s)
� [�G (s)] + (c� 1) �G (s) = �saG (s) + �s�G (s)

�

�
s
d

ds
G (s)

�
+ (c� 1) s d

ds
G (s) = �saG (s) + �s � s d

ds
G (s)

� fsG0 (s)g+ (c� 1) sG0 (s)� �s � sG0 (s)� �saG (s) = 0
� fsG0 (s)g+ (c� 1) sG0 (s)� �s2G0 (s)� �saG (s) = 0

s
d

ds
fsG0 (s)g+ (c� 1) sG0 (s)� �s2G0 (s)� �saG (s) = 0
d

ds
fsG0 (s)g+ (c� 1)G0 (s)� �sG0 (s)� �aG (s) = 0

d

ds
fsG0 (s)g+ (c� 1)G0 (s)� �sG0 (s)� �aG (s) = 0

sG00 (s) +G0 (s) + cG0 (s)�G0 (s)� �sG0 (s)� �aG (s) = 0
sG00 (s) + (c� �s)G0 (s)� �aG (s) = 0 (3.17)

setting s = 1; we obtain

G00 (1) + (c� �)G0 (1)� �aG (1) = 0

G00 (1) = �a� (c� �)G0 (1) (3.18)
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E(X) = G0 (1) =
�

f(�)
f 0(�) =

�a

c
1F1 (a+ 1; c+ 1; �)

1F1 (a; c; �)
as given in (3.13)

V ar(X) = G00(1) +G0(1)� [G0(1)]2

= �a� (c� �)G0 (1) +G0(1)� [G0(1)]2

= �a+ [1� c+ �]G0 (1)� [G0(1)]2

= �a+ [1� c+ �] �a
c
1F1 (a+ 1; c+ 1; �)

1F1 (a; c; �)
�
�
�a

c
1F1 (a+ 1; c+ 1; �)

1F1 (a; c; �)

�2
(3.19)

3.3 Gauss Hypergeometric Distribution

3.3.1 Introduction

Gauss Hypergeometric function denoted by the symbol 2F1 (a; b; c;x) represents the
series

2F1 (a; b; c;x) = 1 +
ab

c

x

1!
+
a (a+ 1) b (b+ 1)

c (c+ 1)

x2

2!
+ � � � for c 6= 0;�1;�2; : : : (3.20)

d

dx
2F1 (a; b; c;x) =

ab

c
+
a (a+ 1) b (b+ 1)

c (c+ 1)
x+

a (a+ 1) (a+ 2) b (b+ 1) (b+ 2)

c (c+ 1) (c+ 2)

x2

2!
+ � � �

=
ab

c

�
1 +

(a+ 1) (b+ 1)

(c+ 1)
x+

(a+ 1) (a+ 2) (b+ 1) (b+ 2)

(c+ 1) (c+ 2)

x2

2!
+ � � �

�
=
ab

c
2F1 (a+ 1; b+ 1; c+ 1; x) (3.21)

d2

dx2
2F1 (a; b; c;x) =

ab

c

�
(a+ 1) (b+ 1)

(c+ 1)
+
(a+ 1) (a+ 2) (b+ 1) (b+ 2)

(c+ 1) (c+ 2)

x

1!
+ � � �

�
=
a (a+ 1) b (b+ 1)

c (c+ 1)

�
1 +

(a+ 2) (b+ 2)

(c+ 2)
x+ � � �

�
=
a (a+ 1) b (b+ 1)

c (c+ 1)
2F1 (a+ 1; b+ 1; c+ 1; x) (3.22)

we now wish to derive a di¤erential equation whose solution is 2F1 (a; b; c;x)
Let us use the operator

� = x
d

dx

Then
Let � (� + c� 1) 2F1 (a; b; c;x) = AC: Therefore,
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AC =
1X
k=0

a (a+ 1) � � � (a+ k � 1) b (b+ 1) � � � (b+ k � 1)
c (c+ 1) � � � (c+ k � 1) � (� + c� 1) x

k

k!

=
1X
k=0

a (a+ 1) � � � (a+ k � 1) b (b+ 1) � � � (b+ k � 1) k (k + c� 1)
c (c+ 1) � � � (c+ k � 1)

xk

k!

=
1X
k=0

a (a+ 1) � � � (a+ k � 1) b (b+ 1) � � � (b+ k � 1)
c (c+ 1) � � � (c+ k � 2)

xk

(k � 1)!

= x
1X
k=0

a (a+ 1) � � � (a+ k � 1) b (b+ 1) � � � (b+ k � 1)
c (c+ 1) � � � (c+ k � 2)

xk�1

(k � 1)!

AC = x
1X
k=0

a (a+ 1) � � � (a+ k � 1) b (b+ 1) � � � (b+ k � 1) (a+ k) (b+ k)
c (c+ 1) � � � (c+ k � 1)

xk

k!

= x

1X
k=0

a (a+ 1) � � � (a+ k � 1) b (b+ 1) � � � (b+ k � 1)
c (c+ 1) � � � (c+ k � 1) (a+ �) (b+ �)

xk

k!

= x (a+ �) (b+ �)
1X
k=0

a (a+ 1) � � � (a+ k � 1) b (b+ 1) � � � (b+ k � 1)
c (c+ 1) � � � (c+ k � 1)

xk

k!
(AC�)

Therefore replacing the value of AC in equation (AC�) above we obtain

� (� + c� 1) 2F1 (a; b; c;x) = x (a+ �) (b+ �) 2F1 (a; b; c;x) (3.23)

Therefore,

� (� + c� 1)F = x (a+ �) (b+ �)F where F = 2F1 (a; b; c;x) and � = x
d

dx

Therefore
� f�F + (c� 1)Fg = x (a+ �) (bF + �F )

) �

�
x
d

dx
F + (c� 1)F

�
= x (a+ �)

�
bF + x

d

dx
F

�

x
d

dx

�
x
d

dx
F

�
+ (c� 1)x d

dx
F = x (a+ �)

�
bF + x

d

dx
F

�
d

dx

�
x
d

dx
F

�
+ (c� 1) d

dx
F = (a+ �)

�
bF + x

d

dx
F

�
x
d2

dx2
F +

d

dx
F + c

d

dx
F � d

dx
F = abF + ax

d

dx
F + �bF + �x

d

dx
F

x
d2

dx2
F + c

d

dx
F = abF + ax

d

dx
F + xb

d

dx
F + x

d

dx

�
x
d

dx
F

�
= abF + (ax+ bx)

d

dx
F + x

�
x
d2

dx2
F +

d

dx
F

�
= abF + (a+ b)x

d

dx
F + x

�
x
d2

dx2
F +

d

dx
F

�
(3.24)
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Therefore (3.24) becomes

x(1� x) d
2

dx2
F + [c� ax� bx� x] d

dx
F � abF = 0

x(1� x) d
2

dx2
F + [c� (a+ b+ 1) x] d

dx
F � abF = 0 (3.25)

Which is the di¤erential equation.

3.3.2 Construction and properties of Gauss Hypergeometric
Distribution

By de�nition

2F1 (a; b; c; �) =
1X
k=0

a (a+ 1) � � � (a+ k � 1) b (b+ 1) � � � (b+ k � 1)
c (c+ 1) � � � (c+ k � 1)

�k

k!

1 =

1X
k=0

a (a+ 1) � � � (a+ k � 1) b (b+ 1) � � � (b+ k � 1)
c (c+ 1) � � � (c+ k � 1) 2F1 (a; b; c; �)

�k

k!

Therefore

i.

Pr (X = k) =
a (a+ 1) � � � (a+ k � 1) b (b+ 1) � � � (b+ k � 1)

c (c+ 1) � � � (c+ k � 1) 2F1 (a; b; c; �)

�k

k!
; k = 0; 1; 2; : : :

(3.26)

which is the Gauss Hypergeometric probability mass function. It belongs to the
class of power series distributions given by

Pr (X = k) =
ak�

k

f(�)
for k = 0; 1; 2; ::: and � > 0; ak > 0:

This implies that

ii.

ak =
a (a+ 1) � � � (a+ k � 1) b (b+ 1) � � � (b+ k � 1)

c (c+ 1) � � � (c+ k � 1) (3.27)

iii.
f(�) = 2F1 (a; b; c; �) (3.28)

iv.

f 0(�) =
ab

c
2F1 (a+ 1; b+ 1; c+ 1; �) as given in (3:21)

v.

f 00(�) =
a (a+ 1) b (b+ 1)

c (c+ 1)
2F1 (a+ 2; b+ 2; c+ 2; �) as given in (3:22)

vi.

E(X) =
�

f(�)
f 0(�) = �

ab

c
2F1 (a+ 1; b+ 1; c+ 1; �)

2F1 (a; b; c; �)
(3.29)
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vii. To obtain V ar (X) ; consider the di¤erential equation (3:25), i.e.

x(1� x) d
2

dx2
F + [c� (a+ b+ 1) x] d

dx
F � abF = 0 (3.30)

Replace x = � and F = f(�) = 2F1 (a; b; c; �) in (3:30) to obtain

)
�(1� �)f 00(�) + [c� (a+ b+ 1) �] f 0(�)� ab� f(�) = 0

)
f 00(�)

f(�)
=

ab

�(1� �) �
[c� (a+ b+ 1) �]

�(1� �)
f 0(�)

f(�)

V ar (X) =
�2f 00 (�)

f (�)
+ �

f 0 (�)

f (�)
�
�
�
f 0 (�)

f (�)

�2
= �2

�
ab

�(1� �) �
[c� (a+ b+ 1) �]

�(1� �)
f 0(�)

f(�)

�
+ �

f 0 (�)

f (�)
�
�
�
f 0 (�)

f (�)

�2
=

�ab

(1� �) � �
[c� (a+ b+ 1) �]

(1� �)
f 0(�)

f(�)
+ �

f 0 (�)

f (�)
�
�
�
f 0 (�)

f (�)

�2
=

�ab

(1� �) +
�
1� [c� (a+ b+ 1) �]

(1� �)

�
�
f 0(�)

f(�)
�
�
�
f 0 (�)

f (�)

�2
=

�ab

(1� �) +
�
1� � � [c� (a+ b+ 1) �]

(1� �)

�
�
f 0(�)

f(�)
�
�
�
f 0 (�)

f (�)

�2
=

�ab

(1� �) + f1� � � c+ (a+ b) � + �g
�

(1� �)
f 0(�)

f(�)
�
�
�
f 0 (�)

f (�)

�2
=

�ab

(1� �) + f(1� c) + (a+ b) �g
�

(1� �)
f 0(�)

f(�)
�
�
�
f 0 (�)

f (�)

�2
Therefore,

V ar(X) =
�

(1� �)
ab

c
c+ f(1� c) + (a+ b) �g �

(1� �)
ab

c
�

2F1 (a+ 1; b+ 1; c+ 1; �)

2F1 (a; b; c; �)
�
�
�
ab

c
2F1 (a+ 1; b+ 1; c+ 1; �)

2F1 (a; b; c; �)

�2
=

�

(1� �)
ab

c

8<: c+ f(1� c) + (a+ b) �g 2F1(a+1;b+1;c+1;�)

2F1(a;b;c;�)

�� ab
c
(1� �)

h
2F1(a+1;b+1;c+1;�)

2F1(a;b;c;�)

i2
9=; (3.31)

as obtained by Noack (1950)

viii. Probability Generating Function(pgf)

The pgf of X is given by

G(s) =
f(�s)

f(�)
=

2F1 (a; b; c; �s)

2F1 (a; b; c; �)
(3.32)
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To derive the di¤erential equation whose solution isG(s) given in (3:32), consider,

� (� + c� 1)G (s) = � (� + c� 1)
1X
k=0

pks
k

where � = s d
ds

Therefore

� (� + c� 1)G (s)

=

1X
k=0

pk� (� + c� 1) sk

=

1X
k=0

pkk (k + c� 1) sk

=
1X
k=0

a (a+ 1) � � � (a+ k � 1) b (b+ 1) � � � (b+ k � 1) k (k + c� 1)
c (c+ 1) � � � (c+ k � 1) 2F1 (a; b; c; �)

�k

k!
sk

=
1X
k=0

a (a+ 1) � � � (a+ k � 1) b (b+ 1) � � � (b+ k � 1)
c (c+ 1) (c+ k � 2) 2F1 (a; b; c; �)

�k

(k � 1)!s
k

= �s
1X
k=0

a (a+ 1) � � � (a+ k � 1) b (b+ 1) � � � (b+ k � 1)
c (c+ 1) (c+ k � 2) 2F1 (a; b; c; �)

(�s)k�1

(k � 1)!

= �s
1X
k=0

a (a+ 1) � � � (a+ k � 1) b (b+ 1) � � � (b+ k � 1) (a+ k) (b+ k)
c (c+ 1) (c+ k � 1) 2F1 (a; b; c; �)

(�s)k

k!

= �s
1X
k=0

a (a+ 1) � � � (a+ k � 1) b (b+ 1) � � � (b+ k � 1) (a+ �) (b+ �)
c (c+ 1) (c+ k � 1) 2F1 (a; b; c; �)

(�s)k

k!

= �s (a+ �) (b+ �)
2F1 (a; b; c; �s)

2F1 (a; b; c; �)

= �s (a+ �) (b+ �)G (s) (3.33)

) from (3:33) we have

� f�G (s) + (c� 1)G (s)g = �s (a+ �) [bG (s) + �G (s)]
� fsG0 (s) + (c� 1)G (s)g = �s (a+ �) [bG (s) + sG0 (s)]

s
d

ds
fsG0 (s)g+ (c� 1) �G (s) = (�sa+ �s�) [bG (s) + sG0 (s)]

s [sG00 (s) +G0 (s)] + (c� 1) �G (s) =
�

�sabG (s) + �s2aG0 (s)
+�s�bG (s) + �s� [sG0 (s)]

�
s2G00 (s) + sG0 (s) + (c� 1) sG0 (s) =

�
�sabG (s) + �s2aG0 (s)

+�s2bG0 (s) + �s2 d
ds
[sG0 (s)]

�
sG00 (s) +G0 (s) + (c� 1)G0 (s) =

�
�abG (s) + �saG0 (s)

+�sbG0 (s) + �s [sG00 (s) +G0 (s)]

�
sG00 (s) +G0 (s) + (c� 1)G0 (s) =

�
�abG (s) + �saG0 (s) + �sbG0 (s)

+�s2G00 (s) + �sG0 (s)

�
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�
s� �s2

	
G00 (s) + fc� 1 + 1� �sa� �s� �sbgG0 (s)� �abG (s) = 0
s f1� �sgG00 (s) + fc� [a+ b+ 1] �sgG0 (s)� �abG (s) = 0 (3.34)

setting s = 1 we obtain

(1� �)G00 (1) + (c� [a+ 1 + b] �)G0 (1)� �ab = 0

Therefore,

G00 (1) =
�ab

(1� �) �
[c� (a+ b+ 1) �]

(1� �) G0 (1) (3.35)

E(X) = G0 (1) =
�f 0(�)

f(�)
= �

ab

c
2F1 (a+ 1; b+ 1; c+ 1; �)

2F1 (a; b; c; �)

V ar(X) = G00(1) +G0(1)� [G0(1)]2

=
�ab

(1� �) +
[�c+ (a+ b+ 1) �]

(1� �) G0 (1) +G0(1)� [G0(1)]2

=
�ab

(1� �) +
[1� � � c+ (a+ b+ 1) �]

(1� �) G0 (1)� [G0(1)]2

=
�ab

(1� �) +
[1� � � c+ (a+ b) � + �]

(1� �) G0 (1)� [G0(1)]2

=
�ab

(1� �) +
[1� c+ (a+ b) �]

(1� �) G0 (1)� [G0(1)]2

=
�ab

(1� �) +
[1� c+ (a+ b) �]

(1� �) �
ab

c
2F1 (a+ 1; b+ 1; c+ 1; �)

2F1 (a; b; c; �)

�
�
�
ab

c
2F1 (a+ 1; b+ 1; c+ 1; �)

2F1 (a; b; c; �)

�2
Therefore,

V ar(X) =
�

(1� �)
ab

c
c+

[1� c+ (a+ b) �]
(1� �) �

ab

c
2F1 (a+ 1; b+ 1; c+ 1; �)

2F1 (a; b; c; �)

�
�
�
ab

c
2F1 (a+ 1; b+ 1; c+ 1; �)

2F1 (a; b; c; �)

�2
=

�

(1� �)
ab

c

8<: c+ [1� c+ (a+ b) �] 2F1(a+1;b+1;c+1;�)
2F1(a;b;c;�)

� (1� �) � ab
c

h
2F1(a+1;b+1;c+1;�)

2F1(a;b;c;�)

i2
9=;

3.4 Generalized Hypergeometric Distribution

3.4.1 Introduction

A Generalized Hypergeometric Distribution is de�ned as;

pFq (a1; � � � ; ap; b1; � � � ; bq;x) =
1X
k=0

(a1)k (a2)k � � � (ap)k
(b1)k � � � (bq)k

xk

k!
(3.36)

where bi 6= 0;�1;�2; : : : and i = 1; 2; : : : ; q
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d

dx
pFq (a1; � � � ; ap; b1; � � � ; bq;x)

=
a1a2 � � � ap
b1b2 � � � bq pFq (a1 + 1; � � � ; ap + 1; b1 + 1; � � � ; bq + 1; x) (3.37)

d2

dx2
pFq (a1; � � � ; ap; b1; � � � ; bq;x)

=
a1 (a1 + 1) � � � ap (ap + 1)
b1 (b1 + 1) � � � bq (bq + 1) pFq

�
a1 + 2; � � � ; ap + 2 ;
b1 + 2; � � � ; bq + 2 ;

x

�
(3.38)

Theorem

y = pFq

�
a1; a2; � � � ; ap ;
b1; b2; � � � ; bq ;

x

�
is the solution of the di¤erential equation.
Proof

� (� + b1 � 1) (� + b2 � 1) � � � (� + bq � 1) y = x (� + a1) (� + a2) � � � (� + ap) y (3.39)

where

� = x
d

dx

Therefore

�xk = x
d

dx
xk = xkxk�1 = kxk (3.40)

(� + b1 � 1)xk = �xk + (b1 � 1)xk = (k + b1 � 1)xk (3.41)

(� + b1 � 1) (� + b2 � 1)xk = (� + b1 � 1) (k + b2 � 1)xk

= (k + b1 � 1) (k + b2 � 1)xk (3.42)
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Consider

� (� + b1 � 1) (� + b2 � 1) � � � (� + bq � 1) pFq

�
a1; a2; � � � ; ap ;
b1; b2; � � � ; bq ;

x

�
= � (� + b1 � 1) (� + b2 � 1) � � � (� + bq � 1)

1X
k=0

(a1)k (a2)k � � � (ap)k
(b1)k � � � (bq)k

xk

k!

=
1X
k=0

(a1)k (a2)k � � � (ap)k
(b1)k � � � (bq)k

� (� + b1 � 1) (� + b2 � 1) � � � (� + bq � 1)
xk

k!

=

1X
k=0

(a1)k (a2)k � � � (ap)k
(b1)k � � � (bq)k

k (k + b1 � 1) (k + b2 � 1) � � � (k + bq � 1)
xk

k!

=
1X
k=0

(a1)k (a2)k � � � (ap)k
(b1)k�1 � � � (bq)k�1

xk

(k � 1)!

= x

1X
k=1

(a1)k (a2)k � � � (ap)k
(b1)k�1 � � � (bq)k�1

xk�1

(k � 1)!

= x
1X
k=1

(a1)k+1 (a2)k+1 � � � (ap)k+1
(b1)k � � � (bq)k

xk

k!
(by replacing k by k + 1)

= x
1X
k=0

(a1)k � � � (ap)k (a1 + k) (a2 + k) � � � (ap + k)
(b1)k � � � (bq)k

xk

k!

= x
1X
k=0

(a1)k � � � (ap)k
(b1)k � � � (bq)k

(a1 + �) (a2 + �) � � � (ap + �)
xk

k!

= x (a1 + �) (a2 + �) � � � (ap + �)
1X
k=0

(a1)k � � � (ap)k
(b1)k � � � (bq)k

xk

k!

= x (a1 + �) (a2 + �) � � � (ap + �) pFq

�
a1 a2 � � � ap ;
b1 b2 � � � bq ;

x

�
(3.43)

3.4.2 Construction and properties of a generalized Hyperge-
ometric distribution

By de�nition,

pFq

�
a1; a2; � � � ; ap ;
b1; b2; � � � ; bq ;

�

�
=

1X
k=0

(a1)k (a2)k � � � (ap)k
(b1)k � � � (bq)k

�k

k!

Therefore,

1 =
1X
k=0

(a1)k (a2)k � � � (ap)k
(b1)k � � � (bq)k pFq (a1; � � � ; ap; b1; � � � ; bq; �)

�k

k!

i.

Pk = Pr (X = k) =
(a1)k (a2)k � � � (ap)k
(b1)k � � � (bq)k

1

pFq (a1; � � � ; ap; b1; � � � ; bq; �)
�k

k!
(3.44)
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for k = 0; 1; 2; 3; : : : is a generalized hypergeometric probability mass function.
It belongs to the class of power series distributions is de�ned by

Pr (X = k) =
ak�

k

f(�)
for k = 0; 1; 2; ::: and � > 0; ak > 0;

ii.

ak =
(a1)k (a2)k � � � (ap)k
(b1)k � � � (bq)k

(3.45)

iii.
f (�) = pFq (a1; � � � ; ap; b1; � � � ; bq; �) (3.46)

iv.

f 0(�) =
a1a2 � � � ap
b1b2 � � � bq pFq

�
a1 + 1; a2 + 1; � � � ; ap + 1 ;
b1 + 1; b2 + 1; � � � ; bq + 1 ;

�

�
(3.47)

v.

f 00(�) =
a1 (a1 + 1) � � � ap (ap + 1)
b1 (b1 + 1) � � � bq (bq + 1) pFq

�
a1 + 2; a2 + 2; � � � ; ap + 2 ;
b1 + 2; b2 + 2; � � � ; bq + 2 ;

�

�
(3.48)

vi.

E(X) =
�f 0(�)

f(�)
= �

a1a2���ap
b1b2���bq pFq

�
a1 + 1; a2 + 1; � � � ; ap + 1 ;
b1 + 1; b2 + 1; � � � ; bq + 1 ;

�

�
pFq (a1; � � � ; ap; b1; � � � ; bq; �)

(3.49)

vii.

V ar (X) =
�2f 00 (�)

f (�)
+ �

f 0 (�)

f (�)
�
�
�
f 0 (�)

f (�)

�2
viii. Probability Generating Function(pgf)

The pgf of X is given by

G(s) =
f(�s)

f(�)
=

pFq (a1; � � � ; ap; b1; � � � ; bq; �s)
pFq (a1; � � � ; ap; b1; � � � ; bq; �)

(3.50)

Theorem: the pgf above satis�es the di¤erential equation

� (� + b1 � 1) � � � (� + bq � 1)G (s) = �s (� + a1) � � � (� + ap)G (s)

Proof:

To derive the di¤erential equation whose solution is G(s) given in (3.50)

let us use the operator.

� = s
d

ds
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Then

� (� + b1 � 1) � � � (� + bq � 1)G (s)

= � (� + b1 � 1) � � � (� + bq � 1)
1X
k=0

pks
k

=

1X
k=0

pk� (� + b1 � 1) � � � (� + bq � 1) sk

=

1X
k=0

(a1)k (a2)k � � � (ap)k
(b1)k � � � (bq)k

� (� + b1 � 1) � � � (� + bq � 1)
1

f (�)

(�s)k

k!

=
1X
k=0

(a1)k (a2)k � � � (ap)k k (k + b1 � 1) � � � (k + bq � 1)
(b1)k � � � (bq)k

1

f (�)

(�s)k

k!

=
1X
k=0

(a1)k � � � (ap)k
(b1)k�1 � � � (bq)k�1

1

f (�)

(�s)k

(k � 1)!

= �s
1X
k=0

(a1)k � � � (ap)k
(b1)k�1 � � � (bq)k�1

1

f (�)

(�s)k�1

(k � 1)!

= �s
1X
k=0

(a1)k+1 � � � (ap)k+1
(b1)k � � � (bq)k

1

f (�)

(�s)k

k!

by replacing k by k + 1

= �s
1X
k=0

(a1)k � � � (ap)k (a1 + k) � � � (ap + k)
(b1)k � � � (bq)k

1

f (�)

(�s)k

k!

= �s
1X
k=0

(a1)k � � � (ap)k
(b1)k � � � (bq)k

(a1 + �) � � � (ap + �)
1

f (�)

(�s)k

k!

=
�s (a1 + �) � � � (ap + �)

pFq (a1; � � � ; ap; b1; � � � ; bq; �)

1X
k=0

(a1)k � � � (ap)k
(b1)k � � � (bq)k

(�s)k

k!

= �s (a1 + �) � � � (ap + �)
f (�s)

f (�)

= �s (a1 + �) � � � (ap + �)G (s) (3.51)
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3.5 Special cases of con�uent and Gauss Hyperge-
ometric Distributions

3.5.1 Power Series Distributions Based on Exponential Ex-
pansion

Poisson Distribution

e� =
1X
k=0

�k

k!

=
1X
k=0

a (a+ 1) (a+ 2) � � � (a+ k � 1)
a (a+ 1) (a+ 2) � � � (a+ k � 1)

�k

k!

= 1F1 (a; a; �)

Alternatively,

e� = 1 +
�

1!
+
�2

2!
+
�3

3!
+ � � �

= 1 +
n

1!

�
�

n

�
+
n2

2!

�
�

n

�2
+
n3

3!

�
�

n

�3
+ � � �

= lim
n�!1

"
1 +

n

1!

�
�

n

�
+
n2

2!

�
�

n

�2
+
n3

3!

�
�

n

�3
+ � � �

#

= lim
n�!1

"
1 +

n � 1
1

�
�

n

�
1

1!
+
n (n+ 1)

1 � 2 1 � 2
�
�

n

�2
1

2!
+ � � �

#

= lim
n�!1 2F1

�
n; 1; 1;

�

n

�
The pmf is given by

Pr (X = k) =
�k

k!e�
=
e���k

k!
; k = 0; 1; 2; :::

which is a Poisson Distribution with parameter �:
Probability Generating Function(pgf)

G(s) =
f(�s)

f(�)
=
e�s

e�
i.e. G(s) = 1F1 (a; a; �s)

1F1 (a; a; �)
) c = a

G0(1) = E (X) =
�a

c
1F1 (a+ 1; c+ 1; �)

1F1 (a; c; �)

= �
1F1 (a+ 1; a+ 1; �)

1F1 (a; a; �)

G00(1) = �a� (c� �)G0(1) from (3.18)

= �a� (a� �) � 1F1 (a+ 1; a+ 1; �)
1F1 (a; a; �)
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Therefore the variance is given by

V ar(X) = G00(1) +G0(1)� [G0(1)]2

= �a+ (1� a+ �) � 1F1 (a+ 1; a+ 1; �)
1F1 (a; a; �)

�
�
�
1F1 (a+ 1; a+ 1; �)

1F1 (a; a; �)

�2
3.5.2 Power Series Distributions Based on Binomial Expan-

sions

a) Binomial distribution

(1 + �)n

=

nX
k=0

�
n

k

�
�k

= 1 +

�
n

1

�
� +

�
n

2

�
�2 +

�
n

3

�
�3 + � � �+

�
n

n

�
�n

= 1 +
n

1
� +

n (n� 1)
1 � 2 �2 +

n (n� 1) (n� 2)
3!

�3 + � � �+ n (n� 1) � � � 2 � 1�
n

n!

= 1 + (�1)n (�1) �
1
+ (�1)2 n (n� 1) (�1)2 �

2

2!
+ (�1)3 n (n� 1) (n� 2) (�1)3 �

3

3!

+ � � �+ (�1)n n (n� 1) � � � 2:1 (�1)n �
n

n!

= 1 +
(�n) � 1
1

(��)
1!

+
(�n) (�n+ 1) � 1 � 2

1 � 2
(��)2

2!
+ � � �

+
(�n) (�n+ 1) � � � (�n+ n� 1)

1 � 2 � 3 � � �n 1 � 2 � 3 : : : n(��)
n

n!
= 2F1 (�n; 1; 1;��)

The pmf is given by

Pr (X = k) =

�
n

k

�
�k

(1 + �)n

=

�
n

k

��
�

1 + �

�k �
1

1 + �

�n�k
; k = 0; 1; 2; :::; n

which is Binomial distribution with parameters n and �
(1+�)

:
Probability generating function for Binomial distribution is given by

G(s) =
(1 + �s)n

(1 + �)n

=
2F1 (�n; 1; 1;��s)
2F1 (�n; 1; 1;��)

G0(1) = E (X) =
ab

c
�
2F1 (a+ 1; b+ 1; c+ 1; �)

2F1 (a; b; c; �)
refer to (3.29)

Put a = �n, b = 1; and c = 1
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)
G0(1) = E (X) = �n� 2F1 (�n+ 1; 2; 2;��)

2F1 (�n; 1; 1;��)

G00 (1) =
�ab

(1� �) �
[c� (a+ 1 + b) �]

(1� �) G0 (1) refer to (3.35)

Therefore,

G00 (1) =
�� (�n) � 1
(1 + �)

� [1� (�n+ 1 + 1) (��)]
(1 + �)

G0 (1)

=
n�

(1 + �)
� [1 + (2� n) �]

(1 + �)
G0 (1)

=
n�

(1 + �)
� [1 + (2� n) �]

(1 + �)

�
�n� 2F1 (�n+ 1; 2; 2;��)

2F1 (�n; 1; 1;��)

�
=

n�

(1 + �)

�
1 + [1 + (2� n) �] 2F1 (�n+ 1; 2; 2;��)

2F1 (�n; 1; 1;��)

�
Therefore the variance is given by

V ar(X) = G00(1) +G0(1)� [G0(1)]2

=
n�

(1 + �)
+

�
[1 + (2� n) �]n�

(1 + �)
� n�

�
2F1 (�n+ 1; 2; 2;��)
2F1 (�n; 1; 1;��)

�
�
�n� 2F1 (�n+ 1; 2; 2;��)

2F1 (�n; 1; 1;��)

�2
=

n�

(1 + �)
+

�
[1 + (2� n) �]n� � n� (1 + �)

(1 + �)

�
2F1 (�n+ 1; 2; 2;��)
2F1 (�n; 1; 1;��)

�
�
n�

2F1 (�n+ 1; 2; 2;��)
2F1 (�n; 1; 1;��)

�2
=

n�

(1 + �)

8<: 1 + (1� n) � 2F1(�n+1;2;2;��)
2F1(�n;1;1;��)

�n� (1 + �)
h
2F1(�n+1;2;2;��)
2F1(�n;1;1;��)

i2
9=;
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b) Negative Binomial Distribution

(1� �)�� =
1X
k=0

�
��
k

�
(��)k � > 0 (3.35)

=

1X
k=0

(�1)k
�
��
k

�
�k

=

1X
k=0

�
�+ k � 1

k

�
�k

=

1X
k=0

��+ k

��

�k

k!

=
1X
k=0

(�+ k � 1) (�+ k � 2) � � � (�+ k � k) ��
��

�k

k!

=

1X
k=0

(�+ k � 1) (�+ k � 2) � � ���
k

k!

=
1X
k=0

� (�+ 1) � � � (�+ k � 1) b (b+ 1) � � � (b+ k � 1)
b (b+ 1) � � � (b+ k � 1)

�k

k!

= 2F1 (�; b; b; �)

The pmf is given by

Pr (X = k) =

�
�+ k � 1

k

�
�k (1� �)� ; for k = 0; 1; 2; :::

which is a Negative Binomial Distribution.
Probability generating function for NB is given by

G(s) =
(1� �s)��

(1� �)��

=
2F1 (�; b; b; �s)

2F1 (�; b; b; �)

G0(1) = E (X) =
ab

c
�
2F1 (a+ 1; b+ 1; c+ 1; �)

2F1 (a; b; c; �)
refer to (3:29)

putting a = �, b = b and c = b:
)

G0(1) = E (X) = ��
2F1 (�+ 1; b+ 1; b+ 1; �)

2F1 (�; b; b; �)

G00 (1) =
a�b

(1� �) �
[b� (a+ 1 + b) �]

(1� �) G0 (1) refer to (3:35)
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Therefore,

G00 (1) =
��b

(1� �) �
[b� (�+ 1 + b) �]

(1� �) G0 (1)

=
��b

(1� �) �
[b� (�+ 1 + b) �]

(1� �) ��
2F1 (�+ 1; b+ 1; b+ 1; �)

2F1 (�; b; b; �)

=
��b

(1� �)

�
1� [b� (�+ 1 + b) �] 1

b
2F1 (�+ 1; b+ 1; b+ 1; �)

2F1 (�; b; b; �)

�
Therefore the variance is given by

V ar(X) = G00(1) +G0(1)� [G0(1)]2

=
��b

(1� �)

�
1 +

�
1� � � b

+(�+ 1 + b) �

�
1

b
2F1 (�+ 1; b+ 1; b+ 1; �)

2F1 (�; b; b; �)

�
� [G0(s)]2

=
��b

(1� �)

8<: 1 + [1� b+ (�+ b) �] 1
b
2F1(�+1;b+1;b+1;�)

2F1(�;b;b;�)

���(1��)
b

h
2F1(�+1;b+1;b+1;�)

2F1(�;b;b;�)

i2
9=;

c) Logarithmic Series Distribution

1

1� � = 1 + � + �
2 + � � �

which is obtained by putting � = 1 in (3:35).
Therefore by Integrating both sides w.r.t � we getZ

d�

1� � =
Z �

1 + � + �2 + � � �
�
d�

� log(1� �) = � + �
2

2
+
�3

3
+
�4

4
+
�5

5
+ � � � (3.36)

= �

�
1 +

�

2
+
�2

3
+
�3

4
+
�4

5
+ � � �

�
= �

�
1 +

1!

2

�

1!
+
2!

3

�2

2!
+
3!

4

�3

3!
+
4!

5

�4

4!
+ � � �

�
= �

�
1 +

1 � 1
2

�

1!
+
1 � 2
3

�2

2!
+
1 � 2 � 3
4

�3

3!
+
1 � 2 � 3 � 4

5

�4

4!
+ � � �

�
= �

�
1 +

1 � 1
2

�

1!
+
1 � 2 � 1 � 2
1 � 2 � 3

�2

2!
+
1 � 2 � 3 � 1 � 2 � 3
1 � 2 � 3 � 4

�3

3!
+ � � �

�
= �

�
1 +

1 � 1
2

�

1!
+
1 � 2 � 1 � 2
2 � 3

�2

2!
+
1 � 2 � 3 � 1 � 2 � 3

2 � 3 � 4
�3

3!
+ � � �

�
= �2F1 (1; 1; 2; �)

)
� log(1� �) = �2F1 (1; 1; 2; �)

The pmf is given by

Pr (X = k) =
�k

�k log(1� �) ; k = 1; 2; : : : ; 0 < � < 1
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which is called Logarithmic Series Distribution.
Probability generating function for Logarithmic Series Distribution is given by

G(s) =
log (1� �s)
log (1� �)

=
�s2F1 (1; 1; 2; �s)

�2F1 (1; 1; 2; �)

= s
2F1 (1; 1; 2; �s)

2F1 (1; 1; 2; �)

G0(1) = E (X) =
ab

c
�
2F1 (a+ 1; b+ 1; c+ 1; �)

2F1 (a; b; c; �)
refer to (3:29)

setting a = 1, b = 1 and c = 2
)

G0(1) = E (X) =
1

2
�
2F1 (2; 2; 3; �)

2F1 (1; 1; 2; �)

G00 (1) =
a�b

(1� �) �
[c� (a+ 1 + b) �]

(1� �) G0 (1) refer to (3:35)

Therefore,

G00 (1) =
�

(1� �) �
[2� 3�]
(1� �) G

0 (1)

=
�

(1� �) �
[2� 3�]
(1� �)

1

2
�
2F1 (2; 2; 3; �)

2F1 (1; 1; 2; �)

=
�

2 (1� �)

�
2� [2� 3�] 2F1 (2; 2; 3; �)

2F1 (1; 1; 2; �)

�
Therefore the variance is given by

V ar(X) = G00(1) +G0(1)� [G0(1)]2

=
�

(1� �) �
�
(2� 3� � 1 + �) �

2 (1� �)

�
2F1 (2; 2; 3; �)

2F1 (1; 1; 2; �)
�
�
1

2
�
2F1 (2; 2; 3; �)

2F1 (1; 1; 2; �)

�2
=

�

2 (1� �)

(
2� (1� 2�) 2F1 (2; 2; 3; �)

2F1 (1; 1; 2; �)
� � (1� �)

2

�
2F1 (2; 2; 3; �)

2F1 (1; 1; 2; �)

�2)

d) Replacing � by �� in c

we obtain

� log(1 + �) = �� + (��)
2

2
+
(��)3

3
+
(��)4

4
+
(��)5

5
+ � � �

= �� + �
2

2
� �

3

3
+
�4

4
� �

5

5
+ � � �
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log(1 + �) = � � �
2

2
+
�3

3
� �

4

4
+
�5

5
� � � �

= �

�
1� �

2
+
�2

3
� �

3

4
+
�4

5
� � � �

�
= �

�
1 +

1

2
(��) + 1

3
(��)2 + 1

4
(��)3 + 1

5
(��)4 + � � �

�
= �

(
1 +

1!

2

(��)
1!

+
2!

3

(��)2

2!
+
3!

4

(��)3

3!
+
4!

5

(��)4

4!
+ � � �

)

= �

(
1 +

1 � 1
2

(��)
1!

+
1 � 2
3

(��)2

2!
+
1 � 2 � 3
4

(��)3

3!
+
1 � 2 � 3 � 4

5

(��)4

4!
+ � � �

)

= �

(
1 +

1 � 1
2

(��)
1!

+
1 � 2 � 1 � 2
1 � 2 � 3

(��)2

2!
+
1 � 2 � 3 � 1 � 2 � 3
1 � 2 � 3 � 4

(��)3

3!
+ � � �

)

= �

(
1 +

1 � 1
2

(��)
1!

+
1 � 2 � 1 � 2
2 � 3

(��)2

2!
+
1 � 2 � 3 � 1 � 2 � 3

2 � 3 � 4
(��)3

3!
+ � � �

)
= � 2F1 (1; 1; 2;��)

)
� log(1 + �) = � 2F1 (1; 1; 2;��)

since

� log(1 + �) = �� + (��)
2

2
+
(��)3

3
+
(��)4

4
+
(��)5

5
+ � � �

=
1X
k=1

(��)k

k

Then

1 =
1X
k=1

(��)k

�k log(1 + �)

=
1X
k=1

(�1)k�1 �k

k log(1 + �)

Thus

Pr (X = k) = (�1)k�1 �k

k log(1 + �)
; k = 1; 2; 3; : : :

=
(��)k

�k log(1 + �)
Probability generating function for the distribution is given by

G(s) =
f (�s)

f (�)
=
log (1 + �s)

log (1 + �)

=
�s2F1 (1; 1; 2;��s)
�2F1 (1; 1; 2;��)

= s
2F1 (1; 1; 2;��s)
2F1 (1; 1; 2;��)
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G0(1) = E (X) =
ab

c
�
2F1 (a+ 1; b+ 1; c+ 1; �)

2F1 (a; b; c; �)
refer to (3:29)

setting a = 1, b = 1, and c = 2
)

G0(1) = E (X) =
1

2
�
2F1 (2; 2; 3;��)
2F1 (1; 1; 2;��)

G00 (1) =
a�b

(1� �) �
[c� (a+ 1 + b) �]

(1� �) G0 (1) refer to (3:35)

Therefore,

G00 (1) =
�

(1� �) �
[2� 3�]
(1� �) G

0 (1)

=
�

(1� �) �
[2� 3�]
(1� �)

1

2
�
2F1 (2; 2; 3;��)
2F1 (1; 1; 2;��)

=
�

2 (1� �)

�
2� [2� 3�] 2F1 (2; 2; 3;��)

2F1 (1; 1; 2;��)

�
Therefore the variance is given by

V ar(X) = G00(1) +G0(1)� [G0(1)]2

=
�

(1� �) �
�
(2� 3� � 1 + �) �

2 (1� �)

�
2F1 (2; 2; 3;��)
2F1 (1; 1; 2;��)

�
�
1

2
�
2F1 (2; 2; 3;��)
2F1 (1; 1; 2;��)

�2
=

�

2 (1� �)

(
2� f1� 2�g 2F1 (2; 2; 3;��)

2F1 (1; 1; 2;��)
� � (1� �)

2

�
2F1 (2; 2; 3;��)
2F1 (1; 1; 2;��)

�2)

e)

f (�) = log

�
1 + �

1� �

�
= log(1 + �)� log(1� �)
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f (�) = log(1 + �)� log(1� �)

=

�
� � �

2

2
+
�3

3
� �

4

4
+ � � �

�
+

�
� +

�2

2
+
�3

3
+
�4

4
+ � � �

�
= 2� +

2�3

3
+
2�5

5
+ � � �

= 2

�
� +

�3

3
+
�5

5
+ � � �

�
= 2

1X
k=0

�2k+1

2k + 1

= 2�

�
1 +

�2

3
+
�4

5
+
�6

7
+ � � �

�
= 2�

"
1 +

1 � 1
3

�2

1!
+
1 � 2!
5

(�2)

2!

