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ABSTRACT 
 This Research was conducted in the Ikanga area, which occurs at the intersection of longitude 

38o33’50’’E and latitude 1.7o25’45’’ S in Kitui County, south-eastern Kenya. The Area lies within the 

Neoproterozoic Mozambique Belt in which the iron formation deposit, which is the main focus of 

this study occurs. The deposit is, approximately 250km away from the city of Nairobi. This study 

was conducted purposely to assess the iron formation deposit in the Ikanga area and find out whether 

it has some economic value or not. The area is a gently low undulating semi-arid land with acacia 

tree family and dry drainage system. The rock types of the area are Neoproterozoic in age and 

include granitoid gneisses which are dominant. On the local scale, granitoid, feldspathic gneisses, 

kunkar limestone, migmatite, lateritic-silica-baked-ferrous-canga and marble do occur. Alluvial 

sandy soil deposits of Pleistocene and Recent Age, which include red and black soils, form the local 

geology of the study area. In pursuance of this research, the following methods were applied: 1). 

Remote Sensing; 2). Ground Magnetic Survey; 3). Geochemical Analysis; 4). Mineralogical and 

Petrographical Analyses; and 5). Data Analysis using Software Applications. Application of these 

methods showed varied results. Remote sensing gave a broad pictorial view of the study area and its 

surroundings and identified where the iron formation deposit is concentrated for favorable sampling 

point sections prior to the field work.  The Landsat Band etm+3:1 ratio for iron oxide displayed the 

dispersion of the iron formation in the study area. The ground magnetic method was able to 

determine the magnetic fields of the area.  A proton precision magnetometer was employed in this 

geophysical mapping to collect total magnetic field in the area. Analysis of the total magnetic intensity 

(TMI) of the area and associated magnetic source results mark the locations and orientations of 

southwest-northeast trending linear structures at depth caused by shearing and subsequent mineral 

alterations. The areas occupied by magnetic highs to the east are interpreted to coincide with locations of 

iron formations and require ground follow-up and truthing. Geochemical data analyses confirmed 

predominantly oxide facies mineralization with Fe2O3 as the main iron oxide. The highest non-iron oxide 

amounts in the domain include TiO2 (≤9.72 wt% in the soil), MnO (≤ 0.2 wt% in haematite, gneiss, and 

soil), CaO (≤ 54.7 wt% in limestone), Al2O3 (≤ 21.8 wt% in soil), Na2O (≤ 4.31 wt% in gneiss), K2O (≤ 

3.6 wt % in soil) and SiO2 (≤ 83.63 wt% in pegmatites). The Fe2O3 wt% in the hematite mineralized 

samples ranges from 72.4% to 86.3% Fe2O3 wt% with an average of 76.97 Fe2O3 wt%. In gneisses the 

Fe2O3  wt% ranges from 3.38 to 16.4 wt%, with an average of 8.0 wt%, while in the soil the Fe2O3 wt% 

ranges from 3.9 to 79.6 wt%, with an average of 22.65 wt%. The geochemical data indicate that the 

Ikanga deposit is very likely to have been derived from a Precambrian Banded Iron Formation (BIF) 

precursor by the weathering processes.  
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CHAPTER ONE: INTRODUCTION 
 

This research project was designed to assess the iron formation deposit in the Ikanga area, 

southeastern Kenya and to ascertain whether it has some economic value or not. The study 

area is low lying, with sparse vegetative cover and gently undulating soil profiles. The area 

has lateritic outcrops which form ferricrete capping in places consisting of composite units of 

gritty sandy materials. Well defined rock outcrops are not common. What are common in the 

study area are recent alluvial sedimentary deposits.  

1.1 Introduction and General Information 
 

Ths study focuses on a thinly scattered iron formation deposit in the regolith in the Ikanga 

area rather than the massive banded iron formation that are hosted in well defined lithologies 

in large concentrations. There is limited published data on the Ikanga type of regolithic iron 

deposit. Regolithic iron deposits in this sense actually represent low value, but readily 

accessible sources of iron. Until about some decades ago, such iron mineralization was 

considered uneconomic owing to the low iron content which was not sufficient to attract 

investors. With the increasing availability of effective and relatively less expensive 

metallurgical processes for the treatment of lateritic ores (Kennedy, 1989), this set of low 

grade deposits has become an economic source of iron and associated minerals, and is 

currently the focus of numerous exploration programmes in Australia, Africa, South Africa 

and India (Butt, 1988; Bowell et al., 1991; Davy and El-Ansary,  1989).   

 

The Ikanga iron deposits were investigated using a combination of techniques. These 

included geological field mapping followed by petrographic analysis of rock samples. The 

ground magnetic geophysical mapping technique was employed to study this deposit. 

Magnetic data were acquired along fifteen profiles at the end of every twenty meter interval 

and the data obtained were analyzed and studied which indicated the various depths of the 

iron formation deposit in the study area, ranging from zero meters on the surface and to 

below meters beneath the surface.  This mapping was conducted by the use of the proton 

magnetometer, also known as the proton precession magnetometer (PPM), which uses the 

principle of Earth's field nuclear magnetic resonance (EFNMR) to measure very small 

variations in the Earth's magnetic field, allowing ferrous objects on land and at sea to be 
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detected (Desa et al., 2007). Geochemical data were acquired and also analyzed to 

characterize the Fe composition of the Ikanga iron deposit and associated minerals.  

 

This research project is presented in this dissertation in five chapters. Chapter One gives the 

introduction to this project, while Chapter Two presents the methodology and materials used. 

Chapter Three presents the information acquired during the field mapping  and associated 

petrographic analysis phases. This chapter then discusses the geologic setting and mode of 

occurrence  of the Ikanga iron deposit. Chapter Four presents the results of the ground 

magnetic survey of the Ikanga area and also the results of the geochemical analysis of 

samples from the project area. Chapter Five presents the discussion, conclusions and 

recommendations arising from this research project. 

1.2 Problem Statement 
The growth in global population and the increasing demands of man to construct shelters, 

build industries, and infrastructure in general, have made the use of iron ore products very 

much important. Development of communities and nations worldwide therefore requires the 

use of materials that are derived from iron ore productions. It is predicated upon this 

background that this research project is designed to assess and ascertain the Ikanga iron 

deposit to ascertain whether it has some economic values and whether this deposit can be 

utilized for the development of the Ikanga’s Community and the Republic of Kenya at large. 

This project also seeks to provide information on the geological, geochemical, and 

geophysical information and data on the Ikanga iron deposit.   

 

1.3 The Study Area 
The study area lies in a geographical region centered on longitude 38033’50’’E and latitude 

1.7025’45’’ S in Kitui County, south-eastern Kenya (Figure 1.1).  A detailed description of the 

locality of the study area is further presented in a topographical map of Ikanga (Figure 1.2). 

The area is defined by its post Archaean, metamorphic rocks of north-south trending 

Mozambique mobile Belt of Neoproterozoic age consisting predominantly of granitoid 

gneisses and quartzo-feldspathic gneisses (Warden and Horkel (1984). The area also contains 

sedimentary deposits of Quaternary age. Walsh (1959) argued that the rocks in the study area 

are all of sedimentary in origin. Hornblende–biotite gneisses in the area are thought to 

represent a difference of composition in the original sediments, perhaps an increment of 
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chlorite, as compared with those sediments which gave rise to the hornblende gneisses, rather 

than a difference in metamorphic grade. 

 
Figure 1.1 Showing the Ikanga study area outlined in red (modified after Rop (2011)). 

1.3.1 Location and description of the study area 

 The study area can be defined by its four corner rectangular points which are presented in the 

UTM coordinates as: (391000E, 9817000N); (391000E, 9818000N): (394000E, 9817000N) 

and (394000, 9818000N) on the topographical map of Ikanga. The study area is 1km wide 

north-south and 3km long east-west and lies just to the west of the main road leading to 

Ikutha from Kitui Town via Ikanga, between Makaleh and Dakadede towns. It is 

approximately six kilometers (6km) to the north-north-west (NNW) of Ikanga (Figure 1.2). 

The north-south trending Nzeeu River, which is one of the main Rivers in the Ikanga area, 

crosscuts the study area into two parts (Figure 1.2). To the southwest of the study area  also 

lies a floodplain. This floodplain comprises of alluvial sedimentary deposits, which have been 

transported by the flooding of the Nzeeu River during rainy seasons. Flooding serves as the 
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mechanisms through which heterogeneous surface soil materials are deposited in the study 

area. 

In much of the study area the surface soils are reddish brown, and in some portions, the 

vegetation cover has been removed by overgrazing and poor animal husbandry. The fertile 

portion of the study area is along the western side of the Nzeeu River bank on which all 

agricultural activities are carried out.  Kunkar limestones are widely developed in the area. 

They are usually buff or pink in color due to iron staining, and often include angular 

fragments of quartz and feldspars. These limestones seldom exceed a few meters in thickness.  

The area is situated in the Neoproterozoic Mozambique Belt in which complex geological 

features occur in the Neoproterozoic rocks (Warden and Horkel (1984)). The metamorphic 

grade of the Neoproterozoic rocks in the study area shows characteristics of the almandine-

diopside-hornblende subfacies of the amphibolite facies (Turner, 1948, pp.87-88). 

