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Abstract

Long term care refers to services provided to persons who, for one reason

or another are unable to carry out activities of daily living. In developing

models for pricing LTC insurance products, actuaries have applied, among

other approaches, multiple state models.

The current project seeks to construct a �ve-state multiple state model

(allowing for recoveries) that depicts LTC needs at di¤erent ADL failure

levels and can be used in Actuarial calculations of premiums and reserves.

We begin by introducing the study of multiple state models using Markov

approach.Calculation of transition intensities for the �ve-state model is then

done. We use a matrices approach to calculate transition probabilities from

the calculated transition intensities and conclude by illustrating how the

calculated transition probabilities can be applied in actuarial calculations of

premiums and reserves.
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Chapter 1

GENERAL INTRODUCTION

1.1 Background Information

Long-term care (LTC) refers to services provided to persons who are unable

to carry out "Activities of Daily Living" (ADLs) without some form of as-

sistance. These persons could be dependent due to some form of mental or

physical impairment.They could also be persons across all ages, but in this

research project we concentrate on LTC for the elderly.

LTC is a combination of medical, nursing, custodial, social and commu-

nity services. It may be provided at home or in an institution and is classi�ed

as formal or informal care. Formal care is provided by government organiza-

tions, local, national or international NGOs, or by pro�t organizations. The

personnel who provide formal care include recognized professionals such as

doctors and social workers and/or para-professionals such as personal care

workers. On the other hand, informal care is provided by family members

(nuclear and/or extended), neighbors, friends, independent volunteers as well

as organized volunteer work through organizations such as religious groups.

As countries in the world continue to advance in medical technology and

treatments, longevity increases, i.e. people tend to live longer. A need to
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design programmes providing LTC for the elderly then arises.

Solutions that have been developed to cater for the increasing LTC needs

can be classi�ed as Insurance based and Non-insurance based. In insurance-

based programs, a policyholder who ful�ls the set eligibility criteria must be

granted bene�ts, regardless of available budgets. On the other hand, in non-

insurance (budget constrained) programs, service provision is dependent on

limited funds. Once the funds run out, no services are provided. Finance for

insurance based systems is through contributory payment such as premiums

and employer-employee contributions whereas �nance for the non-insurance

based systems is through general taxation.

One example of a country that uses an insurance based system is Ger-

many. In 1994 the German Parliament passed into law measures establishing

a social insurance scheme for LTC. Costs for LTC under this scheme were

to be met by mandatory contributions from employers and their employees.

The cover was to extend to children and non-employed married partners at

no extra costs. Eligibility for bene�ts was to be determined on the basis of

an assessment of need, with no account of family or �nancial circumstances

being taken into consideration. The more in need an individual was deemed

to be, the more the bene�t they were entitled to. Due to the increasing costs

of o¤ering LTC services, the scheme has at one point run down reserves and

changes have had to be made.

Sweden LTC system is an example of a budget constrained system. The

system is tax �nanced therefore enabling service providers to focus more care-

fully and narrowly on those older people whose needs are greatest. Eligibility

for publicly-provided LTC services depends on the presence of need and on

the inability to meet these needs by other means.

Such developed countries and others which have adopted di¤erent strate-

gies in dealing with the ever increasing LTC needs provide useful lessons for

the middle-income and low-income countries in their development of LTC

systems that �t their speci�c demographics. It is worth noting, however,
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that developing countries are facing increasing needs for LTC services at

levels of income far lower than those in developed countries.

In most developing countries the LTC needs of the elderly have been met

mostly by the family units, more so the women. However, as opportunities

for ladies to further their education and join the professional world increase,

the family is no longer able to cater to the needs of their old without external

assistance. Also, the family unit is quickly disintergrating due to urbanization

and dependence on it for LTC needs will soon need to be replaced with paid

care whether at home or in an institution.

In coming up with a solution to the rising need for LTC, actuaries have

developed LTC insurance products. Generally, in pricing disability bene-

�ts, actuaries have used approaches such as inception annuity approach,

Manchester-Unity approach and multiple state modelling approach among

others. Of interest to us is the multiple state modelling approach.

A multiple state model is a probability model that describes the random

movements of a subject among various states. These random movements are

also referred to as transitions and form the basis of multiple state models.

Multiple state models consist of:

� A �nite number of states

� Arrows indicating possible movements between some, but not neces-
sarily all, pairs of states

� De�ned states representing the status of a subject(s) without loss of
generality.

As long as disbursement of bene�ts is contigent upon a transition from

one state to another, then multiple state models are applicable in the insur-

ance product development process. Also, the appropriate model, in terms
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of number of states and possible transitions, is determined by the kind of

bene�ts provided by the insurance product.

In this research project we bank on the fact that a LTC insurance product

is one in which an individual is in one of a possible number of states at each

point in time and that transition from one state to another has some �nancial

impact on the insurer.

