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We have selected piperaquine (PQ) and lumefantrine (LM) resistant Plasmodium berghei ANKA parasite
lines in mice by drug pressure. Effective doses that reduce parasitaemia by 90% (ED90) of PQ and LM
against the parent line were 3.52 and 3.93 mg/kg, respectively. After drug pressure (more than 27 pas-
sages), the selected parasite lines had PQ and LM resistance indexes (I90) [ED90 of resistant line/ED90 of
parent line] of 68.86 and 63.55, respectively. After growing them in the absence of drug for 10 passages
and cryo-preserving them at �80 �C for at least 2 months, the resistance phenotypes remained stable.
Cross-resistance studies showed that the PQ-resistant line was highly resistant to LM, while the LM-resis-
tant line remained sensitive to PQ. Thus, if the mechanism of resistance is similar in P. berghei and Plas-
modium falciparum, the use of LM (as part of Coartem�) should not select for PQ resistance.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Malaria is a global public health priority. The control of malaria
is hampered by the rapid selection of parasites resistant to anti-
malarials. Indeed, there is no single antimalarial in clinical use to
which the parasite has not yet developed resistance (Nzila, 2006;
White, 2004). Current international strategies for treatment de-
pend on the use of combinations of drugs that include artemisinin
compounds. Although this strategy is designed to reduce the
chance of resistance emerging, there is considerable concern that
this will inevitably happen.

Studies devoted to understanding factors that promote the
selection of resistance of Plasmodium falciparum to antimalarials
have demonstrated that drug elimination profile in the body is
one of the key parameters that determine the emergence and
selection of resistance (Nzila et al., 2000; Watkins and Mosobo,
1993). When drugs are used in combination, a mismatch between
ll rights reserved.
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their half-lives can have a substantial impact on the evolution of
drug resistance. If one drug is rapidly eliminated, the other drug
persists alone and new infections are exposed to sub-therapeutic
level of drugs, a fact that promotes the development of resistance
(Hastings, 2004).

For instance, the combination of lumefantrine (LM) and arteme-
ther (ATM), known as Coartem� has become the first line of treat-
ment of malaria in many African countries, including Kenya (Davis
et al., 2005b; Kokwaro et al., 2007; Mutabingwa, 2005; Nosten and
White, 2007). Emerging reports indicate that the use of LM in
(Coartem�) selects for parasites that show an increased tolerance
to Coartem� and these parasites select for wild type genotype in,
or show increased copy number of pfmdr1, a gene associated with
chloroquine (CQ) and mefloquine (MFQ) resistance (Dokomajilar
et al., 2006; Sisowath et al., 2007, 2005). Thus, there is now concern
that resistance to LM will be rapidly selected (Hastings and Ward,
2005; Humphreys et al., 2007; Sisowath et al., 2007).

Piperaquine has been combined with dihydroartemisinin
(DHA), the drug known as Artekin�. It has undergone successful
clinical evaluation in Africa and Asia (Ashley et al., 2004, 2005;
Davis et al., 2005a; Denis et al., 2002; Karema et al., 2006;
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Karunajeewa et al., 2004). Piperaquine has been used as mono-
therapy for the treatment of malaria infections for several years
(in the 80s and early in the 90s) in China. However, when used
alone, there was rapid selection of resistance in vitro, from 18% in
the 1980s to 98% in 1990s (Fan et al., 1998; Yang et al., 1999,
1992; Zhang et al., 1987). This in vitro-resistance was followed
inevitably by the emergence of in vivo resistance (Davis et al.,
2005b; Guan et al., 1983; Pang et al., 1989).

In both combinations, the artemisinin derivatives (ATM and
DHA) and the main components (PQ and LM) have different
pharmacokinetic properties. Indeed, like most artemisinin-based
compounds, DHA and ATM are short acting drugs, with a half-lives
of less than 2 h (Navaratnam et al., 2000; White et al., 1999). On
the other hand, PQ and LM have long half-lives, around 4–6 and
15–20 days, respectively (Ahmed et al., 2008; Hai et al., 2008;
Kokwaro et al., 2007; Tarning et al., 2008). Under these circum-
stances, the selective pressure for resistance would be primarily
exerted by the LM and PQ, leading to a rapid selection of PQ and
LM resistance when the drug combinations will come into wide-
spread use. In the case of Coartem�, a rapid emergence of parasite
tolerant to LM have been reported following the use of Coartem�

(Dokomajilar et al., 2006; Sisowath et al., 2007, 2005).
Thus, if strategies are to be devised to extend the useful therapeu-

tic lifetime of Coartem� and Artekin�, there is a need to understand
the mechanisms of PQ and LM resistance. However, to date, there are
no well established and characterized PQ- and LM-resistant
P. falciparum strains, which could be used to study the mechanism
of drug resistance.