Differentiated alluvial deposits form part of the regolith. These deposits are the dominant 

sedimentary sources for much of the clastic sequences deposited during the Neogene (Feibel, 

2011). They include buff-colored arkosic, channelized fluvial pebbly minor conglomeratic 

grits and exhibit a wide scatter of palaeocurrent directions to the west, north and east 

suggesting a generally northerly directed flow (Morley et al., 1992).  

 
Figure 1.2 Topographical Map of Ikanga showing the location of the Study Area. Source: 

Directorate of Overseas Surveys (D.O.S) 423 (Series Y731), Edition I-D.O.S., Published by 

the Directorate of Oversea Surveys for the Kenya Government, Sheet 164/1 (1965).  
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1.4  Climate 
The climatic conditions in the study area are varied. Annual rainfall patterns show a 

maximum in March-April-May and a lesser peak period in November-December. Like some 

parts of Kenya, the study area is a semi-arid region with daily temperature variation occurring 

between 24 and 38 degree Celsius.  The rainfall ranges approximately between 120mm and 

300mm per annum. At times the seasonal variations occur producing more and less cold and 

warming temperatures starting at the beginning, and also in the middle up to the end of the 

year. The dry season is the longest and has a negative effect on the plants and animals. One of 

the effects of less rain fall is that the soils are less fertile in natural nutrients and this causes 

the destruction of plants and animals. The long term dry season also creates dry river beds 

and channels. During this period, waters seep below the water table and leave behind dry 

river channels with no water. The western parts of the study area where there are low 

elevations receive more runoff during the rainy season and finally develop flourishing 

vegetation.  The rains usually occur under the influence of the southeastern and northeastern 

Monsoons, which originates over the India Ocean and are relatively cool and moist and at 

times bring torrential rain. Further, the distribution of rains in the area is also controlled by 

the land masses and topography (Olang, 1979).  

1.5 Vegetation 
Vegetation in the study area mainly consists of scattered acacia bushes and a cover of 

herbaceous plants. The density of the acacia bushes increases in the peneplains. This pattern 

is repeated until it becomes invariant. The vegetation is therefore geologically controlled 

(Joubert, 1966). On the western side of the study area where there is a flood plain, the 

vegetations are classified as shrubs. Sparse bushes occur in parts of the area with thin soil 

cover and poor nutrients, especially in the highland areas to the east. 

1.6  Land Use 
The people in the study area can utilize the land in many applications depending on the needs 

of their livelihood. Generally, the land is mostly used for cattle grazing and agriculture 

activities.  The land is also used to provide safe drinking water from hand dug wells. 

Agricultural activities are mostly concentrated in the lowland areas which comprise of 

nutrient alluvial deposits.  These agricultural activities include: mellow farming; maize 

farming and mallet farming. Local bricks are also produced from the soils for construction 

purposes.  
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Due to the aridity conditions of the soils, only few plants are grown on the land  such as; 

corns, melons, papaya, millet, carrots, hibiscus and creeping seed producing plants which 

include beans, etc.  The most common food producing garden plants are maize. Typical farms 

(see Figure 1.3) are located in the low land areas within the floodplain of the north-south 

trending Nzeeu River.  Oil producing plants like palms, cocoanuts, breadfruits,  etc are not 

grown.   

 
Figure 1.3 Field photograph showing a partial view of one of the maize farms visited in the 

project area at the time.  

1.7 Physiography and Drainage 

The physiographical overview of the study area is divided into two natural regions in which 

the types of relief and drainage patterns are varied. The floodplain to the west is one part of 

this physiography and is the low land areas. The second part of this physiography is the 

highland portion on the east which is higher in elevation than the floodplain areas. The north-

south trending Nzeeu River in the study area is here referred as the major River on the 

erosion surface.  However, during this study the Nzeeu River was dried in its beds. Streams 

in the study area are seasonal, not perennial. They can become dried during the dry season 

and flooded during the rainy season. On the surface of the study area gullies are developed in 

the regolith and are the channels for runoff through which sedimentary materials are 

transported to the lowland areas during the raining season. The entire study area is gently 
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undulating ranging from 600m to 1000m high. Tors of low angle limbs formed low level 

synclinal folding on the surface in which the soil erosions crosscut the tors crest orientations.  

1.8  Literature Review 
Iron formations have been classified on the basis of mineralogical composition (James, 

1954). The tectonic setting of iron formation was also proposed by (Gross, 1965) and 

depositional environment by Kimberley (1978). The large variety of available classification 

schemes undoubtedly reflects our limited understanding of iron formation.  According to 

James (1954), the original facies concept of iron formation included oxide-, silicate- and 

carbonate and that the facies iron formation thought to correspond to different water depths. 

A fourth so-called sulphide-facies, containing pyrite [FeS2] and/or pyrrhotite [Fe1-x S], was 

once regarded as being syngenetic in origin (Fripp, 1976) but has subsequently been 

suggested to be epigenetic (Phillips et al., 1984; Groves et al., 1987) with a replacement 

rather than primary sedimentary origin for sulphide mineralization. 

  

Gross (1983) infers a tectonic setting of iron formation deposit on the basis of size and 

lithologic associations. He proposed that the Algoma-type iron formations are relatively 

small, and associated with volcanogenic rocks. Iron formation has a primary iron content that 

rarely exceeds 1010 tons (James and Trendall, 1982). Typical lateral extents are less than 10 

km, with thicknesses in the range 10-100 m (Goodwin, 1973; Appel, 1980; Condie, 1981).  

Many workers have favored depositional environments for this type of iron formation to 

include island arc/back arc basins (Veizer, 1983) and intracratonic rift zones (Gross, 1983). 

Beukes (1973) provided a geological overview of Precambrian iron formations of the 

Southern Africa region. Beukes (1983) further discussed the paleoenvironmental setting of 

iron formations in the depositional basin of the Transvaal Supergroup in South Africa. 

Beukes and Klein (1992) provided models for iron formation. 

 

Past field work in the Ikanga area has shown  that pebbles of lava are found up to twenty four 

(24) kilometres (15miles) from the most prominent plateau across a watershed in the area 

west of Kitui Township (Schoemann, 1948, p.6), and that these pebbles are weathered from 

the exposed Precambrian rocks which are associated with the iron formation in Ikanga. 

Where hills are common particularly to the end of the Tertiary surface and on the pediment 

among the hills and sub-Miocene surface, the possibility of iron mineralization in those hills 

is common. These hills can take the form of tors and inselbergs and usually mark outcrops of 
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steeply-dipping strata that may probably serve as catchment for iron mineralization in the -

study area (Walsh, 1959). 

 

It has been reported from preliminary results of magnetic survey in the Nyanza area that 

several trends on the Kanga grid appear to be associated with large, and deformed iron 

formation, a mineralization type that is reported from the greenstone belt elsewhere in Kenya 

as well as in Tanzania (e.g. AngloGold, Ashanti’s Geita and Barricks Golden Ridge Mine). 

Further to the Kwoyo grid, located to the northwest (NW) of Ikanga area, a ground follow-up 

of Au-As-Sb-Cu-Zn soil survey has also discovered a similar anomaly that is generally 

underlain by a large deformed iron formation sequence (Stockport Exploration, Nyanza Sotik 

Project overview, Kenya).These deposits may probably extend to the Research Area since 

they are adjacent and occur in the same Mozambique Belt. The section of the Neoproterozoic 

Mozambique Belt in which Ikanga is located in southeastern Kenya, where this research has 

been conducted is predominantly composed of remobilized and recrystallized Precambrian 

rocks. Among these rocks, some exhibit iron formation inclusions in their fabric and  bedding 

(Warden and Horkel, 1984). More detailed geological accounts of part of the Neoproterozoic 

Mozambique Belt which underlies the study area are well treated by various reports and 

research papers documented by Nyamai (1999), Nyamai et al. (2003; 2000; 1999), Mathu 

(1992), Mathu and Tole (1984), Mathu et al. (1994), Saggerson (1957), Dodson (1953, 1955), 

Baker (1954), Sanders (1954), and Schoeman (1948). It has been documented by these 

authors that southern Kenya is comprised of an overlying Kurase- Kasigai Groups of 

sediments that show facies change eastwards from shallow water shelf lithofacies to deep 

water sediments which can be probably associated with sedimentary iron formations.  

 

According to Dodson (1953),  granitoid gneisses in the Neoproterozoic Mozambique Belt of 

Kenya contain magnetite. Biological mechanisms can potentially account for the precipitation 

of iron out of solution in a variety of environments, ranging from an oxygenic photic zone to 

a locally oxygenated sub-photic zone (Konhauser et al., 2002). Report by Van Straaten 

(1984), Kuhn et al. (1990), and Kuhn (1984) disclosed that during the emplacement of the 

Mozambique Belt, it was accompanied by mineralization fluids in which massive base metal 

sulphide and sedimentary iron formation deposit may have occurred. Iron formation deposits 

in the Mozambique Belt were probably formed from a hydrothermal vent system, but its 

distal position for now can be indicated by a very fine-grained laminated tuffs underlying and 

intercalated with the iron formation (Konhauser et al., 2002). Due to the increasing 
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availability of effective and relatively less expensive metallurgical processes for the treatment 

of lateritic ore deposits, such class of deposits can be treated to extract the needed iron metal 

(Kennedy, 1989). 

