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ABSTRACT 

This study focuses on an in-depth understanding of the extent to which climate change and 

deforestation impact on the surface water yields in the Mau forest complex, the largest of the five 

water towers in Kenya. The forest complex forms the source of important national and 

international rivers including Sondu, Nyando, the Nile, Mara and Ewaso Ng‟iro which are 

economic life lines for three sectors of the country‟s economy: Tourism, Agriculture, and Energy. 

Demand for more arable land to support the area‟s growing population has led to large tracts 

previously preserved as gazetted forests being excised since late 1940s which has affected the 

hydrology of the water tower. The study analysed the past climate and forest cover changes and 

modelled future changes in climate and the extent to which these changes impact on the surface 

water yields in this region. 

Potential impacts of climate change and deforestation on surface water yields were analysed using 

a modelling approach in which observed and projected climate outputs from a regional climate 

model, commonly referred to as PRECIS, which stands for Providing Regional Climate for 

Impacts Studies, and changes in forest cover were used to drive a hydrologic model, the Soil and 

Water Assessment Tool (SWAT). Outputs from SWAT were used to assess the impacts of 

changes in climate and forest cover on the surface water yields from the Mau forest complex water 

tower as exemplified by changes in river flow volumes. The study analysed historical climate, 

forest cover and streamflow changes that have taken place within these catchments with a focus on 

South West Mau forest block located within Sondu River basin. Projections of future climates 

under the Special Report on Emissions Scenarios (SRES) A2 emissions scenario were obtained 

from the third generation Hadley Centre Regional Climate model (HadRM3) using PRECIS 

regional climate model while Landuse/Landcover (LULC) changes were obtained from 

LANDSAT satellite image analysis using supervised classification methods.  

It was shown from the analyses of historical data that the climate of the area has progressively 

become warmer and wetter since the 1970s. Analysis of temperature and rainfall indicated 

increasing trends while streamflow indicated a decreasing trend. Analysis of forest cover indicated 

increasing deforestation trends over the Mau forest complex of about 27% between 1973 and 

2010. Analyses of mean daily maximum and minimum temperatures indicate that days and nights 

in this area have become warmer since the 1961-1990 baseline period by about 0.5˚C and 0.4˚C 

respectively. In the same period monthly rainfall distribution has shown increasing trends in the 

relatively dry DJF and SON seasons which have become wetter by about 7.5% and 9.2% 
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respectively, and decreasing trends in the relatively wet MAM and JJA seasons which have 

become drier by about 2.2% and 4.5% respectively. The changes in the distribution of monthly 

rainfall translate into redistribution of seasonal water yields from the catchments. 

Analysis of projected temperature and rainfall shows strong indications that the climate of the area 

will significantly change in future under the SRES A2 emissions scenario with warmer and wetter 

climates being experienced by 2030 and beyond. The annual average temperatures and rainfall are 

expected to change by about 2.7˚C and 4.7% respectively by 2030, and by 4.7˚C and 18.9% 

respectively by 2050, relative to the baseline. The projected monthly rainfall distribution show 

increasing trends in the relatively dry DJF and SON seasons while showing decreasing trends in 

the relatively wet MAM and JJA seasons.  

Simulated water yields under climate change at the baseline forest cover scenario show an 

increasing trend but show decreasing trends as forest cover over South West Mau forest block 

diminishes. Projected water yields in 2010s and 2030s indicate a decreasing trend in potential 

water yields of about 0.69 MCM/yr in 2010s and 0.71 MCM/ yr in 2030s 

Results of the study indicate that indeed deforestation of the Mau forest catchment has notable 

impacts on water yields from the water tower. The study has shown that the overall impacts of 

climate change coupled with deforestation on the water yielding capacity of the Mau forest 

catchments will be a reduction in the potential annual water yields in the range of 15% and 16% 

per decade of the baseline yields to between 28% and 45% in 2010s and between 31% and 50% in 

2030s respectively.  

Results of this study have provided useful insights into the impacts of climate change and 

deforestation on surface water yields which can be used to inform short, medium to long term 

planning of water resources. The results, methods and products of the study should be 

incorporated in the mainstream economic development strategies especially in the development of 

the national water resources master plan. To ensure adequate flow in rivers from this important 

water tower to sustain both the socio-economic and environmental uses, it is recommended that 

efforts to rehabilitate the Mau forest complex be stepped up and sustained. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Water is an essential component in all aspects of our life (IPCC 2007). It is an economic as well as 

a social good that pervades all human activities and undoubtedly one of the most important natural 

resources for man‟s survival. Besides being a vital ingredient for the maintenance of the natural 

ecosystems on which we ultimately depend for existence, water is a key driver of human economic 

productivity, societal development, and social well-being (Young, 2009). It is also an important 

catalyst necessary to accelerate both economic and social development of a nation (GOK, 1999).  

During the last century freshwater has become increasingly limited by an ever increasing demand 

resulting from the rapid growth in population, unsustainable use, and increasing incidences of 

pollution due to emissions from anthropogenic activities. Warning of freshwater scarcity issued at 

the close of the twentieth century has become a reality to the extent of insufficient freshwater 

which now threatens food security, livelihoods and human health (Liebscher, 2009).  

Climate change observed over the last several decades affects freshwater through a number of 

mechanisms as it is closely linked to changes in a number of components of the hydrological 

systems such as changing precipitation patterns, intensity and extremes of climatic indicators such 

as temperature and rainfall, increasing atmospheric water vapour content, increasing rate of 

evaporation, changes in soil moisture levels, and runoff (Bates et al, 2008). The interaction 

between human, environment and natural resources such as water is vital for life support but can 

also be a potential hazard like floods and droughts. Thus hydrological knowledge in relation to 

climate change is valuable in providing for man‟s continuity and well being (WMO, 2008). 

Provision of adequate water for both domestic and agricultural use would significantly reduce the 

poverty levels by addressing the Millennium Development Goal (MDG) of development and 

environmental sustainability which seeks to minimise hunger and famine (UNEP, 2009a). This 

particular MDG recognises the fact that issues of degraded environment and the declining health 

of water resources increase the gap between the rich and the poor with poverty levels remaining 

high and the inequalities continuing to grow (Liebscher, 2009). At the national level, Kenya has 

incorporated this MDG in its new development blue print, Vision 2030, which covers the period 
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2008 to 2030 with the aim of steering Kenya to a middle income nation providing high quality life 

for all its citizens by the year 2030 (GOK, 2007; GOK, 2010a).  

Kenya is a water scarce country with only 647 m
3
 per capita of water against the global 

benchmark of 1000 m
3
 (WRMA, 2009; Mogaka et al, 2006). With the projected population of 

about 56 million by the year 2030, the amount of water available per capita will reduce to about 

359 m
3
 if no measures are taken to increase and secure the water resources in the country 

(WRMA, 2009).  

Vision 2030 is based on three pillars of development namely the economic, social and political 

pillar. This study seeks to address the social pillar of the vision which seeks, among other things, 

to build a just and cohesive society with social equity in a clean and secure environment (GOK, 

2007). The study focuses on two out of the eight sectors that fall under this pillar: water and 

sanitation which aims to ensure that improved water and sanitation are available and accessible to 

all; environment through which Kenya aims to be a nation living in a clean, secure and sustainable 

environment by the year 2030 through increased forest cover from below 3% to about 10%.  

The environment sector of the vision‟s social pillar also aims at improving the capacity for 

adaptation to global climate change where some of the flag ship projects include the water 

catchment management initiative which encompasses the rehabilitation of the country‟s five water 

towers: Mau Forest Complex, Mt Kenya, Aberdare Ranges, Cherengani Hills and Mt Elgon. This 

study seeks to understand how climate change and deforestation impact on water yields from 

forested catchments with particular reference to the Mau Forest Complex water tower, since water 

is a critical factor of these two sectors of the social pillar (GOK, 2002; GOK, 1999). 

1.2 Problem Statement  

Mau Forest Complex (MFC) is Kenya‟s largest indigenous forest and the largest of the five water 

towers in the country with more than twelve rivers originating from it (KWTA, 2013). The forest 

complex is endowed with a rich diversity of resources ranging from direct forest products, water 

supply, tourism, and micro-climate regulation (KIFCON, 1994). However, despite its national and 

international importance as a natural resource, the forest complex has been widely deforested 

(Kinyanjui, 2010). 

Demand for more land suitable for tea farming, settlement and other agricultural activities has led 

to large tracts previously preserved as gazetted forests for purposes of water conservation and 
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regulation, being excised since late 1940s  (Kinyanjui, 2009; Edwards and Blackie, 1979). 

Conducive conditions for rain fed agriculture, fertile soils, and ample rainfall in the area have 

attracted a rapidly growing population that has encroached the forest reserve. 

Experts have warned that continued destruction of this vital water tower will cause environmental 

disaster resulting in reduced rainfall and drying up of rivers in the region. This is likely to cause a 

water crisis of national and international proportions that could extend far beyond the Kenyan 

territory (Baldyga et al, 2007). The extensive destruction of MFC water tower is therefore a matter 

of national concern as it presents real economic threats and underlies a breakdown of law and 

order with ramifications for internal security and conflict (GOK, 2010a).  

Analysis of 50-year daily discharge data for the rivers in the LVSCA shows significant variations 

in high and low flows during wet and dry seasons respectively. The flash flood incidents have 

continued to increase during wet seasons and base flows have continued to decrease during dry 

seasons (WRMA 2009). Changes in flow regimes of rivers from this water tower have resulted in 

heightened tensions among various water users with regard to reduced water yields during the dry 

seasons. Continued degradation of this critical watershed coupled with the effects of climate 

change is likely to worsen conflicts over this vital natural resource and this is a major source of 

concern for policy makers (UNEP/GOK, 2008; Mogaka et al, 2006). 

The causes of the problem of water yields in the area of study can be attributed to global, local or 

both systems; global because of changes in the water cycle as a result climate change and 

variability and local because of changes in the forest cover (Bates et al, 2008; Muhati et al, 2008; 

Kundzewicz et al, 2007). The problem can be solved by first understanding the impacts of climate 

change (global) and deforestation (local) on water yields as set out in the objective of this study. 

 

1. 3 Objectives of the Study 

The overall objective of this study is to analyse the potential impacts of climate change and 

deforestation on surface water yields from the Mau Forest Complex water tower by the year 2050. 

Specific objectives used to achieve the broad objective are: 

i. To determine  the trends in observed rainfall, temperature, stream flow and forest cover 

between 1961 and 2010  
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ii. To simulate temperature and rainfall for the periods 1961-1990, 2001-2030 and 2021-2050 

under the Special Report on Emissions Scenarios (SRES A2) and analyse the trends 

iii. To simulate streamflow for the periods 1961-1990, 2001-2030 and 2021-2050 under 

different climate and forest cover scenarios and analyse the trends  

iv. To conduct sensitivity analysis using rainfall and forest cover changes on the hydrological 

regime of the catchment to determine their impacts on surface water yields 

 

1.4 Hypothesis 

If the amount of rainfall that transforms into runoff is determined by the level of forest cover, then 

deforestation in the Mau forest complex water catchments will lead to changes in flow volumes in 

rivers that originate from these catchments under different climate change scenarios.  

 

1.4.1 Assumptions   

The underlying assumptions in this study include: 

i. Observed climatic and forest cover trends influence trends in water yields from catchment 

areas 

ii. Simulated rainfall and climatic conditions have the same statistical characteristics observed 

and influence water yields from the catchment areas 

iii. Simulated stream flow has the same characteristics as the observed stream flow 

iv. Changes in streamflow in the Sondu catchment area are applicable to other catchment 

areas whose upper catchments comprise the Mau forest complex 

 

1.5 Conceptual Framework of the Study  

Rainfall, the ultimate source of freshwater, is a function of a combination of several factors: air 

temperature, wind patterns, moisture content in the atmosphere, etc. Condensation of 

atmospheric moisture which originates from vapour evaporated mainly from the oceans and 

other continental water bodies such as lakes and rivers as well as evapotranspiration from forest 

and other ground vegetation cover is the source of rainfall. The moisture from the oceans and 

other sources is distributed horizontally to various parts of the world by the global and regional 

wind patterns which can be modelled by global and regional climate models respectively. 

The atmospheric moisture contents as well as the wind patterns are likely to change with the 

rising global temperatures and with the ongoing deforestation thus affecting the timing, 
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distribution and possibly the quantity of fresh surface water that is available for various uses. In 

order to analyse the impacts of climate change on the water yields from the area of study, a 

modelling approach proposed by Di Baldessarre et al (2011) was adopted. The approach was 

(i) to choose a scenario from the Intergovernmental Panel on Climate Change (IPPC) Special 

Report on Emissions Scenarios (SRES); in this study, SRES A2 was chosen, (ii) to choose a 

global circulation model from which to downscale climate scenarios; in this study, (HadAM3) 

and (ECHAM4) were chosen, (ii) to downscale the GCM climate output (rainfall and 

temperature) to the river basin scale (Sondu) using a regional climate model; in this study, 

PRECIS (providing regional climates for impacts studies) regional climate model was used, 

(iv) to use the downscaled GCM outputs as inputs to a hydrological model; in this study, 

rainfall and temperature outputs from PRECIS were used as inputs to the Soil and Water 

Assessment Tool (SWAT) hydrological model under different land cover scenarios, and (v) to 

analyse the hydrological model (SWAT) results by comparing them to the corresponding 

results related to the baseline climate and land cover scenario (Figure 1.1).  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Flow chart of the study procedure showing critical stages in the study where 

SPOB1, SPOB2, SPOB3, and SPOB4 stand for specific objectives 1, 2, 3, and 4 respectively 
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Figure 1.1 shows the logical framework of the study. PRECIS regional climate model was used to 

simulate 30-year climates at daily time-steps for the periods 1961-1990, 2001-2030, and 2021-

2050 from which the past, current and projected climates of the Mau forest catchment areas could 

be described. Climate outputs from PRECIS regional climate model were calibrated using the 

observed baseline climate. Calibrated PRECIS outputs were then used as inputs to the SWAT 

hydrologic model. Observed discharge data from the catchment were used to calibrate the SWAT 

model input parameters. Outputs from the calibrated SWAT model under different climate and 

forest cover scenarios were then used to determine the impacts of climate change and deforestation 

on surface water yields for the periods 2001-2030 and 2021-2050 relative to 1961-1990 yields. 

 

1.6 Justification of the Study 

The Mau Forest Complex (MFC) ecosystems are important drivers of Kenya‟s economy as they 

provide invaluable ecological services in terms of river flow regulations, flood mitigation, water 

storage, recharge of ground water, and micro-climate regulations. The forest complex forms the 

source of important international rivers such as the Nile, Mara and Ewaso Ng‟iro which are 

economic life lines for three main sectors of the country‟s economy: Tourism, Agriculture, and 

Hydropower generation (GOK, 2007). These three sectors form the bulk of the economies of the 

countries that share at least a part of the basins of these rivers. 

The MFC is a critical component of the water catchments in Lake Victoria Basin (LVB). It 

provides a source of rivers that serve a population of over six million people who depend directly 

or indirectly on water from the MFC for their subsistence livelihoods. UNEP (2009a) has 

estimated that the value of goods and services generated annually by sectors supported by the 

MFC is in excess of 20 billion Kenya shillings which is equivalent to 5% of the country‟s Gross 

domestic product (GDP). 

The macro-economic costs of the MFC destruction are gradually manifesting themselves. 

Hydropower capacity of rivers originating from the forest complex and particularly the Sondu 

Miriu River is severely constrained by the reduced flow levels during the dry seasons. Sondu 

Miriu River, which originates from the SWM forest block, is set to contribute about 60 MW of 

hydropower when the hydropower plant becomes fully operational. Flow levels of this river and 

others that originate from MFC have been declining lately (GOK, 2010a) and this is likely to 

impact negatively on the proposed hydropower generation. 
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The world renowned Maasai Mara game reserve is losing its wondrous attraction, the wildebeest 

annual migration, to progressively longer drought spells. The same applies to the tea industry in 

the Rift Valley where tea harvests are fluctuating widely. All this is believed to be as a result of 

degradation of the MFC, which has widely been documented (Kinyanjui, 2009; Baldyaga, 2007). 

The degradation has impacted negatively on the various roles of the forest including that of water 

catchment. 

Rivers from MFC contribute a substantial amount of surface inflows to Lake Victoria, the second 

largest freshwater lake in the world. The average total annual surface inflow into the lake from its 

catchments is about 2 x 10
10 

m
3
 out of which 8.4 x 10

9 
m

3
; about 42% of the total inflows come 

from Kenyan forests, mainly the MFC (Albinus et al, 2008).  The lake is the source of River Nile, 

and therefore the MFC is not only important as a water catchment area in Kenya but also to the 

international community who depend on River Nile for their water needs. Over the past four 

decades about a quarter of this essential ecosystem has been destroyed through deforestation for 

timber, farming and human settlements (GOK, 2010a).  

This study is anchored on the legal framework as set out in the Constitution of Kenya (2010), 

section 69 which spells out obligations in respect of the environment and exploitation of natural 

resources such as water (GOK, 2010b), and  three other documents: the Sessional Paper Number 1 

(1999) on the National Policy on Water Resources Management and Development (GOK, 1999), 

the Water Act (2002) (GOK, 2002), the Forest Act (2005) (GOK, 2005), and the Environmental 

management coordination act (1999) (GOK, 2000) enacted in the Kenyan Parliament to guide the 

management of water resources in Kenya.   

The Water Act (2002) provides for the management, conservation, use and control of water 

resources among others. The Act vests all the water resources within Kenyan territory in the 

National Government so that it manages these vital resources for the benefit of all its citizens. It 

encourages investigation of water resources, which by this act include stream flow, throughout 

Kenya. This study mainly investigates characteristics of stream flow in relation to climate change 

under different land use scenarios and hence finds its anchor in this particular provision of the Act. 

The terms used in the study relating the surface phase of the water cycle are in line with the 

interpretation of the Act.   
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For efficient management of water resources throughout Kenya, the Act provided for setting up of 

the Water Resources Management Authority (WRMA) as the lead national agency in the 

management of water resources. The mandate of WRMA includes, among others: regulation and 

protection of water resources from adverse impacts such as climate change, management and 

protection of water catchment areas, gathering and maintaining information on water resources, 

publishing forecasts, projections and information on water resources which are provided for in the 

National Policy on Water Resources Management and Development (1999). In order for WRMA 

to fully carry out its mandate of managing the water resources, it requires backing from research 

findings. This study seeks to provide advice to policy makers in the water sector as it seeks to 

identify and quantify the impacts of climate change and deforestation on water yields at the 

catchment level.  

The Forest Act (2005) provides for the establishment, development and sustainable management 

of forest resources for socio-economic development of the people of Kenya. The Act recognizes, 

among others issues, the vital role played by the forests in the protection of water catchments, and 

stabilization of soils and groundwater, and moderation of microclimates. Part of the area of study 

comprises indigenous forests and section 8 of the Act requires that all forests and woodlands be 

managed on a sustainable basis for purposes of water conservation and water catchment protection 

among others. The Act describes a number of forest products and water is clearly described as one 

of the main forest products. Hence deforestation, which for the purpose of this study refers to 

conversion of forest land to other landuse activities as a result of excision or encroachment, is 

relevant in this study. The Act vests all forests in the State and for better management of this vital 

resources in Kenya, the Act provides for the establishment of the Kenya Forest Service (KFS) 

which is the lead national agency charged with the responsibility of managing forests for the 

benefit of the people of Kenya.  

Some of the mandates of KFS are conservation of all types of forests in Kenya, collaboration with 

individuals, private and public research institutions in identifying research needs and applying 

research findings. This study finds relevance in this particular mandate as it seeks to establish how 

one of the vital forest products, water, is affected by deforestation and climate change. Of 

particular interest is the fact that KFS manages and protects forests for purposes of water 

conservation on water catchment areas such as the MFC in general and South West Mau in 

particular, which is the focus of this study. This was done through estimation of changes in 

simulated stream flow under different climate and forest cover scenarios using a hydrological 
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model  (SWAT) driven by outputs from a regional climate model (PRECIS) over the Sondu River 

basin whose upper catchment comprises the SWM forest reserve; the largest of the 22 forest 

blocks comprising the Mau forest complex. Changes in observed and simulated stream flows in 

the Sondu catchment area were assumed to be applicable to the entire Mau forest complex 

catchment. 

 

1.7 Area of Study  

Kenya lies between latitudes 6˚N and 5˚S and longitudes 34˚E and 42˚E and is divided into six 

hydrological catchment areas: Athi, Ewaso Ng'iro, Lake Victoria North, Lake Victoria South, Rift 

Valley, and Tana (Figure 1.2a). The area of study is located on the western part of Kenya and lies 

within Lake Victoria South Catchment Area (LVSCA). LVSCA is located at the south-western 

part of Kenya and borders Lake Victoria North catchment Area (LVNCA) to the north, Rift Valley 

Catchment Area (RVCA) to the east, Tanzania to the south, and Lake Victoria to the west (Figure 

1.2). the Mau forest complex (MFC), the largest of the five water towers in Kenya, lies in the 

north-eastern part of the catchment area (Figure 1.3).  

LVSCA covers an area of about 31000 km
2
 out of which about 4000 km

2
 is under Lake Victoria 

water (WRMA, 2009). The catchment area is divided into three distinct zones namely: the upper 

catchment comprising mainly the Mau Forest Complex (MFC), the middle catchment comprising 

undulating hills bisected by the four main rivers in the basin (Figure 1.2b), and the lower 

catchment comprising mainly the Kano plains, lower Gucha-Migori, lower Awach Tende, Lower 

Awach Kubuon, and Masaai Mara. The major rivers in LVSCA are Sondu, Nyando, Mara, and 

Kunja originating from the MFC, and other small rivers on the northern and southern shorelines of 

Lake Victoria. The catchment area is therefore further subdivided into six river catchment areas: 

Kunja, Mara, Nyando, Sondu, Northern, and Southern shore Streams (Figure 1.2b and Table 1.1). 

Table 1.1 shows the respective river catchment code, length of the main river, catchment area, and 

the mean annual discharge volume of the main rivers in Billion Cubic Metres per year (BCM/yr). 

Three of these rivers; Nyando, Sondu and Mara originate from the MFC (WRMA, 2009). 
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(a)          (b) 

Figure 1.2:  (a) Kenya's six drainage basins (b) the six river basins comprising Lake Victoria 

south catchment area 

 

 Table 1.1: The six main river basins of Lake Victoria south catchment area 

No River Code Length 

(km) 

Catchment area (km
2
) Mean annual discharge 

(BCM/yr) 

1 Nyando  1G 120 3652 0.66 

2 Sondu  1J 173 3500 1.37 

3 Mara  1L 181 8705 1.18 

4 Kuja 1K 149 6600 1.83 

5 Northern Shoreline 1H 27 1985 0.12 

6 Southern Shoreline 1H 65 3156 0.19 

(Source: WRMA, 2009) 

Based on the 2009 Census published in 2010, LVSCA has a population about 7.37 million (19.1% 

of the country‟s total population) with a population density of over 2273 persons per km
2
 

(WRMA, 2009; JICA, 2013), making it one of the most densely populated areas in the country. As 

Legend

Rivers

Sub Basins

 

1 : 1,000,000 
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a result of the high population density, pressure on high potential agricultural land has increased 

leading to the encroachment of water catchment areas; mainly the Mau forest complex and South 

West Mau (SWM) forest reserve in particular. This has resulted in the degradation of the 

catchment‟s main water tower (Kinyanui, 2011; WRMA, 2009; Edwards and Blackie, 1979).  

LVSCA has undergone drastic changes as a result of anthropogenic activities in the last fifty years. 

Analysis of 50-year daily discharge data for the rivers in the LVSCA shows significant variations 

in high and low flows during wet and dry seasons respectively. The flash flood incidents have 

continued to increase during wet seasons and base flows have continued to decrease during dry 

seasons (WRMA 2009). This has been attributed to catchment degradation, mainly the Mau forest 

complex, which has resulted in an increase in runoff coefficient as a result of decreased infiltration 

capacity. 

 

1.7.1 Mau Forest Complex  

The Mau Forest Complex (MFC), the most important source of water in the Rift Valley and the 

Western parts of Kenya, forms the upper catchments of all but one of the main Kenyan rivers west 

of the Rift Valley. MFC is one of the most important sources of water in Kenya providing water 

for multiple uses to millions of people in both Rift Valley and Lake Victoria drainage basins 

(UNEP/GOK, 2008). It is dissected by numerous rivers, river tributaries, and streams which form 

at least a part of the twelve main rivers whose sources are found within this forest complex and 

flow into three of Kenya‟s six main drainage basins, the Rift Valley, Lake Victoria North, and 

Lake Victoria South.  These rivers include Yala, Nyando, Sondu and Mara, which drain into the 

Lake Victoria drainage basins (LVBs), and Kerio, Ewaso Ng‟iro South, Molo and Njoro which 

drain into the Rift Valley drainage basin. Through these rivers, the MFC is the single most 

important source of water for domestic, agricultural, and wildlife uses in Rift Valley and Western 

Kenya regions (UNEP/GOK, 2008; Gereta et al, 2003). 

Rivers from the Mau forests are important economically and ecologically not only to Kenya but 

also to the East African region and the Nile basin countries. Mara River, for instance is a trans-

boundary water resource, which is the only permanent source of water in the Maasai-Mara Game 

Reserve in Kenya and the northern part of the Serengeti National Park in Tanzania (Gereta et al, 

2003). River Ewaso Ng‟iro is the only permanent source of water on the whole of northern front 

of Lake Natron. River Nile, which passes through Uganda, Sudan and Egypt before emptying its 
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waters into the Mediterranean Sea, has its furthest source in Lake Victoria, the largest freshwater 

lake in Africa and the second largest in the world (Jayakrishnan et al, 2005; JICA, 2013).  

The Mau complex sits on the western side of the Great Rift Valley in Kenya spanning north–south 

from Eldama Ravine to Narok and east-west from Nakuru to Kericho (Figure 1.3). The forest 

complex comprises 22 forest blocks including South West Mau, Eastern Mau, Transmara, Mau 

Narok, Maasai Mau, Western Mau, and Southern Mau, covering a total area of slightly over 

400,000 hectares. MFC are undeniably the largest closed canopy montane forest ecosystem in East 

Africa (GOK, 2010a; WRMA, 2009; UNEP/KWS/KFWG/ENSDA 2008; UNEP/GOK, 2008).  

To the east, the East Mau forest is the head water for the Njoro River which drains into Lake 

Nakuru, one of Kenya‟s prime tourist attractions. To the west, the West Mau forms the source of 

river Mara, which passes through Maasai Mara National Reserve, known worldwide for its annual 

migration of animals and therefore a major tourist attraction in the country.  The forest complex, 

therefore occupies a central place in the country‟s economy particularly in the tourism sector, 

where it is key to conservation areas such as Lake Nakuru National Park and the Maasai Mara 

national reserve both of which earn the country in excess of Ksh 6 billion annually as tourism 

attraction sites (UNEP,  2009a) where Ksh 1.16 billion comes from entry fees and Ksh. 5 billion 

comes from direct and indirect revenue; and agriculture and hydropower sectors 

(UNEP/KWS/KFWG/ENSDA, 2008).  

MFC further provides environmental services essential to both food and cash crop production such 

as continuous river flows and favourable microclimates particularly for tea growing. As a result of 

these favourable conditions, the largest tea growing areas in the country are found near the forest 

complex particularly around South West Mau Forest reserve in Kericho, Tinderet and Northern 

Tinderet forests where conditions for optimum tea production are readily present. Such conditions 

include constant moisture, soil temperature of between 16˚C and 25˚C and air temperatures of 

between 10˚C and 30˚C.
 
Tea from this area earns the country in excess of Ksh. 8 billion annually 

in revenue (UNEP/KWS/KFWG/ENSDA, 2008; WRMA, 2009).  

Despite its critical importance in sustaining current and future ecological and socio-economic 

development in Kenya, the MFC water tower, together with other smaller water towers in 

LVSCA, have been invaded for human settlement, agriculture, logging, and charcoal production 

(Figure 1.4). Excisions and widespread encroachments have led to the destruction of over 27% of 
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the MFC in the last two decades resulting in the degradation of these critical water catchment 

areas (WRMA, 2009). Between years 2003 and 2005 a decrease of over 9800 ha of forest cover 

was witnessed in this 400000 ha plus forest complex (UNEP, 2009a). This has negatively 

impacted on four main river catchments in the complex namely Sondu, Mara, Njoro, Molo and 

Lake Nakuru. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3: Location of Kenya’s five water towers (source: DRSRS/KFWG, 2006) 

South West Mau (SWM) forest reserve is the largest of all the blocks of the Mau forest complex 

covering about 84000 ha; about 20% of the MFC. This forest block forms the upper catchment of 

River Sondu, the lifeline of Sondu Miriu hydropower plant and the major source of water for other 

users that include domestic, industrial and agricultural use in the Sondu catchment area. The forest 

is characterised by an afromontane vegetation type (Kinyanjui, 2009) and consists of tall, broad-

leaved evergreen species that give way to bamboo at the higher altitudes. The forest reserve lies 

within 0.5˚ south of the equator and between 2000 m and 2800 m in altitude. The forest and its 

KENYA’S FIVE WATER TOWERS 
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surrounding areas receive an annual rainfall ranging from 1500 mm to 2100 mm. The perennial 

streams emanating from this area form a critical source of water to the main Sondu River, which 

serves the surrounding tea estates and the densely populated lake shores of LVSCA (Edwards and 

Blackie, 1979). 

 

Figure 1.4: Aerial view of Mau forest complex heavily impacted by encroachment on the 

western part of the Maasai Mau (Source: UNEP/KFWG/KWS, 2005) 

 

For purposes of this study, South West Mau forest reserve was chosen as the representative subset 

of the Mau forest complex. The forest reserve is the largest of the 22 forest blocks comprising the 

Mau forest complex, has all the characteristics of whole complex (Kinyanjui, 2009), and above all, 

is the most deforested block since 1973 (UNEP/KFWG, 2006). A study of the South West Mau 

and Eastern Mau forest reserves by UNEP/KFWG (2006) has shown South West Mau as the most 

deforested of all the blocks comprising the MFC and has proposed reforestation and rational land 

use as some of the measures needed to curb the degradation of the MFC catchments. 

This study sought to examine the extent to which deforestation of the Mau forest complex has 

affected surface water yields from this important water tower in view of climate change.  River 

Sondu, which originates form the largest and the most deforested of the forest blocks comprising 

the Mau forest complex (South West Mau), was identified as the most affected by deforestation of 

the MFC. South West Mau (SWM) is mainly located on the upper parts of the Sondu catchment 

area and forms the source of River Sondu (Figure 1.5). Sondu catchment area was therefore 

selected to study the impacts of climate change and deforestation on water yields using Kiptiget 

sub catchment, which is located within the SWM forest reserve, as the unit of study.  
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1.7.2 Sondu River Basin 

Sondu River basin, code 1J, covers an area of about 3500 km
2
 and is located within latitudes 

00˚23'S and 01˚10'S and longitudes 34˚46'E and 35˚45'E. The main water course in this basin 

is River Sondu which is fed by several tributaries, whose head waters originate from the SWM 

forest block. The river crosses the basin in a general east-west direction (Figure 1.5), and drains its 

waters into Lake Victoria at an annual rate of about 1.37 BCM/yr (WRMA, 2009). Figure 1.5 

presents Sondu River catchment area showing the location in Kenya, SWM forest reserve, river 

system, river and climate gauging stations networks that were used in this study. Between the 

source, SWM forest, at about 2680 m above mean sea level, and the river mouth, Lake Victoria at 

about 1134 m above mean sea level, the river covers a total length of about 173 km (WRMA, 

2009). 

 

Figure 1.5: Sondu River catchment area and the river, rainfall and temperature gauging 

stations networks 

Sondu River is important not only as a source of water for agricultural and domestic uses, but also 

as an important source of hydropower. According to a joint presentation by UNEP (2008) and 

others, the river has a potential for hydropower production of about 209 MW out of which only 64 

± 
SONDU CATCHMENT AREA 
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MW have been developed; 60 MW of these are at Sondu-Miriu hydropower complex and 4 MW at 

the upper tributaries of the river which mainly serve the Tea Estates around Kericho. Being the 

primary source of such an important river as the Sondu, SWM forest reserve is therefore critical to 

key economic sectors such as agriculture and hydropower generation in the Sondu basin. 

Excisions and wanton encroachments of the forest reserve have impacted negatively on River 

Sondu (WRMA, 2009; Jayakrishnan et al, 2005). 

 

1.7.3 Characteristics of Sondu Basin 

The four primary basin characteristics that govern water yields into the river network (Arnold et 

al, 1998) include those that affect runoff response time (topography and size), those that affect 

subsurface baseflow (geology and soils), those that affect hydrologic abstraction and runoff 

volumes (landuse/landcover), and those that affect the amount of rain water arriving in the basin 

(climate). These characteristics affect different aspects of streamflow hydrograph and therefore 

deserve to be mentioned briefly.  

 

1.7.3.1 Topography and Size  

Topography and size of the basin influence how much and how quickly rain water reaches the 

river network. Topographic characteristics that affect runoff response time include watershed 

shape, drainage pattern, watershed slope and the stream channel slope. Steep-sloped basins are 

often associated with quick response to rainfall events in terms of flashy runoff unlike the case in 

the relatively flat basins. 

The landform of the Sondu watershed consists of low plains near the lakeshore and rises eastwards 

to volcanic plateaus with dissected margins in the middle parts and rugged terrain with deep 

gorges and V-shaped valleys in the upper eastern parts of the catchment (JICA, 1987).  These 

landforms comprise the Kano plains on the western side and the Londiani Mountains on the 

eastern side which form the lower and the upper Sondu catchment areas respectively. Land 

elevation in the basin varies from about 1134 m above sea level at the lakeshore to about 2900 m 

above sea level at the summit of Londiani Mountains. The basin generally slopes from east 

towards west with relatively flat areas towards Lake Victoria. 
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1.7.3.2 Geology and Soils  

Characteristics that influence subsurface baseflow include soil type, channel bed material, and 

geology (Arnold et al, 1998). The solid geology of the South West Mau forest reserve and the 

surrounding areas consists of tertiary lavas extruded in a westerly and south-westerly direction 

from the Rift valley faults in early Miocene times (Edwards and Blackie, 1979). The lavas are 

notable for the number and thickness of their beds, their freedom from interbedded pyroclasic 

material and their low angle of dip. These phenolite lavas are remarkably uniform in composition 

and are reported to be free from fissures due to lack of subsequent tilting. They weather into deep 

stone free soils, and uniform in physical structure up to a depth of about 6 m (Edwards and 

Blackie, 1979). 

Soils in the Sondu catchment area vary from the lower to the upper parts. The middle and upper 

parts of the catchment area have well drained soils, extremely deep, dark reddish-brown, friable 

clay with humic top soil and with high levels of fertility. The well drained characteristics of the 

soils in the upper catchment area make them more susceptible to erosion, which together with 

changes in land use tend to lead to serious catchment degradations whose impacts result in 

reduced stream flow volumes during dry seasons. The high levels of the soil fertility have attracted 

settlements, farming and other land use activities such as industrial development in the area 

(Nyangaga, 2008; Edwards and Blackie, 1979).There is therefore need to carry out research to 

establish the extent to which these changes in land use are affecting the water yielding capacity of 

the catchment area and to recommend measures to ensure sustainable water resources 

development taking into account the influence of climate change.  

  

1.7.3.3 Landuse/Landcover  

Landuse/landcover (LULC) influences the hydrologic abstractions and runoff volumes through 

canopy interception, evaporation and evapotranspiration dynamics. The dominant land use 

activities in the Sondu River basin include crop and dairy farming. Large areas of the basin have 

been deforested over time mainly for purposes of agricultural activities. The local economy is 

mainly subsistence farming, small and large scale tea plantations and other annual crops that are 

almost entirely rain fed. Other economic activities in the area include dairy farming, sheep rearing, 

fishing and industrial activities (Nyangaga, 2008).  
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These land use activities have significant impacts on the hydrological regime of the catchment 

area as they lead to the destruction of the natural vegetation cover resulting into faster overland 

flow, less infiltration, more erosion, less ground water recharge and thus the frequent flood events 

during wet seasons and to reduced discharge during dry seasons. 

 

1.7.3.4 Climate  

The climate of Sondu basin, just like that of the rest of the eastern side of Lake Victoria basin, is 

largely influenced by the north-south movement of the Inter Tropical Convergence Zone (ITCZ) 

modified by the local orography and the proximity of Lake Victoria, Atlantic and Indian oceans. 

The ITCZ is a zone characterised by low and medium level convergence. It is marked by a line of 

thunderstorms and showers in most areas and marks the boundary between the two inter-

hemispheric monsoon wind systems over the region. This is the main synoptic scale system that 

affects the intensity, distribution and migration of seasonal rainfall over the Eastern Africa region 

(Omeny et al, 2008).  

Generally, airstreams from the northern and the southern hemisphere converge over the ITCZ. 

However, over Africa, this generality is broken since the ITCZ breaks into two spatial components 

over the central parts of Africa to form the zonal and the meridional components. The division into 

the two components has been attributed to the geography of the Rift Valley and the mountain 

chains of the East African region (Okoola, 1996). The zonal component of the ITCZ is a zone of 

convergence between the NE and SW monsoons while the meridional component is observed as a 

quasi-permanent low over the Central African region. The meridional component of ITCZ 

fluctuates from East to West and vice versa with the most eastern extent occurring between July 

and August when the arm is located over the Rift Valley highlands of Kenya. This eastern extent 

of the meridional arm of the ITCZ enhances the penetration of westerly winds further eastwards 

giving rise to enhanced June-July-August (JJA) rainfall over the western side of Kenya, including 

the Sondu basin from the Atlantic Ocean, the Congo basin, and Lake Victoria (Kiangi et al, 1981). 

This is believed to be the cause of the third rainfall peak observed on the western parts of Kenya 

during the JJA season (Figure 1.7). The zonal component of the ITCZ migrates north and south of 

the equator following the seasonal match of the sun with a time lag of about one month. It 

traverses the Sondu catchment area twice a year bringing with it the long rains during the March-

April-May (MAM) season and the short rains during the September-October-November (SON) 

season as shown in Figure 1.7 (Okoola, 1996). 
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The Atlantic and Indian Oceans are the major sources of moisture for the East African region and 

hence greatly influence the regional climate through interactions associated with Oceanic and 

atmospheric circulations (Nyakwanda et al, 2009). The above normal rainfall over the region are 

associated with the low level circulation patterns dominated by easterly inflows from the Indian 

Ocean and westerly inflows from the Atlantic Ocean and the Congo basin. 

Lake Victoria trough induces a mesoscale circulation with a strong diurnal cycle over the lake 

basin region. The existence of a large water body (Lake Victoria) brings about a thermal contrast 

between the land and the water surfaces. This thermal contrast initiates local circulations that 

include land-sea breezes. The temperature contrast between the lake and the land during the day 

and night results in a land breeze during the day and a sea breeze during the night. The land-sea 

breeze contributes to the lake basin in general and the Sondu catchment area in particular having 

rainfall throughout the year which is enhanced during the three main rainfall seasons as shown in 

Figure 1.7 (Sabiiti, 2008).  

Unlike the higher latitudes where climatic patterns are marked by a high seasonal variability of 

temperature and other climatic parameters, the climatic parameter with the highest variability 

within the tropics is rainfall. Being in the tropical zone, seasonal temperature changes are 

relatively small compared to the rainfall due to the insignificant seasonal changes in the solar 

radiation. The warmest month is normally February and July the coldest with an average range of 

about 10˚C between the warmest and the coldest months (Ahrens, 2009).  

 

1.7.3.4.1Temperature  

Figure 1.6 shows the annual cycle of mean monthly temperatures for selected stations in and 

around the area of study. The temperatures range from about 16˚C in the upper parts (Timbilil) in 

July to about 24˚C in the lower parts (Kisumu) in March. The warmest temperatures in the area 

are observed in March while the coolest are observed in July. 

The average temperature over the catchment area is at least 18˚C in all the months and hence the 

area is warm throughout the year. The seasonal difference in average temperature over the area is 

small (2.2˚C) while the difference between day time and night time temperatures is large 

(12.4˚C). Hence the area can be described as being in a tropical type of climate zone (Ahrens, 

2009). 
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Figure 1.6: Mean monthly average air temperature distribution in and around the Sondu basin 

 

1.7.3.4.2 Rainfall  

Figure 1.7 shows the annual cycle of mean monthly total rainfall averaged over the period 1973-

2006 at selected stations within and around the area of study. The figure shows that rainfall 

patterns in the area follow a trimodal pattern with the main rainfall season coming in the months 

of MAM followed by JJA and the short rains in SON with the mean monthly rainfall ranging from 

about 60 mm in January (Ndoinet) to about 284 mm in May (Timbilil). 

 

Figure 1.7: Mean monthly total rainfall distribution over the Sondu basin showing a trimodal 

pattern 
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The average monthly rainfall totals exceed 60 mm in all the months with a mean annual rainfall 

total of more that 1500 mm, the threshold values for a tropical wet type of climate (Ahrens, 2009). 

Hence the area can be described being under a tropical wet type of climate. 