2

+
1 � 3!
7

(�2)

3!

3

+ � � �
#

= 2�

"
1 +

1 � 1
3
� 2
2
� �

2

1!
+
1 � 2
5

(�2)

2!

2

+
1 � 2 � 3
7

(�2)

3!

3

+ � � �
#

= 2�

"
1 +

1
2
� 1
3
2

�2

1!
+

1
2
� 3
2
� 1 � 2

3
2
� 5
2

(�2)

2!

2

+
1
2
� 3
2
� 5
2
� 1 � 2 � 3

3
2
� 5
2
� 7
2

(�2)

3!

3

+ � � �
#

= 2� 2F1

�
1

2
; 1;
3

2
; �2
�

Pr (X = k) =
2�2k+1

(2k + 1) log
�
1+�
1��
� ; k = 0; 1; 2; : : :

Probability generating function for Distribution is given by

G (s) =
log(1 + �s)� log(1� �s)
log (1 + �)� log (1� �)

= s
2F1

�
1
2
; 1; 3

2
; �2s

�
2F1

�
1
2
; 1; 3

2
; �2
�

G0(1) = E (X) =
ab

c
�
2F1 (a+ 1; b+ 1; c+ 1; �)

2F1 (a; b; c; �)
refer to (3:29)

setting a = 1
2
, b = 1, and c = 3

2

)
G0(1) = E (X) =

2

6
�
2F1

�
3
2
; 2; 5

2
; �2
�

2F1
�
1
2
; 1; 3

2
; �2
�

G00 (1) =
a�b

(1� �) �
�
[c� (a+ 1 + b) �]

(1� �)

�
G0 (1) refer to (3:35)

Therefore,

G00 (1) =
1

2

�

1� � �
�
3
2
� 5

2
�
�

(1� �) G
0 (1)

=
�

2 (1� �) �
2
�
3
2
� 5

2
�
�

6 (1� �) �
2F1

�
3
2
; 2; 5

2
; �2
�

2F1
�
1
2
; 1; 3

2
; �2
�
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Therefore the variance is given by

V ar(X) = G00(1) +G0(1)� [G0(1)]2

=
�

2 (1� �) �
2
�
3
2
� 5

2
� � 1 + �

	
6 (1� �) �

2F1
�
3
2
; 2; 5

2
; �2
�

2F1
�
1
2
; 1; 3

2
; �2
� � "2

6
�
2F1

�
3
2
; 2; 5

2
; �2
�

2F1
�
1
2
; 1; 3

2
; �2
�#2

=
�

2 (1� �)

8<:1� (1� 3�)
3 (1� �)

2F1
�
3
2
; 2; 5

2
; �2
�

2F1
�
1
2
; 1; 3

2
; �2
� � 4�

18

"
2F1

�
3
2
; 2; 5

2
; �2
�

2F1
�
1
2
; 1; 3

2
; �2
�#2
9=;

3.5.3 Power series distributions based on trigonometric in-
verses

a) Inverse sine

From chapter two subsection 2.9.6
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We have shown that

sin�1 � =
1X
k=0

(�1)k
�
�1
2

k

�
�2k+1

2k + 1

= � +
1X
k=1

(�1)k
�
�1
2

k

�
�2k+1

2k + 1

= � +
1X
k=1

(�1)k
�
�1
2

� �
�1
2
� 1
� �
�1
2
� 1
�
� � �
�
�1
2
� (k � 1)

�
1 � 2 � 3 � � � k

�2k+1

2k + 1

= � +
1X
k=1

(�1)k
�
�1
2

� �
�3
2

� �
�5
2

�
� � �
h
� (2k�1)

2

i
1 � 2 � 3 � : : : � k

�2k+1

2k + 1

= � +
1X
k=1

(�1)k (�1)k
1
2
� 3
2
� 5
2
� � � � � 2k�1

2

1 � 2 � 3 � : : : � k
�2k+1

2k + 1

= � + �
1X
k=1

1

2
� 3
2
� 5
2
� � � � � 2k � 1

2

1

2k + 1

�2k

k!

= �

(
1 +

1X
k=1

1

2
� 3
2
� 5
2
� � � � � 2k � 1

2

1

2k + 1

�2k

k!

)

= �

(
1 +

1

2
� 1
3

�2

1!
+
1

2
� 3
2
� 1
5

(�2)
2

2!
+
1

2
� 3
2
� 5
2
� 1
7

(�2)
3

3!
+ � � �

)

= �

(
1 +

1

2
� 1
3
� 2
2

�2

1!
+
1

2
� 3
2
� 1
5

(�2)
2

2!
+
1

2
� 3
2
� 5
2
� 1
7

(�2)
3

3!
+ � � �

)

= �

(
1 +

1
2
� 1
2

1
2
� 3
�2

1!
+

1
2
� 3
2
� 1
2
� 3
2

5 � 1
2
� 3
2

(�2)
2

2!
+

1
2
� 3
2
� 5
2
� 1
2
� 3
2
� 5
2

1
2
� 3
2
� 5
2
� 7

(�2)
3

3!
+ � � �

)

= �

(
1 +

1
2
� 1
2

3
2

�2

1!
+

1
2
� 3
2
� 1
2
� 3
2

3
2
� 5
2

(�2)
2

2!
+

1
2
� 3
2
� 5
2
� 1
2
� 3
2
� 5
2

3
2
� 5
2
� 7
2

(�2)
3

3!
+ � � �

)

= � 2F1

�
1

2
;
1

2
;
3

2
; �2
�

Therefore

Pr (X = 2k + 1) = (�1)k
�
�1
2

k

�
1

sin�1 �

�2k+1

2k + 1
; k = 1; 2; 3:::and 0 < � < 1

The Probability generating function for Distribution is given by

G (s) =
f (�s)

f (�)

=
s2F1

�
1
2
; 1
2
; 3
2
; �2s

�
2F1

�
1
2
; 1
2
; 3
2
; �2
�

b) Inverse tan

Expanding (1 + �2)�1
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we obtain �
1 + �2

��1
=

1X
k=0

�
�1
k

��
�2
�k

Integrating both sides with respect to � we getZ �
1 + �2

��1
d� =

1X
k=0

�
�1
k

�Z �
�2
�k
d�

Let � = tanx ) tan�1 � = x and d� = sec2 xdx
)

LHS =

Z �
1 + �2

��1
d� =

Z
sec2 x

1 + tan2 x
dx =

Z
dx = x

RHS =

1X
k=0

�
�1
k

�
�2k+1

2k+1

)
x =

1X
k=0

�
�1
k

�
�2k+1

2k+1

i.e.

tan�1 � =
1X
k=0

�
�1
k

�
�2k+1

2k+1

)
1 =

1X
k=0

�
�1
k

�
1

tan�1 �

�2k+1

2k+1
; k = 0; 1; 2; : : :

)
Pr (X = 2k + 1) =

�
�1
k

�
1

tan�1 �

�2k+1

2k+1
; k = 0; 1; 2; : : :
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Now

tan�1 � = � � �
3

3
+
�5

5
� �

7

7
� � � �

= �

�
1� �

2

3
+
�4

5
� �

6

7
� � � �

�
= �

(
1 +

(��2)
3

+
(��2)2

5
+
(��2)2

7
+ � � �

)

= �

(
1 +

1 � 1
3

(��2)
1!

+
1 � 2!
5

(��2)2

2!
+
1 � 3!
7

(��2)2

3!
+ � � �

)

= �

(
1 +

1
2
� 1

3 � 1
2

(��2)
1!

+
1 � 2!
5

(��2)2

2!
+
1 � 3!
7

(��2)2

3!
+ � � �

)

= �

(
1 +

1
2
� 1

1
2
� 3
(��2)
1!

+
1
2
� 3
2
� 1 � 2

1
2
� 3
2
� 5

(��2)2

2!
+

1
2
� 3
2
� 5
2
� 1 � 2 � 3

1
2
� 3
2
� 5
2
� 7

(��2)2

3!
+ � � �

)

= �

(
1 +

1
2
� 1
3
2

(��2)
1!

+
1
2
� 3
2
� 1 � 2

3
2
� 5
2

(��2)2

2!
+

1
2
� 3
2
� 5
2
� 1 � 2 � 3

3
2
� 5
2
� 7
2

(��2)2

3!
+ � � �

)

= � 2F1

�
1

2
; 1;
3

2
;��2

�
The Probability generating function for Distribution is given by

G (s) =
f (�s)

f (�)

=
s 2F1

�
1
2
; 1; 3

2
;��2s

�
2F1

�
1
2
; 1; 3

2
;��2

�
3.5.4 Power series distributions based on special functions

a) Legendre Polynomials Pl (x)

Generating Function is given by:

�
1� 2xt+ t2

�� 1
2 =

1X
l=0

Pl (x) t
l; jtj < 1; jxj � 1

The expression function Pl (x):

Pl (x) =
1

2l

l
2X
v=0

(�1)v (2l � 2v)!
v! (l � v)! (l � 2v)!x

l�2v

Di¤erential equation:�
1� x2

�
P 00l (x)� 2xP 0l (x) + l (l + 1)Pl (x) = 0
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Recurrence relation:

lPl�1 � (2l + 1) xPl + (l + 1)Pl (x) = 0

Examples:

P0 = 1; P1 = x; P2 =
1

2

�
3x2 � 1

�
; P3 =

1

2
x
�
5x2 � 3

�
Hypergeometric Functions:

Pl (x) = 2F1

�
�l; l + 1; 1; 1� x

2

�
b) Bessel Function of the First Kind: Jn (x)

Generating Function is given by:

e
x
2 (t�

1
t ) =

1X
n=�1

Jn (x) t
n

Expression for Jn (x) :

Jn (x) =
1X
k=0

(�1)k

k! (n+ k)!

�x
2

�n+2k
J�n (x) = (�1)n Jn

Di¤erential equation:

x2J 00n (x) + xJ
0
n (x) +

�
x2 � n2

�
Jn (x) = 0

Recurrence relations:

d

dx
[xnJn (x)] = x

nJn�1 (x) ;

Jn�1 (x) + Jn+1 (x) =
2n

x
Jn (x) ;

J 0n (x) = Jn�1 (x)�
n

x
Jn (x)

=
n

x
Jn (x)� Jn+1 (x)

=
1

2
fJn�1 (x)� Jn+1 (x)g

Hypergeometric functions:

Jn (x) =
�x
2

�n 1
n!

1F2

�
a; a; n+ 1;�

�x
2

�2�
=
�x
2

�n 1
n!

0F1

�
n+ 1;�

�x
2

�2�
Alternatives

Jn (x) =

�
x
2

�n
n!

e�it 1F1

�
n+

1

2
; 2n+ 1; 2ix

�
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c) Hermite Polynomials Hn (x)

Generating function:

e�t
2+2tx =

1X
n=0

Hn (x)
tn

n!

Expressions for Hn (x) :

Hn (�x) = (�1)nHn (x) ;

Hn (x) = (�1)n ex
2

�
d

dx

�n
Hn (x) ;

Hn (x) = (�1)
n
2 n!

n
2X
k=0

(�1)k (2x)2k

(2k)!
�
1
2
n� k

�
!
; if n is even

Hn (x) = (�1)
n�1
2 n!

n�1
2X
k=0

(�1)k (2x)2k+1

(2k + 1)!
�
n�1
2
� k
�
!
; if n is odd

Di¤erential equation:

H 00
n (x)� 2xH 0

n (x) + 2nHn (x) = 0

or
d2

dx2
Hn (x) e

� 1
2
x2 +

�
2n� x2 + 1

�
Hn (x) e

� 1
2
x2 = 0

Recurrence relations:
dm

dxm
Hn (x) =

2mn!

(n�m)!Hn�1 (x)

xHn (x) =
1

2
Hn+1 (x) + nHn�1 (x)

Hn (x) =

�
2x� d

dx

�
Hn�1 (x)

Examples:
H0 (x) = 1; H1 (x) = 2x; H2 (x) = 4x

2 � 2
Hypergeometric functions:

H2n (x) = (�1)n
(2n)!

n!
1F1

�
�n; 3

2
;x2
�

H2n+1 (x) = (�1)n
2 (2n+ 1)!

n!
1F1

�
�n; 3

2
;x2
�
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d) Laguerre Polynomials Ln (x)

Generating function:
1

1� z e
� xz
1�z =

1X
n=0

Ln (x) z
n

Where

Ln (x) =
ex

n!

�
d

dx

�n �
xne�x

�
Ln (x) =

(�1)n

n!

 
xn � n

2xn�1

1!
+
n2 (n� 1)2 xn�2

2!
� � � �+ (�1)n n!

!
Di¤erential equation:

xL00n (x) + (1� x)L0n (x) + nLn (x) = 0

Recurrence relation:

(1 + 2n� x)Ln (x)� nLn�1 (x)� (n+ 1)Ln+1 (x) = 0

xL0n (x) = nLn (x)� nLn�1 (x)
Examples:

Ln (x) = 1; Ln (x) = 1� x; Ln (x) =
1

2!

�
x2 � 4x+ 2

�
Hypergeometric function:

Ln (x) = 1F1 (�n; 1; x)

e) Associated Laguerre Polynomials Lkn (x)

Generating function:
1

(1� z)k+1
e�

xz
1�z =

1X
n=0

Lkn (x) z
n

1X
k=0

1X
n=k

Lkn (x) z
nuk

k!
=

1

1� z exp
�
�xz + u
1� z

�
Expression for Lkn

Lkn (x) = (�1)
k

�
d

dx

�k
Ln+k (x)

Lkn (x) =
exx�x

n!

�
d

dx

�n �
xn+keh� x

�
Di¤erential equation:

Lk00n (x) + (k + 1� x)Lk0n (x) + nLkn (x) = 0
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Recurrence relation:

Lkn�1 (x) + L
k�1
n (x) = Lkn (x) ;

xLk0n (x) = nL
k
n (x)� (n+ k)Lkn�1 (x)

Examples:

Lk0 (x) = 1; L
k
1 (x) = �x+ k + 1

Lk2 (x) =
1

2

�
x2 � 2 (k + 2) x+ (k + 1) (k + 2)

�
Lk3 (x) =

1

6

�
�x3 + 3 (k + 3) x2 � 3 (k + 2) (k + 3) x+ (k + 1) (k + 2) (k + 3)

�
Hypergeometric function:

Lkn (x) =
� (n+ k + 1)

n!� (k + 1)
1F1 (�n; k + 1; x)

f) Tschebysche¤ polynomials Tn (x)

Generating functions:
1� xy

1� 2xy + y2 =
1X
n=0

Tn (x) y
n

Symmetry relation Tn (x) = T�n (x)
Expression for Tn

Tn (x) =
1

2

hn
x+ i

p
1� x2

on
+
n
x� i

p
1� x2

oni
Di¤erential equation:

�
1� x2

� d2
dx2

Tn (x)� x
d

dx
Tn (x) + n

2Tn (x) = 0

Recurrence relation:
Tn+1 � 2xTn + Tn�1 = 0�

1� x2
�
T 0n (x) = �nxTn (x) + nTn�1 (x) = 0

Examples:

Tn (x) = 1; Tn (x) = x; Tn (x) = 2x
2 � 1; Tn (x) = 4x3 � 3x

Hypergeometric function:

Tn (x) =2 F1

�
�n; n; 1

2
;
1� x
2

�
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Chapter 4

Zero-In�ated Power Series
Distributions (ZIPSD)

4.1 Introduction

A zero-in�ated model is a statistical model based on a zero-in�ated probability distri-
bution. It arises when probability mass at point zero exceeds the one allowed under
the standard parametric family of discrete distributions. A numbers of researchers
have worked on these family of zero in�ated models. Gupta et al., (1995) have stud-
ied Zero-In�ated Modi�ed Power Series distribution with the structural properties, in
particular for zero-in�ated Poisson distribution. Murat and Szynal (1998) extended
the results of Gupta et al., (1995) to the distributions in�ated at any of the support
point �s�.
In this chapter, we provide an overview of the concept of zero-in�ated distribution.

Examples of situations giving rise to zero-in�ated distribution and an overview of
its structural properties that includes; probability generating function, moments and
their recurrence relation, central moments, the recurrence relation for cumulants and
factorial cumulants. Lastly, the special cases of zero in�ated power series distributions
with their corresponding structural properties will be covered.

4.2 The concept of Zero-In�ated Distributions

In applications involving discrete data we come across data having frequency of an
observation �zero�signi�cantly higher than the one predicted by the assumed models.
This situation is often called zero in�ation because the data set contains an excess
number of zero counts.
Consider the following uniform discrete distributions with 0; 1; 2; 3 and 4 counts.

Suppose that three more zeros are introduced to the initial data given in the fol-
lowing table.
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Let the proportion of extra zeros be �: Then � = 3
11

Pr (Y = 0) = �+ (1� �) p0

=
3

11
+
8

11

�
2

8

�
=
5

11

Pr (Y = 1) = (1� �) p1

=
8

11

�
1

8

�
=
1

11

Pr (Y = 2) = (1� �) p2

=
8

11

�
3

8

�
=
3

11

Pr (Y = 3) = (1� �) p3

=
8

11

�
1

8

�
=
1

11

Pr (Y = k) = (1� �) pk; k = 1; 2; 3; 4
Hence,

Pr (Y = k) =

8<:
�+ (1� �) p0 for k = 0

(1� �) pk for k = 1; 2; 3; : : :
0 < � < 1

As in given (Gupta et al., 1996: 208, Dianliang D. 2000: 564)

4.3 De�nition

If the data set contains excess number of zero counts, a mixture assigning a mass of
� to the extra zeros and a mass of (1� �) to the power series distribution, leads to
the Zero-In�ated Power Series Distribution (ZIPSD). A discrete random variable Y is
said to have Zero-In�ated Power Series Distribution (ZIPSD), if the probability mass
function of Y is given by

Pr (Y = k) =

8><>:
�+ (1� �) a0

f(�)
for k = 0

(1� �) ak�k
f(�)

for k = 1; 2; 3; : : : ak > 0 and 0 < � < 1
(4.1)
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4.4 Examples of situations that give rise to In�ated
Distribution

Example 1: (Fetal movement data). Leroux and Puterman (1992) Consider the
Fetal movement data by a model consisting of a mixture of �nite number of Poisson
components. This data set was collected in a study of breathing and body movements
in fetal lambs designed to examine the possible changes in the amount of pattern
of fetal activity during the last two thirds of the gestation period. The numbers of
movements by a fetal lamb observed through ultrasound were recorded and counts are
given below:

In this case the number of Fetal movement with zero intervals is in�ated.
Example 2: (Ridout et al., (2001)) Consider the data Table below consisting of

the number of roots produced by 270 micro-propogated shoots of the columnar apple
cultivar Trajan. The roots had been produced under an 8-h or 16-h photoperiod in
culture systems that utilized one of four di¤erent concentrations of the cytokinin BAP
in culture medium. For illustration, we have merged the data on four concentrations
into one group. Let Group I (Gr II) consist of the data produced under 8 hour period
and Group II (Gr II) consist of the data produced under produced under 16 hour photo
period.

Number of roots Obs. fr. (Gr I) Obs. fr. (Gr II) fr.
0 2 62 64
1 3 7 10
2 6 7 13
3 7 8 15
4 13 8 21
5 12 6 18
6 14 10 24
7 17 4 21
8 21 2 23
9 14 7 21
10 13 4 17
11 10 2 12
12 2 3 5
13 2 0 2
14 3 0 3
15 0 0 0
16 0 0 0
17 1 0 1
Total 140 130 270

where

� fr.=Frequency
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� Obs.=observed

In this case the number of roots with zero observations is in�ated.
Example 3: (Yip, P. (1998)) A sample of n leavesof a particular plant is examined

and xi insects are found on the ith leaf for i = 1; 2; 3; :::; n The number of insects per
leaf is assumed to be a Poisson variate, except that some leaves have no insects because
they are unsuitable for feeding and not merely because of the chance variation allowed
for by the Poisson distribution. In this case the number with no insect (i.e. zero
observations) is in�ated.
Example 4: (Gupta P. L., Gupta R. L. and Tripathi R. C. (1995)) Consider two

machines, one of which (machine I) is perfect and does not produce any defective item
and the other (machine II) produces defectives according to a Poisson distribution
(with parameter, say �). We observe data from the joint output of the two machines
without knowing whether the item has been produced by machine I or by machine
II. In this case the observed number of non-defectives (zero observations) produced is
in�ated.

4.5 The mean and variance of Zero-In�ated Power
Series Distributions

Zero in�ation is a special case of over dispersion that contradicts the relationship
between the mean and variance in a one-parameter exponential family. One way to
address this is to use a two-parameter distribution so that the extra parameter permits
a larger variance.
The �rst and second derivatives of f(�) are given by,

f 0(�) =
df

d�
=

1X
k=0

kak�
k�1 =

1X
k=1

kak�
k�1 (4.2)

and

f 00(�) =
d2f

d�2
=

1X
k=1

k (k � 1) ak�k�2 =
1X
k=2

k (k � 1) ak�k�2 (4.3)

Therefore,

E (Y ) =
1X
k=0

k Pr (Y = k) =
1X
k=1

k Pr (Y = k)

=
1X
k=1

k (1� �) ak�
k

f(�)
=

�

f(�)
(1� �)

1X
k=1

kak�
k�1

= (1� �) �f
0(�)

f(�)
(4.4)

E [Y (Y � 1] =
1X
k=0

k (k � 1) Pr(Y = k) = �2
1X
k=2

k (k � 1) (1� �) ak�
k�2

f (�)

= (1� �) �
2

f(�)
f 00(�)
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and

V ar(Y ) = E [Y (Y � 1] + E(Y )� [E(Y )]2

= (1� �) �2

f(�)
f 00(�) + (1� �) �f

0(�)

f(�)
�
�
(1� �) �f

0(�)

f(�)

�2
= (1� �) �

(
�
f 00(�)

f(�)
+
f 0(�)

f(�)
� (1� �) �

�
f 0(�)

f(�)

�2)
(4.5)

4.6 Probability Generating Function of Zero-In�ated
Power Series Distribution

The pgf of Y is given by

GY (s) =

1X
k=0

Pr(Y = k)sk = Pr(Y = 0) +

1X
k=1

Pr(Y = k)sk

= �+ (1� �) a0
f (�)

+
1X
k=1

(1� �) ak (�s)
k

f (�)

= �+ (1� �) a0
f (�)

+
1X
k=1

(1� �) ak (�s)
k

f (�)

= �+ (1� �) a0
f (�)

+
(1� �)
f (�)

(f (�s)� a0)

= �+ (1� �) f (�s)
f (�)

(4.6)

but
f (�s)

f (�)
= GX (s)

Therefore, (4:6) becomes;

GY (s) = �+ (1� �)GX (s)

G0Y (s) =
dG

ds
= (1� �) �f

0(�s)

f(�)
; (4.7)

and

G00Y (s) =
d2G

ds2
= (1� �) �2f

00(�s)

f(�)
(4.8)

Hence the mean and the variance of ZIPSD is given by

E(Y ) = G0Y (1) = (1� �) �
f 0(�)

f(�)
(4.9)

and
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V ar(Y ) = G00Y (1) +G
0
Y (1)� [G0Y (1)]

2

= (1� �) �2f
00(�)

f(�)
+ (1� �) �f

0(�)

f(�)
�
�
(1� �) �f

0(�)

f(�)

�2
= (1� �) �

(
�
f 00(�)

f(�)
+
f 0(�)

f(�)
� (1� �) �

�
f 0(�)

f(�)

�2)
(4.10)

4.7 Moments and their recurrence relations of zero-
in�ated power series distributions

The rth moment is de�ned by

�0r = E (Y
r) =

1X
k=0

kr Pr(Y = k) =
1X
k=1

kr (1� �) ak
�k

f(�)

=
(1� �)
f(�)

1X
k=1

krak�
k (4.11)

Therefore,

d

d�
�0r =

(1� �)
f(�)

d

d�

1X
k=1

krak�
k + (1� �)

�
d

d�

1

f(�)

� 1X
k=1

krak�
k

=
(1� �)
f(�)

1X
k=1

kr+1ak�
k�1 +

�
�(1� �)
[f(�)]2

d

d�
f(�)

� 1X
k=1

krak�
k

=
(1� �)
f(�)

1X
k=1

kr+1ak�
k�1 � (1� �) f

0(�)

[f(�)]2

1X
k=1

krak�
k

Multiplying d
d�
�0r by �, it becomes

�
d

d�
�0r =

(1� �)
f(�)

1X
k=1

kr+1ak�
k � (1� �) � f

0(�)

[f(�)]
� 1

f(�)

1X
k=1

krak�
k

=
1X
k=1

kr+1 (1� �) ak�
k

f(�)
� � f

0(�)

[f(�)]

1X
k=1

kr (1� �) ak�
k

f(�)

= �0r+1 � �
f 0(�)

[f(�)]
�0r; (4.12)

but

E(Y ) =

1X
k=0

k (1� �) ak�
k

f(�)
= (1� �) �

f(�)

1X
k=1

kak�
k�1

= (1� �) �f
0(�)

f(�)
= �01

Hence,

�
f 0(�)

f(�)
=

�01
(1� �) (4.13)
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Equation (4:13) then becomes

�
d

d�
�0r = �

0
r+1 �

�01
(1� �)�

0
r

Thus we have the recurrence relation for the rth moments of a ZIPSD as

�0r+1 = �
d

d�
�0r +

�01
(1� �)�

0
r (4.14)

The rth central moment, i.e., the rth moment about the mean is de�ned by

�r = E [Y � �01]
r

=

1X
k=0

(k � �01)
r
Pr(Y = k) (4.15)

but

Pr (Y = k) =

8><>:
�+ (1� �) a0

f(�)
for k = 0

(1� �) ak�k
f(�)

for k = 1; 2; 3; : : : ak > 0 and 0 < � < 1
(4.16)

Let s = 0; thus (4:16) becomes

Pr (Y = k) =

8><>:
�+ (1� �) as�s

f(�)
for k = s

(1� �) ak�k
f(�)

for k > s ak > 0 and 0 < � < 1
(4.17)

Therefore The rth central moment as given in (4:15) becomes

ur = � (s� �01)
r
+ (1� �) (s� �01)

r as�
s

f (�)
+

1X
k 6=s

(1� �) (k � �01)
r ak�

k

f (�)
(4.18)

Hence
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d

d�
�r = �

d

d�
((s� �01)r) + (1� �)

d

d�

�
(s� �01)r

as�
s

f (�)

�
+ (1� �)

�
d

d�

1

f(�)

� 1X
k 6=s

(k � �01)
r
ak�

k +
(1� �)
f(�)

d

d�

1X
k 6=s

(k � �01)
r
ak�

k

= ��r (s� �01)
r�1 d

d�
�01 �

f 0(�)

f(�)
(1� �) (s� �01)

r as�
s

f (�)
+ (1� �) (s� �01)

r
s
as�

s�1

f (�)
(4.19)

� (1� �)
f (�)

as�
sr (s� �01)

r�1 d

d�
�01 �

f 0(�)

f(�)
(1� �)

1X
k 6=s

(k � �01)
r ak�

k

f(�)

+
(1� �)
f(�)

1X
k 6=s

k (k � �01)
r
ak�

k�1 � r (1� �)
f(�)

1X
k 6=s

(k � �01)
r�1
ak�

k d

d�
�01

= �r d
d�
�01

(
� (s� �01)

r�1
+ (1� �) (s� �01)

r�1 as�
s

f (�)
+

1X
k 6=s

(k � �01)
r�1 ak�

k

f (�)

)

� f
0(�)

f(�)

(
(1� �) (s� �01)

r as�
s

f (�)
+

1X
k 6=s

(1� �) (k � �01)
r ak�

k

f(�)

)

+ (s� �01)
r+1
(1� �) as�

s�1

f (�)
+ �01 (1� �) (s� �01)

r as�
s�1

f (�)

+
1X
k>s

(k � �01)
r+1 ak�

k�1

f (�)
+ �01

1X
k 6=s

(k � �01)
r ak�

k�1

f (�)
(4.20)

but, by de�nition ur is given by (4:18). Thus by replacing the values of ur in (4:19)
we obtain

d

d�
�r = �r

d

d�
�01�r�1 �

f 0(�)

f(�)
f�r � �(s� �01)rg+ (s� �01)r+1 (1� �)

as�
s�1

f (�)

+

1X
k 6=s

(k � �01)r+1
ak�

k�1

f (�)
+ �01

(
(1� �) (s� �01)r

as�
s�1

f (�)
+

1X
k 6=s

(k � �01)r
ak�

k�1

f (�)

)
(4.21)

Multiplying d
d�
�r by � in (4:20) and replacing the values of ur; � dd��r then becomes

�
d

d�
�r = �r�

d

d�
�01�r�1 � �

f 0(�)

f(�)
f�r � �(s� �01)rg+ (s� �01)r+1 (1� �)

as�
s

f (�)

+
1X
k 6=s

(k � �01)r+1
ak�

k

f (�)
+ �01

(
(1� �) (s� �01)r

as�
s

f (�)
+

1X
k 6=s

(k � �01)r
ak�

k

f (�)

)

= �r� d
d�
�01�r�1 � �

f 0(�)

f(�)
(�r � �(s� �01)r) + �r+1 � �(s� �01)r+1 (4.22)

+ �01 (�r � �(s� �01)r) (4.23)
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but

�
f 0(�)

f(�)
=

�01
(1� �)

Therefore,

�
d

d�
�r = �r�

d

d�
�01�r�1 +

�
�r � � (s� �01)

r��
�01 �

�01
(1� �)

�
+ �r+1 � � (s� �01)

r+1

(4.24)
From (4:22) ; we obtain

�r+1 = �

�
d

d�
�r + r�r�1

d

d�
�01

�
+ � (s� �01)

r+1 �
�
�r � � (s� �01)

r��
�01 �

�01
(1� �)

�
but s = 0:
Thus we obtain the recurrence relation for central moments of ZIPSD as

�r+1 = �

�
d

d�
�r + r�r�1

d

d�
�01

�
+ � (��01)

r+1 �
�
�r � � (��01)

r� �
�01 �

�01
(1� �)

�
(4.25)

setting r = 1 in (4:23) we get

�2 = �

�
d

d�
�0 + �0

d

d�
�01

�
+ �(�01)

2 � (�1 + ��01)
�
�01 �

�01
(1� �)

�
but

�0 = E(Y � �01)0 = 1
and

�1 = E(Y � �01) = E(Y )� �01 = �01 � �01 = 0
As a result,

�2 = �

�
0 +

d

d�
�01

�
+ �(�01)

2 � �(�01)2 +
�(�01)

2

(1� �)

= �
d

d�
�01 +

�(�01)
2

(1� �) (4.26)
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Also from (4:24)

�2 = �
d

d�
�01 +

�(�01)
2

(1� �)

= � (1� �) d
d�

�
�f 0(�)

f(�)

�
+ � (1� �)

�
�f 0(�)

f(�)

�2
= � (1� �)

"
f 0(�)

f(�)
+ �

(
f(�)f 00(�)� [f 0(�)]2

[f(�)]2

)#
+ � (1� �) �2

�
f 0(�)

f(�)

�2
= � (1� �)

"
f 0(�)

f(�)
+ �

f 00(�)

f(�)
� �

�
f 0(�)

f(�)

�2#
+ � (1� �) �2

�
f 0(�)

f(�)

�2
= � (1� �) f

0(�)

f(�)
+ �2 (1� �) f

00(�)

f(�)
� (1� �) �2

�
f 0(�)

f(�)

�2
+ � (1� �) �2

�
f 0(�)

f(�)

�2
= ��2

�
f 0(�)

f(�)

�2
(1� �)2 + � (1� �) f

0(�)

f(�)
+ �2 (1� �) f

00(�)

f(�)

= � (1� �)
(
�
f 00(�)

f(�)
+
f 0(�)

f(�)
� (1� �) �

�
f 0(�)

f(�)

�2)
(3.25)

The variance of Y will be given by

V ar(Y ) = �2 = � (1� �)
(
�
f 00(�)

f(�)
+
f 0(�)

f(�)
� (1� �) �

�
f 0(�)

f(�)

�2)

4.8 Moment Generating Functions (mgf) of Zero-
In�ated Power Series Distribution

The mgf of Y is given by

MY (t) = E
�
etY
�
=

1X
k=0

etkpk = Pr(Y = 0) +

1X
k=1

Pr(Y = k)etk

= �+ (1� �) a0
f(�)

+

1X
k=1

(1� �) ak (�e
t)
k

f(�)

= �+ (1� �) a0
f(�)

+
(1� �)
f(�)

1X
k=1

ak
�
�et
�k

= �+ (1� �) a0
f(�)

+
(1� �)
f(�)

h
f
�
�et
�k � a0i

= �+ (1� �) f (�e
t)

f(�)
(4.27)

The rth moment is obtained from the rth derivative of MY (t) w.r.t t and setting t = 0
i.e.

�0r =
drMY (t)

dtr
jt=0
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4.9 Factorial Moment Generating Function (fmgf)
of Zero-In�ated Power Series Distribution

The fmgf of Y is given by

M[Y ](t) = E [1 + t]
Y

=
1X
k=0

[1 + t]k pk =
1X
k=0

ak(� [1 + t])
k

f(�)

= �+ (1� �) a0
f(�)

+ (1� �)
1X
k=1

ak (� + �t)
k

f(�)

= �+ (1� �) a0
f(�)

+
(1� �)
f(�)

1X
k=1

ak (� + �t)
k

= �+ (1� �) a0
f(�)

+
(1� �)
f(�)

h
f (� + �t)k � a0

i
= �+ (1� �) f(� + �t)

f(�)
(4.28)

The rth factorial moment is obtained from the rth derivative of M[Y ](t) w.r.t t and
setting t = 0

�[r] =
drM[Y ](t)

dtr
jt=0

4.10 Cumulant and Cumulant Generating Function
(cgf) of Zero-In�ated Power Series Distribu-
tion

The cgf of Y is given by

KY (t) = logMY (t)

Thus the rth cumulant of Y:is obtained from the rth derivative of KY (t) w.r.t t and
setting t = 0: That is

kr =
drKY (t)

dtr
jt=0

4.11 Special Cases

4.11.1 Zero-In�ated Poisson Distribution (ZIPo)

f(�) = e� =

1X
k=0

�k

k!

From this we obtain
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Pr (X = k) =
e���k

k!
; k = 0; 1; 2; :::

which is a Poisson Distribution.
By de�nition the probability mass function of ZIPSD is given by,

Pr (Y = k) =

8<:
�+ (1� �) p0 for k = 0

(1� �) pk for k = 1; 2; 3; : : :

Therefore

i.

Pr (Y = k) =

8<:
�+ (1� �) e�� for k = 0

(1� �) e���k
k!

for k = 1; 2; 3; : : :

Which is the probability mass function of ZIPo and con�rms with (Bohning et
al 1999: 198; Chin-Shang, Li et al 199: 30; Jansakul 2002: 77)

ii.
f 0(�) = e�

iii.
f 00(�) = e�

iv. The mean is given by

E(Y ) = (1� �) �f
0(�)

f(�)
= (1� �) �e

�

e�
= (1� �) �

v. The variance is given by

V ar (Y ) = (1� �) �2f
00(�)

f(�)
+ (1� �) �f

0(�)

f(�)
� (1� �)2 �2

�
f 0(�)

f(�)

�2
= (1� �) � [� + 1� � + ��]
= (1� �) � + � (1� �) �2

= (1� �) � (1 + ��)

vi.

�r+1 = �

�
d

d�
�r + r�r�1

d

d�
�01

�
+ � (��01)

r+1 �
�
�r � � (��01)

r� �
�01 �

�01
(1� �)

�
but

�01 = E(Y ) = (1� �) �;
As a result the recurrence relation for the central moments of ZIPo is given
by

�r+1 = �

�
d

d�
�r + (1� �) r�r�1

�
+ � (� (1� �) �)r+1 � �� (�r � � (� (1� �) �)r)
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setting s = 1

u2 = (1� �) � + � ((1� �) �)2 � �2 (1� �) �2

= (1� �) � + � (1� �) �2 ((1� �)� �)
= (1� �) � + � (1� �) �2

= (1� �) � (1 + ��)

vii. The probability generating function for ZIPo is given by

GY (s) = �+ (1� �)
f(�s)

f(�)

= �+ (1� �) e�(s�1)

G0Y (s) = (1� �) �
e�s

e�

G00Y (s) = (1� �) �2
e�s

e�

setting s = 1; we obtain

G0Y (1) = (1� �) �G00Y (1) = (1� �) �2

To obtain the mean and variance

E(Y ) = G0Y (1) = (1� �) �

V ar(Y ) = G00Y (1) +G
0
Y (1)� [G0Y (1)]

2

= (1� �) �2 + (1� �) � � [(1� �) �]2

= (1� �) � (1 + ��)

viii. The moment generating function of ZIPo is given by

MY (t) = �+ (1� �)
f (�et)

f(�)

= �+ (1� �) e(�et��)

= �+ (1� �) e�(et�1)

The rth moment is obtained from the rth derivative of MY (t) w.r.t t and setting
t = 0 i.e.

�0r =
drMY (t)

dtr
jt=0

For r = 1; we have

�01 =
d

dt

h
�+ ( 1� �) e( �et��)

i
jt=0

= ( 1� �) �ete( �et��) jt=0
= ( 1� �) �
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r = 2

�02 = ( 1� �) �
d

dt
e�(e

t�1)+t jt=0

= ( 1� �) �
�
�et + 1

�
e�(e

t�1)+t jt=0
= ( 1� �) � (� + 1) = ( 1� �)

�
�2 + �

�
= ( 1� �) �2 + ( 1� �) �

The variance is given by

�2 = �
0
2 � �021

= ( 1� �) �2 + ( 1� �) � � ( 1� �)2 �2

= ( 1� �) � [� + 1� � + ��]
= ( 1� �) � [1 + ��]

ix. Factorial moment generating function of ZIPo is given by

M[Y ](t) = �+ (1� �)
f(� + �t)

f(�)

= �+ (1� �) e�t

The rth factorial moment is obtained from the rth derivative of M[Y ](t) w.r.t t
and setting t = 0

�[r] =
drM[Y ](t)

dtr
jt=0

setting r = 1

�[1] =
d

dt

�
�+ (1� �) e�t

�
jt=0

= (1� �) �e�t jt=0
= (1� �) �

r = 2

�[2] =
d

dt
(1� �) �e�t jt=0

= (1� �) �2e�t jt=0
= (1� �) �2

r = 3

�[3] =
d

dt
(1� �) �2e�t jt=0

= (1� �) �3e�t jt=0
= (1� �) �3
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r = 4

�[4] =
d

dt
(1� �) �3e�t jt=0

= (1� �) �4e�t jt=0
= (1� �) �4

The recursive relationship between factorial moments of ZIPo is given by

�[r] = ��[r�1] r � 1

x. The cumulant generating function of ZIPo is given by

KY (t) = logMY (t)

= log
n
�+ (1� �) e�(et�1)

o
The rth cumulant of the distribution is obtained from the rth derivative of KY (t)
w.r.t t and setting t = 0:

That is

kr =
drKY (t)

dtr
jt=0

When r = 1; we have

k1 =
dKY (t)

dt
jt=0

=
d

dt
log
�
�+ (1� �) e�(et�1)

�
jt=0

=
(1� �) �e�(et�1)+t

�+ (1� �) e�(et�1) jt=0

=
(1� �) �
(�+ 1� �) = (1� �) �

r = 2

k2 =
d

dt

(
(1� �) �e�(et�1)+t

�+ (1� �) e�(et�1)

)
jt=0

=

8>>>>>>><>>>>>>>:

(1� �) � (�et + 1) e�(et�1)+t
n
�+ (1� �) e�(et�1)

o
�
n
(1� �) �e�(et�1)+t

o2
(�+ (1� �) e�(et�1))2

9>>>>>>>=>>>>>>>;
jt=0

=
(1� �) � (� + 1) (�+ 1� �)� (1� �)2 �2

(�+ (1� �))2

= (1� �) � (� + 1)� (1� �)2 �2

= (1� �) �2 + (1� �) � � (1� �)2 �2

= (1� �) � f� + 1� � + ��g
= (1� �) � [1 + ��]
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4.11.2 Zero-In�ated Binomial Distribution (ZIBin)

f(�) = (1 + �)n =
1X
k=0

�
n

k

�
�k

From this we obtain

Pr (X = k) =

�
n

k

�
�k

(1 + �)n

=

�
n

k

��
�

1 + �

�k �
1

1 + �

�n�k
; k = 0; 1; 2; :::; n

Which is Binomial with parameters n and �
1+�
:

By de�nition the probability mass function of ZIPSD is given by,

Pr (Y = k) =

8<:
�+ (1� �) p0 for k = 0

(1� �) pk for k = 1; 2; 3; : : :

Hence

i.