 

The lateritic class of ore deposits similar to the Ikanga deposit has become an  important 

source of gold, base metals, and iron formation in other parts of Africa, Australia, South 

Africa and India (Lyoon, 1957; Bowell el al., 1991; Davy and El-Ansary, 1989) and are now 

the focus of detailed exploration work. It is documented by Windley (1984) that early iron 

formations are about the same age on many continents, but reached their peak of 

development in the early Proterozoic basins or geosynclines near the boundary of the 

Archaean. The Mozambique Belt in which the Study Area is located, in Kenya is a 

Neoproterozoic Segment (Schlüter, 1997). The possibility of iron formations occurrence in 

Kenya is sure. The project area is located in the Neoproterozoic Mozambique Belt  terrain 

and which, it is believed, probably contains some iron formations. Current work on the 

geochemical characterization of iron ore deposits of the Mozambique Belt in the Ikutha area, 

in the southern portion of the study area indicates the existence of iron ore bearing rocks 

consisting magnetite and hematite and including apatite and phosphate concentrations which 

are worth further exploration ( Nyamai, 2013). The proximity of this research project area to 

where the current information has emerged of iron ore bearing rocks may very well indicate 

that such geological formations may extend beyond to form other deposits elsewhere and also 

in the research area. 

1.9  The Main Objective of this Research Project 

The main objective of this research project is to assess and ascertain the geologic nature of 

the Ikanga iron deposit and to ascertain whether it has some economic value and can be 

utilized for the development of the Ikanga Community and the Republic of Kenya in general.  

1.10 Specific Objectives of this Research Project 
The specific objectives of this research project are given below. 

Specific Objective One (1): 
 
The first objective is to collect geological, geochemical, and geophysical information and 
data on the Ikanga iron deposit in order to characterize its nature. 
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Specific Objective Two (2): 

The second objective is to establish the geological setting, host rocks, composition, mode of 

occurrence and origin of the Ikanga iron deposit.  

 

 Specific Objective Three (3): 
 
The third objective is to assess and ascertain whether the Ikanga  iron deposit in the study 

area has economic value or not and to make appropriate recommendations.  

 

1.11 The Research Question of this Project 
 

How does the Ikanga  iron deposit occur in the study area, and  what relationship does it have 

with pre-existing iron formations ?. 

1.12  Justification and Significance of the Research Project. 
 

Iron is globally the predominant metal in the constructions and manufacturing industries. The 

ore from which iron is derived is the geological material that can be extracted from beneath 

the surface and exploited for benefit of man. In this research project the Ikanga iron deposit is 

investigated to ascertain and whether it has potential for economic value and whether this 

deposit can, therefore, be utilized, and if so, what approach should be followed in the 

utilization of this resource in future. 
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CHAPTER TWO: METHODOLOGY AND MATERIALS 

 

In order to achieve the objectives of this research project, the following methods, approaches, 

materials, and software were applied in addressing the research question for this project. 

2.1 Remote Sensing Method 
 
 Remote sensing was used in this study to show a broad pictorial view of the study area and 

to identify areas in which the iron deposit is concentrated before the start of the field work. 

The basic concept is to enhance recognition of the areas of concentration in the study area 

and surroundings, for better planning of the field work and for optimal selection of sampling 

sites. 

2.2  Geological Field Mapping, Sampling and Data Collection 
Geological field mapping and sample collection of  rock and iron rich samples in the Ikanga 
area were undertaken along pre-planned and pre-selected  traverses in order to investigate the 
geological setting and mode of occurrence of the Ikanga iron ore deposit. 

2.2.1 Petrographical analysis of rock samples  
 

Petrographical analysis of rock samples in thin section (Griffen and Phillips (2004)) was 

carried out under plane polarized light and under crossed nicols in order to identifty the 

mineralogical composition of the host rocks of the Ikanga iron deposit. The characterization 

of the mineralogic composition facilitated identification of the host rocks in the project area.  

2.3  Ground Magnetic Method 
 

Ground magnetic survey in mineral exploration is a geophysical technique that is applied to 

map subsurface formations. The basic principle is to determine magnetic ore minerals 

including various combinations of induced and remanent magnetization that perturb the earth 

field (Reynolds et al., 1990; Hanna, 1969; Criss and Champion, 1984). Measurements are 

made using fluxgate, proton-precession, overhauser, and optical absorption magnetometers.  
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2.4 Magnetic Surveys and Instrumentation 
 

Magnetic surveys for minerals usually involve the use of a total field magnetometer. The 

magnetometer most commonly used is the proton precession magnetometer whose basic 

principles are briefly outlined below.  

 

 2.4.1 Proton precession magnetometer 

 

The proton precession magnetomer which is designed to measure the total magnetic field of 

the earth. Its sensor comprises a cylindrical bottle filled with a liquid rich in protons 

(hydrogen atoms) (Figure 2.1 (a)). Each of these protons possesses a magnetic moment which 

acts as a small magnet. The magnetic moments align themselves in the direction of the earth’s 

magnetic field, Be (Figure 2.1 (b)). On applying a stronger magnetic field (Bp) through a coil 

wound round the bottle, the protons are realigned in the resultant field (Figure 2.1 (c)). 

However, when Bp is switched off, the magnetic moments return to be aligned once again 

with the earth’s magnetic field, Be.  As this takes place, the magnetic moments precess at a 

characteristic frequency, ω, that is proportional to Be, expressed as 

ω = γpBe,  

where  γp is an an accurately known constant known as the gyromagnetic ratio of the proton 

(Figure 2.1 (d)). The frequency ω is measured by a weak radio signal emitted by the 

precessing protons.  

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Principle of the proton precession magnetometer 
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The proton precession magnetometer measures the total magnetic field of the earth and, 

therefore, the alignment of the instrument is not required.  Consequently, it is admirably 

suited to airborne and submarine measurements.  Its disadvantage is that it measures the 

magnitude of the total ambient field and not its direction. 

 

2.4.2 Data acquisition, processing and interpretation 

 

Data acquisition, processing and interpretation involve the components of ground survey 

followed by data processing and interpretation. These components involve the following 

approaches. 

 

2.4.2.1 Ground surveys 

 

To carry out a ground survey, first, a survey grid is established by staking out a baseline 

parallel to the geological strike and traverse lines normal to the baseline. Measurements are 

taken on reading stations located along the traverse lines. A reference or base point is 

identified in the vicinity of the survey and readings are taken at this point at certain intervals 

during the survey, normally at intervals of 1-2 hours.  It is mandatory that the day’s survey 

must start off and close off with a reading at the base point. The base point is usually located 

in the area where the magnetic field has approximately the value of the undisturbed main 

field of the earth.   

 

The distance between observation points depends on the type and purpose of the survey.  For 

mineral exploration, the distance between the observation points is normally between 5-25 m.  

The observation points should be sufficiently far removed from disturbing objects such as 

railways, steel constructions, etc.  A safe distance is 150 m. The observer should not carry 

with him/her any metallic articles such as penknives, watches, keys, etc. 

 

2.4.2.2 Magnetic data acquistion method 
 
Magnetic data were acquired in the field along fifteen (15) profiles at the end of every 

twenty-meter interval through the use of the proton precession magnetometer. A Brunton 

compass was also used to accurately direct and control the traverse directions perpendicular 
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to the established baseline on the established grid. For accuracy, GPS was used to mark 

magnetic data sampling localities and these positions were then recorded as UTM coordinates 

in a field note book. A total of 500 magnetic data samples were collected on this grid along 

these traverse lines. 

2.4.2.3 Magnetic data correction 
 

The IGRF correction is done by subtracting the average magnetic reading of every station 

from the regional field of the study area (33, 512.7nT). This correction is  made to 

compensate for the anomalies/noises in the study area during at the  time field measurements 

are made and magnetic data is collected. 

 

2.4.2.4 Data processing and interpretation 

 

The magnetic data are usually corrected for diurnal variations using simple interpolation and 

correction programs. The processed data are then subjected to any one or more of available 

automated interpretation software packages such as those involving 2-D or 3-D Euler 

deconvolution algorithms, among others. The Euler deconvolution algorithms make use of 

Euler’s differential equation to invert the magnetic data to obtain the spatial locations of the 

magnetic sources in the earth’s medium. In the 3-D case which was used in this research 

project, the Euler deconvolution program gives as output three parameters: the  x-, y- and z-

locations of the magnetic sources, where the z-location corresponds to  depth-to-magnetic 

source from the sensor. 

2.5  Geochemical Data Acquisition and Processing  
 

Samples collection in the field for geochemical analysis was done by using a rock hammer 

for outcrops.  The samples obtained weighing at least one kilogramme each were parceled at 

and sealed up and numbered.  Similarly, soil samples were collected, sealed and numbered in 

the same manner. The both sets of samples, with standards and duplicate samples were 

transported to the laboratories of the Mines and Geological Department in the Ministry of 

Mining in Kenya for geochemical analyses using the atomic absorption spectrometric 

analytical method.  Every sample point in the field was located using GPS and the UTM 

coordinates in the field notebook. 
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2.5.1 Atomic absorption spectrometric analysis 
 

The technique makes use of absorption spectrometry to assess the concentration of an analyte 

in a sample (Walsh, 1955; L’Vov, 2005). It requires standards with known analyte content to 

establish the relation between the measured absorbance and the analyte concentration. To get 

the weight loss on ignition (LOI), samples were weighed first then heated under high 

temperature at 1000 Co (degrees Celsius) in the furnace, cooled and then weighed again 

before further processing. LOI was then calculated. Results of the sample analyses were 

displayed electronically and the readings recorded. 