 

1.7.3.4.3 Hydrology  

Figure 1.8 shows the hydrographs of observed mean monthly discharge at Kiptiget and Sondu 

RGSs showing the annual cycle of discharge distribution over the Sondu catchment area. From the 

figure it was evident that February has the lowest discharges in the area while May and September 

have the highest. Sondu RGS, at which over 94% of the catchment area is drained, shows a 

trimodal pattern of discharge while Kiptiget RGS, at which only about 5% of the catchment area is 

drained, shows a bimodal pattern. The lowest discharge values in the basin are observed in the 

month of February while the highest are in May and September. Hence the hydrological year in 

this basin may be considered to begin in February and end in January. 

The peaks and low flows follow the general rainfall pattern in the area quite closely but generally 

lag by about one month except in the month of May where thy coincide. This can be attributed to 

antecedent soil moisture conditions in the month of May following April.   

 

Figure 1.8: Mean monthly hydrographs at Sondu and Kiptiget RGSs 
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1.8 Data Availability and Challenges  

The data required for this study were compiled from different sources and included: 

meteorological, hydrological, topographical, land use, soil type, and GCM outputs. Some of these 

data were obtained from various institutions in Kenya and the Met Office (UK) while others were 

downloaded from the internet. 

Datasets obtained from various institutions in Kenya included: meteorological data from the 

Kenya Meteorological Service (KMS) and hydrological data from the Water Resources 

Management Authority (WRMA); Land use data from the Department of Resource Surveying and 

Remote Sensing (DRSRS) in form of processed LANDSAT satellite imageries; and soil data from 

the Kenya Soil Survey (KSS). Topographical data were obtained from the Digital Elevation Model 

(DEM) downloaded from the global USGS public domain geographic database 

(http://srtm.csi.cgiar.org/.) while GCM outputs were obtained from the Met Office (UK). This 

section presents brief descriptions of the type and source of the datasets used in this study.   

 

1.8.1 Meteorological Data  

Meteorological data used in this study for the analysis of long term trends in the past climate, 

calibration and validation of the climate model outputs are both daily and monthly records of 

rainfall, maximum and minimum temperature. These were obtained from KMS. Seven rainfall and 

three synoptic stations located in and around the area of study were selected to provide the 

required datasets. The selection of the eight stations was based on the length and the quality of 

their data records. All the eight stations had over 30 years of daily data up to 2010 and less than 10 

% of missing records with the longest record starting in 1959 (Kaisugu House) and the shortest 

starting in 1975 (Ndoinet Forest Station). A few stations however did not have data spanning the 

entire period. The names, station codes, location, elevation, period with data, and percentage of 

missing data records are presented in Table 1.2.  

Selection of these stations was guided by the fact that in order for the results to be dependable, 

rain gauge stations should generally be distributed across the basin in such a way that each of the 

main seven sub-catchments in the basin was represented. In selecting the eight stations, due care 

was taken to ensure that as far as possible the WMO recommended minimum network density was 

adhered to. For hilly areas such as the upper parts of the Sondu River catchment area, WMO 

(2008) recommends a minimum rainfall station network density of one station for every 575 km
2
. 

http://srtm.csi.cgiar.org/
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The eight selected stations were way above the recommended minimum threshold since on 

average each of the rainfall station serves about 437 km
2
. The other criterion for selecting the rain 

gauge stations was their location relative to the stream gauging station. WMO (2008) recommends 

that the location of rain gauges be co-ordinated with the location of the stream flow gauges so that 

basin rainfall can be estimated for each stream gauging station. Such locations are generally on the 

upstream side of the River Gauging Stations (RGS). 

Table 1.2: Table of the meteorological stations used in the study 

No Station 

Identification  

Location Data Availability (%) 

Missing  

Name Code Lat. Long. Alt. (m) Start End Length (yrs) 

1 Kaisugu  9035075 -0.3167 35.3667 2134 1960 2009 50 7.5 

2 Chagaik 9035235 -0.3333 35.3333 1829 1960 2006 47 6.9 

3 Keresoi  9035240 -0.2833 35.5333 2682 1962 2011 50 6.2 

4 Timbilil 9035244 -0.3500 35.3500 2073 1964 2010 47 0.9 

5 Sotik 9035262 -0.7000 35.1000 2134 1966 2007 42 7.1 

6 Bomet 9035265 -0.7833 35.3500 1951 1967 2009 43 12 

7 Kericho 9035279 -0.3667 35.2700 1976 1973 2011 39 0.9 

8 Ndoinet 9035292 -0.4167 35.5500 2438 1975 2011 37 9.7 

 

Of the eight meteorological stations selected from within the basin for the study only two, Kericho 

and Timbilil, had temperature data. All the others had only rainfall records. The spatial 

distribution of the rainfall and temperature stations is presented in Figure 1.5 which shows good 

coverage of the upper parts of the basin. The meteorological station network coverage 

progressively becomes sparse towards the lower parts of the basin.  

 

1.8.2 Discharge Data 

The main objective of the stream flow gauging network is to obtain as much information as 

possible on the availability of surface water resources and their spatial and temporal distributions. 

Specific locations of these gauges should therefore be governed by topographic, geologic and 

climatic considerations (WMO, 2008).  Most countries in the world, Kenya included, operate 

national river discharge monitoring networks to meet primary multiple needs that include water 

resources management and development, as well as disaster mitigation. The river discharge data 
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collected in an endeavour to meet the primary needs may also be utilised for research programmes, 

as is the case in this study, to improve our understanding of the catchment hydrology (WMO, 

2009).  

Hydrological data used in this study are mainly daily streamflow records obtained from a network 

of seven selected river gauging stations (RGSs) which are manned by the Water Resources 

Management Authority (WRMA). In selecting the network of RGSs, the minimum recommended 

density of 1875 square kilometres per station (WMO, 2008) was adhered to. The selected network 

covers about 188 square kilometres per station, which is well above the WMO recommended 

minimum threshold density. River discharge is a critical water cycle variable since it integrates all 

processes occurring in a river basin and also provides a hydrological output variable that can 

readily be measured besides serving as an indicator for climate change and variability by reflecting 

changes in rainfall and evapotranspiration (WMO, 2009).  

Sondu River gauging station, 1JG01, is located near the main outlet of the study area whereas the 

rest are upstream tributary flow gauging stations. The observed discharge data for the Sondu Miriu 

River basin are available at the outlets of different sub-basins as presented in Table 1.3 which 

shows the names, station code, length of period with data, percentage of missing data, area 

upstream of station location, location and elevation of the station above mean sea level (msl), with 

their spatial distribution presented in Figure 1.3. The lengths of records in each sub-basin are not 

the same and span different time periods with at least 30 years of data. 

Table 1.3: Table of River gauging stations (RGS) used in the study 

No RGS 

Identification RGS Location 

Upstream 

Area 

 

Data Availability 

Missing 

(%) Name Code Lat. Long. 

Alt. 

(m) Start End Length (yrs} 

1 Kiptiget 1JA02 -0.5513 35.2569 1900 179 1956 1993 37 18.9 

2 Lagan 1JC14 -0.4027 35.3333 2100 5 1957 1996 40 15.0 

3 Ndoinet 1JA05 -0.4138 35.5833 2500 49 1957 1992 36 16.7 

4 Sambret1 1JC13 -0.3736 35.3638 1920 8 1957 1995 39 10.2 

5 Sambret2 1JC15 -0.3638 35.3902 1960 3 1960 1996 37 13.5 

6 Sambret3 1JC16 -0.3652 35.3777 2180 5 1960 1996 37 8.1 

7 Sondu 1JG01 -0.3930 35.0083 1500 3287 1946 1991 46 15.2 
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1.8.3 Surface Characteristics Data 

In addition to the more conventional Hydro-meteorological measurements, there is need to 

measure other aspects of fresh water environment. This involves measurements of basin 

characteristics that influence the basin‟s hydrology, such as: Topography, land use, soil type, and 

land cover patterns. In this section topography, land use patterns, soil types, and land cover 

characteristics of the Sondu basin are presented as non climate data that influence hydrology of a 

watershed. 

  

1.8.3.1 Topography Data 

Topography data were obtained from the Shuttle Radar Topography Mission (SRTM) 90 m by 90 

m grid resolution Digital Elevation Model (DEM) developed jointly by the National Aeronautical 

and Space Administration (NASA) and the National Geospatial Intelligence Agency (NGIA) and 

available from the United States Geological Survey (USGS) website (USGS, 2004). DEM is a 

three dimensional representation of the continuously varying topographic surface of the earth 

consisting of a sampled array of elevations for a number of ground positions at regularly spaced 

intervals (Thomson et al, 2001). The array of elevations represents the three-dimensional form of 

the earth‟s surface on a regular grid that describes the elevation of any point in a given area at a 

specified spatial resolution. 

DEM data provide good terrain representation and are routinely applied in hydrological modelling 

to derive flow networks and watershed boundaries for given outlet points using GIS technology 

(Pryde et al, 2007). They serve as a common data source for terrain analysis and other spatial 

applications and are therefore critical in hydrological modelling. SWAT model uses DEM data for 

catchment and drainage network delineation, routing analysis, and HRU definition. DEM therefore 

forms one of the primary SWAT input datasets for hydrological modelling (Thomson et al, 2001) 

and was used in this study to define the topography of and to delineate Sondu catchment as well as 

to analyse the drainage patterns of the land surface terrain (Setegn et al, 2008).  

 

1.8.3.2 Land Use/Land Cover Data 

Land use is the phrase commonly used to describe human activities that modify the landscapes 

including the material covering the earth‟s surface while land cover is used to describe the 

physical material that actually covers the earth‟s surface (Gihui, 2008; Comber, 2007). 
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Anthropogenic land use activities that modify the landscapes include agriculture, commerce, 

settlement, and recreation while land cover includes crops, water, forest, and buildings among 

others. Land cover is a good indicator of prevailing land use activities since whatever covers the 

land surface is determined by the type of land use activities and hence the coupled use of the term 

land use/ land covers (LULC) (Tucker et al, 1985). 

Accurate and timely information on the distribution of vegetation on the earth‟s surface is one of 

the requisites for understanding how changes in LULC affect the hydrologic cycle and hence 

water yields into the streams in a river basin. Traditionally the principal source of such 

information has been vegetation mapping by field survey but lately satellite remote sensing data 

has become a viable alternative (Tucker et al, 1985). Land cover mapping by field survey is 

labour-intensive and requires synthesis of different observations when large areas are being 

surveyed; which introduces further errors in the data. On the other hand satellite remote sensing 

data with its synoptic overview, accurately maps land cover types over large areas (Tucker et al, 

1985). In this study, analyses of remotely sensed LANDSAT imageries were used to obtain LULC 

datasets over the area of study on account of their accuracy, affordability and accessibility. 

LANDSAT imageries for four time periods; 1970s, 1980s, 1990s, and 2000s from Multispectral 

Scanner System (MSS), Thematic Mapper (TM), Enhanced Thematic Mapper (ETM), and 

Enhanced Thematic Mapper Plus (ETM+) sensors aboard the National Aeronautical and Space 

Administration (NASA) LANDSAT satellites were used to provide the LULC datasets for the area 

of study. The four processed LANDSAT imageries were obtained from the Department of 

Resource Survey and Remote Sensing (DRSRS) in Kenya. DRSRS carries out a number of 

surveys aimed at providing LULC data by use of sample aerial photography and processing of 

satellite images. The LULC data, which are a result of classifying raw satellite data into LULC 

categories based on the return value of the satellite image, were then processed to obtain LULC 

maps for the years 1973, 1986, 2000, and 2010 in digital format.  

 

1.8.3.3 Soil Type Data 

Soil data for this study were obtained in digital map format from the Kenya Soil and Terrain 

(KENSOTER) database compiled by the Kenya Soil Survey (KSS) in conjunction with the 

International Soil Reference and Information Centre (ISRIC) according to the Soil and Terrain 

(SOTER) methodology (www.isric.org/data/soil-and-terrain-database-kenya-primary-data, April 

http://www.isric.org/data/soil-and-terrain-database-kenya-primary-data
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12, 2012). Soil data is a critical input for any hydrological simulation model (Nam et al, 2010; 

Melesse, 2006). Soil properties such as texture and hydraulic conductivity affect hydrologic 

processes such as infiltration and lateral transport of water in the soil.  

The soil data used by SWAT is divided into two major groups according to their characteristics; 

physical and chemical. In this study, physical characteristics of the soil data were considered since 

they govern the movement of water through the soil profile and thus have a major impact on the 

cycling of water within each hydrologic response unit (Arnold et al, 2011). Soils are generally 

classified into four main hydrologic groups which comprise soils with similar runoff potential 

under similar storm and surface cover conditions namely: A, B, C, and D based mainly on their 

infiltration characteristics as described in Table 1.4. 

Table 1.4: Soil hydraulic groups as defined by the United States Natural Resource Conservation 

Service (NRCS) 

Soil class Characteristics 

A Have a high infiltration rate even when thoroughly wetted, and low runoff potential. 

Consist mainly of deep, well drained to excessively drained sands and gravel 

B Have moderate infiltration rate when thoroughly wetted, hence moderate runoff 

potential. Consist mainly of  moderately deep to deep, moderately well drained to 

well drained soils that have moderately fine to moderately course textures 

C Have low infiltration rates when thoroughly wetted and hence have moderate 

tending to high runoff potential. Consist mainly of a layer that impedes downward 

movement of water or have a moderately fine to fine texture 

D Have a very slow infiltration rate when thoroughly wetted and hence high runoff 

potential,  have a permanent water table,  have a clay pan or clay layer at or near the 

surface, and shallow soils over neatly impervious material 

 (Source: Neitsch et al, 2011) 

In this classification, A has the highest rate of infiltration while D has the lowest. The soil 

properties that influence runoff potential in a watershed are those that impact the minimum rate of 

infiltration for a bare soil after prolonged wetting. These soil properties include depth to 

seasonally higher water table, saturated hydraulic conductivity, and depth to a very slowly varying 

permeable layer (Neitsch et al, 2011). Soils within the Sondu basin largely lie in group C which is 
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characterized by slow infiltration rate when fully wetted. The soils have moderately fine to fine 

texture and a slow rate of water transmission which gives them a high runoff potential (Arnold et 

al, 2011). 

Besides serving as a growth medium for vegetation that influences surface hydrology, soil also 

serves as a major source of water to streams and rivers. Essentially the soil particle size, 

distribution, and the soil structure determine the moisture characteristics of a particular soil class. 

Soil particles are mainly composed of sands, silts, clays, and organic matter. The fraction of each 

soil particle type in a given soil sample determines the soil moisture characteristics as well as the 

movement of water in the soil (Arnold et al, 2011). In general, the larger the soil particle, the 

better the soil drainage will be. On the other hand the fine sized soil particles such as clays and 

silts tend to have poor drainage characteristics but are able to hold onto more water and for a 

longer period which they release more slowly and thereby ensuring a longer period of water 

supply to a stream (Neitsch et al, 2011).    
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

This Chapter presents an overview of the background information on climate and climate change, 

impacts of climate change on water resources, the role of forests in the climate system and 

hydrologic cycle, concept of water yields, climate modelling, and hydrological modelling. 

 

2.2 Climate Variability and Climate Change 

In the IPCC (2007) fourth assessment report climate is defined as the statistical description of 

weather elements in terms of the mean and variability over a period of time ranging from months 

to millions of years with thirty years being the classical averaging period of climatic variables in 

order to properly determine the climate of a particular region. Climate, whether global, regional or 

local, is a result of interactions between the five components of the climate system; the 

atmosphere, seas and oceans, ice, land surface and vegetation cover, and surface waters (Wilson et 

al, 2009; Miller and Yates, 2005). The interactive response of the components of the climate 

system to the external energy sources such as the solar radiation and anthropogenic changes in any 

of the components of climate system, determine the global as well as regional background 

conditions that govern the world‟s weather and climate patterns.  

Solar radiation is the main source of energy that drives the climate system (UNEP, 2009c). This 

energy passes through and interacts with the atmosphere before reaching the earth‟s surface. Any 

human induced changes to the composition of the atmosphere and the land surface constitute 

another significant source of energy to the climate system because it alters the energy balance 

between the incoming solar and outgoing terrestrial radiation. Approximately 240 Wm
-2

 of solar 

energy reaches the top of the earth‟s atmosphere from the sun (Le Treut et al, 2007). About two 

thirds of this energy is absorbed by the earth‟s surface, and thus warms the atmosphere and the 

earth‟s surface while the rest is reflected back to space. To balance the incoming solar radiation, 

the Earth must radiate the same amount of energy back to space but in the long wave radiation 

band. 

Within the atmosphere there are some gases that include carbon dioxide (CO2), methane (CH4), 

nitrous oxide (N2O), chlorofluorocarbons (CFCs), hydro-fluorocarbons, per fluorocarbons, halons 

and sulphur hexafluoride that selectively absorb radiation. These gases are transparent to the 
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incoming short wave radiation but absorb and radiate long wave radiation resulting in enhanced 

warming of the Earth‟s surface and the atmosphere. These gases are referred to as greenhouse 

gases (GHGs) because of their natural “greenhouse effect” that keeps the earth‟s average surface 

temperature approximately 33
o
C warmer than what simple radiation Physics would suggest for a 

transparent atmosphere (IPCC, 2007).  

The climate of a particular region is determined by both local and distant processes with solar 

radiation providing the principal forcing. The effect of the solar radiation is generally modulated 

by the composition of the atmosphere and various feedback processes within the global climate 

system such as the extent of the surface vegetation cover (Wilson et al, 2009). Any changes in the 

characteristics of any of the components of the climate system such as the concentration of GHGs 

in the atmosphere or in the extent of the earth‟s vegetation cover as a result of changes in land use, 

shifts the energy balance between the external Radiative Forcings (RF) and the components of the 

climate system. This shift in the energy balance leads to long term changes in the global and 

regional climate patterns as reflected by positive trends in the global temperature which serves as 

an indicator of climate change (IPCC, 2007). 

IPCC (2007) defines climate change as a change in the state of climate in terms of the mean and or 

variability over an extended period of time typically decades or longer due to internal or external 

forcings. Internal forcings of climate change include changes in either one or more of the five 

components of the climate system while external forcings include natural processes such as 

volcanic activities, changes in the solar cycles, or external Radiative Forcings (RF) resulting from 

persistent anthropogenic changes in the composition of the atmosphere or the physical properties 

of the land surface (Bates et al, 2008; Miller and Yates, 2005). Increased concentrations of GHGs 

in the atmosphere and changes in the albedo of the earth‟s surface as a result landuse change have 

resulted in enhanced global average surface temperatures. Climate is driven by solar radiation 

energy; if the energy reaching the climate system changes, the climate also changes. For example 

if the orbital distance of the Earth from the sun increases, the radiation reduces and the mean 

temperatures of the climate system decrease bringing about cold periods all over the globe known 

as glacier periods. On the other hand if the orbital distance decreases the energy increases bringing 

about warm periods.  
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Human activities have contributed to global climate change by altering the composition of the 

Earth‟s atmosphere through emission of GHGs and aerosols, and to regional climate change by 

changing the surface albedo through socio-economic activities that have altered the Earth‟s 

vegetation cover. Changes in the composition of the atmosphere have led to a warming of the 

climate system and thereby changing both the global and regional climate patterns (Forster et al, 

2007; UNEP/IVM, 1998). It has been demonstrated beyond reasonable doubt that climate is 

changing due to anthropogenic green house gases (IPCC, 2007).  

Globally we are already committed to future substantial climate change over the next thirty years 

and beyond. This change is likely to accelerate over the rest of the 21
st
 century (IPCC, 2007). It is 

therefore critical that more detailed regional climate change predictions be made available so that 

cost effective adaptation and appropriate mitigation actions can be planned. If this is not done, the 

costs of adaptation are potentially high both economically and socially (Trenberth et al, 2007; Met 

Office, 2007). In this study detailed regional climate change predictions were made for the East 

African region with special focus on Sondu River catchment area. Results of these predictions 

were used to analyse the impacts of climate change on surface water yields from the Mau forest 

complex catchments.  

Since the beginning of the industrial revolution in the 1750s, human activities, primarily the 

burning of fossil fuels and clearing of forests in pursuit of socio-economic activities have greatly 

intensified the natural green house effects. This has resulted in the addition of more of the long-

lived greenhouse gases (LLGHGs) into the atmosphere and the destruction of carbon dioxide sinks 

leading to a general global warming condition (IPCC, 2007; McBean and Motiee, 2006; Miller 

and Yates, 2005). This has contributed to a shift in the radiation balance between the incoming 

solar radiation and the outgoing terrestrial radiation. 

Climate of Kenya is mainly associated with the northward-southward movement of Inter Tropical 

Convergence Zone (ITCZ). The great differences in the country‟s topography bring about 

considerable variations of climate throughout Kenya. The sun crosses the Kenyan territory twice 

in a year where it is overhead on March 21
st
 on its way to the northern hemisphere and again on 

September 21
st
 on its way towards the southern hemisphere. The ITCZ is expected to be most 

active about a month after the sun is overhead. These periods correspond to the two main rainy 

seasons in Kenya; the long rains in the March-April-May (MAM) and the short rains in the 
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September-October-November (SON) seasons respectively (Mogaka et al, 2006; Okoola, 1996; 

JICA, 1992). 

The climate of a region largely determines the volume of water supplied to the drainage basin 

through precipitation as well as the proportion of that precipitation that is returned to the 

atmosphere through evapotranspiration before it is converted into runoff, stream flow and ground 

water storage (Neitsh et al, 2011). Climate determines the drying power of the atmosphere (net 

radiation and vapour pressure deficit) and the supply of water in the catchment (intercepted by the 

canopy or stored on ground surface or in the soil) both of which influence evapotranspiration 

(Creed et al, 2014) Kenya‟s mean annual rainfall is about 500 mm varying between 250 mm in the 

ASALs in the northern and eastern parts of the country to over 2000 mm in the highlands and 

mountain ecosystems and generally follows the seasonal pattern of the ITCZ ( Kiangi et al, 1981; 

Omeny et al, 2008). The area west of the Rift Valley that includes the Mau Forest Complex 

(MFC) and Lake Victoria Basin (LVB), has an almost continuous rainfall pattern with most of the 

rain falling between April and August which is the long rain season in this region.  

In order to estimate the impacts of climate change on river flows from the MFC, different 

scenarios of future climate conditions are required as inputs to a hydrological model to calculate 

the corresponding discharges. Different future climate change scenarios are described in the next 

section. 

 

2.2.1 Climate Change Scenarios 

Climate change scenarios are representations of the difference between possible future climate 

scenarios, based on climate projections resulting from responses of the climate system to scenarios 

of greenhouse gas and aerosol emissions as simulated by climate models, and the baseline climate 

(Wilson et al, 2009; Jones et al, 2004). They are plausible descriptions of what future states of the 

global climate would be like based on coherent and internally consistent set of assumptions 

concerning the driving forces and their key relationships (Miller and Yates, 2005). Such scenarios 

are usually constructed for explicit use in investigating the potential impacts of anthropogenic 

climate change.  

The driving forces of anthropogenic climate change include concentrations of GHGs and aerosols 

coming from emissions resulting from social-economic and technological developments (IPCC, 
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2007). There is increasing evidence that human activities have already influenced climate and that 

this influence continues to increase and will continue to increase into the future leading to hitherto 

unknown climate scenarios (Mitchell et al, 1999). It is therefore important to establish possible 

future scenarios of climate change resulting from human activities in order to be able to assess the 

economic, ecological and social consequences of climate change and thereby decide on the 

necessary adaptive and mitigative measures. 

 

2.2.2 Emissions Scenarios 

Many climate change scenarios examine the climate associated with the levels of concentration of 

carbon dioxide and other greenhouse gases in the atmosphere as a result of natural and 

anthropogenic emissions. Emissions scenarios are driven by demographic, technological and 

economic development. Since it is difficult to know exactly how anthropogenic emissions will 

change in future, IPCC (2000) developed and adopted plausible representations of future 

emissions of radiatively active substances in its Special Report on Emissions Scenarios (SRES) 

which are used to drive the Global Circulation Models (GCMs) to develop climate change 

scenarios using combinations of demographic change, social, economic, and broad technological 

developments. SRES provide a full suite of GHGs and aerosols that comprise the four scenario 

families namely A1, A2, B1 and B2 (Figure 2.3) which are all considered equally sound. 

Scenarios within each family follow the same storyline of how the world will develop 

demographically, socially, economically, technologically, and environmentally. It is important to 

note that none of these scenarios includes any future policies that explicitly address climate 

change. They are therefore only used for analysis of possible climate change, its impacts, and 

options to mitigate the climate change (IPCC, 2007; Jones et al, 2004). 

SRES A2 scenario, which has been used in this study, is based on a continuously growing 

population scenario of about 8.2 billion by 2020, 11.3 billion by 2050, and 15.1 billion by 2100 

(IPCC, 2000). SRES A2 scenario describes a heterogeneous world characterised by: a world of 

independently operating and self-reliant nations, a regionally oriented economic development, and 

a slower and more fragmented technological change and improvement to per capita income (CCC, 

2009). This is the worst case scenario that assumes business as usual and no change in policy.  
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2.3 Impacts of Climate Change on Water Resources 

Water resources are inextricably linked with climate (Kundzewicz et al, 2007). Hence the prospect 

of global climate change has serious implications on water resources and regional development. 

The driving force of the hydrologic cycle, the lifeline of all the world‟s water resources, is the 

state of the climate. The hydrologic cycle, whose main components are evapotranspiration, 

precipitation and runoff, is an integral component of the climate system. The climate of a 

watershed provides the moisture and energy inputs that control the water balance and determine 

the relative importance of the different components of the hydrologic cycle (Neitsch et al, 2011). 

The character of precipitation is greatly influenced by temperature and other climatic elements 

(Bates et al, 2008). Elevated global mean temperatures will therefore result in changes in regional 

precipitation, evapotranspiration, and soil moisture content. Changes in precipitation, temperature 

and evaporative demand, the most dominant climate drivers for water availability, will alter the 

flow regimes in streams and rivers as well as the ground water recharge rates and depths of ground 

water tables and consequently water quality and quantity will be altered (Akhtar et al, 2008; 

Whitehead et al, 2006). This will have an impact on the freshwater yields from the existing storage 

facilities such as the MFC water tower (IPCC, 2007; UNEP/IVM, 1998).  

Changes in river flow volumes as well as lake and wetland levels due to climate change are 

primarily functions of changes in the volume and timing of rainfall and the rate of 

evapotranspiration (Miller and Yates, 2005). Several studies of the potential effects of climate 

change on river flow volumes have been published (Bates et al, 2008); most of them are 

concentrated in Europe, North America and Australia with a small number from Asia but very few 

in Africa.  

Widespread increases in heavy precipitation events as a result of global warming have been 

observed even in places where total precipitation amounts have decreased (IPCC, 2007).  As 

climate changes, the probability of certain weather events occurring are also affected. Some 

become more frequent and intense while others become less frequent and mild. Depending on the 

condition of the other climatic parameters some regions will experience heavy precipitation events 

while others will experience less than average precipitation events. Both of these changes will 

impact on the freshwater yields from water catchment areas.  
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A consequence of global warming from human-induced enhanced green house effect will be 

increased evaporation subject to availability of adequate surface moisture. More precipitation will 

be associated with higher temperatures since the water holding capacity of the atmosphere will 

increase with the warmer conditions. According to the IPCC (2007) fourth assessment report the 

water holding capacity of the atmosphere increases by about 7% for every 1
o
C increase in 

temperature. Climate model simulations and empirical evidence, indicate that warmer climates due 

to increased water vapour in the atmosphere, will lead to more intense precipitation events even 

when the total annual amount is reduced slightly (IPCC, 2007).  

According to Bates et al (2008) in the IPCC technical paper IV, trends in major river basins in the 

world indicate about 17% decrease in runoff. Observational records and climate projections 

provide abundant evidence that fresh waters are vulnerable and have the potential to be strongly 

impacted by climate change, with wide ranging consequences for human societies and ecosystems. 

Impacts of particular concern to Africa are related to water resources, food production, human 

health, and desertification. Water resources are a key area of vulnerability affecting water supply 

for household use, agriculture, and industry. Population growth and degradation of water resources 

are significant threats to water security in many parts of Africa including Kenya.  

One of Kenya‟s water vulnerability is the high variability with which annual rainfall occurs 

(Mogaka et al, 2006). This is further exacerbated by the extensive degradation of the country‟s 

water resources such as the Mau forest complex water tower (Kinyanjui, 2011). Alterations of the 

forest cover in this catchment are believed to have altered the catchment‟s response to rainfall, the 

ultimate source of water in a catchment area. This is likely to be made worse by climate change as 

heavy rains are expected to lead to increased erosion from degraded land surface leading to 

accelerated siltation, reduced recharge of groundwater and therefore loss of water storage capacity 

in Kenya‟s largest water tower  (Mogaka et al, 2006).  

 

2.4 The Role of Forests and their Impact on Water Resources 

FAO (2008) warns that climate change will have a significant effect on hydrology and water 

resources manifested in increased catastrophes such as floods, droughts and landslides, all of 

which may be influenced by changes in forest cover. The world‟s forests fulfill many roles such as 

providing renewable raw materials and energy, providing environmental services that include 

maintaining biodiversity, protecting land and water resources and also play a critical role in 
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climate change mitigation (Jacobs et al, 2007). Increasing areas of the world‟s forests, which 

occupy about 20 per cent (FAO, 2006) of the total land area, are designated primarily for soil, 

water and environmental conservation. Locally, forests protect water resources by reducing 

surface erosion and sedimentation, filtering water pollutants through infiltration and forest litter, 

regulating water yields, moderating floods, enhancing precipitation and mitigating salinity (GOK, 

2010b). Although most of the earth‟s surface is water, there is insufficient water to meet the needs 

of the world‟s human population. The United Nations International Year of Fresh Water (IYF) in 

2003 highlighted the critical need to have water available in the right place, in sufficient amounts, 

of sufficient quality and at the right time. In this regard forests play a key role.  

Forests trap radiation in their multilayered canopies which results in a net warming of the 

ecosystem (GOK, 2010b). This warming generates more thermal turbulence above the forest cover 

which favours the formation of clouds and hence rainfall over and close to the forest areas. 

Evapotranpiration from the forests adds to the existing atmospheric moisture thus enhancing cloud 

formation. By intercepting precipitation, evaporating moisture from vegetative surfaces, 

transpiring soil moisture, capturing fog water and maintaining soil infiltration capacity, forests 

play a key role in influencing the amount of water available from groundwater, rivers and streams, 

and other surface water bodies (FAO, 2008). When rainfall reaches the forest floor surface, it 

distributes into various components that include surface runoff, interflow, ground water recharge, 

continental evaporation, and plant intake. In this regard, forests play a major role in moderating 

and regulating the hydrology of river catchments since they influence how the net rainfall is 

distributed into the various stream flow components.  

By maintaining and improving soil infiltration and water storage capacity, forests influence the 

timing of fresh water delivery to streams and rivers in a catchment area. Along streams and rivers, 

forests provide a shading effect thereby reducing water temperatures and hence loss through 

evaporation. As catchment land cover, protected and well managed forests tend to increase the 

hydrological safety of a water catchment area and thereby leading to water being one of the most 

important products  of the forested watershed (FAO, 2008). 

   

2.5 Concept of Water Yields  

Water yield from a water resource system is the amount of water that can be abstracted from the 

system at a certain rate over a specified period of time such as one year (WMO, 2009). The rate at 
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which water is abstracted may vary throughout the year depending on the level of demand which 

in most cases depends on the season.  In the case of unregulated natural stream flow, and for the 

purpose of this study, water yield is that average amount of water flowing in the catchment‟s 

stream channel system (Kienzle and Mueller, 2013). For the purpose of this study, a catchment 

area is defined as that basin-shaped area bounded by natural features from which surface and sub-

surface water flows into streams, rivers and wetlands.  

Rivers are significantly influenced by the catchment areas that they drain (Hynes, 1975). They 

receive their water from these catchments and therefore any changes in the characteristics of the 

catchments such as vegetative cover as a result of anthropogenic activities influence the volume 

and timing of water flowing in the river system within the catchment area. The changes occurring 

in the catchment area are always reflected in stream flow volumes and timing. Rivers are more 

than just channels with flowing water; they are part and parcel of the catchment area that they 

drain. These catchment areas have vegetative covers which under natural conditions are usually 

forests. The character of the vegetative cover in the catchment area together with the 

characteristics of their soils influence the volume and timing of water in the stream channel 

system. 

Studies conducted by Hewlett and Helvey (1970) in the Coweeta Forest in North Carolina and 

reported by Hynes (1975) indicate that watersheds under natural forest cover rarely experience 

surface runoff since the soils under such conditions absorb most of the rain water and then go on 

yielding it to the stream channels long after the rain has ceased. Most of the water that enters the 

stream channel system has been in contact with the soil for some time. The water yielded to the 

streams is therefore a function of the soil characteristics, the slope of the valley, patterns of 

rainfall, as well as the type and extent of the vegetative cover which collectively determine the 

flow regimes in the rivers. Removal of the natural forest cover affects soil characteristics and 

therefore the water yielding capacity of the watershed.  

Maintaining natural forest and other vegetative cover on the river‟s catchment areas enhance 

infiltration and the subsequent ground water recharge. It has been shown that forested catchments 

provide natural water storage facilities that release water slowly into the river system at a near 

constant rate throughout the year and this ensures higher water yields even during the dry seasons 

(WMO, 2009). Land use changes as a result of human activities such as deforestation and 

afforestation on the upper catchments of a river alter the natural stream flow characteristics 
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leading to significant impacts on water yields. The loss of forest cover contributes to less 

infiltration and hence less storage of water for release during the dry seasons. Observed changes in 

surface water yields reflect the impacts of human activities on the upper catchments. In totally 

natural forest catchments, the observed stream flows reflect the natural flow conditions. Any long 

term deviation from the natural flow may be considered as an indicator of human impacts on the 

catchment area as a result of population growth and the consequent landuse changes, climate 

change or a combination of both (Di Baldassarre et al, 2011; FAO, 2008).  

 

2.5.1 Impacts of Climate Change on Water Yields 

There is growing evidence that global temperatures are currently rising at an unprecedented rate 

(WMO, 2009) with some GCMs showing evidence that this could cause changes in annual 

precipitation. According to WMO (2009) scenario analysis for assessing the potential impacts of 

climate change on stream flow, and hence water yields from river catchment areas, indicate that in 

some areas stream flow could decrease by as much as 10% by the year 2015. Such changes could 

have significant impacts on the water yield characteristics of water resources systems. It is 

therefore prudent to anticipate the inevitable eventuality of climate change and perform scenario 

analysis for areas that are vulnerable in order to assess the impacts that climate change might bring 

on the water yielding capacity of water resources such as the Mau forest complex water tower.  

It is important that impacts of climate change on water yields be considered in the long term 

planning of water resources systems and the related economic activities such as hydropower, water 

supply, and irrigation. To do this, water management bodies and policy makers need reliable 

hydrological information on the likelihood and magnitude of the impacts of climate change on the 

regional as well as local water cycle. Previously, such planning has assumed that climate will 

remain unchanged. This is no longer feasible since climate change is now a certainty (Mauser and 

Marke, 2009; IPCC, 2007). 

  

2.5.2 Impacts of Forests on Water Yields 

Availability of clean water in many parts of the world is increasingly becoming threatened by 

overuse, misuse and pollution (Kundzewicz et al, 2007). In this context, it is important that the 

relationship between forests and freshwater be understood and be accorded high priority in the 

management of water resources. Forests have value in conservation and regulation of water 



39 

 

supplies, soil conservation, and maintaining the natural flow regimes of rivers (Edwards and 

Blackie, 1979).  

Until a few years ago, forests and water policies were based on the assumption that under any 

hydrological and ecological circumstances, forest is the best land cover for maximising water 

yields, regulating seasonal flows and ensuring high water quality (FAO, 2008). Going by this 

assumption, conservation of forest cover in upstream watersheds would be the most effective 

measure for enhancing water availability as well as for preventing floods in downstream areas. 

However, research on forest hydrology conducted between 1980s and 1990s (FAO, 2008) suggest 

that generalisation about the impact of such land cover on downstream annual and seasonal flows 

can be misleading. 

Forests and other vegetation cover influence the water cycle because they are a primary 

component for the exchange of water between the land surface and the atmosphere. They also 

influence the local hydrology since the uncompacted forest soils are known to have the highest 

infiltration rates and storage capacities (FAO, 2008). Under natural forest conditions, infiltration 

levels are well above net rainfall intensities and therefore surface runoff is rare. Soils under such 

conditions retain large volumes of water and this has the effect of reducing the frequency and the 

degree of overland flow and therefore flooding which in turn ensures supply of stream flow water 

from interflow (Muhati et al, 2008; Hoover and Hursh, 1943). 

When natural forest vegetation is converted to agriculture and other land uses, both opportunities 

for infiltration and storage are greatly reduced in the long term as a result of subsequent soil 

compaction and the high rate at which precipitation reaches the ground surface; often exceeding 

the infiltration rates. This reduces the period within which the catchment can continue yielding 

water to the stream channel system after the rainfall has ceased (Hoover and Hursh, 1943). The 

overall effect that changes from forest to various other types of land uses have on the local 

hydrology depends on the combined effect of differences in interception, transpiration and 

infiltration capacities. Rain falling on a forest canopy reaches the ground below the canopy 

through three different routes namely: the direct through fall, stem flow and crown drip (FAO, 

2008). These three components constitute the net precipitation on the forest ground. The rest of the 

rainfall is intercepted by the forest canopy and evaporated back into the atmosphere before 

reaching the forest floor. Interception therefore constitutes a net loss of water to the forest 

ecosystem.  
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Where the forest soils are undisturbed, the net precipitation infiltrates the soil through the thick 

layer of dead organic matter that is so characteristic of natural forests. Some of the infiltrated 

water eventually drains into ground water bodies that feed the springs and therefore maintain the 

base flow of streams that emanate from the catchments associated with the particular forest 

ecosystem while the rest is lost from the soil through transpiration (UNESCO, 2000). 

Deforestation may therefore lead to a change in the hydrologic regime over an area such as Sondu 

basin where one of the issues is the conversion of natural forests to alternative land uses such as 

agriculture and settlements (Muhati et al, 2008). 

Over the last four decades, the Sondu basin has undergone environmental changes on account of 

both natural and anthropogenic factors. The natural factors include prolonged droughts while 

anthropogenic factors include the massive deforestation of the South West Mau forest (Kinyanjui, 

2009) that forms the upper catchment area which is the source of the majority of the tributaries 

that feed the main River Sondu (Nyangaga, 2008).  

 

2.5.3 Forests as Major Sources of Water 

All mountain forests have an important role in stabilising water quality and maintaining natural 

flow patterns of rivers and streams originating from them (Bubb et al, 2004). Tropical 

mountainous cloud forests have the unique additional value of capturing water from condensation 

of low level clouds and fog. This stripping of windblown fog by the forest vegetation becomes 

especially important during the non-rainy season and in areas with low rainfall but frequent low 

level clouds (FAO, 2008). The vegetative surfaces of these forests provide a net for capturing 

horizontally moving precipitation from fog and clouds and adding it as fog drip and stem flow to 

the water budget of the catchment. In this way such forests act as sources of water. 

Of all forest types, cloud forests such as the Mau forest complex have the closest interrelationship 

with fresh water because of their role in water production and erosion control. On large mountains 

in equatorial regions away from the coast, cloud forests are usually found at high elevations of 

between 2000 m and 3000 m above sea level as is the case in Mau forest complex in Kenya. Such 

cloud forests have great value as water fountains and they have been described as water towers 

(KWTA and DRSRS, 2013; DRSRS and KFWG, 2006). Mau forest complex, Mt Elgon, 

Cherengani Hills, Aberderes and Mt Kenya forests are all examples of cloud forests which 

constitute the five water towers in Kenya. They act as stabilizers that guard the water quality and 
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maintain the natural flow of the rivers that emanate from them (Bubb et al, 2004, UNESCO, 

2000).  

Within the cloud forest, transpiration is relatively low since most of its vegetation comprises small 

leaves and often wet and water logged soils both of which minimise loss by transpiration. This 

helps to minimise water uptake from the soil by the trees and hence reduces the overall water use 

by the forests. This reduction in forest water use translates to a twofold gain in water for cloud 

forests: the water stripped from the clouds and fog and added to the catchment water budget, and 

the water saved through minimised transpiration. As a result of this, discharge levels of streams 

and rivers that emanate from cloud forest catchments tend to be higher for a given rainfall event 

and also more dependable during dry periods than for those that emanate from other types of 

catchments (Bubb et al, 2004).  

The amount of extra water obtained from cloud forests varies according to rainfall patterns, 

topography, frequency or persistence of clouds and the extent to which the clouds are wind driven 

(Bubb et al, 2004). Removal of cloud forests such as the Mau forest complex leads to loss of that 

extra water captured by the forest. Trees and other vegetation in cloud forests are of hydrological 

importance because of their water capturing function. This water capturing function is normally 

eliminated when deforestation takes place since deforestation results in the raising of the cloud 

base due to the associated drop in the total forest evapotranspiration (ET) and the rise in air 

temperature in the affected areas. Such a situation was observed in Luquillo Mountains, Puerto 

Rico in 1989 when Hurricane Hugo defoliated the forests. The rise of the average level of the 

cloud base gradually disappeared within a few months after the leaves regenerated (UNESCO, 

2000).   