Pr (Y = k) =

8<:
�+ (1� �)

�
1
1+�

�n
for k = 0

(1� �)
�
n
k

� �
�
1+�

�k � 1
1+�

�n�k
for k = 1; 2; 3; : : : ; n

Which is the probability mass function of ZIBin with parameters n and �
1+�
:

ii.
f 0(�) = n(1 + �)n�1; n = 1; 2; :::

iii.
f 00(�) = n(n� 1)(1 + �)n�2;n = 2; 3; :::

iv. The mean is given by

E(Y ) = (1� �) �f
0(�)

f(�)
= (1� �) �n(1 + �)

n�1

(1 + �)n
= (1� �)n �

1 + �
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v. The variance is given by

V ar (Y ) = (1� �) �2f
00(�)

f(�)
+ (1� �) �f

0(�)

f(�)
�
�
(1� �) �f

0(�)

f(�)

�2
= (1� �)

(
�2
f 00(�)

f(�)
+ �

f 0(�)

f(�)
� (1� �)

�
�
f 0(�)

f(�)

�2)

= (1� �)
(
�2
n(n� 1)
(1 + �)2

+ n
�

1 + �
� (1� �)

�
n

�

1 + �

�2)

= (1� �)
�

�2n2

(1 + �)2
� n�2

(1 + �)2
+ n

�

1 + �
� (1� �) n2�2

(1 + �)2

�
= (1� �)

�
�2n2

(1 + �)2
(1� 1 + �) + n �

1 + �

�
1� �

1 + �

��
= (1� �)

�
�2n2

(1 + �)2
�+ n

�

1 + �

�
1

1 + �

��
vi.

�r+1 = �

�
d

d�
�r + r�r�1

d

d�
�01

�
+ � (��01)

r+1 �
�
�r � � (��01)

r� �
�01 �

�01
1� �

�
but

�01 = E(Y ) = (1� �)n
�

1 + �

Hence the recurrence relation for the central moments of ZIBin is given by

�r+1 = �

�
d

d�
�r + r�r�1 (1� �)n

d

d�

�

1 + �

�
+ �

�
� (1� �)n �

1 + �

�r+1
�
�
�r � �

�
� (1� �)n �

1 + �

�r�"
(1� �)n �

1 + �
�
(1� �)n �

1+�

(1� �)

#

= �

�
d

d�
�r + (1� �)

nr�r�1

(1 + �)2

�
+ �

�
� (1� �)n �

1 + �

�r+1
�
�
�r � �

�
� (1� �) n�

1 + �

�r� �
(1� �) n�

1 + �
� n�

1 + �

�
setting r = 1 we have

�2 = (1� �)
n�

(1 + �)2
+ � (1� �)2 n2�2

(1 + �)2
� � (1� �)2 n2�2

(1 + �)2

+ � (1� �) n2�2

(1 + �)2

= (1� �) n�

(1 + �)2
+ � (1� �) n2�2

(1 + �)2

= (1� �)
�

n�

(1 + �)

�
1

1 + �

�
+ �

n2�2

(1 + �)2

�
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vii. The probability generating function of ZIBin is given by

GY (s) = �+ (1� �)
f (�s)

f (�)

= �+ (1� �) (1 + �s)
n

(1 + �)n

G0Y (s) = (1� �)n�
(1 + �s)n�1

(1 + �)n

G00Y (s) = (1� �)n(n� 1)�2
(1 + �s)n�2

(1 + �)n

setting s = 1; we obtain

G0Y (1) = (1� �)
n�

1 + �

G00Y (s) = (1� �)n(n� 1)�2
(1 + �s)n�2

(1 + �)n

To obtain the mean and variance of ZIBin using pgf

E(Y ) = G0Y (1) = (1� �)
n�

1 + �

V ar(Y ) = G00Y (1) +G
0
Y (1)� [G0Y (1)]

2

= (1� �) n(n� 1)�
2

(1 + �)2
+ (1� �) n�

1 + �
�
�
(1� �) n�

1 + �

�2
= (1� �)

�
�2n2

(1 + �)2
� n�2

(1 + �)2
+ n

�

1 + �
� (1� �) n2�2

(1 + �)2

�
= (1� �)

�
�2n2

(1 + �)2
(1� 1 + �) + n �

1 + �

�
1� �

1 + �

��
= (1� �)

�
�2n2

(1 + �)2
�+ n

�

1 + �

�
1

1 + �

��
viii. The moment generating function of ZIBin is given by

MY (t) = �+ (1� �)
f (�et)

f(�)

= �+ (1� �)
�
1 + �et

1 + �

�n
The rth moment is obtained from the rth derivative of MY (t) w.r.t t and setting
t = 0 i.e.

�0r =
drMY (t)

dtr
jt=0
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For r = 1; we have

�01 =
d

dt

�
�+ (1� �)

�
1 + �et

1 + �

�n�
jt=0

= ( 1� �)n
�
1 + �et

1 + �

�n�1�
�et

1 + �

�
jt=0

= ( 1� �)n
�

�

1 + �

�
r = 2

�02 = ( 1� �)n
d

dt

�
1 + �et

1 + �

�n�1�
�et

1 + �

�
jt=0

= ( 1� �)n

8<: (n� 1)
�
1+�et

1+�

�n�2 �
�et

1+�

�2
+
�
1+�et

1+�

�n�1 �
�et

1+�

�
9=; jt=0

= ( 1� �)n (n� 1)
�

�

1 + �

�2
+ ( 1� �)n

�
�

1 + �

�
The variance is given by

�2 = �
0
2 � �021

= ( 1� �)
(
n (n� 1)

�
�

1 + �

�2
+ n

�
�

1 + �

�
� (1� �) n2�2

(1 + �)2

)

= ( 1� �)
�

�2n2

(1 + �)2
� n�2

(1 + �)2
+ n

�

1 + �
� (1� �) n2�2

(1 + �)2

�
= (1� �)

�
�2n2

(1 + �)2
(1� 1 + �) + n �

1 + �

�
1� �

1 + �

��
= (1� �)

�
�2n2

(1 + �)2
�+ n

�

1 + �

�
1

1 + �

��
ix. Factorial moment generating function of ZIBin is given by

M[Y ](t) = �+ (1� �)
f(� + �t)

f(�)

= �+ (1� �)
�
1 + � + �t

1 + �

�n
The rth factorial moment is obtained from the rth derivative of M[Y ](t) w.r.t t
and setting t = 0

�[r] =
drM[Y ](t)

dtr
jt=0

setting r = 1

�[1] =
d

dt

�
�+ (1� �)

�
1 + � + �t

1 + �

�n�
jt=0

= (1� �)n
�
1 + � + �t

1 + �

�n�1�
�

1 + �

�
jt=0

= (1� �)n
�

�

1 + �

�
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r = 2

�[2] = (1� �)n
d

dt

(�
1 + � + �t

1 + �

�n�1�
�

1 + �

�)
jt=0

= (1� �)n (n� 1)
�
1 + � + �t

1 + �

�n�2�
�

1 + �

�2
jt=0

= (1� �)n (n� 1)
�

�

1 + �

�2
r = 3

�[3] = (1� �)n (n� 1)
d

dt

�
1 + � + �t

1 + �

�n�2�
�

1 + �

�2
jt=0

= (1� �)n (n� 1) (n� 2)
�
1 + � + �t

1 + �

�n�3�
�

1 + �

�3
jt=0

= (1� �)n (n� 1) (n� 2)
�

�

1 + �

�3
r = 4

�[4] = (1� �)n (n� 1) (n� 2)
d

dt

�
1 + � + �t

1 + �

�n�3�
�

1 + �

�3
jt=0

= (1� �)n (n� 1) (n� 2) (n� 3)
�
1 + � + �t

1 + �

�n�4�
�

1 + �

�4
jt=0

= (1� �)n (n� 1) (n� 2) (n� 3)
�

�

1 + �

�4
Therefore the recursive relationship between factorial moments of ZIBin is given
by

�[r] = (n� r + 1)
�

�

1 + �

�
�[r�1]

x. The cumulant generating function of ZIBin is given by

KY (t) = logMY (t)

= log

�
�+ (1� �)

�
1 + �et

1 + �

�n�
The rth cumulant of the distribution is obtained from the rth derivative of KY (t)
w.r.t t and setting t = 0:

That is,

kr =
drKY (t)

dtr
jt=0
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When r = 1; we have

k1 =
dKY (t)

dt
jt=0

=
d

dt
log

�
�+ (1� �)

�
1 + �et

1 + �

�n�
jt=0

=
1

�+ (1� �)
�
1+�et

1+�

�n � (1� �)n�1 + �et
1 + �

�n�1�
�et

1 + �

�
jt=0

= (1� �)n �

1 + �

r = 2

k2 =
d

dt

8><>:
(1� �)n

�
1+�et

1+�

�n�1 �
�et

1+�

�
�+ (1� �)

�
1+�et

1+�

�n
9>=>; jt=0

=

8>>>>>>><>>>>>>>:

(1� �)n (n� 1)
�
1+�et

1+�

�n�2 �
�et

1+�

�2
+(1� �)n

�
1+�et

1+�

�n�1 �
�et

1+�

�
� (1� �)2 n2

�
�et

1+�

�2
�
�+ (1� �)

�
1+�et

1+�

�n�2
9>>>>>>>=>>>>>>>;
jt=0

=
(1� �)n (n� 1)

�
�
1+�

�2
+ (1� �)n

�
�
1+�

�
� (1� �)2 n2

�
�
1+�

�2
(�+ 1� �)2

= (1� �)
(
n (n� 1)

�
�

1 + �

�2
+ n

�
�

1 + �

�
� (1� �)n2

�
�

1 + �

�2)

= ( 1� �)
�

�2n2

(1 + �)2
� n�2

(1 + �)2
+ n

�

1 + �
� (1� �) n2�2

(1 + �)2

�
= (1� �)

�
�2n2

(1 + �)2
(1� 1 + �) + n �

1 + �

�
1� �

1 + �

��
= (1� �)

�
�2n2

(1 + �)2
�+ n

�

1 + �

�
1

1 + �

��
r = 3

k3 = (1� �)n
d

dt

8>>>>>>><>>>>>>>:

(n� 1)
�
1+�et

1+�

�n�2 �
�et

1+�

�2
+
�
1+�et

1+�

�n�1 �
�et

1+�

�
� (1� �)n

�
�et

1+�

�2
�
�+ (1� �)

�
1+�et

1+�

�n�2
9>>>>>>>=>>>>>>>;
jt=0

= (1� �)n
(
(n� 1) (n� 2)

�
�
1+�

�3
+ (n� 1)

�
�
1+�

�2
+ (n� 1)

�
�
1+�

�2
+ 2

�
�
1+�

�
�2 (1� �)n

�
�
1+�

�2
)
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4.11.3 Zero-In�ated Negative Binomial Distribution (ZINB)

f(�) = (1� �)�� =
1X
k=0

�
��
k

�
(��)k

From this we obtain

Pr (X = k) =

�
��
k

�
(��)k

(1� �)��

= (�1)k
�
��
k

�
�k (1� �)�

=

�
�+ k � 1

k

�
�k (1� �)� ; for k = 0; 1; 2; :::

Which is a Negative Binomial Distribution. By de�nition the probability mass function
of ZIPSD is given by,

Pr (Y = k) =

8<:
�+ (1� �) p0 for k = 0

(1� �) pk for k = 1; 2; 3; : : :

Therefore

i.

Pr (Y = k) =

8<:
�+ (1� �) (1� �)� for k = 0

(1� �)
�
�+k�1
k

�
�k (1� �)� for k = 1; 2; 3; : : :

which is the probability mass function of Zero In�ated Negative Binomial Dis-
tribution

ii.
f 0(�) = � (1� �)���1

iii.
f 00(�) = �(�+ 1) (1� �)���2

iv. The mean is given by

E(Y ) = (1� �) ��(1� �)
���1

(1� �)��
= (1� �)� �

1� � ; 0 < � < 1

v. Variance is given by

V ar (Y ) = (1� �) �2f
00(�)

f(�)
+ (1� �) �f

0(�)

f(�)
�
�
(1� �) �f

0(�)

f(�)

�2
= (1� �)

(
�2
�(�+ 1) (1� �)���2

(1� �)��
+ �

�

1� � � (1� �)�
2 �2

(1� �)2

)

= (1� �)
�

�2�2

(1� �)2
+

��2

(1� �)2
+

��

1� � � (1� �)
�2�2

(1� �)2
�

= (1� �)
�

�2�2

(1� �)2
(1� 1 + �) + ��

1� �

�
1 +

�

1� �

��
= (1� �)

�
�2�2

(1� �)2
�+

��

1� �

�
1

1� �

��
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vi.

�r+1 = �

�
d

d�
�r + r�r�1

d

d�
�01

�
+ � (��01)

r+1 �
�
�r � � (��01)

r� �
�01 �

�01
(1� �)

�
but

�01 = E(Y ) = (1� �)�
�

1� �
Thus, the recurrence relation for the central moments of ZINB is given by

�r+1 = �

�
d

d�
�r + r�r�1 (1� �)�

d

d�

�

1� �

�
+ �

�
� (1� �)� �

1� �

�r+1
�
�
�r � �

�
� (1� �)� �

1� �

�r� �
(1� �)� �

1� � � �
�

1� �

�
= �

�
d

d�
�r + (1� �)

�r�r�1

(1� �)2
�
+ �

�
� (1� �)� �

1� �

�r+1
�
�
�r � �

�
�(1� �)��

1� �

�r� �
(1� �)��
1� � � � �

1� �

�
setting r = 1

�2 = �

�
d

d�
�1 + (1� �)

��0

(1� �)2
�
+ �

�
� (1� �)� �

1� �

�2
�
�
�1 � �

�
�(1� �)��

1� �

���
(1� �)��
1� � � � �

1� �

�
= (1� �) ��

(1� �)2
+ � (1� �)2 �2

�
�

1� �

�2
� � (1� �)2 �2

�
�

1� �

�2
+ �

(1� �)�2�2

(1� �)2

= (1� �)
�

��

(1� �)2
+ �

�2�2

(1� �)2
�

= (1� �)
�

��

(1� �)

�
1

(1� �)

�
+ �

�2�2

(1� �)2
�

vii. Probability generating function for ZINB is given by

GY (s) = �+ (1� �)
f (�s)

f (�)

= �+ (1� �) (1� �s)
��

(1� �)��

G0Y (s) = (1� �)��
(1� �s)���1

(1� �)��

G00Y (s) = (1� �)�(�+ 1)�2
(1� �s)���2

(1� �)��
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setting s = 1 we obtain

G0Y (1) = (1� �)
��

(1� �)

G00Y (1) = (1� �)
�(�+ 1)�2

(1� �)2

To obtain the mean and variance

E(Y ) = G0Y (1) = (1� �)
��

(1� �)

V ar(Y ) = G00Y (1) +G
0
Y (1)� [G0Y (1)]

2

= (1� �) �(�+ 1)�
2

(1� �)2
+ (1� �) ��

(1� �) �
�
(1� �) ��

(1� �)

�2
= (1� �)

�
�2�2

(1� �)2
� �2�

(1� �)2
+

��

(1� �) � (1� �)
�2�2

(1� �)2
�

= (1� �)
�

�2�2

(1� �)2
(1� 1 + �) + � �

1� �

�
1� �

1� �

��
= (1� �)

�
�2�2

(1� �)2
�+ �

�

1� �

�
1

1� �

��
viii. The moment generating function of ZINB is given by

MY (t) = �+ (1� �)
f (�et)

f(�)

= �+ (1� �)
�
1� �et
1� �

���
The rth moment is obtained from the rth derivative of MY (t) w.r.t t and setting
t = 0 i.e.

�0r =
drMY (t)

dtr
jt=0

For r = 1; we have

�01 =
d

dt

(
�+ (1� �)

�
1� �et
1� �

���)
jt=0

= ( 1� �) (��)
�
1� �et
1� �

����1���et
1� �

�
jt=0

= ( 1� �)�
�

�

1� �

�
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r = 2

�02 = ( 1� �)�
d

dt

�
1� �et
1� �

����1�
�et

1� �

�
jt=0

=

8<: ( 1� �)� (�+ 1)
�
�et

1��

�2 �
1��et
1��

����2
+( 1� �)�

�
1��et
1��

����1 �
�et

1��

�
9=; jt=0

= ( 1� �)� (�+ 1)
�

�

1� �

�2
+ ( 1� �)�

�
�

1� �

�
= ( 1� �)

�
�2�2

(1� �)2
+

��2

(1� �)2
+ �

�

1� �

�
The variance is given by

�2 = �
0
2 � �021

= ( 1� �)
�

�2�2

(1� �)2
+

��2

(1� �)2
+ �

�

1� � � (1� �)
�2�2

(1� �)2
�

= ( 1� �)
�

�2�2

(1� �)2
�+ �

�

1� �

�
1

1� �

��
ix. Factorial moment generating function of ZINB is given by

M[Y ](t) = �+ (1� �)
f(� + �t)

f(�)

= �+ (1� �)
�
1� � � �t
1� �

���
The rth factorial moment is obtained from the rth derivative of M[Y ](t) w.r.t t
and setting t = 0

�[r] =
drM[Y ](t)

dtr
jt=0

setting r = 1

�[1] =
d

dt

(
�+ (1� �)

�
1� � � �t
1� �

���)
jt=0

= (1� �)�
�
1� � � �t
1� �

����1�
�

1� �

�
jt=0

= (1� �)�
�

�

1� �

�
r = 2

�[2] = (1� �)�
�

�

1� �

�
d

dt

�
1� � � �t
1� �

����1
jt=0

= (1� �)� (�+ 1)
�
1� � � �t
1� �

����2�
�

1� �

�2
jt=0

= (1� �)� (�+ 1)
�

�

1� �

�2
119



r = 3

�[3] = (1� �)� (�+ 1)
�

�

1� �

�2
d

dt

�
1� � � �t
1� �

����2
jt=0

= (1� �)� (�+ 1) (�+ 2)
�

�

1� �

�3 �
1� � � �t
1� �

����3
jt=0

= (1� �)� (�+ 1) (�+ 2)
�

�

1� �

�3
r = 4

�[4] = (1� �)� (�+ 1) (�+ 2)
�

�

1� �

�3
d

dt

�
1� � � �t
1� �

����3
jt=0

= (1� �)� (�+ 1) (�+ 2) (�+ 3)
�
1� � � �t
1� �

����4�
�

1� �

�4
jt=0

= (1� �)� (�+ 1) (�+ 2) (�+ 3)
�

�

1� �

�4
Therefore the recursive relationship between factorial moments of ZINB is given
by

�[r] = (n+ r � 1)
�

�

1� �

�
�[r�1]

x. The cumulant generating function of ZINB is given by

KY (t) = logMY (t)

= log

(
�+ (1� �)

�
1� �et
1� �

���)

The rth cumulant of the distribution is obtained from the rth derivative of KY (t)
w.r.t t and setting t = 0:

That is,

kr =
drKY (t)

dtr
jt=0

When r = 1; we have

k1 =
dKY (t)

dt
jt=0

=
d

dt
log

(
�+ (1� �)

�
1� �et
1� �

���)
jt=0

=
1

�+ (1� �)
�
1��et
1��

��� � (1� �) (��)�1� �et1� �

����1���et
1� �

�
jt=0

= (1� �)� �

1� �
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r = 2

k2 =
d

dt

8><>:
(1� �)�

�
1��et
1��

����1 �
�et

1��

�
�+ (1� �)

�
1��et
1��

���
9>=>; jt=0

=

8>>>>>>><>>>>>>>:

(1� �)� (�+ 1)
�
1��et
1��

����2 �
�et

1��

�2
+ (1� �)�

�
1��et
1��

����1 �
�et

1��

�
� (1� �)2 �2

�
�et

1��

�2
�
�+ (1� �)

�
1��et
1��

����2
9>>>>>>>=>>>>>>>;
jt=0

=
(1� �)� (�+ 1)

�
�
1��
�2
+ (1� �)�

�
�
1��
�
� (1� �)2 �2

�
�
1��
�2

(�+ 1� �)2

= (1� �)
(
� (�+ 1)

�
�

1� �

�2
+ �

�

1� � � (1� �)�
2

�
�

1� �

�2)

= ( 1� �)
�

�2�2

(1� �)2
+

��2

(1� �)2
+ �

�

1� � � (1� �)
�2�2

(1� �)2
�

= (1� �)
�

�2�2

(1� �)2
(1� 1 + �) + � �

1� �

�
1� �

1� �

��
= (1� �)

�
�2�2

(1� �)2
�+ �

�

1� �

�
1

1� �

��
xii Special case when � = 1 we have

Pr (Y = k) =

8<:
�+ (1� �) (1� �) for k = 0

(1� �) �k (1� �) for k = 1; 2; 3; : : :

which is the probability mass function of Zero In�ated Geometric Distribution
(ZIGD)

The mean is given by

E(Y ) = (1� �) �

1� � ; 0 < � < 1

Variance is given by

V ar (Y ) = (1� �)
�

�2

(1� �)2
�+

�

1� �

�
1

1� �

��
The recurrence relation for the central moments of ZIGD is given by

�r+1 = �

�
d

d�
�r + (1� �)

r�r�1

(1� �)2
�
+ �

�
� (1� �) �

1� �

�r+1
�
�
�r � �

�
�(1� �) �

1� �

�r� �
(1� �) �
1� � � �

1� �

�

121



Probability generating function for ZIGD is given by

GY (s) = �+ (1� �)
(1� �s)�1

(1� �)�1

G0Y (s) = (1� �)��
(1� �s)�2

(1� �)�1

G00Y (s) = (1� �) 2�2
(1� �s)�3

(1� �)�1

setting s = 1 we obtain

G0Y (1) = (1� �)
�

(1� �)

G00Y (1) = (1� �)
2�2

(1� �)2

To obtain the mean and variance

E(Y ) = G0Y (1) = (1� �)
�

(1� �)

V ar(Y ) = G00Y (1) +G
0
Y (1)� [G0Y (1)]

2

= (1� �)
�

�2

(1� �)2
�+

�

1� �

�
1

1� �

��
The moment generating function of ZIGD is given by

MY (t) = �+ (1� �)
�
1� �et
1� �

��1
The rth moment is obtained from the rth derivative of MY (t) w.r.t t and setting
t = 0 i.e.

�0r =
drMY (t)

dtr
jt=0

For r = 1; we have

�01 = ( 1� �)
�

�

1� �

�
r = 2

�02 = ( 1� �)
�

�2

(1� �)2
+

�2

(1� �)2
+

�

1� �

�
The variance is given by

�2 = �
0
2 � �021

= ( 1� �)
�

�2

(1� �)2
+

�2

(1� �)2
+

�

1� � � (1� �)
�2

(1� �)2
�

= ( 1� �)
�

�2

(1� �)2
�+

�

1� �

�
1

1� �

��
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Factorial moment generating function of is given by

M[Y ](t) = �+ (1� �)
f(� + �t)

f(�)

= �+ (1� �)
�
1� � � �t
1� �

���
The rth factorial moment is obtained from the rth derivative of M[Y ](t) w.r.t t
and setting t = 0

�[r] =
drM[Y ](t)

dtr
jt=0

setting r = 1

�[1] = (1� �)
�

�

1� �

�
r = 2

�[2] = (1� �) 2
�

�

1� �

�2
r = 3

�[3] = (1� �) 6
�

�

1� �

�3
r = 4

�[4] = (1� �) 24
�

�

1� �

�4
Therefore the recursive relationship between factorial moments of ZIGD is given
by

�[r] = r

�
�

1� �

�
�[r�1]

The cumulant generating function of ZIGD is given by

KY (t) = logMY (t)

= log

(
�+ (1� �)

�
1� �et
1� �

��1)

The rth cumulant of the distribution is obtained from the rth derivative of KY (t)
w.r.t t and setting t = 0:

That is,

kr =
drKY (t)

dtr
jt=0

When r = 1; we have

k1 = (1� �)�
�

1� �

r = 2

k2 = (1� �)
�

�2�2

(1� �)2
�+ �

�

1� �

�
1

1� �

��
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4.11.4 Zero-Modi�ed Logarithmic Series Distribution (ZILS)

f(�) = � log(1� �)
From this we obtain

Pr (X = k) =
�k

�k log(1� �) ; k = 1; 2; : : :

And by de�nition the probability mass function of ZIPSD is given by,

Pr (Y = k) =

8<:
�+ (1� �) p0 for k = 0

(1� �) pk for k = 1; 2; 3; : : :

Therefore

i.

Pr (Y = k) =

8<:
� for k = 0

(1� �) �k

�k log(1��) for k = 1; 2; 3; : : :

which is the probability mass function of Zero-Modi�ed Logarithmic Series Dis-
tribution

ii.
f 0(�) =

1

1� �
iii.

f 00(�) =
1

(1� �)2

iv. The mean is given by

E(Y ) = (1� �) �f
0(�)

f(�)
= (1� �) �

�
1

1� �

�
� 1

� log(1� �)

=
� (1� �) �

(1� �) log(1� �)

v. Variance is given by

V ar (Y ) = (1� �) �2f
00(�)

f(�)
+ (1� �) �f

0(�)

f(�)
�
�
(1� �) �f

0(�)

f(�)

�2
= (1� �)

8<:
��2

(1��)2 log(1��) �
�

(1��) log(1��)

� (1� �)
h

�
(1��) log(1��)

i2
9=;

= (1� �)
�
��2 log(1� �)� � (1� �) log(1� �)� (1� �) �2

(1� �)2 [log(1� �)]2
�

= (1� �)
�
�� log(1� �)� (1� �) �2

(1� �)2 [log(1� �)]2
�

= � (1� �)
�
� log(1� �) + (1� �) �2

(1� �)2 [log(1� �)]2
�
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vi.

�r+1 = �

�
d

d�
�r + r�r�1

d

d�
�01

�
+ � (��01)

r+1 �
�
�r � � (��01)

r� �
�01 �

�01
(1� �)

�
but

�01 = E(Y ) =
� (1� �) �

(1� �) log(1� �)
Thus, the recurrence relation for the central moments of ZILS is given by

�r+1

= �

�
d

d�
�r + r�r�1 (1� �)

d

d�

�
�

(1� �) log(1� �)

��
+ �

�
� (1� �) �

(1� �) log(1� �)

�r+1
�
�
�r � �

�
� (1� �) �

(1� �) log(1� �)

�r� � � (1� �) �
(1� �) log(1� �) +

�

(1� �) log(1� �)

�
= �

�
d

d�
�r � (1� �) r�r�1

log(1� �) + �
[(1� �) log(1� �)]2

�
+ �

�
� (1� �) �

(1� �) log(1� �)

�r+1
�
�
�r � �

�
� (1� �) �

(1� �) log(1� �)

�r� � � (1� �) �
(1� �) log(1� �) +

�

(1� �) log(1� �)

�
setting r = 1

�2 = �

�
d

d�
�1 � (1� �) r�0

log(1� �) + �
[(1� �) log(1� �)]2

�
+ �

�
� (1� �) �

(1� �) log(1� �)

�2
�
�
�1 � �

�
� (1� �) �

(1� �) log(1� �)

���
� (1� �) �

(1� �) log(1� �) +
�

(1� �) log(1� �)

�
= � (1� �)

�
� log(1� �) + �2

[(1� �) log(1� �)]2
�
+

��2 (1� �)2

[(1� �) log(1� �)]2
+

�2�2 (1� �)
[(1� �) log(1� �)]

= � (1� �)
�
� log(1� �) + �2 + ��2 (1� �) + �2�2

[(1� �) log(1� �)]2
�

= � (1� �)
�
� log(1� �) + �2 + ��2 [1� �+ �]

[(1� �) log(1� �)]2
�

= � (1� �)
�
� log(1� �) + �2 (1 + �)
[(1� �) log(1� �)]2

�
vii. Probability generating function for ZILS is given by

GY (s) = �+ (1� �)
f (�s)

f (�)

= �+ (1� �) log (1� �s)
log (1� �)

G0Y (s) =
� (1� �) �

(1� �s) log (1� �)

G00Y (s) =
� (1� �) �2

(1� �s)2 log (1� �)
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setting s = 1 we obtain

G0Y (1) =
� (1� �) �

(1� �) log (1� �)

G00Y (1) =
� (1� �) �2

(1� �)2 log (1� �)
To obtain the mean and variance

E(Y ) = G0Y (1) =
� (1� �) �

(1� �) log (1� �)

V ar(Y ) = G00Y (1) +G
0
Y (1)� [G0Y (1)]

2

=
� (1� �) �2

(1� �)2 log (1� �)
� (1� �) �
(1� �) log (1� �) �

�
� (1� �) �

(1� �) log (1� �)

�2
= (1� �)

( ��2
(1��)2 log(1��) �

�
(1��) log(1��)

� (1��)�2
[(1��) log(1��)]2

)

= (1� �)
�
��2 log (1� �)� � log (1� �) + �2 log (1� �)� (1� �) �2

[(1� �) log (1� �)]2
�

= (1� �)
�
�� log (1� �)� (1� �) �2

[(1� �) log (1� �)]2
�

= � (1� �)
�
� log (1� �) + (1� �) �2

[(1� �) log (1� �)]2
�

viii. The moment generating function of ZILS is given by

MY (t) = �+ (1� �)
f (�et)

f(�)

= �+ (1� �) log (1� �e
t)

log (1� �)

The rth moment is obtained from the rth derivative of MY (t) w.r.t t and setting
t = 0 i.e.

�0r =
drMY (t)

dtr
jt=0

For r = 1; we have

�01 =
d

dt

�
�+ (1� �) log (1� �e

t)

log (1� �)

�
jt=0

=
( 1� �)
log (1� �)

d

dt
log
�
1� �et

�
jt=0

=
� ( 1� �) �et

(1� �et) log (1� �) jt=0

=
� ( 1� �) �

(1� �) log (1� �)
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r = 2

�02 =
� ( 1� �) �
log (1� �)

d

dt

et

(1� �et) jt=0

=
� ( 1� �) �
log (1� �)

�
et (1� �et) + �e2t

(1� �et)2
�
jt=0

=
� ( 1� �) �

(1� �)2 log (1� �)

The variance is given by

�2 = �
0
2 � �021

= � ( 1� �)
�

�

(1� �)2 log (1� �)
+

( 1� �) �2

[(1� �) log (1� �)]2
�

= � ( 1� �)
�
� log (1� �) + ( 1� �) �2

[(1� �) log (1� �)]2
�

ix. Factorial moment generating function of ZILS is given by

M[Y ](t) = �+ (1� �)
f(� + �t)

f(�)

= �+ (1� �) log (1� � � �t)
log(1� �)

The rth factorial moment is obtained from the rth derivative of M[Y ](t) w.r.t t
and setting t = 0

�[r] =
drM[Y ](t)

dtr
jt=0

setting r = 1

�[1] =
d

dt

�
�+ (1� �) log

�
1� � � �t
1� �

��
jt=0

=
(1� �)
log (1� �) �

��
(1� � � �t) jt=0

=
� (1� �) �

(1� �) log (1� �)

r = 2

�[2] =
� (1� �)
log (1� �) �

d

dt

�
�

(1� � � �t)

�
jt=0

=
� (1� �)
log (1� �)

�
�2

(1� � � �t)2
�
jt=0

=
� (1� �) �2

(1� �)2 log (1� �)
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r = 3

�[3] =
� (1� �) �2
log (1� �) �

d

dt

1

(1� � � �t)2
jt=0

=
�2 (1� �) �3

(1� � � �t)3 log (1� �)
jt=0

=
�2 (1� �) �3

(1� �)3 log (1� �)

r = 4

�[4] =
�2 (1� �) �3
log (1� �)

d

dt

1

(1� � � �t)3
jt=0

=
�6 (1� �) �4

(1� � � �t)4 log (1� �)
jt=0

=
�6 (1� �) �4

(1� �)4 log (1� �)

Therefore the recursive relationship between factorial moments of ZILS is given
by

�[r] = (r � 1)
�

�

1� �

�
�[r�1]

x. The cumulant generating function of ZILS is given by

KY (t) = logMY (t)

= log

�
�+ (1� �) log (1� �e

t)

log (1� �)

�
The rth cumulant of the distribution is obtained from the rth derivative of KY (t)
w.r.t t and setting t = 0:

That is,

kr =
drKY (t)

dtr
jt=0

When r = 1; we have

k1 =
dKY (t)

dt
jt=0

=
d

dt
log

�
�+ (1� �) log

�
1� �et
1� �

��
jt=0

=
1

�+ (1� �) log
�
1��et
1��

� � (1� �)
log (1� �)

�
��et
1� �et

�
jt=0

=
� ( 1� �) �

(1� �) log (1� �)
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r = 2

k2 = � (1� �)
d

dt

8<:
(1��)
log(1��)

�
��et
1��et

�
�+ (1� �) log

�
1��et
1��

�
9=; jt=0

=
� (1��)�
log(1��)

n
et

(1��et)2

h
�+ (1� �) log

�
1��et
1��

�i
+ (1��)

log(1��) �
�e2t

(1��et)2

o
�
�+ (1� �) log

�
1��et
1��

�	2 jt=0

= � (1� �) �
�

1

(1� �)2 log (1� �)
+

(1� �) �
(1� �)2 [log (1� �)]2

�
= � (1� �)

�
(1� �) �2 + � log (1� �)
(1� �)2 [log (1� �)]2

�
A summary of ZIPSD distributions with their corresponding pmf and pgf are given

in the table (3.2) below

Table 3.2 Summary of zero-in�ated discrete distributions
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Chapter 5

Estimation of the Parameters of
Zero-In�ated Power Series
Distribution

5.1 Introduction

This chapter entails the estimation of Zero-In�ated Power Series Distribution para-
meters based on two methods; the maximum likelihood and the method of moments.
Two parameters will be estimated, the �rst parameter indicating in�ates of zero �
and the other parameter � is that of power series distribution. Also, the special cases
of the Zero-In�ated Power Series Distributions that includes; Zero-In�ated Poisson,
zero-in�ated binomial, zero-in�ated negative binomial and zero-modi�ed logarithmic
series distribution will also be covered.

5.2 Moment Estimator of ZIPSD

A random sample of size n, taking the values x1; x2; :::; xn from ZIPSD de�ned as

Pr (X = xi) =

8><>:
�+ (1� �) a0

f(�)
for xi = 0

(1� �) axi�
xi

f(�)
for xi = 1; 2; 3; : : : axi > 0 and 0 < � < 1

with unknown � and �: The estimates of the parameters � and � is obtained by the
method of moment by equating the �rst r sample moments about zero, to the corre-
sponding population (distribution) moment. That is,
Let

m0
k =

Pn
i=1 x

k
i

n
; k = 1; 2; : : : ; r

be the rth sample moment about the origin.
and let

�0k = E
�
Xk
�
; k = 1; 2; : : : ; r

be the corresponding rth distribution moment. Where r is the number of unknown
parameters. The method of moments is based on matching the sample moments with
the corresponding distribution moments and is founded on the assumption that sample
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moments should provide good estimates of the corresponding population moments.
Because the population moments u0k are often functions of the population parameters.
For ZIPSD the number of unknown parameters is two (r = 2); � and �: Therefore

we take the �rst and second distribution moment given by u01 and �
0
2 respectively

u01 = E (X) = (1� �)
�f 0(�)

f(�)

and

�02 = E
�
X2
�
= (1� �) �

�
�

f(�)
f 00(�) +

f 0(�)

f(�)

�
Also, the �rst and second sample moments m0

1 and m
0
2 are respectively

m0
1 =

Pn
i=1 xi
n

= �x

and

m0
2 =

Pn
i=1 x

2
i

n

equating the distribution moments with the sample moments, we get

�x = (1� �) �f
0(�)

f(�)

and Pn
i=1 x

2
i

n
= (1� �) �

�
�

f(�)
f 00(�) +

f 0(�)

f(�)

�
We obtain moment estimators of � and � by solving the above simultaneous equations.
The method is fairly simple and yields consistent estimators though these estima-

tors are often biased. Thus the estimates obtained by the method of moments will be
used as the initial estimate to the solutions of the likelihood equations, and successive
improved approximation of �̂ may then be found by the Newton-Raphson iteration
method.