 

2.6  Materials, Equipment, Data Sets and Software Used 
 
The materials and equipment used in this study includes proton precession magnetometer, 

GPS, compass, geological hammer, camera, maps, satellite imageries, field note books, safety 

boots, sample bags, permanent markers, pencils and pens, and rock sacks.  
 

2.6.1 Data sets used 
 
 Two sets of data (Primary data, and Secondary data) were used to conduct this study. 

 

2.6.2 Primary data 
 
The primary data of this study were acquired in the field and in the geochemical laboratory 

through mapping, data collection, and geochemical analyses of samples. The primary data 

include the magnetic data and geochemical data. 

 

2.6.3 Secondary data 
 
The secondary data include geological and topographical maps, and researched papers by 

other researchers on the study area and its surroundings. 

 

2.6.4 Software used 
 
 3D Euler deconvolution, and Arc-Gis 10.0 were applied in this research. The 3D Euler 

deconvolution was used to analyze the magnetic data. The basic concept of the 3D Euler is to 

estimate the source location, depth and SI (structural index) simultaneously assuming 
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constant background (Hsu, 2002; Geroovska et al., 2005). This approach is fully automatic 

and yields reliable estimates if the background field can be adequately represented as a 

constant.  Estimation is made for both the source location and SI using Euler deconvolution 

assuming nonlinear background. Arc-Gis 10.0 was also applied to create maps and digitize 

preexisting ones. The magnetic data acquired in this study are presented in the Appendix. 
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CHAPTER THREE: GEOLOGICAL SETTING OF THE 

IKANGA IRON DEPOSIT 

 

 The regional and local geological settings of this study area are discussed in this Chapter in 

which an attempt is also made to establish a correlation between the geology of the study area 

and the general geology of East Africa in summary.  

 

3.1 Regional Geological Setting 
 
The Neoproterozoic Mozambique Belt in Kenya, Tanzania and Uganda, represents by far the 

longest geological segment of crustal mobility of the African Continent (Warden and Horkel, 

1984; Schlüter, 1997). During the orogenesis of this belt, rocks of the African continent that 

were in the radii of this orogenesis were affected by this process and accompanied its 

evolutional trend. The result of this tectonic evolutional trend, led to the distribution of 

associated rock types in Mozambique, Tanzania, Kenya, Uganda and Ethiopia which are the 

most affected countries in the Belt. The lithologies and tectonic features of this belt varied, 

and comprised of metamorphic, sedimentary, and volcanic suite, including rifting, 

sedimentary basins, hills/mountains, etc. The extension of the Mozambique Belt is reflected 

in these tectonic, lithologic and structural features which formed the largest portions in East 

Africa.  

 

The study area is located in a fractional segment of this regional Belt. The geological setting 

of the study area reflects the tectonic processes through which the Mozambique Belt has been 

subjected to since its emplacement. Some of the areas, for example, have no outcrops. Some 

contained peneplains, and other areas are rifted, lifted and contain well exposed rock 

outcrops, domes, valleys and basins. These conditions are fairly regional and variable. Hence, 

the regional distribution of the Neoproterozoic Mozambique Belt rocks and tectonic features 

occur in common in Kenya, Tanzania and Uganda (see Figure 3.1 below).  The detailed 

theories of the geological evolution of the Neoproterozoic Mozambique Belt in Kenya, 

Tanzania and Uganda in East Africa are outlined in Schlüter (1997). 

17 
 



 
 

 
Figure 3.2 Distribution of rocks associated with the Mozambique Belt in Kenya, N.E. 
Uganda, and central and northern Tanzania with the study area showing in red dot. (Modified 
after Shackleton, 1986). 

Explanation: 1=Phanerozoic cover; 2=Bukoban system and related formations; 3=Areas 
where marbles outcrop; 4=Predominantly granulite; 5=Ultramafics, probably ophiolites; 
6=Mafic gneisses and schists, probably ophiolites; 7=Late Precambrian granites; 8= 
Tectonized granites; 9=Undifferentiated rocks of the Mozambique Belt; 10=Mylonitized 
Archaean rocks; and 11=Tanzanian (East African) Archaean Craton.  
 
3.1.1 Bedrock geology 

 
Bedrock in the study area consists of predominantly undifferentiated Neoproterozoic rocks 

consisting of gneissic complexes which are overlain by compacted Tertiary to Recent alluvial 

deposits. These rocks are considered as the dominant sources of much of the lithoclastic 

sedimentary sequences that are deposited in the study area. The bed rock geology of the 

South Kitui County where the study area is located was described in detail by Walsh (1959) 

and Schoemann (1948). The general strike of the rocks in the study area, is generally north- 

south and is in good accord with many of the other Neoproterozoic Mozambique Belt rocks 

so far mapped in Kenya (Walsh, 1959).  
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3.1.2 Pliocene-Recent sediments 

Sediments in the area include alluvial deposits and volcanic ash. These deposits overlie the 

bed rock. They consist of poorly sorted sandy soils, coarser boulder scattered volcano- 

clastics and conglomerates on large scale erosional surfaces. These beds have been 

interpreted in other parts of Kenya as proximal alluvial fan deposits by Morley et al. (1992). 

Along the course of the north-south trending Nzeeu River occur alluvial deposits consisting 

mostly of fine sand with the occasional thin layers of grey silts which indicate seasonal 

flooding. The alluvial composition on the dried Nzeeu River beds consist of poorly sorted 

gravel-like pebbles derived from the rocks in the area and further afield.  

3.1.3 Superficial deposits 

Surface expression in the study area indicates red-brown soils, usually consisting of sandy 

deposits which are the weathering products of underlying bedrock. The dispersion of this 

surface pesolithic laterite is common. In areas of poor drainage, typical black cotton soils are 

developed which can be hard and fissured when dry and have the tenacity of clay when wet. 

Discontinuous layer of nodules of secondary kunkar limestones a few centimeters in diameter 

are localized below the surface. These secondary limestones are buff or pink in color due to 

iron staining and often include minor angular fragments of quartz and feldspars. The black 

soil depositional areas are always open grassland which have natural nutrients for vegetation 

growth. 

 
3.2 Remote Sensing Results from the Study Area 
 
The geological overall view of the study area was known prior to the start of the field work 

through the remote sensing application. Figure 3.2 below is a Landsat ETM+Band 3:1 ratio 

for iron oxide and displays the dispersion of iron oxides in the study area. This method also 

identified portions of the study area in which the concentrations of  iron formation deposits  

are low and high, and shows parts of the area with bushes and sandy soils, low and high 

reliefs,  drainage patterns, and, finally, the north-south trending Nzeeu River that cuts the 

study area into two parts as shown in Figure 3.2 below.  
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Figure 3.2 Satellite imagery of the study area showing iron oxides in light gray and dark color 
for vegetation (Source: Howell (2013), http/twitter.com/USGS Landsat images downloaded 
for free at: http/eros.USGS.gov/image gallery/or http//landsatlook.usgs.gov.).  

 

3.3 Local Geological Setting  

Geological samples and primary data representative of the  geology of the study area shown 

in Figures 3.3 were collected. Figure 3.4 shows the geologic landscape. The landscape is 

jagged with sparse vegetation. The landscape reflects past tectonic activity and is also defined 

by faulting. From this partial view, a hill in the background and a flat area in the foreground 

are observable..  Critical samples related to the Ikanga iron deposit are shown in Figures 3.5 

to 3.15 below.  Gneisses are the dominant local rock types in the study area. Others include 

marble/limestone, sandy soils, alluvium, lateritic silica-baked-canga, and cutans deposits. The 

distinctive geological setting and physiographical features which are caused by tectonic 

rifting and block faulting, which affect sediment deposition and river drainage systems, 

match the surface and subsurface distribution of rock formations (Rop, 2011).  The entire  

Ikanga area is best known for its Pliocene and Pleistocene strata, Cretaceous, Eocene, 

Oligocene, and Miocene which are derived from older rocks of  the Archaean Age (Brown 

and McDouglas,  2011).  Local outcrops mapped in the study area are presented in Figures 

3.5 to 3.15 below.  The local rock outcrop units in the study area can be grouped into three. 
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The three groups are the gneisses, the lateritic ferruginous canga, and the marble/kunkar 

limestone. Each of these groups exhibits a different profile of weathering. The gneisses form 

unique widespread outcrops mostly along the Nzeeu River banks to the west. In the gneissic 

group, weathering produces chemical etching, and pulverization of the outcrops (see Figures 

3.5 to 3.8 below).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4 Widespread gneiss outcrops to the western front of the study area. 

Figure 3.3 Geological map of the south Kitui showing the study area in the rectangle. 
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Figure 3.5 A Chemically etching gneissic outcrop that is showing interlocking crystals of 
brown, red, gray, and white colors with weak exfoliation fabric. The reddish brown-gray 
colours indicate the growth of iron oxide and the whitish colour exhibits the etching surfaces 
of the quartz that is set in the matrix of plagioclase feldspars).  

  

 

Figure 3.6 Quartzo-feldspathic gneiss in which quartz veins are crosscutting each other at 
right angles. 
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Figure 3.7 A highly deformed quartz-feldspathic gneissic body showing multiple colours of 
iron oxide staining and some quartz fragments that are embedded in the deformed gneissic 
fabrics. Such deformational feature is common in the study area and is the function of 
prograde metamorphism and deformation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.8 A highly deformed gneissic body in which all primary fabrics have 
been destroyed. 
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Figure 3.9 Showing an outcrop of marble. 