Under humid conditions in cloud forests, the net precipitation ranges from 65% to 80% of the 

incident rainfall in the lower montane forests that do not experience much cloudy conditions. This 

figure may rise to between 115% and 130% of the incident rainfall in the case of the more exposed 

cloud forests. More often the net rainfall total in both upper and lower montane forests are in the 

range of 80% to 100% of the incident rainfall. This suggests an additional increase of about 15% 

to 20% of ordinary rainfall that comes from cloud and fog interception. This is an equivalent of 

about 300 mm to 600 mm of additional water for annual rainfall of about 2000 mm to 3000 mm 

and it can go up to between 50% and 60% under more exposed circumstances for the same rainfall 

range (Bubb et al, 2004; UNESCO, 2000). Low water levels in rivers originating from the Mau 
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forest complex have been blamed on excision and encroachment of the forest catchments. This 

study investigated the extent to what this assertion is true. 

 

2.6 Climate Modelling  

Climate modelling involves the use of computer models of the climate system to simulate the 

interactions of the components of the Earth‟s climate system and their response to solar radiation 

between the top of the atmosphere and the surface of the Earth (Jones et al, 2004). A climate 

model is a mathematical representation of the climate system, expressed as computer codes and 

run on a powerful computer to provide a comprehensive and quantitative description of how 

atmospheric temperature, air pressure, winds, water vapour, clouds, and precipitation respond to 

the solar heating of the atmosphere (IPCC 2007; Jones et al, 2004).  

Climate models also include equations that describe how the greenhouse elements of the 

atmosphere keep the lower atmosphere warmer than would ordinarily have been the case by 

providing a radiative blanket that controls how fast the Earth cools by loss of terrestrial infra-red 

radiation to the outer space. Climate models compute energy transfers through the atmosphere, the 

direct and indirect effects of aerosols, changes in snow cover and sea ice, the storage of heat in 

soils and oceans, surface flux of heat and moisture, and the large scale transport of heat and water 

by the atmosphere and oceans. Climate models are therefore fundamental research tools for 

understanding and predicting both natural and anthropogenic changes in the Earth‟s climate 

(Rummukainen, 2010; Wilby and Miller, 2009). This section describes the principle behind 

computer climate models, their construction and operation. The models are divided into two 

levels; global and regional climate models. 

 

2.6.1 Global Climate Models 

Global Climate Models (GCMs) are numerical representations of the climate system based on its 

physical, chemical and biological properties, component interactions and feedback mechanisms 

(Wilson et al, 2009). They are used to examine the influence of increased concentrations of GHGs 

and aerosols in the atmosphere through simulation of the processes and interactions that define the 

global climate. The three-dimensional climate system is represented by primary equations that 

describe the movement of energy and momentum, conservation of mass and water vapour 

behaviour (Met Office, 2002). The primary equations are governed by: the first law of 



43 

 

thermodynamics, Newton‟s second law of motion, continuity equation, and the ideal gas law 

respectively (Wilby and Miller, 2009). 

GCMs such as the Hadley Centre third generation Coupled Model (HadCM3) are used to solve 

these equations at discrete grid-points (Figure 2.5) across the surface of the Earth and between 

coupled layers in the atmosphere and ocean using concentration scenarios of GHGs as inputs to 

make climate projections (Wilson et al, 2009; Jones et al, 2004; UNEP/IVM, 1998). Figure 2.5 

shows the horizontal and vertical grids together with the physical processes that are represented in 

a GCM. 

 

Figure 2.1: Model Earth-atmosphere system and the processes represented in a GCM 

 (Source: Met Office, 2002) 

 

Solving these equations for a large number of grid-points over the entire globe requires enormous 

computing resources such as the use of supercomputers. The task is usually made more 

manageable by using coarse horizontal resolutions of about 300 km (Rummukainen, 2010) with 

20 levels in the vertical  in order to reduce the number of grid points and hence the number of 

computations. As a result of this, GCMs are unable to capture and resolve the local details of the 

mesoscale forcings that include orographic and other local climate drivers such as inland waters 

and convection which are known to influence regional climates and which are important for 

climate change impacts assessments at regional and national levels; which is what is required for 

this study (Jones et al 2004). 
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GCMs can therefore only effectively address the large-scale climate features such as the general 

circulation of the atmosphere and the ocean, as well as the continental patterns of temperature and 

precipitation but cannot represent the fine scale details that characterise local climates in many 

regions of the world (Wilby and Miller, 2009; IPCC, 2007). One of the widely accepted methods 

of adding the finer details that are missed out by GCMs is the use of Regional Climate Models 

(RCMs) which are the subject of the next section  

 

2.6.2 Regional Climate Models 

Regional climate models (RCM) are comprehensive high resolution physical models of the 

atmosphere and land surface containing representations of the important processes in the climate 

system as found in GCMs but cover a limited area of the globe. They cover about 5000 km by 

5000 km with a typical horizontal resolution of 50 km (Wilson et al, 2009; IPCC 2007; Jones et 

al, 2004). RCMs complement GCMs as climate change impacts research tools by making it 

possible to access the finer spatial details that are required for climate change impacts studies as is 

the case in the current study. The greatest potential in the use of RCMs for the study of climate 

processes and impacts studies derives from their high horizontal resolution which improves the 

representation of such landscape features as mountain ranges, lakes, as well as other surface 

features like land use change. All these are known to give rise to local and regional circulation and 

precipitation features, as well as modifying winds, temperature, and other climate variables 

(Rummukainen, 2010). 

RCMs operate by taking the coarse resolution information from GCMs and developing temporary 

and spatially fine-scale information using their higher resolution representation of the climate 

system (Jones et al 2004). They therefore allow direct modelling of the dynamics of the physical 

systems that characterise the climate of the region of interest. The high resolution details required 

for impacts studies can be obtained from RCMs such as the third generation Hadley Centre 

Regional Climate models (HadRM3) which are higher resolution versions of the Hadley Centre 

Coupled Models (HadCM3) but covering a limited area of the globe (Jones et al 2004).   

The concept of downscaling is the main motivation behind the use of RCM. RCMs are 

downscaling tools that add fine scale information to the large scale projections of GCMs. They are 

used to obtain regional as well as the local scale details from the low resolution GCM outputs. 

RCMs are therefore more appropriate for resolving the small scale features of topography and land 
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use that have a major influence on such climatological variables as rainfall and temperature. They 

act like magnifying glasses by being able to “see” more details than what the GCMs can “see” as 

shown in Figure 2.6 which presents the RCM nested on a GCM. The figure shows the ability of 

the RCM to downscale details that are required for hydrological modelling but are otherwise 

missed out by the GCM. The ability to “see” these details is derived from the RCM‟s ability to 

downscale the low resolution GCM information to the regional and local scale level (Akhtar et al, 

2009). Hence RCMs provide a more accurate representation of many surface features such as 

complex mountain topographies.  

 

Figure 2.2: Regional Climate Model nested on a Global Climate Model  

(Source: Met Office, 2002) 

 

The primary assumption in regional climate modelling is that data from the large scale GCMs are 

used to drive the RCMs over limited domains such as the East African region that spans latitudes 

12˚S to 18˚N and longitudes 22˚E to 52˚E (IPCC, 2007). Such a limited regional domain allows 

for the use of a higher resolution than that of the global domain without necessarily resulting to 

prohibitive increases in the computational costs. The data driving the RCMs are supplied as 

boundary conditions containing the basic set of lateral boundary conditions (LBC) data that 

include: temperature, moisture, and winds as well as the surface boundary conditions (SBC) data 

that include: sea surface temperature and sea ice (Wilson et al, 2009). 
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The climate of any region of the world is influenced by the rest of the globe. When large scale 

circulation impinges on a regional model domain such as the East African region, the boundary 

conditions of the RCMs consist of the information drawn from the GCM outputs. Since the two 

models have different resolutions, the RCM‟s domain should be large enough in order to allow for 

the desired phenomena related to topographic influence and the small scale atmospheric processes 

to develop. Still, the domain should not be too large as to allow the flow to deviate too much from 

the driving model (Wilson et al, 2009; Jones et al, 2004).  

RCMs have some major limitations that include: the physics of the models; the quality of the 

driving boundary data derived from the GCMs; and the relatively high demand of computational 

resources which put a limit to the number, resolution, and length of RCM runs (Jones et al, 2004). 

Increased resolution carries a penalty in computational costs and a balance has to be reached 

between the cost and the quality of the RCM output (Rummukainen, 2010). 

In order to get regional climate model projections for purposes of impacts studies, most RCM 

climate change runs have been done on time-slice modes (Christensen et al, 2007). This involves 

running the model for some recent past which may also be regarded as the present baseline period 

such as 1961-1990 and some future scenario period such as 2021-2050. Differences in the 

modelled climates are then analysed for climate change signals such as changes in the 30-year 

means of seasonal or annual and variability of climate elements such as temperature and 

precipitation. In addition to the time-slice modes, continuous periods spanning more than a 

century are currently being addressed through transient model runs. Such runs cover different time 

horizons from the past to 2100. Such continuous regional climate projections are useful in 

modelling impacts on systems with long characteristic time-scales such as forests and other 

ecosystems (Rummukainen, 2010; IPCC, 2007), and the Hadley centre has configured the third 

generation HadRCM3 for the purpose of Providing Regional Climates for Impacts Studies 

(PRECIS), over any region of the world as described in the next section.  

 

2.6.3 PRECIS RCM 

Providing Regional Climates for Impacts Studies (PRECIS) is a regional climate model developed 

by the Hadley Centre of the United Kingdom (UK) Meteorological Office based on the 

atmospheric component (HadAM3) of the third generation of the Hadley Centre‟s Coupled 

Climate Model (HadCM3). PRECIS RCM is used to generate regional scale climatology at high 
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spatial resolutions of 50 km or less. PRECIS is extensively described in Wilson et al (2009) and 

Jones et al (2004). The model is a portable, flexible and easy-to-use atmospheric and land surface 

regional climate modelling system covering a limited area with high horizontal resolution that 

ranges between 25 and 50 km (Ahktar et al, 2009; Met office, 2008; Islam et al, 2008; UNFCCC, 

2005). 

PRECIS provides countries with a means of generating detailed, high quality climate predictions 

for their own regions at the earliest possible stage. The model is driven by prescribed LBCs which 

provide dynamical atmospheric information at the latitudinal and longitudinal edges of the model 

domain. LBCs comprise the standard atmospheric variables of surface pressure, horizontal wind 

components, atmospheric temperature and humidity which are updated every six hours. SBCs are 

only required over ocean and inland water points, where the model needs time series of sea surface 

temperatures and ice extents (Jones et al, 2004). 

Timely access to detailed climate change scenarios is vital in developing countries where 

economic stresses are likely to increase vulnerability to impacts of climate change especially in the 

field of surface water yields from given precipitation events. PRECIS has special characteristics 

that make it adaptable for use in Kenya that include; the high resolution which makes it viable for 

both the Mau forest complex and Sondu River catchment area which are about 4000 km
2
 and 3050 

km
2
 respectively; requirement of a basic resource of one fast personal computer, a reliable power 

supply and expertise to maintain the hardware and support system (Wilson et al, 2009).  

PRECIS RCM has been applied in the Eastern Africa domain to project future climate scenarios 

for the region by among others Omondi, (2010) and Sabiiti (2008). Omondi (2010) used the model 

to generate regional climate scenarios over Eastern Africa while Sabiiti (2008) used it to simulate 

climate scenarios over Lake Victoria basin (LVB). They both found that the model performed 

fairly well in the region. Their results were on a regional level and could therefore not be used to 

determine the impacts of climate change at a river basin scale. The present study goes further to 

use the products of PRECIS RCM on a daily time-step to analyse the impacts of climate change on 

water yields from the Mau forest complex using a hydrological model. 

PRECIS is a mathematical model of the atmosphere and land surface which is of higher resolution 

relative to GCMs. The advective and thermodynamic evolution of winds, pressure, temperature, 

and moisture are simulated by the model while including the effects of many other physical 
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processes such as the land surface cover. The model comprises four modules: the atmospheric 

dynamics, the model grid, the physical parameterizations, and the boundary conditions which 

operate in harmony to accomplish the simulations. Details of these modules can be found in Jones 

et al (2004); only brief highlights are given in the following subsections.  

 

2.6.3.1 Atmospheric Dynamics 

Atmospheric dynamics is the part of the model which uses the three fundamental conservation 

principles; conservation of momentum, conservation of mass, and conservation of energy to 

simulate the evolution of the model state variables namely atmospheric pressure, winds, 

temperature, and moisture (Met Office,  2009). The conservation of momentum principle is a 

consequence of Newton‟s second law of motion. The horizontal equation of motion (Equation 

2.1), which is used to simulate the advection of air round the atmosphere, is derived from 

Newton‟s second law of motion.  

     

 rF+g+p
ρ
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 is the acceleration of an air parcel, UΩ 2  is the Coriolis force, p
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1
 is the pressure 

gradient force, g  is the effective gravity, and rF  is the friction force.  

At the synoptic scale level of the model, the magnitudes of vertical motion due to conservation of 

momentum are small compared to horizontal velocities and accelerations. Hence hydrostatic 

balance (Equation 2.2), which essentially relates variation of pressure with height above the 

Earth‟s surface, was assumed. 
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1
 is the pressure gradient force, ρ  is the mean density of the atmosphere, and g  is the 

effective gravity. The presumed balance between the two forces, pressure gradient force and 

gravity, gives an air parcel neutral buoyancy and hence the model assumes no explicit vertical 

motion (Met Office, 2009). PRECIS is constructed in such a way that mass is conserved. The 

atmosphere is considered to be a continuum of gas and therefore does not allow any voids. As a 

consequence of conservation of mass principle, vertical motions are inferred in the atmosphere 
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whenever the horizontal wind field is diverging or converging. The continuity equation (Equation 

2.3) relates changes in density with divergence in the wind velocity field. From this equation, 

vertical motions which were ignored in the hydrostatic balance assumption are inferred. Areas of 

convergence or divergence in the horizontal diagnose a vertical transfer of mass between vertical 

layers (Met Office, 2009).  

   0.
1

=U+
Dt

Dρ

ρ


 ……………….……………………..…………….. 2.3 

ρ  is the mean density of air, U


 is the horizontal wind component. 

The evolution of heat and moisture is modelled using the principle of conservation of energy 

which is applied to a moving atmospheric element according to the first law of thermodynamics 

(Equation 2.4) and the equation of state (Equation 3.18). By the first law of thermodynamics, the 

amount of heat added to a parcel of air is exactly balanced by the work done in increasing its 

volume and the change in internal energy.  

       

 dwdudq  …………………………………………..……………….……………2.4 

dq  is the differential increment of heat added to the air parcel, dw  is the differential increment of 

work done by the air parcel, and  du  is the differential increase in internal energy of an air parcel. 

The equation of state (Equation 2.5) relates vapour pressure, specific volume, and temperature. 

   

 RT=pv ……………………………………………………………….….….………2.5 

p  is the atmospheric vapour pressure, v  is the specific volume of the atmosphere, R  is the gas 

constant, and T  is the absolute temperature. These equations were used to describe the evolution 

of the model prognostic variables: temperature, pressure, moisture, and winds in both space and 

time.  

 The atmospheric component of the model has 19 levels which include the real geography, full 

diurnal and annual cycles, and a land surface scheme that allows for prescribed geographically 

varying vegetation and soil covers. Cloud amounts and radiative properties, snow cover and soil 

moisture are all modelled interactively by this model (Wilson et al, 2009; Jones et al, 2004). The 

model equations are solved numerically on a three-dimensional grid spanning the area of the 

model domain and the depth of the atmosphere. In this regard the model simulates values of the 

diagnostic variables at discrete and evenly spaced points in time.  
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The time gap between each of these points is the model‟s time step. The model time step is critical 

to its numerical stability and as such the length of the model time step must be chosen with utmost 

care. The model‟s numerical integration scheme is designed to adhere to the rule that a parcel of 

air can only be allowed to move at most one grid box length in one time step. Beyond this speed, 

the model becomes numerically unstable. The time step therefore depends on the models 

resolution and the maximum possible wind speed. Assuming the maximum possible wind speed of 

166 ms
-1

, the 50 km model resolution gives a time step of 5 minutes (Wilson et al, 2009). 

 

2.6.3.2 Model Grid 

The importance of the model grid lies in the fact that all the model output results are based on this 

grid. The vertical component of this grid uses a hybrid coordinate system where each vertical level 

is specified as a linear combination of a terrain following height-above-the-surface coordinate and 

an atmospheric pressure coordinate (Figure 2.8). In total there are 19 vertical levels with the 

lowest four being purely terrain following and the uppermost three being purely pressure levels. 

Within each pressure level is a horizontal grid which uses a latitude-longitude spherical polar 

coordinate system with regular grid spacing in both latitudinal and longitudinal directions. Within 

this horizontal grid, the wind variables are simulated on a grid that is offset by half a grid box in 

each direction from all other variables (Met Office, 2009). 

 

Figure 2.3: Schematic view of PRECIS vertical hybrid co-ordinate system 

 (Source: Met Office, 2009) 
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2.6.3.3 Physical Parameterisations 

This section of the model is the one that deals with the effects of many of the physical processes in 

the atmosphere and the land surface of the climate system which are not accounted for by the grid 

scale simulation of the prognostic variables by the atmospheric dynamics but which are likely to 

change and therefore drive climate change (Figure 2.9). There are important processes that occur 

in the atmosphere on spatial scales that are much smaller than those which are resolved by the 

discrete three-dimensional grid on which the dynamical equations are simulated (Met Office, 

2009). 

The model deduces the grid scale effects of these unresolved processes from the large scale state 

of the atmosphere as given by the prognostic variables arising from the solutions of the dynamical 

equations. This procedure is called parameterisation. The physical parameterisation within the 

PRECIS model is split into six main groups comprising; clouds and precipitation, radiation, 

atmospheric aerosols, boundary layer, land surface, and gravity wave drag (Met Office, 2009). 

 

 

Figure 2.4: Schematic view of the components of climate system parameterized by the GCM 

 (Source: IPCC, 2007) 

 

Cloud formation and precipitation are portioned into two types within the model: the large scale 

and convective processes. Cloud water droplets may be liquid or frozen in the model as is the case 

with precipitation. Both solid and liquid precipitations are diagnosable from the large scale as well 

as the convective precipitation schemes. The large scale cloud model calculates the fraction of the 
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grid box which is cloudy and also the mixing ratios for cloud water and cloud ice. The model 

holds explicit values of fractional cloud cover together with separate values for cloud water and 

cloud ice mixing ratios. Cloud water is converted to precipitation through a process known as 

auto-conversion (Met Office, 2009). 

Frozen precipitation is assumed to fall as soon as it is formed. Evaporation and melting of 

precipitation is allowed to take place to the extent that temperature and humidity of the lower 

layers allow, with the attendant cooling of the environment by the latent heat exchange. 

Dynamical assent is the main cause of large scale cloud formation followed by radiative cooling 

and turbulent mixing (Met Office, 2009). 

Convective clouds are modelled in the PRECIS model by an up-draught dependent on a vertical 

temperature instability balanced by a precipitation-induced cool downdraught. The resulting cloud 

in a grid box is also dependent on pressure, humidity, and aerosol particle concentration. 

Convection will continue as long as the air within the cloud continues to be buoyant. Dilution of 

the cloud is represented by entrainment of environmental air. Before the cloud detrains completely 

at the level where the air parcel ceases to be buoyant, the remaining mass, heat, water vapour, and 

cloud/ice are completely mixed into the environment at the cloud top.  A single cloud model is 

used to represent a number of convective plumes within the grid box. Precipitation within the grid 

square is diagnosed if: the cloud water content exceeds a critical amount, and the cloud depth 

exceeds a critical value which is set at 1.5 km and 4 km over the sea and land surface respectively 

(Met Office, 2009). 

The atmosphere is driven by solar radiation and therefore an accurate representation of radiative 

processes is essential for climate models. In the atmosphere, radiation is divided into short wave 

and long wave components. PRECIS models short wave and long wave energy fluxes separately. 

In the model, daily, seasonal and annual cycles of insolation are simulated. The model then treats 

short wave and long wave radiative fluxes differently within the atmosphere. 

The short wave radiation flux depends essentially on the solar zenith angle, cloud cover, and the 

albedo of the surface. Long wave fluxes depend on the amount and temperature of the emitting 

medium as well as its emissivity. In order to account for the different effects of the atmospheric 

radiatively active constituents, long wave radiation is considered in six wave bands, and short 

wave radiation in four wave bands. Clouds interact quite significantly with both short wave and 
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long wave radiation (Figure 2.11). Figure 2.11 is a schematic representation of atmospheric 

radiative processes showing the short wave radiation (red arrows) and long wave radiation (blue 

arrows) together with their interactions with the climate system. Their effects depend upon the 

fractional cover, height, phase, and the water content of the atmosphere (Met Office, 2009). 

PRECIS simulates the spatial distribution and the life cycle of atmospheric sulphate aerosols. This 

simulation scheme is particularly important in the climate context since the presence of such 

particles tends to give a surface cooling effect and thus offset some of the GHG induced warming 

in some areas. There are two mechanisms simulated in the model which can lead to this cooling 

effect: the direct effect which involves scattering of insolation, and the indirect effect which 

involves increased cloud albedo due to smaller cloud droplets. In both cases more radiation is 

reflected back to space. Hence less energy reaches the surface of the earth leading to the cooling of 

the Earth‟s surface (Met Office, 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Schematic view of PRECIS atmospheric radiative processes  

 (Source: Met Office, 2009) 

 

Within the PRECIS model, sulphate (SO4) particles are simulated as existing in the atmosphere 

ultimately due to emission of chemicals from the surface of the Earth. The main sources of these 

emissions include; the natural sources such as sulphur dioxide (SO2) from volcanic eruptions and 

the dimethyl sulphate (DMS) released from the surface of oceans, and also anthropogenic sources 

such as sulphur dioxide (SO2) released from fossil fuel burning mainly in the industrial areas. In 

both cases the model has time varying source data that form part of the model spanning both 
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current and future climates. Within the atmospheric boundary layer, heat, moisture, and 

momentum are mixed by sub-grid scale turbulence (Figure 2.12). This turbulent mixing is 

dependent on the large scale vertical temperature stability of the atmosphere as well as the nature 

of the land surface. Fluxes of momentum between the atmosphere are also modelled (Met Office, 

2009). 

The surface processes involve the exchange of heat and moisture between the surface of the Earth, 

the vegetation, and the atmosphere. The water stored in the vegetation canopy is released either to 

the soil via through-fall or back to the atmosphere via evaporation. The amount of water the 

canopy in the grid can hold depends on the vegetation types present in the grid box (Wilson et al, 

2009).  

 
 

Figure 2.6: Schematic view of PRECIS boundary layer process (Source: Met Office, 2009) 

 

Wilson et al (2009) further explains that beneath the earth‟s surface, fluxes of heat and moisture 

are simulated with a four-layer soil hydrology and thermodynamics model. This includes the 

effects of the roots which are responsible for removing water from the soil back to the atmosphere 

via transpiration. Vegetation plays an active role in the hydrology of the surface. Land surface 

vegetated canopy interacts with insolation and precipitation and also provides fluxes of heat and 

moisture to the atmosphere and transformation of rainfall to runoff. When precipitation falls, some 

of it is intercepted by the canopy of the vegetation while the rest reaches the soil surface via 

through fall.  The part of precipitation reaching the soil surface is absorbed by the soil unless the 
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intensity is too high or the soil is already saturated: in which case part of it is transformed into 

surface runoff into the river system, lakes and other reservoirs in the basin. 

PRECIS model assigns each land point characteristics according to the soil type and the vegetation 

types within the grid box. These characteristics are important in the calculation of the heat, 

moisture and momentum fluxes at each of the grid points. The soil temperature and moisture are 

calculated in four separate levels (Figure 2.13). According to Met Office (2009) the temperature of 

the soil will change according to the radiation balance at the soil surface. Each of the land points 

has a value of the soil moisture content in four layers of different thicknesses (Figure 2.13). This 

moisture content is altered according to the rate of evapotranpiration and the amount of 

precipitation at that land point. Soil water is mainly lost through evapotranpiration and this is 

usually limited by the amount of the available soil moisture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Schematic view of PRECIS exchange of heat (T) and moisture (q) between the 

Earth’s surface, vegetation, and the atmosphere as well as the sub-surface fluxes (Source: Met 

Office, 2009) 

 

The final parameterisation scheme in PRECIS is that of the Gravity Wave Drag (GWD) which 

describes how flow over mountain ranges generates sub-grid scale atmospheric waves. These 

waves form on the lee side of mountain ranges and propagate vertically, eventfully reducing 

atmospheric stability which exerts a drag on the prevailing horizontal flow. PRECIS includes 

within itself a scheme that parameterises GWD whereby flow over mountains in stable conditions 
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excites waves. It is important to take GWD into account because, without the GWD scheme and 

the drag that it generates, the jet streams in the model tend to be too strong. This feeds back to 

unusually deep surface depressions leading to poorer surface climatology. The GWD scheme 

therefore reduces the strength of jet streams and causes surface depressions to be less deep and 

therefore quicker to fill than would otherwise have been the case (Met Office, 2009). 

 

2.6.3.4 Boundary Conditions 

The model boundary conditions supply information on all the factors that are external to the model 

but which, nonetheless affect the simulations. Boundary conditions are required to provide the 

meteorological remote forcing of the regional climate and consistent information on atmospheric 

composition. It is by carefully specifying the boundary conditions that the model is made to 

simulate future climates. The boundary conditions are categorised into three main classes namely 

the lateral boundary conditions (LBCs), the initial conditions, and other boundary conditions 

(Wilson et al, 2009; Met Office, 2009; Jones et al, 2004).  

LBCs are meteorological conditions at the lateral boundaries of the RCM domain. They are large-

scale time-dependent data that constrain the prognostic variables of the model at its edges 

throughout the simulation. LBC state variables include: winds, temperature, water vapour, surface 

pressure, and aerosol concentrations. Data for LBCs come either from existing GCM integrations 

or from reanalysis. In this study existing integrations from the European Community Hamburg 

Model version4 (ECHAM4) and European centre for medium range weather forecasts Re-

Analysis of 40 years (ERA40) LBCs were used and applied over a buffer zone of 8 grid points in 

width, at the edge of the model domain and model output results over this rim were removed from 

the analysis of the output data (Wilson et al, 2009).  

The initial condition is the instantaneous state of the atmosphere and land surface from which the 

model can progress forward in time. The model needs to be provided with initial data of all 

prognostic variables which come from the same source as the LBCs. This helps to prevent 

physical inconsistencies between the initial state of the interior of the model domain and the initial 

information being fed in at the lateral boundaries. Such inconsistencies would cause instabilities 

that could result in model failure (Met Office, 2009). 
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Other boundary conditions include the rest of the boundary conditions which provide information 

that is required throughout the duration of the model simulation. Spatially, these boundary 

conditions are applied either at the surface or throughout the depth of the atmosphere. Spatial 

surface boundary conditions include; land-sea mask, orographic fields, vegetation, and soil 

characteristics. Constant boundary conditions throughout the depth of the atmosphere include the 

sulphur cycle. Temporal boundary conditions are applied either as data which is constant in time 

or as time varying data. Time-varying data at the surface include: SST and Ice fractions, 

anthropogenic SO2 emissions, and dimethyl Sulphide (DMS).  Time varying data applied 

throughout the depth of the atmosphere include the Tropospheric ozone (Wilson et al, 2009). 

The standard output data from PRECIS, which serve as the inputs to the impact models, are 

available as time series of temperature and precipitation in daily or hourly time-steps as well as 

climatic mean values for the river basin of interest such as Sondu, depending on the user‟s needs 

(Wilson et al, 2010; Akhtar et al, 2008; Jones et al 2004). In this study, the output data were time 

series of daily temperature and rainfall over the Sondu catchment area which was averaged over 

three grid boxes representing Kericho, Keresoi, and Sotik stations. 

 

2.7 Hydrological Modelling 

Hydrological modeling involves the application of mathematical equations to model the physical 

responses of a watershed to meteorological events in a catchment area (Miller et al, 2007). For 

purposes of hydrological modelling the river basin is the most appropriate scale to focus on for 

analyses of water management issues using hydrological models. Hydrological models are 

simplified, conceptual representations of a part of the hydrological cycle which attempt to 

represent the physical processes that control the transformation of rainfall (input) to runoff and 

streamflow (output) (Droogers et al, 2006). Streamflow and runoff are interplays of many physical 

processes that include: the hydrological, meteorological, topographical, landuse/landcover, and 

soil parameters. Hydrological models relate streamflow and these parameters and are primarily 

used for hydrologic predictions as well as for understanding the hydrologic processes in a 

catchment area (Mutua, 1986). The most important climatological inputs required for the 

calibration and validation of hydrological models are temperature and precipitation (Akhtar et al, 

2009). These climatological inputs can be derived from either observational records or from 

simulations of regional climate models such as PRECIS. 
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This study examines stream flows, rainfall, and deforestation in the Sondu River basin, whose 

upper catchment comprises SWM forest, the largest of the 22 blocks (UNEP, 2009a) comprising 

the MFC in Kenya. The study examines how stream flows and hence surface water yields vary 

under different climate and forest cover scenarios. The extent of variation in stream flow was 

quantified in terms of changes in the mean as a central value. In order to achieve this, a physically 

based hydrological model: the Soil and Watershed Assessment Tool (SWAT) was applied. SWAT 

is extensively described in Neitsch et al (2011) and Winchell et al (2010) and Arnold et al (1998). 

Only a brief description of the model is given in the next sub-section.  

 

2.7.1 The SWAT Model 

The Soil and Watershed Assessment Tool (SWAT), developed by Arnold et al (1998) is a 

conceptual continuous time model. The model was initially developed to assist water resources 

managers in assessing the impacts of management on water supplies, sediments and agricultural 

chemical yields in large and complex watersheds with varying soils, land use and management 

conditions over long periods of time. Currently the model is also being used to estimate impacts of 

climate change and land use management on water resources. Arnold et al (1998) have described 

SWAT as a basin scale hydrologic model that is computationally efficient, allows considerable 

spatial detail, requires readily available inputs, is continuous time model that operates on a daily 

time step at basin scale level, is capable of simulating land management scenarios, and gives 

reasonable results. As input data, SWAT requires specific information about weather, soil 

properties, topography, vegetation, and land management practices that take place in the 

watershed from which the physical processes associated with water movement are directly 

modelled. 

SWAT model includes procedures to describe how carbon dioxide concentration, precipitation, 

temperature and humidity affect plant growth, evaporation, and runoff generation among others 

and can therefore be used to investigate climate change impacts (Abbaspour et al, 2009). SWAT 

allows a number of different physical processes in the watershed to be simulated. These include: 

hydrology, weather, sedimentation, soil temperature, and agricultural management among others 

(Arnold et al, (1998). This study focused mainly on the simulation of the hydrology process. 

In order to facilitate efficient analysis of the impacts of different watershed management scenarios 

on water yields, SWAT has been integrated with a Geographical Information System (GIS) 



59 

 

interface (Van Griensven, et al, 2012). The SWAT-GIS interface allows the model to preserve the 

spatial nature of topography, soils, and land use databases and thereby preserving the distributed 

nature of the model parameters. This improves the model‟s effectiveness in developing input data 

files from GIS coverage (Neitsch et al, 2011). In this study, ArcSWAT2009 was used under 

ArcGIS9.3 environment for project development. 

SWAT model is a very flexible and robust tool that can be used to simulate a variety of watershed 

problems (Van Griensven, et al, 2012). Its ability to replicate hydrologic and pollutant loads at a 

variety of spatial scales on an annual and monthly basis has been confirmed in numerous studies 

(Faramarzi et al, 2009; Gassman et al, 2007; Schuol et al, 2008; Githui, 2008). The model is 

capable of performing continuous, long-term simulations for watersheds composed of various sub-

basins with different soils, land uses, crops, topography, and weather among others (Neitsch et al, 

2011). 

The basic model products simulated by SWAT include weather, surface runoffs, return flow, 

percolation, evapotranspiration, transmission loss, pond and reservoir storage, crop growth and 

irrigation, and ground water flows. For efficient simulation of these components, the model 

delineates the watershed into a number of sub-basins and Hydrological Response Units (HRUs). 

This is particularly important where different parts of the watershed are dominated by different 

land uses and soils so that they impact on the catchment‟s hydrology differently (Neitsch et al, 

2011). Spatial heterogeneity in a watershed is taken into account in the model by considering 

information from the DEM, soil, and LULC maps (Schuol et al, 2008). Watershed delineation into 

different components is briefly discussed in the next sub-section. 

 

2.7.2 Watershed Delineation 

SWAT model automatically delineates the area of study using the Digital Elevation Model (DEM) 

data under ArcGIS environment. The purpose of delineation is to establish the general watershed 

attributes over the catchment area such as land area and stream network which are known to 

control a diversity of physical processes at the watershed level (Arnold et al, 2011). The model 

sets these parameters at default values. Model users can change the default values within certain 

limits to better reflect the characteristics of the watershed being studied.  
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2.7.2.1 Sub-Basin 

Sub-basins constitute the first level of sub division during the watershed delineation process. They 

possess a geographical location in the watershed and are spatially related to one another. Each of 

the sub-basins delineated contains at least one area with unique soil-landuse-slope combination 

called Hydrological Response Unit (HRU), a tributary channel and a main channel. Input 

information for each sub-basin is organised into climate, groundwater, the main channel draining 

the sub basin, and HRUs. The next sub-section presents a brief discussion of the HRUs, main 

channels, canopy storage, potential evapotranspiration and sub-surface flow (Winchell et al, 

2010). 

 

2.7.2.2 HRU  

Hydrological Response Units (HRUs) are lumped land areas within the sub-basin that comprise 

unique land cover, soil, slope, and management combinations. They allow the SWAT model to 

capture the diversity of land use and soils within each sub-basin. Unlike the sub-basins, HRUs are 

not geographically located; rather they represent the total area in the sub-basin with a particular 

land use, management system, soil and slope characteristics (Winchell et al, 2010; Arnold et al, 

1998). Though HRUs may be scattered all over the sub-basin, SWAT lumps all of them together 

to form one HRU for each of the sub-basin delineated. 

SWAT simulates the overall hydrologic balance for each HRU, including canopy interception of 

precipitation, partitioning of precipitation, snowmelt water, and irrigation water between surface 

runoff and infiltration, redistribution of water within the soil profile, evapotranspiration, lateral 

sub surface flow from the soil profile, and return flow from shallow aquifers. All these are then 

aggregated at the sub-basin level and then routed to the associated reach and catchment outlet 

through the channel network to obtain the total runoff and water yields for the whole watershed 

(Faramarzi et al, 2009; Abbaspour et al, 2009). This has been found to increase the accuracy as 

well as giving a much better physical description of the catchment‟s water balance (Winchell et al, 

2010).  

Two options are available within the SWAT model for determining the HRU distribution: single 

or multiple HRUs for each sub-basin. Winchel et al, (2010) have explained that a single HRU for 

a sub-basin uses the dominant land use category, soil type, and slope class within the sub-basin to 

simulate the HRU. Multiple HRU option on the other hand allows the user to specify a threshold 
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level for the land use, soil and slope datasets that are used to determine the number of HRUs in 

each of the sub-basin. These thresholds can be based on a percentage of area or on absolute area.  

Multiple HRU option was selected for this study and the percentage area threshold option was 

adopted on account of its robustness. The purpose of the thresholds is to eliminate minor land 

uses, soil types, and slopes in each sub-basin. In this study, 5% land use, 20% soil type, and 20% 

slope class threshold settings were selected to define the HRU in each of the sub-basin in the 

Sondu catchment area. These thresholds set percentages of the total sub-basin area that land use, 

soil type and slope class must cover for them to qualify to be included as part of the HRUs in the 

sub-basin. 

 

2.7.2.3 Main Channels 

SWAT associates one main channel with each sub-basin in a watershed area. Runoff from the sub-

basin enters the channel network of the watershed in the associated main segment. Flow in a 

catchment is classified as either overland or channelized. The main channel processes modelled by 

the SWAT model in a watershed include the movement of water, sediment and other constituents 

in the stream network, in-stream nutrient cycling and in-stream pesticide transformations (Winchel 

et al, 2010). In this study, focus was mainly on the movement of water in the stream network and 

how it is impacted on by climate change and land use/land cover change. 

 

2.7.2.4 Canopy Storage 

Plant canopy significantly affects infiltration, surface runoff and evapotranspiration. The influence 

exerted by the plant canopy on these hydrologic processes is a function of the density of the plant 

cover and therefore any human activity that interferes with this density also impacts on the 

hydrology of the watershed area (Neitsch et al, 2011). During a rainfall event, canopy interception 

traps a portion of rainfall which therefore does not reach the surface. When SWAT calculates 

surface runoff using the Soil Conservation Service (SCS) curve number method, canopy 

interception is lumped in the term for initial abstraction. The maximum amount of water that can 

be in the canopy storage varies from day to day as a function of Leaf Area Index (LAI). 
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2.7.2.5 Potential Evapotranspiration 

The amount of Potential Evapotranspiration (PET) depends on a combination of several 

parameters such as solar radiation, condition of the sky, and wind speed among others. Numerous 

methods of estimating PET have been developed and three of these have been incorporated in the 

SWAT model; the Penman-Monteith, the Priestly-Taylor and the Hargreaves methods (Neitsch et 

al, 2011). The three methods differ in the number of required inputs necessary for the calculation 

of PET. Penman-Monteith requires solar radiation, air temperature, relative humidity and wind 

speed as the necessary inputs for calculation of PET. The other two methods require fewer inputs 

with the Priestly-Taylor method requiring solar radiation, air temperature and relative humidity 

while Hargreaves method only requires temperature. Penman-Monteith method (Table 2.1) was 

used in this study on account of its robustness (Neitsch et al, 2011). 

Table 2.1: Summary of input variables required by SWAT to calculate PET in a watershed 

Variable  Definition 

IPET Potential evapotranspiration method 

WND_SP Uz: Daily wind speed (ms
-1

) 

CO2 CO2: Carbon dioxide concentration (PPmv) 

MAX TEMP Tmx: Daily maximum air temperature (
o
C) 

MIN TEMP Tmm: Daily minimum air temperature (
o
C) 

GSI gl,mx: Maximum leaf conductance (ms
-1

) 

FRGMAX frg,mx: Fraction of maximum leaf conductance achieved in the vapor pressure deficit 

specified by Vpdfr 

VPDFR Vpdfr: Vapor pressure deficit corresponding to value given for frg,mx (kpa) 

                                                                                                                             (Neitsch et al, 2011) 

2.7.2.6 Surface Runoff 

Surface runoff, which is a function of many variables including rainfall intensity and duration, soil 

type, soil moisture content, land use practice, land cover, and slope, occurs whenever the rate of 

water application to the ground surface exceeds the rate of infiltration. Considering the numerous 

variables governing the generation of surface runoff, lumped conceptual models are useful 

approaches of its analysis and prediction. Among the conceptual models developed for the 

analysis and prediction of surface runoff, the Curve Number (CN) method is one of the most 
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widely accepted (Neitsch et al, 2011). SWAT provides two options of estimating runoff; SCS 

curve number procedure, and the Green and Ampt infiltration method. In this study SCS curve 

number procedure was adopted on account of its simplicity, predictability, stability, its reliance on 

only two parameters, and its responsiveness to major runoff producing watershed properties 

(Neitsch et al, 2011; Ponce and Hawkins, 1996). 

Table 2.2: Typical SCS curve numbers for moisture condition II 

Land use Hydrologic Soil Group 

A B C D 

Fallow 76 85 90 92 

Row crops 67 76 82 86 

Pasture 52 70 80 84 

Woodlands 43 65 77 82 

Farmlands 59 74 82 86 

(Source: Neitsch et al, 2011) 

 

SCS curve number is a function of the soil‟s permeability, land use, and antecedent soil moisture 

conditions (Neitsch et al, 2011). Lower values of the curve number indicate low runoff potential 

while higher values indicate increasing runoff potential. The lower the curve number the more 

permeable the soil is (Ponce and Hawkins, 1996). For the Sondu catchment area, average moisture 

condition, normally called moisture condition II was adopted. Typical curve numbers for moisture 

condition II are listed in Table 2.2 below for various LULC classes and hydrologic soil groups. 

The LULC classes applicable for this study are Row crops that represent herbaceous rainfed shrub 

(Tea), Woodlands that represents forests, and farmlands that represents herbaceous rainfed crop 

(maize). 

 

2.7.2.6 Sub-Surface Flow 

Water that enters the soil through infiltration may move in three different pathways that are 

important in this study; removal from the soil by plant uptake and evaporation, percolation past 

the bottom of the soil profile to become aquifer recharge, and lateral flow that contributes to 

stream flow. Of the three pathways, plant uptake of water removes most of the water entering the 
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soil profile (Neitsch et al, 2011). Therefore any change in plant cover in a watershed will alter its 

hydrology. This study investigated the effects of deforestation of the basin whose upper catchment 

comprises the SWM forest block which has been heavily deforested in the last three decades 

(Kinyanjui, 2009). 

The amount of water held by the soil and made available to traverse the above pathways is a 

function of the soil structure which determines the drainage characteristics of the soil. The water 

content of the soil can range from zero when the soil is oven-dried to a maximum value ( soil ) 

when the soil is saturated with water (Neitsch et al, 2011). Table 2.3 shows the water content for 

three soil types as a fraction of the total volume of the soil under different moisture conditions. 