Here we report the selection of stable LM- and PQ-resistant Plas-
modium berghei ANKA strains by continuous PQ and LM pressure
in vivo. We also report the activity of the antimalarial drugs chlo-
roquine (CQ), amodiaquine (AQ), LM and DHA against the backdrop
of this LM and PQ resistance. These strains represent valuable tools
to study the mechanisms of LM and PQ resistance.
2. Materials and methods

2.1. Parasites, hosts and test compounds

To select PQ resistance, we used a transgenic ANKA strain of
P. berghei expressing Green Fluorescent Protein (GFP), resistant to
pyrimethamine obtained from the MR4 repository (MRA-865,
MR4, ATCC� Manassas, Virginia), while a P. berghei ANKA strain
expressing GFP-Luciferase fusion, (MRA-868, MR4, ATCC� Manas-
sas, Virginia) obtained from Dr. C.J. Janse of Center of Infectious
Diseases Leiden University Medical Center, Netherlands was em-
ployed to induce LM resistance. Male, random-bred Swiss albino
mice (20 ± 2 g), were each infected intraperitoneally with donor
blood containing approximately 2 � 107 parasite red blood cells
(PRBC) in 0.2 ml inoculum. However, during the first 4 passages
of selection of PQ resistance, female NMRI mice were used and
were infected intravenously. Infection was assessed by micro-
scopic estimation of the proportion of infected erythrocytes in
Giemsa-stained thin smears made from tail-vein blood.

The animals were housed in experimental room in a standard
Macrolon type II cages clearly labeled with experimental details
at 22 �C and 60–70% relative humidity and fed on commercial
rodent feed and water ad libitum.

CQ and AQ were purchased from Sigma Chemical Co. (Poole,
UK). DHA, PQ and LM were gifts from Professor Steve Ward, Liver-
pool School of Tropical Medicine, Liverpool, UK. On the day of
administration, the drug was freshly prepared by dissolving it in
a vehicle consisting of 70% Tween-80 (d = 1.08 g/ml) and 30% eth-
anol (d = 0.81 g/ml) and subsequently diluted 10-fold with double
distilled water.
2.2. Determination of 50% and 90% effective-dose level (ED50 and ED90)

Fifty percent and 90% effective doses (ED50 and ED90, respec-
tively) were measured in a quantitative standard method ‘4-day
test’ (4-DT), in which the parasites are exposed to four, daily, drug
doses (Peters, 1975), except for the ED50 and ED90 of the parent
strain and that of the line selected at the 4th passage of PQ pres-
sure which were measured using the ‘1-day test’ (1-DT), in which
the parasites are exposed to a single drug dose (Vennerstrom et al.,
2004). The first 4 passages of PQ pressure were carried out at Swiss
Tropical Institute (STI), Basel, Switzerland, using the 1-DT. How-
ever, experiments from the 4th passage of PQ pressure and the
all LM pressure were carried out at the Kenya Medical Research
Institute (KEMRI), Nairobi, Kenya, using the 4-DT. Drugs were
administered by oral (po) route on day 1, (24 h post-infection) in
the 1-DT or starting on the day 0, (4 h post-infection) and contin-
uing for a total of four daily doses, days 0–3 (24, 48 and 72 h
post-infection) in the 4-DT. Parasite count was estimated by micro-
scopic examination of Giemsa-stained thin smears prepared from
tail snips on day 3, 72 h post-infection in the 1-DT or on day 4,
96 h post-infection in the 4-DT. Percentage chemosuppression of
each dose was then calculated as (A � B)/A] � 100], where A is
the mean parasitaemia in the negative control group and B is the
parasitaemia in the test group (Tona et al., 2001). ED50 and ED90

were estimated using a linear regression line.