5.3 Estimation of the Parameters Using Maximum
Likelihood Function

A random sample of size n, taking the values x1; x2; :::; xn from ZIPSD de�ned as

Pr (X = xi) =

8><>:
�+ (1� �) a0

f(�)
for xi = 0

(1� �) axi�
xi

f(�)
for xi = 1; 2; 3; : : : axi > 0 and 0 < � < 1

with unknown � and �: The estimates of the parameters � and � are often found by
the method of maximum likelihood. Where the random sample x1; x2; :::; xn are
considered to be known. The joint probability mass function (pmf) of the sample is
the product of individual pmf of x�s, called the likelihood function de�ned in (5:1) and,
it is a function of parameter � and �. We �nd the values of � and � that maximizes it.
This is equivalent to maximizing the logarithm of the likelihood function(the log of the
likelihood function) with respect to � and � respectively. Mathematically it is easier
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to maximize the logarithm of the likelihood function than the likelihood function, as
it replaces the product by the sums. Moreover, it allows the use of the central limit
theorem when studying the properties of maximum likelihood estimator.
Consider the likelihood function de�ned by

L (�; �;x) =

nY
i=1

�
�+ (1� �) a0

f (�)

�1�bi �
(1� �) axi�

xi

f (�)

�bi
�; � > 0 (5.1)

where bi = 0 if xi = 0 and bi = 1 if xi = 1; 2; 3; : : : :
Maximum likelihood estimators (mles) of � and � is obtained by maximizing logL (�; �;x)

with respect to � and � respectively, where

logL (�; �;x) =

(
n0 log

n
�+ (1� �) a0

f(�)

o
+
Pn

i=1 bi log (1� �)
+
Pn

i=1 bi log axi +
Pn

i=1 bixi log � �
Pn

i=1 bi log f (�)

)
(5.2)

Where n0 denotes the number of observations that are zeros in the sample. Di¤eren-
tiating logL (�; �;x) w.r.t � and �; we get

@ logL

@�
=
n0

n
1� a0

f(�)

o
�+ (1� �) a0

f(�)

�
Pn

i=1 bi
(1� �) (5.3)

@ logL

@�
=
n0

n
�(1��)a0f 0(�)

f(�)2

o
�+ (1� �) a0

f(�)

+

Pn
i=1 bixi
�

�
Pn

i=1 bif
0 (�)

f (�)
(5.4)

To show that �̂ and �̂ are maxima we take the second derivative of the log likelihood
function w.r.t � and �
That is,

@2 logL

@�2
=
@

@�

8<: n0

n
1� a0

f(�)

o
�+ (1� �) a0

f(�)

�
Pn

i=1 bi
(1� �)

9=;
=
@

@�

8<: n0

�
1� a0

f(�)

�
�+ (1� �) a0

f(�)

9=;� @

@�

�Pn
i=1 bi

(1� �)

�

= �n0

�
1� 1

f�
a0

�2
�
�+ 1

f�
a0 (1� �)

�2 � Pn
i=1 bi

(1� �)2
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@2 logL

@�2
=
@

@�

8<:n0
�
�(1��)a0f 0(�)

f(�)2

�
�+ (1� �) a0

f(�)

+

Pn
i=1 bixi
�

�
Pn

i=1 bif
0 (�)

f (�)

9=;
=
@

@�

8<:n0
�
�(1��)a0f 0(�)

f(�)2

�
�+ (1� �) a0

f(�)

9=;+ @

@�

�Pn
i=1 bixi
�

�
� @

@�

�Pn
i=1 bif

0 (�)

f (�)

�

=

Pn
i=1 bif

0 (�)

f (�)
�
Pn

i=1 bi [f
0 (�)]2

f (�)2
� n0 (1� �) a0f 00 (�)
f (�)2 �+ (1� �) f (�) a0

� (�n0 (1� �) a0f
0 (�)) (2f (�) �+ (1� �) f 0 (�) a0)�

f (�)2 �+ (1� �) f (�) a0
�2 � 1

�2

nX
i=1

bixi

Since
@2 logL

@�2
< 0 and

@2 logL

@�2
< 0

Then it has a local maximum at � and � respectively.
Equating (5:3) and (5:4) to zero and solving for � and � we get

Pn
i=1 bi

(1� �) =
n0

n
1� a0

f(�)

o
�+ (1� �) a0

f(�)

nX
i=1

bi�+
nX
i=1

bi (1� �)
a0
f (�)

= n0

�
1� a0

f (�)

�
� �n0

�
1� a0

f (�)

�
(5.5)

but

(n� n0) =
nX
i=1

bi

substituting this in (5:5) : We obtain

(n� n0) �+ (n� n0)
a0
f (�)

� (n� n0) �
a0
f (�)

= n0

�
1� a0

f (�)

�
� �n0

�
1� a0

f (�)

�

�

�
(n� n0) + (n� n0)

a0
f (�)

� n0
�
1� a0

f (�)

��
= � (n� n0)

a0
f (�)

+ n0

�
1� a0

f (�)

�

� =
� (n� n0) a0 + n0 (f (�)� a0)

(n� n0) f (�)� (n� n0) a0 � n0 (f (�)� a0)

� =
� (n� n0) a0 + n0 (f (�)� a0)

(n� n0) (f (�)� a0)� n0 (f (�)� a0)

� =
n0 (f (�)� a0)� (n� n0) a0

n (f (�)� a0)

�̂ =
n0f

�
�̂
�
� na0

n
�
f
�
�̂
�
� a0

� (5.6)

and
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Pn
i=1 bixi

�̂
=

8>><>>:
n0 (1� �̂) a0f 0

�
�̂
�

f
�
�̂
�2 �

�̂+ (1� �̂) a0
f(�̂)

�
9>>=>>;+

Pn
i=1 bif

0
�
�̂
�

f
�
�̂
� (5.7)

Where �̂ and �̂ are the mles of � and � respectively.
Substituting the value of �̂ in (5:7) ; we obtain

Pn
i=1 bixi

�̂
=

8>><>>:
n0 (1� �̂) a0f 0

�
�̂
�

f
�
�̂
�2 �

�̂+ (1� �̂) a0
f(�̂)

�
9>>=>>;+

Pn
i=1 bif

0
�
�̂
�

f
�
�̂
�

=

n0

�
[n�n0]f(�̂)
n(f(�̂)�a0)

�
a0f

0
�
�̂
�

f
�
�̂
�2

n0
n

+
[n� n0] f 0

�
�̂
�

f
�
�̂
�

=

8<: [n� n0] a0f 0
�
�̂
�

f
�
�̂
��
f
�
�̂
�
� a0

�
9=;+ [n� n0] f

0
�
�̂
�

f
�
�̂
�

Pn
i=1 bixi

�̂
= [n� n0]

8<: a0f
0
�
�̂
�

f
�
�̂
��
f
�
�̂
�
� a0

� + f 0
�
�̂
�

f
�
�̂
�
9=;

Pn
i=1 bixi
[n� n0]

= �̂

8<: a0f
0
�
�̂
�

f
�
�̂
��
f
�
�̂
�
� a0

� + f 0
�
�̂
�

f
�
�̂
�
9=;

= �̂
f 0
�
�̂
�

f
�
�̂
�
8<: a0

f
�
�̂
�
� a0

+ 1

9=;
= �̂

f 0
�
�̂
�

f
�
�̂
�
� a0

(5.7 a)

but
Pn
i=1 bixi
[n�n0] = �x (the sample mean of the positive observations). Therefore replacing

this in (5:7a) above we obtain

�x = �̂
f 0
�
�̂
�

f
�
�̂
�
� a0

Which is non-linear equation in �; a numerical procedure like Newton-Raphson
method can be used to �nd �̂.
To obtain �̂ using The Newton-Raphson Iteration. Let r be a root of the equation

f(�̂) = 0. We start with an initial estimate �̂0 of r: From initial estimate �̂0(preferably
obtained by method of moment), we produce an improved estimate �̂1. From �̂1, we
produce a new estimate �̂2. From �̂2, we produce a new estimate �̂3. We go on until
we are �close enough�to r or until it becomes clear that we are getting nowhere. The
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general style of proceeding is, if �̂r is the current estimate, then the next estimate �̂r+1
is given by

�̂r+1 = �x

8<:f
�
�̂r

�
� a0

f 0
�
�̂r

�
9=;

and substitute the value of �̂ in (5:6) to obtain �̂:

5.4 Special Cases

5.4.1 Zero-In�ated Poisson Distribution

Moment Estimator of Zero-In�ated Poisson Distribution

The �rst and second rth moment for ZIPo are given by

u01 = E (X) = (1� �) �
u02 = E

�
X2
�
= (1� �) �2 + (1� �) �

and the �rst and second rth sample moment are given by

m0
1 =

Pn
i=1 xi
n

= �x

and

m0
2 =

Pn
i=1 x

2
i

n

Equating the distribution moments with the sample moments, we get

�x = (1� �) � (5.8)

and Pn
i=1 x

2
i

n
= (1� �) �2 + (1� �) � (5.9)

Solving (5:8) and (5:9) simultaneously to get the moment estimators of � and �. We
have Pn

i=1 x
2
i

n
= �x� + �x

nX
i=1

x2i = �x�n+ �xn

nX
i=1

x2i � �xn = �x�n

That is

�̂ =

Pn
i=1 x

2
i � �xn
�xn

=

Pn
i=1 x

2
i

�xn
� 1
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substituting the value of �̂ in (5:8) we obtain

�x = (1� �) �

That is

�̂ = 1� �x

�̂

= 1� �xPn
i=1 x

2
i

�xn
� 1

= 1� �x2nPn
i=1 x

2
i � �xn

Estimation of Zero-In�ated Poisson Distribution Parameters Using Full
Likelihood Function

A random sample of size n, taking the values x1; x2; :::; xn observed from ZIPo distri-
bution. The likelihood function is given by

L (�; �;x) =
nY
i=1

�
�+ (1� �) e��

	1�bi �
(1� �) e

���xi

xi!

�bi
�; � > 0

where bi = 0 if xi = 0 and bi = 1 if xi = 1; 2; 3; : : : :
The corresponding log likelihood function is given by

logL (�; �;x) = n0 log
�
�+ (1� �) e��

�
+

nX
i=1

bi log (1� �)

� �
nX
i=1

bi +
nX
i=1

bixi log (�)�
nX
i=1

bi log xi!

where n0 = number of xi�s equal to zero in the sample.
Therefore Maximum likelihood estimators (mles) of � and � is obtained by maxi-

mizing logL (�; �;x) with respect to � and � respectively. That is

@ logL

@�
=

n0
�
1� e��

	
�+ (1� �) e�� �

Pn
i=1 bi

(1� �) (5.10)

@ logL

@�
=
n0
�
� (1� �) e��

	
�+ (1� �) e�� +

Pn
i=1 bixi
�

�
nX
i=1

bi (5.11)

Equating (5:10) and (5:11) to zero and solving for � and � we get

Pn
i=1 bi

(1� �) =
n0
�
1� e��

	
�+ (1� �) e��

nX
i=1

bi�+

nX
i=1

bi (1� �) e�� = n0
�
1� e��

	
� �n0

�
1� e��

	
(5.12)
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but

n� n0 =
nX
i=1

bi

substituting this in (5:12) : We obtain

(n� n0) �+ (n� n0) e�� � (n� n0) �e�� = n0
�
1� e��

	
� �n0

�
1� e��

	
�
�
n� ne��

	
= �ne�� + n0

�̂ =
n0 � ne��̂

n
�
1� e��̂

�
=

n0e
�̂ � n

n
�
e�̂ � 1

� (5.13)

and Pn
i=1 bixi

�̂
=
n0 (1� �̂) e��̂

�̂+ (1� �̂) e��̂
+

nX
i=1

bi (5.14)

Where �̂ and �̂ are the mles of � and � respectively. Substituting the value of �̂ in
(5:14) :We obtain

Pn
i=1 bixi

�̂
=

n0

�
n�n0

n(1�e��̂)

�
e��̂

�ne��̂+n0
n(1�e��̂)

+

�
n�n0

n(1�e��̂)

�
e��̂

+ (n� n0)

=
n0 (n� n0) e��̂

�ne��̂ + n0 + ne��̂ � n0e��̂
+ (n� n0)

=
(n� n0) e��̂�
1� e��̂

� + (n� n0)

Pn
i=1 bixi

�̂
=
(n� n0) e��̂

1� e��̂
+ (n� n0)Pn

i=1 bixi
(n� n0)

= �̂

(
e��̂

1� e��̂
+ 1

)

�x =
�̂

1� e��̂

=
�̂e�̂

e�̂ � 1
where �x is the sample mean of the positive observations.
To obtain �̂ using The Newton-Raphson Iteration. Let r be a root of the equation

f(�̂) = 0. We start with an initial estimate �̂0 of r: From initial estimate �̂0 (Preferably
the estimate obtained from the method of moment), we produce an improved estimate

137



�̂1. From �̂1, we produce a new estimate �̂2, and the general style of proceeding is, if
�̂r is the current estimate, then the next estimate �̂r+1 is given by

�̂r+1 = �x

(
e�̂r � 1
e�̂r

)

and substitute the value of �̂ in (5:13) to obtain �̂:

5.4.2 Zero-In�ated Binomial Distribution

Moment Estimator of Zero-In�ated Binomial Distribution

The �rst and second rth moment for ZIBin are given by

u01 = E (X) = (1� �)n
�

1 + �

u02 = E
�
X2
�
= (1� �)

�
�2
n(n� 1)
(1 + �)2

+ n
�

1 + �

�
Equating the distribution moments above with the sample moments, we get

�x = (1� �)n �

1 + �
(5.15)

and Pn
i=1 x

2
i

n
= (1� �)

�
�2
n(n� 1)
(1 + �)2

+ n
�

1 + �

�
(5.16)

solving (5:15) and (5:16) to get the moment estimators of � and �. We havePn
i=1 x

2
i

n
= (1� �) �2n(n� 1)

(1 + �)2
+ (1� �)n �

1 + �

(1 + �)
nX
i=1

x2i = �xn (n� 1) � + �xn (1 + �)

nX
i=1

x2i + �
nX
i=1

x2i = �xn
2� � �xn� + �xn+ �xn�

�xn2� + �xn =
nX
i=1

x2i + �
nX
i=1

x2i

�

(
�xn2 �

nX
i=1

x2i

)
=

nX
i=1

x2i � �xn

�̂ =

Pn
i=1 x

2
i � �xn

�xn2 �
Pn

i=1 x
2
i

That is

�̂ =

Pn
i=1 x

2
i � �xn

�xn2 �
Pn

i=1 x
2
i
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substituting the value of �̂ in (5:15) we obtain

�x = (1� �)n �

1 + �

= n
�

1 + �
� n� �

1 + �

�x+ �x� = n� � n��
�x+ �x� � n� = �n��

Therefore

�̂ = 1� �x

n�̂
� �x

n

= 1� �x

n
n Pn

i=1 x
2
i��xn

�xn2�
Pn
i=1 x

2
i

o � �x

n

= 1� �x (�xn2 �
Pn

i=1 x
2
i )

n
Pn

i=1 x
2
i � �xn2

� �x

n

Estimation of Zero-In�ated Binomial Distribution Parameters Using Full
Likelihood Function

A random sample of size n, taking the values x1; x2; :::; xn observed from ZIBin
distribution. The likelihood function is given by

L (�; �;x) =
nY
i=1

�
�+ (1� �)

�
1

(1 + �)

�n�1�bi �
(1� �)

�
n

xi

�
�xi (1 + �)�n

�bi
�; � > 0

where bi = 0 if xi = 0 and bi = 1 if xi = 1; 2; 3; : : : :
The corresponding log likelihood function is given by

logL (�; �;x) = n0 log
�
�+ (1� �) (1 + �)�n

	
+

nX
i=1

bi log (1� �) +
nX
i=1

bi log

�
n

xi

�
+

nX
i=1

bixi log (�)�
nX
i=1

bin log (1 + �)

where n0 = number of xi�s equal to zero in the sample.
Maximum likelihood estimators (mles) of � and � is obtained by maximizing logL (�; �;x)

with respect to � and � respectively. That is

@ logL

@�
=

n0
�
1� (1 + �)�n

	
�+ (1� �) (1 + �)�n

�
Pn

i=1 bi
(1� �) (5.17)

@ logL

@�
=
n0
�
� (1� �)n (1 + �)�n�1

	
�+ (1� �) (1 + �)�n

+

Pn
i=1 bixi
�

�
Pn

i=1 bin

(1 + �)
(5.18)

Equating (5:17) and (5:18) to zero and solving for � and � we get
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Pn
i=1 bi

(1� �) =
n0
�
1� (1 + �)�n

�
�+ (1� �) (1 + �)�n

nX
i=1

bi�+
nX
i=1

bi (1� �) (1 + �)�n = n0
�
1� (1 + �)�n

�
� �n0

�
1� (1 + �)�n

�
(5.19)

but

n� n0 =
nX
i=1

bi

substituting this in (5:19) ; we obtain

(n� n0) �+ (n� n0) (1� �) (1 + �)�n = n0
�
1� (1 + �)�n

�
� �n0

�
1� (1 + �)�n

�
(n� n0) �+ (n� n0) (1 + �)�n � � (n� n0) (1 + �)�n = n0 � n0 (1 + �)�n

� �n0 + �n0 (1 + �)�n

�
�
(n� n0)� (n� n0) (1 + �)�n + n0 � n0 (1 + �)�n

	
= n0 � n0 (1 + �)�n

� (n� n0) (1 + �)�n

�
�
n� n (1 + �)�n

�
= n0 � n (1 + �)�n

�̂ =
n0 � n

�
1 + �̂

��n
n

�
1�

�
1 + �̂

��n�

=
n0

�
1 + �̂

�n
� n

n
h�
1 + �̂

�n
� 1
i (5.20)

and

Pn
i=1 bixi

�̂
=

n0

�
(1� �̂)n

�
1 + �̂

��n�1�
�̂+ (1� �̂)

�
1 + �̂

��n +

Pn
i=1 bin

1 + �̂
(5.21)

Where �̂ and �̂ are the mles of � and � respectively. Substituting the value of �̂ in
(5:21) :We obtain
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Pn
i=1 bixi

�̂
=

n0

�
n�n0

n
�
1�(1+�̂)

�n�
�
n
�
1 + �̂

��n�1
n0�n(1+�̂)

�n

n
�
1�(1+�̂)

�n� +
�

n�n0
n
�
1�(1+�̂)

�n�
��

1 + �̂
��n + (n� n0)n1 + �̂

=
n0 (n� n0)n

�
1 + �̂

��n�1
n0 � n

�
1 + �̂

��n
+ (n� n0)

�
1 + �̂

��n + (n� n0)n
1 + �̂

=
n0 (n� n0)n

�
1 + �̂

��n�1
n0 � n0

�
1 + �̂

��n +
(n� n0)n
1 + �̂

Pn
i=1 bixi

�̂
=
(n� n0)n

�
1 + �̂

��n�1
1�

�
1 + �̂

��n +
(n� n0)n
1 + �̂

Pn
i=1 bixi

�̂
= (n� n0)

8><>:
n
�
1 + �̂

��n�1
1�

�
1 + �̂

��n + n

1 + �̂

9>=>;
Pn

i=1 bixi
(n� n0)

=
�̂n�
1 + �̂

�
8><>:

�
1 + �̂

��n
1�

�
1 + �̂

��n + 1
9>=>;

=
n�

1 + �̂
�
8><>: �̂

1�
�
1 + �̂

��n
9>=>;

�x =
n�

1 + �̂
�
8><>: �̂

1�
�
1 + �̂

��n
9>=>;

= n

8><>:
�̂
�
1 + �̂

�n
�
1 + �̂

�n+1
�
�
1 + �̂

�
9>=>;

where �x is the sample mean of the positive observations.
To obtain �̂ using Newton-Raphson Iteration. Let r be a root of the equation

f(�̂) = 0. We start with an initial estimate �̂0 of r: From initial estimate �̂0 (Preferably
the estimate obtained from the moment estimation method), we produce an improved
estimate �̂1. From �̂1, we produce a new estimate �̂2, and the general style of proceeding
is, if �̂r is the current estimate, then the next estimate �̂r+1 is given by

�̂r+1 = �x

(
(1 + �̂r)

n � 1
n(1 + �̂r)n�1

)

and substitute the value of �̂ in (5:20) to obtain �̂:
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5.4.3 Zero-In�ated Negative Binomial Distribution

Moment Estimator of Zero-In�ated Negative Binomial Distribution

The �rst and second rth moment for ZINB are given by

u01 = E (X) = (1� �)�
�

1� �

u02 = E
�
X2
�
= ( 1� �)

�
�2�2

(1� �)2
+

��2

(1� �)2
+ �

�

1� �

�
Equating the distribution moments above with the sample moments, we get

�x = (1� �)� �

1� � (5.22)

and Pn
i=1 x

2
i

n
= ( 1� �)

�
�2�2

(1� �)2
+

��2

(1� �)2
+ �

�

1� �

�
(5.23)

Solving (5:22) and (5:23) to get the moment estimators of � and �. We havePn
i=1 x

2
i

n
= ( 1� �)

�
�2�2

(1� �)2
+

��2

(1� �)2
+ �

�

1� �

�
(1� �)

nX
i=1

x2i =
( 1� �)n�2�2

(1� �)2
+
( 1� �)n��2

(1� �)2
+ ( 1� �)n�� (1� �)

(1� �)
nX
i=1

x2i � �
nX
i=1

x2i = �xn�� + �xn� + �xn� �xn�

�xn�� + �xn =
nX
i=1

x2i � �
nX
i=1

x2i

�

(
�xn�+

nX
i=1

x2i

)
=

nX
i=1

x2i � �xn

�̂ =

Pn
i=1 x

2
i � �xn

�xn�+
Pn

i=1 x
2
i

That is

�̂ =

Pn
i=1 x

2
i � �xn

�xn�+
Pn

i=1 x
2
i

Substituting the value of �̂ in (5:22) we obtain

�x = (1� �)� �

1� �

= �
�

1� � � ��
�

1� �
�x� �x� = �� � ���

�x� �x� � �� = ����

Therefore
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�̂ = 1� �x

��̂
+
�x

�

= 1� �x

�
n Pn

i=1 x
2
i��xn

�xn�+
Pn
i=1 x

2
i

o + �x

�

= 1� �x f�xn�+
Pn

i=1 x
2
i g

� f
Pn

i=1 x
2
i � �xng

+
�x

�

Estimation of Zero-In�ated Negative Binomial Distribution Parameters Us-
ing Full Likelihood Function

A random sample of size n, taking the values x1; x2; :::; xn observed from ZINB
distribution. The likelihood function is given by

L (�; �;x) =

nY
i=1

f�+ (1� �) (1� �)�g1�bi
�
(1� �)

�
�+ xi � 1

xi

�
�xi (1� �)�

�bi
where bi = 0 if xi = 0 and bi = 1 if xi = 1; 2; 3; : : : :
The corresponding log likelihood function is given by

logL (�; �;x) = n0 log f�+ (1� �) (1� �)�g+
nX
i=1

bi log (1� �)

+
nX
i=1

bi log

�
�+ xi � 1

xi

�
+

nX
i=1

bixi log (�) +
nX
i=1

bi� log (1� �)

Where n0 = number of xi�s equal to zero in the sample.
Maximum likelihood estimators (mles) of � and � can be obtained by maximizing

logL (�; �;x) with respect to � and � respectively. That is

@ logL

@�
= n0

1� (1� �)�

�+ (1� �) (1� �)� �
Pn

i=1 bi
(1� �) (5.24)

@ logL

@�
= ��n0 (1� �) (1� �)

��1

�+ (1� �) (1� �)� +

Pn
i=1 bixi
�

�
Pn

i=1 bi�

1� � (5.25)

Equating (5:24) and (5:25) to zero and solving for � and � we get

Pn
i=1 bi

(1� �) = n0
1� (1� �)�

�+ (1� �) (1� �)�
nX
i=1

bi�+
nX
i=1

bi (1� �) (1� �)� = n0 [1� (1� �)�]� �n0 [1� (1� �)�] (5.26)

but

n� n0 =
nX
i=1

bi
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Substituting this in (5:26) : We obtain

(n� n0) �+ (n� n0) (1� �) (1� �)� = n0 [1� (1� �)�]
� �n0 [1� (1� �)�]

(n� n0) �+ (n� n0) (1� �)� � � (n� n0) (1� �)� = n0 � n0 (1� �)�

� �n0 + �n0 (1� �)�

� (n� n0 � (n� n0) (1� �)� + n0 � n0 (1� �)�) = n0 � n0 (1� �)�

� (n� n0) (1� �)�

� (n� n (1� �)�) = n0 � n (1� �)�

�̂ =
n0 � n

�
1� �̂

��
n
�
1�

�
1� �̂

���
=
n0

�
1� �̂

���
� n

n

��
1� �̂

���
� 1
� (5.27)

and

Pn
i=1 bixi

�̂
=
�n0 (1� �̂)

�
1� �̂

���1
�̂+ (1� �̂)

�
1� �̂

�� +

Pn
i=1 bi�

1� �̂
(5.28)

Where �̂ and �̂ are the mles of � and � respectively. Substituting the value of �̂ in
(5:28) :We obtain

144



Pn
i=1 bixi

�̂
=

�n0

�
n�n0

n(1�(1��̂)
�
)

��
1� �̂

���1
n0�n(1��̂)

�

n(1�(1��̂)
�
)
+

�
n�n0

n(1�(1��̂)
�
)

��
1� �̂

�� + (n� n0)�1� �̂

=
�n0 (n� n0)

�
1� �̂

���1
n0 � n

�
1� �̂

��
+ (n� n0)

�
1� �̂

�� + (n� n0)�
1� �̂

=
�n0 (n� n0)

�
1� �̂

���1
n0 � n0

�
1� �̂

�� +
(n� n0)�
1� �̂

=
�n0 (n� n0)

�
1� �̂

���1
n0

�
1�

�
1� �̂

��� +
(n� n0)�
1� �̂

Pn
i=1 bixi

�̂
=
(n� n0)�
1� �̂

8<:
�
1� �̂

��
1�

�
1� �̂

�� + 1
9=;

Pn
i=1 bixi

(n� n0)
=

��̂

1� �̂

8<: 1

1�
�
1� �̂

��
9=;

�x =
��̂

1� �̂

8<: 1

1�
�
1� �̂

��
9=;

�x = �

8><>:
�̂
�
1� �̂

����1
�
1� �̂

���
� 1

9>=>;
where �x is the sample mean of the positive observations only.
Using Newton-Raphson method �rst we �nd �̂ as follows. Let r be a root of the

equation f(�̂) = 0. We start with an initial estimate �̂0 of r: From initial estimate �̂0(the
estimate obtained from the moment estimation method), we produce an improved
estimate �̂1. From �̂1, we produce a new estimate �̂2, and the general style of proceeding
is, if �̂r is the current estimate, then the next estimate �̂r+1 is given by

�̂r+1 = �x

8><>:
�
1� �̂r

���
� 1

�
�
1� �̂r

����1
9>=>;

and substitute the value of �̂ in (5:27) to obtain �̂:

5.4.4 Zero-Modi�ed Logarithmic Series Distribution

Moment Estimator of Zero-Modi�ed Logarithmic Series Distribution

The �rst and second rth moment for ZILS are given by
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u01 = E (X) =
� (1� �) �

(1� �) log(1� �)

u02 = E
�
X2
�
= (1� �)

�
��2

(1� �)2 log (1� �)
� �

(1� �) log (1� �)

�
Equating the distribution moments above with the sample moments, we get

�x =
� (1� �) �

(1� �) log(1� �) (5.29)

and Pn
i=1 x

2
i

n
= (1� �)

�
��2

(1� �)2 log (1� �)
� �

(1� �) log (1� �)

�
(5.30)

We obtain moment estimators of � and � by solving Eq (5:29) and Eq (5:30) to obtainPn
i=1 x

2
i

n
=

� (1� �) �2

(1� �)2 log (1� �)
+

� (1� �) �
(1� �) log (1� �)Pn

i=1 x
2
i

n
=

�x�

(1� �) + �x
nX
i=1

x2i � �
nX
i=1

x2i = �xn� � �xn� + �xn

�
nX
i=1

x2i =
nX
i=1

x2i � �xn

�̂ =

Pn
i=1 x

2
i � �xnPn

i=1 x
2
i

Therefore
�̂ = 1� �xnPn

i=1 x
2
i

Substituting the value of �̂ in (5:29) : We obtain

�x =
� (1� �) �

(1� �) log(1� �)
�x (1� �) log(1� �) = � (1� �) �
�x (1� �) log(1� �)

�
= �1� �

Hence

�̂ =
�x2n log

n
�xnPn
i=1 x

2
i

o
Pn

i=1 x
2
i � �xn

� 1

Estimation of Zero-Modi�ed Logarithmic Series Distribution Parameters
Using Full Likelihood Function

A random sample of size n, taking the values x1; x2; :::; xn observed from ZILS distri-
bution. The likelihood function is given by
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L (�; �;x) =
nY
i=1

f�g1�bi
�
(1� �) �xi

�xi log(1� �)

�bi
�; � > 0

where bi = 0 if xi = 0 and bi = 1 if xi = 1; 2; 3; : : : :
The corresponding log likelihood function is given by

logL (�; �;x) = n0 log (�) +
nX
i=1

bi log (1� �) +
nX
i=1

bi log
1

xi

+
nX
i=1

bixi log (�)�
nX
i=1

bi log (� log (1� �))

Where n0 = number of xi�s equal to zero in the sample.
Maximum likelihood estimators (mles) of � and � can be obtained by maximizing

logL (�; �;x) with respect to � and � respectively. That is

@ logL

@�
= n0

1

�
�
Pn

i=1 bi
(1� �) (5.31)

@ logL

@�
=

Pn
i=1 bixi
�

�
Pn

i=1 bi
� (1� �) ln (1� �) (5.32)

Equating (5:31) and (5:32) to zero and solving for � and � we get

Pn
i=1 bi

(1� �) = n0
1

�
nX
i=1

bi� = n0 � �n0 (5.33)

but

n� n0 =
nX
i=1

bi

Substituting this in (5:33) : We obtain

(n� n0) � = n0 � �n0
(n� n0 + n0) � = n0

� =
n0
n

�̂ =
n0
n

(5.34)

and Pn
i=1 bixi

�̂
=

Pn
i=1 bi

�
�
1� �̂

�
ln
�
1� �̂

� (5.35)
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Pn
i=1 bixi

�̂
=

(n� n0)
�
�
1� �̂

�
ln
�
1� �̂

�
Pn

i=1 bixi
(n� n0)

=
�̂

�
�
1� �̂

�
ln
�
1� �̂

�
�x =

�̂

�
�
1� �̂

�
ln
�
1� �̂

�
Where �̂ and �̂ are the mles of � and � respectively.
Using Newton-Raphson method �rst we �nd �̂ as follows. Let r be a root of the

equation f(�̂) = 0. We start with an initial estimate �̂0 of r: From initial estimate �̂0(the
estimate obtained from the moment estimation), we produce an improved estimate �̂1.
From �̂1, we produce a new estimate �̂2, and the general style of proceeding is, if �̂r is
the current estimate, then the next estimate �̂r+1 is given by

�̂r+1 = �x
n�
1� �̂r

� h
� ln(1� �̂r)

io
5.4.5 Zero-In�ated Geometric Distribution

Moment Estimator of Zero-In�ated Geometric Distribution

The �rst and second rth moment for ZINB are given by

u01 = E (X) = (1� �)
�

1� �

u02 = E
�
X2
�
= ( 1� �)

�
�2

(1� �)2
+

�2

(1� �)2
+

�

1� �

�
Equating the distribution moments above with the sample moments, we get

�x = (1� �) �

1� � (5.36)

and Pn
i=1 x

2
i

n
= ( 1� �)

�
�2

(1� �)2
+

�2

(1� �)2
+

�

1� �

�
(5.37)
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Solving (5:36) and (5:37) to get the moment estimators of � and �. We havePn
i=1 x

2
i

n
= ( 1� �)

�
�2

(1� �)2
+

�2

(1� �)2
+

�

1� �

�
(1� �)

nX
i=1

x2i =
( 1� �)n�2

(1� �)2
+
( 1� �)n�2

(1� �)2
+ ( 1� �)n� (1� �)

(1� �)
nX
i=1

x2i � �
nX
i=1

x2i = �xn� + �xn� + �xn� �xn�

�xn� + �xn =
nX
i=1

x2i � �
nX
i=1

x2i

�

(
�xn+

nX
i=1

x2i

)
=

nX
i=1

x2i � �xn

�̂ =

Pn
i=1 x

2
i � �xn

�xn+
Pn

i=1 x
2
i

That is

�̂ =

Pn
i=1 x

2
i � �xn

�xn+
Pn

i=1 x
2
i

(5.38)

Substituting the value of �̂ in (5:36) we obtain

�x = (1� �) �

1� �

=
�

1� � � �
�

1� �
�x� �x� = � � ��

�x� �x� � � = ���

Therefore

�̂ = 1� �x

�̂
+ �x

= 1� �xnPn
i=1 x

2
i��xn

�xn+
Pn
i=1 x

2
i

o + �x
= 1� �x f�xn+

Pn
i=1 x

2
i g

f
Pn

i=1 x
2
i � �xng

+ �x (5.39)

Estimation of Zero-In�ated Geometric Distribution Parameters Using Full
Likelihood Function

A random sample of size n, taking the values x1; x2; :::; xn observed from ZINB
distribution. The likelihood function is given by

L (�; �;x) =

nY
i=1

f�+ (1� �) (1� �)g1�bi f(1� �) �xi (1� �)gbi �; � > 0
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where bi = 0 if xi = 0 and bi = 1 if xi = 1; 2; 3; : : : :
The corresponding log likelihood function is given by

logL (�; �;x) = n0 log f�+ (1� �) (1� �)g+
nX
i=1

bi log (1� �)

+

nX
i=1

bixi log (�) +

nX
i=1

bi log (1� �)

Where n0 = number of xi�s equal to zero in the sample.
Maximum likelihood estimators (mles) of � and � can be obtained by maximizing

logL (�; �;x) with respect to � and � respectively. That is

@ logL

@�
= n0

�

�+ (1� �) (1� �) �
Pn

i=1 bi
(1� �) (5.40)

@ logL

@�
= � n0 (1� �)

�+ (1� �) (1� �) +
Pn

i=1 bixi
�

�
Pn

i=1 bi
1� � (5.41)

Equating (5:40) and (5:41) to zero and solving for � and � we get

Pn
i=1 bi

(1� �) = n0
�

�+ (1� �) (1� �)
nX
i=1

bi�+
nX
i=1

bi (1� �) (1� �) = n0� � �n0� (5.42)

but

n� n0 =
nX
i=1

bi

Substituting this in (5:42) : We obtain

(n� n0) �+ (n� n0) (1� �) (1� �) = n0� � �n0�
n� n� � n0 + n��+ �n0 � ��n0 = n0� � ��n0

�̂ =
n0 � n+ n�̂

n�̂
(5.43)

and Pn
i=1 bixi

�̂
=

n0 (1� �̂)
�̂+ (1� �̂)

�
1� �̂

� + Pn
i=1 bi

1� �̂
(5.44)

Where �̂ and �̂ are the mles of � and � respectively. Substituting the value of �̂ in
(5:44) :We obtain
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Pn
i=1 bixi

�̂
=

n0

�
n�n0
n�̂

�
n0�n(1��̂)

n�̂
+
�
n�n0
n�̂

��
1� �̂

� + (n� n0)
1� �̂

=
n0 (n� n0)

n0 � n
�
1� �̂

�
+ (n� n0)

�
1� �̂

� + (n� n0)
1� �̂

=
n0 (n� n0)

n0 � n0
�
1� �̂

� + (n� n0)
1� �̂

=
(n� n0)

�̂
+
(n� n0)
1� �̂Pn

i=1 bixi

�̂
= (n� n0)

�
1

�̂
+

1

1� �̂

�
Pn

i=1 bixi
(n� n0)

= �̂

8<: 1

�̂
�
1� �̂

�
9=;

�x =
1

1� �̂
1� �̂ = 1

�x
(5.45)

and substitute the value of in �̂ (5.43) to obtain �̂
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Chapter 6

Katz-Panjer Class of Recursive
Relations

6.1 Introduction

The objective of this chapter is to re-examine the work of katz (1965) on recursive
relation in probabilities. A class of probability of distributions and moments on the
model have been re-derived. Lastly, highlights on modi�cations and extensions of the
Katz model have also been made.

6.2 Probability Distributions

Pearson di¤erence equation is given by

f (x+ 1)

f (x)
=
P (x)

Q (x)
(6.0)

Where f (�) is the discrete probability distribution; P (x) and Q (x) are polynomials.
Katz (1965) considered the di¤erence equation

f (x+ 1)

f (x)
=
�+ �x

1 + x
;x = 0; 1; 2; ::: (6:1a)

where
f (x) = Pr (X = x) > 0

and
1X
x=0

f (x) = 1

Re-arranging (6:1a) we have

f (x+ 1) =
�+ �x

1 + x
f (x) (6.1b)

and
(1 + x) f (x+ 1) = (�+ �x) f (x) (6.1c)

We want to identify all probability distributions generated by the Katz model by
considering various cases of � and �
where f (�) is a discrete probability function; � and � are constants
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a) When � = 0 and � 6= 0; then (6:1a) becomes

f (x+ 1) =
�

1 + x
f (x) ; x = 0; 1; 2; ::: (6.2)

Thus by iterative method,

x = 0 ) f (1) = �f (0)

x = 1 ) f (2) =
�

2
f (1) =

�2

2!
f (0)

x = 2 ) f (3) =
�

3
f (2) =

�3

3!
f (0)

Therefore,

x = k � 1) f (k) =
�

k
f (k � 1) = �k

k!
f (0) ; k = 1; 2; : : : (6.3)

)
1X
k=0

f (k) = f (0) +
1X
k=1

�k

k!
f (0)

i.e.

1 =
1X
k=0

�k

k!
f (0)

= f (0)
1X
k=0

�k

k!

= f (0) e�

Therefore,
f (0) = e�� (6.4)

From (6:3) and (6:4)

f (k) =
e���k

k!
; k = 0; 1; 2; : : :

Which is Poisson with parameters �:

b) When � 6= 0 and � 6= 0; then

f (x+ 1) =
�+ �x

1 + x
f (x) ; x = 0; 1; 2; :::

x = 0 ) f (1) = �f (0)

x = 1 ) f (2) =
�+ �

2
f (1) =

� (�+ �)

1 � 2 f (0)

x = 2 ) f (3) =
�+ 2�

3
f (2) =

� (�+ �) (�+ 2�)

1 � 2 � 3 f (0)

Therefore

x = k � 1 ) f (k) = � (�+ �) (�+ 2�) � � � (�+ (k � 1) �) f (0)
k!
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f (k) = �k
�

�

�
�

�
+ 1

��
�

�
+ 2

�
� � �
�
�

�
+ k � 1

�
f (0)

k!

Therefore

f (k) = �k
�

�

�
�

�
+ 1

��
�

�
+ 2

�
� � �
�
�

�
+ k � 1

�
f (0)

k!
; k = 1; 2; 3; : : : (6.6)

Case (i) Let m = �
�
is a positive integer. Then

f (k) = �km (m+ 1) (m+ 2) � � � (m+ k � 1) f (0)
k!

= �k
�
m+ k � 1

k

�
f (0) ; k = 1; 2; 3; : : : (6.7)

To determine f (0) we use,

1 =
1X
k=0

f (k) = f (0) +
1X
k=1

�k
�
m+ k � 1

k

�
f (0)

= f (0)

1X
k=0

�k
�
m+ k � 1

k

�
Therefore

f (0) =
1P1

k=0 �
k
�
m+k�1

k

� (6.8)

From (6:7) and (6:8) :

Hence,

f (k) =
�k
�
m+k�1

k

�P1
k=0 �

k
�
m+k�1

k

� ; k = 0; 1; 2; : : :
i.e.

f (k) =
�k
��
�
+k�1
k

�P1
k=0 �

k
��
�
+k�1
k

� ; k = 0; 1; 2; : : : (6.9)

which is a Negative Binomial Distribution with parameters �
�
and 0 < � < 1:

Since �
�
is a positive integer and 0 < � < 1 then � > 0.

Case (ii) Let m = �
�
is a negative integer.

Let m = �r where r is a positive integer. Then (6:7) becomes

f (k) = �k (�r) (�r + 1) (�r + 2) � � � (�r + k � 1) f (0)
k!

; k = 1; 2; 3; : : :

= (��)k r (r � 1) (r � 2) � � � (r � (k � 1)) f (0)
k!

= (��)k
�
r

k

�
f (0) ; k = 1; 2; 3; : : : r (6.10)

Therefore to obtain f (0)

1 =
1X
k=0

f (k) = f (0)
rX
k=0

(��)k
�
r

k

�
= f (0) [1 + (��)]r
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)
f (0) =

1

(1� �)r (6.11)

From (6:10) and (6:11)

f (k) =
(��)k

�
r
k

�
(1� �)r

=

�
r

k

��
��
1� �

�k �
1

1� �

�r�k
; k = 0; 1; 2; 3; : : : r (6.12)

which is Binomial with parameters
�
��
�
; ��
1��

�
where �

�
is a negative integer and

� < 0: This implies that � > 0:

We can therefore summarize the discussion by the following theorem:
Theorem (6:1)
Let

f (x+ 1) =

�
�+ �x

x+ 1

�
f (x) for x = 0; 1; 2; 3; : : :

where f (�) is a discrete probability function, � and � are constants

a) When � = 0 and � 6= 0; then f (x) is Poisson with parameter �.

b) when � 6= 0 and � 6= 0; then

(i) f (x) is NB
�
�
�
; �
�
for �

�
= a positive integer, 0 < � < 1 and � > 0

(ii) f (x) is Bin
�
��
�
;� �

1��

�
for �

�
= a negative integer, � < 0 and � > 0

Graphically we have the following �gure (6:1)
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Proof for Theorem (6:1) using the pgf technique is as follows, multiply (6:1a) by
(x+ 1) sx and sum the results over x: Thus

1X
x=0

(x+ 1) f (x+ 1) sx = �

1X
x=0

f (x) sx + �

1X
x=0

xf (x) sx

) G0 (s) = �G (s) + �sG0 (s)

Therefore
(1� �s)G0 (s) = �G (s)

) G0 (s)

G (s)
=

�

1� �s (6.13)

This implies that,

d

ds
lnG (s) =

�

1� �s

lnG (s) =

Z
�

1� �sds+ c1

lnG (s) =
�

�� ln (1� �s) + lnC1 let k = lnC1

G (s) = k (1� �s)�
�
�

1 = G (1) = k (1� �)�
�
�

k = (1� �)
�
�

Therefore

G (s) =

�
1� �
1� �s

��
�

(6.14)

when � 6= 0 and � 6= 0

Case (i) when �
�
is a positive interger and 0 < � < 1; then G (s) is a pgf of a NB

Case (ii) when �
�
is a negative integer = �r, say where r is a positive integer. Then,

G (s) =

�
1� �
1� �s

��r
=

�
1� �s
1� �

�r
=

�
1

1� � +
��
1� � s

�r
which is the pgf of Bin

�
r; ��
1��

�
. Where r = ��

�
; � < 0 and � > 0.