Water in the soil can flow under saturated or unsaturated conditions. Saturated flow is driven by 

gravity while unsaturated flow is driven by the gradient arising due to adjacent areas of high and 

low water content (Neitsch et al, 2011). SWAT directly simulates saturated flow only where the 

model records the water contents of the different soil layers but assumes that the water is 

uniformly distributed within any given layer. 

Table 2.3: Water contents for various soils at different moisture conditions 

Texture Clay content Water content 

Saturation Field capacity Permanent wilting point 

Sand 3% 0.40 0.06 0.02 

Loam 22% 0.50 0.29 0.05 

Clay 47% 0.60 0.41 0.20 

              (Source: Neitsch et al, 2011) 

 

SWAT models the bypass flow, the vertical movement of free water along macropores and cracks 

through unsaturated soil horizons, by calculating the crack volume of the soil matrix for each day 

of simulation. On the days on which rainfall events occur, infiltration and runoff are calculated 

using the SCS curve number method. If any runoff is generated, it is allowed to enter the cracks 

and macropores where a volume of water equivalent to the total crack and macropore volume for 

the soil profile may enter the profile as bypass flow (Neitsch et al, 2011). 
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2.7.7 SWAT Input Data Requirements 

Among the data required to run the SWAT model are: the Digital Elevation Model (DEM), land 

cover, soil types, and climatic data that include: daily precipitation, maximum and minimum 

temperatures, solar radiation, wind speed, and relative humidity. From the DEM, the catchment 

and sub-basins are generated automatically as well as the stream network under the ArcGIS 

environment.  The sub-basins, land cover and soils are then used to obtain the HRUs.   

Meteorological data at one or more locations in the basin provide sufficient information to run the 

SWAT model (Droogers et al, 2006). A weather generator incorporated within the SWAT model 

generats a set of daily weather data for each sub-basin. The daily weather data generated by the 

model may be used to fill in missing data in the observed records or as inputs in simulating stream 

flow. The precipitation generator component within the SWAT model weather generator uses a 

first order Markov Chain model to define a day as wet or dry by comparing a random number 

generated by the model to the monthly wet-dry probabilities input by the user. If a day is classified 

as wet, the amount of precipitation is generated from a skewed distribution or a modified 

exponential distribution (Neitsch et al, 2011).  

Maximum and minimum air temperatures and solar radiation are generated from a normal 

distribution where a continuity equation is incorporated into the generator to take account of 

temperature and radiation variations caused by dry and rainy conditions. Here maximum air 

temperature and solar radiation are adjusted downward when simulating rainy conditions and 

upwards when simulating dry conditions so that the long term generated values for the average 

monthly maximum temperature and solar radiation agree with input averages. A modified 

exponential equation is used to generate daily mean wind speeds given by the mean monthly wind 

speed data. The relative humidity model uses a triangular distribution to simulate the daily average 

relative humidity from the monthly means. Just like in the case of temperature and radiation, the 

mean daily relative humidity is adjusted to account for wet and dry day effects (Neitsch et al, 

2011).  

The outputs from the SWAT model simulations are distinguished into stream flow output and land 

based results.  Stream flow includes the water quality and volume aspects for every stream in the 

basin.  The land based results are extensive and include all the components of the hydrological 

cycle as well as the erosion, pollutants, nutrients, and crop growth.  All this information is 

available per sub catchment as well as per HRU (Neitsch et al, 2011).  
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No matter what type of problem is being studied using the SWAT model, water balance is the 

driving force behind all that happens in the watershed. Simulation of the hydrology of a watershed 

by the SWAT model may be separated into two main divisions namely the land phase and the 

water routing phase of the hydrologic cycle (Figure 2.14). The land phase mainly controls the 

water movement into the land and therefore determines the amount of water that is eventually 

routed in the channel network of the watershed to the outlet (Neitsch et al, 2011). 

As rainfall descends, it may be intercepted and held in the vegetation canopy or it may fall directly 

to the soil surface. Once the rain water reaches the soil surface, it infiltrates into the soil profile or 

flows overland as surface runoff. The surface runoff moves quickly towards the stream channel 

and contributes to short term stream responses. Infiltrated water is held in the soil profile for some 

time before making its way back to the atmosphere through evapotranspiration or to the surface 

water system via underground paths (Figure 2.14).  

 
 

Figure 2.8: Schematic view of the hydrologic cycle (Source: Neitsch et al, 2011) 

 

The land phase of the hydrologic cycle has two main components which control the amount of 

water that goes into and out of the system. Precipitation, which is a climatic event, controls the 

amount of water that goes into the system. This water has to be distributed over the land and has to 

be moved along the land with great accuracy. This greatly depends on the condition of the land 

surface which is determined by the land cover (Neitsch et al, 2011). 
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The SWAT model has been applied in various basins in different countries and has been calibrated 

and validated for different conditions (Gassman et al, 2007).  It is used for modelling basins in the 

USA and is actively supported by the USDA Agricultural research service (Droogers et al, 2006). 

SWAT model applications are found in various fields in the Nile basin (within which the area of 

study is located) particularly those that require direct assessments of anthropogenic climate 

change, and other influences on a wide range of water resources (Ndomba et al, 2008; Setegn et 

al, 2009). 

In Kenya, SWAT model has been applied in at least three river basins namely Tana Sondu 

(Jayakrishnan et al, 2005), Nyando (Sang, 2005), Tana (Jacobs et al, 2007), Nzoia (Githui, 2008) 

and Mara (Mango et al, 2011) basins and found to perform reasonably well. Jayakrishnan and 

others (2005) used the SWAT model to model the hydrology of river Sondu as part of assessment 

of the impacts of modern technology on the small holder daily industry. Sang (2005) applied 

SWAT model to evaluate the impact of changes in landuse, climate and reservoir storage in the 

Nyando basin. He established that the model performed well in the simulation of streamflow and 

could also be used to assess the impacts of landuse and climate change on the flooding in the 

basin. Jacobs and others (2007) used the SWAT model to simulate the environmental implications 

of reforestation in the higher elevations of the upper Tana basin as part of mitigation of economic 

damage studies. Githui (2008) applied the SWAT model in the Nzoia river basin as part of the 

assessment of impacts of environmental change studies. Mango and others (2011) applied the 

SWAT model to investigate the response of the head water hydrology of the Mara River to 

scenarios of continued deforestation and projected climate. In the current study, the SWAT model 

was used to assess the impacts of climate change and deforestation on surface water yields from 

the Mau forest catchments in Kenya. 

 

2.7.8 SWAT Model Calibration and Validation  

Before the model could be applied and used for decision making, it was necessary to first calibrate 

and validate the model to reduce the uncertainty in the model simulations. This was done 

following a two-step procedure namely the model sensitivity analysis followed by the model 

parameter calibration and validation (Winchel et al, 2010). 
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2.7.8.1 Sensitivity Analysis 

Hydrologic models such as SWAT usually have a large number of model input parameters which 

make model calibration a complex and tedious process. It is therefore important that prior to the 

model calibration and validation exercise, sensitivity analysis be carried out for purposes of 

identifying and ranking the parameters on the basis of the magnitude of influence on streamflow 

response in the catchment (Moriasi et al, 2007; Gassman et al, 2007).  

SWAT model has two broad categories of parameter sensitivity analysis namely; local sensitivity 

analysis, and global sensitivity analysis. The local sensitivity analysis identifies the output 

responses by sequentially varying each of the model input parameters by a certain fraction while 

all other parameters are held at their nominal values. This is also referred to as One-factor-at-a-

Time (OAT) method. On the other hand the global sensitivity analysis explores the entire range of 

the model parameters where all the parameters are simultaneously perturbed and their interactions 

and impacts on the model output are investigated (Glavan and Pintar, 2012; Veith and 

Ghebremichael, 2009; Griensven, 2005).  

The sensitivity analysis method used in SWAT combines both local and global sensitivity analyses 

by using the Latin Hypercube and One-factor-at-a-Time (LH-OAT) sampling where the LH 

samples are used as the initial points for an OAT design. The LH generates the distribution of the 

plausible collections of parameter values from a multidimensional distribution and hence forms 

the initial points for an OAT design (Liew and Veith, 2010; Griensven, 2005). 

The LH simulation is based on Monte Carlo simulation and uses stratified sampling for efficient 

estimation of the model outputs. The parameter distribution in the LH simulations is divided into 

N  ranges each with a probability of occurrence of 
N

1
 where each of the ranges is sampled once 

for purposes of generating random numbers. The random combinations of the model parameters 

are used to run the model N  times in order to cover the N  ranges (Griensven, 2005). 

The OAT method integrates local to global sensitivity method. Only one parameter is changed for 

each model run so that the changes in the output are attributable to the changed input parameter. 

For n  model parameters 1n  model runs are necessary in order to obtain the effect of each of the 

parameters. Since the result of the influence of a parameter may depend on the values chosen for 

the remaining parameters, the process is repeated for several sets of input parameters. The final 
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effect is the mean of all the partial effects and their variance is used as a measure of the uniformity 

of the effects (Ghebremichael, 2009; Griensven, 2005). 

The combination of LH and OAT methods ensures that the full range of all parameters has been 

sampled for an OAT design which is a robust and efficient sensitivity analysis method. With m  

intervals in the LH method and p parameters, a total of m(p+1) model runs are necessary. The 

SWAT sensitivity analysis tool automatically performs sensitivity analysis both with and without 

observed data by varying the values of each model parameter within a specified range. Depending 

on the parameter, changes are made by any of the three methods; multiplying the values by a 

certain percentage, adding part of the value to the base value, or replacing the base value with a 

new value (Neitsch et al, 2011; Winchel et al, 2010; Glavan and Pintar, 2012; Veith and 

Ghebremichael, 2009; Griensven, 2005). The final results of the sensitivity analysis are parameters 

arranged in ranks where the parameter with the maximum effect in catchment response is assigned 

rank 1. A parameter with a global rank of 1 is categorised as “very important”, Rank 2-6 as 

“important” (Glavan and Pintar, 2012). 

 

2.7.8.2 Calibration and Validation  

One of the most common uses of the SWAT model is to evaluate the impacts of climate change 

and different land management practices on stream flow.  In order to use the model to perform the 

impacts studies, it is required that the model first be calibrated and validated for the existing 

conditions (Arnold et al, 2012). Calibration is an effort to better parameterise a model to a given 

set of local conditions and thereby reducing the model prediction uncertainty. It involves 

adjustment of model input parameters by comparing model outputs for a given set of assumed 

conditions with observed data for the same conditions. Validation is the process of demonstrating 

that a given site specific model is capable of making sufficiently accurate simulations. It involves 

running the calibrated model using a different set of data other than that used in calibration and 

comparing outputs to observed data (Arnold et al, 2012). Model calibration and validation is 

normally done following three key steps: (i) selection of a portion of observed data, (ii) running 

the model at different values of known input parameters and comparing the output with observed 

data until fit to observation is good, (iii) applying the model with calibrated parameters to the 

remaining portion of the observed data (Arnold et al, 2011). 
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SWAT has two calibration options: automatic and manual schemes (Arnold et al, 2012; Winchel 

et al, 2010). The automated calibration scheme, inbuilt in the SWAT2009, is used to calibrate the 

model by assigning appropriate lower and upper bounds of parameter values before initiating the 

process (Moriasi et al, 2007, Van Liew et al, 2005). The scheme executes up to several thousand 

model runs to find the optimum parameter values (Gassman et al, 2007) under the assumption that 

all error variance is contained within the simulated values while the observed values are free of 

error (Moriasi et al, 2007). The model input parameters are adjusted within acceptable ranges 

(Arnold et al, 2012; Neitsch et al, 2011; Gassman et al, 2007) until acceptable agreement between 

the simulated and observed values of stream flow is achieved (Glavan and Pintar, 2012; Krause et 

al, 2005). 

As confirmed by other studies (Van Griensven et al, 2012), projected impacts of climate change 

on streamflow are associated with large uncertainties. These uncertainties arise from the climate 

model, statistical post processing scheme, and the hydrological model (Bosshard et al, 2013). In 

this respect, using properly distributed datasets for calibration and validation of hydrological 

models can be a determinant factor in reducing uncertainty (Bosshard et al, 2013). Furthermore, a 

thorough assessment of errors in the data used in the modelling should also deserve more 

attention. Two main factors currently limiting further improvements in the accuracy of model 

simulations and predictions are the quality of the data used and the scaling of the information at 

the resolution required by the particular application (Blasone, 2007).  

From the foregoing review, none of the studies has specifically focussed on the water yields at the 

river catchment area level in relation to climate change and deforestation. PRECIS RCM products 

were only used to project future climate scenarios but no attempt was made to use the products to 

determine the impacts of climate change on water yields (Omondi 2010; Sabiiti, 2008).  The use 

of SWAT hydrological model in Nzoia basin (Githui, 2008) did not incorporate products of a 

regional climate model to assess the impacts of climate change and deforestation on the water 

yields from the basin. Instead the model used its own self generated climate input data. The 

present study aims at using the products of PRECIS RCM to drive SWAT hydrological model. 

The products of SWAT hydrological model were used to determine the impacts of climate change 

and deforestation on surface water yields from the Sondu River basin in Lake Victoria South 

Catchment Area (LVSCA).  
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This study sought to establish how the surface water yields are affected by climate change and 

deforestation over the Mau forest complex catchments taking 1961 to 1990 as the base line period 

against which changes in surface water yield levels were computed. The next chapter presents the 

methods used in this study towards achieving the stated objective. 
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CHAPTER 3 

METHODOLOGIES  

3.1 Introduction 

In this chapter, methods and principles applied in order to achieve the objective of this study are 

presented and discussed. The chapter is broken into five sections namely: (i) Data processing and 

Quality Control (ii) Determination of Trends in Observed Data (iii) Climate Modelling (iv) 

Hydrologic Modelling, and (v) Analysis of Impacts on Water Yields. 

 

3.2 Data Processing and Quality Control  

Data processing and quality control involved sorting, summarising, aggregating, and validating the 

raw data supplied by the data collection agencies in order to obtain the required information in 

appropriate formats and to ensure that the data was clean and useful. In this section, the operations 

performed on observed Hydrometeorological and Spatial data from the area of study and the steps 

taken to ensure that their quality was not compromised, are discussed. 

  

3.2.1 Hydrometeorological data 

Rain-gauge and temperature data collected daily by the Kenya Meteorological Service (KMS) and 

discharge data computed on a daily time scale by the Water Resources Management Authority 

(WRMA) were processed to obtain monthly, seasonal, annual and long-term mean values. The 

summarized data were then sorted into respective time series to enable better description of the 

climate patterns and the hydrological regime of the area of study.  

In order to make valid inferences from the analysis of observed Hydrometeorological data, it was 

important to first ascertain their quality before they were subjected to further analysis. Data quality 

control involved the careful scrutiny of the observed datasets in order to establish their 

completeness and consistency. In this study, estimation of missing data and homogeneity test were 

used as data quality control checks. 

3.2.1.1 Estimation of Missing Data  

Continuity of data is a vital requirement in research. Incomplete records of Hydrometeorological 

data may compromise the integrity of results derived from the data. Estimation of the missing 

records of Hydrometeorological datasets was important because they were used to drive and 
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calibrate a hydrological model that requires continuous data records. Several methods are 

available in literature for filling in missing records of Hydrometeorological data. They include 

spatial correlation, weighted arithmetic mean, double mass curve, linear regression, normal ratio, 

and inverse distance among others. Details of these methods may be found in Rwigi (2004) and 

Opere (1998). 

In this study, spatial correlation and regression analysis were used in conjunction with weighted 

arithmetic mean method to fill in the missing records. The weighted arithmetic mean method was 

used to estimate missing rainfall and temperature data while linear regression was used to estimate 

missing discharge data. A brief highlight of weighted arithmetic mean and linear regression 

methods is presented in the following sub-sections. 

 

3.2.1.1.1 Weighted Arithmetic Mean Method 

The weighted arithmetic mean is a simple and popular method that is widely used in filling in the 

missing meteorological records (Opere, 1998). The method estimates the missing record using 

corresponding records at three stations close and correlated to the station with the missing data 

record. The ratio of the normal annual precipitation of the station with missing record to that of the 

station with data corresponding to the missing record is used as the weighting factor. The missing 

record is therefore estimated using Equation 3.1. 
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xP  is the estimated missing record, xN  is the normal annual rainfall of the station with missing 

records, AN  is the normal annual rainfall of station A, AP  is the record in station A that 

corresponds to the missing record in station X, BN  is the normal annual rainfall of station B, BP  is 

the record in station B that corresponds to the missing record in station X, CN  is the normal 

annual rainfall of station C, CP  is the record in station C that corresponds to the missing record in 

station X. 

 

3.2.1.1.2 Linear Regression  

Simple linear regression describes the linear relationship between two variables. The method seeks 

to summarise the relationship between the two variables by a single straight line (Equation 3.2). 
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The linear relationship is used as a predictive model of a missing record using the corresponding 

available record in another station. Regression of data from significantly correlated RGSs was 

performed to obtain the slope coefficient for the relationship which was then tested for 

significance before the model could be applied to estimate the missing values.  

  ii bX+a=Ŷ  .......................................................................................................3.2 

iŶ  is the estimated random variable of the missing record series, iX  is the available random 

variable corresponding to the missing record, a  is the y-intercept of the regression line, b is the 

slope of the regression line (Helsel and Hirsch, 2002; Wilks, 2006). The values of a  and b  are 

obtained by minimising the least squares equation (Equation 3.3).   
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The significance of the slope was tested at 05.0  level of significance using student t-statistic 

computed using Equation 3.4. 

  
 bs

b
tcal   ….………………………………………….….……………..…….3.4 

calt  is the computed t-statistic, b  is the slope of the regression line and  bs  is the standard 

deviation of the slope. calt  was compared with the corresponding tabulated critical value ( crtct ) and 

slope was considered significant whenever crtccal tt  . This equation was used to determine the 

significance of trend in observed and simulated time series (Moore and McCabe, 1989). 

 

3.2.1.2 Homogeneity Test 

A time series of a climatological variable such as rainfall or temperature, whose variations are 

caused only by variations of weather and climate are said to be homogeneous. Lack of 

homogeneity in a data series causes problems in studying a time series since heterogeneity makes 

data records unsuitable for comparison over long time periods and between different stations. 

Non-homogeneity may be abrupt or gradual; abrupt non-homogeneity is caused by relocation of 

instruments, changes in instruments, or changes in observation practices while gradual non-

homogeneity is caused by gradual changes in the environment of the observation site such as 

urbanisation (Hasanean and Basset, 2006). The timing and size of significant non-homogeneities 

can be estimated using statistical tests. In this study short-cut Bartlett test (Hasanean and Basset, 
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2006) was used to examine the homogeneity of the surface air temperature, rainfall, and stream 

flow time series at their designated stations.  

 

3.2.1.2.1 Short Cut Bartlett Test  

Short cut Bartlett method tests homogeneity of a dataset by testing whether variability in a time 

series is constant. A dataset is considered homogeneous if variability in a time series is constant. 

Bartlett‟s test is a test of the hypothesis that all factor standard deviations are equal against the 

alternative hypothesis that the standard deviations are not all equal. The method is applied by 

dividing the time series into k equal sub periods where 2k   (Hasanean and Basset, 2006). 

Samples of annual Hydrometeorological data were broken into two sub periods of sizes n1 and n2 

for the purpose of testing homogeneity using the Short cut Bartlett method.  In each of these sub 

periods a sample variance, ks2

 (Equation 3.5) was computed.  
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Summations range over the n values of the series in the sub period k. s
2

k is the sample variance 

over the period k, n is the sample size, and xi is the i
th

 random variable. The values of sample 

variances were used to compute the sample test statistic (Equation 3.6) used to test for 

homogeneity of the data sample.  
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max
2S  is the computed larger sample variance, min

2S is the computed smaller sample variance, and 

calF is the test statistic used to measure the number of times the variance from one sub period is 

larger than the other. The resulting ratios from Equation 3.8 will be small if the two sample sub 

periods have the same variance (Homogeneous) and larger if the two samples have statistically 

different variances (heterogeneous). The computed F-statistic follows the F-distribution with 

11 n  and 12 n degrees of freedom. By taking the null hypothesis that the two sub periods have 

the same variance (Equation 3.7), the computed F-values ( calF ) were compared to tabulated 

critical values ( tabF ) in the F distribution table at 05.0  level of significance. 

  210 : ssH   …..…………………………….………….………….….…. 3.7a 



76 

 

  211 : ssH   ……….………………………………...……………..…….. 3.7b 

1s  and 2s  are the standard deviations for the respective sub periods.  

The null hypothesis 0H was rejected if the calculated value of calF was found to be greater than the 

tabulated value ( 95.0FFcal  ) as this was evidence that the two samples did not have the same 

variance (Hasanean and Basset, 2006). Since the alternative hypothesis requires the two-sided test, 

the significance level given in the table was doubled in order to obtain the significance level for 

the two-sided F-test (Moore and McCabe, 1989). 

 

3.2.1.3 Spatial Data 

Spatial data are generally found in form of maps and include Digital Elevation Model (DEM) from 

which topography is derived; soil types, forest and vegetation, land use, and water resources 

among others, stored as layers in digital format (Farid, 2008). Spatial data are normally remotely 

sensed from satellite platforms and therefore need to be processed to make them suit the purpose 

of the study. 

 

3.2.1.3.1 Digital Elevation Model Data 

The DEM was downloaded from the USGS public domain website in geographic coordinate 

system. In order to apply the DEM in the SWAT model, it was projected to the World Geodetic 

System of 1984 (WGS84) zone 36S of the Universal Transverse Mercator (UTM) set of 

coordinate system since this is the UTM zone containing the area of study. To limit the analysis to 

the area of study, a predefined map of Sondu River basin was used to mask out the area of interest. 

 

3.2.1.3.2 Soil Data 

The soil data were provided as a raster layer projected to WGS84 Zone 36N. It was therefore 

reprojected to WGS84 Zone 36S to make it overlay the DEM layer and therefore make it possible 

to analyse the two together. The map of Sondu River basin was used to clip the data to the area of 

interest.  
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3.2.1.3.3 Satellite Imagery  

Figures 3.1 and 3.2 show the false colour composites of LANDSAT MSS (1973), LANDSAT TM 

(1986), LANDSAT ETM (2000), and LANDSAT ETM+ (2010) Satellite images of the Sondu 

River basin and South West Mau forest block respectively. The images were taken by sensors 

aboard LANDSAT satellites. These are a series of Earth observing satellites equipped with sensors 

that respond to Earth-reflected electromagnetic radiation. The series of satellites is jointly 

managed by NASA and USGS.  

 

Figure 3.1: Satellite images of Sondu catchment area for 1973, 1986, 2000, and 2010 

The 1973 imagery was taken by MSS sensor aboard LANDSAT 1 which has four channels, 2 

visible and 2 infrared at 57 m resolution while the 1986 imagery was taken by TM sensor aboard 

LANDSAT 5 which has seven channels, 3 visible, 2 near infrared, 1 mid infrared and 1 thermal 

infrared at 30 m resolution. The 2000 imagery was taken by ETM sensor aboard LANDSAT 7, 

which is similar to the TM sensor but adds an extra 15 m resolution panchromatic band and 

improved resolution for the thermal infra red band, at 30 m resolution. The 2010 imagery was 

1986 

2000 2010 

1973 
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taken by the ETM+ sensor aboard LANDSAT 7 at 28.5 m resolution. The false colour composite 

LANDSAT images were interpreted through image classification to obtain LULC thematic maps 

for the area of study. 

 

 

Figure 3.2: Satellite images of South West Mau forest reserve for 1973, 1986, 2000, and 2010  

 

3.2.1.3.3.1 Image Classification 

Image classification is the process by which all pixels in a satellite digital image are categorised 

into one of several classes of LULC in the area of interest using either supervised or unsupervised 

classification schemes. The classified data are then used to produce thematic maps of LULC that 

can be analysed in conjunction with other data using GIS technology (Zhou, 1999). 

The sensors aboard the LANDSAT satellites cover the complete wavelength bands and hence give 

grey scale images. During the image processing, individual bands were separated and combined 

1973 1986 

2000 2010 
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into false colour composite of RGB432 to enhance vegetation visibility (Figures 3.1 and 3.2) since 

the study partially focussed on the impacts of changes in natural vegetation cover on water yields. 

The false colours were then interpreted and appropriate colours representing what was actually on 

the ground surface were assigned. 

The false colour composite images provided by DRSRS were interpreted using supervised 

classification scheme and a total of six LULC classes were delineated; agricultural row crops, 

evergreen forest, mixed forest, open forest, plantation forest, rainfed herbaceous crop, rangeland, 

and water. The classified images were converted from raster to vector format and the total area of 

each class was estimated using geometry tools in ArcGIS 9.3 software. Temporal land use changes 

between 1973 and 2010 were compared and displayed in map format at a scale of 1:450000.   

 

3.3 Determination of Trends in Observed Data  

A brief discussion of methods used to analyse the processed data for purposes of meeting the 

stated objective are presented in this section. They include: determination of long-term means, 

variance, and trend analysis of time series of observed rainfall, temperature, stream flow and forest 

cover between 1961 and 2010. 

 

3.3.1 Time Series Analysis  

Time series analysis is a major tool in hydrological analysis. Its main applications include building 

mathematical models to generate synthetic hydrologic records, forecasting hydrologic events, 

detecting trends and shifts, cycles and seasonality in hydrologic records, and filling in missing 

records including extension of short hydrologic records where necessary (Salas, 1993). Time 

series analysis was used in this study to examine the past, current and future trends of 

Hydrometeorological data. This subsection presents the methods used to determine the mean, 

variance and trend sample statistics. 

 

3.3.1.1 Overall Sample Statistics 

The overall sample statistics, the mean ( Y ) and the variance ( 2S ) were determined for monthly 

and annual time series for rainfall, maximum and minimum temperatures, and discharge over the 
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Sondu catchment area. For a time series denoted by tY , the mean Y (Equation 3.8) and variance 

2S  (Equation 3.9) were determined. 
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Y  is the sample mean, 2S  is the sample variance, N  is the sample size, tY  is the time series 

variable. These statistics were used to detect trends in observed and simulated data. 

 

3.3.1.2 Trend Analysis 

Trends in hydrologic data could be due to long term climatic changes or in the case of streamflow 

due to changes in a catchment‟s response to effective rainfall owing to landuse changes that lead 

to the deforestation of the watershed. There are many parametric and nonparametric methods of 

detecting trend. One of the most useful parametric methods of detecting trend is the simple linear 

regression analysis which assumes normality of errors, constant variance and true linearity of 

relationships. In this study, the trend in time series of different datasets was determined by 

regression trend lines (Equation 3.10) of the time series. 

  tbbYt 10   ……………………………………………………..…………3.10 

tY  is the time series variable, 0b  is the initial value of the time series variable, 1b  is the trend of 

the time series, and t  is the time at which tY  was observed. This equation was used to determine 

trends in observed and simulated time series datasets. The significance of trend was tested at 

05.0  level of significance using student t-statistic (Equation 3.4). 

Trends in LULC data were evaluated by comparing percentage changes (Equation 3.11) in 

vegetation cover of the area of study at different times with that of the baseline.   
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BLU  is the baseline forest cover and TLU  is the forest cover at a later date. Positive values of 

Equation 3.13 indicate increasing trend while negative values indicate decreasing trends. 

 

3.4 Climate Modelling  

The regional climate responses were derived from a fully coupled Ocean-Atmosphere model, the 

third generation of the Hadley Centre Coupled model (HadCM3) which is run at a horizontal 

resolution of 2.5˚latitude and 3.75˚ longitude (Met Office, 2009). Outputs from the HadCM3 

model were used to provide boundary data to the PRECIS regional climate model system which is 

based on the atmosphere only component (HadAM3P) of the HadCM3 climate model (Wilson et 

al, 2009; Jones et al, 2004). In this section the second specific objective was addressed.  

 

3.4.1 PRECIS Modelling  

Downscaling of GCM outputs has been used in hydrological studies to translate the projected 

climate change into hydrological response (Akhtar et al, 2009). In this study, dynamical 

downscaling has been applied with the PRECI RCM using GCM outputs as boundary conditions 

over the East African region (Figure 3.3) ) as the model domain. The domain was set up with a 

horizontal resolution of 50 km by 50 km and it spans latitudes 12˚S to 18˚N and longitudes 22˚E 

to 52˚E. The domain spans latitudes 12˚S to 18˚N and longitudes 22˚E to 52˚E. The domain 

fully encompasses the area of study lying between latitudes 00˚23' S and 01˚10' S and longitudes 

34˚46' E and 35˚45’. 

 

3.4.1.1 Regional Climate Scenarios 

This subsection describes the techniques used in PRECIS RCM to provide the climate information 

required to drive the impacts models such as SWAT. The method essentially follows a three-stage 

process namely; Running the model over the area of interest, in this case, the Sondu River 

catchment area, to provide climate simulations of the baseline period (1961-1990) and comparing 

these simulations with the observations to validate the model outputs; Running the model to 

provide climate projections for future periods (2001-2030) and (2021-2050); Deriving the relevant 

information from the model projections based on the understanding of the needs of the impacts 

model (Jones et al, 2004). 
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Figure 3.3: Eastern Africa domain used for PRECIS simulations  

In order to create regional climate scenarios, PRECIS downscales a recent and a future climate 

scenario, such as 1961-1990 and 2021-2050 climate periods respectively, which are both functions 

of local and remote processes with external forcing being provided by solar radiation and 

atmospheric composition. Atmospheric composition is represented by prescribed concentrations of 

the most important GHGs derived from scenarios of their emissions (Wilson et al, 2009; Jones et 

al, 2004). In this study PRECIS was used to simulate rainfall and temperature for the Sondu River 

basin using ECHAM4 boundary data under SRES A2 emissions scenarios as the model inputs. 

 

3.4.1.2 Generating Climate Change Scenarios 

The coupled ocean atmosphere global climate models (OAGCMs) such as the ECHAM4 used to 

provide the boundary data for RCMs are usually run in transient modes where they typically run 

for a long period of time spanning decades to centuries (Jones et al, 2004). Such long period 

transient runs are not practical for RCM such as PRECIS due to the prohibitive computational 

costs involved. In order to save on these costs, PRECIS is normally run with time slices of 

between ten to thirty years of OAGCM out put to provide the statistics of climate change of a 

particular place for a particular period of interest  

In this study, the particular place of interest was the entire Sondu River catchment area. To 

generate climate projections over the area of interest, three time slices (Table 3.1) were selected 
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from ECHAM4 to drive PRECIS; the base period (1961-1990), the present and near future period 

(2001-2030), and the medium term future period (2021-2050), which targeted Kenya‟s 

development blue print, vision 2030 and beyond. The difference between the baseline period 

climate and those of the near and medium term future periods provided the climate change 

projections for these periods in the area of study. 

The outputs from PRECIS model were used to drive SWAT hydrological model to produce the 

baseline period and the future surface water yields from the MFC using Sondu River basin as the 

representative catchment area. The difference between the baseline period and the future surface 

water yields represent the impacts of climate change on water yields from the MFC. 

Table 3.1:  PRECIS experiments carried out during the study 

Experiment 

No. 

Boundary 

data code 

 

Scenario 

 

Period 

 

Output 

diagnostic 

 

Description 

1 echja Baseline  1961-1990 PP daily, monthly 

and annual data 

Nested within ECHAM4 

Baseline output 

2 echja SRES A2  2001-2030 PP daily, monthly 

and annual data 

Nested within ECHAM4 

A2 GCM output 

3 echja SRES A2  2021-2050 PP daily, monthly 

and annual data 

Nested within ECHAM4 

A2 GCM output 

 

 

3.4.1.3 Simulation Length 

Since climates describe statistical distributions of meteorological occurrences which occur at a 

particular place, reliable simulations of climate should be long enough to sample as wide a range 

of meteorological phenomena as possible. In order to investigate the state of the regional climate, 

the minimum simulation length that gives a reasonable idea of the mean changes in climate should 

be at least ten years. Studies using the Hadley Centre RCM have shown that a ten year simulation 

captures about half of the variance of the true regional climate change response. To capture over 

three quarters of the variance of the true signal, a thirty year simulation period is recommended 

(Jones et al, 2004). An integration length of 31 years is however more preferable for the analysis 
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of aspects of climate variability such as distributions of daily rainfall and climate extremes, where 

a thirty-year period follows a one year spin-up period.  

 

3.4.1.4 Choice of a Domain 

The choice of a model domain is crucial when setting up the regional model experiments. The 

choice is largely governed by the region, the experimental design and the ultimate use of the RCM 

results. The domain should generally be large enough to allow for the full development of the 

internal mesoscale circulations and include the relevant regional forcings. It is important that the 

domain should encompass the inherent dynamics of the region chosen to run the model (Jones et 

al, 2004).  

In this study, the model domain stretches over latitudes 12
o
S to 18

o
N and longitudes 22

o
E to 52

o
E 

(680 km by 3400 km) at a horizontal resolution of 50 km. The domain is large enough to allow for 

the full development of internal mesoscale circulations and includes the relevant regional forcings 

such as the Congo basin air mass, Lake Victoria, and a section of the western side of the Indian 

Ocean: all of which have a major influence on the climate of the Sondu basin (Akhtar et al, 2009; 

Nyakwanda et al, 2009; Christensen et al, 2007). 

 

3.4.1.5 Configuring the Region 

Although PRECIS RCM can be applied anywhere in the world, it is necessary to reconfigure the 

model domain in order to reflect the reality. Configuration of the model domain involves the 

editing of the default characteristics of the underlying surface of the region such as land cover, soil 

type, and topography in order to reflect what is actually on the ground. In this study, configuration 

of the region was done through the PRECIS model in-built land-sea mask (Wilson et al, 2009). 

 

3.4.1.6 RCM Calendar and Clock 

PRECIS uses an artificial calendar consisting of 360 days per year which divides the calendar year 

into twelve months of thirty days each, and a clock that is always based on the Coordinated 

Universal Time (UTC) denoted by Z (Wilson et al, 2009). The model automatically chooses this 

calendar when it runs. To ensure that monthly and seasonal mean values diagnosed by the model 

are compatible with their equivalent observed quantities, the average date of perihelion is shifted 
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from 2.5 to 3.2 days after the beginning of the year, taken as 0Z 1
st
 January (Wilson et al, 2009). 

In this study each PRECIS model run commenced from 0Z 1
st
 January and lasted for a period of 

31 years. 

 

3.4.1.7 PRECIS Diagnostic Outputs 

All of the model diagnostic outputs are produced and archived during each PRECIS run. The 

model allows one to output a range of climatic variables on hourly and daily time steps and also 

always outputs longer timescale averages of these variables. Standard PRECIS diagnostic outputs 

are climatic means of periods longer than a day together with hourly and daily means, daily 

maxima and daily minima, which are optional. In this study daily surface, middle, and upper air 

diagnostics were selected. This was in addition to climatic mean diagnostics which are 

automatically supplied at 850, 500, and 250 hPa pressure levels (Wilson et al, 2009; Met Office, 

2009).Time series of monthly and seasonal outputs of rainfall and temperature were used to 

describe climate scenarios while daily outputs were used as inputs to the SWAT hydrological 

model to analyse the impacts of climate change on the surface water yields from the Mau forest 

complex catchments. 

 

3.4.1.8 Baseline Climate 

The baseline climate was assumed to belong to the same climatic regime as the present and was 

therefore used as the control against which future climate changes were measured. There are 

currently six baseline climates available for use by PRECIS which represent slightly different 

periods; ECMWF Re-Analysis (ERA) baseline climates consisting of ERA15 (1979-1993), 

ERA40 (1957-2001), and ERA Interim (1989-2007); National Centre for Environmental 

Prediction (NCEP) baseline climate consisting of NCEP R2 (1979-2004); the third generation of 

the Hadley Centre Atmospheric Model (HadAM3P) baseline climates consisting of HadAM3P 

(1960-1990), and Max Plank Institute of Meteorology baseline climate consisting of ECHAM4 

(1960-1990). 

The relevant information on the atmospheric composition for the various baseline climates was 

provided from values of various greenhouse gases for their respective periods as given in Table 

3.2 (Wilson et al, 2009). The table shows the SRES A2 emissions scenarios mass mixing ratios 

(kg of gas per kg of air) of carbon dioxide (CO2), Methane (CH4), and Nitrous oxide (N2O). 
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The World Meteorological Organisation (WMO) has adopted the climate of the period 1961 to 

1990 as the current baseline climate against which future climate changes may be assessed. The 

data for this period may be obtained from ERA40, HadAM3P or ECHAM4. For the purpose of 

this study, ECHAM4 was selected to provide boundary data since it was the only one available 

with a transient run. The boundary data were obtained by running 31-year integrations of 

ECHAM4 (Table 3.2) with one year being used as warm up period. Observed and projected 

evolutions of GHGs concentrations (Table 3.2) over the entire period of interest; 1950 - 2050 were 

used to provide the relevant information on atmospheric composition (Wilson et al, 2009). 

Table 3.2: SRES A2 emissions scenario mass mixing ratios of carbon dioxide, Methane, and 

Nitrous oxide 

Carbon Dioxide (CO2) Methane (CH4) Nitrous Oxide (N2O) 

Year Concentration (10
-

4
) 

Year Concentration (10
-

7
) 

Year Concentration (10
-7

) 

1960 4.814 1957 6.597 1950 4.407 

1970 4.948 1990 9.514 1965 4.471 

1980 5.148 2000 9.757 1984 4.615 

1990 5.334 2010 10.38 1990 4.710 

1995 5.440 2020 11.14 2000 4.832 

2000 5.572 2030 12.02 2010 4.969 

2010 5.900 2040 13.03 2020 5.136 

2020 6.310   2030 5.334 

2030 6.819   2040 5.531 

2040 7.388     

  (Source: Wilson et al, 2009)  

3.4.1.9 Transient Climates 

To simulate future climates of 2001-2030 and 2021-2050 over the Sondu river basin, PRECIS was 

run in transient mode. In this mode PRECIS is capable of integrating transient climates 

continuously from the recent past through the present up to the year 2100 (Wilson et al, 2009). 

Running PRECIS in this mode allows climates of intermediate periods such as 2030s and 2050s to 

be downscaled directly from the GCMs. There are three main transient runs available that can 
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readily be used in PRECIS. These are HadCM3Qn (1950-2099), ECHAM4 (1990-2100), and 

ECHAM5 (1950-2100) (Wilson et al, 2009).  

In this study ECHAM4 was used to provide the necessary boundary conditions to drive PRECIS 

RCM over the East African domain since it was the only one available with the PRECIS 1.8.2 

version that was used for this study (Wilson et al, 2009). The external forcing was provided by the 

SRES A2 emission scenarios (Table 3.2) while the sea surface boundary conditions were taken 

directly from the GCMs ocean component. 

  

3.4.1.10 Model Output Calibration and Validation 

The model-generated values are full of uncertainties arising from the fact that the model is merely 

a simplification of reality. The model output values therefore need to be calibrated and validated 

using corresponding observed values in order to bring them closer to the real values before they 

can be used for impact assessment (CCC, 2009; Islam et al, 2008). In order to determine the 

measure of the confidence to be placed on rainfall, maximum and minimum temperature 

projections, it was therefore necessary to calibrate and validate PRECIS outputs using 

corresponding observed data from the area of study.  

Calibration of PRECIS-simulated rainfall and temperature was performed over the Sondu basin 

using surface observed data from KMD for the baseline period (1961-1990) split into two parts: 

(1961-1980) for calibration and (1981-1990) for validation. Observed data at a particular site are 

considered as being representative of the location (Islam et al, 2008). Grid values of the model 

data, extracted at the observational site, were compared with the corresponding observed data 

representing the grid. The model-simulated data of rainfall and temperature were extracted at three 

observation sites of KMD (Kericho, Keresoi, and Sotik) and were processed to monthly, seasonal, 

annual and long-term mean values.  

There are two calibration methods commonly used to calibrate model-simulated values: bias 

correction factor, and regression analysis methods (CCC, 2009). Regression analysis method was 

adopted for this study on account of its robustness compared to the bias correction factor method. 

PRECIS model-simulated monthly values were regressed on corresponding observed values to 

calculate regression slopes and constants for rainfall, maximum and minimum temperatures at the 

three KMD observation stations: Kericho, Keresoi and Sotik. The calibrated parameters obtained 
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through regression analysis were used to validate the PRECIS model projected values (CCC, 

2009). 

The following regression equations were used to validate projected rainfall (Equation 3.12), 

maximum temperature (Equation 3.13), and minimum temperature (Equation 3.14).   