2.3. Procedures for exerting drug-selection pressure and assessing the
level of resistance

After inoculation (2 � 107 parasitized red blood cells contained
in 0.2 ml inoculums) in 5 mice, on day zero (D0), mice were then
orally treated once with the drug at concentration equivalent to
ED99, 72 h post-infection (D3). Thereafter, parasitaemia was moni-
tored until it reached 2–5%, when a mouse was selected for dona-
tion of PRBC to the next naive group of five mice. The parasites
were exposed to increasing concentrations of PQ and LM by an
ED99 factor of one in subsequent passages.

During the first 4 passages of PQ drug pressure, after parasite
inoculation (D0), mice (a group of 5) were treated three times with
the drug at concentration equivalent to ED99. The first treatment
was carried out 72 h post-infection (D3). The second and third
treatment followed on D6 (or 7) and 10. Drugs were administered
orally in a volume of 0.01 ml per gram mouse. After the third treat-
ment (D10), parasitaemias were monitored until they reached
P2% when a mouse was selected for donation of PRBC to the next
naive group of five mice and subsequent steps were carried out as
mentioned in the previous paragraph.

The level of resistance was evaluated at different intervals by
measurement of ED50 and ED90 in the standard 4-DT or 1-DT which
permits the calculation of an ‘index of resistance’, I50 and I90 (de-
fined as the ratio of the ED50 or ED90 of the resistant line to that
of the sensitive, parent line).

The I90 values were grouped into four categories, based on pre-
vious work (Merkli and Richle, 1980): (1) I90 = 1.0, sensitive, (2)
I90 = 1.01–10.0, slight resistance, (3) I90 = 10.01–100.0, moderate
resistance and (4) I90 > 100.0, high resistance.

2.4. Stability study

The stability of PQ and LM resistant line was evaluated by mea-
suring drug responses after (i) making 10 drug free passages fol-
lowed by measurement of ED90; (ii) freeze-thawing of parasites
from �80 �C followed by measurement of ED90. Stable resistance
was defined as the maintenance of the resistance phenotype when
drug-selection pressure was removed for at least 10 passages in
mice (Gervais et al., 1999).
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Fig. 1. Development of parasitaemia in the treated (d) and untreated mice (j) at
different levels during the selection of piperaquine (A) and lumefantrine (B)
resistant Plasmodium berghei GFP (for PQ) and GFP-Luciferase (for LM) ANKA strains
in mice. Parasitaemias were assessed after 4 days post-infection (in both control
and treated groups) and mice were treated using a 4-day test (4-DT, see Materials
and methods).

198 D.M. Kiboi et al. / Experimental Parasitology 122 (2009) 196–202
2.5. Cross-resistance studies

The activity of CQ, AQ, LM and DHA against both drug sensitive
and resistant lines (after 10 drug free passages) was assessed in the
4-DT. I90 was computed as the ratio of the ED90 of the resistant line
to that of the sensitive, parent line. Cross-resistance was classified
into three categories as previously described (Li, 1985; Li et al.,
1985): I90 61.00 sensitive, I90 of 1.01–5.00 as slight cross-resis-
tance, I90 of above 5.01 as high cross-resistance. Statistical analyses
were carried out using the Student t-test (Minitab Inc. software,
State College, PA, USA).

3. Results

The ED50 and ED90 of PQ against the parent line were 1.30 and
3.52 mg/kg, respectively. After 4 passages under PQ selective pres-
sure (a total of 15 treatments), the PQ ED50 and ED90 increased to
160.28 and 262.59 mg/kg, respectively, yielding I50 of 123.29 and
I90 of 74.70 (Table 1). However, after cryopreservation and revival
of the parasite, this resistance decreased, with ED50 and ED90 of
7.50 and 21.90 mg/kg, respectively (Table 1).