 

 

 

  

 

Figure 3.10           Figure 3.11 

Figure 3.10 A well cemented lateritic caga deposit with hematite staining and silica baked 
contain iron. Canga is known for hosting iron which ranges approximately from 45%Fe to 
60%Fe). 

Figure 3.11 Lateritic ferrous-quartzite deposit with hematite coating in places on its surface 
areas. This lateritic ferrous quartzite surface deposit  shows that there are some iron enriched 
bodies within the subsurface rock formations. 
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Figure 3.12 Cemented silica baked canga deposit.                       

 

 

 

Figure 3.13 A hematite/magnetite nodular deposit. 
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Figure 3.14 Remains of a brick kiln in the Ikanga area. 

 

 

 

Figure 3.15 Showing heated bricks converted to a cemented iron rich brick mass. These 

hematitic temperature baked nodules are show that the soils contained a considerable iron 

content. This condition occurs in few places within the study area and its surroundings. 
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The granitoid gneisses are resistant to weathering and occur as stranded tors and hills in the 

study area (Figure 3.4). The weak gneissic fabric on the rock outcrops is distinctly enhanced 

by the surface weathering effects (Figure 3.5).  The granitoid geneisses essentially consist of 

quartz, plagioclase, alkali feldspar and minor biotite. Presence of reddish brown grains of 

garnet dispersed in the rock indicate medium to high grade metamorphism. In other instances, 

blebs of quartz veins were noted to stretched out and folded in the quartzo-feldspathic 

gneissic rock (Figure 3.6). Fabric is a very useful textural feature in identification of fresh 

rock in fresh rock. Its value, however, is greatly diminished where the weathered rock has 

been largely pulverized by deformation and metamorphism. Where weathering has been 

intense like in the study area, kaolinite and Fe-oxides are commonly the end products of the 

weathering of mafic and felsic rocks( Figures 3.6 and 3.7). Quartz which occurs as anhedral 

strained grains is the only completely unaltered mineral. The whole area is mantled by red, 

friable sand-clay soil and strewn with multiple component materials with metamorphic 

cemented laterite outcrops protruding.  

 

The second group of lithologic surface outcrops noted in the study area are the Fe-rich 

cemented ferrous laterite-canga (Dorr, 1964; Glossary of Geology, 1980) is the cemented 

metamorphic ferrous which this study seeks to investigate. Cementation in lateritic outcrops 

as shown in Figures 3.10 and 3.11 is one of the most recognizable features in laterite profile 

regime that occur in response to the change in modifications in laterite profile regime 

occurring in response to the change from a humid to an arid climate (Robertson, 1991). In 

such case, the most common cementing agents are iron oxides (ferricrete); silica (silicrete 

hardpan); calcium and magnesium carbonate (calcrete); aluminosilicates and gypsum. In 

summary, By definition, ferricrete is an indurated material formed by the in-situ cementation 

of pre-existing regolith by iron oxides. The fabric, mineralogy and composition of ferricretes 

reflect those of the parent material (regolith) and if residual, the underlying lithology. On the 

other hand, a silicrete, it is an indurated regolith component, commonly having a conchoidal 

fracture with vitreous lustre. Silicrete in the study area (Figure 3.12) is represented by near-

complete complete or near-complete silification of an Fe-rich precursor regolith horizon by 

the infilling of available voids with silica. These iron bearing outcrops are common in the 

study area. Apart from the cemented lateritic iron caps within the study area, the occurrences 

of distinct iron mineralization in the form of haematite-magnetite nodules and fragments were 

also noted (Figure 3.13). The soils in the study area were noted to be enriched in iron content. 

A case in point where soils were noted to have higher contents of iron was at a locality along 
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R-iver Nzeui where a brick making activity was taking place (Figure 3.14). Due to the 

exceptionally high contents of iron in the soil, the majority of burned bricks in this kiln fused 

together to form composite metallic units as shown in Figure 3.15 instead of coming out as 

single brick units. As a result of this phenomenon, the owner of the brick making kiln 

incurred a loss on investment. This, however, may be a blessing in the long run in that it 

provides evidence for possible occurrence of iron mineralization in the study area. It is, 

therefore, interpreted in this study that the enriched Fe-content in the baked bricks resulted in 

the fused composite metallic bricks (Figure 3.15). The regolithic soil horizons in the study 

area are haematite rich, and if concentrated can form a reasonable mineable deposit. It is, 

however, important to note that for iron formation to become mineable it requires that it must 

be of reasonable thickness, width and length within the same locality. 

 

 The third major group of lithologic surface outcrops are the crystalline marble units (Figure 

3.9) which texturally show some banding features and loose kunkar limestone in scattered 

areas within the study area.  

 
3.4 Structure and Metamorphism 
 
Like many other areas in Kenya, the sequence of events appears to have been firstly 

deposition of sediments, secondly widespread folding with accompanying regional 

metamorphism, and lastly granitization (Walsh, 1959, p.25). Rocks in the study area are 

folded into a synform with the axis trending N-W to S-E. The dominant foliation in these 

rocks is marked by the alignment of phyllosicates, hornblende, and pyroxene, and parallels 

the axis of the synform. Microtextures observed in thin section exhibited co-existence of 

strained and unstrained minerals. This suggests pre-, syn-, and post kinematic growth of 

metamorphic minerals resulting from multiple episodes of deformation in rocks (Boadi, 

1991). In the study area there are less defined outcropped beds upon which to do accurate 

measurement of strike and dips on due to deformation and metamorphism of rocks. However, 

some strikes and dips were measured on available outcrops (see Figure 3.16 below). Little 

evidence of faulting was also recognized within the study area mainly because of 

complications in the stratigraphy and poor exposure. The style of deformation indicates that 

shearing and plastic flow was dominant over brittle failure and, therefore, such indicated 

faults may be post-metamorphic structures.  The general strike trend in the study area also 
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corresponds to other structural trends mapped in other parts of Kenya within the 

Neoproterozoic Mozambique Mobile Belt (Walsh. 1959). 

 

 

 

 

 

 

 

  

 

 

 

Figure 3.16 Showing the structural trends of rocks in the study area and its surroundings. 

Source: D.O.S 423(Series Y731), Edition I-D.O.S., Published by the Directorate of Oversea 

Surveys for the Kenya Government, Sheet 164/1, 1965. The schematic stratigraphical column 

of units forming the Local Geology of the study area is presented above. 
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3.5 Petrographical Thin Section Analyses 
Thin sections analyses of these rocks from the mainly north-south trending collisional 

Neoproterozoic Mozambique Mobile Belt  defined the temperature/pressure (T/P) 

metamorphic conditions which the rocks of the study area have been subjected to. The 

orientation of mineral cleavages in thin sections indicated the rearrangements of the rock 

fabric as being the results of  internal, and external stresses reflecting the tectonic history of 

the high grade Ikanga area. 

 
3.5.1 Biotite-hornblende schist  
 
This is an intermediate medium grained metamorphic rock with a preferred schistose fabric. 

It consists essentially of plagioclase, biotite and amphibole.. Most of the plagioclase crystals 

show some minor alteration to sericite and can be recognized by the presence of multiple 

laths showing albite or lamellar twinning. Coloured minerals include biotite, pale green 

hornblende and minor greenish augite. Under plane polarized light (PPL), biotite is highly 

pleochroic from pale yellow to deep brown (Figure 3.17). Accessory minerals include quartz, 

magnetite, apatite and muscovite. The approximate mineralogical composition of a 

representative sample identified as biotite-hornblende schist is presented in Table 3.1. 

 

3.5.2 Biotite-quartz-feldspar gneiss  
 
The biotite-quartz-feldspar gneisses are widespread rocks in the study area. They are medium 

to coarse grained, mesocratic and well foliated with color banding or mineralogical layering 

of feldspar and opaque minerals. There is localized occurrence of garnet bearing gneisses 

particularly along the shear zones. Under the microscope the rock consists of plagioclase, 

orthoclase, microcline, quartz, biotite, garnet and accessory magnetite and muscovite (Figure 

3.18). More than half of the feldspar in this rock is microcline feldspar. The cross-hatched 

twinning, characteristic of microcline, is visible. The quartz grains, which occupy the inter-

granular spaces between the alkali feldspars, are easily recognized in Plane Polarized Light 

(PPL) by the lack of alteration, and in under Crossed Polars (XPL) by its interference colours 

which are slightly higher than that of the feldspars, and by the non-uniform extinction.   

Apatite, zircon and titanite (sphene) occur as accessory minerals. The mineralogical 

composition of a representative sample (GN-03) identified as a biotite-quartz feldspar gneiss, 

is presented in Table 3.1 above. Also noted to occur within this rock unit are amphibole 

bearing enclaves, which are possibly disrupted mafic dykes. These enclaves have biotite rich 
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margins, suggesting that small-scale mobility of alkalis and fluid phases took place during 

metamorphism and account for the formation of these hydroxyl-bearing minerals. The modal 

composition of this rock sample (LBD/ 13/GN-03) is presented in Table 3.1. 

 

 

                   A. PPL (Magnification X80). 

 

 

.                  B.  PPL (Magnification X80). 

Figure 3.17 Biotite-hornblende schist. (A). Note the tabular brown biotite grains B. 
(Magnification X80). B. Note the prismatic pale green hornblende with characteristic 
cleavage intersecting at 1240/ 560. (Plane Polarized Light (PPL), Magnification  X80).  
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Biotite  

 

Plagioclase 
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Table 3.1 The modal mineralogical composition of rock samples from Ikanga area. 