   RFRFRFRF SbaE  ……………………………………………………….. 3.12 

RFE  is the estimated projected rainfall, RFa  is the rainfall regression constant, RFb  is the rainfall 

regression slope, and RFS  is the simulated rainfall scenario. 

  maxmaxmaxmax TTTT SbaE  …………………………………………..……. 3.13 

maxTE
 

is the estimated projected maximum temperature, maxTa
 

is the maximum temperature 

regression constant, maxTb
 is the maximum temperature regression slope, and maxTS

 
is the 

simulated maximum temperature scenario. 

  minminminmin TTTT SbaE  ……………………………...…………..…….. 3.14 

minTE  is the estimated projected minimum temperature, minTa  is the minimum temperature 

regression constant, minTb  is the minimum temperature regression slope, and minTS  is the 

simulated minimum temperature scenario 

The model performance was measured by the difference between observed and the model-

estimated values which is a measure of whether the model overestimates or underestimates the 

observed climate variables (Islam et al, 2008). In the case of rainfall the model performance was 

evaluated as the percentage difference between the observed and model-estimated rainfall 

(Equation 3.15a) while in the case of temperature performance was evaluated as simply the 

difference between the observed and model-estimated temperatures (Equation 3.15b). Positive 

performance values indicated model underestimation while negative values indicated model 

overestimation. 
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PerformanceRnfl is the percentage overestimation or underestimation of rainfall by the model, 

ObservedRnfl is the observed rainfall, EstimatedRnfl is the estimated rainfall from the model-

simulated scenarios, PerformanceTmp is the overestimation or underestimation of temperature (˚C) 

by the model, ObservedTmp is the observed temperature, and EstimatedTmp is the estimated 

temperature from the model-simulated scenarios. 

 

3.5 Hydrologic Modelling 

This study examineed stream flows, rainfall, and deforestation in the Sondu River basin, whose 

upper catchment comprises South West Mau forest, the largest of the 22 blocks (Kinyajui, 2009) 

comprising the MFC in Kenya. The study examined how stream flows and hence surface water 

yields vary under different climate and forest cover scenarios. The extent of variation in stream 

flow was quantified in terms of changes in the mean as a central value. In order to achieve this, a 

physically based hydrological model: the Soil and Watershed Assessment Tool (SWAT) was 

applied. SWAT is extensively described in Neitsch et al (2011), Winchell et al (2010), and Arnold 

et al (1998).  

In this section the third specific objective, to simulate streamflow for the periods 1961-1990, 

2001-2030 and 2021-2050 under different climate and forest cover scenarios and analyse the 

trends, was addressed. SWAT hydrologic model was used to simulate stream flows, from which 

water yields from the Sondu catchment area were evaluated, using the baseline and SRES A2 

emissions scenarios projected climates under different LULC scenarios over the Sondu catchment 

area. 

 

3.5.1 SWAT Model Inputs and Setup  

This subsection presents the prerequisite requirements for running the SWAT hydrologic model 

including the operational requirements of input data, data preparation, model set up, model 

application and the simulation options that were applied in the Sondu basin. Summarised 

procedures that were followed in the setting up of the model and how it was used to simulate the 

hydrological characteristics of the area of study are presented.  

The model was set up using the digital elevation model (DEM), land use, soil and climate data 

sets. The model parameterisation was derived using the ArcGIS interface for SWAT (ArcSWAT) 
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which provides a graphical support for the desegregation scheme and hence supports data handling 

(Schuol et al, 2008). The ArcSWAT interface was used to delineate the whole watershed area into 

sub-basins based on the DEM and the stream network. A drainage area of 10000 ha was selected 

as the threshold for the delineation of the Sondu river watershed. This threshold was chosen to 

balance between the resolution of the available data and a practical SWAT project size (Faramarzi 

et al, 2009). This resulted in a total of 17 sub-basins from the main Sondu River basin. The LULC, 

soil, and slope thematic layers were used to generate the HRUs within each of the sub-basins. 

Climatic data were used as the main drivers of the model in the respective sub-basins. 

The main procedures followed involved: Delineation of the catchment area into different sub-

basins; definition of HRUs in each of the sub basins based on land use, soil type and slope 

datasets; loading of the processed climate datasets; and finally the simulation of streamflow.  

 

3.5.1.1 Data Requirements  

Spatial data that include: DEM, LULC, stream network, and soil type maps were projected to the 

Universal Transverse Mercator (UTM) Zone 36S, which is the transverse Mercator projection 

zone for this part of Kenya, using ArcGIS 9.3. The DEM was used to delineate the watershed and 

to analyse the drainage patterns of the land surface terrain. The LULC spatial data were 

reclassified into SWAT land cover types and a user look up table was created to help in 

identifying different classes of LULC on the map as per the required SWAT format. The soil map 

for the area of study was linked with the SWAT soil database. 

  

3.5.1.2 Watershed Delineation 

The watershed boundaries of the area of study were derived from the global SRTM 90 m by 90 m 

DEM using automated procedures within the watershed delineator; an ArcGIS extension within 

SWAT2009. The key procedures followed in the delineation process included: loading the DEM 

that was used to calculate sub-basin and reach parameters; Specifying the critical source area 

which was used to determine the detail of the stream network as well as the size and number of 

sub-basins in the larger Sondu catchment area; Reviewing and editing the stream network outlet 

points in order to achieve the optimum number of sub-basins and; Calculating the sub-basin 

parameters.  
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The next step after the delineation of the watershed was to input LULC and soil data thematic 

maps. The thematic maps were input, overlaid, and the characterisation of each sub-basin was 

automatically performed using the ArcSWAT interface. Having done this, areas with unique soil-

landuse-slope combination were differentiated within each sub-basin. These unique areas, called 

Hydrological response Units (HRUs) were used as the basis of the water balance calculations 

(Abbaspour et al, 2009; Schuol et al, 2008). The parameterisation of the stream reaches and the 

basin geomorphology was automatically done with the help of the ArcSWAT interface (Winchel 

et al, 2010; Schuol et al, 2008). 

  

3.5.1.3 Sub-Basin Parameters 

Spatial parameterisation of the model was performed by subdividing the Sondu basin into 17 sub-

basins based on the surface topography so that the entire Sondu catchment drains through the 

outlet at Sondu Miriu RGS number IJGO1 (Figure 1.5). The sub-basins were further subdivided 

into a series of Hydrological response Units (HRUs) based on unique soil, landuse, and slope 

characteristics (Winchel et al, 2010; Faramarzi et al, 2009). Parameterisation of the stream reaches 

and the sub-basin geomorphology was automatically performed using ArcSWAT interface 

(Schuol et al, 2008). 

 

3.5.1.4 HRU Analysis 

Land use, soil and slope characterisation for the main catchment area and for each of the 

respective sub-basins was performed using ArcSWAT interface where the land use and soil data 

sets were imported and linked to the SWAT databases. Slope classification was performed based 

on the DEM. Multiple class slopes option was chosen on account of the wide range of slopes in 

the Sondu catchment area. Landuse, soil types and slope class datasets were used to define at least 

one HRU for each of the 17 sub-basins. 

Land use datasets were defined and reclassified into SWAT land cover types. Since the study area 

is outside the U.S.A, a user look up table was created by editing the default LULC database in 

order to reflect the local conditions. The soil dataset was also defined and reclassified. From the 

digital soil map provided by the Kenya Soil Survey (KSS), the various categories of soils found 

within the Sondu catchment area were linked to the SWAT soil database.  



92 

 

After land use and soil datasets were successfully reclassified and the slope class chosen, the land 

use, soil and slope thematic layers were then overlain to the catchment. These layers were used to 

automatically define the HRUs for each of the 17 sub-basins using preset threshold levels of: 5% 

land use, 20% soil, and 20% slope. 

 

3.5.1.5 Channel Characteristics 

In modelling channel flow in a watershed, SWAT model assumes that the main channels have a 

trapezoidal shape. The user is then required to define the width and depth of the channel when 

filled to the top of the bank as well as the channel length, slope along the channel length and the 

Manning‟s n value for the catchment area. Further, the model assumes the channel sides to have a 

2:1 run-to-rise ratio  2chZ  so that the slope of the channel sides is 0.5. The bottom width of the 

channel is then calculated (Equation 3.16) from the bank full width (Neitsch et al, 2011). 

bnkfullchbnkfullbtm depthZWW  2
...………….…………..………….3.16

 

 btmW  is the bottom width of the channel (m), bnkfullW  is the top width of the channel when filled 

with water (m), chZ  is the inverse of the channel side slope, and bnkfulldepth  is the depth of water in 

the channel when filled to the top of the bank (m). By solving Equation 3.17, for a given depth of 

water in the channel, the width of the channel at the water level was determined. 

depthZWW chbtm  2
 ……………………..……………………3.17

 

W  is the width of the channel at the water level (m), btmW  is the bottom width of the channel (m), 

chZ  is the inverse of the channel side slope, depth  is the depth of water in the channel (m). The 

volume of water held in the channel at any one time was evaluated by solving Equation 3.18. 

chchch ALV .1000 
 …………………………..…………….……… 3.18 

 chV  is the volume of water stored in the channel (m
3
), chL  is the channel length (km), chA  is the 

cross-section area of flow in the channel for a given depth of water (m
2
). 

 

3.5.1.6 Climate Component 

The climate component of the model was presented in form of weather data gathered from the 

Sondu catchment area. Climatic input variables required for running the SWAT model consist 
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mainly of daily precipitation, maximum and minimum air temperature, solar radiation, wind speed 

and relative humidity. The model has an option of using input values of daily weather variables 

from records of observed or simulated data or use internally generated values using monthly 

average data summarised over a number of years. Generated climatic data may also be used to fill 

in gaps in the observed records (Winchel et al, 2010). 

 

3.5.1.7 Weather Data 

The weather variables that drive the hydrologic water balance are: precipitation, air temperature, 

solar radiation, wind speed and relative humidity (Arnold et al, 1998). Where available, observed 

daily precipitation, maximum and minimum temperatures can be input directly; otherwise the 

model can simulate them using the inbuilt weather generator. Solar radiation, wind speed and 

relative humidity are always internally simulated by the model. 

In this study, the weather data used in the catchment simulation of stream flow were imported into 

the SWAT databases. Weather stations; Kericho, Keresoi, Ndoinet, Sotik, and Timbilil were 

loaded to the model and used to define the Weather generator datasets  which were used to 

generate various weather parameters for the model. SWAT model weather generator database was 

created by first creating a location table to provide the location of the local weather generator 

stations within the Sondu watershed (Winchell et al, 2010). Table 3.3 shows the local weather 

stations used to provide the weather generator data sets for the area of study.  

For each of the locations listed in the rain gauge location table (Table 3.3), a daily precipitation 

data table was made. This table was used to store the daily rainfall records listed in sequential 

order for each individual rain gauge. The temperature data table used to store the maximum and 

minimum temperatures for each of the listed temperature station was also made. The table has 

three columns; date, maximum and minimum temperature columns and can hold a maximum of 

150 years of daily temperature data (Winchell et al, 2010). The other climate datasets; relative 

humidity, solar radiation and wind speed were internally generated using the SWAT weather 

generator. The climate data assigned to a sub-basin was obtained from the closest station.  

The weather generator produces synthetic data that have similar statistical properties as the 

observed data. It is important to note that synthetic data only have similar but not the same 

statistical properties as the observed data since magnitudes may differ (Brissette et al, 2007). 
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Hence use of synthetic meteorological data introduces uncertainties in SWAT simulations; the 

best situation would be to use the long term measured data. However, lack of observed time series 

of adequate length to permit impacts studies and the limited coverage of station networks, and the 

need for catchment scale response datasets with high spatial and temporal resolutions (Mirus et al, 

2007), necessitates use of synthetic data in studies such as this one. The quality of this data 

depends on how well the statistics of the observed data are described (Brissette et al, 2007). So 

long as the statistics of observed data are well described, the use of synthetic time series with 

physical models such SWAT allows for the direct modelling of future events (Brissette et al, 

2007). 

Table 3.3: Weather stations used by the weather generator component of SWAT model 

ID Name Code Name Latitude Longitude Elevation (m) 

1 Keresoi Wgnkrsi -0.2833 35.5333 2682 

2 Kericho Wgnkrch -0.3667 35.2700 1976 

3 Ndoinet Wgnndnt -0.4167 35.5500 2438 

4 Timbilil WgnTmbl -0.3500 35.3500 2073 

5 Sotik Wgnsotk -0.7000 35.1000 2134 

 

 

3.5.1.8 Rainfall 

Rainfall, the main process through which water enters the land phase component of the 

hydrological cycle, is one of the most important processes in the land phase of the cycle. Since 

rainfall controls the water balance, it is important that its amount and distribution, in both space 

and time, is accurately simulated by the model. Rainfall reaching the earth‟s surface on a given 

day ( dayR ) may be read from an input file or be internally generated by the model (Neitsch et al, 

2011). 

The occurrence of rain on any given day has a major impact on relative humidity, temperature and 

solar radiation reaching the surface for that day. The weather generator component within the 

SWAT modelling system first generates precipitation for the day independent of the other climatic 

variables and then computes the distribution of rainfall within the day. Once this is successfully 

done, maximum and minimum temperatures, solar radiation and relative humidity are then 
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generated based on the presence or absence of rain for the day under consideration. Wind speed is 

then generated independently (Neitsch et al, 2011). 

A first order Markov chain-skewed model (Nicks, 1974), inbuilt within the SWAT modelling 

system, was used to generate (Equation 3.19) daily precipitation for the Sondu basin. The first 

order Markov chain model was used to define the day as dry or wet by comparing a random 

number ranging from 0.0 to 1.0, generated by the model, to monthly wet-dry probabilities input by 

the user (Table 3.4).  

Table 3.4: SWAT input variables that appertain to the generation of daily rainfall 

Variable name Definition 

PCPSIM Precipitation unit code: 1-measured, 2-generated 

PR_W(1,mon)  DWPi / : Probability of a wet day following a dry day in a month 

PR_W(2,mon)  WWPi / : Probability of a wet day following a wet day in a month 

IDIST Rainfall distribution code: O-skewed, 1-exponential 

REXP rexp: Value of the exponent. (required if IDIST=1)  

PCPMM (mon) Average monthly precipitation falling in a month (mm H2O) 

PCPDmon Average number. of days of precipitation in a month (µmon = PCPMM/PCPD) 

PCPSTD (mon) δ mon: Standard deviation for daily precipitation in a month (mmH2O) 

PCPSKW gmon: Skew coefficient for daily precipitation in a month 

 

(Source: Neitsch, et al, 2011) 
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dayR  is the amount of rainfall on a given day (mm H20), monμ  is the mean daily rainfall for the 

month (mm H2O), monδ  is the standard deviation of daily rainfall for the month (mm H2O), 

daySND is the standard normal deviate calculated for the day, and mong  is the skew coefficient for 

daily rainfall for the month. Precipitation input parameters include monthly probabilities of 

receiving precipitation depending on whether the previous day was wet or dry. Given the dry-wet 
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state, the Markov chain-skewed model stochastically determines whether precipitation will occur 

or not (Arnold et al, 1998). 

 

3.5.1.9 Preparation of Rainfall Statistical Parameters 

The weather generator component in the SWAT modelling system requires some statistical 

parameters of daily rainfall as part of the input weather data for use in simulating daily rainfall. 

These parameters were calculated using the precipitation statistics software (pcpSTAT) written by 

Liersch (2003). The software uses text files arranged in one column starting with the first day of 

January of the first year and ending with the last day of December of the last year. Observed and 

simulated daily rainfall data were arranged in one column and converted to text files to be used as 

input to pcpSTAT. Observed and simulated data sets were arranged so that the first entry 

coincided with the first day of January of the first year and the last value with the last day of 

December of the last year (Liersch, 2003).  

The preparation was done for daily rainfall values of observed rainfall in the period 1961-2011 

and also for the PRECIS model-simulated daily rainfall for the periods 1961-1990, 2001-2030, 

and 2021-2050. The outputs from the pcpSTAT included the output file together with two 

additional files containing a table of total monthly rainfall of each year of the entire period, and a 

table of average daily rainfall values of each year of the entire period (Liersch, 2003).  

 

3.5.1.10 Solar Radiation and Air Temperature  

SWAT internally generates maximum and minimum air temperatures as well as solar radiation 

using the inbuilt weather generator. A continuity equation is incorporated into the weather 

generator to account for temperature and radiation variations caused by the dry and wet day 

conditions. These values were generated from input averages of monthly data (Neitsch et al, 

2011). The average air temperature was used to determine whether precipitation should be 

simulated as rainfall or snowfall. Maximum and minimum temperature inputs were used in the 

calculation of the daily soil and water temperatures which were important in the determination of 

stream flow rates (Gassman et al, 2007). Terrestrial radiation which depends on sunrise, sunset, 

latitude and solar declination was also calculated (Equation 3.20). 

  SRSRoo ωT+δωTE=H sincoscossinsin37.59   ........................................3.20 
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oH  is the calculated solar radiation, oE (dimensionless) is the eccentricity correction factor of the 

Earth‟s orbit and is given by evaluating Equation 3.21, ω  is the earth‟s angular velocity (rad/h), 

SRT  is the hour of sunrise, δ  is the declination angle (rad), and   is the latitude angle (rad). 

 2sin000077.02cos000719.0sin00128.0cos034221.000011.10E  ………..3.21 

 

  is the day angle (radians) and is evaluated from Equation 3.22 
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N is the day number of the year and ranges from 1 on January 1 to 365 on December 31 (Wong 

and Chow, 2001). 

Air temperature was calculated using a sinusoidal function (Equation 3.23) within the model 

oscillating between maximum and minimum daily air temperatures.  

  
 

  150.2618cos
2

minmax 


hr
TT

+T=T avhr  .....................................................3.23 

hrT  is the surface air temperature at a given hour (˚C), avT is the daily average temperature (˚C); 

maxT is the maximum temperature at a given hour (˚C); and minT is the minimum temperature at a 

given hour (˚C). Soil temperature in a given layer was calculated (Equation 3.24) using the 

previous day‟s soil temperature, the mean annual air temperature, the current day‟s soil surface 

temperature and the depth.  

 

          ssurfssurfAAairnsoilnsoil T+TTdfl+dz,Tl=dz,T  1.01.  ............................3.24 

 nsoil dz,T  is the soil temperature (˚C) at depth z (mm) below the surface, and on the day of the 

year dn; l is the lag coefficient that controls the influence of the previous day‟s temperature and is 

set to 0.8 in the SWAT model;  1nsoil dz,T  is the previous day‟s soil temperature (˚C); df is the 

depth factor which quantifies the influence of the depth below the surface on the soil temperature; 

AAairT  is the average annual air temperature (˚C); and ssurfT  is the soil surface temperature (˚C) 

(Neitsch et al, 2011). 
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3.5.1.11 Wind speed 

The SWAT model generated mean daily wind speeds by solving a modified exponential Equation 

3.25. 

  0.3

10 1n 1monm rndμwnd=μ  ……………..………….…………….…..... 3.25 

mμ10  is the mean wind speed for the day at a height of 10 m above the surface (ms
-1

), monμwnd is 

the monthly average wind speed (ms
-1

), and 1rnd  is a random number between 0.0 and 1.0 

(Neitsch et al, 2011). 

 

3.5.1.12 Relative humidity 

The relative humidity model subcomponent of the SWAT weather generator uses a triangular 

distribution to simulate the daily average relative humidity from the monthly averages. The 

triangular distribution used to generate daily relative humidity values requires four inputs namely: 

mean monthly relative humidity  hmmR , monthly maximum relative humidity ( hUmonR  ), monthly 

minimum relative humidity ( hLmonR ), and a random number between 0.0 and 1.0. Mean monthly 

relative humidity for the month was calculated by solving Equation 3.26. 

mon

mon

hmon
e

e
R

0
 ……………..………………………….…….………3.26 

hmonR  is the relative humidity for the month, mone  is the actual vapour pressure at the mean 

monthly temperature (kPa), and mone0 is the saturation vapour pressure at the mean monthly 

temperature (kPa). Maximum relative humidity was calculated (Equation 3.27) from the mean 

monthly relative humidity. 

   1.exp1  hmonhmonhmonhUmon RR+R=R …………………….….…………3.27 

hUmonR  is the highest relative humidity value that can be generated on a given day in the month, 

and hmonR  is the average relative humidity for the month. Minimum relative humidity value was 

calculated by solving Equation 3.28. 

  hmonhmonhLmon RR=R  exp1. ………..….……………….………3.28 
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hLmonR  is the lowest relative humidity that can be generated on a given day in the month, and 

hmonR  is the average relative humidity for the month (Neitsch et al, 2011). 

 

3.5.1.13 Land Phase Component  

The land phase of the hydrologic cycle comprises two main components: hydrology and routing. 

The hydrology component of the cycle comprises the flow processes occurring on the land phase 

of the hydrological cycle and is based on the soil water balance equation (Equation 3.29) which 

forms the basis of hydrological modelling. The main modelling processes of the hydrology 

component of the SWAT model which are simulated through the soil water balance equation 

include: surface runoff, infiltration, evaporation, plant water uptake, lateral subsurface flow, 

percolation to the shallow and deep aquifers, and the base flow (Neitsch et al, 2011; Faramarzi et 

al, 2009). In this study the hydrology component was simulated based on the soil water balance 

equation suggested by Arnold et al (1998).  

  
t

=i

gwseepasurfdayot QWEQR+SW=SW
1

……....................................3.29 

tSW  is the final soil water content (mmH2O), oSW  is the initial soil water content on day i 

(mmH2O), t  is the time (days), dayR  is the amount of rainfall on day i (mmH2O), surfQ  is the 

amount of surface runoff on day i (mmH2O), aE  is the amount of evapotranspiration on day i 

(mmH2O), seepW is the amount of water entering the vadoze zone from the soil profile on day i 

(mmH2O), and gwQ  is the amount of return flow on day i (mmH2O). 

In this study surface runoff from daily rainfall amounts was modelled using a modified SCS curve 

number method (Equation 3.30) based on LULC characteristics, soil hydrologic group and 

antecedent soil moisture content.  

 2

0.8S

0.2S

+R

R
=Q

day

day

surf


  SRday 2.0 ..............................................3.30a 

0surfQ   SRday 2.0 …………….………………3.30b 

surfQ  is the accumulated daily surface runoff (mmH2O), dayR  is the daily rainfall depth (mmH2O), 

and S is the retention parameter (Abbaspour et al, 2009; Schuol et al, 2008; Arnold et al, 1998).  
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The retention parameter varies spatially and temporally. The parameter varies spatially among 

watersheds because soils, land use, management, and slope vary; and temporally because of 

changes in the soil water content (Arnold et al, 1998). The parameter is related to the curve 

number by the SCS equation (Equation 3.31)  









1

100
254

CN
=S ............................................................................3.31 

CN is the SCS curve number for the given day and ranges from 30 to 100 (Neitsch et al, 2011). 

 

3.5.1.14 Time of concentration 

Time of concentration was calculated (Equation 3.32) by summing up the overland flow time and 

the channel flow time. 

chovconc ttt 
 ……………………………….……….………….. 3.32

 

conct  is the time of concentration for a sub-basin (hr), ovt  is the time of concentration for overland 

flow (hr) (Equation 3.33), cht  is the time of concentration for channel flow (hr) (Equation 3.34). 

ov

slp

ov
V

L
t




3600
……………………………….………….….…...  3.33

 

slpL  is the sub-basin slope length (m), ovV  is the overland flow velocity ( 1ms ) and 3600 is a unit 

conversion factor. 

c

c

ch
V

L
t




6.3
…………………………………………….………………..3.34

 

cL  is the average channel length for the sub-basin (km), cV  is the average channel velocity ( 1ms ), 

and 3.6 a unit conversion factor. 

 

3.5.1.15 Canopy Storage 

When SWAT calculates surface runoff using SCS curve number method, canopy interception is 

lumped in the term for initial abstraction. The maximum amount of water that can be in the canopy 

storage varies from day to day as a function of leaf area index (LAI) and was computed using 

Equation 3.35. 



101 

 

mx

mxday
LAI

LAI
CanCan 

…………………………………………...3.35

 

dayCan  is the maximum amount of water that can be trapped in the canopy on a given day 

(mmH2O), mxCan  is the maximum amount of water that can be trapped in the canopy when the 

canopy is fully developed (mmH2O), LAI is the leaf area index for a given day and mxLAI  is the 

maximum leaf area index for the plant. 

 

3.5.1.16 Sub-Surface Flow 

The available soil water capacity (AWC) was calculated (Equation 3.36) by subtracting the 

fraction of the water present at the permanent wilting point (WP) from the fraction of the water 

present at field capacity (FC). 

WPFCAWC  ……………………….………………..………3.36 

AWC  is the available soil water content, FC  is the soil water content at field capacity and WP  is 

the soil water content at the permanent wilting point.  

 

3.5.1.17 Routing Component 

The model maintains a continuous water balance and hence complex basins have to be sub-divided 

into sub-basins to reflect the differences in evapotranspiration for various crops and soils. Runoff 

is thus modelled separately for each sub-basin and then routed to obtain the total runoff for the 

basin (Arnold et al, 1998). This increases accuracy of runoff simulation and gives a better physical 

description of the water balance. In this study, the modelled runoff from each sub-basin was 

routed through the river basin to the main basin outlet at RGS 1JG01 using the Muskingum 

method. 

Manning‟s equation for uniform flow in a channel (Equations 3.37) was used to calculate the rate 

and velocity of flow in a channel segment for a given time step. 

  
n

slpRA
q chchch

ch

2

1

3

2

  .....................................................................................3.37a 
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n

slpR
v chch

ch

2

1

3

2

  ..........................................................................................3.37b 

chq  is rate of flow in the channel (m
3
/s), chA  is the cross-sectional area of the channel (m

2
), chR  is 

the hydraulic radius for a given depth of flow (m), chslp  is the slope of the channel along the 

length (m/m), chv  is the flow velocity in the channel (ms
-1

) and n  is the Manning‟s coefficient for 

the channel (Neitsch et al, 2011).  

Muskingum storage method models the storage volume as a combination of wedge and prism 

storages using Equation 3.38 (Neitsch et al, 2011).  

  1122 out,3in,2in,1out, qC+qC+qC=q  ................................................................3.38 

2out,q  is the out flow rate at the beginning of the time step 3; 2in,q  is the inflow rate at the 

beginning of the time step 1, 1in,q is the inflow rate at the end of the time step 2, 1out,q  is the 

outflow rate at the end of the time step 3. Muskingum routing equation (Equation 3.39) was used 

to route the water in the channel. 

  Δt+X

KXΔt
=C





12K

2
1 ............................................................................................3.39a 

 
  Δt+X

KX+Δt
=C

12K

2
2 ............................................................................................3.39b 

 
 
  Δt+X

ΔtX
=C





12K

12K
3 ............................................................................................3.39c 

C1, C2, and C3 are the routing coefficients and it may always be checked that 11 =C+C+C 32  , 

K is the storage time constant for the reach and X  is the weighting factor.  

The variable storage method is based on the continuity equation for a given channel reach 

segment. In this method the stored amount of water is basically the difference between the input 

into and the output out of the segment. In this method, one of the options provided for in the 

SWAT model storage for a given channel segment is based on the continuity Equation 3.40. 

storedoutin VVV 
 .……..……………………………………..……..… 3.40

 

inV  is the volume of inflow (m
3
H2O), outV  is the volume of outflow (m

3
H2O), storedV  is the 

change in the volume of storage during the time-step (m
3
H2O). 
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3.5.2 SWAT Model Simulations 

Having loaded all the necessary data into the SWAT model, initial model runs at two selected 

gauging stations, Sondu and Kiptiget, were performed to establish whether the data were correctly 

loaded. The initial runs were also used to assess the suitability of the model for the catchment 

before moving on to the model calibration and validation stage (Winchel et al, 2010).  

 

3.5.2.1 Model Calibration and Validation 

After successfully setting up the model, the next important and challenging step was the 

calibration and validation procedure.  Before the model could be applied and used for decision 

making, it was necessary to first calibrate and validate the model input parameters to reduce the 

uncertainty in the model simulations. In this study the model was calibrated and validated at the 

sub-basin level based on monthly observed discharge values at Kiptiget RGS following a three-

step procedure; the model sensitivity analysis followed by the model parameter calibration and 

validation (Winchel et al, 2010; Abbaspour et al, 2009; Schuol et al, 2008). 

 

3.5.2.2 Sensitivity Analysis 

Automated sensitivity analysis of 21 SWAT model input parameters (Gassman et al, 2007) for the 

188 km
2
 Kiptiget sub-catchment was performed. The model was run for the period between 1969 

and 1990 using Kiptiget RGS observed discharge data. During each model run, the objective 

function was calculated as the sum of the squared errors between the observed and simulated 

streamflows. The effect of a change of a parameter value on this objective function was then 

calculated and the parameters ranked with decreasing sensitivity (Veith and Ghebremichael, 

2009). 

 

3.5.2.3 Calibration and Validation  

The model was calibrated and validated at the sub-basin level based on monthly observed 

discharge at Kiptiget RGS. Calibration was done manually using split sample approach following 

the procedure recommended by Arnold et al (2011).  Model-simulated and corresponding 

observed monthly discharges from 1983 to 1987 were used to calibrate the model input parameters 

while those observed from 1988 to 1990 were used to validate the model. The sum of squares 

method was used as the optimisation scheme accompanied by visual inspection of monthly 
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hydrographs (Van Liew et al, 2005). Results of model validation were used to accept or reject the 

model results based on the criteria set in the next section (Moriasi et al, 2007). 

 

3.5.2.4 Assessment of Model Performance 

The appropriateness of a hydrologic model in a catchment area can be evaluated based on three 

criteria: fit-to-observations, fit-to-reality, and fit-to-purpose (Van Griensven, et al, 2012). The fit-

to-observations involves the evaluation of performance indicators where the error between the 

model outputs and observed values for the same variable is computed, fit-to-reality involves the 

evaluation of the extent to which the hydrological processes in the catchment area are realistically 

represented by means of parameter and mass balance evaluations, and fit-to-purpose involves 

evaluation of the extent to which the model is able to tackle the problem. 

In this study, the fit-to-observations criterion, which computes the accuracy of simulations 

compare observations, was adopted. This is the most typical evaluation criterion used to evaluate 

the performance of hydrologic models on account of its objectivity and affordability (Van Liew et 

al, 2005; Krause et al, 2005; Moriasi et al, 2007; Van Griensven, et al, 2012).  

Based on this criterion, Moriasi et al (2007) have recommended the following quantitative 

statistics for model evaluation: Coefficient of determination (R
2
), Nash-Sutcllife Efficiency (NSE), 

Percentage Bias (PBIAS), and the ratio of root-mean-square error (RSR) to the standard deviation 

of the observation data. This is in addition to graphical assessment through hydrographs and 

percent exceedance probability curves (Krause et al, 2005; Moriasi et al, 2007; Sexton et al, 2010; 

Van Griensven, et al, 2012). The following subsections present a brief highlight of the quantitative 

statistics used for model assessment in this study. 

 

3.5.2.4.1 Coefficient of Determination (R
2
) 

The coefficient of determination is a number between 0 and 1 that reveals how closely the model-

predicted values correspond to the actual observed values as reflected by the values estimated by 

the trend line (Muthama et al, 2008). The R-squared value is usually computed as a measure of 

how well the observed values are replicated by the model as a proportion of total variations 

explained by the model (Moriasi et al, 2007). The R-squared statistic is computed as a comparison 
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of the variability of the estimation error (SSE) with the variability of the original value (SST) using 

Equation 3.41.   

   
T

E

SS

SS
R 12  ………………………………….…..…………………3.41 

SSE is the sum of squared errors and SST is the total sum of squares. 

The smaller the SSE, the higher the values of R
2
 and the more reliable the predictions obtained 

from the model. Values of R
2
 close to 1 indicate less variance and values of R

2
 > 0.5 are 

considered acceptable. This statistic however has short comings that make it necessary to use other 

statistics to assess the model performance. It is highly sensitive to outliers and insensitive to 

additive and proportional differences between model predictions and observed data (Moriasi et al, 

2007). 

 

3.5.2.4.2 Nash–Sutcliffe Efficiency (NSE) 

This efficiency criterion was proposed by Nash and Sutcliffe (1970) and is the most frequently 

used indicator in hydrological modelling to assess the accuracy of model simulations based on 

observations. It is a normalised index (Equation 3.42) that measures the fraction of the observed 

flow variance that is reproduced by the model (Van Griensven, 2005; Glavan and Pintar, 2012; 

Moriasi et al, 2007; Van Liew et al, 2005)  

 
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NSE  ………..……..……………….….3.42 

ENS  is the model efficiency, iO  is the observed discharge series, iP  is the predicted discharge 

series, O  is the mean of the observed discharge series, and n  is the total number of observations. 

Values of NSE range between -∞ and 1. Values of NSE between 0 and 1 are considered acceptable 

while those that are less than 0 are considered unacceptable (Moriasi et al, 2007). 

Minimisation of the difference between observed ( iO ) and simulated ( iP ) values through 

calibration results in maximising the NSE index for a given series that is calibrated. The 

differences between simulated and observed values may be due to either data deficiencies or 

model deficiencies (Van Liew et al, 2005).  Moriasi et al (2007) recommended the following NSE 
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criteria for evaluation of model performance: 65.05.0  NSE  (Satisfactory performance), 

75.065.0  NSE (Good performance), and 0.175.0  NSE (Very good performance). 

 

3.5.2.4.3 Percentage Bias (PBIAS) 

Percentage Bias (PBIAS), evaluated using Equation 3.43, is a measure of the average tendency of 

the simulated values to be larger or smaller than the corresponding observed values and has ability 

to clearly indicate the level of model performance (Moriasi et al, 2007). The optimal value of 

PBIAS is 0, indicating a perfect model. Positive and negative values of PBIAS indicate model bias 

towards underestimation and overestimation respectively (Galvan and Pintar, 2012; Van 

Griensven, et al, 2012).    
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iO  is the observed stream flow (m
3
s

-1
), iP  is the simulated streamflow (m

3
s

-1
), and PBIAS is the 

deviation of stream flow discharge expressed as a percentage. Moriasi et al (2007) recommended 

the following PBIAS  criteria for evaluation of model performance: %25%15  PBIAS  

(Satisfactory performance), %25%10  PBIAS (Good performance), and 

%10PBIAS (Very good performance). 

 

3.5.2.4.4 Ratio of Root-Mean-Square Error to Standard Deviation of Observations (RSR) 

The Root Mean Square Error (RMSE) is one of the error index statistics commonly used to 

evaluate model performance. The lower the RMSE values (Equation 3.44a) the better the model 

performance. During model evaluation, RMSE values less than half of the standard deviation of 

observed (STDEVobs) data, as given in Equation 3.44b, are considered low enough to accept the 

model performance (Moriasi et al, 2007; Van Griensven, et al, 2012).   

  
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iO  is the observed stream flow (m
3
s

-1
), iP  is the simulated streamflow (m

3
s

-1
), and O is the mean 

observed streamflow (m
3
s

-1
). 

RMSE-Observations standard deviation ratio (RSR) standardises RMSE using the standard 

deviation of observed data (Equation 3.45). 
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RSR values range from 0, for a perfect model simulation, to large positive values.   Lower RMSE 

values lead to lower RSR values and hence to better model performance. Values of 7.0RSR are 

considered satisfactory indicators of model performance (Van Griensven, et al, 2012). 

 

3.6 Impacts Assessment 

In this section the fourth specific objective, to conduct sensitivity analysis using rainfall and forest 

cover changes on the hydrological regime of the catchment to determine their impacts on surface 

water yields, was addressed. This was done by simulating projected water yields using projected 

temperature and rainfall as inputs under two main forest cover scenarios: deforestation scenario 

and forest conservation scenario (Figure 3.4). The impacts of climate change and deforestation on 

water yields from the Mau forest complex were evaluated by getting the percentage difference 

between simulated water yields under baseline climate and forest cover scenario, and simulated 

water yields under changed climate and forest cover scenario.  

For the purpose of this study, landuse scenarios are defined as the extent of percentage forest 

cover based on the LANDSAT satellite imageries of the area of study taken in 1973 (LU73), 1986 

(LU86), 2000 (LU00), and 2010 (LU10). The impacts on water yields were evaluated at three 

levels: (A) impacts of deforestation only, (B) impacts of climate change only, and (C) impacts of 

climate change and deforestation. 
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Figure 3.4: Flow chart of how the fourth specific objective was achieved 

 

3.6.1 Impacts of Climate Change on Water Yields 

The impacts of climate change on water yields from the Mau forest complex were assessed by 

simulating water yields at the baseline forest cover (LU73) and allowing the climate to change. 

Water yields were therefore simulated under baseline climate (1970s) and projected climates in 

2010s and 2030s. The impacts of climate change were evaluated as the percentage difference 

between the projected and the baseline water yields (Equation 3.46). Any changes in the simulated 

water yields were attributed to climate change.   

   100
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impacts   …………….…………..3.46 

CCWYLD  is the water yields under changing climate, BFWYLD  is the water yields under the 

baseline forest cover scenario 

 

3.6.2 Impacts of Deforestation on Water Yields 

The impacts of deforestation on water yields from the Mau forest complex were assessed by 

simulating water yields at the baseline climate (1970s) and allowing the forest cover to change. 

Water yields were therefore simulated under baseline forest cover (LU73) and under changed land 

cover scenarios LU86, LU00, and LU10. The impacts of deforestation were evaluated as the 

percentage difference between the simulated water yields under changed forest cover scenarios 
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and the baseline water yields (Equation 3.47). Any changes in the simulated water yields were 

attributed to deforestation. 

   100
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DFWYLD  is the water yields under deforestation, BCWYLD  is the water yields under the baseline 

climate. 

 

3.6.3 Impacts of Climate Change and Deforestation on Water Yields  

The impacts of climate change and deforestation on water yields from the Mau forest complex 

were assessed by simulating water yields at the baseline climate (1970s) for all the forest cover 

scenarios: LU73, LU86, LU00, and LU10 to obtain baseline water yields. To obtain projected 

water yields under changing climate and deforestation, climates of 2010s and 2030s were used to 

simulate water yields under all the forest cover scenarios. The impacts of climate change and 

deforestation on water yields were evaluated as the percentage difference between the projected 

water yields under changed climate and forest cover scenarios and the baseline water yields 

(Equation 3.48). Any changes in the simulated water yields were attributed to both climate change 

and deforestation. 
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DFCCWYLD ,  is the water yields under climate change and deforestation, BFBCWYLD ,  is the water 

yields under baseline climate and forest cover scenarios. Results of these computations are 

presented and discussed in detail in the next chapter.  
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CHAPTER 4 

RESULTS AND DISCUSSION  

4.1 Introduction 

The results of this study and their discussion are presented in this chapter in five sections namely: 

(i) Data Quality Control, (ii) Trends of Observed Climate, Discharge, and Forest Cover, (iii) 

Climate Simulations, (iv) Stream Flow Simulations, and (v) Impacts on Water Yields.  

 

4.2 Data Quality Control 

In this section, results of data quality control are presented and their suitability for the study 

established. Specifically this section presents results homogeneity tests.  

  

4.2.1 Homogeneity Test 

Once the problem of missing data records was sorted out, it was then necessary to establish the 

consistency of data from each of the stations by testing their homogeneity. Results of Bartlett test 

of homogeneity (Tables 4.1 to 4.3) revealed that most of the data from the basin were 

homogenous. Table 4.1 shows results of rainfall data homogeneity test using Bartlett method. The 

table shows values of computed F-statistic  calF  and the tabulated critical F-values  2F  for the 

two-sided test required for this study. max
2S  is the maximum sample variance, min

2S is the 

minimum sample variance, 1.02 F is the critical value for a two-sided test. From the results, any 

values of calF  greater than 2F  show inconsistency of the whole data set and hence the sample 

data is not homogeneous. In this case, rainfall data from Bomet, Chagaik, and Kaisugu were found 

to be inconsistent while data from the other stations were found to be homogeneous according to 

this test. 

The stations with inconsistent data were all found to be located outside the catchment area 

boundary and therefore data from them were left out of any further analysis and only data from 

those stations that showed consistency (Kericho, Keresoi, Ndoinet, Sotik and Timbilil) were 

considered for further analyses for the purpose of this study.  
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 Table 4.1: Results of Barttlet homogeneity test for rainfall data collected at stations in and 

around Sondu basin 

S/No Station Numerator Denominator 

min
2

max
2

S

S
Fcal 

 

 

1.02 F  

 

 

Conclusion 

max
2S  Sample 

size 

min
2S  Sample 

size 

1 Bomet 72436 21 25575 22 2.83 1.78 Inconsistent 

2 Chagaik 157370 25 86699 22 1.82 1.73 Inconsistent 

3 Kaisugu 68598 25 36273 25 1.89 1.70 Inconsistent 

4 Kericho 96613 21 56823 18 1.70 1.86 Homogeneous 

5 Keresoi 117828 21 74078 29 1.59 1.69 Homogeneous 

6 Ndoinet 97761 16 62170 21 1.57 1.86 Homogeneous 

7 Sotik 64758 21 49094 21 1.32 1.79 Homogeneous 

8 Timbiril 124001 21 78410 26 1.58 1.72 Homogeneous 

 

Table 4.3 shows results of discharge data homogeneity test using Bartlett method. From the 

results, all the RGSs had homogeneous data and could therefore therefore be used further analyses. 

Table 4.3 shows results of homogeneity test for maximum and minimum temperatures using 

Bartlett test.  