When exposed to further 23 passages (27th passage) of selec-
tion pressure, parasites regained the resistant phenotype and
reached a high level of resistance with I50 and I90 of 129.29 and
68.86, respectively (Table 1). Fig. 1A shows the changing response
of the P. berghei ANKA to PQ in the course of PQ drug pressure.
After the 5th passage under PQ pressure, a dose of 30 mg/kg (>8
times higher the ED90 of the parent strain) suppressed the bulk
of parasitaemia, indeed treated mice had parasitaemia of 0.22%
only, compared to almost 9% of the untreated group. Thereafter,
PQ resistance arose quite rapidly from the 9th passage. Infected
mice treated with 30 mg/kg could yield parasitaemia of 2% at the
9th passage, and at 17th passage, parasitaemia reached 4% after a
higher dose, 100 mg/kg. The continuous PQ pressure to 27th pas-
sage allowed the selection of parasite lines that reached 7.5% (par-
asitaemia almost as high as the control [8.26%]), after treated mice
with 100 mg/kg, a clear indication of the rise in resistance. This
resistant phenotype was stable and these parasite lines were
scored as PQ-resistant strains (Table 1 and Fig. 1A).

Results pertaining to selection of LM resistance are summarised
in Table 2. ED50 and ED90 of the parent line were 1.67 and 3.93 mg/
kg, respectively. The continuous LM pressure after 48 consecutive
passages led to the selection of a parasite line yielding ED50 of
140.15 and ED90 of 249.75 corresponding to an I50 and I90 of
83.92 and 63.55, respectively. Such values of the I50/90 indicate that
the parasite developed resistance to the drug.
Table 1
Selection of piperaquine resistance in Plasmodium berghei GFP ANKA strain using
serial technique. Data are presented as effective doses that reduce parasitaemia by
50% and 90% (ED50, ED90) and as 50% and 90% indexes of resistance (I50 and I90,
defined as the ratio of the ED50 or ED90 of the resistant line to that of the parent
strain).

Passage no. ED50 (mg/kg) (I50) ED90 (mg/kg) (I90)

Parent 1.30 1 3.52 1
4th 160.28 123.29 262.59 74.70
(6 months cryopreservation)

(5th passage)
7.50 5.77 21.90 6.22

9th 21.40 16.46 64.50 18.32
17th 122.00 93.85 194.00 55.11
27th 168.08 129.29 242.38 68.86

Drug free passages
5th 185.27 142.52 283.71 80.60
10th 191.46 147.28 294.98 83.80
27th passage line after

4 months cryopreservation
110.03 84.64 223.15 63.39
Like with PQ, the first 5 passages were not associated with in-
crease in LM resistance. At the 5th passage, a dose 6 mg/kg allowed
a parasitaemia of 0.08% only (Fig. 1B) However, at the 20th pas-
sage, at the same dose (6 mg/kg), parasite grew and reached 2%
parasitaemia, a clear indication of emergence of resistance. This
resistance increased further with the number of passages. At
28th, a dose of 10 mg/kg did not prevent parasitaemia to reach
4.1%, and at 36th, a higher parasitaemia of 6.5% was reached at a
dose of 40 mg/kg. The higher level of resistance was observed at
Table 2
Selection of lumefantrine resistance in Plasmodium berghei GFP-Luciferase ANKA
strain using serial technique. Data are presented as effective doses that reduce
parasitaemia by 50% and 90% (ED50, ED90) and as 50% and 90% indexes of resistance
(I50 and I90, defined as the ratio of the ED50 or ED90 of the resistant line to that of the
parent strain).

Passage no. ED50 (mg/kg) (I50) ED90 (mg/kg) (I90)

Parent 1.67 1 3.93 1
4th 1.34 0.80 3.49 0.89
12th 1.58 0.95 3.25 0.83
20th 2.96 1.77 5.25 1.34
28th 9.76 5.84 25.50 6.49
36th 42.50 25.33 69.70 17.74
48th 140.15 83.92 249.75 63.55

Drug free passages
10th 133.17 79.74 256.21 65.19
48th line after 2 months

cryopreservation
116.34 69.66 204.58 52.06
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48th passage, with mice harboring parasitaemia of 8% when trea-
ted with 80 mg/kg. During all 48 passages, parasitaemias in the un-
treated controls remained steady, ranging between 9% and 12%, a
confirmation of dramatic rise in LM resistance (Fig. 1B). At this
point (48th passage), a stable LM-resistant strain was selected
(Fig. 1B, Table 2).