When � = 0

Case (iii) Equation (6:13) becomes

G0 (s)

G (s)
= �) d

ds
lnG (s) = �
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Therefore

lnG (s) = �s+ c

G (s) = ece�s (�)

setting s = 1 to obtain ec we have,

1 = G (1) = ece�

) ec = e��

Thus equation (�) above becomes

G (s) = e��e�s

= e��(1�s)

which is the pgf of a Poisson distribution with parameter �:

6.2.1 Panjer�s model

Let n = x+ 1 ) x = n� 1: Then (6:1a) becomes

f (n) =
�+ � (n� 1)

n
f (n� 1)

By replacing f (n) and f (n� 1) by pn and pn�1 respectively, we obtain

pn =

�
�+ � (n� 1)

n

�
pn�1

=

�
�� � + �n

n

�
pn�1

=

�
� +

�� �
n

�
pn�1 for n = 1; 2; : : : (6.16)

Let � = a and �� � = b
This implies that, a+ b = �
Therefore

pn =

�
a+

b

n

�
pn�1 for n = 1; 2; : : : and p0 > 0:

Which is the Panjer�s model for recursive relation.
So Theorem (6:1) can be restated by putting � = a + b; � = a and replacing

f (x+ 1) by pn as follows:
Theorem (6:2)
Let

pn =

�
a+

b

n

�
pn�1 for n = 1; 2; : : : and p0 > 0:

Its di¤erential equation is given by

G0 (s)

G (s)
=
a+ b

1� as
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This implies that,

d

ds
lnG (s) =

a+ b

1� as

lnG (s) =

Z
a+ b

1� asds+ c1

lnG (s) =
a+ b

�a ln (1� as) + lnC1 let k = lnC1

G (s) = k (1� as)�
a+b
a

1 = G (1) = k (1� a)�
a+b
a

k = (1� a)
a+b
a

Therefore

G (s) =

�
1� a
1� as

�a+b
a

a) (i) G (s) = 1 for a = 0 and b = 0; implying that pn = 1 for n = 0 and pn = 0 for
n > 0:

(ii) G (s) = e�b(1�s) when a = 0 and b 6= 0. Which is the pgf of a Poisson
distribution with parameter b; i.e.,

pn =
e�bbn

n!
for n = 0; 1; 2; : : :

(iii) G (s) = 1�a
1�as when a 6= 0 and b = 0: Which is the pgf of a geometric

distribution with probability (1� a), i.e.,

pn = a
n (1� a) ;n = 0; 1; 2; : : : for 0 < a < 1

b) When a 6= 0; b 6= 0

(i)

G (s) =

�
1� a
1� as

�m
Which is the pgf of a negative binomial distribution with parameters m =
a+b
a
; is a positive integer and 0 < a < 1

Thus

pn =

�
m+ n� 1

n

�
an (1� a)m for n = 0; 1; 2; : : :

(ii)

G (s) =

�
1� as
1� a

��
=

�
1

1� a �
a

1� as
��

Which is the pgf of a binomial distribution with parameters � = �
�
a+b
a

�
is

a positive integer and 0 < �a
1�a < 1; where a < 0 and a+ b > 0:

Thus

pn =

�
�

n

��
�a
1� a

�n�
1

1� a

���n
for n = 0; 1; 2; : : : �

158



Remark :

Thus, when

a < 0; pn is Bin
�
�a+ b

a
;
�a
1� a

�
a = 0; pn is Po (b)

1 > a > 0; pn is NB
�
a+ b

a
; a

�
Graphically we have �gure (6:2)

6.3 Moments

6.3.1 Moments Based on Katz model

Katz (1965) also found moments as follows:
Multiply

(x+ 1) f (x+ 1) = (�+ �x) f (x) ; x = 0; 1; 2; : : :

By (x+ 1)p and sum the results over x: That is,
1X
x=0

(x+ 1)p+1 f (x+ 1) =

1X
x=0

(x+ 1)p (�+ �x) f (x) (6.17)

Let p = 0; then
1X
x=0

(x+ 1) f (x+ 1) =

1X
x=0

(�+ �x) f (x)

This implies that,

� = �
1X
x=0

f (x) + �
1X
x=0

xf (x)

= �+ ��
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Where

� = E (X) =
1X
x=0

xf (x)

Therefore,
� =

�

1� � (6.18)

When p = 1; then
1X
x=0

(x+ 1)2 f (x+ 1) =
1X
x=0

(x+ 1) (�+ �x) f (x)

E
�
X2
�
=

1X
x=0

�
�+ x� + x� + �x2

�
f (x)

=
1X
x=0

�
�+ x (�+ �) + �x2

�
f (x)

= �+ (�+ �)�+ �E
�
X2
�

(1� �)E
�
X2
�
= �+ (�+ �)�

E
�
X2
�
=
�+ (�+ �)�

(1� �)
Hence to obtain the variance, we have

�2 = E
�
X2
�
� [E (X)]2

=
�+ (�+ �)�

(1� �) � �2

= �+
(�+ �)�

(1� �) � �2

= �+
1

�
(�+ �)�2 � �2

= �+
�

�
�2

This implies that,

�2

�
= 1 +

�

�
�

= 1 +
�

�
� �

1� � = 1 +
�

1� �

=
1

1� � (6.19)

and
�2 =

�

1� � =
�

(1� �)2
(6.20)

In general for any positive integer p; (6.17) can be written as

1X
x=0

(x+ 1)p+1 f (x+ 1) =

1X
x=0

(x+ 1)p (�+ �x) f (x)
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E
�
Xp+1

�
= �

1X
x=0

(x+ 1)p f (x) + �
1X
x=0

(x+ 1)p xf (x)

= �
1X
x=0

(x+ 1)p f (x) + �
1X
x=0

(x+ 1)p (x+ 1� 1) f (x)

= �
1X
x=0

(x+ 1)p f (x) + �
1X
x=0

(x+ 1)p+1 f (x)� �
1X
x=0

(x+ 1)p f (x)

= (�� �)
1X
x=0

(x+ 1)p f (x) + �
1X
x=0

(x+ 1)p+1 f (x)

= (�� �)
1X
x=0

(
pX
j=0

�
p

j

�
xj

)
f (x) + �

1X
x=0

(
p+1X
j=0

�
p+ 1

j

�
xj

)
f (x)

= (�� �)
pX
j=0

(�
p

j

� 1X
x=0

xjf (x)

)
+ �

p+1X
j=0

(�
p+ 1

j

� 1X
x=0

xjf (x)

)

= (�� �)
pX
j=0

�
p

j

�
E
�
Xj
�
+ �

p+1X
j=0

�
p+ 1

j

�
E
�
Xj
�

= (�� �)
pX
j=0

�
p

j

�
E
�
Xj
�
+ �

pX
j=0

�
p+ 1

j

�
E
�
Xj
�
+ �

�
p+ 1

p+ 1

�
E
�
Xp+1

�
Therefore,

(1� �)E
�
Xp+1

�
= (�� �)

pX
j=0

�
p

j

�
E
�
Xj
�
+ �

pX
j=0

�
p+ 1

j

�
E
�
Xj
�

=

pX
j=0

�
(�� �)

�
p

j

�
+ �

�
p+ 1

j

��
E
�
Xj
�

=

pX
j=0

�
(�� �)

�
p

j

�
+ �

��
p

j

�
+

�
p

j � 1

���
E
�
Xj
�

=

pX
j=0

�
�

�
p

j

�
� �

�
p

j

�
+ �

�
p

j

�
+ �

�
p

j � 1

��
E
�
Xj
�

=

pX
j=0

�
�

�
p

j

�
+ �

�
p

j � 1

��
E
�
Xj
�

(6.21)

Hence when

p = 0 ) (1� �)E (X) = � ) � = E (X) =
�

1� � (6.22)

p = 1 ) (1� �)E
�
X2
�
= �+ (�+ �)E (X)

161



This implies that,

E
�
X2
�
=
�+ (�+ �)�

(1� �)

= �+

�
�+

�

1� �

�
�

=

�
1 +

�

1� �

�
�+ �2

and the variance is

�2 = E
�
X2
�
� [E (X)]2

= E
�
X2
�
� �2

=
1

1� �� (6.23)

From (6.22) and (6.23) we obtain

�2 =
�

(1� �)2
(6.24)

and from (6.23) we get

c =
�2

�
=

1

1� � (6.25)

Next

p = 2 ) (1� �)E
�
X3
�
=

2X
j=0

�
�

�
2

j

�
+ �

�
2

j � 1

��
E
�
Xj
�

(1� �)E
�
X3
�
= �+

�
�

�
2

1

�
+ �

�
2

0

��
E (X) +

�
�

�
2

2

�
+ �

�
2

1

��
E
�
X2
�

= �+ (2�+ �)E (X) + (�+ 2�)E
�
X2
�

= �+ (2�+ �)�+ (�+ 2�)
�
�2 + �2

�
= �+ 2��+ ��+ ��2 + 2�2� + ��2 + 2��2

Therefore,

(1� �)E
�
X3
�
= �

�
1 + 2�+ �2 + �2

�
+ �

�
�+ 2�2 + 2�2

�
E
�
X3
�
=

�

(1� �)
�
1 + 2�+ �2 + �2

�
+

�

(1� �)
�
�+ 2�2 + 2�2

�
but

�

1� � = � from (6:22)

1

1� � =
�2

�
from (6:25)

1

1� � =
�2

�
) �

�2
= 1� �

) � = 1� �

�2
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Hence,

E
�
X3
�
= �

�
1 + 2�+ �2 + �2

�
+ �

�2

�

�
�+ 2�2 + 2�2

�
= �3 + 2�2 +

�
1 + �2

�
�+

�
1� �

�2

� �2
�

�
�+ 2�2 + 2�2

�
= �3 + 2�2 +

�
1 + �2

�
�+

�
�2

�
� 1
��
�+ 2�2 + 2�2

�
= �3 + 2�2 +

�
1 + �2

�
�+ 2�2�+ �2 + 2c�2 � 2�2 � �� 2�2

= �3 +
�
1 + �2 + 2�2 � 1

�
�+

�
�2 + 2c�2 � 2�2

�
= �3 + 3�2�+ (2c� 1)�2 (6.26)

Where c = �2

�
:

Now consider,

�3 = E (X � �)3

= E
�
X3 � �3 + 3X�2 � 3X2�

	
= E

�
X3
�
� 3�E

�
X2
�
+ 3�3 � �3

= E
�
X3
�
� 3�

�
�2 + �2

�
+ 2�3

=
�
�3 + 3�2�+ (2c� 1)�2

�
� 3�

�
�2 + �2

�
+ 2�3

= �3 + 3�2�+ (2c� 1)�2 � 3��2 � 3�3 + 2�3

= (2c� 1)�2 (6.27)

For p = 3 we have

(1� �)E
�
X4
�
=

3X
j=0

�
�

�
3

j

�
+ �

�
3

j � 1

��
E
�
Xj
�

(1� �)E
�
X4
�
= �+

�
�

�
3

1

�
+ �

�
3

0

��
E (X) +

�
�

�
3

2

�
+ �

�
3

1

��
E
�
X2
�

+

�
�

�
3

3

�
+ �

�
3

1

��
E
�
X3
�

= �+ (3�+ �)�+ (3�+ 3�)
�
�2 + �2

�
+ (�+ 3�)

�
�3 + 3�2�+ (2c� 1)�2

�
= �+ (3�+ �)�+ (3�+ 3�)

�
�2 + �2

�
+ (�+ 3�)

�
�3 + 3�2�+ (2c� 1)�2

�
= �

�
1 + 3�+ 3�2 + 3�2 + �3

+3�2�+ (2c� 1)�2
�
+ �

�
�+ 3�2 + 3�2 + 3�3

+9�2�+ 3 (2c� 1)�2
�

= �

�
�3 + 3�2 + (3 + 3�2)�
+1 + 3�2 + (2c� 1)�2

�
+ �

�
3�3 + 3�2 + (1 + 9�2)�
+3�2 + 6c�2 � 3�2

�
= �

�
�3 + 3�2 + (3 + 3�2)�+
2c�2 � �2 + 1 + 3�2

�
+ �

�
3�3 + 3�2

+(1 + 9�2)�+ 6c�2

�
= �

�
�3 + 3�2 + (3 + 3�2)�+

2c�2 + 2�2 + 1

�
+ �

�
3�3 + 3�2

+(1 + 9�2)�+ 6c�2

�
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Hence,

E
�
X4
�
=

�

(1� �)

�
�3 + 3�2 + (3 + 3�2)�
+2c�2 + 2�2 + 1

�
+

�

(1� �)

�
3�3 + 3�2

+(1 + 9�2)�+ 6c�2

�
(6.28)

but
�

(1� �) = � and
�

(1� �) =
�2

�

�
1� �

�2

�
=
�2

�
� 1 = c� 1:

replacing this values in (6.28) we obtain

E
�
X4
�
= �

�
�3 + 3�2 + (3 + 3�2)�
+2c�2 + 2�2 + 1

�
+ (c� 1)

�
3�3 + 3�2

+(1 + 9�2)�+ 6c�2

�
=

�
�4 + 3�3 + (3 + 3�2)�2

+(2c�2 + 2�2 + 1)�

�
+

�
3c�3 + 3c�2 + (1 + 9�2) c�+ 6c2�2

�3�3 � 3�2 � (1 + 9�2)�� 6c�2
�

=
�
�4 + 3�2�2 + 2c�2�+ 2��2 + �

	
+

�
3�2�2 + 3�2�+ (1 + 9�2)�2

+6c2�2 � �� 9�2�� 6c�2
�

= �4 + 6�2�2 + 2�4 +
�
2�2 + 1 + 3�2 � 1� 9�2

�
�+ �2 + 9�4 + 6c2�2 � 6c�2

= �4 + 6�2�2 +
�
�4�2

�
�+ �2 + 11�4 + 6c2�2 � 6c�2

= �4 + 6�2�2 � 4�2�+ 11�4 +
�
6c2 � 6c+ 1

�
�2 (6.29)

Thus, the fourth central moment is given by,

�4 = E (X � �)4

= E
�
X4 + �4 � 4X�3 � 4X3�+ 6X2�2

�
= E

�
X4
�
� 4�E

�
X3
�
+ 6�2E

�
X2
�
� 3�4

= �4 + 6�2�2 � 4�2�+ 11�4 +
�
6c2 � 6c+ 1

�
�2

� 4�
�
�3 + 3�2�+ (2c� 1)�2

�
+ 6�2

�
�2 + �2

�
� 3�4

= �4 + 6�2�2 � 4�2�+ 11�4 +
�
6c2 � 6c+ 1

�
�2 � 4�4

� 12�2�2 � 8�4 + 4��2 + 6�2�2 + 6�4 � 3�4

= 3�4 +
�
6c2 � 6c+ 1

�
�2 (6.30)

6.3.2 The probability generating function technique of ob-
taining mean and variance

Multiply

f (x+ 1) =
�+ �x

1 + x
f (x)

by (x+ 1) sx and sum the results over x we obtain,

1X
x=0

(x+ 1) f (x+ 1) sx = �

1X
x=0

f (x) sx + �

1X
x=0

xf (x) sx

G0 (s) = �G (s) + �sG0 (s) where G (s) =
1X
x=0

f (x) sx
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Therefore

(1� �s)G0 (s) = �G (s)
G0 (s)

G (s)
=

�

1� �s

This implies that,

d

ds
lnG (s) =

�

1� �s

=

Z
�

1� �sds+ c1

lnG (s) =
�

�� ln (1� �s) + lnC1 let k = lnC1

G (s) = k (1� �s)�
�
�

1 = G (1) = k (1� �)�
�
�

k = (1� �)
�
�

Therefore the pgf is given by

G (s) =

�
1� �
1� �s

��
�

and

G0 (s) =
�

1� �sG (s)

G00 (s) =
d

ds

�
�

1� �sG (s)
�

=
�G0 (s)

1� �s +
��G (s)

(1� �s)2

setting s = 1 we obtain

G0 (1) = E (X) =
�

1� �

G00 (1) =
�G0 (1)

1� � +
��G (1)

(1� �)2

=
�2 + ��

(1� �)2
=
� (�+ �)

(1� �)2

Therefore the mean and variance is given by

G0 (1) = E (X) =
�

1� �
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�2 = G00 (1) +G0 (1)� [G0 (1)]2

=
� (�+ �)

(1� �)2
+

�

1� � �
�2

(1� �)2

=
��

(1� �)2
+

�

1� � =
�� + � (1� �)
(1� �)2

=
�

(1� �)2

Hence,

� = 0 ) �2

�
= 1 implying Po

� < 0 ) 0 <
�2

�
< 1 implying Bin

0 < � < 1 ) �2

�
> 0 implying NB
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6.3.3 Moments based on Panjer model

Given

pn =

�
a+

b

n

�
pn�1 for n = 1; 2; : : : and p0 > 0:

Let

Mj =
1X
n=1

njpn

=
1X
n=1

nj
�
a+

b

n

�
pn�1

=
1X
n=1

�
anj + bnj�1

�
pn�1

=
1X
n=1

n
a (n� 1 + 1)j + b (n� 1 + 1)j�1

o
pn�1

Therefore

Mj =

1X
n=1

(
a

jX
i=0

�
j

i

�
(n� 1)i + b

j�1X
i=0

�
j � 1
i

�
(n� 1)i

)
pn�1

= a

jX
i=0

(�
j

i

� 1X
n=1

(n� 1)i pn�1

)
+ b

j�1X
i=0

(�
j � 1
i

� 1X
n=1

(n� 1)i pn�1

)

= a

jX
i=0

�
j

i

�
Mi + b

j�1X
i=0

�
j � 1
i

�
Mi

= a

j�1X
i=0

�
j

i

�
Mi + aMj + b

j�1X
i=0

�
j � 1
i

�
Mi
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(1� a)Mj =

j�1X
i=0

�
a

�
j

i

�
Mi + b

�
j � 1
i

��
Mi

=

j�1X
i=0

�
a

��
j � 1
i

�
+

�
j � 1
i� 1

��
Mi + b

�
j � 1
i

��
Mi

=

j�1X
i=0

�
(a+ b)

�
j � 1
i

�
+ a

�
j � 1
i� 1

��
Mi for j = 1; 2; : : : (6.31)

For j = 1, we have

(1� a)M1 = (a+ b) ) � =M1 =
a+ b

1� a (6.32)

For j = 2, we have

(1� a)M2 =
1X
i=0

�
(a+ b)

�
j � 1
i

�
+ a

�
j � 1
i� 1

��
Mi

=

1X
i=0

�
(a+ b)

�
1

1

�
+ a

�
1

i� 1

��
Mi

= (a+ b) + [(a+ b) + a]M1

Therefore,

M2 =
a+ b

1� a +
�
a+ b

1� a +
a

1� a

�
M1

=M1 +

�
M1 +

a

1� a

�
M1

=M1 +M
2
1 +

a

1� aM1

=

�
1 +

a

1� a

�
M1 +M

2
1 =

M1

1� a +M
2
1

The variance is given by

�2 =M2 �M2
1 =

�
1 +

a

1� a

�
M1 =

1

1� aM1

That is,

�2 =
�

1� a =
a+ b

(1� a)2
(6.33)

) c =
�2

�
=

1

1� a (6.34)

For j = 3, we have

(1� a)M3 =
2X
i=0

�
(a+ b)

�
2

i

�
+ a

�
2

i� 1

��
Mi

= (a+ b) +

�
(a+ b)

�
2

1

�
+ a

�
2

0

��
M1 +

�
(a+ b)

�
2

2

�
+ a

�
2

1

��
M2

(a+ b) + [2 (a+ b) + a]M1 + [(a+ b) + 2a]M2

= (a+ b) [1 + 2M1 +M2] + a [M1 + 2M2]
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Hence,

M3 =
a+ b

1� a [1 + 2M1 +M2] +
a

1� a [M1 + 2M2]

=M1

�
1 + 2M1 +

�
�2 +M2

1

��
+

a

1� a
�
M1 + 2�

2 + 2M2
1

�
(��)

but
�2

M1

=
1

1� a; then 1� a =
M1

�2
) a = 1� M1

�2

Therefore
a

1� a =
�
1� M1

�2

�
�2

M1

=
�2

M1

� 1 (� � 1)

replacing (� � 1) in equation(��) above, we obtain

M3 =M1

�
1 + 2M1 + �

2 +M2
1

	
+

�
�2

M1

� 1
��
M1 + 2�

2 + 2M2
1

�
=M1 + 2M

2
1 + �

2M1 +M
3
1 + �

2 +
2�4

M1

+ 2�2M1 �M1 � 2�2 � 2M2
1

=M3
1 + 3�

2�+ 2�2c� �2

=M3
1 + 3�

2�+ (2c� 1)�2

Thus,
E
�
X3
�
= �3 + 3�2�+ (2c� 1)�2 as in formula (6:26)

and �3 is

�3 = E (X � �)3

= (2c� 1)�2 as in (6:27)

6.3.4 Factorial moments by pgf technique

G (s) =

1X
n=0

pns
n

) dG

ds
=

1X
n=0

npns
n�1 =

1X
n=1

npns
n�1

d2G

ds2
=

1X
n=2

n (n� 1) pnsn�2

d3G

ds3
=

1X
n=3

n (n� 1) (n� 2) pnsn�3

= 3!

1X
n=3

�
n

3

�
pns

n�3
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In general
dlG

dsl
= l!

1X
n=l

�
n

l

�
pns

n�l for l = 1; 2; : : : (6.35)

but from (6.16)

pn =

�
� +

�� �
n

�
pn�1;n = 1; 2; : : :

Substituting this in (6.35) we have,

1

l!

dlG

dsl
=

1X
n=l

�
n

l

��
� +

�� �
n

�
pn�1s

n�l

=
1X
n=l

�
�

�
n

l

�
+
�� �
n

�
n

l

��
pn�1s

n�l

=
1X
n=l

�
�

�
n

l

�
+
�� �
l

�
n� 1
l � 1

��
pn�1s

n�l

=
1X
n=l

�
�

��
n� 1
l

�
+

�
n� 1
l � 1

��
+
�� �
l

�
n� 1
l � 1

��
pn�1s

n�l

=
1X
n=l

�
�

�
n� 1
l

�
+

�
� +

�� �
l

��
n� 1
l � 1

��
pn�1s

n�l

=

1X
n=l

�

�
n� 1
l

�
pn�1s

n�l +

�
� +

�� �
l

� 1X
n=l

�
n� 1
l � 1

�
pn�1s

n�l

= �
1X
n=l

�
n� 1
l

�
pn�1s

n�l +

�
l� + �� �

l

� 1X
n=l

�
n� 1
l � 1

�
pn�1s

n�l

= �
1X
n=l

�
n� 1
l

�
pn�1s

n�l +

�
l� + �� �

l

�
1

(l � 1)!
d(l�1)G

ds(l�1)

= �

1X
n=l

�
n� 1
l

�
pn�1s

n�l +

�
l� + �� �

l!

�
d(l�1)G

ds(l�1)

Let j = n� 1 ) n = j + 1
Hence,

�

1X
n=l

�
n� 1
l

�
pn�1s

n�l = �

1X
j=l�1

�
j

l

�
pjs

j�l+1

= �s
1X

j=l�1

�
j

l

�
pjs

j�l

= �s

1X
j=l

�
j

l

�
pjs

j�l

=
�s

l!

dlG

dsl

Therefore,
1

l!

dlG

dsl
=
�s

l!

dlG

dsl
+

�
l� + �� �

l!

�
d(l�1)G

ds(l�1)
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(1� �s) d
lG

dsl
= (l� + �� �) d

(l�1)G

ds(l�1)
for l = 1; 2; : : : (6:36a)

G(l) (s)

G(l�1) (s)
=
l� + �� �
1� �s (6.36b)

d

ds
lnG(l�1) (s) =

l� + �� �
1� �s (6.36c)

This implies,

lnG(l�1) (s) =

Z
l� + �� �
1� �s ds

=
l� + �� �

�� ln (1� �s) + lnC1 let lnC1 = C

) G(l�1) (s) = C [1� �s]�(l�1+
�
� )

setting l = 1 we obtain

G(0) (s) = C [1� �s]�
�
�

G (s) = C [1� �s]�
�
�

Also, setting s = 1 to obtain C

1 = G (1) = C [1� �]�
�
�

C = [1� �]
�
�

Hence,
G(l�1) (s) = [1� �]

�
� [1� �s]�(l�1+

�
� ) (6.37)

G(l) (s) =
d

ds
G(l�1) (s) = �

�
l � 1 + �

�

�
(��) [1� �]

�
� [1� �s]�l�

�
�

= (l� � � + �) [1� �]
�
� [1� �s]�l�

�
� (6.38)

G(l+1) (s) = (l� + �) (l� + �� �) [1� �]
�
� [1� �s]�(l+

�
�
+1)

G(l+2) (s) = (l� + �+ �) (l� + �) (l� + �� �) [1� �]
�
� [1� �s]�(l+

�
�
+2)

G(l+3) (s) =
n
(l� + �+ 2�) (l� + �+ �) (l� + �) (l� + �� �) [1� �]

�
� [1� �s]�(l+

�
�
+3)
o

G(l+4) (s) =

(
(l� + �+ 3�) (l� + �+ 2�) (l� + �+ �)

(l� + �) (l� + �� �) [1� �]
�
� [1� �s]�(l+

�
�
+4)

)

=

8<: �5
�
�
�
+ l + 3

��
�
�
+ l + 2

��
�
�
+ l + 1

��
�
�
+ l
��

�
�
+ l � 1

�
[1� �]

�
� [1� �s]�(l+

�
�
+4)

9=;
= 5!�5

��
�
+ l + 3

5

�
[1� �]

�
� [1� �s]�(

�
�
+l+4)
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Therefore,

G(l+m) (s) = (m+ 1)!�m+1
��
�
+ l +m� 1
m+ 1

�
[1� �]

�
� [1� �s]�(l+

�
�
+m) ;m = 0; 1; 2; : : :

) G(l+m�1) (s) = m!�m
�
�
�
+ l +m� 2

m

�
[1� �]

�
� [1� �s]�(l+

�
�
+m�1) ;m = 0; 1; 2; : : :

(6.39)
Therefore the mth factorial moment is obtained by putting l = 1 and s = 1 in
(6.39) :i.e.,

G(m) (1) = m!�m
�
�
�
+m� 1
m

��
1

1� �

�m
(6.40)

Hence when

m = 0 ) G(0) (1) = G (1) = 1

m = 1 ) G0 (1) = �

��
�

1

��
1

1� �

�
=

�

1� �

m = 2 ) G00 (1) = 2!�2
��
�
+ 1

2

��
1

1� �

�2

G00 (1) = �2
�
�

�
+ 1

�
�

�

�
1

1� �

�2
=
(�+ �)�

(1� �)2

This implies that,
� = E (X) = G0 (1) =

�

1� �
and

�2 = G00 (1) +G0 (1)� [G0 (1)]2

=
(�+ �)�

(1� �)2
+

�

1� � �
�2

(1� �)2

=
��

(1� �)2
+

�

1� �

=
�� + � (1� �)
(1� �)2

=
�

(1� �)2

m = 3 ) G000 (1) = 3!�3
��
�
+ 2

3

��
1

1� �

�3

G000 (1) = �3
�
�

�
+ 2

��
�

�
+ 1

�
�

�

1

(1� �)3

=
� (�+ �) (�+ 2�)

(1� �)3

=
�

1� �

�
�

1� � +
�

1� �

� �
�

1� � +
2�

1� �

�
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but
� =

�

1� � and �
2 =

�

(1� �)2

Therefore

c =
�2

�
=

1

1� � and � = 1�
�

�2

) �

1� � =
�2

�
� 1 = c� 1

Hence,

G000 (1) = � [�+ (c� 1)] [�+ 2 (c� 1)]
=
�
�2 + � (c� 1)

�
[�+ 2 (c� 1)]

=
�
�2 + �2 � �

�
[�+ 2 (c� 1)]

= �3 + 2�2 (c� 1) + �2�+ 2�2 (c� 1)� �2 � 2� (c� 1)
= �3 + 2��2 � 2�2 + �2�+ 2�2 (c� 1)� �2 � 2�2 + 2�
= �3 � 3�2 +

�
3�2 + 2

�
�+ 2�2c� 4�2 (6.41)

Also,

G000 (1) = E [X (X � 1) (X � 2)]
= E

�
X3 � 3X2 + 2X

�
= E

�
X3
�
� 3E

�
X2
�
+ 2E (X)

= E
�
X3
�
� 3

�
�2 + �2

�
+ 2�

= E
�
X3
�
� 3�2 � 3�2 + 2� (6.42)

Therefore

�3 � 3�2 +
�
3�2 + 2

�
�+ 2�2c� 4�2 = E

�
X3
�
� 3�2 � 3�2 + 2�

E
�
X3
�
� 3�2 = �3 + 3�2�+ 2�2c� 4�2

E
�
X3
�
= �3 + 3�2�+ 2�2c� �2

= �3 + 3�2�+ (2c� 1)�2

As shown earlier in (6.26)
For m = 4
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Giv (1) = 4!�4
��
�
+ 3

4

��
1

1� �

�4
= �4

�
�

�
+ 3

��
�

�
+ 2

��
�

�
+ 1

�
�

�

1

(1� �)4

=
� (�+ �) (�+ 2�) (�+ 3�)

(1� �)4

=
�

1� �

�
�

1� � +
�

1� �

� �
�

1� � +
2�

1� �

� �
�

1� � +
3�

1� �

�
= � [�+ (c� 1)] [�+ 2 (c� 1)] [�+ 3 (c� 1)]
=
�
�2 + �2 � �

� �
�2 + 5� (c� 1) + 6 (c� 1)2

�
=
�
�2 + �2 � �

� �
�2 � 5�+ 5�2 + 6 (c� 1)2

�
= �4 � 5�3 +

�
5�2 + 6 (c� 1)2

�
�2 � �3 + 5�2 +

�
�5�2 � 6 (c� 1)2

�
�

+ �2�2 � 5�2�+
�
5�4 + 6�2 (c� 1)2

�
= �4 � 6�3 +

�
5�2 + 6 (c� 1)2 + 5 + �2

�
�2 +

�
�10�2 � 6 (c� 1)2

�
�

+
�
5�4 + 6�2 (c� 1)2

�
= �4 � 6�3 +

�
6�2 + 6 (c� 1)2 + 5

�
�2 +

�
�10�2 � 6 (c� 1)2

�
�

+
�
5�4 + 6�2 (c� 1)2

�
= �4 � 6�3 +

�
6�2 + 5

�
�2 + 6 [� (c� 1)]2 +

�
�10�2�

�
+
�
�6 (c� 1)2 �

�
+
�
5�4 + 6 (c� 1)2 �2

�
= �4 � 6�3 +

�
6�2 + 5

�
�2 + 6

�
�2 � �

�2 � 10�2�� 6 (c�� �) (c� 1)
+
�
5�4 + 6 (c� 1)2 �2

�
= �4 � 6�3 +

�
6�2 + 5

�
�2 + 6

�
�4 � 2��2 + �2

�
� 10�2�� 6

�
�2 � �

�
(c� 1)

+
�
5�4 + 6 (c� 1)2 �2

�
= �4 � 6�3 +

�
6�2 + 11

�
�2 +

�
�22�2 + 6c� 6

�
�+ 6�4 � 6�2 (c� 1)

+ 5�4 + 6 (c� 1)2 �2

= �4 � 6�3 +
�
6�2 + 11

�
�2 +

�
6c� 22�2 � 6

�
�+ 11�4 + 6 (c� 1) (c� 1� 1)�2

= �4 � 6�3 +
�
6�2 + 11

�
�2 +

�
6c� 22�2 � 6

�
�+ 11�4 + 6 (c� 1) (c� 2)�2

(6.43)

Also.

Giv (1) = E [X (X � 1) (X � 2) (X � 3)]
= E

�
11X2 � 6X � 6X3 +X4

�
= E

�
X4
�
� 6E

�
X3
�
+ 11E

�
X2
�
� 6E (X) (6.44)

Therefore�
E (X4)� 6E (X3)
+11E (X2)� 6E (X)

�
= �4 � 6�3 +

�
6�2 + 11

�
�2 +

�
6c� 22�2 � 6

�
�

+ 11�4 + 6 (c� 1) (c� 2)�2

174



E
�
X4
�
=
�
6E
�
X3
�
� 11E

�
X2
�
+ 6E (X)

	
+ �4 � 6�3 +

�
6�2 + 11

�
�2

+
�
6c� 22�2 � 6

�
�+ 11�4 + 6 (c� 1) (c� 2)�2

= 6
�
�3 + 3�2�+ (2c� 1)�2

	
� 11

�
�2 + �2

	
+ 6�+ �4 � 6�3

+
�
6�2 + 11

�
�2 +

�
6c� 22�2 � 6

�
�+ 11�4 + 6 (c� 1) (c� 2)�2

= �4 + 18�2�+ 6 (2c� 1)�2 � 11�2 � 11�2 + 6�+ 6�2�2 + 11�2

+
�
6c� 22�2 � 6

�
�+ 11�4 + 6 (c� 1) (c� 2)�2

= �4 + 6�2�2 +
�
18�2 + 6 + 6c� 22�2 � 6

�
�

+ 6 (2c� 1)�2 � 11�2 + 11�4 + 6 (c� 1) (c� 2)�2

= �4 + 6�2�2 +
�
6c� 4�2

�
�+ 12c�2 � 6�2 � 11�2

+ 11�4 + 6 (c� 1) (c� 2)�2

= �4 + 6�2�2 + 6�2 � 4�2�+ 12c�2 � 6�2 � 11�2 + 11�4

+ 6
�
c2 � 3c+ 2

�
�2

= �4 + 6�2�2 � 4�2�+ 12c�2 � 11�2 + 11�4 + 6c2�2 � 18c�2 + 12�2

= �4 + 6�2�2 � 4�2�+ 12c�2 + �2 + 11�4 + 6c2�2 � 18c�2

= �4 + 6�2�2 � 4�2�� 6c�2 + �2 + 11�4 + 6c2�2

= �4 + 6�2�2 � 4�2�+ 11�4 +
�
6c2 � 6c+ 1

�
�2 as shown is (6.29)

Therefore

�4 = E (X � �)4

= E
�
X4
�
� 4�E

�
X3
�
+ 6�2E

�
X2
�
� 3�4

= �4 + 6�2�2 � 4�2�+ 11�4 +
�
6c2 � 6c+ 1

�
�2

� 4�
�
�3 + 3�2�+ (2c� 1)�2

�
+ 6�2

�
�2 + �2

�
� 3�4

= �4 + 6�2�2 � 4�2�+ 11�4 +
�
6c2 � 6c+ 1

�
�2 � 4�4

� 12�2�2 � 8�4 + 4��2 + 6�2�2 + 6�4 � 3�4

= 3�4 +
�
6c2 � 6c+ 1

�
�2 as in (6:30)

Remark :
G0 (1) =

�

1� � = �

G00 (1) =
�+ �

1� � G
0 (1)

G000 (1) =
� (�+ �) (�+ 2�)

(1� �)3
=
(�+ 2�)

1� � G00 (1)

Giv (1) =
� (�+ �) (�+ 2�) (�+ 3�)

(1� �)4
=
(�+ 3�)

1� � G000 (1)

Therefore

G(r+1) (1) =
(�+ r�)

1� � G(r) (1) for r = 0; 1; 2; : : :

=

�
�

1� � +
r�

1� �

�
G(r) (1)

=

�
�+ r

�

1� �

�
G(r) (1)
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but
� =

�

1� � and �
2 =

�

(1� �)2

Therefore

c =
�2

�
=

1

1� � and � = 1�
�

�2

) �

1� � =
�2

�
� 1 = c� 1

In general

G(r+1) (1) = [�+ r (c� 1)]G(r) (1) for r = 0; 1; 2; : : : and c = �2

�
(6.45)

r = 0 ) G0 (1) = �

r = 1 ) G00 (1) = [�+ c� 1]G0 (1)

G00 (1) = [�+ c� 1]G0 (1) = [�+ c� 1]�
= �2 + �c� � = �2 + �2 � �

r = 2 ) G000 (1) = [�+ 2 (c� 1)]G00 (1)

G000 (1) = [�+ 2 (c� 1)]G00 (1)
= (�+ 2c� 2)

�
�2 + �2 � �

�
= 2�� 2c�� 2�2 � 3�2 + �3 + 2c�2 + 2c�2 + �2�
= �3 + 2�� 2�2 � 2�2 � 3�2 + 2c�2 + 2�2�+ �2�
= �3 � 3�2 +

�
2�2 + �2 + 2

�
�+ (�2� 2 + 2c)�2

= �3 � 3�2 +
�
3�2 + 2

�
�+ (2c� 4)�2

= �3 � 3�2 +
�
3�2 + 2

�
�+ 2 (c� 2)�2

r = 3 ) Giv (1) = [�+ 3c� 3]G000 (1)

Giv (1) = (�+ 3c� 3)
�
�3 � 3�2 +

�
3�2 + 2

�
�+ 2 (c� 2)�2

�
= (�+ 3c� 3)

�
2�� 4�2 � 3�2 + �3 + 2c�2 + 3�2�

�
= 6c�� 6�+ 12�2 + 11�2 � 6�3 + �4 � 18c�2 � 9c�2 + 3c�3

� 13�2�+ 11c�2�+ 6c2�2 + 3�2�2

= �4 � 6�3 +
�
6�2 + 11

�
�2 �

�
22�2 + 6

�
�+ 11�4 + 6

�
c2 � 3c+ 3

�
�2
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Chapter 7

Sum of Independent Random
Variables

7.1 Introduction

The chapter entails determining the the distribution of a sum of independent random
variables in terms of the distributions of the individual constituents. Only sums of
discrete random variables will be considered. Also, random variables whose values are
integers will be considered and their distribution functions are then de�ned on these
integers.
Let

SN = X1 +X2 +X3 + � � �+XN

WhereX 0
is are independent and identically distributed random variables. The problem

is to �nd the distribution of SN when,

i) N is �xed.

ii) N is also a random variable independent of X 0
is:

In both cases X 0
is are in�ated power series random variables. Thus we wish to

determine convolutions and compound distributions for independent and identically
in�ated power series random variables.

7.2 Convolutions

7.2.1 Convolutions in general

De�nition
Let fakg and fbkg be any two numerical sequences. The new sequence fckg de�ned

by

ck =

kX
r=0

arbk�r

= a0bk + a1bk�1 + � � �+ ak�1b1 + akb0
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is called the convolution of fakg and fbkg and will be denoted by

fckg = fakg � fbkg

as given by Feller (1968).
In terms of probability generating function we have the following theorem
Theorem 7:1
If fakg and fbkg are sequences with generating functions A (s) and B (s) ; and fckg

is their convolution, then the generating function C (s) is the product of A (s) and
B (s) :
Proof :
If

A (s) =
1X
k=0

aks
k

B (s) =
1X
k=0

bks
k

Then

A (s)B (s) =
�
a0 + a1s+ a2s

2 + � � �
� �
b0 + b1s+ b2s

2 + � � �
�

= a0b0 + (a0b1 + a1b0) s+ (a0b2 + a1b1 + a2b0) s
2 + � � �

= c0 + c1s+ c2s
2 + c3s

3 + � � �
= C (s)

We can extend the notion of convolution to many sequences for example.
Let fakg ; fbkg ; fckg ; fdkg ; : : :be any sequences. We can form the convolution

fakg � fbkg ; and then the convolution of this new equation with fckg ;etc. The gener-
ating function of fakg�fbkg�fckg�fdkg is A (s)B (s)C (s)D (s) ; and this fact shows
that the order in which the convolutions are performed is immaterial. For example,
fakg � fbkg � fckg = fckg � fbkg � fakg and (fakg � fbkg) � fckg = fakg � (fbkg � fckg).
This shows that, convolution is an associative and commutative operation.

7.2.2 Convolution in random variables

LetX and Y be non-negative independent integral-valued random variables with prob-
ability distributions

pi = Pr (X = i) and qj = Pr (Y = j)

Further, let Z = X + Y such that rk = Pr (Z = k) ; The event Z = k is the union
of mutually exclusive events that is (X = i; Y = j) : Then, the distribution rk =
Pr (Z = k) is given by

rk = Pr (X + Y = k)

=

kX
i=0

Pr (X = i) Pr (Y = k � i)
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and denoted by
frkg = fpig � fqjg

Therefore in general the probability distribution of the sum of two or more independent
random variables is the convolution of their individual distributions. That is, the
probability mass function of a sum of random variables is the convolution of their
corresponding probability mass function.

The pgf Technique

Let
H (s) = the pgf of SN

Gi (s) = the pgf of Xi

Then

H (s) = E
�
SX1+X2+X3+���+XN

�
=

NY
i=1

E
�
SXi
�

=
NY
i=1

Gi (s)

For independent and identically distributed (i.i.d) random variables Gi (s) = G (s) :
Hence,

H (s) = [G (s)]N

Remark : Convolution of distribution of random variables doesn�t have to come
from the same distribution.

7.2.3 Special cases

Poisson Distribution

If X and Y are independent Poisson random variables with parameters �1 and �2,
then Z = X + Y is a Poisson random variable with parameter �1 + �2: It follows that

fp (k;�1 + �2)g = fp (i;�1)g � fp (j;�2)g

Proof : By discrete convolution formula, Z = X + Y has the probability mass
function

Pr (Z = k) =

kX
i=0

Pr (X = i) � Pr ( Y = k � i)

=

kX
i=0

e��1
�i1
i!
e��2

�k�i2

(k � i)!

= e�(�1+�2)
kX
i=0

�i1
i!

�k�i2

(k � i)! using binomial formula we have

= e�(�1+�2)
(�1 + �2)

k

k!
; k = 0; 1; 2; : : :
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which is also the probability mass function for the Poisson distribution with parameter
�1 + �2:
In general, Let X1; X2; :::; Xk be independent Poisson random variables where Xi

has a Poisson distribution with parameters (�i) for i = 1; 2; :::; k: Then, X1 + X2 +
� � �+Xk has a Poisson distribution with parameter (�1 + �2 + � � �+ �k). Thus

fp (k;�i)gk� = fp (i;�i)g(k�1)� � fp (k;�k)g

and the mean and variance is given by

E (Sk) = V ar (Sk) = �

Remark : Note that the rate parameters �i add

Binomial distribution

LetX and Y be independent binomial random variables whereX ~b(n1; p) and Y ~b(n2; p):
Then, Z = X + Y has a binomial distribution with n1 + n2 trials and probability of
success p: It follows that

fb (k;n1 + n2; p)g = fb (i;n1; p)g � fb (j;n2; p)g

Proof : By the discrete convolution formula, Z = X + Y has probability mass
function.