Table 4.2: Results of Barttlet homogeneity test for  discharge data collected at stations within 

Sondu basinn 

S/N

o 

Station Numerator Denominator 

min
2

max
2

S

S
Fcal 

 

 

1.02 F  

 

 

Conclusion 

max
2S  Sample 

size 

min
2S  Sample 

size 

1 Kiptiget 0.6552 15 0.6364 13 1.25 2.03 Homogeneous 

2 Ndoinet 0.0418 13 0.0271 15 1.54 2.05 Homogeneous 

3 Sondu 318.7 13 210.9 15 1.51 2.05 Homogeneous 

4 Sambret1 0.0018 13 0.0015 15 1.23 2.05 Homogeneous 

5 Sambret2 0.000349 13 0.000257 15 1.36 2.05 Homogeneous 

6 Sambret3 0.00302 15 0.00269 13 1.15 2.17 Homogeneous 
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Only two stations, Kericho and Timbilil, had temperature data within the area of study. Kericho 

had data records spanning 36 years (1975–2010) while Timbilil had records spanning 43 years 

(1968–2010). From the tabulated results of maximum and minimum temperatures calF  values 

were all found to be less than the 2F critical values indicating that temperature data were 

homogeneous. From the results of homogeneity tests, it was established that temperature data from 

the Sondu basin were homogeneous and therefore fit for further analysis.  

Table 4.3: Results of Barttlet homogeneity test for mean maximum and minimum temperatures (˚C) 

Station 

Name 

Temperature Numerator Denominator 

min
2

max
2

S

S
Fcal 

 

 

1.02 F  

 

 

Conclusion 

max
2S  n min

2S  n 

Kericho 

Maximum  0.9620 16 0.0863 19 1.06 1.89 Homogeneous 

Minimum  0.4236 16 0.1034 19 1.84 1.89 Homogeneous 

Timbilil 

Maximum  0.2388 21 0.2087 19 1.14 1.84 Homogeneous 

Minimum  0.3839 21 0.2370 19 1.62 1.84 Homogeneous 

 

4.3 Trends of Observed Climate, Discharge, and Forest Cover   

In this section, results of temperature, rainfall, discharge variations and trends together with the 

trends in forest cover, are presented and discussed.  

 

4.3.1 Temperature 

Results of mean monthly annual cycle and trends of temperature showing temporal variation 

within the year and over longer term periods are presented in this section. The annual cycle of 

mean monthly temperature (Figure 4.1) shows the seasonal variation of maximum and minimum 

temperatures averaged over three 30-year climate regimes updated every ten years: 1961-1990, 

1971-2000, and 1981-2010 which are centred in the 1970s, 1980s, and 1990s decades respectively. 

Results indicated that February has the warmest days while July has the coolest. The warmest 

nights occur in April while the coolest are in September.  

Mean maximum temperatures vary from about 23˚C in July to about 26˚C in February while 

mean minimum temperatures vary from about 11˚C in September to about 12˚C in April. It was 
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noted that both maximum and minimum temperatures have progressively been increasing since 

the 1970s (Figure 4.6). Temperatures in the 1990s are higher than those of 1980s which are in turn 

higher than those of 1970s except maximum temperatures in October indicating that the month of 

October has been cooling unlike the other months. The changes in temperature in subsequent 

decades after the 1970s could be a manifestation of climate change in the region where days and 

nights are becoming warmer compared to the baseline decade. 

 
(a)

 
       (b) 

Figure 4.1: Observed mean (a) monthly maximum air Temperature (Tmax), and (b) minimum 

air temperature (Tmin) distribution for three climate periods over the Sondu basin 

Figure 4.2 shows the changes in maximum and minimum temperatures in the 1980s and 1990s 

from the 1970s decade. From the figure it was observed that there was an increasing trend in both 

maximum and minimum temperatures in all months except in the month of October where the 

maximum temperature decreased by about 0.6˚C below the baseline average . The increase during 
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1980s decade ranged from 0.1˚C in January , June and November to 0.4˚C in March for 

maximum temperatures and from 0.1˚C to 0.3˚C for minimum temperatures. 

 
 (a) 

 
       (b) 

Figure 4.2: Changes in 1980s and 1990s of mean monthly (a) maximum air Temperature 

(Tmax), and (b) minimum air temperature (Tmin) from the baseline period over the Sondu 

basin 

Changes in the 1990s from the 1970s were noted to follow the same patterns as those of the 1980s 

except that the changes were higher in the 1990s. The changes ranged from about 0.3˚C in January 

to 0.8˚C in February for maximum temperatures and from 0.2˚C in March to about 0.8˚C in 

September for minimum temperatures. While all the months indicated an increase in maximum 

temperature, the month of October indicated a decrease of about 0.6˚C, similar to the 1980s 

(Figure 4.2a).  

The annual mean maximum and minimum temperature anomalies based on the baseline mean are 

presented in Figure 4.3 which shows the time series of normalised anomalies for both maximum 

and minimum temperatures over the Sondu basin. Both mean annual maximum and minimum 
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observed temperature anomaly values show increasing trends for the fifty year period which is an 

indication of warming days and nights respectively. However the trends were found not to be 

significant (Tables 4.4 and 4.5). 

 
(a) 

 
       (b)       

Figure 4.3: Time series of observed mean annual (a) maximum and (b) minimum temperature 

anomalies over the Sondu basin based on the 1961-1990 average  

From the figure, 1977 had the lowest while 2005 had the highest recorded maximum temperatures 

respectively over the 50-year period of available data. This could be attributed to the fact that 1977 

was one of the wettest years in the area while 2005 was one of the driest over the last five decades 

(Figure 4.8). The decade between 1971 and 1980 was the coolest with maximum temperatures 

falling below the baseline mean except in 1973. During the decade between 1981 and 1990 the 

maximum temperatures were also mainly below the baseline mean except in 1987. From 1991 

onwards maximum temperatures have largely remained above the baseline mean and they have 

continued to increase. It is during this period that the highest temperatures in 50 years were 

recorded (maximum temperature in 2005 and minimum temperature in 1998) 
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It was observed from Figure 4.3 that from 1961 to 2010 the decades between 1971 and 2010 

progressively became warmer with 1971-1980 being the coolest and 2001-2010 being the 

warmest. 1987 was the warmest year between 1971 and 1990 while 1997 was the warmest 

between 1991 and 2000; and 2005 was the warmest year between 2001 and 2010. 

Trends of annual mean maximum and minimum temperatures at Kericho, Timbilil, Kisumu and 

Kisii stations were tested for significance against the hypothesis that they are not significantly 

different from zero (Ho: b1 = 0) using the student‟s t-statistic at 05.0  level of significance. The 

computed t-statistic tcal was less than the tabulated critical value ( 021.2
2

t ) in all the stations 

(Tables 4.4 and 4.5).  

Table 4.4: Annual mean maximum air temperature trends (b), standard error [s(b)], and the 

computed t-statistic (tcal) 

 

 

Station 

 

 

Trend (b) 

 

 

Standard Error [s(b)] 

tcal 
 bs

b
  

 

 

Remarks 

Kericho 0.078 0.932 0.455 Trend not significant 

Timbilil 0.30 0.519 0.177 Trend not significant 

Kisumu 0.019 0.418 0.111 Trend not significant 

Kisii 0.011 1.041 0.064 Trend not significant 

Hence the null hypothesis was accepted and it was concluded that although both maximum and 

minimum temperatures show positive trends in this area, the changes are not statistically 

significant. However these small changes in temperature can bring about significant changes in the 

water cycle which could impact on the water yields in the catchment. 

Analysis of patterns and trends of temperature has established that the climate of this part of 

Kenya has become warmer since the 1970s decade. Between 1970s and 1990s, maximum 

temperature has increased by about 0.5˚C while minimum temperature has increased by about 

0.4˚C at Kericho station (Figure 4.2). Taking the 1970s as the baseline decade, updates of 30-year 

climate after every ten years show that subsequent decades are becoming warmer in line with the 

global trends, where 1997 has also been documented as the warmest year globally in the last 100 

years (Ahrens, 2007). Since 2005 and 2009 were warmer than 1997, it could also be concluded 

that the three years were the warmest in the catchment for the last 100 years. 
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Table 4.5: Annual mean minimum air temperature trends (b), standard error [s(b)], and the 

computed t-statistic (tcal) 

 

 

Station 

 

 

Trend (b) 

 

 

Standard Error [s(b)] 

tcal 
 bs

b
  

 

 

Remarks 

Kericho 0.055 0.697 0.321 Trend not significant 

Timbilil 0.015 0.578 0.089 Trend not significant 

Kisumu 0.019 0.300 0.111 Trend not significant 

Kisii 0.009 0.169 0.053 Trend not significant 

 

4.3.2 Rainfall 

Results of the analysis of observed rainfall showing the monthly annual cycle, long-term changes 

within the annual cycle in terms of: percentage changes in monthly rainfall, changes in the 

probabilities of a wet day following a dry day (PR_W1) and of a wet day following a wet day 

(PR_W2), changes in the number of days of rainfall in a month, and the time series anomaly of 

annual rainfall are presented in this section.  

 

4.3.2.1 Monthly Rainfall Characteristics 

This sub-section presents results of the analysis annual cycle of mean monthly total rainfall and 

their trends showing temporal variation within the year and over longer term periods. The annual 

cycle of mean monthly rainfall totals (Figure 4.4) shows the seasonal variation of rainfall, together 

with the corresponding percentage changes from the baseline rainfall climatology, averaged over 

three 30-year climate regimes updated every decade: 1970s, 1980s, and 1990s. This confirms the 

three rainfall seasons in this part of Kenya with the main rainfall season in March-April-May 

(MAM) where peak rainfall is centred in May followed by a minor peak in June-July-August 

(JJA) centred in August. These are followed by another minor rainfall peak in September-October-

November (SON) centred in October. The period from December to February (DJF) is relatively 

dry compared to the other seasons. 

This trimodal pattern of rainfall is attributed to the geographical location of the catchment, lying 

on the high plateau between the Rift Valley and Lake Victoria. The area is under the influence of 

the easterly air stream of the Indian Ocean monsoons and the large scale thermal winds of Lake 
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Victoria which together with low level westerly winds from the Atlantic Ocean bring in the Congo 

air mass which tends to enhance the JJA rainfall in the area (Nyakwanda et al, 2009). 

 
(a) 

 
         (b) 

Figure 4.4: Observed (a) monthly rainfall distribution for three climate periods and (b) 

corresponding percentage changes from the baseline period at Kericho Met. Station   

The difference between the baseline rainfall and the 1980s and 1990s rainfall, expressed as a 

percentage of the baseline rainfall, was used as an indicator of changes in rainfall patterns in this 

part of Kenya (Figure 4.2b). It was noted that there was a progressive increase in monthly rainfall 

from the baseline period (1970s) to 1990s during DJF and SON seasons. The increases in monthly 

rainfall ranged between 1% and 8% in the 1980s and between 10% and 16% in 1990s of the 

baseline rainfall. The largest increase from the baseline rainfall in the 1980s was noted in the 

month of January (8%) and in the 1990s in the month of December (16%). During MAM and JJA 

months, there was a progressive decline in monthly rainfall from the baseline to the 1990s. The 
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largest decrease from the baseline in the 1980s was noted in the month of March (10%) while in 

1990s it was in the month of June (10%). 

From the results of analysis of monthly rainfall climatology, it was established that the overall 

observed seasonal changes in rainfall indicate a likely shift in rainfall patterns where the relatively 

dry DJF and SON seasons are becoming relatively wet and the relatively wet MAM and JJA 

seasons are becoming relatively dry (Figure 4.2b). The overall change in DJF and SON seasons is 

positive, +5.1% in 1980s and +7.5% in1990s for DJF and +3.5% in 1980s and +9.2% in 1990s for 

SON. Hence the two seasons are becoming wetter with time. On the other hand the overall 

changes in MAM and JJA seasons are negative: -4.3% in 1980s and -2.2% in 1990s for MAM and 

-1.1% in 1980s and -4.5% in 1990s for JJA. These observed changes in monthly rainfall across the 

three climate regimes have a direct impact on the water yields from the catchment area. 

 

4.3.2.2 Probabilities of Rainfall Days in a Month 

Figure 4.5 shows the probabilities of a wet day following a dry day in a month (PR_W1) in the 

three climate periods: 1970s, 1980s, and 1990s and their corresponding percentage changes from 

the baseline period probabilities. PR_W1 shows progressive changes from the baseline period to 

the 1990s where it increased in some months but decreased in others (Figure 4.5b). PR_W1 in the 

1970s, 1980s, and 1990s shows a decrease in two of the three months during DJF (December and 

February) and MAM (March and May) seasons. JJA and SON show relatively smaller changes in 

PR_W1 but the changes do not follow any particular pattern (Figure 4.5b).  

The increases in the probability of a wet day following a dry day range from 3% to 8% in 1980s 

and from 1% to 11% in 1990s while decreases range from 1% to 7% in 1980s and from 1% to 

20% in 1990s. There are more months showing a decrease in PR_W1 than those showing an 

increase (Figure 4.5b) while the probability of a wet day following a wet day in a month (PR_W2) 

is less than that of the baseline period in all the months by between 1% and 6% in 1980s and 

between 1% and 7% in 1990s (Figure 4.6). 
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(a)  

 
       (b) 

Figure 4.5: Observed (a) Probability of a wet day following a dry day in a month (PR_W1) and 

(b) corresponding changes from the baseline period at Kericho Met. Station  

 

 

Results of the analysis of the probabilities of a wet day following a dry day (PR_W1) and a of a 

wet day following a wet day (PR_W2) have established that the observed changes in PR_W1 and 

PR_W2 indicate that there has been a tendency towards water stress from the baseline period to 

the 1990s resulting in declining water yields from the catchment. 
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(a)  

 
       (b) 

Figure 4.6: Observed (a) Probability of a wet day following a wet day in a month (PR_W2) and 

(b) corresponding changes from the baseline period at Kericho Met. Station  

 

 

4.3.2.3 Average Number of Days of Rainfall in a Month 

The average number of days with rainfall in a month shows a progressively decreasing trend from 

the 1970s to 1990s (Figure 4.7a). Except the month of January, all the other months have had 

fewer days with rainfall in the 1980s and 1990s compared to the baseline period. The largest 

decrease in the number of days of rainfall is found in the month of February. The decreases range 

between 1% and 8% in 1980s and between 2% and 18% in 1990s (Figure 4.7b). The observed 

changes in the number of days of rainfall are in line with the changes in PR_W1 and PR_W2 

which further affirms the observed declining water yields from the catchment area. 
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(a)  

 
       (b)  

Figure 4.7: Observed (a) average number of days of rainfall in a month (PCPD) and (b)  

corresponding changes from the baseline at Kericho Met. Station 

 

4.3.2.4 Annual Rainfall Trends  

Figure 4.8 shows the annual rainfall time series and trends for Keresoi and Kericho stations. A 

decreasing trend in annual rainfall was noted at Keresoi while Kericho indicated an increasing 

trend. Trends of annual rainfall at Keresoi and Kericho were tested for significance against the 

hypothesis that they are not significantly different from zero (Ho: b1 = 0) using the students t-

statistic at 05.0  level of significance. The computed t-statistic (tcal) was compared to the 

tabulated critical values ( 05.0t ) and the annual rainfall trends were found to be significant (Table 

46). The null hypothesis was therefore rejected and it was concluded that the annual rainfall trends 

are significantly different from zero. The annual rainfall trends show that there is a progressive 

change in annual rainfall in this area which is likely to impact on water yields from the catchment 

area. 
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Figure 4.8: Time series of observed total annual rainfall at Keresoi and Kericho stations 

 

Table 4.6: Annual rainfall trends (b), standard error [s(b)], and the computed t-statistic (tcal)  

Station Trend (b) Standard Error [s(b)] 
tcal 

 bs

b
  

Remarks 

Keresoi -5.559 0.144 -38.6 Significant trend 

Kericho 2.004 0.147 13.6 Significant trend 

 

4.3.3 Discharge 

Figure 4.9 shows time series of mean seasonal discharge at Kiptiget and Sondu RGSs. 

Corresponding seasons at both stations follow similar patterns of high and low flows. January-

February-March (JFM) flow season has the least seasonal discharge at both stations. The season is 

particularly important for this study since being the season with lowest mean discharge it can be 

used to assess water yields and availability in the catchment for planning purposes. It was noted 
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from the figure that 1967 had the least while 1978 had the highest flows in JFM season. Between 

1980 and 1986 the flows recorded at both stations were generally low compared to other periods. 

 
(a) 

  
       (b) 

Figure 4.9: Time series of observed seasonal discharge (m
3
s

-1
) at (a) Kiptiget and (b) Sondu RGSs 

Kiptiget RGS is located upstream of Sondu RGS and therefore has lower discharge values than 

Sondu. The upstream area drained at Kiptiget is about 189 km
2
 which is about 5% of the total 

Sondu catchment area while the upstream area drained at Sondu is about 3287 km
2
 which is about 

94% of the total catchment area. Sondu is therefore an important RGS for this study since the 

seasonal hydrograph represents the hydrological response of almost the entire catchment area. 

However Kiptiget occupies a more central part of this study since most of the upstream area 

drained at the station comprises the South West Mau Forest, the largest of the 22 blocks that make 

up the Mau forest complex. The station was therefore found to be the best placed for assessing the 

impacts of deforestation changes on water yields 

Figure 4.10 shows a time series of observed normalised annual discharge anomalies at Kiptiget 

and Sondu stations. From the figure, it was observed that Sondu station recorded more discharge 
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extremes than Kiptiget between 1961 and 1987. This could be attributed to the fact that the 

catchment area drained at Kiptiget RGS is much less and hence more homogeneous in terms of 

hydrologic responses compared to area drained at Sondu RGS. The highest recorded annual 

discharge value at Sondu was in 1978 followed by 1977 while the lowest recorded values in the 

same station were in 1984 followed by 1986. At Kiptiget, the highest recorded values were in 

1970 followed by 1985 while the lowest values were recorded in 1984 followed by 1969. From the 

available rainfall records, the low annual discharge years correspond to dry years while the high 

annual discharge years correspond to wet years (Figure 4.8). From the rainfall analysis, 1984 was 

the driest year in the basin for the last 50 years and hence reduced water yields into the streams 

and rivers. 

Figure 4.10 shows a generally decreasing trend in annual average discharge values between 1961 

and 1987. The decreasing trends are in line with the observed annual rainfall trends in the area. 

Trends of annual mean discharge were tested for significance at 1.0  level against the null 

hypothesis that they were not significantly different from zero (Ho: b1 = 0). The computed t-

statistic (tcal) was greater than the tabulated critical value ( 708.1
2

t ) at Sondu but less at Kiptiget 

(Table 4.7). Hence based on the available data, it was concluded that the decreasing trend at Sondu 

was significant while that at Kiptiget was not. 

From the analysis of discharge data at Sondu and Kiptiget RGSs, it was established that the 

decreasing trend in annual discharge values is an indicator that there is less surface water available 

with time for abstraction, and hence decreasing yields, from the Sondu catchment area. The cause 

of this decline could be attributed to climate change, deforestation of the upper catchment areas 

which mainly comprise the South West Mau forest or a combination of both.  

Table 4.7: Annual discharge trends (b), their standard error [s(b)], and computed t-statistic (tcal) 

at Kiptiget and Sondu 

 

 

Station 

 

 

RGS Code 

 

 

Trend (b) 

 

 

Standard Error [s(b)] 

tcal 
 bs

b
  

 

 

Remarks 

Kiptiget 1JA02 -0.019 0.196 0.097 no significant trend 

Sondu 1JG01 -0.368 0.196 1.876 significant trend 
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Figure 4.10: Time series of normalised annual mean discharge anomalies at Kiptiget and 

Sondu RGSs 

 

4.4 Trends of Land Use/Land Cover   

The landuse/landcover (LULC) changes over the Sondu catchment area in the last four decades are 

analyzed and discussed in this section at three levels: catchment, forest, and sub-basin levels. 

 

4.4.1 Sondu Catchment Area 

Figure 4.11 presents the land cover scenario maps over the Sondu catchment area created from the 

classified satellite images of the area of study for the years 1973, 1986, 2000, and 2010 and 

defined as LU73, LU86, LU00, and LU10 respectively, for the purpose of this study. The figure 

shows that the basin has four main land cover types that include agriculture, closed forest, open 

forest, and rainfed shrub crop (tea). In all the four land cover types, land under agriculture 

occupies the largest area, over 60% of the total catchment area while the land area under forest 

started off at about 27% in 1973 but reduced to about 21% in 2010 (Table 4.8). 
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(a)                                                                                           (b) 

  
(c)                                                                                         (d) 

Figure 4.11: LULC maps of Sondu basin derived from Satellite images for (a) 1973, (b) 1986, 

(c) 2000, and (d) 2010  

Table 4.8 shows the evolution of LULC over the Sondu basin between 1973 and 2010. From the 

table, the area under combined forest cover decreased from about 27% in 1973 to about 21% in 

2010 while the land area under combined agriculture increased from about 73% to about 79% in 

the same period. Since part of the main objective of this study was to assess the impacts of 

deforestation on the water yields from the MFC, South West Mau forest block, which traverses the 

upper parts of the Sondu catchment area and the largest of all the MFC blocks, was chosen as the 

focus of the study. 
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Table 4.8: Evolution of land cover over Sondu basin from 1973 to 2010  

LULC LU1973 (%)  LU1986 (%) LU2000 (%) LU2010 (%) 

Closed Forest (FRSE) 20.91 17.17 14.79 16.34 

Open Forest (FRSD) 6.34 9.18 7.04 4.46 

Agriculture (AGRR) 64.42 63.30 66.00 68.06 

Rainfed Shrub Crop (AGRC) 8.33 10.34 12.17 11.13 

 

4.4.2 South West Mau Forest 

The main LULC types within the South West Mau (SWM) forest reserve include closed forest 

(FRSE), open forest (FRSD), rainfed herbaceous crop (AGRR), and rainfed shrub crop (AGRC) 

(Figure 4.12). Table 4.9 shows the areal distribution of the different types of vegetation found 

within the SWM forest and the corresponding percentage changes, based on the 1973 status, 

between 1973 and 2010. Positive values of percentage changes indicate growth while negative 

changes indicate decline in the areal coverage of the respective vegetation types relative to the 

baseline status as shown in columns 4, 6, 8, and 10 of Table 4.9. Figure 4.12a and column 2 of 

Table 4.9 show the status of the different types of vegetation cover within the forest reserve as of 

1973 when the first satellite image of the area was available. This status was treated as the baseline 

against which changes in forest coverage with time were evaluated. 

The predominant vegetation cover in the forest reserve as of 1973 was closed forest which covered 

about 55000 ha out of a total of 84000 ha of the forest reserve. This represents about 65% of the 

total area of the forest reserve. The other important vegetation covers in the forest reserve as of 

1973 included rainfed herbaceous crop and the open forest type which occupied about 13000 ha 

and 10000 ha of the total area of the forest reserve respectively (Table 4.9 column 2).  The others 

were regenerating forest and plantation forest which occupied about 4000 ha and 1000 ha of the 

total area respectively. 

Between 1973 and 1986, there were tremendous changes in the extent of the area of the forest 

reserve covered by each type of vegetation (Figure 4.12b and Table 4.9 column 3). By 1986 closed 

forest cover had reduced from about 55000 ha in 1973 to about 37900 ha. About 17000 ha (20%) 

of the natural forest cover had been cleared. The redistribution of the other vegetation types within 

the forest reserve was as shown in Figure 4.12b and Table 4.9 column 3. The open forest type 
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increased from about 10300 ha in 1973 to about 37800 ha in 1986. This tremendous growth of 

about 27500 ha was accounted for mainly by the decrease in the natural forest cover (17000 ha) 

and in rainfed herbaceous crop (11900 ha). 

By 1986 closed forest type occupied about 45% of the total forest cover compared to 65% in 1973 

while the open forest type occupied about 44% compared to 12% in 1973. The percentage changes 

in areal coverage of the other vegetation types are as shown in Table 4.9 column 4.  These changes 

indicate evidence of deforestation as a result of logging or charcoal burning since the acreage 

occupied by the crops reduced while that occupied by open and regenerating forests increased 

during this period. Indeed the area covered by closed forest type reduced by about 31% of the total 

while that of open forest overwhelmingly increased by 260% (Table 4.9 column 4). 

Table 4.9: Evolution of land cover within the South West Mau forest reserve between 1973 and 

2010 relative to 1973 

LULC 

1973 1986 1995 2000 2010 

2 3 4 5 6 7 8 9 10 

Ha Ha % 

Change 

Ha % 

Change 

Ha % 

Change 

Ha % 

Change 

Closed Forest 55,060 37,912 -31.1 38,299 -30.4 22,477 -59.2 32,304 -41.3 

Open forest 10,287 37,012 +260 36,344 +253.3 15,468 +50.4 16,278 +58.2 

Plantation 

forest 1,324 1,324 0.0 1,324 0.0 1,324 0.0 214 -83.8 

Rain-fed 

herbaceous  13,597 1,695 -87.5 1,566 -88.5 29,233 +115.0 27,432 +101.7 

Rain-fed shrub 

crop 52 226 +334.6 242 +365.4 5,078 +9665 6496 +12392 

Regenerating 

forest 3,679 6,179 +68.0 6,224 +69.2 10,418 +183.2 2,275 -38.2 

Grand Total 83,999 83,999 83,999 83,999 83,999 

 

Between 1986 and 1995 there was not much change in the areal coverage of the different 

vegetation types from the 1986 status (Table 4.9 column 5). There was a minor increase in the area 

covered by the closed forest vegetation that corresponded to a slight decrease in the open forest. 
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By 1995 the closed forest type covered about 38300 ha which was slightly over 1% growth 

compared to the 1986 status. The open forest type occupied about 36300 ha which was about 2% 

decline compared to the 1986 status. Rainfed shrub crop, which is mainly tea occupying part of 

the original closed forest vegetation, grew by about 7% while rainfed herbaceous crop, which is 

mainly maize declined by about 8% respectively as of the 1986 areal coverage statistics. 

Percentage changes of areal coverage of the different vegetation types are as shown in Table 4.9 

column 6. 

Between 1995 and 2000 there was tremendous reduction in closed forest vegetation cover which 

by then occupied only about 22500 ha compared to 55000 ha in 1973 (Figure 4.12c and Table 4.9 

column 7). This was about 27% of forest coverage compared to the 65% coverage in 1973 and 

represented the worst case of the natural forest cover ever witnessed in this forest reserve since 

1973 (Table 4.9 column 7). The open forest coverage had also declined significantly and was 

replaced with the cultivation of rainfed herbaceous crop. The open forest occupied about 15500 ha 

by 2000 compared to 36300 ha in 1995. This was a decline of over 57% in only eight years. The 

decline in the open forest coverage was matched by a significant increase in the coverage of maize 

crop on the upper sides of the forest (Figure 4.12c) which by 2000 occupied about 29200 ha 

compared to 1600 ha in 1995. This was an overwhelming increase of over 1760%. Percentage 

changes in the coverage of different vegetation types by 2000 relative to the baseline are shown in 

Table 4.9 column 8. 

Between 2000 and 2010 there was tremendous improvement in the area covered by closed forest 

vegetation which by 2010 had recovered to just about the 1986 level (Figure 4.12d and Table 4.9 

column 9). The closed forest areal coverage had grown from about 22500 ha in 2000 to about 

32300 ha with a corresponding change in the regenerating forest type which declined from about 

10400 ha to 2300 Ha in the same period (Figure 4.12d and Table 4.9 column 9). This was a 

growth of over 43% in the natural forest cover in less than ten years. This impressive growth in the 

natural forest cover could be attributed to the government efforts towards conservation of the 

original forest coverage in the Mau forest complex.  Changes in the other types of vegetation by 

2010 relative to the baseline are shown in Table 4.9 column 10). 

Figure 4.13 shows a summary of the three dominant vegetation cover types: closed forest (FRSE), 

open forest (FRSD), and rainfed agriculture (AGRR). The figure shows that the most dominant 

vegetation cover within the SWM forest reserve as of 1973 was the closed forest type with a 
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coverage of over 65%. The decline in the area covered by the closed forest vegetation type 

between 1973 and 1986 is matched by the increase in the open forest vegetation type.  

             
a                 b 

   
 c         d 

Figure 4.12: LULC maps of South West Mau forest derived from Satellite images 

  

Figure 4.13: Evolution of percentage areal coverage by dominant land covers in south West 

Mau forest between 1973 and 2010  

 

SOUTHWEST MAU LULC 2000 

SOUTHWEST MAU LULC 1973 SOUTHWEST MAU LULC 1986 

SOUTHWEST MAU LULC 2010 
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Between 1995 and 2000 closed and open forests declined to 26% and 32% respectively 

representing the worst forest coverage in the entire reserve for the last four decades. The decline in 

the area covered by both closed and open forest types in this period was matched by a tremendous 

growth in land area under agriculture whose coverage rose from a meagre 2% coverage in 1995 to 

over 40% in 2000 and only declined slightly by 2010 to settle at 34%. This is evidence of 

deforestation where previously forested land was replaced by cultivated land. 

 

4.4.3 Kiptiget Sub-Basin 

Figure 4.14 shows the evolution of the two dominant land cover classes namely the combined 

forest cover (Forest) and rainfed agriculture (AGRR) over Kiptiget sub-basin which was selected 

as the focus of this study. The sub-basin is in the heart of SWM forest reserve and is traversed by 

Kiptiget River which is gauged at the outlet of the sub-basin.  

Between 1973 and 2010, there was a decreasing trend in the land area under forest cover while 

there was an increasing trend in the land area under rainfed agriculture. The land area under forest 

cover progressively decreased at a rate of 8% per decade from about 84% in 1973 to about 62%   

in 2010 while that under rainfed agriculture increased at a rate of 8% from about 16% in 1973 to 

about 38% in 2010 as shown by the slopes of trend lines (Figure 4.14).  

 

Figure 4.14: Evolution of percentage areal coverage of forest and rainfed agriculture (AGRR) 

over Kiptiget sub-basin 

When tested for significance at 05.0  level of significance using the student‟s t-test, the slopes 

were found to be significant. The computed t-statistics values, tcal = 13.841 and tcal = 13.838 for 

forest and rainfed agriculture respectively were found to be less than the tabulated value (tcal= 
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2.920).  Over 93% of the variability in LULC change over this sub-basin can be explained by the 

independent variable (time). Hence if no interventions are made, deforestation of this sub-basin 

and that of the Mau forest complex in general will continue. This may have negative effects on the 

hydrology of the catchment properties of the sub-basin. 

The analysis of changes in the different types of vegetation cover found within the Sondu 

catchment area has established that there is evidence of deforestation in this watershed as 

demonstrated by the decline in the natural forest cover and the growth in the agricultural land 

cover at the three levels considered: catchment level (Table 4.8), forest level (Figure 4.13), and 

sub-basin level (Figure 4.14). 

These changes in LULC have an influence on the hydrology and therefore the water yields into the 

streams and rivers of the basin. The general decrease in the area covered by the natural forest and 

the corresponding general increase in the cultivated area has influenced the hydrology negatively 

as shown by the decreasing trends in stream flows within this period (Figure 4.10).  

The decreasing trend in the amount of water in rivers and streams in the watershed could be 

attributed to the changes in LULC where natural forest coverage has been on the decline. This has 

influenced infiltration and therefore recharge of soil and groundwater in the basin resulting in 

reductions in discharge during dry spells. Unless the trends are reversed, projections indicate that 

by 2030 the land area under forest cover will decrease by up to about 40% while that under 

cultivation and other uses will increase by up to about 60% of the 1973 coverage. This will further 

worsen the water yields from the catchment and there is therefore need for the concerned 

authorities to make every effort to ensure that the trends are reversed. 

 

4.5 Climate Simulations  

The results obtained from PRECIS Regional Climate Model simulations are presented and 

discussed in this section. The model results are divided into two main parts; baseline and projected 

climates. The key climate elements discussed are rainfall, maximum and minimum temperatures.  

  

4.5.1 Baseline Climate 

In this section, calibration and validation of the model-simulated results using observed data from 

the area of study are presented. Comparison of simulated and observed climatology of total 
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monthly rainfall, mean monthly maximum and minimum temperatures averaged over the period 

1961–1990 are presented in both graphical and tabular formats. 

 

4.5.1.1 Calibration and Validation of Model-Simulated Outputs 

Using model-simulated and the corresponding observed data at Kericho, Keresoi, and Sotik 

stations, calibration parameters (Table 4.10) obtained through regression analysis were used to 

calibrate PRECIS model-simulated outputs. The table shows the regression constants ( RFa ), 

( TMXa ), and ( TMNa ); Regression slopes ( RFb ), ( TMXb ), and ( TMNb ) for rainfall, maximum and 

minimum temperatures, respectively; coefficients of determination (
2R ), and correlation 

coefficients between observed and simulated values ( osr ), for rainfall ( RF ), maximum 

temperature (TMX ), and minimum temperature (TMN ) respectively. 

Table 4.10: Regression parameters for rainfall and temperature used to calibrate PRECIS 

model outputs 

 

Station 

Rainfall (RF) Maximum Temperature 

(TMX) 

Minimum Temperature 

(TMN) 

RFa  RFb  2R  osr  
TMXa  TMXb  2R  osr  

TMNa

 

TMNb  2R  osr  

Kericho 45.5 1.03 0.86 0.93 14.3 0.325 0.91 0.96 3.6 0.485 0.82 0.91 

Keresoi 15.5 0.495 0.81 0.90 14.3 0.459 0.82 0.90 4.8 0.534 0.95 0.98 

Sotik 45.5 0.368 0.56 0.75 17.7 0.330 0.85 0.92 6.8 0.408 0.77 0.88 

 

Correlation coefficients between observed and simulated rainfall, maximum and minimum 

temperatures which range between 0.75 and 0.98 were tested for significance using student t-

statistic at  05.0  level of significance. In all the cases the computed t-statistic was found to be 

greater than the tabulated critical value ( 812.105.0 t ). Hence it was established that the 

correlation between the observed and model-simulated rainfall and temperature were significant.  
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4.5.1.2 Temperature 

Figure 4.15 shows a comparison of estimated mean monthly maximum temperature (Tmax_Sim) 

obtained from the model simulations using the slope ( TMXb ) and constant ( TMXa ) given in Table 

4.10 with corresponding observed values (Tmax_Obs) during calibration (1983-1987) and 

validation (1988-1990) periods at Kericho Met Station.  

 

 

Figure 4.15: Annual cycles of observed and model-simulated mean monthly maximum 

temperature (Tmax) during calibration and validation at Kericho Met. Station 

 

On a month-by-month scale, the deviation between observed and model-simulated maximum 

temperature ranges between -0.6˚C and 0.6˚C and between 0.0˚C and 1.8˚C during calibration 

and validation periods respectively. On average, the model underestimates maximum temperatures 

by about 0.8˚C. However, the model captures the seasonal patterns of maximum temperature in 

the region quite well with the model-estimated high and low temperatures matching the observed 

high and low temperatures. 
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The model-simulated (Tmax_Sim) and observed (Tmax_Obs) mean monthly maximum 

temperatures were found to be significantly correlated at 05.0  level of significance with 

coefficients of correlation of 952.0r  and 890.0r  during calibration and validation periods 

respectively. The percentage variability in the estimated mean monthly maximum temperature that 

can be explained by the corresponding observed values were 91% and 79% during calibration and 

validation periods respectively (Figure 4.16). This means that the model was able to simulate the 

catchment‟s maximum temperature climatology. Therefore, by carefully calibrating the model 

outputs, it is possible to use the model to project future maximum temperature climatology in the 

area. 

  

 

Figure 4.16: Regression of mean monthly model-simulated on corresponding observed 

maximum air temperature (Tmax) during calibration and validation at Kericho Met. Station 

 

Observed (Tmin_Obs) and model-estimated (Tmin_Sim) mean monthly minimum temperatures 

are presented in Figure 4.17. The figure shows a comparison of estimated mean monthly minimum 
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temperature obtained from the model simulations using the slope ( TMNb ) and constant ( TMNa ) 

given in Table 4.10 with corresponding observed values during calibration and validation periods 

at Kericho Met Station. From these results, it was observed that on a month-by-month scale, the 

deviation between observed and model-estimated minimum temperature ranges between -0.2˚C 

and 0.3˚C and between 0.2˚C and 0.9˚C during calibration and validation periods respectively. 

On average, the model underestimates minimum temperatures by about 0.6˚C.  

 

 

Figure 4.17: Annual cycles of observed and model-simulated mean monthly minimum 

temperature (Tmin) during calibration and validation at Kericho Met. Station  

 

Estimated and observed mean monthly minimum temperatures were found to be significantly 

correlated at 05.0  level of significance with coefficients of correlation of 906.0r  and 

817.0r  during calibration and validation periods respectively. The percentage variability in the 

estimated mean monthly minimum temperature that can be explained by the corresponding 

observed values were 82% and 67% during calibration and validation periods respectively (Figure 
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4.18). The model could therefore be used to project future minimum temperature patterns in the 

catchment area subject to calibration of the model-simulated values. 

 

 

Figure 4.18: Regression of mean monthly model-simulated on corresponding observed 

minimum air temperature (˚C) during calibration and validation at Kericho Met. Station  

 

4.5.1.3 Rainfall 

Figure 4.19 shows a comparison of estimated mean monthly rainfall obtained from model 

simulations using the slope ( RFb ) and constant ( RFa ) given in Table 4.10 with corresponding 

observed values during calibration and validation periods at Kericho Met Station. The observed 

rainfall peaks in May, August, and November are fairly well replicated by the model in both 

calibration and validation periods. The model results are consistent with observed values. 

However, the model was found to overestimate monthly rainfall between the months of June and 

December in both calibration and validation.  

Figure 4.20 presents the regression of model-estimated on corresponding observed mean monthly 

rainfall in both calibration and validation periods. Estimated and observed mean monthly rainfall 
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was found to be significantly correlated at 05.0  level of significance with coefficients of 

correlation of 926.0r  and 846.0r  during calibration and validation periods respectively. The 

percentage variability in the model-estimated mean monthly rainfall that could be explained by the 

corresponding observed rainfall was 86% and 72% during both calibration and validation periods 

respectively. It was therefore concluded that the model could be used to project monthly rainfall 

climatology of the basin subject to calibration of the model-simulated outputs using observed 

values. 

 

 

Figure 4.19: Annual cycles of observed and model-simulated mean monthly rainfall (mm) 

during calibration and validation at Kericho Met. Station 

Table 4.11 presents a comparison of observed and model-estimated mean monthly rainfall and the 

model performance as a percentage difference between model-simulated and corresponding 

observed rainfall in the calibration and validation periods. Positive values in the model 

performance columns indicate under estimation while negative values indicate over estimation of 

monthly rainfall. 
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Figure 4.20: Regression of mean monthly model-simulated on corresponding observed rainfall 

(mm) during calibration and validation at Kericho Met. Station 

On a month-by-month scale, the percentage deviation between observed and model-estimated 

rainfall ranges between -11% and 22% and between -45% and 23% during calibration and 

validation periods respectively. On a season-by-season scale the model underestimates DJF and 

MAM rainfall by about 5% and 6% respectively and overestimates JJA and SON rainfall by about 

8% and 5% respectively. On average, the model overestimates mean annual rainfall by about 0.6% 

and 7.9% during calibration and validation periods respectively. Performance of PRECIS model 

on the Sondu basin is therefore quite reasonable on the seasonal and annual scales since the less 

than 10% average deviation is small enough to be considered acceptable. 

From the calibration and validation results of the PRECIS model outputs using observed values, it 

was established that the model captures the baseline climate of the area of study quite well as 

shown by the regression statistics (Table 4.10) and the model performance statistics in both 

calibration and validation periods (Table 4.10). Hence subject to calibration of the model outputs 
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using observed values, the model was found suitable for simulating the climate of this part of 

Kenya. 

Table 4.11: Predicted and observed mean monthly rainfall and model performance in 

calibration and validation periods  

Month  

Calibration Period (1983-1987) Validation Period (1988-1990) 

 

Observed 

(mm) 

 

Predicted 

(mm) 

Model 

Performance (%) 

 

Observed 

(mm) 

 

Predicted 

(mm) 

Model 

Performance (%) 

Jan 99.7 78.0 21.7 74.1 73.3 1.1 

Feb 104.1 107.5 -3.3 104.2 99.2 4.8 

Mar 155.1 173.2 -11.7 198.3 174.1 12.2 

Apr 253.9 233.1 8.2 306.5 236.7 22.8 

May 299.8 237.4 20.8 249.6 265.2 -6.2 

Jun 221.5 243.0 -9.7 173.6 253.1 -45.8 

Jul 205.6 223.9 -8.9 184.5 192.8 -4.5 

Aug 225.7 239.4 -6.0 220.5 264.4 -19.9 

Sep 179.0 189.7 -5.9 205.9 223.3 -8.5 

Oct 165.1 179.6 -8.8 148.3 186.9 -26.0 

Nov 147.6 147.8 -0.2 160.8 148.8 7.4 

Dec 98.1 101.2 -3.1 81.2 107.0 -31.7 

 

4.5.2 Projected Climates of 2010s and 2030s 

In this section, model-simulated projections of rainfall, maximum, and minimum temperature 

climatology under SRES A2 scenario for the periods 2001-2030 and 2021-2050, centred in the 

2010s and 2030s decades respectively, are presented together with the corresponding changes 

from the baseline climatology. The model results are presented and discussed in the next sub-

sections. 
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4.5.2.1 Projected Temperature in 2010s and 2030s 

Figure 4.21 shows a time series anomalies of observed (1964-2010) and projected (2011-2050) 

annual average land-surface air temperature anomalies relative to the 1961-1990 average over the 

Sondu catchment area. It is evident from the figure that between 1961 and mid 1980s, most of the 

temperatures were below the baseline normal but thereafter the values have largely been above 

normal and progressively continue to rise with 2011 so far recorded as the warmest year in the last 

50 years in the region and the rise is expected to continue to 2050 following a polynomial trend 

curve of the third order.  