These high values of PQ and LM resistance indices led us to test
the stability of the resistant phenotypes. We maintained these two
resistant strains in absence of the drug pressure for 10 passages (at
least 2 months) and then assessed in vivo activity of the drugs. The
resulting PQ I50 and I90 remained high, with values of 147.28 and
83.80, respectively, and those of the LM were 79.74 for I50 and
65.19 for I90, a clear indication of the stability of the resistant phe-
notype. To further check this stability, we cryo-preserved these
parasite lines for 2 and 4 months for LM and PQ, respectively. Upon
revival, the analysis of the drug activity showed PQ I50 and I90 in-
dexes of 84.64 and 63.39, respectively, and those for LM as 69.66
and 52.06, respectively. These values are slightly lower than those
obtained before cryopreservation. However, they remained high,
50–80 times higher than those of the parent lines, a further indica-
tion of the stability of the phenotype (Tables 1 and 2).

We also tested the extent to which resistance to PQ and LM
affect the activity of other antimalarial drugs, a phenomenon
known as cross-resistance, and the results are summarized in Ta-
bles 3 and 4. Against the PQ-resistant line, the activity of AQ, CQ
and DHA decreased significantly by a factor of 3–7 (p < 0.01 at
least) (Table 3), an indication of the existence of slight cross-resis-
tance of PQ with AQ, CQ and DHA. Surprisingly, the highest level of
cross-resistance was recorded with LM, with its activity decreasing
97-fold against this PQ-resistant parasite line (p < 0.0001).
Table 3
Response of piperaquine resistant Plasmodium berghei GFP ANKA line to amodiaquine
(AQ), chloroquine (CQ), lumefantrine (LM) and dihydroartemisinin (DHA). Results are
presented as effective doses that reduce parasitaemia by 90% (ED90) and as 90%
indexes of resistance (I90, defined as the ratio of the ED90 of the resistant line to that of
the sensitive, parent strain).

Antimalarial drug ED90
* (mg/kg) Index of resistance (I90)

Parent strain Resistant line

AQ 3.72 13.48§ 3.62
LM 2.52 245.06– 97.25
CQ 3.57 26.24� 7.35
DHA 4.08 12.06§ 2.96

* Differences between parent and resistant lines were significant according to
Student’s t-test.
� p < 0.01.
§ p < 0.001.
– p < 0.0001.

Table 4
Response of lumefantrine resistant Plasmodium berghei GFP-Luciferase ANKA line to
amodiaquine (AQ), piperaquine (PQ), chloroquine (CQ) and dihydroartemisinin
(DHA). Results are presented as effective doses that reduce parasitaemia by 90%
(ED90) and as 90% indexes of resistance (I90, defined as the ratio of the ED90 of the
resistant line to that of the sensitive, parent strain).

Antimalarial drug ED90
*(mg/kg) Index of resistance (I90)

Parent strain Resistant line

AQ 4.29 4.53� 1.06
PQ 3.70 3.37� 0.91
CQ 4.47 7.22– 1.62
DHA 6.69 35.86� 5.36

* Differences between parent and resistant lines were analyzed by Student’s t-test.
� p > 0.05 (insignificant).
� Significant at p < 0.05.
– Significant at p < 0.0001.
Overall, the LM-resistant parasite line retained relative suscep-
tibility to the 4-aminoquinolines, AQ and PQ (Table 4). Indeed, AQ
activity did not change (I90 of 1.06), and more interestingly, this
parasite line remained susceptible to the bisquinoline PQ (I90 of
0.91). However, a significant decrease in activity was observed
with the aminoquinoline CQ, with an I90 of 1.62 (p < 0.0001), and
the endoperoxide DHA, with an I90 of 5.36 (p < 0.05). Thus the
selection of LM resistance is associated with a decrease in CQ
and DHA activity and the retention of AQ and PQ susceptibility.
4. Discussion

Our study shows that PQ and LM resistance in P. berghei ANKA
can be selected within 18 months of continuous drug pressure. To
the best of our knowledge, this is the first report of the selection of
stable PQ- and LM-resistant strains in murine malaria following
drug pressure. A PQ-resistant P. berghei strain had been selected
in 5 months of selection pressure, but when the drug was removed,
the strain reversed to sensitive phenotype (Li, 1985; Li et al., 1985),
and a stable phenotype was observed only after mouse–mosquito–
mouse passages (Li et al., 1985).