Pr (Z = k) =

kX
i=0

Pr (X = i) � Pr ( Y = k � i)

=
kX
i=0

�
n1
i

�
pi (1� p)n1�i

�
n2
k � i

�
pk�i (1� p)n2�(k�i)

= pk (1� p)n1+n2�k
kX
i=0

�
n1
i

��
n2
k � i

�
(*)

but

1X
k=0

cks
k =

1X
k=0

kX
i=0

�
n1
i

��
n2
k � i

�
sk

=
1X
k=0

1X
i=0

�
n1
i

��
n2
k � i

�
sk

=
1X
i=0

(�
n1
i

�
si

1X
k=i

�
n2
k � i

�
sk�i

)

=

1X
i=0

��
n1
i

�
si (1 + s)n2

�
= (1 + s)n2

1X
i=0

�
n1
i

�
si

= (1 + s)n2 (1 + s)n1 = (1 + s)n1+n2
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Hence
kX
i=0

�
n1
i

��
n2
k � i

�
=

�
n1 + n2
k

�
Replacing this value in (�) above we get

Pr (Z = k) = pk (1� p)n1+n2�k
kX
i=0

�
n1
i

��
n2
k � i

�
=

�
n1 + n2
k

�
pk (1� p)n1+n2�k

which is also the probability mass function for the binomial distribution with parameters(n1 + n2)
and p:
In general, Let X1; X2; :::; Xk be independent binomial random variables where Xi

has a
Binomial distribution with parameters (ni; p) for i = 1; 2; :::; k: Then X1 + X2 +

� � �Xk has a Binomial distribution with parameters (n1 + n2 + � � � �+ nk) and p. Thus

fb (k;ni; p)gk� = fb (i;ni; p)g(k�1)� � fb (k;nk; p)g

and the mean and variance is given by

E (Sk) = np

V ar (Sk) = npq

Remark : Note that the sample sizes add but the success probability remains
the same.

Negative Binomial distribution

Let X and Y be independent Negative binomial random variables where X and Y is
Negative Binomial with parameters (�1; p) and (�2; p) respectively: Then, Z = X +Y
has a Negative binomial distribution with �1 + �2 and probability of success p: It
follows that

fNB (k;�1 + �2; p)g = fNB (i;�1; p)g � fNB (j;�2; p)g

Proof : By the discrete convolution formula, Z = X + Y has probability distrib-
ution.

Pr (Z = k) =

kX
i=0

Pr (X = i) � Pr ( Y = k � i)

=

kX
i=0

�
�1 + i� 1

i

�
p�1 (1� p)i

�
�2 + (k � i)� 1

k � i

�
p�2 (1� p)k�i

= p�1+�2 (1� p)k
kX
i=0

�
�1 + i� 1

i

��
�2 + (k � i)� 1

k � i

�
(**)
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but
1X
k=0

cks
k =

1X
k=0

kX
i=0

�
�1 + i� 1

i

��
�2 + (k � i)� 1

k � i

�
sk

=

1X
k=0

1X
i=0

�
�1 + i� 1

i

��
�2 + (k � i)� 1

k � i

�
sk

=
1X
i=0

(�
�1 + i� 1

i

�
si

1X
k=i

�
�2 + (k � i)� 1

k � i

�
sk�i

)

=

1X
i=0

(�
�1 + i� 1

i

�
si

1X
k=i

�
��2
k � i

�
(�s)k�i

)

=

1X
i=0

��
�1 + i� 1

i

�
si (1� s)��2

�
= (1� s)��2

1X
i=0

�
�1 + i� 1

i

�
si

= (1� s)��2
1X
i=0

�
��1
i

�
(�s)i

= (1� s)��2 (1� s)��1 = (1� s)�(�1+�2)

Hence
kX
i=0

�
�1 + i� 1

i

��
�2 + (k � i)� 1

k � i

�
=

�
�1 + �2 + k � 1

k

�
Replacing this value in (��) above we get

Pr (Z = k) = p�1+�2 (1� p)k
kX
i=0

�
�1 + i� 1

i

��
�2 + (k � i)� 1

k � i

�
=

�
�1 + �2 + k � 1

k

�
p�1+�2 (1� p)k

which is also the probability mass function for the negative binomial distribution with
parameters (�1 + �2) and p:
In general, Let X1; X2; :::; Xk be independent Negative binomial random variables

whereXi has a Negative binomial distribution with parameters (�i; p) for i = 1; 2; :::; k:
Then
X1+X2+� � �Xk has a Negative binomial distribution with parameter (�1 + �2 + � � � �+ �k)

and p. Thus

fNB (k;�i; p)gk� = fNB (i;�i; p)g(k�1)� � fNB (k;�k; p)g
and the mean and variance is given by

E (Sk) =
�q

p

V ar (Sk) =
�q

p2
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Geometric Distribution

Let Xi, i = 1; 2 be two independent Geometric random variables. where Xi, i = 1; 2
is Geometric with parameters (p) :

Pr (Xi = x) = p (1� p)k : k = 0; 1; 2; : : : ; i = 1; 2
with the corresponding generating function.

p

2X
i=1

f(1� p) sgk = p

1� (1� p) s

Then,

Z =
2X
i=1

Xi

has the probability distribution
Using the Generating function technique. Since Xi, i = 1; 2 are independent with

G (x1) and G (x2) ; then
G (z) = G (x1)G (x2)

Then the Generating function would characterize distribution.
Therefore

G (z) =
2Y
i=1

�
p

1� (1� p) s

�

=

2Y
i=1

G (xi) and since G (xi) = G (x) is i.i.d random variables

= [G (x)]2

Which is the Generating function of negative binomial distribution with parameter
(2; p)
In general, LetX1; X2; :::; Xk be independent Geometric random variables whereXi

has a Geometric distribution with parameters p for i = 1; 2; :::; k: ThenX1+X2+� � �Xk

has a Negative binomial distribution with parameter (k; p).

7.3 Compound Distributions

If a probability distribution is altered by allowing one of its parameters to behave as
a random variable, the resulting distribution is said to be compound. An important
compound distribution is that of the sum of random variables.
Let X1; X2; X3; : : : ; XN be independently and identically distributed random vari-

ables. Let N be also a random variable independent of the X 0
is:

If
SN = X1 +X2 +X3 + � � �+XN

then now N and SN are two random variables to be studied.
Given the distributions of X 0

is and N , the problem is to �nd the pgf, probability
distribution, mean and variance of SN :
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7.3.1 Review of Bivariate conditional and Marginal Distrib-
ution

If X and Y are two discrete random variables and f (x; y) is their probability mass
function (pmf), then the marginal distribution of X is

f1 (x) =
X
y

f (x; y)

and that of Y is
f2 (y) =

X
x

f (x; y)

The condition distribution of Y given X is

f (yjx) = f (x; y)

f1 (x)

while that of X given Y is

f (xjy) = f (x; y)

f2 (x)

Hence,
f (x; y) = f (xjy) f2 (x) = f (yjx) f1 (x)

Next, let � (x; y) be a function of X and Y . We should note that since X and Y are
random variables, their functions are also random variables.
Therefore,

E [� (X;Y )] =
X
x

X
y

� (x; y) f (x; y)

For example, if
� (X; Y ) = XrY s

then
E [XrY s] =

X
x

X
y

xrysf (x; y)

In particular, if r = 0 and s = 1, then

E (Y ) =
X
x

X
y

yf (x; y) :

If r = 1 and s = 1, then
E (XY ) =

X
x

X
y

xyf (x; y)

Let us now prove the following
Theorem 7:2
For any two random variables X and Y

(i)
E (Y ) = EE (Y jX)

(ii)
E (XY ) = E [XE (Y jX)]
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(iii)
V arY = E [V ar (Y jX)] + V ar [E (Y jX)]

Proof :

(i)

E (Y jX) =
X
y

yf (yjx)

=
X
y

y
f (x; y)

f1 (x)

which is a function of x, say u (x) ;

That is, let u (X) = E (Y jX)

Therefore

EE (Y jX) = E [u (X)]
=
X
x

u (x) f1 (x)

=
X
x

"X
y

y
f (x; y)

f1 (x)

#
f1 (x)

=
X
x

X
y

yf (x; y)

= E (Y )

(ii)

E [XE (Y jX)] = E [Xu (X)]
=
X
x

xu (x) f1 (x)

=
X
x

x

"X
y

y
f (x; y)

f1 (x)

#
f1 (x)

=
X
x

X
y

xyf (x; y)

= E [XY ]

(iii)

V arY = E
�
Y 2
�
� [E (Y )]2

= EE
�
Y 2jX

�
� [EE (Y jX)]2

= E
�
E
�
Y 2jX

��
� fE [u (X)]g2

= E
�
E
�
Y 2jX

�
� (E (Y jX))2 + (E (Y jX))2

�
� fE [u (X)]g2

= E
�
V ar (Y jX) + (E (Y jX))2

�
� fE [u (X)]g2

= E [V ar (Y jX)] + E (E (Y jX))2 � fE [u (X)]g2

= E [V ar (Y jX)] + E [u (X)]2 � fE [u (X)]g2

= E [V ar (Y jX)] + V ar [u (X)]
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Hence

V arY = E [V ar (Y jX)] + V ar [u (X)]
= E [V ar (Y jX)] + V ar [E (Y jX)]

7.3.2 Conditional Expectation of a Random Sum of i.i.d ran-
dom variables

Consider the two variablesN and SN : SettingX = N and Y = SN in the Theorem 7:2
we get,

(i)

E [SN ] = EE [SN jN ]
= EE [X1 +X2 +X3 + � � �+XN ]

= E [NE (Xi)]

= E (N)E (Xi)

(ii)

V arSN = V arE (SN jN) + EV ar (SN jN)
= V ar fE [X1 +X2 + � � �+XN ]g+ EV ar [X1 +X2 + � � �+XN ]

= V ar fNE (Xi)g+ E fNV arXig
= [E (Xi)]

2 V arN + V arXiE (N)

7.3.3 The probability generating function technique

Let fXig be a sequence of independent and identically distributed random variables
with common pgf.

G (s) = E
�
SXi
�

and let
SN = X1 +X2 +X3 + � � �+XN

where N is a random variable independent of the X 0
is with pgf

F (s) = E
�
SN
�

We denote the pgf of SN by H (s) and it is given by,

H (s) = E
�
SSN

�
= EE

�
SSN jN

�
using part (i) of theorem (7:2)

= EE
�
SX1+X2+X3+���+XN

�
= E

NY
i=1

E
�
SXi
�
; because of independence of X 0

is

= E
�
E
�
SXi
��N

; since X 0
is are identical

= E [G (s)]N
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Therefore
H (s) = F [G (s)]

Therefore to obtain mean and variance using pgf technique, we �nd the �rst and
second derivative of H (s) with respect to s to obtain

H 0 (s) = G0 (s)F 0 [G (s)]

and
H 00 (s) = [G0 (s)]

2
F 00 (G (s)) +G00 (s)F 0 [G (s)]

setting s = 1; we have
H (1) = F [G (1)] = F (1) = 1

H 0 (1) = G0 (1)F 0 (1)

H 00 (1) = [G0 (1)]
2
F 00 (1) +G00 (1)F 0 (1)

Therefore,
E [SN ] = H

0 (1) = E (N)E (Xi)

V ar [SN ] = H
00 (1) +H 0 (1)� [H 0 (1)]

2

= [G0 (1)]
2
F 00 (1) +G00 (1)F 0 (1) +G0 (1)F 0 (1)� [G0 (1)]2 [F 0 (1)]2

= [G0 (1)]
2
h
F 00 (1) + (F 0 (1))

2
i
+ [G00 (1)�G0 (1)]F 0 (1)

= [G0 (1)]
2
[V arN � F 0 (1)] +

h
V arX + [G0 (1)]

2
i
F 0 (1)

= [G0 (1)]
2
V arN + (V arX)F 0 (1)

= [E (X)]2 V arN + (V arX)E (N)

7.3.4 Special cases of Compound Power Series Distributions

a) Compound Poisson Distribution

Suppose
SN = X1 +X2 +X3 + � � �+XN

WhereX 0
is are independent random variables, withN being a Poisson random variable.

Then SN is said to have a Compound Poisson Distribution. Suppose N is Poisson with
parameter �: Then the pgf of N is given by,

F (s) = e�(s�1)

and the pgf of SN is given by,

H (s) = F [GX (s)] = e
�[GX(s)�1]

Hence, the mean and the variance of SN is given by

E [SN ] = E (N)E (Xi) = �E (Xi)
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and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

= �V arXi + � [E (Xi)]
2

= �
�
V arXi + [E (Xi)]

2�
Case (i) if Xi is Bernoulli with parameter Pr fXi = 1g = p and Pr fXi = 0g =

q; Then,
GX (s) = q + ps where q = 1� p

Therefore

H (s) = e�[GX(s)�1]

= e�[q+ps�1] = e�[1�p+ps�1]

= e�p(s�1)

Which is the pgf of Poisson-Bernoulli distribution.
Thus, the sum SN is Poisson with parameter �p
The mean and the variance is given by

E [SN ] = E (N)E (Xi) = �p

and

V ar [SN ] = �
�
V arXi + [E (Xi)]

2�
= �

�
p (1� p) + p2

�
= �

�
p� p2 + p2

�
= �p

Case (ii) if Xi is Zero truncated geometric Distribution with parameter p; then

GX (s) =
ps

1� qs where q = 1� p

Therefore

H (s) = e�[GX(s)�1]

= e�[
ps

1�qs�1] = e�[
ps�1+qs
1�qs ]

= e�[
ps�1+s�ps

1�qs ] = e�[
s�1
1�qs ]

Which is the pgf of Poisson-Zero truncated Geometric Distribution. This distribution
is called Polya-Aeppli Distribution.
The mean and the variance is given by

E [SN ] = E (N)E (Xi) = �
1

p
=
�

p

and

V ar [SN ] = �
�
V arXi + [E (Xi)]

2�
= �

�
1� p
p2

+
1

p2

�
= �

�
2� p
p2

�
= �

�
1 + q

p2

�

188



Case (iii) ifXi is Zero-In�ated Binomial Distribution with parameters (n; p; �) ; then

GX (s) = �+ (1� �) [1� p+ ps]n

Therefore

H (s) = e�[GX(s)�1]

= e�f�+(1��)[1�p+ps]
n�1g

Which is the pgf of Poisson-Zero-In�ated Binomial Distribution.
The mean and the variance is given by

E [SN ] = E (N)E (Xi) = �np (1� �)

and

V ar [SN ] = �
�
V arXi + [E (Xi)]

2�
= �

�
(1� �)

�
p2n2�+ npq

�
+ [np (1� �)]2

	
= � (1� �)

�
p2n2�+ npq + n2p2 (1� �)

�
= � (1� �)

�
npq + n2p2

�
Case (iv) if Xi is Zero-In�ated Negative Binomial Distribution with parameters

(�; p; �) ; then

GX (s) = �+ (1� �)
�

p

1� (1� p) s

��
Therefore

H (s) = e�[GX(s)�1]

= exp

�
�

�
�+ (1� �)

�
p

1� (1� p) s

��
� 1
��

Which is the pgf of Poisson-Zero-In�ated Negative Binomial Distribution.
The mean and the variance is given by

E [SN ] = E (N)E (Xi) = (1� �)��
q

p

and

V ar [SN ] = �
�
V arXi + [E (Xi)]

2�
= �

(
(1� �)

�
�2q2

p2
�+

�q

p2

�
+

�
(1� �)�q

p

�2)

= � (1� �)
�
�q + �2q2

p2

�
= (1� �)�p�2

�
�q + �2q2

�
Case (v) if Xi is Zero-Modi�ed Logarithmic Series Distribution with parameters

(p; �) ; then
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GX (s) = �+ (1� �)
ln [1� ps]
ln (1� p)

Therefore

H (s) = e�[GX(s)�1]

= exp

�
�

�
�+ (1� �) ln [1� ps]

ln (1� p) � 1
��

Which is the pgf of Poisson-Zero-Modi�ed Logarithmic Series Distribution.
The mean and the variance is given by

E [SN ] = E (N)E (Xi) =
� (1� �) p

� (1� p) log(1� p)

and

V ar [SN ] = �
�
V arXi + [E (Xi)]

2�
= �

(
� (1� �)

�
p log(1� p) + (1� �) p2

(1� p)2 [log(1� p)]2
�
+

�
� (1� �) p

(1� p) log(1� p)

�2)

= �

(
� (1� �)

�
p log(1� p) + (1� �) p2

(1� p)2 [log(1� p)]2
�
+

(1� �)2 p2

(1� p)2 [log(1� p)]2

)

= � (1� �)�
�
p log(1� p) + (1� �) p2 � (1� �) p2

(1� p)2 [log(1� p)]2
�

= � (1� �)�p
(1� p)2 log(1� p)

Case (vi) if Xi is Zero-in�ated Poisson distribution with parameter (�; �)

GX (s) = �+ (1� �) e�(s�1)

Therefore

H (s) = e�[GX(s)�1]

= e�[�+(1��)e
�(s�1)�1]

Which is the pgf of Poisson-Zero-In�ated Poisson Distribution.
The mean and the variance is given by

E [SN ] = E (N)E (Xi) = �
2 (1� �)

and

V ar [SN ] = �
�
V arXi + [E (Xi)]

2�
= �

�
(1� �)� (1 + ��) + �2 (1� �)2

�
= �2 (1� �) [1 + ��+ �� ��]
= �2 (1� �) [1 + �]
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b) Compound Binomial Distribution

Suppose
SN = X1 +X2 +X3 + � � �+XN

Where X 0
is are independent random variables, with N being a Binomial random vari-

able. Then SN is said to have a Compound Binomial Distribution. Suppose N is
Binomial with parameters (n; p) : Then the pgf of N is given by,

F (s) = [1� p+ ps]n

and the pgf of SN is given by,

H (s) = F [GX (s)] = f1� p+ p [GX (s)]gn

Hence, the mean and the variance of SN is given by

E [SN ] = E (N)E (Xi) = npE (Xi)

and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

= npV arXi + np (1� p) [E (Xi)]
2

= np
�
V arXi + (1� p) [E (Xi)]

2�
Case (i) if Xi is Zero-In�ated Poisson Distribution with parameters (�; �) ; then

GX (s) = �+ (1� �) e�(s�1)

Therefore

H (s) = f1� p+ p [GX (s)]gn

=
�
1� p+ p

�
�+ (1� �) e�(s�1)

�	n
Which is the pgf of Binomial-Zero-In�ated Poisson Distribution.
The mean and the variance is given by

E [SN ] = E (N)E (Xi) = np� (1� �)

and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

= np
�
V arXi + (1� p) [E (Xi)]

2�
= np

�
(1� �)� (1 + ��) + (1� p) [(1� �)�]2

	
= np (1� �)� f(1 + ��) + (1� p) (1� �)�g
= np (1� �)� f1 + ��+ �� ��� �p+ �p�g
= �np (1� �) f1 + � (1� p+ p�)g

Case (ii) if Xi is Zero-In�ated Negative Binomial Distribution with parameters
(�; p; �), then
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GX (s) = �+ (1� �)
�

p

1� (1� p) s

��
Therefore

H (s) = f1� p+ p [GX (s)]gn

=

�
1� p+ p

�
�+ (1� �)

�
p

1� (1� p) s

����n
Which is the pgf of Binomial-Zero-In�ated Negative Binomial Distribution.
The mean and the variance is given by

E [SN ] = E (N)E (Xi) = n�q (1� �)

and

V ar [SN ] = E [N ]V arXi + [E (Xi)]
2 V arN

= np
�
V arXi + (1� p) [E (Xi)]

2�
= np

(
(1� �)

�
�2q2

p2
�+

�q

p2

�
+ (1� p)

�
�
q

p
(1� �)

�2)

= np (1� �)
�
�2q2

p2
�+

�q

p2
+
�2q2

p2
(1� �)2

�
= np (1� �)

�
�2q2

p2
�+

�q

p2
+
�2q2

p2
� 2�

2q2

p2
�+

�2q2

p2
�2
�

= n (1� �)
�
�q

p
+
�2q2

p

�
1� �+ �2

��
Case (iii) if Xi is Zero-Modi�ed Logarithmic Series Distribution with parameters
(p; �) ; then

GX (s) = �+ (1� �)
ln [1� ps]
ln (1� p)

Therefore

H (s) = f1� p+ p [GX (s)]gn

=

�
1� p+ p

�
�+ (1� �) ln [1� ps]

ln (1� p)

��n
Which is the pgf of Binomial-Zero-Modi�ed Logarithmic Series Distribution.
The mean and the variance is given by

E [SN ] = E (N)E (Xi) = npE (Xi)

=
(1� �)np2

� (1� p) log(1� p)
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and

V ar [SN ] = E [N ]V arXi + [E (Xi)]
2 V arN

= np
�
V arXi + (1� p) [E (Xi)]

2�
= np (1� �)

(
�
�
p log(1� p) + (1� �) p2

(1� p)2 [log(1� p)]2
�
+

�
(1� �) p

� (1� p) log(1� p)

�2)

= �np (1� �)
(
p log(1� p) + (1� �) p2 � (1� �)2 p2

(1� p)2 [log(1� p)]2

)
Case (iv) ifXi is Zero-In�ated Binomial Distribution with parameters (n; p; �) ; then

GX (s) = �+ (1� �) [1� p+ ps]n

Therefore

H (s) = f1� p+ p [GX (s)]gn

= 1� p+ p f�+ (1� �) [1� p+ ps]ng

Which is the pgf of Binomial-Zero-In�ated Binomial Distribution.
The mean and the variance is given by

E [SN ] = E (N)E (Xi) = npE (Xi)

= n2p2 (1� �)

and

V ar [SN ] = E [N ]V arXi + [E (Xi)]
2 V arN

= np
�
(1� �)

�
p2n2�+ npq

�
+ (1� p)

�
n2p2 (1� �)2

�	
= np (1� �)

�
npq + n2p2

�
1� �+ �2

�	
c) Compound Negative Binomial Distribution

Suppose
SN = X1 +X2 +X3 + � � �+XN

Where X 0
is are independent random variables, with N being a Negative Binomial ran-

dom variable. Then SN is said to have a Compound Negative Binomial Distribution.
Suppose N is Negative Binomial with parameters (�; p): Then the pgf of N is given
by,

F (s) =

�
p

1� (1� p) s

��
and the pgf of SN is given by,

H (s) = F [GX (s)] =

�
p

[1� (1� p)GX (s)]

��
Hence, the mean and the variance of SN is given by

E [SN ] = E (N)E (Xi) =
� (1� p)

p
E (Xi)
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and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

=
� (1� p)

p
V arXi +

� (1� p)
p2

[E (Xi)]
2

=
� (1� p)

p

�
V arXi +

1

p
[E (Xi)]

2

�
Case (i) if Xi is Zero-Modi�ed Logarithmic Series Distribution with parameters
(p; �) ; then

GX (s) = �+ (1� �)
ln [1� ps]
ln (1� p)

Therefore

H (s) = F [GX (s)] =

�
p

(1� (1� p)GX (s))

��
=

8<: ph
1� (1� p)

�
�+ (1� �) ln[1�ps]

ln(1�p)

�i
9=;
�

Which is the pgf of Negative Binomial-Zero-Modi�ed Logarithmic Series Distribution.
The mean and the variance is given by

E [SN ] = E (N)E (Xi) = �
(1� �)�
log(1� p)

and

V ar [SN ] = E [N ]V arXi + [E (Xi)]
2 V arN

=
� (1� p)

p

�
V arXi +

1

p
(E (Xi))

2

�

=
� (1� p)

p

8<: � (1� �)
h
p log(1�p)+(1��)p2
(1�p)2[log(1�p)]2

i
+1
p

�
(1��)p

�(1�p) log(1�p)

�2
9=;

= � (1� �)�
�
log(1� p) + (1� �) p� (1� �)

(1� p) [log(1� p)]2
�

Case (ii) if Xi is Zero-In�ated Poisson Distribution with parameters (�; �) ; then

GX (s) = �+ (1� �) e�(s�1)

Therefore

H (s) = F [GX (s)] =

�
p

(1� (1� p)GX (s))

��
=

�
p

[1� (1� p) [�+ (1� �) e�(s�1)]]

��
Which is the pgf of Negative Binomial-Zero-In�ated Poisson Distribution.
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The mean and the variance is given by

E [SN ] = E (N)E (Xi) =
� (1� p)

p
E (Xi)

=
�� (1� p) (1� �)

p

and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

=
� (1� p)

p
V arXi +

� (1� p)
p2

[E (Xi)]
2

=
� (1� p)

p

�
(1� �)� (1 + ��) + 1

p
[� (1� �)]2

�
=
� (1� p) (1� �)�

p

�
(1 + ��) +

� (1� �)
p

�
Case (iii) if Xi is Zero-In�ated Binomial Distribution with parameters (n; p; �) ; then

GX (s) = �+ (1� �) [1� p+ ps]n

Therefore

H (s) = F [GX (s)] =

�
p

(1� (1� p)GX (s))

��
=

�
p

(1� (1� p) [�+ (1� �) (1� p+ ps)n])

��
Which is the pgf of Negative Binomial-Zero-In�ated Binomial Distribution.
The mean and the variance is given by

E [SN ] = E (N)E (Xi) =
� (1� p)

p
E (Xi)

= � (1� p) (1� �)n

and

V ar [SN ] = E [N ]V arXi + [E (Xi)]
2 V arN

=
� (1� p)

p
V arXi +

� (1� p)
p2

[E (Xi)]
2

=
� (1� p)

p

�
(1� �)

�
p2n2�+ npq

	
+
1

p
[np (1� �)]2

�
=
�n2 (1� p) (1� �)

p

�
p2�+ npq + 1� �

�
Case (iv) if Xi is Zero-In�ated Negative Binomial Distribution with parameters
(�; p; �), then

GX (s) = �+ (1� �)
�

p

1� (1� p) s

��
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Therefore

H (s) = F [GX (s)] =

�
p

(1� (1� p)GX (s))

��
=

8<: p�
1� (1� p)

h
�+ (1� �)

n
p

1�(1�p)s

o�i�
9=;
�

Which is the pgf of Negative Binomial-Zero-In�ated Negative Binomial Distribution.
The mean and the variance is given by

E [SN ] = E (N)E (Xi) =
� (1� p)

p
E (Xi)

= (1� �) �
2q2

p2

and

V ar [SN ] =
� (1� p)

p

�
V arXi +

1

p
[E (Xi)]

2

�
=
� (1� p)

p

(
(1� �)

�
�2q2

p2
�+

�q

p2

�
+
1

p

�
�
q

p
(1� �)

�2)

= (1� �) �q
p

�
�2q2

p2

�
�+

1

p
� 1
p
�

�
+
�q

p2

�
d) Compound Geometric Distribution

Suppose
SN = X1 +X2 +X3 + � � �+XN

Where X 0
is are independent random variables, with N being a Geometric random

variable. Then SN is said to have a Compound Geometric Distribution. Suppose N
is Geometric with parameter p:Then the pgf of N is given by,

F (s) =
p

(1� (1� p) s)
and the pgf of SN is given by,

H (s) = F [GX (s)] =
p

(1� (1� p)GX (s))
Hence, the mean and the variance of SN is given by

E [SN ] = E (N)E (Xi) =
(1� p)
p

E (Xi)

and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

=
(1� p)
p

V arXi +
(1� p)
p2

[E (Xi)]
2

=
(1� p)
p

�
V arXi +

1

p
[E (Xi)]

2

�
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Case (i) if Xi is Zero-Modi�ed Logarithmic Series Distribution with parameters
(p; �) ; then

GX (s) = �+ (1� �)
ln [1� ps]
ln (1� p)

Therefore

H (s) = F [GX (s)] =
p

f1� (1� p)GX (s)g
=

pn
1� (1� p)

�
�+ (1� �) ln[1�ps]

ln(1�p)

�o
Which is the pgf of Geometric-Zero-Modi�ed Logarithmic Series Distribution.
The mean and the variance is given by

E [SN ] = E (N)E (Xi) = �
(1� �)
log(1� p)

and

V ar [SN ] = E [N ]V arXi + [E (Xi)]
2 V arN

=
(1� p)
p

�
V arXi +

1

p
(E (Xi))

2

�
=
(1� p)
p

(
� (1� �)

�
p log(1� p) + (1� �) p2

(1� p)2 [log(1� p)]2
�
+
1

p

�
(1� �) p

� (1� p) log(1� p)

�2)

= � (1� �)
�
log(1� p) + (1� �) p� (1� �)

(1� p) [log(1� p)]2
�

Case (ii) if Xi is Zero-In�ated Poisson Distribution with parameters (�; �) ; then

GX (s) = �+ (1� �) e�(s�1)

Therefore

H (s) = F [GX (s)] =
p

f1� (1� p)GX (s)g
=

p

f1� (1� p) [�+ (1� �) e�(s�1)]g

Which is the pgf of Geometric-Zero-In�ated Poisson Distribution.
The mean and the variance is given by

E [SN ] = E (N)E (Xi) =
(1� p)
p

E (Xi)

=
� (1� p) (1� �)

p
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and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

=
(1� p)
p

V arXi +
(1� p)
p2

[E (Xi)]
2

=
(1� p)
p

�
(1� �)� (1 + ��) + 1

p
[� (1� �)]2

�
=
(1� p) (1� �)�

p

�
(1 + ��) +

� (1� �)
p

�
Case (iii) if Xi is Zero-In�ated Binomial Distribution with parameters (n; p; �) ; then

GX (s) = �+ (1� �) [1� p+ ps]n

Therefore

H (s) = F [GX (s)] =
p

f1� (1� p)GX (s)g
=

p

f1� (1� p) [�+ (1� �) (1� p+ ps)n]g

Which is the pgf of Geometric-Zero-In�ated Binomial Distribution.
The mean and the variance is given by

E [SN ] = E (N)E (Xi) =
(1� p)
p

E (Xi)

= (1� p) (1� �)n

and

V ar [SN ] = E [N ]V arXi + [E (Xi)]
2 V arN

=
(1� p)
p

V arXi +
(1� p)
p2

[E (Xi)]
2

=
(1� p)
p

�
(1� �)

�
p2n2�+ npq

�
+
1

p
[np (1� �)]2

�
=
n2 (1� p) (1� �)

p

�
p2�+ npq + 1� �

�
e) Compound Logarithmic Series Distribution

Suppose
SN = X1 +X2 +X3 + � � �+XN

Where X 0
is are independent random variables, with N being a Logarithmic Series ran-

dom variable. Then SN is said to have a Compound Logarithmic Series Distribution.
Suppose N is Logarithmic Series Distribution with parameter �:Then the pgf of N is
given by,

F (s) =
ln [1� ps]
ln (1� p)
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and the pgf of SN is given by,

H (s) = F [GX (s)] =
ln [1� pGX (s)]
ln (1� p)

Hence, the mean and the variance of SN is given by

E [SN ] = E (N)E (Xi) =
p

� (1� p) log(1� p)E (Xi)

and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

=
p

� (1� p) log(1� p)V arXi �
[p+ log(1� p)]

[(1� p) log(1� p)]2
[E (Xi)]

2

=
p

� (1� p) log(1� p)

�
V arXi +

[p+ log(1� p)]
(1� p) log(1� p) [E (Xi)]

2

�
Case (i) if Xi is Zero-In�ated Poisson Distribution with parameters (�; �) ; then

GX (s) = �+ (1� �) e�(s�1)

Therefore

H (s) = F [GX (s)] =
ln
�
1� p

�
�+ (1� �) e�(s�1)

��
ln (1� p)

Which is the pgf of Logarithmic-Zero-In�ated Poisson Distribution.
The mean and the variance is given by

E [SN ] = E (N)E (Xi) =
� (1� �) p

� (1� p) log(1� p)

and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

=
p

� (1� p) log(1� p)V arXi �
[p+ log(1� p)]

[(1� p) log(1� p)]2
[E (Xi)]

2

=
� (1� �) p

� (1� p) log(1� p)

�
(1 + ��) +

[p+ log(1� p)]
(1� p) log(1� p)� (1� �)

�
Case (ii) ifXi is Zero-In�ated Binomial Distribution with parameters (n; p; �) ; then

GX (s) = �+ (1� �) [1� p+ ps]n

Therefore

H (s) = F [GX (s)] =
ln [1� p f�+ (1� �) [1� p+ ps]ng]

ln (1� p)
Which is the pgf of Logarithmic-Zero-In�ated Binomial Distribution.
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The mean and the variance is given by

E [SN ] = E (N)E (Xi) =
np2 (1� �)

� (1� p) log(1� p)

and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

=
p

� (1� p) log(1� p)V arXi �
[p+ log(1� p)]

[(1� p) log(1� p)]2
[E (Xi)]

2

=
p

� (1� p) log(1� p)

(
(1� �) [p2n2�+ npq]

+ [p+log(1�p)]
(1�p) log(1�p) [np (1� �)]

2

)

=
p (1� �)

� (1� p) log(1� p)

�
p2n2�+ npq +

[p+ log(1� p)]
(1� p) log(1� p)n

2p2 (1� �)
�

Case (iii) if Xi is Zero-In�ated Negative Binomial Distribution with parameters
(�; p; �), then

GX (s) = �+ (1� �)
�

p

1� (1� p) s

��
Therefore

H (s) = F [GX (s)] =
ln
n
1� p

h
�+ (1� �)

�
p

1�(1�p)s

��io
ln (1� p)

Which is the pgf of Logarithmic-Zero-In�ated Negative Binomial Distribution.
The mean and the variance is given by

E [SN ] = E (N)E (Xi) =
�q (1� �)

� (1� p) log(1� p)

and

V ar [SN ] = E [N ]V arXi + [E (Xi)]
2 V arN

=
(1� �)

� (1� p) log(1� p)

�
�2q2

p
�+

�q

p
+

[p+ log(1� p)]
(1� p) log(1� p)

�
�2q2

p2
� �

2q2

p2
�

��
7.3.5 Special cases of Compound In�ated Power Series Dis-

tributions

a) Compound Zero-In�ated Poisson Distribution

Let
SN = X1 +X2 +X3 + � � �+XN

Where X 0
is are independent random variables, with N being a Zero-In�ated Poisson

random variable. Then SN is said to have a Compound Zero-In�ated Poisson Distrib-
ution. Suppose N is Zero-In�ated Poisson with parameters (�; �) : Then the pgf of N
is given by,

F (s) = �+ (1� �) e�(s�1)
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and the pgf of SN is given by,

H (s) = F [GX (s)] = �+ (1� �) e�[GX(s)�1]

Hence the mean and variance is given by,

E [SN ] = E (N)E (Xi)

= (1� �)�E (Xi)

and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

= (1� �)�V arXi + (1� �)� (1 + ��) [E (X)]2

= (1� �)�
�
V arXi + (1 + ��) [E (X)]

2	
Case (i) if X is Zero truncated geometric Distribution with parameter p; then

GX (s) =
ps

1� qs where q = 1� p

Therefore

H (s) = F [GX (s)] = �+ (1� �) e�[
ps

1�qs�1]

= �+ (1� �) e�[
s�1
1�qs ]

which is the pgf of Zero-In�ated Poisson-zero truncated Geometric distribution
Hence the mean and variance is given by,

E [SN ] = E (N)E (Xi)

=
(1� �)�

p

and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

= (1� �)�V arXi + (1� �)� (1 + ��) [E (X)]2

= (1� �)�
�
1� p
p2

+
(1 + ��)

P 2

�
= (1� �)�

�
1� p+ (1 + ��)

p2

�
Case (ii) if Xi is Binomial Distribution with parameters (n; p) ; then

GX (s) = [1� p+ ps]n

Therefore
H (s) = F [GX (s)] = �+ (1� �) e�[(1�p+ps)

n�1]

which is the pgf of Zero-In�ated Poisson-Binomial Distribution.
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Hence the mean and variance is given by,

E [SN ] = E (N)E (Xi)

= (1� �)�np

and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

= (1� �)�V arXi + (1� �)� (1 + ��) [E (X)]2

= (1� �)�np f1� p+ (1 + ��)npg

Case (iii) if Xi is Negative Binomial Distribution with parameters (�; p) ; then

GX (s) =

�
p

1� (1� p) s

��
Therefore

H (s) = F [GX (s)] = �+ (1� �) e�[f
p

1�(1�p)sg
��1]

Which is the pgf of Zero-In�ated Poisson-Negative Binomial Distribution.
Hence the mean and variance is given by,

E [SN ] = E (N)E (Xi)

= (1� �)��q
p

and

V ar [SN ] = E [N ]V arXi + [E (Xi)]
2 V arN

= (1� �)��q
p2
+ (1� �)� (1 + ��) �

2q2

p2

= (1� �)�
�
�q

p2
+ (1 + ��)

�2q2

p2

�
Case (iv) if Xi is Logarithmic Series Distribution with parameter (p) ; then

GX (s) =
ln [1� ps]
ln (1� p)

Therefore
H (s) = F [GX (s)] = �+ (1� �) e�[

ln[1�ps]
ln(1�p) �1]

Which is the pgf of Zero-In�ated Poisson-Logarithmic Series Distribution.
Hence the mean and variance is given by,

E [SN ] = E (N)E (Xi)

=
(1� �)�p

� (1� p) log(1� p)
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and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

= (1� �)�V arXi + (1� �)� (1 + ��) [E (X)]2

= (1� �)�
(
� [p2 + p log(1� p)]
[(1� p) log(1� p)]2

+ (1 + ��)

�
p

� (1� p) log(1� p)

�2)

= (1� �)�
�
� [p2 + p log(1� p)] + (1 + ��) p2

(1� p)2 [log(1� p)]2
�

Case (v) if Xi is Poisson Distribution with parameters �; then

GX (s) = e
�[s�1]

Therefore
H (s) = F [GX (s)] = �+ (1� �) e�[e

�(s�1)�1]

which is the pgf of Zero-In�ated Poisson-Poisson Distribution.
Hence the mean and variance is given by,

E [SN ] = E (N)E (Xi)

= (1� �)�2

and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

= (1� �)�2 + (1� �)�3 (1 + ��)
= (1� �)�2 f1 + � (1 + ��)g

b) Compound Zero-In�ated Binomial Distribution

Suppose
SN = X1 +X2 +X3 + � � �+XN

Where X 0
is are independent random variables, with N being a Zero-In�ated Binomial

random variable. Then SN is said to have a Compound Zero-In�ated Binomial Dis-
tribution. Suppose N is Zero-In�ated Binomial with parameter (n; p; �): Then the pgf
of N is given by,

F (s) = �+ (1� �) [1� p+ ps]n

and the pgf of SN is given by,

H (s) = F [GX (s)] = �+ (1� �) [1� p+ pGX (s)]n

Hence the mean and variance is given by,

E [SN ] = E (N)E (Xi)

= (1� �)npE (Xi)
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and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

= (1� �)npV arXi + (1� �)np fnp�+ (1� p)g [E (X)]2

= (1� �)np
�
V arXi + [np�+ (1� p)] [E (X)]2

	
Case (i) if Xi is Poisson Distribution with parameter (�) ; then

GX (s) = e
�(s�1)

Therefore
H (s) = F [GX (s)] = �+ (1� �)

�
1� p+ pe�(s�1)

�n
Which is the pgf of Zero-In�ated Binomial-Poisson Distribution.
The mean and the variance is given by

E [SN ] = E (N)E (Xi)

= (1� �)np�

and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

= (1� �)npV arXi + (1� �)np fnp�+ (1� p)g [E (X)]2

= (1� �)np� f1 + �np�+ � (1� p)g

Case (ii) if Xi is Negative Binomial Distribution with parameters (�; p), then

GX (s) =

�
p

1� (1� p) s

��
Therefore

H (s) = F [GX (s)] = �+ (1� �)
�
1� p+ p

�
p

1� (1� p) s

���n
Which is the pgf of Zero-In�ated Binomial-negative Binomial Distribution
Hence the mean and variance is given by,

E [SN ] = E (N)E (Xi)

= (1� �)n�q

and

V ar [SN ] = E [N ]V arXi + [E (Xi)]
2 V arN

= (1� �)np
(
�
q

p2
+ [np�+ (1� p)]

�
�
q

p

�2)

= (1� �)n
�
�
q

p
+ [np�+ q]

�2q2

p

�
Case (iii) if Xi is Logarithmic Series Distribution with parameter (p) ; then
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GX (s) =
ln [1� ps]
ln (1� p)

Therefore

H (s) = F [GX (s)] = �+ (1� �)
�
1� p+ p ln [1� ps]

ln (1� p)

�n
Which is the pgf of Zero-In�ated Binomial-Logarithmic Series Distribution.
Hence the mean and variance is given by,

E [SN ] = E (N)E (Xi)

=
(1� �)np2

� (1� p) log(1� p)

and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

= (1� �)npV arXi + (1� �)np fnp�+ (1� p)g [E (X)]2

= (1� �)np

8<: �
h

p2+p log(1�p)
(1�p)2[log(1�p)]2

i
+ [np�+ (1� p)]

h
p

�(1�p) log(1�p)

i2
9=;