 

SAMPLE/ 

MINERAL 

GN-06 GN -03 PEG-01 

Quartz 

Plagioclase 

Alkali feldspar 

Biotite 

Muscovite 

Hornblende 

Opaque  

Accessories(Apatite, 

Zircon, Sphene 

5 

33 

10 

18 

3 

25 

2 

1 

33 

23 

29 

12 

1 

0 .5 

1 

0.5 

29 

20 

42 

5 

2 

0.5 

1 

0.5 

Total 100 100 100 

 

NB:GN-06 – Biotite-Hornblende schist; GN-03 – Biotite –quartz feldspar gneiss;  

PEG-01-Pegmatite. 
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  A. Crossed Polars (XPL)(Magnification X20). 

 

  B.  Crossed Polars (XPL) (Magnification X80). 

Figure 3.18 Thin section micrographs of biotite-quartz-feldspar gneiss from the Ikanga area 

(Sample GN-03). 

3.5.3 Pegmatite and quartz veins 
 
Pegmatite is a very coarse grained rock that is interpreted to have been formed during the last 

phases of magmatism and/or metamorphism in this area. The pegmatites occurring in the  

Ikanga area are mostly pinkish in colour, and are composed mainly of alkali feldspars 

(orthoclase and microcline), sodic plagioclase and quartz.  Under the microscope, the pinkish 

feldspar is identified as microcline (Figure 3.19). Apart from the scarce inclusions of biotite 

and quartz crystals, the rock consists essentially of an intimate intergrowth of potassium-rich 

feldspar and sodium rich feldspar. This perthitic texture is exemplified by the fairly broad 

sinuous lamellae of albite that forms a braided pattern in an orthoclase host. Other pegmatite 

bodies showed graphic texture and abundant mica flakes, and sometimes garnet granules. The 

graphic texture is interpreted to be as a result of simultaneous crystallization of quartz and 

feldspar. Quartz veins, which occur in many of the rock, were noted to be lensoidal in shape 

Polysynthetic twinning in 
plagioclase feldspar 

Biotite 

Orthoclase  

 

Quartz  

Plagioclase 
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or stigmatically folded. The veins are interpreted to be the last products of either felsic 

intrusions or are simply derived from existing quartzo-feldspathic country rocks during 

metamorphic differentiation.  

 
 

  A. Crossed Polars (XPL)(Magnification  X20). 

 

  B. Crossed Polars (XPL)(Magnification X80). 

Figure 3.19 Thin section micrograph of pegmatite showing (A) microcline, biotite, quartz and 
muscovite. (B) the characteristic cross-hatched twinning in microcline feldspar. 

3.5.4 Biotite gneiss 

Thin section of biotite gneiss analysed consisted of phlogopite, biotite, quartz, amphibole, 

and plagioclase. In thin section, biotite is typically brown, brownish green or reddish brown, 

and distinctly pleochroic. Intensity of colour increases with increasing iron (Fe) content. 

Phlogopite is nearly colourless to pale brown in thin section and has less intense colours than 

biotite because of lack of iron content. Quartz is colourless in thin section and twinning is not 

observed in thin section because the twin segments have the same c axis orientation. 

Microcline - with characteristic 
cross-hatched twinning. 

Biotite 

Microcline/feldspar 

Muscovite 

Quartz 
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Amphibole is distinctly coloured and pleochroic, usually in shades of green, yellow-green, 

blue green, and brown. Plagioclase has low relief, lack of colour, has biaxial character, and 

exhibits polysynthetic twinning which distinguishes it from other minerals. It is colourless in 

thin section (Figure 3.20).  

 

 
 

Figure 3.20 Thin section micrograph of biotite gneiss showing biotite, amphibole, quartz, and 

phlogopite. 
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CHAPTER FOUR: RESULTS OF THE GROUND MAGNETIC 
SURVEY AND GEOCHEMICAL DATA ANALYSIS 

This chapter presents the results of the ground magnetic survey and the geochemical data 
analysis of the  Ikanga area in Kitui, southeastern Kenya. 

4.1 Magnetic Data Acquisition  
 Acquisition of magnetic data was achieved along fifteen (15) traverses at the end of every 

twenty (20) meter interval in the study area  as shown in Figure 4.1 below. 

 

  

Figure 4.1 Showing profiles along which the magnetic data were collected. 

 

4.2 Field Surveys and Results 

 
The survey involved the use the MP II Proton Precession Magnetometer from Syntrex Ltd of 

Toronto, Canada.  The data were corrected for diurnal variations and then sujected to a 3-D 

Euler deconvolution process using Oasis Montaj software from Geosoft Inc. of Canada. 

Figure 4.2 shows the resulting total magnetic field image (TMI).  The total magnetic image in 

Figure 4.2 indicates a major magnetic high centred on the south eastern side of the area. From 

here, it spreads outwards in following a southwest and northeast trend but with a lesser 

magnitude. Another magnetic high appears on the southwestern side of the area trending 

nearly north-south. A major magnetic low that trends northeast to north occurs in the near 
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cetral part of the area. It appears to occupy a shear zone that trends generally southwest-

northeast. 

 

 
 

 

Figure 4.2  Total magnetic image (TMI) of Ikanga area. 

 

Figure 4.3 shows the same total magnetic field image given in Figure 4.2 but with magnetic 

source depth location symbols superimposed on it. The depth symbols simply mark the lateral 

location of the magnetic source and the value of depth at which it occurs underneath the 

ground surface. The symbols and the corresponding values they represent are shown as a 

legend below the map. From the map, the magnetic source symbols are seen to follow a 

general southwest-northeast direction. They occur at a general boundary between the main 

magnetic high to the east and the main magnetic low to the west.  

 

4.3 Discussion of the Results from the Magnetic Survey 

 
From the two figures, magnetic source symbols mark the locations and orientations of linear 

structures at depth caused by shearing and subsequent mineral alterations. The areas occupied 
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by the magnetic highs may coincide with the locations of the iron formations. Ground truth 

investigations should be conducted to verify this assumption. 

 

 

 

 
 

Figure 4.3 Total magnetic image (TMI) of Ikanga area with depth symbols. 

 

4.4 Geochemical Data Analyses 
 
The geochemical sampling localities superimposed on the generalized geological map of the 

area are shown in Figure 4.4. Further, these sampling localities referenced to the UTM 

Coordinate system are shown in Tables 4.1 below.  A total of twenty four (24) samples 

representing the main lithological units in the project study area were collected for 

geochemical analyses.  The characteristic lithological units sampled in this study ranged from 

ferruginous hematite, limestone, gneisses, soil to pegmatite and quartzite units. Geochemical 

analyses for this study were done at the Mines and Geological Department of the Ministry of 

Mining using the atomic absorption spectrometric (AAS) method. Analyses of the 

geochemical data from the study area showed predominantly oxide facies mineralization in 
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which Fe2O3 is the main iron oxide (see Tables 4.2 and 4.3 below) with low range  percentage 

composition figures varying  ranging from  0.05% Fe to  16.5% Fe, and the high range 

composition figures ranging from 72.4% Fe to 86.3% Fe in few places.  

 

Table 4.1 Locality data for geochemical samples collected from the Ikanga project area 

referenced to the UTM  Coordinate Map System. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

 

 

Sample Ref. No. X 

UTM 

Y 

UTM 

Elevation 

(m) 

HEM-01 393648 9817335 917m 
HEM-02 393554 9818273 918m 
HEM-03 393466 9815390 910m 
HEM-04 393975 9817226 913m 

 
Lim-01 391713 9817542 892m 
Lim-02 392451 9816332 892m 
Lim-03 393359 9815845 900m 
Lim-04 393006 9816420 903m 
Lim-05 393989 9817240 902m 

 
GN-01 393617 9817147 921m 
GN-02 393520 9817517 910m 
GN-03 393548 9817536 917m 
GN-04 393362 9817904 908m 
GN-05 393835 9817349 902m 
GN-06 393617 9817147 921m 
GN-07 393520 9817517 910m 

 
S0-01 393006 9816420 903m 
S0-01 393105 9817048 875m 

SO-02 393119 9817060 784m 

SO-03 393133 9817076 892m 

SO-04 393105 9817048 782m 

SO-05 393105 9817048 875m 

 PEG-01 393800 9817060 920m 

PEG-02 393648 9817000 918m 
 QT-02 393737 9817148 901m 

 

Key:  

HEM=Hematite  

Lim=Limestone  

GN=Gneiss  

SO=Soil  

PEG=Pegmatite 

QT=Quartzite  
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Table 4.2 Chemical composition of first set of rock and soil samples from Ikanga project -
area. Major elements in weight %.) 

 

1Sample# SiO2 Al2O3 CaO MgO Na2O K2O TiO2 MnO Fe2O3 LOI 

Lim-01 1.92 0.09 54.7 0.42 0.04 0.07 ND 0.03 0.26 41.3 

Lim-02 14.53 0.35 47.8 0.8 0.06 0.04 ND 0.1 1.95 34 

Lim-03 8.64 ND 46.9 5.94 0.02 0.01 ND ND 0.21 37.5 

 

GN-01 44.97 8.07 23.7 1.22 0.52 1.76 0.35 0.06 4.03 14.2 

GN-03 47 8.04 22.8 0.97 0.58 0.28 0.33 0.07 3.83 15.1 

GN-04 51.78 8.97 20.6 0.96 0.66 0.1 0.27 0.04 3.38 12.4 

QT-02 82.2 4.68 0.28 0.19 0.86 0.8 0.45 ND 5.79 1.47 

 

S0-01 59.4 9.55 0.28 0.25 0.1 1.8 0.44 0.12 19 8.39 

 

NB: Key: LIM = limestone, QT = Quartzite; GN = Gneiss, SO = soil; ND = not detected.  