These results are consistent with global and regional observations where anomalies are also 

largely above the baseline values after the mid 1980s and progressively increase with 2005 being 

recorded as the warmest year in the last 100 years by 2006 (IPCC, 2007). The frequency of the 

number of years with temperatures above that of 2005 has also increased since then with 2011 and 

2012 recording the highest temperatures in the basin. Model projections show that henceforth the 

temperatures will largely be above the 2005 value (Figure 4.21). 

An increasing rate in warming (Figure 4.22 and Table 4.12 column 3) has taken place over the 

Sondu catchment area which is in line with the global observations. Globally, the decades of 

1990s and 2000s have been the warmest in the last 100 years with more than ten out of the twelve 

warmest years recorded in the last 100 years occurring within this period (IPCC, 2007). Figure 

4.21 shows that 2011 was the warmest year in the Sondu basin followed by 2012 and 2005 in the 

last 50 years.  

Figure 4.22 shows the 30-year average temperatures between 1961 and 2050 updated after every 

10 years from the baseline period. The linear trend across the entire data set and has a slope of 

about 0.88˚C per decade which was found to be significant at 05.0  significance level. Over 

97% of the variability in the 30-year mean annual temperature can be explained by the 

independent variable (time) and it was therefore concluded that climate of this area is becoming 

warmer with time. 

However, the 30-year average values appear to be following a regular pattern where they oscillate 

about the trend line in a third order polynomial curve indicating accelerated warming between 

1985 and 2015. In order to establish how the rate of warming was changing with time, five shorter 
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trend lines were fitted using three data points each and the resulting slopes of the trend lines 

assigned to the end of the decades listed in Table 4.12 column 1. 

 

Figure 4.21: Time series of annual average land-surface air temperature anomalies (˚C) 

relative to the 1961-1990 baseline average over Sondu basin  

 

 

Figure 4.22: Time series of 30-year annual average air temperature (˚C) updated  every ten 

years from 1961 to 2050  

 

Table 4.12 shows the equations of trend lines, from where slopes were extracted to represent rates 

of warming over different decades centred in the years shown in column 1 together with the 

corresponding coefficients of determination. It is clear from the table that although the rate of 
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warming will fall, temperatures will continue to rise as indicated by the positive slopes of the 

linear equations and the progressively increasing values of the y-intercepts. 

Table 4.12: Linear equations of 30-year averages of air temperatures and the corresponding R
2
 

values over Sondu basin 

Target Year Linear Equation Rate of Warming (slope) 

˚C/decade 

R
2
 

1990 7.15667.0  ty  0.67 0.943 

2000 6.15135.1  ty  1.14 0.992 

2010 6.16213.1  ty  1.21 0.998 

2020 8.18876.0  ty  0.88 0.974 

2030 8.19455.0  ty  0.46 0.951 

  

Figure 4.23 presents observed and projected rates of warming over the Sondu catchment area 

between 1961 and 2050. It is evident from the results that the rates of warming, extracted from the 

slopes of the linear equations in Table 4.12, have been on the rise since the baseline period rising 

from about 0.67˚C to about 1.14˚C per decade and are projected to reach a maximum of 1.21˚C 

per decade by 2020 and begin falling thereafter. By 2050, the rates will have fallen to about 

0.46˚C per decade. It is therefore evident that although the temperatures will continue to rise in 

this region, the rates of increase will slow down after 2010s. 

Figure 4.24 presents the projected mean monthly maximum temperature patterns (Figure 4.24a) 

and changes (Figure 4.24b) in the 2010s and 2030s. Projected mean monthly maximum 

temperatures in 2010s and 2030s show that daytime temperatures will be higher than the baseline 

temperatures between the months of April and December by between 0.3˚C and 2˚C, and 

between 0.2˚C and 2.4˚C in 2010s and 2030s respectively (Figure 4.24b). Between the months of 

January and March, mean monthly maximum temperatures are projected to be lower than the 

baseline temperatures by between 0.1˚C and 0.4˚C, and between 0.2˚C and 0.6˚C in 2010s and 

2030s respectively (Figure 4.24b) 
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Figure 4.23: Time series of observed and projected rates of warming over the Sondu basin 

 

Projected mean minimum temperature patterns for 2010s and 2030s are presented in Figure 4.25 

together with the corresponding changes from the baseline temperatures. Results show that the 

projected mean monthly minimum temperatures will be higher than the baseline temperatures in 

all the months of the year in 2010s and 2030s except March and April in 2010s. The month of 

April is projected to have the warmest nights while July is projected to have the coolest in both 

2010s and 2030s. The projected month with warmest nights (April) corresponds to what has been 

observed but the projected month with coldest nights (July) deviates from the observed month 

with the coolest nights (September) (Figure 4.25a). 

From the analysis of projected temperatures, it was established that temperatures in and around the 

Sondu catchment area have risen to above the baseline level in the last 50 years and they 

progressively continue to rise. In the years after the mid 1980s, the temperatures are all above the 

baseline normal. This is evidence that the region has become warmer with time and subsequent 

decades are becoming warmer with the highest temperatures in the area being reported in the most 

recent decades in line with the global and regional trends (IPCC, 2007). 

Although the area is becoming warmer, the rate of warming is not uniform, rising from about 

0.67˚C per decade in 1990 to an all time high of about 1.21˚C per decade in 2010 (Figure 4.23). 

Warming rates are projected to decrease to about 0.46˚C per decade by 2030. Temperatures will 

however continue to rise since the reduced rates of warming are starting from already higher 

temperatures (Table 4.12).  
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(a)   

 
         (b) 

Figure 4.24: Projected (a) Mean monthly maximum air temperature scenarios (Tmax) and (b) 

Corresponding changes from the baseline at Kericho Met. Station 

 

Seasonally, the months of April to December will have warmer days while the months of January 

to March will have cooler days than the baseline normal. However the general pattern of mean 

monthly maximum temperature will still be maintained where February and March will remain the 

warmest while June and July will remain the coolest months during the day (Figure 4.24). Nights 

are projected to be warmer between the months of May and February. March and April will have 

cooler nights by 2010s but warmer by 2050s compared to the baseline values (Figure 4.25). The 

progressive warming of the Sondu catchment and the surrounding areas are likely to result into 

increased rates of evapotranspiration which is likely to influence water yields from the catchment. 
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(a) 

 
       (b) 

Figure 4.25: Projected (a) Mean monthly minimum air temperature scenarios (Tmin) and (b) 

Corresponding changes from the baseline at Kericho Met. Station 

 

4.5.2.2 Projected Rainfall in 2010s and 2030s 

Figure 4.26 shows a time series of observed (1964-2010) and projected (2011-2050) annual 

rainfall anomaly over the Sondu catchment area as a percentage of the 1961-1990 baseline period. 

It was noted from the figure that between 1961 and 2030 the anomalies in annual rainfall over the 

area range between -24% and +24% of the baseline mean annual rainfall with only a few years 

going beyond this threshold. The percentages are within the global annual precipitation anomalies 

that range between -40% and +40% in the period between 1960 and 2005 (IPCC, 2007).  

For purposes of this study any values beyond the %24  thresholds were considered extreme and 

the years with anomalies beyond this threshold labelled extremely dry or wet depending on the 

direction of change. From the observed annual rainfall, 1970 was therefore the wettest while 1984 
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was the driest in the past fifty years. The model predicted that 2013 would be wetter than 1970 and 

the next year projected to be wetter than 1970 will be 2036 (Figure 4.26).  

The frequency of the number of years with rainfall below that of the baseline period decreased 

from an average of about once every two years between 1990 and 2000 to once every five years 

between 2000 and 2010 with 2016 projected to be the next dry year in this area. The model 

projects a further decrease in the occurrence of dry years to about once every fifteen years between 

2010 and 2030 and once every thirty years between 2030 and 2050. The frequency and severity of 

the number of years with rainfall below that of the baseline period decreased sharply after 2000 

and the projected rainfall shows only three years (2016, 2019, and 2032) that will have rainfall 

below that of the baseline period (Figure 4.26). 

 

Figure 4.26: Time series of annual rainfall anomalies over Sondu basin relative to the 1961-

1990 baseline average 

 

Figure 4.27 shows the 30-year average rainfall between 1961 and 2050 updated after every 10 

years from the baseline period. It is evident from the results that there was an increasing trend in 

the mean annual rainfall in the area. The trend is not linear since it is modelled better by the 3
rd

 

degree order polynomial (R
2
 = 0.999) compared to the linear model (R

2
 = 0.927). The mean trend 

across the entire data set as given by the slope of the trend line (72 mm per decade) was found to 

be significant at 05.0  significance level. Over 92% of the 30-year mean annual rainfall 

variability could be explained by the independent variable (time) and it was therefore concluded 

that climate of this area is becoming wetter with time. 
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Figure 4.27: Time series of 30-year annual average rainfall (mm) updated  every ten years from 

1961 to 2050 

 

Figure 4.28 shows the baseline climatology and projected monthly rainfall climatology together 

with projected changes in 2010s and 2030s. From the results, it is apparent that there will be 

substantial increases in monthly rainfall during the DJF and SON seasons by 2030 and 2050. The 

relatively dry DJF and SON seasons are projected to become relatively wet under the SRES A2 

scenario in this part of Kenya. 

During the DJF season, the month of January, which has the lowest rainfall during the baseline 

period, is projected to have peak rainfall for the season by 2030 and 2050 under the SRES A2 

scenario. Under SRES A2 scenario, rainfall in the month of January is projected to increase by 

over 434% and 489% of the baseline rainfall by 2030 and 2050 respectively making January the 

wettest month in the season (Figure 4.33b). This represents a shift from the observed climatology 

where the month of December is the wettest in the season and the month of January is the driest 

(Figure 4.28a). 

This finding is consistent with observations so far made (Figure 4.4) only that they are alarmingly 

higher under SRES A2 scenario. They are also consistent with the findings of another study 

conducted in Nzoia basin (Githui, 2008) which concluded that rainfall will substantially increase 

during the drier months and slightly decrease in the wetter months which is comparable with the 

results obtained in this study (Figure 4.28). 
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(a)   

 
(b) 

Figure 4.28: Projected (a) Mean monthly rainfall scenarios (PCPMM), and (b) Percentage 

change in PCPMM from the baseline at Kericho Met. Station  

SRES A2 emissions scenario represents the worst case scenario of business as usual with no 

envisaged change in policy and the findings of this study are taken to represent the extremes of 

projected rainfall in the area of study by 2030 and 2050 if nothing is done to reverse or slow down 

the global and regional warming rates. The scenario may however not be realistic for the Kenyan 

case. The country now has a new constitution in which many policy guidelines have changed, 

(GOK, 2010b) with county governments now in place, which were not factored in the SRES A2 

scenario.  

Although SRES A2 scenario has not been updated since 2000, it was still used in this study as it 

was the one in place for practical applications at the time of this study. It may therefore not be 

realistic but only represents guidelines for the extreme cases. The extremely high rainfall projected 

for DJF is good for the area as it means that the area will have more water available for various 

uses. However the higher amounts of water are likely to cause an increase in flooding incidents 
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unless efforts to conserve the upper parts of the water catchment areas, that include the South 

West Mau forest, are stepped up and sustained.  

The MAM season, the wettest during the baseline period, is projected to have a shift in the 

monthly rainfall distribution.  The peak monthly rainfall in the season is projected to shift from the 

month of May to the month of April by 2030 and to the month of March by 2050 (Figure 4.28a). 

During this season, March will experience the largest increase in rainfall amount of about 60% and 

110% of the baseline rainfall by 2030 and 2050 respectively (Figure 4.28b) which will make it the 

wettest month in the season.  

The JJA season, which is the second wettest season in this area during the baseline period, is 

projected to become the relatively dry season in 2010s and 2030s. Rainfall amounts in this season 

are projected to decrease by between 14% and 24% and between 16% and 23% of the baseline 

rainfall in 2010s and 2030s respectively (Figure 4.28b). This is the only season where monthly 

rainfall is expected to decrease. In addition, the rainfall patterns will radically change during this 

season. The observed peak in August during the baseline period is projected to shift to October 

(Figure 4.28a). A similar study by Githui (2008) in Nzoia basin in Kenya has shown similar 

results where JJA rainfall is projected to decrease by about 40% under the SRES A2 scenario.  

Rainfall in the SON season, the second driest season in this area during the baseline period, is 

projected to increase by between 21% and 110% and between 35% and 145% of the baseline 

rainfall in 2010s and 2030s respectively (Figure 4.28b). The peak rainfall in this season is 

projected to occur in the month of October in both 2010s and 2030s. 

The probability of a wet day following a dry day (PR_W1) is projected to increase during the DJF 

and SON months and to decrease during the MAM and JJA months except month of August in 

2030s (Figure 4.29a). During the DJF months, chances of a wet day following a dry day are 

projected to be higher by between 5% and 114% and by between 22% and 163% of the baseline 

probabilities in 2010s and 2030s respectively (Figure 4.29b).  

During the SON months, chances of a wet day following a dry day are projected to be higher by 

between 47% and 156% and by between 47% and 160% of the baseline probabilities in 2010s and 

2030s respectively. On the other hand, PR_W1 is projected to decrease during MAM and JJA 

months by between 3% and 38% and by between 5% and 35% of the baseline probabilities in 
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2010s and 2030s respectively (Figure 4.29b) which is consistent with the projected decreases in 

rainfall during these seasons. 

(a)  

 
       (b) 

Figure 4.29: Projected (a) Probability of a wet day following a dry day (PR_W1), and (b) 

Percentage changes in the PR_W1 relative to the baseline at Kericho Met. Station  

The probability of a wet day following a wet day (PR_W2) is projected to increase in all the 

months of the year by between 7% and 65% and by between 6% and 67% of the baseline 

probabilities in 2010s and 2030s respectively (Figure 4.30). The highest increase is in the month 

of November while the lowest is in the month of April. 

The number of rainfall days in a month (PCPD) in all the months of the year is projected to 

increase by between 3% and 138% and by between 3% and 148% of the baseline numbers in 

2010s and 2030s respectively (Figure 4.31). The highest increase is found between the months of 

November and January where the number of days of rainfall in a month is projected to increase by 

between 130% and 138% and by between 134% and 148% of the baseline numbers in 2010s and 
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203s respectively (Figure 4.31b). The lowest changes are found in the months of March and April 

with changes ranging from 3% to 5% and from 3% to 15% of the baseline numbers in 2010s and 

2030s respectively. The changes in the number of days of rainfall in a month indicate an increase 

in the period that the soil will remain moist and hence a possible increase in the water yields from 

the catchment area.  

(

a)  

 
       (b) 

Figure 4.30: Projected (a) Probability of a wet day following a wet day (PR_W2), and (b) 

Percentage changes in PR_W2 relative to the baseline at Kericho Met. Station  

From the analysis of projected rainfall, it was established that there will be more rainfall in the 

2010s and 2030s than in the baseline period. The annual rainfall is projected to be largely above 

the baseline average and will progressively increase up to 2050. The projected extremes are higher 

and more frequent than the baseline values. The highest annual rainfall in the area for the last 50 

years was observed in 1970 and this was predicted to be surpassed in 2013. However rainfall data 

for 2013 was not immediately available to confirm this by the time writing this report. The 

frequency of the extreme annual rainfall is also projected to increase from about 1 in15 years 



154 

 

during the baseline period to about 1 in 10 years by 2030 and about 1 in 3 years by 2050 (Figure 

4.26). 

 
(a)  

 
       (b) 

Figure 4.31: Projected (a) average number of days of rainfall in a month (PCPD) and (b) 

percentage changes in PCPD relative to the baseline at Kericho Met. Station   

From the projected monthly rainfall patterns, October will receive the highest rainfall while July 

will receive the lowest in the 2010s and 2030s. This is in contrast to the baseline period where the 

highest rainfall is received in April and the lowest in January. Therefore apart from the projected 

increase in annual rainfall amounts in the 2010s and 2030s, seasonal rainfall patterns will also 

change and this will influence the water yields from the Sondu catchment area. The projected 

increase in rainfall amounts in DJF and SON coupled with a relatively small decrease in MAM 

and JJA rainfall amounts imply that under the SRES A2 scenario the basin will receive  more 

water from rainfall by the years 2030 and 2050 than is currently available (Figure 4.26). 
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4.5.3 Climate Change 

Figure 4.32 shows trends of the 30-year annual average temperature and rainfall over the Sondu 

catchment area for three climate periods: the observed baseline period (1961-1990), projected 

periods (1991-2020) and (2021-2050). These periods are centred in the 1970s, 2000s and 2030s 

decades respectively. Both temperature and rainfall show increasing trends of the 30-year averages 

between 1970s and 2030s with temperature changing at a rate of about 2.3˚C and rainfall 

changing at a rate of about 201mm every 30 years. 

The significance of the slopes was tested by computing the t-statistic (tcal) and comparing it to the 

tabulated critical value (   92.205.0,2 t ). The computed t-statistic values were 328.3tmpt  and 

9.295rnft for temperature and rainfall respectively (Table 4.13). Since the values were both 

greater than the critical value, it was concluded that based on the available data the rate of change 

of the climate of the area of study between 1970s and 2030s is significant. 

   
(a)           (b)  

Figure 4.32: Time series of 30-yr averages of temperature and rainfall over the Sondu 

catchment area 

Table 4.13: Table of trends in 30-year average annual air temperature and rainfall (1970s-

2030s) over Sondu basin  

Climate Element Equation of Trend line R
2
 tcal Remarks 

Temperature 2.14346.2  ty  0.994 3.328 change in temperature is significant 

Rainfall 1887201  ty  0.922 295.9 change in rainfall is significant 
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Table 4.14 shows the 30-year annual average temperature, rainfall, and the corresponding changes 

from the baseline period. The averages were calculated to give an overview of the general 

differences in climate by the end of 2000s and 2030s compared to that of the baseline period. On 

average, there were notable changes in both temperature and rainfall from the baseline values 

(Table 4.15 columns 3 and 6). 

The two sample t-statistic (tcal) was computed to test for significance in the differences in the mean 

values of temperature and rainfall in 2000s and 2030s respectively compared to the baseline mean 

values (Table 4.15). The tcal values were compared to the tabulated critical value ( 045.2025.0 t ). 

The tcal values were all greater than the critical value except for the rainfall in the 2000s. On the 

basis of this data, changes from the baseline values for both temperature and rainfall were 

therefore found to be statistically significant except for the rainfall in the 2000s.  

 Table 4.14: 30-year average annual temperature and rainfall and the corresponding standard 

deviations (Stdev) together with changes relative to the baseline period  

 

Climate 

Period 

Temperature  Rainfall  

1 2 3 4 5 6 

Mean (˚C) Stdev (˚C) Change (˚C) Mean (mm) Stdev (mm) Change (%) 

1970s 16.4 0.44 0 2122.3 341.9 0 

2000s 19.1 1.35 2.7 2222.6 264.4 4.7 

2030s 21.1 0.40 4.7 2524.3 245.3 18.9 

 

Table 4.15: Computed values of t-statistic (tcal) for differences in the means for air temperature 

and rainfall for 30-year periods 

 

Climate 

Period  

Temperature Rainfall 

tcal Remarks tcal Remarks 

2000s 10.4 significant change 1.23 no significant change 

2030s 42.7 significant change 5.05 significant change 

 

From the analyses of 30-year averages of temperature and rainfall, it was established that the 

climate of Sondu and that of the surrounding areas has undergone statistically significant changes 

since the baseline period and the changes are projected to continue up to 2050 and beyond. The 
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annual average temperature and rainfall are expected to change from the baseline values by about 

2.7˚C and 4.7% respectively by the end of 2010s, and by about 4.7˚C and 18.9% respectively by 

the end of 2030s (Table 4.15). The changes in climate are expected to influence the hydrology of 

the catchment area through changes in evapotranspiration and water yields. 

 

4.6 Hydrologic Simulations 

This section presents the results obtained from the SWAT Hydrological Model. The model results 

are divided into six areas namely: Climate Data Processing, Catchment Delineation, Hydrologic 

Response Units (HRU), Default Simulations, Model Calibration and Validation, and Model 

Projections. The results are presented and discussed in the subsequent subsections in tabular and 

graphical formats.  

 

4.6.1 Climate Data Processing 

Results of the average monthly statistical parameters of rainfall and temperature, which were used 

by the weather generator component of the SWAT model to calculate the daily values of rainfall, 

maximum and minimum temperature, solar radiation, relative humidity, and wind speed, are 

presented in Tables 4.16 to 4.25.  

The input variables used to generate daily rainfall include: mean monthly rainfall (PCPMM) in 

Table 4.16, standard deviation of daily rainfall in a month (PCPSTD) in Table 4.17, probability of 

a wet day following a dry day in a month (PR_W1) in Table 4.18, probability of a wet day 

following a wet day in a month (PR_W2) in Table 4.19, skew coefficient of daily rainfall in a 

month (PCPSKW) in Table 4.20, and the average number of days of rainfall in a month (PCPD) in 

Table 4.21. 

The input variables that appertain to the generation of daily temperature and solar radiation 

include: mean monthly maximum air temperature (TMPMX) Table 4.22, standard deviation of 

daily maximum air temperature in a month (TMPSTDMX) in Table 4.23, mean monthly minimum 

air temperature in a month (TMPMN) in Table 4.24, and standard deviation of daily minimum air 

temperature in a month (TMPSTDMN) in Table 4.25.  
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Table 4.16: Mean monthly rainfall (PCPMM) used to generate daily rainfall in three climate 

periods 

 

Month 

Kericho Ndoinet Sotik 

PCPMM (mmH2O) PCPMM (mmH2O) PCPMM (mmH2O) 

1970s 2010s 2030s 1970s 2010s 2030s 1970s 2010s 2030s 

Jan 99.0 240.9 265.8 65.1 140.1 192.4 84.6 174.6 192.4 

Feb 108.6 249.3 253.7 80.6 137.8 168.4 105.0 166.6 166.4 

Mar 179.8 245.7 321.5 96.6 132.2 152.6 143.2 137.2 161.9 

Apr 253.1 290.2 290.4 181.9 177.9 139.5 209.2 144.2 135.2 

May 276.9 258.6 272.6 198.2 146.9 125.9 141.5 119.3 123.9 

Jun 181.0 196.4 186.0 171.7 136.6 93.3 92.6 102.0 90.2 

Jul 187.6 168.3 168.3 188.0 122.6 86.3 84.7 90.6 89.1 

Aug 221.9 180.2 183.6 235.3 125.8 97.8 106.5 95.5 102.5 

Sep 198.0 216.4 241.0 140.9 136.2 137.5 86.5 120.5 128.6 

Oct 146.7 318.6 356.5 80.4 196.2 194.0 76.7 179.4 198.2 

Nov 143.3 253.3 294.0 84.5 142.5 198.9 118.4 178.8 196.1 

Dec 75.3 199.1 215.1 69.8 104.6 176.4 82.7 151.2 162.5 

 

The skew coefficient (PCPSKW) in Table 4.26 were used by the Markov chain-skewed model in 

the weather generator component of the SWAT model to generate rainfall amounts in a day for a 

particular month after the model has determined the probability of rain on a given day. 

Tables 4.24 and 4.25 show the probabilities of rainfall on a given day in a month which is 

conditioned to the wet or dry status of the previous day (Neitsh et al, 2011). These probabilities 

were used by the SWAT model to generate daily rainfall for the month.  
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Table 4.17: Standard deviation of daily rainfall (PCPSTD) used to generate daily rainfall in 

three climate periods 

 

Month 

Kericho Ndoinet Sotik 

PCPSTD (mmH2O) PCPSTD (mmH2O) PCPSTD (mmH2O) 

1970s 2010s 2030s 1970s 2010s 2030s 1970s 2010s 2030s 

Jan 8.38 9.59 9.81 6.24 6.75 6.26 6.96 5.82 6.14 

Feb 8.32 11.38 11.37 13.84 7.19 6.65 8.41 6.62 6.58 

Mar 10.76 9.79 13.22 7.58 6.28 6.04 10.10 5.09 6.12 

Apr 11.31 9.88 10.61 10.78 7.35 4.76 11.89 5.00 4.61 

May 10.42 8.01 7.54 10.13 5.34 4.21 9.12 4.17 3.99 

Jun 9.14 5.54 5.25 9.75 4.44 2.99 7.03 3.28 2.78 

Jul 9.02 4.58 4.58 8.60 3.99 2.91 6.51 2.75 2.63 

Aug 9.49 4.20 4.34 10.61 3.54 2.59 7.60 2.33 2.58 

Sep 9.59 6.41 8.10 9.22 4.46 4.29 6.23 3.32 3.87 

Oct 8.60 8.49 8.80 6.04 6.29 4.69 5.32 4.70 4.35 

Nov 7.84 10.40 10.11 6.74 7.07 6.57 7.84 6.28 5.91 

Dec 5.81 8.97 8.82 10.70 6.33 6.29 6.01 5.20 5.48 

 

Table 4.18: Probability of a wet day following a dry day (PR_W1) for different months in three 

climate periods 

 

Month 

Kericho Ndoinet Sotik 

PR_W1 PR_W1 PR_W1 

1970

s 

2010s 2030s 1970s 2010s 2030s 1970s 2010s 2030s 

Jan 0.22 0.44 0.54 0.10 0.39 0.36 0.18 0.45 0.63 

Feb 0.21 0.34 0.39 0.15 0.29 0.38 0.23 0.36 0.46 

Mar 0.32 0.29 0.30 0.18 0.28 0.34 0.29 0.41 0.39 

Apr 0.46 0.37 0.38 0.30 0.32 0.41 0.38 0.40 0.38 

May 0.51 0.50 0.42 0.32 0.48 0.28 0.33 0.49 0.44 

Jun 0.53 0.37 0.50 0.32 0.38 0.47 0.27 0.38 0.49 

Jul 0.53 0.43 0.53 0.38 0.43 0.38 0.24 0.48 0.56 

Aug 0.60 0.54 0.76 0.43 0.60 0.41 0.27 0.58 0.76 

Sep 0.56 0.61 0.61 0.25 0.44 0.66 0.25 0.63 0.66 

Oct 0.41 0.52 0.92 0.16 0.57 0.22 0.26 0.62 0.79 

Nov 0.35 0.67 0.55 0.17 0.62 0.83 0.33 0.70 0.67 

Dec 0.26 0.43 0.43 0.10 0.38 0.33 0.21 0.50 0.51 
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Table 4.19: Probability of a wet day following a wet day (PR_W2) for different months in three 

climate periods 

 

Month 

Kericho Ndoinet Sotik 

 PR_W2  PR_W2  PR_W2 

1970s 2010s 2030s 1970s 2010s 2030s 1970s 2010s 2030s 

Jan 0.60 0.91 0.93 0.60 0.88 0.94 0.54 0.93 0.94 

Feb 0.67 0.91 0.91 0.47 0.87 0.92 0.54 0.92 0.92 

Mar 0.69 0.89 0.92 0.50 0.85 0.91 0.63 0.89 0.92 

Apr 0.83 0.93 0.91 0.65 0.90 0.91 0.70 0.92 0.91 

May 0.86 0.94 0.95 0.67 0.92 0.93 0.56 0.93 0.93 

Jun 0.75 0.93 0.93 0.62 0.93 0.91 0.52 0.92 0.91 

Jul 0.77 0.95 0.94 0.67 0.93 0.93 0.52 0.94 0.93 

Aug 0.81 0.95 0.95 0.69 0.95 0.94 0.48 0.94 0.94 

Sep 0.79 0.94 0.95 0.64 0.93 0.94 0.58 0.94 0.94 

Oct 0.78 0.96 0.96 0.54 0.94 0.95 0.48 0.95 0.96 

Nov 0.75 0.92 0.94 0.52 0.89 0.95 0.57 0.94 0.95 

Dec 0.56 0.90 0.91 0.50 0.85 0.93 0.60 0.92 0.92 

 

Table 4.20: Skewness coefficient of daily rainfall in a month (PCPSKW) for different months in 

three climate periods 

 

Month 

Kericho Ndoinet Sotik 

PCPSKW PCPSKW PCPSKW 

1970s 2010s 2030s 1970s 2010s 2030s 1970s 2010s 2030s 

Jan 4.35 3.17 3.04 4.66 2.37 3.11 4.00 2.61 3.23 

Feb 2.71 3.62 2.96 18.14 2.52 2.96 3.68 2.82 2.77 

Mar 2.61 2.66 3.82 3.46 2.16 4.74 5.49 2.68 4.24 

Apr 2.15 2.23 2.90 3.19 2.33 1.81 3.39 2.28 2.18 

May 1.56 5.02 2.88 2.60 3.08 4.32 3.43 4.67 4.36 

Jun 2.25 1.74 2.05 2.44 1.83 1.36 4.33 1.82 1.43 

Jul 2.66 2.25 2.45 1.89 2.72 3.50 4.45 2.77 2.61 

Aug 2.00 1.35 1.49 2.18 2.26 1.19 3.57 1.13 1.14 

Sep 2.34 4.35 4.70 4.40 2.34 3.62 4.27 2.00 2.98 

Oct 5.84 2.44 3.08 3.15 2.14 2.24 3.18 2.69 2.17 

Nov 2.72 4.61 2.96 3.46 2.81 3.09 3.35 3.70 2.83 

Dec 3.61 4.32 3.36 14.53 4.51 2.59 4.07 2.55 2.68 
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Table 4.21: Average number of days of rainfall in a month (PCPD) for different months in 

three climate periods 

 

Month 

Kericho Ndoinet Sotik 

PCPD PCPD PCPD 

1970s 2010s 2030s 1970s 2010s 2030s 1970s 2010s 2030s 

Jan 11.6 27.5 28.7 6.7 24.8 28.8 9.5 28.8 29.6 

Feb 11.6 24.3 24.7 6.4 21.4 25.3 9.7 25.4 25.5 

Mar 16.4 24.5 26.7 8.4 21.6 26.6 14.0 26.3 27.4 

Apr 23.2 26.5 26.5 14.3 24.5 26.1 17.3 26.6 26.4 

May 25.8 29.3 29.2 16.3 28.3 27.6 14.1 28.8 28.6 

Jun 21.3 27.7 28.0 14.0 27.2 26.7 11.3 26.9 27.2 

Jul 22.3 29.3 29.5 17.2 28.5 28.0 10.8 28.9 29.0 

Aug 24.3 30.2 30.4 19.0 29.8 28.9 10.9 29.7 29.9 

Sep 22.8 28.9 28.9 13.1 27.7 29.0 11.8 28.9 28.9 

Oct 21.6 30.3 30.6 8.5 29.6 29.6 10.8 30.3 30.5 

Nov 18.9 28.2 28.5 8.3 26.7 29.2 13.6 28.8 29.2 

Dec 12.0 26.8 27.2 5.4 24.0 27.7 11.4 28.5 28.6 

Table 4.22: Mean monthly maximum air temperatures (TMPMX) used to generate daily values 

in three climate periods 

 

Month 

Kericho Ndoinet Sotik 

TMPMX (˚C) TMPMX (˚C) TMPMX (˚C) 

1970s 2010s 2030s 1970s 2010s 2030s 1970s 2010s 2030s 

Jan 24.1 23.4 23.4 24.9 24.7 26.0 26.3 25.4 26.1 

Feb 24.6 23.6 23.7 25.5 25.0 26.4 26.7 25.6 26.4 

Mar 24.9 23.7 23.7 25.4 25.1 26.4 26.7 25.8 26.4 

Apr 23.0 23.3 23.4 23.9 24.5 26.0 25.1 25.4 26.1 

May 22.3 23.0 23.2 23.3 24.1 25.7 24.5 25.2 25.9 

Jun 21.9 22.8 23.0 22.9 23.8 25.5 24.2 25.0 25.7 

Jul 21.3 22.9 23.0 22.3 23.8 25.5 23.8 25.1 25.7 

Aug 21.7 23.0 23.1 22.9 23.8 25.6 24.3 25.1 25.8 

Sep 23.0 23.1 23.2 23.8 24.1 25.8 25.2 25.3 26.0 

Oct 23.3 22.9 23.0 24.9 24.0 25.5 26.3 25.0 25.7 

Nov 22.6 23.2 23.2 23.6 24.4 25.7 25.1 25.2 25.9 

Dec 23.3 23.4 23.4 24.1 24.7 26.0 25.5 25.4 26.1 
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Table 4.23: Standard deviation of daily maximum air temperature (TMPSTDMX) in three 

climate periods 

 

Month 

Kericho Ndoinet Sotik 

TMPSTDMX (˚C) TMPSTDMX (˚C) TMPSTDMX (˚C) 

1970s 2010s 2030s 1970s 2010s 2030s 1970s 2010s 2030s 

Jan 1.66 1.39 1.17 1.66 1.32 1.17 1.61 1.31 1.17 

Feb 1.70 1.82 1.03 1.70 1.70 1.03 2.08 1.60 1.03 

Mar 1.88 1.52 1.14 1.88 1.62 1.14 1.91 1.39 1.14 

Apr 1.76 1.37 1.29 1.76 1.47 1.29 1.14 1.29 1.29 

May 1.41 0.90 1.29 1.41 1.08 1.29 0.76 1.01 1.29 

Jun 1.17 0.85 0.84 1.17 1.09 0.84 0.74 0.92 0.84 

Jul 1.30 1.26 0.71 1.30 1.38 0.71 0.73 1.20 0.71 

Aug 1.04 1.12 0.89 1.04 1.21 0.89 0.87 1.10 0.89 

Sep 1.21 0.80 1.05 1.21 1.14 1.05 1.13 0.79 1.05 

Oct 1.32 0.82 0.78 1.32 1.03 0.78 1.10 0.87 0.78 

Nov 1.62 0.94 0.83 1.62 1.09 0.83 1.06 1.09 0.83 

Dec 1.37 1.28 1.34 1.37 1.31 1.34 0.99 1.26 1.34 

Table 4.24: Mean monthly minimum air temperatures (TMPMN) used to generate daily values 

in three climate periods 

 

Month 

 

Kericho Ndoinet Sotik 

TMPMN (˚C) TMPMN (˚C) TMPMN (˚C) 

1970s 2010s 2030s 1970s 2010s 2030s 1970s 2010s 2030s 

Jan 9.8 9.9 10.1 10.2 10.3 10.6 12.7 13.3 13.5 

Feb 10.1 10.0 10.2 10.6 10.5 10.7 13.1 13.4 13.6 

Mar 10.5 10.0 10.2 10.1 10.5 11.0 13.4 13.4 13.7 

Apr 10.8 10.1 10.2 10.2 10.8 11.0 13.5 13.4 13.6 

May 10.3 10.0 10.2 9.9 10.7 11.0 13.1 13.3 13.5 

Jun 10.0 9.8 10.0 9.5 10.3 10.6 12.6 13.0 13.2 

Jul 9.6 9.6 9.8 9.3 10.1 10.5 12.3 12.8 13.1 

Aug 9.7 9.7 9.8 9.3 10.2 10.6 12.3 12.9 13.1 

Sep 9.5 9.8 10.0 8.8 10.4 10.8 12.1 13.2 13.4 

Oct 9.9 10.0 10.2 9.4 10.6 11.0 12.7 13.3 13.6 

Nov 10.3 10.0 10.1 9.7 10.4 10.6 12.9 13.3 13.5 

Dec 10.2 9.9 10.0 9.9 10.2 10.4 12.8 13.3 13.5 

 



163 

 

Table 4.25: Standard deviation of daily minimum air temperature (TMPSTDMN) in three 

climate periods 

 

Month 

Kericho Ndoinet Sotik 

 TMPSTDMN 

(˚C) 

TMPSTDMN (˚C) TMPSTDMN (˚C) 

1970s 2010s 2030s 1970s 2010s 2030s 1970s 2010s 2030s 

Jan 1.55 0.58 0.67 0.50 0.74 0.68 0.65 0.48 0.60 

Feb 1.65 0.66 0.63 0.55 0.74 0.84 0.82 0.54 0.63 

Mar 1.68 0.76 0.69 0.65 0.92 0.81 0.91 0.74 0.70 

Apr 1.38 0.52 0.63 0.58 0.62 0.71 0.60 0.58 0.64 

May 1.35 0.53 0.62 0.59 0.63 0.68 0.49 0.62 0.68 

Jun 1.43 0.42 0.56 0.54 0.57 0.56 0.50 0.52 0.56 

Jul 1.30 0.50 0.49 0.55 0.48 0.55 0.57 0.45 0.50 

Aug 1.25 0.66 0.56 0.60 0.67 0.55 0.53 0.64 0.56 

Sep 1.53 0.73 0.64 0.79 0.71 0.58 0.70 0.69 0.58 

Oct 1.47 0.43 0.58 0.50 0.50 0.56 0.48 0.41 0.51 

Nov 1.45 0.35 0.47 0.42 0.43 0.60 0.47 0.36 0.44 

Dec 1.46 0.53 0.55 0.52 0.62 0.51 0.52 0.52 0.57 

 

4.6.2 Catchment Delineation  

Results of the catchment delineation include topographic characteristics and the generation of the 

sub-basins in the Sondu catchment area. Using the ArcSWAT interface, the SWAT model 

delineated a total area of 344837 hectares divided into seventeen sub-basins based on the 

topographic information provided in the Digital Elevation Model (DEM). The seventeen sub-

basins were further sub divided into 94 Hydrologic Response Units (HRUs) depending on the 

heterogeneity of the land use, soil types, and slope (Figures 4.33). The figure shows the maps of 

the delineated catchment area that include: (a) seventeen sub-basins, (b) land use map, (c) soil 

class map, and (d) land slope map.  

Table 4.26 and Figure 4.34 show the West-East cross-section of the basin from the lowest point 

(1137 m) at the level of Lake Victoria in sub-basin number 8, to the highest point (2934 m) at 

Keresoi forest station in sub-basin number 14. The mean elevation of the catchment as calculated 

by the ArcSWAT interface is about 2039 m with a standard deviation of 310 m. The change in 

elevation from the lowest to the highest point in the catchment is about 1795 m. Hence elevation 

increases eastwards from the eastern shores of Lake Victoria causing rivers in this catchment area 
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to generally flow westwards. Sub-basin number 8 has the lowest mean elevation (1585 m) while 

number 12 has the highest (2410 m) 

   
(a)                                                                                                                 (b) 

   
(c)                                                                                                                    (d) 

Figure 4.33: Sondu catchment area maps showing the (a) seventeen sub basins, (b)  distribution 

of the different landuse classes, (c)  distribution of the different soil classes, and (d) distribution 

of slope, over the Sondu catchment area as created by the ArcSWAT interface  

.  
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Table 4.26 Sub basins of the Sondu catchment area delineated by ArcSWAT  

Sub Basin 

No. 

Minimum 

Elevation (m) 

Maximum 

Elevation (m) 

Mean Elevation 

(m) 

Area 

(ha) 

% 

Area 

1 1837 2566 2141 16494 4.8 

2 1837 2616 2253 14135 4.1 

3 1657 2056 1866 12977 3.8 

4 1657 1791 1722 1747 0.5 

5 1689 2006 1818 3355 1.0 

6 1690 1824 1753 732 0.2 

7 1582 1914 1749 6651 1.9 

8 1137 2152 1585 30306 8.8 

9 1718 2382 2012 17887 5.2 

10 1719 2003 1890 6669 1.9 

11 1854 2684 2283 18886 5.5 

12 1852 2931 2410 58441 17.0 

13 1583 2214 1852 50539 14.7 

14 1729 2934 2203 48182 14.0 

15 1727 1913 1800 4580 1.3 

16 1763 2162 1891 30231 8.8 

17 1762 2190 1910 23028 6.7 

 

 

 

Figure 4.34: Cross section of the Sondu catchment area from Lake Victoria eastwards to the 

watershed boundary near Keresoi forest station  
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4.6.3 Hydrologic Response Units  

As already pointed out, seventeen sub-basins were created during the delineation process. From 

the sub-basins, a total of 101 Hydrologic Response Units (HRUs) were created using the 

ArcSWAT interface by applying a threshold of 5%, 20%, and 20% for landuse, soil class, and 

slope respectively. Using these threshold levels and the classified satellite raster image of the 

Sondu basin, the model picked four landcover types within the Sondu catchment area: Rainfed 

herbaceous crop (Maize) (75.0%), closed forest (13.4%), Rainfed herbaceous with shrub (Tea) 

(7.6%), and open forest (4.0%) (Table 4.27). Figure 5.38b shows the distribution of these landuse 

activities across the entire catchment. 

Table 4.27: The main landcover types distributed across the entire Sondu catchment by area 

Landuse/Landcover Area (Ha) % Area 

Rainfed herbaceous crop (Maize) 258366 75.0 

Closed  Forest 114437 13.4 

Rainfed herbaceous with shrub (Tea) 26776 7.6 

Open Forest 13884 4.0 

 

Table 4.28 presents the seventeen sub basins of the larger Sondu catchment area together with the 

landuse, number of HRUs, major soil class and slope. From the table it was noted that forestry and 

rainfed herbaceous crop with shrub activities are confined to elevations above 2000 m and are 

mainly found in sub-basin Numbers 1, 2, 9, 12, and 14 whose mean elevations are all above 2000 

m (Table 4.26). Most of the tributaries of the main Sondu River originate from these sub-basins. It 

was noted from the table and Figure 4.33b that the most dominant landuse activity in the area is 

rainfed herbaceous crop (maize) since it is practiced in all the seventeen sub-basins delineated by 

ArcSWAT interface. 