Two approaches by other laboratories have been used to select
resistant murine malaria parasites: the 2% relapse technique (2%
RT) in which a single and high drug dose is administered at the
time of each passage (Peters and Robinson, 1999) and the serial
technique (ST), in which drug dose is gradually increased after each
passage (Peters, 1999; Peters and Robinson, 1999).

Using 2% RT, a number of phenotypes stably resistant to
pyronaridine, amodiaquine, atovaquone and tafenoquine have been
selected in P. berghei (Peters and Robinson, 1992, 1999, 2000; Peters
et al., 2003) and tafenoquine in Plasmodium yoelii and Plasmodium
chabaudi (Peters et al., 2003). However, using this method,
stable resistance to sulfadoxine/pyrimethamine in P. berghei and
artemisinin in P. yoelii could not be selected (Peters, 1999; Peters
and Robinson, 1999). On the other hand, the ST approach has allowed
the establishment of strains stably resistant to various antimalarials,
including atovaquone in P. berghei (Syafruddin et al., 1999) and mef-
loquine in P. chabaudi, (Cravo et al., 2003), artemisinin in P. chabaudi
(Afonso et al., 2006), halofantrine in P. yoelii (Singh and Puri, 2000)
and arteether in P. vinckei (Puri and Chandra, 2006). Though failure
to select stable resistance to piperaquine, chloroquine and primaqu-
ine in P. berghei has been reported (Li, 1985; Peters, 1999; Peters et al.,
2003), overall, the ST approach has proven to be more efficient to se-
lect for stably resistant strains than 2% RT (Afonso et al., 2006; Cravo
et al., 2003; Puri and Chandra, 2006). Using this approach, we have,
forthefirsttime,successfullyestablishedstablePQ-andLM-resistant
P. berghei strains within 12–18 months of drug pressure.

Interestingly, after cryopreservation of both PQ and LM-resis-
tant strains, a decrease in ED50/90 was recorded upon revival of
the strains. This is common, it indicates that some of the mecha-
nisms of resistance are the result of epigenetic changes such as
gene amplification, protein over expression and protein modifica-
tions. However, if resistance is well established, the degree of
ED50/90 decrease is small, the strains remained resistant to the
drugs, as our data show.

Evaluation of cross-resistance patterns revealed that PQ and AQ
retain potency against the LM resistant parasite line. LM is an
arylaminoalcohol closely related to mefloquine (MQ), halofantrine
and pyronaridine (Schlitzer, 2008). PQ, AQ and CQ are 4-amino-
quinoline derivatives, and are likely to share a similar mechanism
of action (Raynes, 1999). Resistance to CQ and AQ in P. falciparum is
reported to be inversely correlated with resistance to arylaminoal-
cohols (Duraisingh and Cowman, 2005), and the selection of the
resistance to arylamino-alcohol MQ results in an increase in CQ
sensitivity (Cowman et al., 1994; Peel et al., 1993). In our experi-



200 D.M. Kiboi et al. / Experimental Parasitology 122 (2009) 196–202
ments, LM resistance was not associated with a decrease in PQ effi-
cacy. Similarly, the efficacy of the 4-aminoquinolines AQ and CQ
did not change or only slightly decreased against the LM-resistant
strain. Assuming that the mechanism of LM resistance is similar in
P. falciparum and P. berghei, these results would suggest a high effi-
cacy of PQ against LM-resistant strains in P. falciparum.

It is very interesting to note the activity of LM against PQ-resis-
tant line decreased by 97-fold, a rate which is even higher than its
activity against the LM-resistant parasite line selected after 2 years
of LM pressure (I90 of 64). Thus, the selection of PQ resistance is
associated with a higher level of LM resistance, while, as discussed
earlier, the selection of LM resistance is associated with PQ suscep-
tibility. This demonstrates that two different LM-resistance pheno-
types exist. The first phenotype is associated with PQ resistance,
while the second is associated with PQ susceptibility. Assuming
that the same pattern prevails in P. falciparum, the use of either
drug could be associated with resistance or susceptibility to the
other. For instance, currently, Coartem� is being used to treat ma-
laria, thus the selection of resistance to LM could be associated
with susceptibility to PQ (component of Artekin�). While if Arte-
kin� is first used, resistance to this drug may render Coartem�

ineffective.
Our data show significant 3- and 5-fold decreases in dihyd-

roartemisinin activity against PQ- and LM-resistant strains,
respectively, an indication of the existence of a slight cross-resis-
tance between LM and artemisinin, and PQ and artemisinin, in P.
berghei. In P. falciparum, resistance to the arylamino-alcohol mef-
loquine, as the result of the increase copy number of pfmdr1, is
associated with a decrease in activity of artemisinin derivatives
(Nelson et al., 2005; Pickard et al., 2003; Price et al., 1999), thus
a similar phenomenon may prevail in P. berghei with the arylami-
no-alcohol LM. We report cross-resistance between PQ and arte-
misinin in P. berghei, in agreement with previous work (Li,
1985; Li et al., 1985).

Thus, if the mechanism of LM and PQ resistance is similar in
P. berghei and P. falciparum, the selection of LM and PQ resistance
would be associated with a reduced artemisinin derivative efficacy,
compromising the potential of artemisinin-based combinations.
Consequently, there is an urgent need to clarify the mechanism
of LM and PQ resistance and establish the extent of cross-resis-
tance between these important antimalarials. The existence of
cross-resistances to chemically and mechanistically unrelated
drugs suggests the likely involvement of changes in drug accumu-
lation, i.e. a ‘multi-drug resistance’ phenotype.

The LM and PQ resistant parasite lines have been selected so as
to study the mechanism of drug resistance in P. berghei and use this
information as platform to explore the resistance mechanism in P.
falciparum. In the latter species, reports indicate that the use of
LM + ATM (Coartem�) selects for 2 haplotypes at 86Y-184Y-
1246Y and 86Y-184F-1246D of pfmdr1, a gene associated with
changes in susceptibility to chloroquine (Dokomajilar et al.,
2006; Humphreys et al., 2007; Sisowath et al., 2007, 2005). The
copy number of pfmdr1 has also been reported to increase with
the use of LM in field isolates in Thailand (Price et al., 2006), and
a decrease in copy number was found to heighten in vitro lumefan-
trine susceptibility in laboratory selected parasites (Duraisingh and
Cowman, 2005; Sidhu et al., 2006). These observations indicate
that pfmdr1 will likely contribute to LM resistance, but the full def-
inition of the mechanism of resistance remains to be elucidated
since overall, Coartem� retains sensitivity against CQ-resistant iso-
lates. In P. berghei and P. chabaudi, amplification of the pfmdr1
orthologue is associated with mefloquine resistance (Carlton
et al., 2001) as in P. falciparum (Cowman et al., 1994; Peel, 2001;
Sidhu et al., 2005). Thus, pfmdr1 could also be involved in LM resis-
tance in P. berghei.
PQ is a bis-chloroquine derivative (Davis et al., 2005a; Raynes,
1999). Thus one could expect that PQ and CQ would share the same
mode of action and perhaps a similar mechanism of resistance.
However, PQ remains active against CQ-resistant isolates (Basco
and Ringwald, 2003), clearly indicating that though PQ is closely
related to CQ, these two drugs have different mechanisms of resis-
tance. To date, no gene or candidate gene has been associated with
PQ resistance in P. falciparum. Thus, further analysis of this PQ
resistant P. berghei line could provide insight into the mechanism
of PQ resistance.

However, we are aware that mechanism of resistance in P. falci-
parum and murine Plasmodium species may be different. For in-
stance, the mechanisms of resistance to CQ are different in
P. falciparum and in murine malaria and there is still a debate
whether those of artemisinin derivatives will be similar (Afonso
et al., 2006; Carlton et al., 2001; Hunt et al., 2007, 2004a,b). How-
ever, for drugs such as mefloquine, antifolates, and atovaquone,
similar mechanisms of resistance have been reported (Carlton
et al., 2001). Thus, the use of murine malaria could provide critical
information on the mechanisms of resistance to PQ and LM.

In summary, we have selected LM and PQ resistant lines of
P. berghei. The stability of this phenotype indicates that mecha-
nisms that underlie it are coded into the cell genome. Amplification
of pfmdr1 has been associated with resistance to mefloquine, an
amino-alcohol (Carlton et al., 2001). We hypothesise that the same
could prevail in LM, which is also an amino-alcohol. Studies are
underway to explore the mechanisms of resistance to LM and PQ.
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