= � (1� �)np2
�
log(1� p)� np2�+ p2

(1� p)2 [log(1� p)]2
�

Case (iv) if Xi is Binomial Distribution with parameters (n; p) ; then

GX (s) = [1� p+ ps]n

Therefore

H (s) = F [GX (s)] = �+ (1� �) [1� p+ p (1� p+ ps)n]n

Which is the pgf of Zero-In�ated Binomial-Binomial Distribution.
Hence the mean and variance is given by,

E [SN ] = (1� �)n2p2

and
V ar [SN ] = (1� �)n2p2 fq + np (np�+ q)g

c) Compound Zero-In�ated Negative Binomial Distribution

Suppose
SN = X1 +X2 +X3 + � � �+XN

Where X 0
is are independent random variables, with N being a Zero-In�ated Nega-

tive Binomial random variable. Then SN is said to have a Compound Zero-In�ated
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Negative Binomial Distribution. Suppose N is Zero-In�ated Negative Binomial with
parameter (�; p; �): Then the pgf of N is given by,

F (s) = �+ (1� �)
�

p

1� (1� p) s

��
and the pgf of SN is given by,

H (s) = F [GX (s)] = �+ (1� �)
�

p

1� (1� p)GX (s)

��
Hence the mean and variance is given by,

E [SN ] = E (N)E (Xi)

= (1� �)�(1� p)
p

E (Xi)

and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

= (1� �)�(1� p)
p

V arXi + (1� �)
� (1� p)
p2

[� (1� p) �+ 1] [E (X)]2

= (1� �)�(1� p)
p

�
V arXi +

1

p
[� (1� p) �+ 1] [E (X)]2

�
Case (i) if Xi is Logarithmic Series Distribution with parameter (p) ; then

GX (s) =
ln [1� ps]
ln (1� p)

Therefore

H (s) = F [GX (s)] = �+ (1� �)
(

p

1� (1� p) ln[1�ps]
ln(1�p)

)�
Which is the pgf of Zero-In�ated Negative Binomial-Logarithmic Series Distribution.
Hence the mean and variance is given by,

E [SN ] = E (N)E (Xi)

=
(1� �)�
� log(1� p)

and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

= (1� �)�(1� p)
p

V arXi + (1� �)
� (1� p)
p2

[� (1� p) �+ 1] [E (X)]2

= � (1� �)�
�
p+ log(1� p)� [� (1� p) �+ 1]

(1� p) [log(1� p)]2
�
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Case (ii) if Xi is Poisson Distribution with parameter �; then

GX (s) = e
�(s�1)

Therefore

H (s) = F [GX (s)] = �+ (1� �)
�

p

1� (1� p) e�(s�1)

��
Which is the pgf of Zero-In�ated Negative Binomial-Poisson Distribution.
Hence the mean and variance is given by,

E [SN ] = E (N)E (Xi)

= (1� �)��(1� p)
p

and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

= (1� �)�(1� p)
p

V arXi + (1� �)
� (1� p)
p2

[� (1� p) �+ 1] [E (X)]2

= (1� �)�(1� p)�
p

�
1 +

�

p
[� (1� p) �+ 1]

�
Case (iii) if Xi is Binomial Distribution with parameters (n; p) ; then

GX (s) = [1� p+ ps]n

Therefore

H (s) = F [GX (s)] = �+ (1� �)
�

p

1� (1� p) [1� p+ ps]n
��

Which is the pgf of Zero-In�ated Negative Binomial-Binomial Distribution.
Hence the mean and variance is given by,

E [SN ] = E (N)E (Xi)

= (1� �)�np

and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

= (1� �)�(1� p)
p

V arXi + (1� �)
� (1� p)
p2

[� (1� p) �+ 1] [E (X)]2

= (1� �)�n (1� p) fq + �n� (1� p) + ng

Case (iv) if Xi is Negative Binomial Distribution with parameters (�; p), then

GX (s) =

�
p

1� (1� p) s

��
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Therefore

H (s) = F [GX (s)] = �+ (1� �)

8<: p

1� (1� p)
h

p
1�(1�p)s

i�
9=;
�

Which is the pgf of Zero-In�ated Negative binomial-Negative Binomial Distribution.
Hence the mean and variance is given by,

E [SN ] = E (N)E (Xi)

= (1� �)�2 (1� p)
2

p2

and

V ar [SN ] = (1� �)�
(1� p)
p

�
V arXi +

1

p
[� (1� p) �+ 1] [E (X)]2

�
= (1� �)�(1� p)

p

�
�q

p2
+
�3q2

p3
�� �

3q2

p2
�+

�2q2

p3

�
= (1� �)�(1� p)

p3

�
�q
�
1� �2q�

�
+
�2q2

p
(��+ 1)

�
d) Compound Zero-Modi�ed Logarithmic Series Distribution

Suppose
SN = X1 +X2 +X3 + � � �+XN

Where X 0
is are independent random variables, with N being a Zero-Modi�ed Loga-

rithmic Series random variable. Then SN is said to have a Compound Zero-Modi�ed
Logarithmic Series Distribution. Suppose N is Zero-Modi�ed Logarithmic Series Dis-
tribution with parameter �:Then the pgf of N is given by,

F (s) = �+ (1� �) ln [1� ps]
ln (1� p)

and the pgf of SN is given by,

H (s) = F [GX (s)] = �+ (1� �)
ln f1� pGX (s)g

ln (1� p)

Hence the mean and variance is given by,

E [SN ] = E (N)E (Xi)

=
� (1� �) p

(1� p) log(1� p)E (Xi)
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and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

=
� (1� �) p

(1� p) log(1� p)V arXi � (1� �)
�
p log(1� p) + p2 (1 + �)
[(1� p) log(1� p)]2

�
[E (X)]2

=
� (1� �) p

(1� p) log(1� p)

�
V arXi +

log(1� p) + p (1 + �)
(1� p) log(1� p) [E (X)]2

�
Case (i) if Xi is Poisson Distribution with parameter �; then

GX (s) = e
�(s�1)

Therefore

H (s) = F [GX (s)] = �+ (1� �)
ln
�
1� pe�(s�1)

	
ln (1� p)

Which is the pgf of Zero-Modi�ed Logarithmic Series-Poisson Distribution.
Hence the mean and variance is given by,

E [SN ] = E (N)E (Xi)

=
� (1� �) p�

(1� p) log(1� p)

and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

=
� (1� �) p

(1� p) log(1� p)V arXi � (1� �)
�
p log(1� p) + p2 (1 + �)
[(1� p) log(1� p)]2

�
[E (X)]2

=
� (1� �) p�

(1� p) log(1� p)

�
1 + �

log(1� p) + p (1 + �)
(1� p) log(1� p)

�
Case (ii) if Xi is Binomial Distribution with parameters (n; p) ; then

GX (s) = [1� p+ ps]n

Therefore

H (s) = F [GX (s)] = �+ (1� �)
ln f1� p [1� p+ ps]ng

ln (1� p)
Which is the pgf of Zero-Modi�ed Logarithmic Series-Binomial Distribution
.Hence the mean and variance is given by,

E [SN ] = E (N)E (Xi)

=
� (1� �)np2

(1� p) log(1� p)
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and

V ar [SN ] = E [N ]V arXi + [E (X)]
2 V arN

=
� (1� �) p

(1� p) log(1� p)V arXi � (1� �)
�
p log(1� p) + p2 (1 + �)
[(1� p) log(1� p)]2

�
[E (X)]2

=
� (1� �)np2

(1� p) log(1� p)

�
q +

np log(1� p) + np2 (1 + �)
(1� p) log(1� p)

�
Case (iii) if Xi is Negative Binomial Distribution with parameters (�; p), then

GX (s) =

�
p

1� (1� p) s

��
Therefore

H (s) = F [GX (s)] = �+ (1� �)
ln
n
1� p

h
p

1�(1�p)s

i�o
ln (1� p)

Which is the pgf of Zero-Modi�ed Logarithmic Series-Negative Binomial Distribution.
Hence the mean and variance is given by,

E [SN ] = E (N)E (Xi)

=
� (1� �)�
log(1� p)

and

V ar [SN ] = E [N ]V arXi + [E (Xi)]
2 V arN

=
� (1� �)
log(1� p)

�

p
� (1� �) �

2

p

�
log(1� p) + p (1 + �)

[log(1� p)]2
�

=
� (1� �)
log(1� p)

�

p

�
1 + �

log(1� p) + p (1 + �)
log(1� p)

�
Case (iv) if Xi is Logarithmic Series Distribution with parameter (p) ; then

GX (s) =
ln [1� ps]
ln (1� p)

Therefore

H (s) = F [GX (s)] = �+ (1� �)
ln
n
1� p ln[1�ps]

ln(1�p)

o
ln (1� p)

Which is the pgf of Zero-Modi�ed Logarithmic Series-Logarithmic Series Distribution.
Hence the mean and variance is given by,

E [SN ] = E (N)E (Xi)

=
(1� �) p2

[(1� p) log(1� p)]2
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and

V ar [SN ] =
� (1� �) p

(1� p) log(1� p)

�
V arXi +

log(1� p) + p (1 + �)
(1� p) log(1� p) [E (X)]2

�
=

� (1� �) p
[(1� p) log(1� p)]2

�
� [p2 + p log(1� p)]
(1� p) log(1� p) +

p2 (log(1� p) + p (1 + �))
[(1� p) log(1� p)]2

�
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Chapter 8

Applications of In�ated Power
Series Distributions to Migration

8.1 Introduction

In certain applications involving discrete data, it is common to encounter many zeroes
than predicted by models based on standard assumptions. The problem of a high
proportion of observations at some of the support has received great attention of the
practitioners and the researchers in data analysis and modeling as applied in various
�elds that includes; econometrics, demography, medical, public health, epidemiology,
biology, demography and in many other �elds. In this chapter, we review zero-in�ated
and one-in�ated power series distribution models as applied in describing migration
at various levels.

8.2 An In�ated Power Series Distribution for Mod-
elling Rural Out-Migration at Household Level

8.2.1 Introduction

Analysis of migration data at various level has momentous implication for regional
planning as well as for formulation of housing policies (Rossi, 1955; Pryor,1975). A
number of attempts has been made during the past few decades to study the migra-
tion phenomena at macro-level (Friedlander and Roshier, 1966; Lee,1966; Greenwoood,
1971; Muller, 1967). They have generally adopted a macro-level approach by operating
on highly aggregate data for countries, states�districts and nations as a whole. These
studies might not provide the adequate explanation for the tremendous regional and
local heterogeneity planning, especially in developing counties. Recently, micro-level
research on both residential mobility and migration has played a decisive role in de-
velopment of the theory of migration (Dejong and Gardner, 1981; Speare etal., 1975).
The need for collection and analysis of migration data at the household level is based
on the fact that the household is the basic socio-economic unit for integrated rural
development. The number of migrants from a household has important bearing on the
economic and cultural characteristics of the household. Household with at least one
migrant are more prone to have new ideas than household having no migrants (Yadava
and Sing, 1991).
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Generally in rural area, the occurrence of migration from household can be classi-
�ed as (i) Adult males (>15 years) who migrate singly to a place, leaving their wives
and children in their village homes, (ii) Individuals who migrate with their wives and
children, and (iii) Males who migrate with their wives, children and some members of
their households, as identi�ed by Yadava and Singh (1991). The impact of these three
types of migrants on the sociocultural and economic characteristics of the household
are usually di¤erent. It is obvious that migrations of many members of a household
especially females is more likely to a¤ect the economic status and the sociocultural
outlook of the household. This consideration underscores the importance of concen-
trating attention on the pattern of distribution of total number of migrants from a
household.
A good number of studies have been done and several models have been proposed

to study the pattern of rural male (� 15) out migration (Hossain, 2000; Iwunor, 1995;
Singh, 1992; Sharma, 1987; 1985; Yadava, Tripathi and singh, 1994). However, this
models were not appropriate to �t the distribution of total number of migrants due to
the following limitations, Firstly, the prior distribution of males aged �fteen years and
over is not known. Secondly, the model do not take into account those households from
where the wives, children and other members of the household migrate i.e. migration
in clusters and thirdly, the distribution of living children to a couple is not known.
Taking these limitations into account. Consequently, several attempts have been made
to describe the distribution of households according to the total number of migrants
under di¤erent assumptions (Yadava and Singh, 1991;Janardan, 1973).
Yadava and Singh (1991) proposed a model that describes the variation in the total

number of migrants from a household. Their model is based on the following assump-
tions: (i) Migration from a household occurs in clusters (groups), (ii) Migration from
a household is a rare event, (iii) The risks of a cluster of migrants vary from household
to household. They assumed that the number of clusters migrating from a household
follows the Poisson distribution, while the number of migrants in a cluster follows the
one in�ated zero truncated geometric distribution.
Inuwor (2004) studied a model that takes into account zero observation. He as-

sumed the Poisson distribution for the number of clusters migrating, and that the
number of migrants in a cluster follows each of the members of the class of one-In�ated
power series distributions namely: the binomial, the Poisson, the negative binomial,
the geometric, the log-series, and the mis-recorded Poisson. At least one person is
expected to migrate in household is exposed to the risk of migration thus, the use of
the one-in�ated distributions. This is justi�ed by the need to reduce the risk of under-
estimation of the probability that one person migrates in households are exposed to
the risk of migration. Hence the use of zero-truncated distributions as proposed by
Yadava and Singh (1991) is not justi�able since the zeros are real zeros are real and
observable as there is the possibility that nobody migrates in a cluster in a household.
A review on estimation of parameters of the In�ated Geometric Distribution for

modelling rural out-migration according to the number migrants and a comparison of
Poisson-one-In�ated power series distribution for modelling rural out-migration at the
household level as done by Inuwor (2004) will be reviewed. In each case the description
of the model, the method of estimating the parameters, application and conclusion will
be derived.
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8.2.2 Model for the Distribution of Households According to
the Number of Migrants

The distribution have been proposed on the basis of the following assumptions:

(i) At any point in time, at least one member of each household has a chance of � of
migrating out and a chance of 1� � of not migrating.

(ii) The pattern of migration from each household follows the geometric distribution
with parameter p representing the probability of a single individual migrating
from a household.

Let X represent the number of male rural out-migrant from a household, then X
follows the in�ated geometric distribution with probability density function:

P (X = x) =

8<:
1� �+ �p for x = 0

�qxp for x = 1; 2; 3; : : :

where p+ q = 1.
The probability of x members migrating from a household is more than the prob-

ability of (x+ 1) members migrating from a household (for x = 1; 2; 3; : : :), Thus X
is a decreasing function. The use of this model is further justi�ed by the fact that
migration is selective of age and other socio-demographic characteristics. Adult males
aged �fteen years and over tend to migrate singly. The chance that the entire members
of a household migrate decreases with increase in the household size.

Estimation of Parameters

The proposed In�ated geometric distribution involves two parameters � and p to be
estimated from the observed distribution of migrants from the households. The two
parameters would be estimated using by the method based on Moments, Maximum
Likelihood Function and the method of the mean-zero-frequency, i.e., Let x1; x2; :::; xn
denote a random sample of size n from the population, also let n0 denote the number
of zero observations and n the total number of observations.

Estimation of the Parameters Using Maximum Likelihood Function From
chapter �ve subsection 5.4.5, the maximum likelihood estimators of � and p when they
exist are given by

�̂ =
n0 � n+ n�

n�

�̂ = 1� 1

�x

as given in (5.43) and (5.45) respectively. Where �x is the mean of positive obser-
vations.
Reparameterize by writing �̂ = 1 � p̂, �̂ = 1 � � to obtain the estimates of � and

p as

� =
n0 � n
n (p� 1) (8.1)
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and
p =

1

�x
(8.2)

Solving for of � and p by substituting the values of �x; n and n0 in (8.1) and (8.2) ; for
the three types of villages, i.e.,
Semi urban n0 = 1042; n = 1171; �x = 0:160 55
Remote n0 = 872; n = 1135; �x = 0:345 37
growth centre n0 = 978; n = 1208; �x = 0:290 56
to obtain the maximum likelihood estimators. The estimators obtained is as given

in the table below:

Table 8.1: Estimators based on method of Maximum Likelihood Function
Parameters Semi-urban Remote Growth Centre

p̂ 0:686 17 0:670 92 0:655 27
�̂ 0:351 03 0:704 14 0:552 31

Themean-zero-frequency method of estimation The mean-zero-frequency method
of estimation is based on the zero relative frequency of the data set which is equated
to the probability of zero under the assumed distribution (see Kemp and Kemp, 1988).
So, the resulting system of equations is

1� �+ �p = f0 (8.3)

�
1� p
p

= �x (8.4)

Where f0 = n0
n
is the proportion of zero observations in the sample

�x is the observed mean of the distribution in the sample
Solving equation (8.3) and (8.4) simultaneously to obtain p and � we get,

�̂ =
n� n0
n (1� p) (8.5)

and
p̂ =

�

�x
(1� p) (**)

but � = n�n0
n(1�p) therefore equation (��) becomes

p̂ =
n� n0
n�x

(8.6)

Solving for of � and p by substituting the values of �x; n and n0 in (8.5) and
(8.6) ;for the three types of villages, i.e.,
Semi urban n0 = 1042; n = 1171; �x = 0:160 55
Remote n0 = 872; n = 1135; �x = 0:345 37
growth centre n0 = 978; n = 1208; �x = 0:290 56
to obtain the estimators. The estimators obtained by the method of mean-zero-

frequency is as given in the table below:

Table 8.2: Estimators based on mean-zero-frequency method
Parameters Semi-urban Remote Growth Centre

p̂ 0:686 17 0:670 92 0:655 27
�̂ 0:351 03 0:704 14 0:552 31

Remark : The use of the mean-zero-frequency method is the same as the maxi-
mum likelihood estimates for Zero-in�ated Geometric distribution.
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Estimation of the Parameters Based on the method of Moments The mo-
ment estimators of �̂ and �̂ as obtained in chapter �ve subsection 5.4.5; equation (5.38)
and (5.39) respectively are given as

�̂ =

Pn
i=1 x

2
i � �xn

�xn+
Pn

i=1 x
2
i

and

�̂ = 1� �x f�xn+
Pn

i=1 x
2
i g

f
Pn

i=1 x
2
i � �xng

+ �x

Reparameterize by writing �̂ = 1 � p̂, 1 � �̂ = �̂ to obtain the moment estimators of
� and p as

p̂ = 1�
Pn

i=1 x
2
i � �xn

�xn+
Pn

i=1 x
2
i

(8.7)

and

�̂ =
�x f�xn+

Pn
i=1 x

2
i g

f
Pn

i=1 x
2
i � �xng

� �x (8.8)

Solving for of � and p by substituting the values of �x; n and
Pn

i=1 x
2
i in (8:7) and

(8:8) ;for the three types of villages, i.e.,
Semi urban

Pn
i=1 x

2
i = 392; n = 1171; �x = 0:160 55

Remote
Pn

i=1 x
2
i = 770; n = 1135; �x = 0:345 37

growth centre
Pn

i=1 x
2
i = 737; n = 1208; �x = 0:290 56

to obtain the moment estimators as given in the table below:

Table 8.3: Estimators based on method of moments
Parameters Semi-urban Remote Growth Centre

p̂ 0:648 28 0:674 70 0:645 22
�̂ 0:295 91 0:716 33 0:528 43

Application

Using the estimates obtained in table 8.2 and table 8.3 are used to �t the in�ated
geometric distribution to the same data used by Sharma (1985). The observed number
of households according to the number of male migrants aged �fteen and over from
a household in the three villages types, the expected number and �2 statistics are
computed to test for the goodness of �t. The results for the parameters obtained,
based on the method of the mean-zero-frequency and maximum likelihood function
are presented in table 8.4. The corresponding results obtained by method of moments
are displayed in table 8.5.
Table 8.4: The distribution of the observed and expected number of households ac-

cording to the number of rural out-migrants per household in the three types of villages.
(Based on the method of the mean-zero-frequency and maximum likelihood function)
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Number of migrants Number of Households
Semi-urban Remote Growth Centre
Obs. Exp. Obs. Exp. Obs. Exp.

0 1042 1042 872 872 978 978
1 95 88:52 176 176:45 154 150:71
2 19 27:78 59 58:07 47 51:96
3 10 18 19:11 18 17:91
4 2 6 9
5 2 12:70 4 1
6 0 0 9:37 0 9:42
7 1 0 0
8+ 0 0 1

Total 1171 1171 1135 1135 1135 1135
�̂ 0:351 03 0:704 14 0:552 31
p̂ 0:686 17 0:670 92 0:655 27
�2 3:6659 0:1229 0:8108
df 1 2 2

Table 8.5: The distribution of the observed and expected number of households
according to the number of rural out-migrants per household in the three types of

villages. (Based on the method of moments)
Number of migrants Number of Households

Semi-urban Remote Growth Centre
Obs. Exp. Obs. Exp. Obs. Exp.

0 1042 1049:13 872 870:52 978 981:53
1 95 79:04 176 178:44 154 146:12
2 19 27:83 59 58:05 47 51:84
3 10 9:80 18 18:88 18 18:39
4 2 6 9
5 2 4 1
6 0 5:20 0 9:11 0 10:12
7 1 0 0
8+ 0 0 1

Total 1171 1171 1135 1135 1135 1135
�̂ 0:295 91 0:716 33 0:528 43
p̂ 0:648 28 0:674 70 0:645 22
�2 6:0845 0:1794 0:9743
df 2 2 2

Table 8.4 and 8.5 shows that the tendency to migrate by members of a household
is higher(0.704 14 and 0.716 33 respectively) in remote rural areas, moderate(0.55231
and 0.52843 respectively) for residents in growth centres and relatively low as 0.351 03
and 0.295 91 respectively for residents in semi-urban areas. In table 8.4 the chance of
individual members of households actually migrating is higher for residents in the semi-
urban areas who are already adapted to city life and must have established links in the
cities. The insigni�cant values of the �2 at the 5% level attests to the goodness of the �t
for values obtained in table 8.4 and 8.5 for Remote and Growth centres. But for table
8.5 Semi-urban the �2 is signi�cant at the 5% level this may be due to the bias in the
estimators. That is, they sometimes fail to take into account all relevant information
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in the sample. However, the goodness of �t obtained using the proposed method of
estimation (the method of the mean-zero-frequency and maximum likelihood function)
are not too di¤erent from those obtained by the method of moments except for the
semi-urban, as evidenced from the �2 values.

Conclusion

The �ndings show that estimates of the parameters of the in�ated geometric distribu-
tion for rural out-migration obtained using the mean-zero frequency method (which is
the same as the maximum likelihood estimates) are di¤erent from those obtained using
the method of moments. The goodness of the �t of the model is almost the same for
the three methods except for the method of Moments that is biased and sometimes fail
to take into account all relevant information in the sample. The maximum likelihood
method however provides more e¢ cient results. It has a higher probability of being
close to the quantities to be estimated and are more often unbiased.

8.2.3 Model for the Distribution of Household According to
the Total Number of Migrants

The Distribution to describe the variation in the households according to the total
number of out migrants is derived under the following assumptions:

(i) Migration from a household occurs in clusters (groups),

(ii) Migration from a household is a rare event,

(iii) The risks of a cluster of migrants vary from household to household.

Let Zi i = 1; 2; : : : ; N denote the number of migrants from ith cluster in a household
and let N denote the number of clusters of potential migrants in a household. Then,

X = Z1 + Z2 + Z3 + � � �+ ZN
is the total number of migrants from a household.
De�ne

g (s) = E
�
SZi
�
=

1X
z=0

PZi (z) s
z

as the probability generating function(pgf) of Zi where PZi (z) is the probability mass
function (pmf) of Zi:
Also,

h (s) = E
�
SN
�
=

1X
z=0

PN (n) s
n

is the pgf of N: Where PN (n) is the pmf of N:
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Then, the pgf of X is given as (Feller, 1968).

GX (s) = E
�
SX
�

= EE
�
SZ1+Z2+Z3+���+ZN

�
= E

NY
i=1

E
�
SZi
�
; because of independence

= E
�
E
�
SZi
��N

; since Z 0is are identical

= E [g (s)]N

Therefore
GX (s) = h (g (s)) (8.9)

from which the pmf of X can be derived. Speci�cally, PX (x) is the coe¢ cient of the
sx in the expansion of GX (s) as a power series in s:
The mean and the variance of the number of migrants in a household are respec-

tively given as

E [X] = G0X (1)

V ar [X] = G00X (1) +G
0
X (1)� [G0X (1)]

2

where G0X (1) and G
00
X (1) are respectively the �rst and second derivatives of GX (s) at

s = 1:
Assuming that N follows the Poisson distribution with pmf given as

PN (n) =
e���n

n!
; n = 0; 1; 2; : : : ;1

The pgf of N is given as

h (s) =
1X
z=0

PN (n) s
n =

1X
z=0

e�� (�s)n

n!

= e��
1X
z=0

(�s)n

n!
but e�s =

1X
z=0

(�s)n

n!

= e�(s�1) (8.10)

Where � is the mean number of clusters of migrants per household/the average number
of clusters per household.
Using equation (8.9) ; the pmf of X are derived assuming that Z follows:

(i) The one-in�ated Poisson distribution.

(ii) The one-in�ated log-series distribution.

(iii) The one-in�ated geometric distribution.

(iv) The one-in�ated negative binomial distribution.

(v) The mis-recorded Poisson distribution.

(vi) The one-in�ated binomial distribution.

The resulting mixed distribution are presented below.
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The Poisson-one-In�ated Poisson Distribution

Pr (Z = z) =

8>>>><>>>>:
!e�� z = 0

(1� !) + !�e�� z = 1

!�ze��

z!
z = 2; 3; 4; : : : ;1

where � is the average number of persons migrating from a cluster.
The pgf of Zi is given as

g (s) =
1X
z=0

pzs
z

= p0 + p1s+

1X
z=2

pzs
z

= !e�� +
�
(1� !) + !�e��

�
s+ !

1X
z=2

(�s)z e��

z!

= !e�� +
�
(1� !) + !�e��

�
s+ !e��

�
e�s � �s� 1

	
= !e�� + (1� !) s+ !�e��s+ !e��(1�s) � !�e��s� !e��

= (1� !) s+ !e�(s�1) (8.11)

Therefore substituting equations (8.10) and (8.11) into (8.9) gives the pgf of X as

GX (s) = exp
�
� (1� !) s+ �!e�(s�1) � �

�
(8.12)

The �rst and the second derivatives of GX (s) w.r.t s is given by

G0X (s) = � (1� !) + �!�e�(s�1) exp
�
� (1� !) s+ �!e�(s�1) � �

�
G00X (s) = �!�

2e�(s�1) exp
�
� (1� !) s+ �!e�(s�1) � �

�
+
�
� (1� !) + �!�e�(s�1)

�2
exp

�
� (1� !) s+ �!e�(s�1) � �

�
setting s = 1

G0X (1) = � (1� !) + �!� = � [1� ! + !�]
G00X (1) = �!�

2 + [� (1� !) + �!�]2

Therefore the mean and the variance is given by

E (X) = G0X (1) = � [1� ! + �!]

V ar (X) = G00X (1) +G
0
X (1)� [G0X (1)]

2

= �!�2 + [� (1� !) + �!�]2 + � [1� ! + �!]� [� (1� ! + �!)]2

= �!�2 + � [1� ! + �!]
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The probability density function of X is obtained by extracting the coe¢ cients of sx

in (8.12) as follows,

GX (s) = exp
�
� (1� !) s+ �!e�(s�1) � �

�
= e��e�(1�!)se�!e

�(s�1)

= e��e�(1�!)s
1X
i=0

(�!)i

i!
e�i(s�1)

= e��e�(1�!)s
1X
i=0

�
�!e��

�i
i!

e�is

= e��e�(1�!)s
1X
i=0

(�
�!e��

�i
i!

1X
r=0

(�is)r

r!

)

= e��e�(1�!)s
1X
i=0

1X
r=0

�
�!e��

�i
i!

(�i)r sr

r!

= e��e�(1�!)s
1X
r=0

( 1X
i=0

�
�!e��

�i
i!

(�i)r

r!

)
sr

GX (s) = e
��

1X
j=0

[� (1� !) s]j

j!

" 1X
r=0

( 1X
i=0

�
�!e��

�i
i!

(�i)r

r!

)
sr

#
(8.13)

let

� (r) =
1X
i=0

�
�!e��

�i
i!

(�i)r

r!

Therefore (8.13) becomes

GX (s) = e
��

( 1X
j=0

[� (1� !) s]j

j!

)( 1X
r=0

� (r) sr

)

= e��

(
1 + � (1� !) s+ [� (1� !)]

2 s2

2!
+ � � �

)�
� (0) + � (1) s+ � (2) s2 + � � �

	
= e��

(
1 � � (0) + [1 � � (1) + � (1� !) � � (0)] s

+
h
1 � � (2) + � (1� !) � � (1) + [�(1�!)]2

2!
� � (0)

i
s2 + � � �

)

Hence,
p0 = e

�� � � (0) = e��

p1 = e
�� f1 � � (1) + � (1� !) � � (0)g

p2 = e
��

(
1 � � (2) + � (1� !) � � (1) + [� (1� !)]

2

2!
� � (0)

)
...
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px = e
��

(
1 � � (x) + �(1�!)

1!
� � (x� 1) + [�(1�!)]2

2!
� � (x� 2)

+ � � �+ [�(1�!)]x
x!

� � (0)

)

= e��
xX
r=o

[� (1� !)]r

r!
� (x� r)

= e��
xX
r=o

(
[� (1� !)]r

r!

1X
i=0

�
�!e��

�i
i!

(�i)r

r!

)

Thus the pdf of X is given by

PX (x) = e
��

xX
r=o

(
[� (1� !)]r

r!

1X
i=0

�
�!e��

�i
i!

(�i)r

r!

)
; x = 0; 1; 2; : : : ;1

Alternatively, since
xX
r=o

[� (1� !)]r

r!
=

xX
r=o

[� (1� !)]x�r

(x� r)! (8.14)

We can re-write PX (x) as

PX (x) =

8>><>>:
e��(1�!e

��) x = 0

e��
Px

r=o
[�(1�!)]x�r
(x�r)!

P1
i=o

(�!e��)
i

i!
(�i)r

r!
x = 1; 2; : : : ;1

(8.15)

as given by Iwunor (2004).
The estimating equations for the parameters �; ! and � are

e��̂(1�!̂e
��) = f0 (8.16)

f0

h
�̂ (1� !̂) + �̂!̂�̂e��

i
= f1 (8.17)

�̂
h
(1� !̂) + �̂!̂

i
= �X (8.18)

Where
f0 is the proportion of zero observations
f1 is the proportion of one observations
�X is the observed mean of the Distribution

To estimate for the parameters �; ! and � divide (8.16) and (8.17) by (8.18) to
get,

1� !̂e��

1� !̂ + �̂!̂
=
� ln f0
�X

(8.19)

1� !̂ + !̂�̂e��

1� !̂ + �̂!̂
=

f1
�Xf0

(8.20)

From (8.19) and (8.20) solve for ! and �:
By making ! the subject of the formula in (8.19) we obtain,
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1� !̂e�� = � ln f0
�X

�
1� !̂ + �̂!̂

�
1� !̂e�� = ��̂!̂ ln f0�X

� ln f0�X
+ !̂

ln f0
�X

1 +
ln f0
�X
= !̂

�
e�� � �̂ ln f0�X

+
ln f0
�X

�
!̂ =

1 + ln f0
�X

e�� � �̂ ln f0�X + ln f0
�X

(8.21)

and substitute the value of ! in (8:20) to obtain

1� f1
�Xf0

= !̂

�
1� �̂e�� � f1

�Xf0
+ �̂

f1
�Xf0

�
1� f1

�Xf0
=

1 + ln f0
�X

e�� � �̂ ln f0�X + ln f0
�X

�
1� �̂e�� � f1

�Xf0
+ �̂

f1
�Xf0

�
1� f1

�Xf0
= e��

�
1� f1

�Xf0

�
+ �̂e��

�
1 +

ln f0
�X

�
� �̂

�
ln f0
�X
+

f1
�Xf0

�
(8.22)

Then solve for � in equation (8.22) :
Substitute the value of � in (8.21) to obtain !. Then substitute the value of ! and

� obtained in any of the estimating equations to obtain the value of �̂

Semi urban

The proportion of zero observations f0 = 0:889 84

The proportion of one observations f1 = 8: 112 7� 10�2

The observed mean of the Distribution �X = 0:160 55

Substituting the values of f0 = 0:889 84; f1 = 8: 112 7� 10�2 and �X = 0:160 55 in
equations (8.18) ; (8.21) and (8.22) we obtain

�̂ =
188

1171 (�! � ! + 1) (8.23)

!̂ =
0:273 01

0:726 99�+ e�1:0� � 0:726 99 (8.24)

�

�
1171

188
ln
1042

1171
+
111 245

195 896

�
� �e��

�
1171

188
ln
1042

1171
+ 1

�
� 84 651

195 896
e�� = � 84 651

195 896

�0:159 11�� 0:432 12e�� � 0:273 01�e�� = �0:432 12

�+
0:432 12

0:159 11
e�� +

0:273 01�e��

0:159 11
=
0:432 12

0:159 11
�+ 2: 715 9e�� + 1: 715 9�e�� = 2: 715 9

(8.25)
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Solving for � in (8.25) we obtain � = 1: 652 2
Substitute the value of � obtained in (8.24) to obtain !: That is

!̂ =

�
0:273 01

0:726 99�+ e�1:0� � 0:726 99

�
�=1: 652 2

= 0:410 07

Then substituting the value of ! and � obtained in (8.23) to obtain the value of �

�̂ =

�
188

1171 (�! � ! + 1)

�
�=1: 652 2;!=0:410 07

= 0:126 67

Therefore the solution to the parameters are !̂ = 0:410 07; �̂ = 1: 652 2; �̂ = 0:126 67

Remote

The proportion of zero observations f0 = 0:768 28

The proportion of one observations f1 = 0:155 07

The observed mean of the Distribution �X = 0:345 37

Substituting the values of f0 = 0:768 28; f1 = 0:155 07 and �X = 0:345 37 in the
equation (8.18) ; (8.21) and (8.22) we obtain

�̂ =
392

1135
�
1� !̂ + �̂!̂

� (8.26)

!̂ =
0:236 77

0:763 23�+ e�� � 0:763 23 (8.27)

�

�
1135

392
ln
872

1135
+
12 485

21 364

�
� �e��

�
1135

392
ln
872

1135
+ 1

�
� 8879

21 364
e�� = �0:415 61

�0:178 83�� 0:415 61e�� � 0:236 77�e�� = �0:415 61
0:178 83

0:236 77
�+

0:415 61

0:236 77
e�� + �e�� =

0:415 61

0:236 77
0:755 29�+ 1: 755 3e�� + �e�� = 1: 755 3

(8.28)

Solving for � in (8.28) we obtain � = 0:846 50
Substitute the value of � in (8.27) to obtain !: That is

!̂ =

�
0:236 77

0:763 23�+ e�� � 0:763 23

�
�=0:846 50

= 0:759 47

Then substituting the value of ! and � in (8.26) to obtain the value of �

�̂ =

24 392

1135
�
1� !̂ + �̂!̂

�
35
�=0:846 50;!=0:759 47

= 0:390 95

Therefore the solution to the parameters are !̂ = 0:759 47; �̂ = 0:846 50; �̂ = 0:390 95
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Growth centre

The proportion of zero observations f0 = 0:809 6

The proportion of one observations f1 = 0:127 48

The observed mean of the Distribution �X = 0:290 56

Substituting the values of f0 = 0:809 6; f1 = 0:127 48 and �X = 0:290 56 in the
equation (8.18) ; (8.21) and (8.22) we obtain

�̂ =
351

1208 (�! � ! + 1) (8.29)

!̂ =
0:273 09

0:726 91�+ e�1:0� � 0:726 91 (8.30)

78 623

171 639
=
78 623

171 639
e�� + �e��

�
1208

351
ln
489

604
+ 1

�
� �

�
1208

351
ln
489

604
+
93 016

171 639

�
0:458 07 = 0:184 98�+ 0:458 07e�� + 0:273 09�e��

1: 677 4 = 0:677 36�+ 1: 677 4e�� + �e�� (8.31)

Solving for � in (8.31) we obtain � = 1: 180 9
Substitute the value of � in (8:30) to obtain !: That is

!̂ =

�
0:273 09

0:726 91�+ e�1:0� � 0:726 91

�
�=1: 180 9

= 0:622 78

Then substituting the value of ! and � in (8.29) to obtain the value of �

�̂ =

�
351

1208 (�! � ! + 1)

�
�=1: 180 9;!=0:622 78

= 0:261 14

Therefore the solution to the parameters are !̂ = 0:622 78; �̂ = 1: 180 9; �̂ = 0:261 14

The Poisson-one-In�ated Log-series Distribution

Pr (Z = z) =

8<:
(1� !) + !�p z = 1

!�pz

z
z = 2; 3; 4; : : : ;1

Where p = 1 � q is the probability of a person migrating from a cluster. � =
� [ln (1� p)]�1
The pgf of Zi is given as

g (s) =

1X
z=0

pzs
z =

1X
z=1

pzs
z

= p1s+

1X
z=2

pzs
z

= [(1� !) + !�p] s+ !�
1X
z=2

(ps)z

z

= [(1� !) + !�p] s+ !� f� ln (1� ps)� psg
= (1� !) s+ !�ps� !� ln (1� ps)� !�ps
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Therefore g (s) is given by

g(s) = (1� !) s� !� ln (1� ps) (8.32)

Therefore substituting equations (8.10) and (8.32) into (8.9) gives the pgf of X as

GX (s) = exp [� (1� !) s� !�� ln (1� ps)� �] (8.33)

The �rst and the second derivatives of GX (s) w.r.t s is given by

G0X (s) = � (1� !) +
!��p

1� ps exp [� (1� !) s� !�� ln (1� ps)� �]

G00X (s) =

�
� (1� !) + !��p

1� ps

�2
exp [� (1� !) s� !�� ln (1� ps)� �]

+
!��p2

(1� ps)2
exp [� (1� !) s� !�� ln (1� ps)� �]

setting s = 1

G0X (1) = � (1� !) + !��pq�1

G00X (1) =
�
� (1� !) + !��pq�1

�2 � !��p2q�2
Thus the mean and variance is given by

E (X) = G0X (1) = � (1� !) + !��pq�1

V ar (X) = G00X (1) +G
0
X (1)� [G0X (1)]

2

=
�
� (1� !) + !��pq�1

�2
+ !��p2q�2 + � (1� !)

+ !��pq�1 �
�
� (1� !) + !��pq�1

�2
= � (1� !) + !��pq�1 + !��p2q�2

The probability density function of X is obtained by extracting the coe¢ cients of sx

in (8.33) as follows,

GX (s) = exp [� (1� !) s� !�� ln (1� ps)� �]
= e��e�(1�!)se�!�� ln(1�ps)

= e��e�(1�!)s (1� ps)�!��

= e��
1X
r=0

�
[� (1� !)]r

r!

�
� + r � 1

r

�
pr
�
sr

= e��

(
1 + [� (1� !) � �p] s+

"
[� (1� !)]2

2!

�
� + 1

2

�
p2

#
s2 + � � �

)

Hence,
p0 = e

�� � 1
p1 = e

�� f1 + [� (1� !) � �p]g
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p2 = e
��

(
1 + � (1� !) � �p+ [� (1� !)]

2

2!

�
� + 1

2

�
p2

)
...

px = e
��

(
1 + � (1� !) �p+ [� (1� !)]

2

2!

�
� + 1

2

�
p2 + � � �+ [� (1� !)]

x

x!

�
� + x� 1

x

�
px

)

= e��
xX
r=o

[� (1� !)]r

r!

�
� + r � 1

r

�
pr

= e��
xX
r=o

[� (1� !)]r

r!

�
� + r � 1

r

�
pr

Thus the pdf of X is given by

PX (x) = e
��

xX
r=o

[� (1� !)]r

r!