The three most common soil classes in the basin, delineated by the ArcSWAT interface from the 

raster images obtained from the Kenya Soil Survey, are ando-humic nitisols (R10), humic 

cambisols (R9), and humic nitisols (Uh1) which collectively cover about 66% of the total 

catchment area and dominate in seven out of the seventeen sub basins (Figure 4.33c and Table 

4.29).  
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Table 4.28: Sub basins and HRUs created using the ArcSWAT interface in the Sondu 

catchment area showing the landuse, dominant soil class and slope for each of the sub basins 

Sub 

Basin 

No. 

 

Landuse 

No. of 

HRUs 

Major 

Soil 

Class 

Slope (%) 

0 - 8 8 - 30 

1 Closed forest, mixed forest, maize farms, tea  10 R9 49.2 50.8 

2 Closed forest, maize farms, tea farms 8 R9 33.6 66.5 

3 maize farms, tea farms 1 R9 63.6 36.5 

4 maize farms 3 Uh1 62.9 37.2 

5 maize farms, tea farms 4 R9 55.2 44.8 

6 maize farms 3 R9 63.7 36.3 

7 maize farms, tea farms 3 Uh1 71.6 28.4 

8 maize farms, tea, Closed forest, range grasses 6 H1 43.7 54.7 

9 maize farms, tea farms, Evergreen forest 8 R9 30 70 

10 maize farms 4 R9 48.1 52.0 

11 maize farms, tea farms, Closed forest, open forest 10 R10 32.8 67.3 

12 maize farms, tea farms, Closed forest, open forest 10 R10 39.6 60.5 

13 maize farms, tea farms 3 Uh1 57.1 43.0 

14 maize farms, Closed forest, open forest 11 R10 33.6 66.4 

15 maize farms 1 Up2 88.5 11.6 

16 maize farms 2 UP2 88.2 11.9 

17 maize farms, open forest 7 Uu2 62.1 37.9 

 

The three most dominant soils have properties that range from moderately to extremely deep, are 

all well drained, and mostly found on valley sides. They therefore allow higher infiltration rates, 

recharge of ground water and movement of water as interflow to the rivers in the catchment area. 

This allows rivers within the area to have water long after rainfall has ceased. Forestry and tea 

farming are mainly concentrated in the sub basins dominated by R9, R10 and Uh1 soil classes 

which are mainly found between altitudes 1718m and 2410m (Figure 4.33b and Table 4.29).  
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 Table 4.29: Major soil types, their properties and distribution within the Sondu catchment area 

as identified by the ArcSWAT interface during the catchment delineation process 

Mapping 

Code 

Soil Class Soil Properties Area 

(Ha) 

%Area 

R10 ando-humic nitisols Shallow to moderately deep, well drained 76581 22.2 

R9 humic cambisols Extremely deep, well drained 72785 21.1 

Uh1 humic nitisols Extremely deep, well drained 79220 23.0 

L23 niti-rhodic ferrasols Very deep, well drained 1271 0.4 

Ul10 chromic luvisols Moderately deep to deep, well drained 919 0.3 

H1 humic cambisols Shallow to moderately deep, excessively drained 27651 8.0 

Lu1 humic andosols Deep to very deep, well drained 17349 5.0 

R13 ando-eutric cambisols Shallow to moderately deep, well drained 16981 4.9 

Um5 humic nitisols Extremely deep, well drained 8598 2.5 

Up3 chromo-luvic phaeozems Moderately deep to deep, well drained 15162 4.4 

Uu2 ando-luvic phaeozems Deep to very deep, well drained 11330 3.3 

F6 gleyic phaeozems Deep, moderately well to imperfectly drained 563 0.2 

H8 lithosols Shallow, somewhat excessively drained 594 0.2 

Up2 chromic vertisols deep, imperfectly drained 15832 4.6 

 

Figure 4.33d shows that the Sondu catchment area is dominated by two land slope categories; 0-

8% and 8-30%. Higher slopes are mainly found on the eastern side of the catchment area and are 

mainly confined to the river valleys. The western side of the catchment also has higher slopes but 

are mainly confined next to the catchment boundary. The area between 35˚0'0"E and 35˚15'0"E 

has generally low slopes ranging from 0 to 8%. The slope distribution explains why majority of 

the soils found on the eastern side of longitude 35˚15'0"E are generally well drained. 

 

4.6.3.1 Kiptiget Sub-basin  

Out of the seventeen sub-basins delineated by the model, Kiptiget, which is drained by River 

Kiptiget, was the sub-basin most representative for this study. Kiptiget sub-basin is over 83% 

forest covered (Figure 4.14) and therefore a good representation of the SWM forest, the largest 

block of the Mau forest complex system. Kiptiget River, which originates from the heart of the 

SWM forest, is gauged at the outlet of the sub-basin and is therefore ideal for comparison of the 

simulated and observed water yields from the sub-basin.  

Kiptiget is an upstream sub-basin and a larger portion of the main drainage channel passes through 

the forest before reaching outlet. Water withdraws from the river channels, which requires more 
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resources to quantify, are therefore much less compared to the RGSs which are located at points 

further downstream. Therefore, calibration and validation of the model and the subsequent water 

yield predictions were based on Kiptiget sub-basin which was taken to represent the larger Mau 

forest catchment area.    

 

4.6.4. SWAT Model Default Simulations 

Figure 4.35 shows a comparison of mean monthly water yields simulated before model calibration 

with observed values between 1971 and 1990 at the outlet of the Sondu catchment. The simulated 

water yields closely follow the observed patterns with a near perfect match for the peaks and 

troughs. The observed and simulated peaks fall in May with two minor peak yields in September 

and November (Figure 4.35a). A regression of simulated on observed mean monthly water yields 

(Figure 4.35b) revealed a strong linear relationship between the observed and model-simulated 

stream flows ( 867.02 R ). The high coefficient of determination shows that about 87% of the 

variability in the simulated mean monthly water yields could be explained by the variability in the 

observed mean monthly water yields. 

Simulated (sim) and observed (ob) mean monthly water yields were significantly correlated at 

05.0  level of significance. The computed t-statistic for the slope of the regression line 

 69.3calt   was compared with the tabulated critical value  81.1crtct  and found to be 

significant. This was an indication that SWAT model can suitably be applied to the Sondu 

catchment area. 

However, the model substantially overestimates mean monthly water yields at the catchment‟s 

outlet in all the months of the year (Figure 4.35a). In order to bridge the gap between simulated 

and the observed values, it was found necessary to calibrate the model before it could be used to 

simulate future water yields. The calibration would tune the model to the dominant characteristics 

of the catchment and therefore make it more suitable for use in predicting future water yields in 

the basin. 

Figure 4.36 shows the comparison of simulated and observed mean monthly water yields at 

Kiptiget station which is located at the immediate neighbourhood of the downstream side of South 

West Mau forest block. Just like the Sondu station there was good agreement between observed 

and simulated mean monthly water yield patterns. The observed values show two peak flows 



170 

 

centred in May and September which are also captured by the model in addition to a third peak in 

November (Figure 4.36a) 

 

 

Figure 4.35: Comparison of mean monthly simulated and corresponding observed water yields 

during default SWAT model simulation at Sondu RGS  

The model substantially overestimated mean monthly water yields between November and May 

and underestimated between August and September at Kiptiget RGS. Regression of simulated on 

observed water yields revealed that there was a fairly strong linear relationship between the 

SWAT model-simulated and observed mean monthly water yields at Kiptiget RGS (Figure 4.36b) 

with  606.02 R .  

Simulated (sim) and observed (ob) mean monthly water yields at Kiptiget RGS were found to be 

significantly correlated at 05.0  level of significance. The computed t-statistic for the slope of 

the regression line  06.2calt   was compared with the tabulated critical value  81.1crtct  and 

found to be significant. From the results of default model simulation at Sondu and Kiptiget RGSs, 
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it was found necessary to calibrate the model in order to make it more reduce the uncertainty 

between the simulated and observed water yields. 

 
(a) 

 
       (b) 

Figure 4.36: Comparison of mean monthly simulated and corresponding observed water yields 

during default SWAT model simulation at Kiptiget RGS   

 

4.6.5 SWAT Model Calibration and Validation 

The model calibration procedure involved sensitivity analysis to determine the most appropriate 

parameters to calibrate, followed by manual calibration where the ten most sensitive parameters 

(Table 4.30) were manually perturbed one at a time. The criteria used to calibrate the model were 

to minimise the difference between simulated and observed values by manually manipulating the 

sensitive parameters within the allowable ranges (Table 4.30). 
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4.6.5.1 Model Sensitivity Analysis  

The sensitivity analysis ranked the hydrological input parameters that are responsive to streamflow 

generation in the Sondu catchment area in the order of decreasing sensitivity. Table 4.36 presents 

the first ten SWAT model hydrological input parameters that have notable impacts on the model 

output when they are changed. These results were obtained using the sensitivity analysis tool in 

the SWAT model and manual calibration for flow input parameters. The results of the sensitivity 

analysis indicated that the most important parameter for streamflow generation was the Soil 

Evaporation Coefficient (Esco) and was assigned a global rank 1.  

Table 4.30: Results of sensitivity analysis (columns I and 2) and for calibration (column 5)  

Rank Code Parameter Description Default 

value 

Calibrated value 

1971-1990   

Range 

1 Esco Soil evaporation compensation factor 0.95 0.008 0.01-1.0 

2 Cn2 initial SCS runoff curve number for 

moisture condition II 

70 60.88 ±25% 

3 Sol_Z Depth from soil surface to to the bottom 

of layer (mm) 

120 default  

4 Canmx Maximum canopy storage (mm) 1 100 1-100 

5 Blai Maximum potential leaf area index  default  

6 Revapmn Threshold water level in shallow aquifer 

for “revap” to occur (mm) 

1 0.725 0-500 

7 Sol_Awc Available soil water capacity (mm 

H2O/mm soil) 

0.17 0.269 0-1.0 

8 Ch_K2 Effective hydraulic conductivity in the 

main channel (mm/hr) 

0 0.36 0-5 

9 Alpha_Bf Baseflow recession factor (days) 0.025 0.022 0.1-1.0 

10 GW_Revap Delay time for aquifer recharge (days) 0.02 0.2 0.02-0.2 

Other parameters that are assigned global ranks  between 2 and 6 and categorised as important are; 

SCS runoff curve number for moisture condition II (CN2), the depth from soil surface to the 

bottom of layer (Sol_Z), maximum canopy storage (Canmx), maximum potential leaf area index 

(Blai), and threshold water level in shallow aquifer for „revap‟ to occur (Revapmn). The other 

parameters are less important and are assigned global ranks between 7 and 42 (Glavan and Pintar, 

2012; Ndomba et al, 2008) 
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4.6.5.2 Model Calibration and Validation 

In this section, the results of model calibration and validation are presented in both graphical and 

tabular form. Graphical results include a time series and an annual cycle together with their 

respective regression lines of monthly water yields during calibration and validation periods 

(Figures 4.37, 4.38, 4.39. and 4.40). Graphical comparison between SWAT model-simulated and 

observed water yields after model calibration for six years (1982 to 1987) and validation using an 

independent data set of three years (1988 to 1990) indicated that there was good agreement 

between model-simulated and observed water yields (Figures 4.37 and 4.39).  

Figure 4.37 presents a comparison between time series of model simulated and corresponding 

observed monthly between 1982 and 1987 (calibration) and 1988 and 1990 (validation). Graphical 

comparison of simulated and observed water yields at the Kiptiget RGS shows that the model 

simulates water yields from the landscapes of Kiptiget sub-catchment in ways that capture the 

dynamics of the watershed response fairly well (Figures 4.37). Except in 1986 and 1987, the 

model slightly over estimates the peak yield values during calibration period (Figure 4.37a). 

However, the flow patterns are fairly well captured by the model especially in 1982 and 1983 in 

some cases overestimating by up to about 9% (Table 4.31). During the validation period, the 

model also captured the patterns fairly well but with a slight over-estimation of about 7% (Table 

4.31).  

Figure 4.38 presents the regression of simulated on corresponding observed monthly water yields 

during calibration (1982-1987) and validation (1988-1990) periods respectively at Kiptiget RGS. 

Monthly simulated and observed water yields at Kiptiget RGS were found to be significantly 

correlated at 05.0  level of significance in both calibration and validation periods. The 

computed t-statistics for the slopes of the regression lines during calibration  55.9calt   and 

validation  61.4calt  periods were compared with the tabulated critical value  81.1crtct  and 

found to be significant. The percentage variation in simulated water yields that could be explained 

by variations in the observed water yields was about 80% and 55% during calibration and 

validation periods respectively. Based on these results, it was concluded that the model could be 

used to predict water yields on a monthly basis subject to adequate calibration. 
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(a) 

 
       (b) 

Figure 4.37: Time series of observed and model-simulated monthly water yields (m
3
s

-1
) during 

calibration and validation at Kiptiget RGS   

 

 

Figure 4.38: Regression of SWAT model-simulated on observed monthly water yields (MCM) at 

Kiptiget RGS during (a) calibration and (b) validation  
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Figure 4.39 presents a comparison of hydrographs of simulated and observed mean monthly water 

yields averaged calibration (1982-1987) and validation (1988-1990) periods respectively. It is 

evident from the figure that during calibration, the model captures the monthly distribution of 

water yields from the catchment quite well but overestimates between April and July. During 

validation period monthly distribution of water yields are fairly well captured but the model 

generally overestimates water yields in all the months except August. 

 

  

 

Figure 4.39: Hydrographs of observed and SWAT model-simulated mean monthly water yields 

(MCM) during calibration and validation at Kiptiget RGS  

Figure 4.40 presents regression of simulated mean monthly on corresponding observed water 

yields averaged over the calibration (1982-1987) and validation (1988-1990) periods respectively. 

Simulated mean monthly and observed water yields at Kiptiget RGS were found to be 

significantly correlated at 05.0  level of significance in both calibration and validation periods. 

The computed t-statistics for the slopes of the regression lines during calibration  2.43calt   and 

validation  3.28calt  periods were compared with the tabulated critical value  81.1crtct  and 

found to be significant. The percentage variation in mean monthly simulated water yields that 

could be explained by variations in the observed water yields was about 95% and 66% during 
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calibration and validation periods respectively. Hence based these results these results the model is 

recommended for use in predicting monthly water yields in the catchment area subject to adequate 

calibration. 

  

 

Figure 4.40: Regression of mean monthly SWAT model-simulated on observed water yields 

(MCM) during calibration and validation at Kiptiget RGS  

The goodness of fit of the SWAT model was quantified using four statistics: coefficient of 

determination (R
2
), percentage bias (PBIAS), Nash-Sutcliffe efficiency (NSE), and the ratio of 

root mean square error to the standard deviation of observed values (RSR) (Table 4.31). The 

statistics indicated that SWAT model performed generally well in the Sondu catchment area. 

There was good correlation between observed and model-simulated values during calibration and 

validation periods. The coefficient of determination R
2
, during calibration and validation periods 

surpassed the threshold of acceptability (R
2
 > 0.5) as proposed by Moriasi et al, (2007). The R-

squared values were  797.02 R  and 952.02 R  for monthly and mean monthly water yields 

during calibration and  546.02 R  and 659.02 R  for monthly and mean monthly water yields 

during validation (Figures 4.38 and 4.40). 
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The percentage bias (PBIAS) in both calibration and validation periods shows very good 

performance  %10PBIAS  of the model in the simulation of average magnitudes of water 

yields. The simulated magnitudes of water yields fall within the “very good” band of model 

performance criteria (PBIAS ±10%) as suggested by Moriasi et al, (2007) in both calibration and 

validation periods respectively. In the simulation of trends and residual variations as exemplified 

by NSE and RSR, the model performance was good during calibration since the yield values fall 

within the “good” band of model performance criteria  65.054.0  NSE and  7.06.0  RSR  

and satisfactory during validation period since the yield values fall within the “satisfactory” band 

of model performance criteria  54.05.0  NSE  and  7.06.0  RSR  as suggested by Moriasi 

et al (2007) and as shown in Table 4.31.  

The simulated average monthly water yields during the calibration and validation periods were 

13.0 MCM and 10.0 MCM with standard deviations of 9.4 MCM and 6.9 MCM respectively while 

the corresponding observed values were 11.9 MCM and 9.4 MCM with standard deviations of 7.4 

MCM and 7.0 MCM respectively (Table 4.31). Even though the model does not capture all the 

peak flows, the model performance is acceptable since the hydrological processes and streamflow 

dynamics were realistically simulated based on the results in Table 4.31. 

Based on the varied performance rating supported by the different performance indices that range 

from very good (PBIAS) to satisfactory (NSE and RSR) during calibration, and from very good 

(PBIAS) to acceptable (NSE and RSR) performance during validation periods, the overall model 

performance in the basin was rated satisfactory. Results of these hydrological analyses can 

therefore be used to provide essential information for water resources management and planning 

in the catchment. 

Table 4.31: Statistics of observed and SWAT model-simulated monthly water yields during 

calibration and validation 

 

Period 

Observed  (MCM) Simulated (MCM)  Evaluation Statistics 

Mean Stdev Mean Stdev R
2
 PBIAS NSE RSR 

Calibration (1982-1987) 11.93 7.41 13.0 9.40 0.80 -8.94 0.63 0.60 

Validation (1988-1990) 9.35 7.00 10.01 6.93 0.55 -7.43 0.48 0.72 
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4.6.6 Model Simulations and Projections  

Results of the calibrated model simulations (1971-2010) and projections (2001-2050) of water 

yields are presented in this section. The results are presented in three parts: i. simulated water 

yields under changing landuse scenarios, ii. Projected water yields under climate change, and iii. 

Projected water yields under changing landuse scenarios.  

 

4.6.6.1 Simulated Water Yields under Deforestation Scenario (1971-2010) 

Figure 4.41 presents mean monthly and annual water yields at Kiptiget RGS averaged over the 

period 1971-2010 under deforestation scenario while holding climate of the area constant at the 

baseline level. It is evident from the figure that under the deforestation scenarios and using the 

baseline climate to drive the SWAT model, water yields Kiptiget RGS indicated an increasing 

trend the forest cover decreased from an all time high of about 84% in 1973 (LU73) to a low of 

about 62% in 2010 (LU10).  

 

 

Figure 4.41: Simulated mean monthly and annual water yields under deforestation scenarios 

using the baseline climate 
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The possible cause of this observation is that reduction in the extent of forest cover reduces 

infiltration rates in the sub-basin which leads to more water from rainfall events reaching the river 

system as surface runoff. In such circumstances the water in the rivers would not be sustainable in 

the long run since the groundwater flow component would be reduced. Since the region 

experiences rainfall in all the months of the year, the catchment can sustain the flow in the river 

system under reduced forest cover each month and subsequently each year (Figures 4.41). 

In the last four decades the forest cover in the sub-basin has been decreasing at a rate of about 8% 

every decade (Figure 4.14). In the same period, the mean annual water yields have been increasing 

at a rate of about 11 MCM every decade (Figure 4.41). Hence deforestation alone would lead to 

higher water yields from the sub-basin if climate were to remain at the 1970s level. 

 

4.6.6.2 Projected Water Yields under Climate Change 

Results of projected water yields using different climate scenarios to drive the SWAT model under 

the baseline landuse scenario (LU73) are presented in this section. Figure 4.42 shows a 

comparison of the baseline (1961-1990) and the projections for (2001-2030 and 2021-2050) 30-

year average monthly and annual water yields under SRES A2 scenario at Kiptiget RGS. In the 

figure, WYLD1970s, WYLD2010s, and WYLD2030s stand for the 30-year average monthly 

water yields in the periods 1961-1990, 2001-2030, and 2021-2050 respectively. 

Comparison between the baseline and projected water yields indicates that projected mean 

monthly water yields would experience increasing trends between October and June but 

decreasing trends between July and September(Figure 4.42). The months currently experiencing 

relatively low water yields (December, January, February, and March) would experience relatively 

higher water yields while those currently experiencing relatively high water yields (August and 

September) would experience relatively lower water yields under this kind of a scenario. This is 

consistent with the projected changes in monthly rainfall under SRES A2 scenario (Figure 4.28).  

From the 1970s through 2010s to 2030s, the mean annual water yields averaged over the thirty-

year periods: 1961-1990, 2001-2030, and 2021-2030, would increase at a rate of about 105 MCM 

every 30 years under this kind of a scenario (Figure 4.42). This increase in the annual water yields 

can be attributed to climate change as it is supported by increased rainfall in the same periods 
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projected by PRECIS climate model (Figure 4.27). Hence climate change would lead to higher 

water yields from the sub-basin if land cover characteristics were to remain at the 1973 level. 

 
(a)    

 
       (b) 

Figure 4.42: Baseline and SRES A2 scenario projected mean monthly and annual water yields 

under the (LU73) scenario  

 

4.6.6.3 Projected Water Yields under Deforestation Scenarios  

In this section, monthly and annual water yields under changing landuse scenarios for the periods 

2001-2030 and 2021-2050 are presented. Since the projections under deforestation scenarios are 

under different climate regimes from that of the baseline, any changes in the in the projected water 

yields are attributed to both climate change and deforestation.  

 

4.6.6.4 Projected Water Yields (2001-2030) 

Figure 4.43 presents projected 30-year mean monthly and annual water yields at Kiptiget RGS 

averaged over the period 2011-2030. The mean monthly hydrograph for the period 2001-2030 

shows an increasing trend in mean monthly water yields between September and April while 
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between May and August the trend is decreasing under the four landuse scenarios (LU73, LU86, 

LU00, and LU10). While consecutive mean monthly changes in water yields are progressively 

noticeable from LU73 through to LU00 landuse scenarios, changes from LU00 to LU10 landuse 

scenarios are not obvious. This can be explained by the recovery of forest cover between mid 

2000s and 2010 (Figure 4.13). 

The 30-year mean annual water yields from the sub-basin in the same period indicate a decreasing 

trend of about 0.70 MCM per year as deforestation increases. This will lead to less annual water 

yields from the catchment in future. The possible explanation for this is that the higher 

temperatures of 2010s and 2030s (Figures 4.24 and 4.25) will lead to increased rates of 

evaporation. A ground surface that is under natural forest conditions experiences less evaporation, 

improved recharge of ground water and hence ensures more water is available during prolonged 

dry spells (Hynes, 1975). 

 

 

Figure 4.43: Projected 30-year mean monthly and annual water yields under climate change 

and deforestation (2010s) 
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4.6.6.5 Projected Water Yields (2021-2050) 

Figure 4.43 presents projected 30-year mean monthly and annual water yields at Kiptiget RGS 

averaged over the period 2021-2050. It is evident from the figure that by the 2050, mean monthly 

water yields will be higher than those of 2010 but will follow similar patterns to the 2010s 

projected yields. The 30-year mean annual water yields averaged over period 2021-2050 show a 

decreasing trend of about 0.71 MCM per year as the extent of deforestation increases. There is, 

however a slight improvement in the mean annual water yields simulated under LU10 landuse 

scenario from that of 2001-2030.  

The possible explanation for this improvement is that in the decade between 2000 and 2010 the 

government and other stake holders spearheaded a spirited campaign to conserve the Mau Forest 

complex which resulted in the slowing down of the rate of deforestation in this sub-basin. This 

means that the current efforts towards conservation of the Mau forest complex are expected to 

bear fruits between 2021 and 2050 (Figure 4.13). 

 

 
        

Figure 4.44: Projected 30-year mean monthly and annual water yields under climate change 

and deforestation (2030s) 
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4.7 Impacts on Water Yields 

Results of analyses of impacts of climate change and deforestation on water yields are presented in 

this section. The results are presented in three parts: (i) Impacts of climate change on water yields 

under the baseline landuse scenario, (ii) Impacts of deforestation (changing landuse scenarios) on 

water yields under the baseline climate, and (iii) Impacts of climate change and deforestation on 

water yields. 

 

 4.7.1 Impacts of Climate Change on Water Yields 

Results of impacts of climate change under the baseline landuse scenario (LU73) on water yields 

from the Mau forest complex indicate that on average, the catchment would be expected to yield 

more water annually by about 89% and 110% of the baseline yields in 2010s and 2030s 

respectively assuming that the baseline landuse scenario were to be maintained (Figure 4.45). 

Annual water yields under climate change only would increase at a rate of about 55% of the 

baseline yields every 30 years as shown by the equation of the trend line. The R-squared (R
2
 = 

0.890) shows that 89% of water yield information under climate change alone is explained by the 

independent (time) variable. Since the ground cover, as represented by LU73, was assumed not to 

have changed on the basis of sustained catchment conservation policy, the observed changes in 

simulated annual water yields from the sub-basin were therefore attributed to climate change. 

Hence climate change under the SRES A2 scenario would result in more water in the basin over 

time. 

 

Figure 4.45: 30-year average annual percentage changes in water yields from the baseline 

under LU73 landuse scenario 
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Figure 4.46 shows a regression of 30-year mean annual water yields (%) on rainfall (%) changes at 

Kiptiget RGS. The figure shows that changes in rainfall between the baseline period, 2010s and 

2030s under the baseline forest cover scenario will significantly influence water yields from this 

catchment.  

 

Figure 4.46: Regression of 30-year mean annual percentage changes in water yields on rainfall 

under the LU73 landuse scenario  

 

This is supported by the regression slope (4.8%), which was found to be significant at 05.0  

level of significance. The computed t-statistic (tcal =6.83) was compared to the tabulated critical 

value (tcrtc = 6.31) and the slope was declared significant (tcal > tcrtc). The coefficient of 

determination (R
2 

= 0.66) indicates that over 66% of the variability in projected water yield under 

climate change only would be explained by the variability in rainfall. Hence climate change under 

the 1973 landuse scenario would lead to an increase in water yields from the basin at a rate of 

about 4.8 percentage points for every 1 percentage point change in rainfall.  

 

4.7.2 Impacts of Deforestation on Water Yields 

Monthly and annual water yields were simulated for the period 1971-2010 under different landuse 

scenarios (LU73, LU86, LU00, and LU10), which represent progressive deforestation using 

observed baseline climate data (1961-1990). Since the climate was assumed to remain constant at 

the baseline level, any changes in simulated water yields were attributed to deforestation of the 

watershed. 
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Simulated mean monthly and annual water yields under deforestation scenarios were analysed and 

compared to the baseline landuse scenario (LU73) simulation. Percentage changes in water yields 

from the baseline (100%) were evaluated and the results given in Figures 4.47. It was noted that 

there was a positive change in mean monthly water yields in all the months ranging from about 

3.6% to about 86% of the baseline scenario values (Figure 4.47a). The annual water yields also 

indicated positive changes of between 13.5% and 22.9% from the baseline landuse scenario 

(LU73) to the 2010 landuse scenario (LU10) as shown in Figure 4.47b.  

Since climate was assumed to remain constant at the baseline level during the simulations, and the 

only variable was landuse scenario, the observed changes in monthly and annual water yields were 

attributed to deforestation which altered the hydrological response of the catchment to rainfall. 

Since scenario LU73 represents the highest and scenario LU10 the lowest percentage forest cover 

in the sub-basin and in the Mau forest complex (Table 4.9 and Figure 4.13), it was concluded that 

assuming that climate does not change, the impact of deforestation would be to increase the water 

yields at a rate of about 7.5% of the baseline yields to between 14% and 23% for annual water 

yields while monthly yields would increase by between 4% and 86%. The R - squared computed 

for this scenario (R
2
 = 0.910) shows that 91% of variability in the simulated annual water yields 

could be explained by variations in deforestation, the independent variable in this case. 

However, increases in water yields with deforestation may not sustainable in the long run since the 

reduced rates of infiltration will deny the catchment the much needed subsurface and groundwater 

flow components that sustain water yields during the dry seasons. Further there are indications that 

the climate of the region has been changing since the 1970s (Figure 4.4) and therefore the 

assumption that the climate remains constant at the baseline level may not apply. 

Regression of changes in mean annual water yields on different forest cover scenarios to 

determine the change in annual water yields for a unit change in the forest cover (Figure 4.48) 

indicated a high dependence of annual water yields on the extent of the forest cover. The slope of 

the regression equation as shown in the figure represents the rate of change of water yields with 

forest cover from the sub-basin. A unit percentage change in forest coverage changes the annual 

water yields by about 0.88% and  about 87% of variability in simulated water yields from this sub-

basin can be explained by deforestation (R
2
 = 0.869). The negative relationship between annual 

water yields and deforestation (Figure 4.47) can be attributed to the fact that reduction in forest 
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cover tends to reduce the rates of infiltration and thus allow more water from effective rainfall to 

reach the stream channels annually via direct runoff. 

The test of significance at 05.0  level revealed that the slope of the regression line was not 

significantly different from zero. The computed t-statistic  525.1calt  was less than the critical 

value  92.2crtct . It was therefore concluded that although there was an increasing trend in 

simulated annual water yields, the influence of the rate of deforestation on annual water yields was 

not statistically significant. 

 
(a)  

 
       (b) 

Figure 4.47: Percentage changes in mean monthly and annual water yields with deforestation 

under the baseline climate  

Table 4.32 which was used to determine the relationship between water yields and deforestation 

(Figure 4.48) shows the changes in forest cover and the corresponding changes in mean annual 

water yields at Kiptiget RGS. For purposes of this study water yields under the LU73 landuse 

scenario were assumed to be at 100%. Subsequent landuse scenarios resulted in water yields 
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higher than 100% indicating that deforestation under the baseline climate leads to higher annual 

water yields. 

 

Figure 4.48: Regression of changes in annual water yields on deforestation under the baseline 

climate 

 Table 4.32: Percentage forest cover under different landuse scenarios and the corresponding 

mean annual water yields 

Landuse LU73 LU86 LU00 LU10 

Deforestation (%) 83.6 78.0 63.9 61.7 

Water Yields (%) 100 113.5 119.6 122.8 

 

4.7.3 Impacts of Climate Change and Deforestation on Water Yields    

Projected water yields in 2010s and 2030s under changing landuse scenarios (LU73, LU86, LU00, 

and LU10) were analysed and compared to the baseline (1970s) simulations under similar landuse 

scenarios (Figure 4.49a). Percentage changes from the baseline values under similar landuse 

scenarios were evaluated to determine the impacts of climate change and deforestation on water 

yields (Figure 4.49b). From the comparison of annual water yields (Figure 4.49a) it is evident that 

annual water yields are progressively increasing from the baseline climate regime (1970s) through 

2010s to 2030s projected climate regimes under all the landuse scenarios. However, while water 

yields show an increasing trend from the baseline landuse scenario (LU73) through to the LU10 

scenario, decreasing trends are evident under projected climate regimes in 2010s and 2030s 

(Figure 4.49a). 
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In general, it was observed that 30-year annual average water yields increased with increased 

rainfalls in 2010s and 2030s (Figure 4.49a and Table 4.33). However, proportional changes in 

annual water yields were much higher than those of rainfall in both 2010s and 2030s. The changes 

in annual rainfall ranged between 51% and 64% compared to between 215% and 264% of annual 

water yields in 2010s and 2030s respectively (Table 4.33). This was an indication that other 

factors such as antecedent soil moisture conditions and ground water storage, which are functions 

of ground vegetation cover, could have influenced water yields from the sub-basin. 

Table 4.33: Percentage changes in 30-year average annual rainfall and water yields in 2010s 

and 2030s 

Changes in annual 

rainfall (%) 

Changes in annual water yields in 

2010s (%) 

Changes in annual water yields in 

2030s (%) 

2010s 2030s LU73 LU86 LU00 LU10 LU73 LU86 LU00 LU10 

50.7 63.9 215.2 215.1 214.8 214.4 265.0 264.4 263.3 263.4 

 

Projected changes in 30-year annual average water yields from the baseline landuse scenario 

(LU73) through to the LU10 scenario show progressively decreasing trends at rates of about 15% 

and 16% per decade in 2010s and 2030s respectively under all the landuse scenarios (Figure 

4.49b). It is therefore evident that though climate change from the 1970s baseline through 2010s to 

2030s will result in higher water yields from the catchment, the potential yields will decrease with 

deforestation from about 136% to about 91% and from about 163% to about 113% of the baseline 

yields in 2010s and 2030s respectively. This is supported by the high values of R-squared (R
2
 > 

0.88) in both 2010s and 2030s (Figure 4.49b) showing that over 88% of water yields information 

is explained by variations in forest cover under climate change. 

It is evident from Figure 4.49a that while annual water yields progressively increase with 

deforestation from 152.4 MCM/yr (LU73) to 187.4 MCM/yr (LU10) in the 1970s, the trend is 

different in the 2010s and 2030s. In the 2010s, annual water yields progressively decrease with 

deforestation from 358.8 MCM/yr (LU73) to 356.7 MCM/yr (LU10). In the 2030s, annual water 

yields progressively decrease with deforestation from 400.0 MCM/yr (LU73) to 397.9 MCM/yr 

(LU00). This translates into a potential loss of between 0.6 MCM/yr and 1.9 MCM/yr and 0.7 

MCM/yr and 2.1 MCM/yr in 2010s and 2030s respectively. This is about 0.2% and 0.5% in 2010s 
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and 2030s respectively. Hence climate change and deforestation will lead to potential loss in water 

yields from the forest complex. 

 
(a) 

 
       (b) 

 

Figure 4.49: Mean annual 30-year average (a) baseline and projected water yields (MCM/yr), 

and (b) projected percentage changes in water yields under climate change and deforestation  

 

Regression of changes in 30-year mean annual water yields on different forest cover scenarios in 

2010s and 2030s (Figure 4.50) indicated a high dependence of annual water yields on 

deforestation as supported by the slopes of the regression equations which represent the rate of 

change of water yields with deforestation.  The test of significance at 05.0  level revealed that 

under climate change the slopes of the regression lines were significantly different from zero. The 

computed t-statistics (tcal) were beyond the critical value of 92.2crtt  (Table 4.34). The high 

values of R-squared (R
2
 > 0.97) indicate that under climate change, over 97% of the variability in 

simulated water yields is explained by deforestation rates. It was therefore concluded from the 

results that annual water yields are significantly dependent on climate change and the rate of 

deforestation. 
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Table 4.34: Linear equations, coefficients of determination (R
2
) and the calculated student’s t-

statistic (tcal) 

Climate 

Regime 

Regression equation R
2
 computed t-statistic for 

slope (tcal) 

Remarks 

1970s 2.177880.0  xy  0.869 1.525 slope not significant 

2010s 69.96339.2  xy  0.993 4.051 significant slope 

2030s 16.94294.2  xy  0.978 3.976  significant slope 

 

It was noted that a unit percentage increase in deforestation will reduce the annual water yields by 

about 2.34% and 2.30% in 2010s and 2030s respectively. The slightly lower rate of decrease in 

annual water yields in 2030s than that of 2010s was attributed to forest recovery between 2000 

and 2010 indicating that if the Mau forest complex were to recover to the 1973 baseline level 

(LU73) potential water yields from this water tower would be higher than currently projected. The 

reduction in annual water yields with deforestation under climate change can be attributed to the 

fact that deforestation exposes more of the ground surface to the vagaries of weather under the 

changed climate leading to enhanced erosion and loss of water to the atmosphere through 

evaporation. 

Table 4.35, which was used to determine the relationship between water yields and climate change 

under deforestation (Figure 4.50), shows the changes in forest cover and the corresponding 

changes in mean annual water yields from the baseline in 2010s and 2030s. For purposes of this 

study water yields under the LU73 landuse scenario were assumed to be at 100%. Subsequent 

landuse scenarios under climate change in 2010s and 2030s resulted in water yields that are lower 

than the 100% baseline yields. 

Hence it was concluded from the results of impacts assessment that impacts of deforestation on 

water yields under climate change will be a reduction in the potential annual water yields from the 

catchment by between 28% and 45% in 2010s and between 31% and 50% in 2030s (Figure 4.49b). 

It is therefore important to rehabilitate and conserve the forests in the catchment in order to ensure 

sustainable availability of water in this area as supported by the slight improvement in water yields 

under LU10 landuse scenario in 2030s (Table 4.35) 
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(a)  

 
       (b) 

Figure 4.50: Regression of percentage changes in annual water yields on deforestation under 

climate change and deforestation over Kiptiget sub-basin in (a) 2010s and (b) 2030s 

 

Table 4.35: Percentage deforestation under different landuse scenarios and the corresponding 

mean annual water yields    

Landuse LU73 LU86 LU00 LU10 

Deforestation (%) 83.6 78.0 63.9 61.7 

2010s Water Yields (%) 100 84 55 46 

2030s Water Yields (%) 100 82 49 51 



192 

 

CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

5.1 Conclusions  

The study has shown that between 1961 and 2010 the climate of the basin has been changing. 

Days and nights have become warmer by about 0.5˚C and 0.4˚C respectively. Over the same 

period monthly rainfall patterns indicated a shifting tendency where the relatively dry DJF and 

SON seasons became  relatively wetter by about 7.5% and 9.2% respectively by 1990s while the 

relatively wet MAM and JJA became relatively drier by about 2.2% and 4.5% respectively by 

1990s. In the same period, annual rainfall indicated a slightly increasing trend. It was also 

established from the observed landuse patterns that indeed Mau forest complex experienced 

deforestation ranging from about 18% to 25% between 1973 and 2010 with the peak deforestation 

rate witnessed in the early years of 2000s but the trend has since been reversed. It was therefore 

concluded from the results of the observed data that besides being deforested, the Mau forest 

catchments have become warmer and wetter during this period with stream flows showing 

decreasing trends. 

Projected temperatures and rainfall in 2010s and 2030s show increasing trends thus indicating that 

the climate of the area is changing. The annual average temperatures and rainfall are projected to 

change from the baseline values by about 2.7˚C and 4.7% respectively by 2030 and by 4.7˚C and 

18.9% respectively by 2050. The area is therefore projected to progressively become warmer and 

wetter. This will impact on the water yielding properties of the area. Monthly rainfall patterns are 

projected to shift with the relatively dry seasons becoming relatively wetter and the relatively wet 

seasons becoming relatively drier. This affirms results of a similar study in Nzoia River basin by 

Githui (2008). 

From the SWAT simulation results between 1961 and 1990, it was concluded that holding the 

climate constant at the baseline level (1970s), deforestation alone would tend to increase the 

amount of surface water flowing in the rivers due to increased water yields from the basin. This is 

however, contrary to the observation suggesting that another factor, such as climate change, could 

be influencing water yields from the basin. From the results of simulations under the baseline 

landuse scenario (LU73) but under changing climates, it was concluded that in the absence of 

deforestation, the amount of water flowing in the rivers would progressively increase from about 
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201 MCM/yr in the 1970s through 305 MCM/yr in the 2010s to 420 MCM/yr in the 2030s as a 

result of increased surface water yields from the basin. But the basin has been deforested since 

1973. This may therefore not be viable and suggested a need to take both deforestation and climate 

change into consideration. From the results of simulated water yields in the 1970s and 2010s, 

under deforestation scenarios, it was concluded that climate change coupled with deforestation of 

Mau forest complex has contributed to the dwindling water levels in rivers emanating from this 

water tower. Results of the projected water yields in 2030s under similar conditions indicate that 

the trend is projected to continue to 2030 and beyond if nothing is done to curb deforestation of 

this critical water tower. Rehabilitation of the Mau forest complex would therefore lead to 

increased water yields as it was noted between 2000 and 2010.     

The overall impacts of climate change and deforestation on water yields from the Mau forest 

complex is a reduction in the potential annual water yields by between 0.2% and 0.5%. Continued 

deforestation of this critical water tower will therefore result in less water than expected coming 

from this important water tower since climate change is a reality 

This study has provided useful insights into the sensitivity of Mau forest complex water towers to 

deforestation and climate change. The results obtained in this study will contribute to the scientific 

community‟s understanding of the impacts of climate change and deforestation on water resources 

in Lake Victoria south catchment area in general and Sondu River catchment area in particular. 

Further, as a result of this study, a great amount of Hydrometeorological data in and around the 

area of study spanning the period 1961-2050 has been acquired. This forms significant 

contribution researchers wishing to advance the science of Hydrometeology. The results of this 

study could also be used to provide information to inform policy in the strategic planning and 

management of water resources in Lake Victoria south catchment area as set out in the National 

water Master Plan 2030 in various sectors such as agriculture, hydropower generation, and water 

supply. 

 

5.2 Recommendations 

Arising from the results of this study and the challenges encountered therein, the author wishes to 

make the following general recommendations to policy makers and researchers in the water 

resources sector.  
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5.2.1 Recommendations to Policy Makers 

i. Results of this study have provided useful methods and products that can broadly be used 

to inform medium and long term planning of water resources management in this part of 

Kenya. They should therefore be put in the mainstream economic development strategies 

and be integrated in the implementation of the National Water Master Plan 2030. 

ii. Operational use of SWAT model should be encouraged by those working in the water 

sector particularly in the design of flood control and water supply structures. 

iii. Results of this study have shown that a combination of both climate change and 

deforestation leads reduced water yields in this part of Kenya. Efforts must therefore be 

made to conserve this critical forest complex. 

5.3.2 Recommendations to Researchers 

i. PRECIS has shown itself to have potential to provide fine resolution data needed for 

climate change impacts studies. Performance of PRECIS RCM at finer resolutions should 

be explored further given that river basin scale studies require much finer resolutions.  

ii. SWAT hydrologic model has shown its potential in modelling water yields in this area 

under different climate and forest cover scenarios. Performance of other hydrologic models 

on impacts studies should also be explored. 
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