Figure 4.4 Geochemical sampling localities superimposed on the generalized 
geological map of the study area. 
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Table 4.3 Chemical composition of rock and soil samples from the Ikanga project area. 
Analysis done by using the atomic spectrometric method (AAS).  Major elements in weight 
percent (wt%). 

 

Sample # SiO2 Al2O3 CaO MgO Na2O K2O TiO2 MnO Fe2O3 LOI 
HEM-01 9.79 0.44 0.08 0.34 0.16 0.06 1.11 0.2 86.3  Nil         
HEM-02 20.59 0.44 0.66 0.32 0.14 0.04 4.7 0.2 72.4  Nil 
HEM-03 10.07 3.4 4.91 0.54 0.3 0.04 2.02 0.2 76.3  Nil 
HEM-04 23.67 0.42 0.1 0.31 0.2 0.07 0.89 0.14 72.9 0.57 
 
Lim-01 1.92 0.09 54.7 0.42 0.04 0.07 ND 0.03 0.26 41.3 
Lim-02 14.53 0.35 47.8 0.8 0.06 0.04 ND 0.1 1.95 34 
Lim-03 8.64 ND 46.9 5.94 0.02 0.01 ND ND 0.21 37.5 
LIm-04 4.58  ND 34.4 18.7 0.14 0.02 0.02 0.01 0.05 41.3 
LIm-05 1.17  ND 52.2 0.73 0.15 0.16 ND 0.1 0.47 43.1 
 
GN-01 44.97 8.07 23.7 1.22 0.52 1.76 0.35 0.06 4.03 14.2 
GN-02 68.16 6.58 0.16 0.36 0.25 0.79 0.5 0.2 16.5 5.91 
GN-03 47.23 8.04 22.8 0.97 0.58 0.28 0.33 0.07 3.83 15.1 
GN-04 51.78 8.97 20.6 0.96 0.66 0.11 0.27 0.04 3.38 12.4 
GN-05 53.82 16.42 5.22 3.74 4.31 1.69 1.29 0.15 10.14 2.22 
GN-06 68.81 12.97 2.8 1.07 4.09 3 0.69 0.02 4.35 1.25 
GN-07 53.68 12.06 5.95 5.14 3.39 1.1 1.65 0.2 14.1 2.16 
 
S0-01 59.4 9.55 0.28 0.25 0.1 1.8 0.44 0.12 19 8.39 
SO-02 7.37 1.67 0.25 0.38 0.38 0.3 9.72 0.2 79.6   Nil 
SO-03 61.9 21.8 0.09 0.14 0.19 1.4 0.74 ND 3.89 8.69 
SO-04 64.55 18.64 1.57 1.17 2.27 3.6 1.22 0.06 5.8   Nil 
SO-05 64.27 13.9 2.19 0.91 2.95 3.3 1.1 0.09 4.96 6.13 

 
PEG-01 83.63 4.27 0.84 0.32 1.56 0.34 0.46 0.01 6.5 0.57 
PEG-02 82.43 8.78 1.76 0.44 3.04 0.79 0.17 0.01 1.03 0.88 

 
QT-02 82.2 4.68 0.28 0.19 0.86 0.8 0.45 ND 5.79 1.47 
 
Key: LIM=limestone, QT=quartz, GN=gneiss, SO=soil, HEM=hematite, PEG=pegmatite, 
ND=not detected. 
 

The Fe2O3 content in the haematite mineralized samples ranges from 72.4 to 86.3 wt% with 

an average of 76.97 wt%; 3.38 to 16.5 wt% with an average of 8.05 wt% in gneisses; and 

3.89 to 79.6 wt% with an average of 22.65 wt% in soils. The geochemical setting of the 

Ikanga iron deposit in the study area suggests that it is derived from a Precambrian banded 

iron formation (BIF). When the Ikanga iron deposit data is plotted on diagrams to 
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discriminate global compositional fields of Precambrian BIF and Phanerozoic ironstones 

(after Patwardhan, 1999), samples from the Ikanga deposit show close geochemical affinity 

with Precambrian BIF (see from Figures 4.5 and 4.6). Correlation of the Ikanga iron deposit 

to the Precambrian BIF shows that the Ikanga iron deposit is derived from the Precambrian 

BIF by chemical weathering. The plot of geochemical data from samples of the Ikanga iron 

deposit on the global compositional field of the Precambrian BIF, confirmed this relationship 

(Figures 4.5 to 4.8 below). The plots further confirmed that the Ikanga iron deposit is not 

derived from Phanerozoic iron stones. 

 

 

 

 

 

                                                                                          

                                                                                                                

                                                                                                                        

                                                                                                                                                   

 

 

 

 

 

 

 

 

 

 

Figure 4.5 Global compositional field of Precambrian BIF, after Patwardhan (1999). 

Figure 4.6 Compositional fields of Precambrian BIF and the Phanerozoic iron stones, 
after Patwardhan (1999). 
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The compositional spread of sample data from the Ikanga iron deposit along the Precambrian 

BIF domain on the Fe2O3-SiO2 side of the ternary diagram in Figures 4.6 and 4.7 confirms 

that the deposit was not derived from the more recent Phanerozoic iron stones. The geologic 

setting of the Ikanga deposit within the Neoproterozoic Mozambique Belt terrane further 

supports the geochemical evidence deduced from this study. Analyses of the geochemical 

data from the study area showed predominantly oxide facies mineralization in which Fe2O3 is 

the main iron oxide with percentage composition shown for all samples analysed (see Table 

SiO2              

Spread of Ikanga iron deposit 
on the SiO2, Al2O3, and Fe2O3 

scale 

x x x x x x x 
x 

Ikanga iron deposit 

Fe2O3 

Al2O3 

Spread of Ikanga iron 
deposit data 

x 

x x x 
x 

x 

x 

x x 

SiO2 CaO+MgO                                                                                                                                                                                  

Fe2O3 

Figure 0.8 Compositional spread of Ikanga iron deposit on the global Precambrian BIF scale 
of SiO2, Al2O3, and Fe2O3. 

Figure 0.7 Showing compositional spread of Ikanga iron deposit on the scale of CaO+MgO, 
SiO2, and Fe2O3. 
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4.3 above). The geological data acquired from the study area indicated predominantly oxide 

facies mineralization in which Fe2O3 is the main iron oxide with the percentage analytical 

composition varying from a low range of 0.05 to 16.5 Fe2O3 wt% to a high range of 72.4 to 

86.3 Fe2O3 wt% in few places. 
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CHAPTER FIVE: DISCUSSIONS, CONCLUSION AND 

RECOMMENDATION 

 

In this Chapter, the results of this study are synthesized and discussed. Conclusions and 

recommendations are also presented. 
 
5.1 Petrographical Thin Sections Analyses 
 

 Thin sections analyses of these rocks from the mainly north-south trending collisional 

Neoproterozoic Mozambique Mobile Belt defined the temperature/pressure (T/P) 

metamorphic conditions which the rocks of the study area have been subjected to. The 

orientation of mineral cleavages in thin section sections indicated the rearrangements of the 

fabrics of rocks as being the results of internal and external stresses reflecting the tectonic 

history of the high grade Ikanga area. 

 
5.2 Ferrous Bearing Outcrops 
 

Iron cap outcrop deposits commonly known as cangas are common in places to the highland 

portion of the study area mainly in the surroundings of the intersection of the north-south 

(NS) and east-west (EW) trending. Canga can be defined as a tough, well-consolidated rock 

consisting essentially of hard blocks and fragments of the rocks of an iron formation, 

cemented with limonite. Canga forms a valuable ore, which may run as high as 68% iron 

(Dorr, 2008; Glossary of Geology, 1980). Further, Anand and Butt (1988) and Anand et al. 

(1993) have provided the terminology and classification of deeply weathered regolith and 

addressed the issue of geochemical exploration in the complex lateritic environment of the 

Yilgarn Craton of Western Australia. Besides the metamorphic laterite enriched outcrops in 

the study area, the general soil also contains iron dispersion in its horizons. Less iron was 

reported in gneises, limestone/marbles, and quartz based on geochemical data analyses. 

 

5.3  Mode of Occurrence of the Ikanga Iron Deposit 
 

In considering the mode of occurrence of the iron deposit in the study area, it is necessary 
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first of all to define what iron formation are and how many categories these are divided into. 

The term iron formation was defined by James (1954), modified by Morris (1993) and 

reaffirmed by Klein (2002) in relation to banded iron formation as:  

 

“A chemical sediment, typically thin bedded or laminated, whose principal chemical 

characteristic is an anomalously high content of iron, commonly but not necessarily 

containing layers of chert”. 

 

An original minimum iron content of 15 wt% (James, 1954) is loosely adopted by some 

researchers today (Ohmoto and Felder, 1987).  