�
� + r � 1

r

�
pr; x = 1; 2; : : : ;1

Alternatively, from equation (8.14) we can re-write PX (x) as

PX (x) =

8><>:
e�� x = 0

e��
Px

r=o

�
�+r�1
r

�
pr [�(1�!)]

x�r

(x�r)! x = 1; 2; : : : ;1
(8.34)

as given by Iwunor (2004) :
where � = �!�
The estimating equations for the parameters �; !; and p are

e��̂ = f0 (8.35)

f0

h
�̂ (1� !̂) + !̂�̂p̂�̂

i
= f1 (8.36)

�̂ (1� !̂) + !̂�̂p̂�̂q̂�1 = �X (8.37)

To estimate for the parameters �; ! and � we �nd the value of �̂

�̂ = � ln f0
and substitute in (8.36) and (8.37) to obtain

1� !̂ + !̂p̂�̂ = f1
(� ln f0) f0

(8.38)

(1� p)� !̂ (1� p) + !̂p̂�̂+
�X

� ln f0
p =

�X

� ln f0
(8.39)

From (8.38) and (8.39) solve for ! and p:
By making ! the subject of the formula in (8.38) we obtain,
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1� !̂ + !̂p̂�̂ = f1
(� ln f0) f0

!̂ =
f1

(� ln f0) f0 (p̂�̂� 1)
� 1

(p̂�̂� 1) (8.40)

and substitute the value of ! in (8.39) to obtain

�X

� ln f0
� (1� p)�

�X

� ln f0
p = !̂ (� (1� p) + p̂�̂)

�X

� ln f0
� (1� p)�

�X

� ln f0
p =

�
f1

(� ln f0) f0 (p̂�̂� 1)
� 1

(p̂�̂� 1)

�
fp̂�̂� (1� p)g

�X

� ln f0
=

p̂�f1
(� ln f0) f0 (p̂�̂� 1)

� p̂�

(p̂�̂� 1) �
f1 (1� p)

(� ln f0) f0 (p̂�̂� 1)

+
1 (1� p)
(p̂�̂� 1) + (1� p) +

�X

� ln f0
p (8.41)

Then solve for p:
Substitute the value of p in (8.40) to obtain !.

Semi urban

The proportion of zero observations f0 = 0:889 84

The proportion of one observations f1 = 8: 112 7� 10�2

The observed mean of the Distribution �X = 0:160 55

Substituting the values of f0 = 0:889 84; f1 = 8: 112 7 � 10�2; � = 1
� ln(1�p) and

�X = 0:160 55 in equations (8.35) ; (8.40) and (8.41) we obtain

�̂ = � ln 0:889 84 = 0:116 72

!̂ = � 0:218 87

� p
ln(1�p) � 1

(8.42)

1: 375 5 = 0:375 53p+ 0:218 87
1� p

� p
ln(1�p) � 1

+ 0:218 87
p

(ln (1� p))
�
� p
ln(1�p) � 1

� + 1
0: 375 5 = 0:375 53p+ 0:218 87

1� p
� p
ln(1�p) � 1

+ 0:218 87
p

(ln (1� p))
�
� p
ln(1�p) � 1

�
(8.43)

Solving for p̂ in (8.43) we obtain p̂ = 0:554 07
Substitute the value of p̂ in (8.42) to obtain !: That is

!̂ =

"
� 0:218 87

� p
ln(1�p) � 1

#
p=0:554 07

= 0:697 21

Therefore the solution to the parameters are !̂ = 0:697 21; p̂ = 0:554 07; �̂ =
0:116 72
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Remote

The proportion of zero observations f0 = 0:768 28

The proportion of one observations f1 = 0:155 07

The observed mean of the Distribution �X = 0:345 37

Substituting the values of f0 = 0:768 28; f1 = 0:155 07 � = 1
� ln(1�p) and

�X =

0:345 37 in equations (8.35) ; (8.40) and (8.41) we obtain

�̂ = � ln 0:768 28 = 0:263 60

!̂ = � 0:234 31

� p
ln(1�p) � 1

(8.44)

1: 310 2 = 0:310 23p+ 0:234 31
1� p

� p
ln(1�p) � 1

+ 0:234 31
p

(ln (1� p))
�
� p
ln(1�p) � 1

� + 1
0: 310 2 = 0:310 23p+ 0:234 31

1� p
� p
ln(1�p) � 1

+ 0:234 31
p

(ln (1� p))
�
� p
ln(1�p) � 1

�
(8.45)

Solving for p̂ in (8.45) we obtain p = 0:343 29
Substitute the value of p̂ in (8.44) to obtain !: That is

!̂ =

"
� 0:234 31

� p
ln(1�p) � 1

#
= 1: 275 9

Therefore the solution to the parameters are !̂ = 1: 275 9; p̂ = 0:343 29; �̂ =
0:263 60

Growth centre

The proportion of zero observations f0 = 0:809 6

The proportion of one observations f1 = 0:127 48

The observed mean of the Distribution �X = 0:290 56

Substituting the values of f0 = 0:809 6; f1 = 0:127 48; � = 1
� ln(1�p) and

�X =

0:290 56 in equations (8.35) ; (8.40) and (8.41) we obtain

�̂ = � ln 978
1208

= 0:211 21

!̂ = � 0:254 47

� p
ln(1�p) � 1

(8.46)
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1: 375 7 = 0:375 70p+ 0:254 47
1� p

� p
ln(1�p) � 1

+ 0:254 47
p

(ln (1� p))
�
� p
ln(1�p) � 1

� + 1
0: 375 7 = 0:375 70p+ 0:254 47

1� p
� p
ln(1�p) � 1

+ 0:254 47
p

(ln (1� p))
�
� p
ln(1�p) � 1

�
(8.47)

Solution is: Solving for p̂ in (8.47) we obtain p = 0:442 16
Substitute the value of p̂ in (8.46) to obtain !: That is

!̂ =

"
� 0:254 47

� p
ln(1�p) � 1

#
p=0:442 16

= 1: 049 5

Therefore the solution to the parameters are !̂ = 1: 049 5; p̂ = 0:442 16; �̂ =
0:211 21

The Poisson-one-In�ated Geometric Distribution

Pr (Z = z) =

8>>>><>>>>:
!p z = 0

(1� !) + !qp z = 1

!pqz z = 2; 3; 4; : : : ;1

(8.48)

Where p = 1� q is the probability of a person migrating from a cluster.
The pgf of Zi is given as

g (s) =
1X
z=0

pzs
z

= p0 + p1s+
1X
z=2

pzs
z

= !p+ [(1� !) + !qp] s+ !p
1X
z=2

(qs)z

= !p+ [(1� !) + !qp] s+ !p
�
(1� qs)�1 � qs� 1

�
= (1� !) s+ !p (1� qs)�1

Therefore g (s) is given by

g (s) = (1� !) s+ !p (1� qs)�1 (8.49)

Therefore substituting equations (8.10) and (8.49) into (8.9) gives the pgf of X as

GX (s) = exp
�
� (1� !) s+ !�p (1� qs)�1 � �

�
(8.50)

The �rst and the second derivatives of GX (s) w.r.t s is given by

G0X (s) = � (1� !) + !�qp (1� qs)
�2 exp

�
� (1� !) s+ !�p (1� qs)�1 � �

�
G00X (s) =

�
� (1� !) + !�qp (1� qs)�2

�2
exp

�
� (1� !) s+ !�p (1� qs)�1 � �

�
+ 2!�q2p (1� qs)�3 exp

�
� (1� !) s+ !�p (1� qs)�1 � �

�
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setting s = 1

G0X (1) = � (1� !) + !�qp�1

G00X (1) =
�
� (1� !) + !�qp�1

�2
+ 2!�q2p�2

Thus the mean and variance is given by,

E (X) = G0X (1) = � (1� !) + !�qp�1 (8.51)

V ar (X) = G00X (1) +G
0
X (1)� [G0X (1)]

2

=
�
� (1� !) + !�qp�1

�2
+ 2!�q2p�2 + � (1� !)

+ !�qp�1 �
�
� (1� !) + !�qp�1

�2
= � (1� !) + !�q2p�2 + !�qp�2 (q + p)
= � (1� !) + !�qp�2 (1 + q)
= � (1� !) + !�qp�2 (2� p) (8.52)

The probability density function of X is obtained by extracting the coe¢ cients of sx

in (8.50) as follows,

GX (s) = exp
�
� (1� !) s+ !�p (1� qs)�1 � �

�
= e��e�(1�!)se!�p(1�qs)

�1

= e��e�(1�!)s
1X
i=o

(!�)i

i!

�
p

1� qs

�i
= e��e�(1�!)s

1X
i=o

(!�)i

i!

( 1X
r=o

�
i+ r � 1

r

�
pi (qs)r

)

= e��e�(1�!)s
1X
i=o

1X
r=o

(!�)i

i!

�
i+ r � 1

r

�
piqrsr

= e��e�(1�!)s
1X
r=o

( 1X
i=o

(!�)i

i!

�
i+ r � 1

r

�
piqr

)
sr

GX (s) =

1X
j=0

[� (1� !) s]j

j!

1X
r=o

( 1X
i=o

(!�)i

i!

�
i+ r � 1

r

�
piqr

)
sr (8.53)

let

� (r) =
1X
i=o

(!�)i

i!

�
i+ r � 1

r

�
piqr

Therefore (8.53) becomes

GX (s) = e
��

( 1X
j=0

[� (1� !) s]j

j!

)( 1X
r=0

� (r) sr

)

= e��

(
1 + � (1� !) s+ [� (1� !)]

2 s2

2!
+ � � �

)�
� (0) + � (1) s+ � (2) s2 + � � �

	
= e��

(
1 � � (0) + [1 � � (1) + � (1� !) � � (0)] s

+
h
1 � � (2) + � (1� !) � � (1) + [�(1�!)]2

2!
� � (0)

i
s2 + � � �

)
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Hence,
p0 = e

�� � � (0) = e��

p1 = e
�� f1 � � (1) + � (1� !) � � (0)g

p2 = e
��

(
1 � � (2) + � (1� !) � � (1) + [� (1� !)]

2

2!
� � (0)

)
...

px = e
��

(
� (x) +

� (1� !)
1!

� (x� 1) + [� (1� !)]
2

2!
� (x� 2) + � � �+ [� (1� !)]

x

x!
� (0)

)

= e��
xX
r=o

[� (1� !)]r

r!
� (x� r)

= e��
xX
r=o

(
[� (1� !)]r

r!

1X
i=o

(!�)i

i!

�
i+ r � 1

r

�
piqr

)

Thus the pdf of X is given by

PX (x) = e
��

xX
r=o

(
[� (1� !)]r

r!

1X
i=o

�
i+ r � 1

r

�
(!�)i

i!
piqr

)
; x = 0; 1; 2; : : : ;1

Alternatively, from equation (8.14) we can re-write PX (x) as

PX (x) =

8><>:
e��(1�!p) x = 0

e��
Px

r=o
[�(1�!)]x�r
(x�r)!

P1
i=o

�
i+r�1
r

�
(!�)i

i!
piqr x = 1; 2; : : : ;1

(8.54)

as given by Iwunor (2004)
The estimating equations for the parameters �; !; and p are

e��̂(1�!̂p̂) = f0 (8.55)

f0

h
�̂ (1� !̂) + !̂�̂p̂q̂

i
= f1 (8.56)

�̂ (1� !̂) + !̂�̂q̂p̂�1 = �X (8.57)

Unlike the distribution proposed by Yadava and Singh (1991), this distribution incor-
porates the possibility that nobody migrates from a cluster in a household.
To estimate for the parameters �; ! and p divide (8.55) and (8.56) by (8.57) to get,

1� !̂p̂
1� !̂ + !̂(1�p̂)

p̂

=
� ln f0
�X

(8.58)

1� !̂ + !̂p̂ (1� p̂)
1� !̂ + !̂(1�p)

p

=
f1
�Xf0

(8.59)

From (8.58) and (8.59) solve for ! and p:
By making ! the subject of the formula in (8.58) we obtain,
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1� !̂p̂ = � ln f0
�X

�
1� !̂ + !̂ (1� p̂)

p̂

�
1 +

ln f0
�X
= !̂

ln f0
�X
� ln f0�X

!̂ (1� p̂)
p̂

+ !̂p̂

1 +
ln f0
�X
= !̂

�
ln f0
�X
� ln f0�X

(1� p̂)
p̂

+ p̂

�
!̂ =

1 + ln f0
�X

ln f0
�X
� ln f0

�X

(1�p̂)
p̂
+ p̂

(8.60)

and substitute the value of ! in (8.59) to obtain

1� !̂ + !̂p̂ (1� p̂) = f1
�Xf0

�
1� !̂ + !̂ (1� p)

p

�
1� f1

�Xf0
= !̂

�
1� p̂ (1� p̂)� f1

�Xf0
+

f1
�Xf0

(1� p)
p

�
f1
�Xf0

� 1 = �p̂ (1� p̂) + f1
�Xf0

(1� p)
p

� ln f0�X
p̂ (1� p̂)

+
ln f0
�X

(1� p̂)
p̂

� p̂+ f1
�Xf0

p̂ (8.61)

Then solve for p̂:
Substitute the value of p̂ in (8.60) to obtain !̂. Then substitute the value of !̂ and

p̂ in any of the estimating equations to obtain the value of �̂

Semi urban

The proportion of zero observations f0 = 0:889 84

The proportion of one observations f1 = 8: 112 7� 10�2

The observed mean of the Distribution �X = 0:160 55

Substituting the values of f0 = 0:889 84; f1 = 8: 112 7� 10�2 and �X = 0:160 55 in
equations (8.55) ; (8.60) and (8.61) we obtain

�̂ =
0:116 72

1� !̂p̂ (8.62)

!̂ =
0:273 01

p+ 0:726 99
p

(1� p)� 0:726 99
(8.63)

�0:432 12 = �0:432 12p� 0:273 01p (1� p)� 0:159 11
p

(1� p) (8.64)

Solving for p̂ in (8.64) we obtain p̂ = 0:582 80
Substitute the value of p in (8.63) to obtain !: That is

!̂ =

"
0:273 01

p+ 0:726 99
p

(1� p)� 0:726 99

#
p=0:582 80

= 0:725 65
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Then substituting the value of !̂ and p̂ in (8.62) to obtain the value of �̂

�̂ =

�
0:116 72

1� !̂p̂

�
p=0:582 80;!=0:725 65

= 0:202 26

Therefore the solution to the parameters are !̂ = 0:725 65; p̂ = 0:582 80; �̂ = 0:202 26

Remote

The proportion of zero observations f0 = 0:768 28

The proportion of one observations f1 = 0:155 07

The observed mean of the Distribution �X = 0:345 37

Substituting the values of f0 = 0:768 28; f1 = 176
1135

and �X = 0:345 37 in equations
(8.55) ; (8.60) and (8.61) we obtain

�̂ =
0:263 60

1� !̂p̂ (8.65)

!̂ =
0:236 77

p+ 0:763 23
p

(1� p)� 0:763 23
(8.66)

�0:415 61 = �0:415 61p� 0:236 77p (1� p)� 0:178 83
p

(1� p) (8.67)

Solving for p̂ in (8.67) we obtain p̂ = 0:755 16
Substitute the value of p̂ in (8.66) to obtain !: That is

!̂ =

"
0:236 77

p+ 0:763 23
p

(1� p)� 0:763 23

#
p=0:755 16

= 0:989 07

Then substituting the value of !̂ and p̂ in (8:65) to obtain the value of �̂

�̂ =

�
0:263 60

1� !̂p̂

�
p=0:755 16;!=0:989 07

= 1: 041 5

Therefore the solution to the parameters are !̂ = 0:989 07; p̂ = 0:755 16; �̂ = 1: 041 5

Growth centre

The proportion of zero observations f0 = 0:809 6

The proportion of one observations f1 = 0:127 48

The observed mean of the Distribution �X = 0:290 56

Substituting the values of f0 = 0:809 6; f1 = 0:127 48; and �X = 0:290 56 in equa-
tions (8:55) ; (8:60) and (8:61) we obtain

�̂ =
0:211 21

1� !̂p̂ (8.68)
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!̂ =
0:273 09

p+ 0:726 91
p

(1� p)� 0:726 91
(8.69)

�0:458 07 = �0:458 07p� 0:273 09p (1� p)� 0:184 98
p

(1� p) (8.70)

Solving for p̂ in (8.70) we obtain p̂ = 0:677 36
Substitute the value of p̂ in (8.69) to obtain !: That is

!̂ =

"
0:273 09

p+ 0:726 91
p

(1� p)� 0:726 91

#
p=0:677 36

= 0:920 45

Then substituting the value of !̂ and p̂ in (8.68) to obtain the value of �̂

�̂ =

�
0:211 21

1� !̂p̂

�
p=0:677 36;!=0:920 45

= 0:560 95

Therefore the solution to the parameters are !̂ = 0:920 45; p̂ = 0:677 36; �̂ = 0:560 95

The Poisson-one-In�ated Negative Binomial Distribution

Pr (Z = z) =

8>>>><>>>>:
!pm z = 0

(1� !) + !mqpm z = 1

!
�
m+z�1

z

�
pmqz z = 2; 3; 4; : : : ;1

(8.71)

Where p = 1� q is the probability of a person migrating from a cluster.
The pgf of Zi is given as

g (s) =
1X
z=0

pzs
z

= p0 + p1s+
1X
z=2

pzs
z

= !pm + [(1� !) + !mqpm] s+ !pm
1X
z=2

�
m+ z � 1

z

�
(qs)z

= !pm + [(1� !) + !mqpm] s+ !pm
�
(1� qs)�m �mqs� 1

	
= !pm + (1� !) s+ !mqpms+ !pm (1� qs)�m � !mqpms� !pm

= (1� !) s+ !pm (1� qs)�m

Therefore
g (s) = (1� !) s+ !pm (1� qs)�m (8.72)

Therefore substituting equations (8.10) and (8.72) into (8.9) gives the pgf of X as

GX (s) = exp
�
� (1� !) s+ !�pm (1� qs)�m � �

�
(8.73)

The �rst and the second derivatives of GX (s) w.r.t s is given by

G0X (s) = � (1� !) + !�mqpm (1� qs)
�m�1 exp

�
� (1� !) s+ !�pm (1� qs)�m � �

�
G00X (s) =

�
� (1� !) + !�mqpm (1� qs)�m�1

�2
exp

�
� (1� !) s+ !�pm (1� qs)�m � �

�
+ !�m (m+ 1) q2pm (1� qs)�(m+2) exp

�
� (1� !) s+ !�pm (1� qs)�m � �

�
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setting s = 1

G0X (1) = � (1� !) + !�mqp�1

G00X (1) =
�
� (1� !) + !�mqp�1

�2
+ !�m (m+ 1) q2p�2

The mean and variance of X is given by

E (X) = G0X (1) = � (1� !) + !�mqp�1 (8.74)

V ar (X) = G00X (1) +G
0
X (1)� [G0X (1)]

2

=

�
� (1� !) + !�mq

p

�2
+ !�m (m+ 1)

�
q

p

�2
+ � (1� !)

+ !�m
q

p
�
�
� (1� !) + !�mq

p

�2
= � (1� !) + !�m2q2p�2 + !�mqp�2 (q + p)

= � (1� !) +m!�qp�2 (1 +mq) (8.75)

The probability density function of X is obtained by extracting the coe¢ cients of sx

in (8.73) as follows,

GX (s) = exp
�
� (1� !) s+ !�pm (1� qs)�m � �

�
= e��e�(1�!)se!�p

m(1�qs)�m

= e��e�(1�!)s
1X
i=o

(!�)i

i!
pmi (1� qs)�mi

= e��e�(1�!)s
1X
i=o

(!�)i

i!

( 1X
r=o

�
mi+ r � 1

r

�
pmi (qs)r

)

= e��e�(1�!)s
1X
i=o

1X
r=o

(!�)i

i!

�
mi+ r � 1

r

�
pmiqrsr

= e��e�(1�!)s
1X
r=o

( 1X
i=o

(!�)i

i!

�
mi+ r � 1

r

�
pmiqr

)
sr

GX (s) =

1X
j=0

[� (1� !) s]j

j!

1X
r=o

( 1X
i=o

(!�)i

i!

�
mi+ r � 1

r

�
pmiqr

)
sr (8.76)

let

� (r) =

1X
i=o

(!�)i

i!

�
mi+ r � 1

r

�
pmiqr

Therefore (8.76) becomes

GX (s) = e
��

( 1X
j=0

[� (1� !) s]j

j!

)( 1X
r=0

� (r) sr

)

= e��

(
1 + � (1� !) s+ [� (1� !)]

2 s2

2!
+ � � �

)�
� (0) + � (1) s+ � (2) s2 + � � �

	
= e��

(
1 � � (0) + [1 � � (1) + � (1� !) � � (0)] s

+
h
1 � � (2) + � (1� !) � � (1) + [�(1�!)]2

2!
� � (0)

i
s2 + � � �

)
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Hence,
p0 = e

�� � � (0) = e��

p1 = e
�� f1 � � (1) + � (1� !) � � (0)g

p2 = e
��

(
1 � � (2) + � (1� !) � � (1) + [� (1� !)]

2

2!
� � (0)

)
...

px = e
��

(
1 � � (x) + �(1�!)

1!
� � (x� 1) + [�(1�!)]2

2!
� � (x� 2)

+ � � �+ [�(1�!)]x
x!

� � (0)

)

= e��
xX
r=o

[� (1� !)]r

r!
� (x� r)

= e��
xX
r=o

(
[� (1� !)]r

r!

1X
i=o

(!�)i

i!

�
mi+ r � 1

r

�
pmiqr

)

Thus the pdf of X is given by

PX (x) = e
��

xX
r=o

(
[� (1� !)]r

r!

1X
i=o

(!�)i

i!

�
mi+ r � 1

r

�
pmiqr

)
; x = 0; 1; 2; : : : ;1

Alternatively, from equation (8.14) we can re-write PX (x) as

PX (x) =

8><>:
e��(1�!p

m) x = 0

e��
Px

r=o
[�(1�!)]x�r
(x�r)!

P1
i=o

�
mi+r�1

r

� (!�pm)i
i!

qr x = 1; 2; : : : ;1
(8.77)

as given by Iwunor (2004)
The estimating equations for the parameters �; !;m and p are

f0 = e
��̂(1�!̂p̂m̂) (8.78)

f1 = f0

h
�̂ (1� !̂) + m̂!̂�̂q̂p̂m̂

i
(8.79)

�̂ (1� !̂) + m̂!̂�̂q̂p̂�1 = �X (8.80)

�̂ (1� !̂) + m̂!̂�̂q̂p̂�2 (1 +mq) = �2 (8.81)

Where �2 is the observed variance of the distribution
To estimate for the parameters �; !;m and p�

1� !̂p̂m̂
�
= � ln f0 (8.82)

�
1� !̂ + m̂!̂ (1� p̂) p̂m̂

�
=
f1
f0

(8.83)

(1� !̂) + m̂!̂1� p̂
p̂

= �X (8.84)
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1� !̂ + m̂!̂1� p̂
p̂2

[1 +m (1� p̂)] = �2 (8.85)

Divide (8.83), (8.84) (8.85) by (8.82) to get

!̂

�
�1 + m̂ (1� p̂) p̂m̂ � 1

f0

f1
ln f0

p̂m̂
�
= � 1

f0

f1
ln f0

� 1 (8.86)

!̂

�
�1 + m̂1� p̂

p̂
�

�X

ln f0
p̂m̂
�
= �

�X

ln f0
� 1 (8.87)

!̂

�
�1 + m̂1� p̂

p̂2
[1 +m (1� p̂)]� �2

ln f0
p̂m̂
�
= � �2

ln f0
� 1 (8.88)

Divide (8.87) and (8.88) by (8.86) to obtain

�1 + m̂1� p̂
p̂

�
�X

ln f0
p̂m̂ =

�
� �X
ln f0

� 1
�

� 1
f0

f1
ln f0

� 1

�
�1 + m̂ (1� p̂) p̂m̂ � 1

f0

f1
ln f0

p̂m̂
�

(8.89)

�1+m̂1� p̂
p̂2

(1 +m (1� p̂))� �2

ln f0
p̂m̂ =

�
� �2

ln f0
� 1
�

� 1
f0

f1
ln f0

� 1

�
�1 + m̂ (1� p̂) p̂m̂ � 1

f0

f1
ln f0

p̂m̂
�

(8.90)
Solving equation (8.89) and (8.90) simultaneously to obtain m̂ and p̂

The Poisson-Misrecorded Poisson Distribution

The mis-recorded Poisson distribution takes into account errors in reporting the num-
ber of migrants in a cluster (Johnson et.al., 1992)

Pr (Z = z) =

8>>>><>>>>:
e�� (1 + ��) z = 0

�e�� (1� �) z = 1

�ze��

z!
z = 2; 3; 4; : : : ;1

(8.91)

where � is the average number of persons migrating from a cluster, � is the probability
that one migrant recorded in a cluster is not reported. The pgf of Zi is given as

g (s) =
1X
z=0

pzs
z

= p0 + p1s+
1X
z=2

pzs
z

= e�� (1 + ��) + �e�� (1� �) s+
1X
z=2

(�s)z e��

z!

= e�� (1 + ��) + �se�� (1� �) +
�
e�(s�1) � �se�� � e��

	
= e�� + ��e�� + �se�� � ��se�� + e�(s�1) � �se�� � e��

= ��e�� � ��se�� + e�(s�1) (8.92)
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Therefore substituting equations (8.10) and (8.92) into (8.9) gives the pgf of X as

GX (s) = exp
�
���e�� � ���e��s+ �e�(s�1) � �

�
(8.93)

The probability density function of X is obtained by extracting the coe¢ cients of sx

in (8.93) as follows,

GX (s) = exp
�
���e�� � ���e��s+ �e�(s�1) � �

�
= e��(1���e

��)e����e
��se�e

�(s�1)

= e��(1���e
��)e����e

��s
1X
i=o

�
�e��

�i
i!

e�is

= e��(1���e
��)e����e

��s
1X
i=0

(�
�e��

�i
i!

1X
r=0

(�is)r

r!

)

= e��(1���e
��)e����e

��s
1X
i=0

1X
r=0

�
�e��

�i
i!

(�is)r

r!

= e��(1���e
��)e����e

��s
1X
r=0

( 1X
i=0

�
�e��

�i
i!

(�i)r

r!

)
sr

GX (s) = e
��(1���e��)

1X
j=0

�
����e��s

�j
j!

" 1X
r=0

( 1X
i=0

�
�e��

�i
i!

(�i)r

r!

)
sr

#
(8.94)

let

� (r) =
1X
i=0

�
�e��

�i
i!

(�i)r

r!

Therefore (8.94) becomes

GX (s) = e
��(1���e��)

( 1X
j=0

�
����e��s

�j
j!

)( 1X
r=0

� (r) sr

)

= e��(1���e
��)

(
1� ���e��s+

�
���e��

�2
s2

2!
+ � � �

)�
� (0) + � (1) s
+� (2) s2 + � � �

�

= e��(1���e
��)

8<: 1 � � (0) +
�
1 � � (1)� ���e�� � � (0)

�
s

+

�
1 � � (2)� ���e�� � � (1) + [���e

��]
2

2!
� � (0)

�
s2 + � � �

9=;
Hence,

p0 = e
��(1���e��) � � (0) = e��(1���e��)

p1 = e
��(1���e��) �1 � � (1)� ���e�� � � (0)	

p2 = e
��(1���e��)

(
1 � � (2)� ���e�� � � (1) +

�
���e��

�2
2!

� � (0)
)

...
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px = e
��(1���e��)

8<: 1 � � (x)� ���e�� � � (x� 1) + [���e
��]

2

2!
� � (x� 2)

+ � � �+ [����e
��]

x

x!
� � (0)

9=;
= e��(1���e

��)
xX
r=o

�
����e��

�r
r!

� (x� r)

= e��(1���e
��)

xX
r=o

(�
����e��

�r
r!

1X
i=0

�
�e��

�i
i!

(�i)r

r!

)
Thus the pdf of X is given by

PX (x) = A

xX
r=o

(�
����e��

�r
r!

1X
i=0

�
�e��

�i
i!

(�i)r

r!

)
; x = 0; 1; 2; : : : ;1

Alternatively, from equation (8.14) we can re-write PX (x) as

PX (x) =

8><>:
Ae�e

��
x = 0

A
Px

r=o

(����e��)
x�r

(x�r)!
P1

i=o

(�e��)
i

i!
(�i)r

r!
x = 1; 2; : : : ;1

(8.95)

as given by Iwunor (2004)
Where A = exp

�
��
�
1� ��e��

��
E (X) = ��

�
1� �e��

�
(8.96)

V ar (X) = ��
�
1 + �� �e��

�
+ �2e�2�

�
�2�2 � 1

�
(8.97)

The estimating equations for the parameters �; � and � are given as

Âe�̂e
��̂
= f0 (8.98)

f0

h
�̂�̂e��̂

�
1� �̂

�i
= f1 (8.99)

�̂�̂
�
1� �̂e��̂

�
= �X (8.100)

To estimate for the parameters �; � and �

�
�
1� ��e�� � e��̂

�
= � ln f0 (8.101)

�̂
�
�̂e��̂ � �̂�̂e��̂

�
=
f1
f0

(8.102)

�̂
�
�̂� �̂�̂e��̂

�
= �X (8.103)

Divide (8.101) and (8.102) by (8.103) to obtain

1� ��e�� � e��̂

�̂� �̂�̂e��̂
=
� ln f0
�X

(8.104)

�̂e��̂ � �̂�̂e��̂

�̂� �̂�̂e��̂
=

f1
f0 �X

(8.105)
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Making � the subject of the formula in (8.104) and substitute the value of � to
obtain

� =
� ln f0

�X
�̂+ e��̂ � 1

��e�� � ln f0
�X
�̂e��̂

(8.106)

�

e�
� �

e2�
� �2

e2�
+
1
�X

�2

e�
ln f0 �

1
�X

�

e�f0
f1 �

1
�X
�2
ln f0
e2�

+
1
�X

�

f0

f1
e2�

+
1
�X

�2

e�f0
f1 = 0

Solve for � and substitute the value in (8.106) to obtain �:
To obtain �; substitute the values of � and � in any of the estimating equation

above and solve for �

The Poissson-one-In�ated Binomial Distribution

Pr (Z = z) =

8>>>><>>>>:
!qn z = 0

(1� !) + !npqn�1 z = 1

!
�
n
z

�
pzqn�z z = 2; 3; 4; : : : ; n

(8.107)

where n is the cluster size, p is the probability of a person migrating from a cluster,
p+ q = 1: The pgf of Zi is given as

g (s) =

1X
z=0

pzs
z

= p0 + p1s+
1X
z=2

pzs
z

= !qn + (1� !) s+ !npqn�1s+ !
1X
z=2

�
n

z

�
(ps)z qn�z

= !qn + (1� !) s+ !npqn�1s+ !
�
(q + ps)n � npqn�1s� qn

�
= (1� !) s+ ! (q + ps)n (8.109)

substituting equations (8.4) and (8.109) into (8.1) gives the pgf of X as

GX (s) = exp [� (1� !) s+ !� (q + ps)n � �] (8.110)

The �rst and the second derivatives of GX (s) w.r.t s is given by

G0X (s) = � (1� !) + !�np (q + ps)
n�1 e[�(1�!)s+!�(q+ps)

n��]

G00X (s) = !�n (n� 1) p2 (q + ps)
n�2 e[�(1�!)s+!�(q+ps)

n��]

+
�
� (1� !) + !�np (q + ps)n�1

�2
e[�(1�!)s+!�(q+ps)

n��]

setting s = 1

G0X (1) = � (1� !) + !�np
G00X (1) = !�n (n� 1) p2 + [� (1� !) + !�np]

2

Therefore the mean and the variance is given by

E (X) = G0X (1) = � (1� !) + !�np (8.111)
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V ar (X) = G00X (1) +G
0
X (1)� [G0X (1)]

2

= !�n (n� 1) p2 + [� (1� !) + !�np]2 + � (1� !)
+ !�np� [� (1� !) + !�np]2 (8.1)

= !�n (n� 1) p2 + � (1� !) + !�np = � (1� !) + !�np (1� p) + !�n2p2

= � (1� !) + n!�pq + !�n2p2 (8.112)

The probability density function of X is obtained by extracting the coe¢ cients of sx

in (8.110) as follows,

GX (s) = exp [� (1� !) s+ !� (q + ps)n � �]
= e�(1�!)se!�(q+ps)

n

e��

= e��e�(1�!)s
1X
i=0

(!�)i

i!
(q + ps)ni

= e��e�(1�!)s
1X
i=0

(
(!�)i

i!

niX
r=0

�
ni

r

�
(ps)r qni�r

)

= e��e�(1�!)s
1X
i=0

(
(!�)i

i!

niX
r=0

�
ni

r

�
(ps)r qni�r

)

= e��e�(1�!)s
1X
i=0

niX
r=0

(!�)i

i!

�
ni

r

�
prqni�rsr

= e��e�(1�!)s
1X
r=0

( 1X
i=0

(!�)i

i!

�
ni

r

�
qni�r

)
prsr

GX (s) = e
��

1X
j=0

[� (1� !) s]j

j!

" 1X
r=0

( 1X
i=0

(!�)i

i!

�
ni

r

�
prqni�r

)
sr

#
(8.113)

let

� (r) =

1X
i=0

(!�)i

i!

�
ni

r

�
prqni�r

Therefore (8.113) becomes

GX (s) = e
��

( 1X
j=0

[� (1� !) s]j

j!

)( 1X
r=0

� (r) sr

)

= e��

(
1 + � (1� !) s+ [� (1� !)]

2 s2

2!
+ � � �

)�
� (0) + � (1) s+ � (2) s2 + � � �

	
= e��

(
1 � � (0) + [1 � � (1) + � (1� !) � � (0)] s

+
h
1 � � (2) + � (1� !) � � (1) + [�(1�!)]2

2!
� � (0)

i
s2 + � � �

)

Hence,
p0 = e

�� � � (0) = e��

p1 = e
�� f1 � � (1) + � (1� !) � � (0)g

242



p2 = e
��

(
1 � � (2) + � (1� !) � � (1) + [� (1� !)]

2

2!
� � (0)

)
...

px = e
��

(
1 � � (x) + �(1�!)

1!
� � (x� 1) + [�(1�!)]2

2!
� � (x� 2)

+ � � �+ [�(1�!)]x
x!

� � (0)

)

= e��
xX
r=o

[� (1� !)]r

r!
� (x� r)

= e��
xX
r=o

(
[� (1� !)]r

r!

1X
i=0

(!�)i

i!

�
ni

r

�
prqni�r

)

Thus the pdf of X is given by

PX (x) = e
��

xX
r=o

(
[� (1� !)]r

r!

1X
i=0

�
ni

r

�
(!�)i

i!
prqni�r

)
; x = 0; 1; 2; : : : ; n

Alternatively, from equation (8.14) we can re-write PX (x) as

PX (x) =

8><>:
e��(1�!q

n) x = 0

e��
Px

r=o
[�(1�!)]x�r
(x�r)!

P1
i=o

�
ni
r

� (!�)i
i!
prqni�r x = 1; 2; : : : ; n

(8.114)

as given by Iwunor (2004).
The estimating equations for the parameters �; ! and p are

f0 = e
��̂(1�!̂q̂n) (8.115)

f1 = f0

h
�̂ (1� !̂) + n!̂�̂p̂q̂n�1

i
(8.116)

�̂ (1� !̂) + n!̂�̂p̂ = �X (8.117)

To estimate for the parameters �; ! and p

�̂ (1� !̂ (1� p)n) = � ln f0 (8.118)

�̂
�
1� !̂ + n!̂p̂ (1� p)n�1

�
=
f1
f0

(8.119)

�̂ (1� !̂ + n!̂p̂) = �X (8.120)

Divide (8.118) and (8.119) by (8.120) to get,

1
�X
np! ln f0 �

1
�X
! ln f0 � ! (1� p)n = �

1
�X
ln f0 � 1 (8.121)

1
�X

!

f0
f1 � ! �

1
�X
np
!

f0
f1 + np

!

1� p (1� p)
n =

1
�Xf0

f1 � 1 (8.122)

Make ! the subject of the formula in (8.121) and substitute in (8.122)
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! =
� 1

�X
ln f0 � 1

1
�X
np ln f0 � 1

�X
ln f0 � (1� p)n

(8.123)(
1
�X
np ln f0 � (1� p)n � 1

�Xf0
f1 +

1
�X
n p
f0
f1 +

1
�Xf0
f1 (1� p)n

�n p
1�p (1� p)

n � 1
�X
np ln f0

1�p (1� p)
n

)
= �1 (8.125)

Solve for p in (8.125) and substitute in (8.123) to obtain !
To obtain �; substitute the values of p and ! in any of the three estimating equation

and solve for �
A summary of the di¤erence between the estimated Parameters and

Iwunor�s (2004) Parameters

The Poisson-One-In�ated Log-series Distribution
Semi-urban Remote Growth Centre

Par. Est. Iwunor Di¤. Est. Iwunor Di¤. Est. Iwunor Di¤.
�̂ 0:116 7 0:1168 �0:0001
!̂ 0:697 2 0:4684 0:2288
p̂ 0:554 1 0:6483 �0:0942

Where

� Est.=Estimated
� Par.=Parameters
� Di¤.=Di¤erence
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Application

The estimates derived from the equations with explicit solutions are applied by �tting
the various distributions and testing their adequacy for each of the village types; Semi-
urban, Remote and Growth centre, using the data contained in Sharma (1985). Table
8.6-8.8 show the distribution of observed and expected frequencies of the number of
households according to the the total number of Migrants from a household and the
�2 values for the di¤erent types of village, based on each of the distributions.
Table 8.6: Observed and Expected Number of Households according to the Number

of Migrants and Type of Village
The Poisson-One-In�ated Poisson Distribution

Number of migrants Number of Households
Semi-urban Remote Growth Centre
Obs. Exp. Obs. Exp. Obs. Exp.

0 1042 1042 872 872 978 978
1 95 95 176 176 154 154:01
2 19 18:49 59 57:55 47 46:17
3 10 9:22 18 20:45 18 19:40
4 2 6 9
5 2 4 1
6 0 6:29 0 9 0 10:42
7 1 0 0
8 0 0 1

Total 1171 1171 1135 1135 1135 1135

�̂ 0:126 67 0:390 95 0:261 14
!̂ 0:410 07 0:759 47 0:622 78

�̂ 1: 652 2 0:846 50 1: 180 9
�2 0:3446 0:4412 0:1482
df 1 1 1

Table 8.7: Observed and Expected Number of Households according to the Number
of Migrants and Type of Village
The Poisson-One-In�ated Log-series Distribution
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Number of migrants Number of Households
Semi-urban Remote Growth Centre
Obs. Exp. Obs. Exp. Obs. Exp.

0 1042 1042
1 95 95
2 19 20:45
3 10 7:55
4 2
5 2
6 0 6
7 1
8 0

Total 1171 1171

�̂ 0:116 72
!̂ 0:697 21
p̂ 0:554 07
�2 1:0645
df 1

Table 8.8: Observed and Expected Number of Households according to the Number
of Migrants and Type of Village
The Poisson-One-In�ated Geometric Distribution

Number of migrants Number of Households
Semi-urban Remote Growth Centre
Obs. Exp. Obs. Exp. Obs. Exp.

0 1042 1042 872 872 978 978
1 95 95:01 176 176 154 154
2 19 19:84 59 58:43 47 47:73
3 10 8:02 18 19:36 18 17:73
4 2 6 9
5 2 4 1
6 0 6:13 0 9:21 0 10:54
7 1 0 0
8 0 0 1

Total 1171 1171 1135 1135 1208 1208

�̂ 0:202 26 1: 041 5 0:560 95
!̂ 0:725 65 0:989 07 0:920 45
p̂ 0:582 80 0:755 16 0:677 36
�2 0:7327 0:1689 0:0354
df 1 1 1
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Where

� The mean number of clusters of migrants per household �̂

� The average number of migrants per cluster �X

�̂

� The average number of migrants per household �X

The tables shows that the values of �2 are insigni�cant at 5% and 1% level for all
the �tted distributions. On the basis of �2 test is noted that the Poisson-one-in�ated
Poisson distribution provides a superior �t than the two other distributions for the
same degrees of freedom, in modelling out-migration from Semi-urban villages. In the
case of household residing in remote and Growth centres villages, the Poisson-one-
In�ated geometric distribution provides a superior �t compared to the Poisson-one-
in�ated Poisson distribution.
From table 8.9, it is found that in all the sets of the model the average number

of clusters per household is greater for remote villages, moderate for growth centre
and smaller in semi-urban villages, but the average number of migrants per cluster is
smaller for remote villages in comparison to growth-centre that is moderate and greater
for semi-urban villages. This might be attributed to the fact that from the remote
households males migrate singly in di¤erent cluster leaving their wives and children in
the village while in growth-centre and semi-urban villages males, mostly well educated
and employed in white collar jobs, migrate with their wives and children in less number
of cluster. Since remaining persons from semi-urban villages may commute to city for
their livelihood. Lastly, the average number of migrants per household from remote
villages is higher (0.35) than the growth centre (0.29) and semi-urban (0.16).
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8.2.4 Conclusion

In order to capture the event that at least one person migrates in a household, we have
�tted the mixture of the Poisson and some one-in�ated distributions; i.e., one-in�ated
Poisson distribution, one-in�ated log-series distribution and one-in�ated geometric
distribution. The results of the �t shows that distributions that take into consider-
ation variation in the probability of a person migrating in a cluster in a household
(the geometric which is a special case of the negative binomial distribution) performed
better in modelling out-migration from remote and growth centres. While Poisson-
one-Poisson distribution demonstrated a satisfactory �t for modelling out-migration
from Semi-urban areas.
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