 

In terms of categories, the Archaean-Proterozoic banded iron formations (BIFs) are divided 

into three main categories. These are termed the Algoma; Lake-Superior and Rapitan-types 

and range in age from Archaean through to Paleoproterozoic to Neoproterozoic respectively 

(Gross, 1965; Gross, 1983). The Algoma-type BIFs were deposited during the Archaean 

(between approximately 3.5 to 2.6 Ga) and exhibit a volcanic arc-greenstone belt association 

(Gross, 1983). The Algoma-type BIFs are relatively thin (< 100m thick) and of limited areal 

extent (<100km2), and have high iron oxide and silica contents. They are thought to be 

deposited in association with proximal oceanic hydrothermal plumes (black smokers). In 

terms of size, the Superior-type BIFs dominate the three BIFs categories. The largest 

examples of these BIFs have been calculated to contain > 1014 Mt of iron (James and 

Trendell, 1982), with examples on each of the five main continents (Simonson, 1985; Smith 

et al., 2000). These thick (>100m thick), and laterally extensive (>1000km2) BIFs were 

deposited during the Paleoproterozoic (approximately 2.2 to 1.8 Ga) and represent the major 

period of iron deposition in the Earth’s history.  

 

The Superior-type BIFs generally consist of fine-grained iron oxides, carbonates or sulphides, 

and occur in planar form in mm- to cm- scale bands, usually alternating with similar scale 

bands of chert. The Rapitan-type BIFs are generally thin, usually restricted, and chert-poor 

bodies. Most are of Neoproterozoic age (approximately 0.8 to 0.6 Ga) and are thought to be 

the result of iron precipitation caused by oxidation after the retreat ice-sheets from previously 

covered, anoxic water bodies. The major global distribution of selected banded formations is 

presented in Figure 5.1 below. The mode of iron formation occurrence has been disputed. 

Both continental (e.g. Albert and McCulloch, 1993) and hydrothermal (e.g. Holland, 1973; 
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Simonson, 1985; Dymek and Klein, 1988) settings have been put forward as likely Fe-

sources. In terms of source, older sedimentary iron bearing formations could be a source of 

iron. The Ikanga iron deposit which is the focus of this study may very likely have occurred 

as the result of the chemical weathering of older Precambrian banded iron formations (BIFs). 

If this is the case, therefore, it is a secondary deposit in which all of the banding and primary 

fabrics have been destroyed due to intense metamorphism and deformation over a prolonged 

geological period. 

 

 
 

Figure 5.1 Global distribution of major and selected banded iron-formations and districts, 
modified after Klien (2002). 

 

With such a prolonged geological history of the reworking of the Ikanga iron deposit, it 

became more granular and thinner and was dispersed in the regolith where it was localized 

within the upper most horizon in coexistence with other associated minerals. Its mode of 

occurrence can also be related to the Neoproterozoic iron bearing sedimentary deposits as 

reworked materials of Precambrian origin and may be described as marine iron bearing 

sedimentary deposit in this landmass. However, debate supporting the Archaean- 

Paleoproterozoic setting of iron formations cannot be ignored in this study. Ohmoto and 

Felder (1987) argued that Archaean-Paleoproterozoic iron formations are the precursors for 

secondary iron formations of which the Ikanga iron deposit is an example. 
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5.4 Discussion of Magnetic Data and Analysis of the Magnetic Signal 

Source Depth 
 

Consideration of Figure 4.2 and Figure 4.3 indicates that the magnetic source symbols mark 

the locations and orientations of linear structures at depth caused by shearing and subsequent 

mineral alterations. The areas occupied by the magnetic highs may coincide with the 

locations of iron formations. Ground truth investigations should be conducted to verify this 

assumption. The reflections of magnetic analytical signals approximated the various depths 

from zero (0) meters on the surface to over one hundred (100) meters in the subsurface in 

which the Ikanga-type iron formation occurs. The variability of these depths indicates that the 

Ikanga iron deposit is scattered within the regolith. The movement of this iron formation is 

influenced by rain waters that seep downwards into the subsurface. 

 

 However, near surface secondary iron formation may also occur directly due to the 

conduction of high temperature heat (Hamade el al, 2003), or at lower temperature in the 

presence of water. For this reason dehydrated zones may repeat lower down in the hydrated 

and mottle zone and below where water may gain selective access through faulting and 

permeability to carry and deposit iron and associated minerals. Hence, Similar processes have 

been recognized in several ore bodies in the Hamersley Province of western Australia (e.g., 

Paraburdoo 4 East), where the upper most dehydrated layer is 10 m thick and, successively, 

lower levels become thinner ( Clout, 2003). 

 

5.5 Geochemical Data from the Ikanga Iron Deposit 

 
The geochemical data analyzed from the project area indicated predominantly oxide facies 

mineralization. In this oxide facies domain, the Fe2O3 wt% is the main iron oxide. The Fe2O3 

wt % in the hematite mineral analyzed rangers from 72.4 to 86.3 wt % with an average of 

79.98 wt %; in gneisses the Fe2O3 content ranges from 3.38 to 16.5 wt % with an average of 

7.97 wt%; and in soils the Fe2O3 content ranges from 3.89 to 79.6 wt % with an average of 

22.65 wt %. These analytical results exceed an original minimum exploitable iron content 

described by James (1954).   
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5.6 Conclusions 
 

This project was carried out within the stipulated time. The full understanding of the project 

area was accomplished through the field mapping work, field observations and data 

collection, and in the applications of remote sensing, geophysical and geochemical methods, 

and usage of approaches, materials, and software given in Chapter 2 of this dissertation. The 

conclusions were deduced from this research project-:  

1. Rocks of the project area are Neoproterozoic in age commonly known as remobilized 

rocks of Precambrian origin. These rocks have been subjected to strain and stress 

associated with the high grade metamorphism of the north-south trending Neoproterozoic 

Mozambique Mobile Belt. 

2. It is concluded that the study area corresponds to a particular geologic environment in the 

Neoproterozoic Mozambique Belt of Kenya, characterized by end of Neogene/Tertiary 

surface of gently and undulating elevations showing reworked Neoproterozoic rocks of 

Precambrian in origin with various litho-clastic sediments containing dominant oxide 

facies mineralization., Fe2O3 is the main iron oxide among the non-iron oxide domain of 

SiO2, CaO, TiO2, MgO,  K2O, MnO,  Al2O3, Na2O and SiO2. 

3. The analysis of the total magnetic image (TMI) of the area indicates a major magnetic 

high centred on the south eastern side and spreading outwards with lesser magnitude 

along a southwest-northeast trend. A major magnetic low trending northeast to north in 

the central part of the study area appears to occupy a southwest-northeast trending shear 

zone. 

4. The analysis of the total magnetic image (TMI) of the study area and associated magnetic 

source symbols indicate that the depth symbols follow a general southwest-northeast 

direction and occur at a general boundary between the main magnetic high to the east and 

the main magnetic low to the west. 

5. The magnetic source data mark the locations and orientations of the southwest-northeast  

trending linear structures at depth caused by shearing and subsequent mineral alterations. 

The areas occupied by the magnetic highs are interpreted to coincide with locations of the 

iron formations and these require ground truthing and follow-up. 

6. The Ikanga iron deposit occurs at various depths (0 to over 100 m) in the regolith, 

scattered, and shows no indication of well defined and concentrated portions in the 
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subsurface which makes it very difficult to recommend its exploitation until further work 

and ground truthing is done.  

7. The Ikanga iron deposit is a residual deposit derived from a Precambrian banded iron 

formation (BIF) by chemical weathering processes. Plots of the geochemical data confirm 

this conclusion. The BIF from which the Ikanga iron deposit is derived occurred in along 

the Neoproterozoic Mozambique Belt with destruction of primary fabrics correlated as 

due to prolonged polycyclic deformation and metamorphism.  

8. This deposit is considered to be of low economic value until more work is done  to prove 

economic viability. More resources will be required to conduct further tests and to pilot 

extraction to find out whether this deposit can pay for itself. 

5.7 Recommendations 
 

This deposit is a scattered one, and so it requires detailed exploration. The following are the 

recommendations arising from this study:- 

 

1. That ground truthing and follow-up of the magnetic anomalies be carried out to 

further define in more detail the nature and extent of the mineralized zone. 

2. That soil grids be established at least two hundred meters apart, six hundred meters 

total as base line and with three intersecting cross traverse lines, each two hundred 

meters (m) long on either side of the base line perpendicular to it. It is further 

recommended that  two trenches on both sides of each cross line be dug at the spaces 

of fifty (50) meter (m) intervals for more detailed sampling.. 

3. The length of each trench should be ten (10) meters (m), width two (2) meters (m), 

and depth two (2) meters (m). At this depth it is possible to approach the saprocks. 

Geochemical data will then be collected for analyses in these trenches. This method is 

less expensive than drilling but labor intensive. This approach will be appropriate 

since the magnetic method at times does not give a total picture and identity of some 

iron ore bodies and may yield false anomalies. Following the trenching phase, drilling 

may then follow to confirm the nature of the magnetic anomalies in the Ikanga area. 

4. The soil composition in the study area is also good for bricks making, and can be used 

for building brick houses. The soil bricks are good because they are rich in  iron 

content which make them hold together. The tenacity of the bricks will give the 

buildings long life times. 
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5. Finally it is strongly recommended that geological professionals should conduct 

further research in the study area to confirm the results of this study as this area 

definitely has  potential for occurrence of economic mineral deposits.  
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APPENDIX 
 

 

The following sections are appendix. Magnetic data acquired during the ground 

geophysical mapping in the field are presented 
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Appendix : Magnetic data from Ikanga area 
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