1.1.1 Background of LTC insurance products

In this section we provide a brief description of a selection of available LTC

insurance products.

Long term care insurance is o¤ered in a variety of forms and the products

o¤ered can be classi�ed as:

� Pre-funded products

� Unit-linked products

� Immediate care annuities

� Pension linked products

among others.

1. Pre-funded products

Pre-funded products are aimed at persons concerned about their future

and are in reasonably good health. These products o¤er protection against

costs arising from future deterioration in health. Payment of claims is based

on either the inability to perform a certain number of ADLs or a signi�cant

cognitive impairment. These products can be categorized as:
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� Stand-alone policies

� Riders to other policies

� Extensions to permanent health insurance (PHI)

Stand-alone policies provide an income payable in the event of a valid

claim. Premiums are either regular or single. Regular premiums are aimed

at young policyholders while single premiums are aimed at the older poli-

cyholders. There is a choice of cover based on various levels of disability

and care.These policies are not intended as investment vehicles. As such a

surrender value is not provided.

LTC insurance can be o¤ered as a rider to a whole life plan or as a natural

addition to critical illness cover where LTC is considered as an additional

illness. If the claims criteria is satis�ed, an accelerated death bene�ts is

payable by monthly installments.

LTC insurance can also be o¤ered as an extension to permanent health

insurance which pays out if the policyholder is unable to work through sick-

ness or accident, or if they need care as speci�ed by ADL criteria or cognitive

failure.

2. Unit-linked products

Unit-linked products allow policyholders to invest capital in a number of

unit-linked investment funds. As the value of the underlying assets grows,

the value of the invested capital also grows. LTC charges and other expenses

incurred by the insurer are then deducted. These products provide surrender

values which is a major shortfall of the pre-funded products.

3. Immediate care annuities
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Immediate care annuities are aimed at people who are just about to go

into care or are already receiving care but need to provide for future costs.

Such annuities attract individuals whose health has already deteriorated and

are in need of immediate guaranteed income. These products provide guar-

anteed monthly payments to cover the speci�ed care costs (all or partial) in

exchange for a single premium. The payments will generally continue for as

long as care is needed.The minimum age for these products is usually 60 with

a maximum of between ages 90 and 100.

4. Pension linked products

These products are also referred to as enhanced pension LTC products.

They are sold at retirement and are a combination of a standard pension

annuity paid while the policyholder is in good health and a higher income

paid while they are claiming LTC bene�ts.

1.2 Problem Statement

LTC costs have a signi�cant likelihood of depleting the elderly populations

resources in terms of pensions and retirement investments. As such, continu-

ous exploration of models for pricing and reserving LTC insurance products

becomes a central issue in ensuring this does not happen. These models in-

clude,but are not con�ned to, multiple-state models and inception annuity

models. In this project we concentrate on the application of multiple-state

models in pricing and reserving LTC insurance products.

In applying multiple state models to pricing long-term care insurance

products, most authors have not allowed for recoveries in their models. In

reality, however, multiple-state models for pricing and reserving LTC insur-

ance products should be able to allow for recoveries unless the disabilities

considered in the model are permanent disabilities.
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1.3 Objectives

General Objective

In this project we seek to:

� Construct a �ve-state multiple state model (allowing for recoveries)
that depicts LTC needs at di¤erent ADL failure levels and can be used

in Actuarial calculations of premiums and reserves

Speci�c Objectives

� Introduce the Markov framework to Multiple state models

� Calculate transition intensities for the �ve-state model

� Use a matrices approach to calculate transition probabilities from the

calculated transition intensities

� Illustrate how the calculated transition probabilities can be applied in
actuarial calculations of premiums and reserves

1.4 Scope of the Study

In this project we apply a Markov framework to the study of multiple state

models. We proceed to introduce matrices in the calculations of the transition

probabilities and show how we can apply these probabilities to the calculation

of discrete-time actuarial values.

We then use an illustrative approach to show how the transition proba-

bilities are applied in actuarial calculations.
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1.5 Signi�cance of the study

Due to the catastrophic nature of LTC costs, savings and pensions of the

elderly have the potential of being swept out once they become in need

of LTC. Studying models that aim at alleviating this �nancial burden is

therefore among the central issues in dealing with LTC costs of the elderly.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

In this chapter we review literature on the application of multiple state mod-

els to pricing LTC insurance products.

2.2 Multiple state models in designing LTC

insurance products

Waters et. al (1984) distinguishes between a multiple state model and a mul-

tiple decrement model. The paper puts forward an alternative approach to

multiple state models, the TI (transition intensities) approach as opposed to

the �ow, orientation and integration equations (FOI) technique proposed by

Haberman (1983) . The approach uses the forces of transition, or transition

intensities between states as the fundamental quantities of the model.

In the paper, four aspects of the study of multiple-state models where

the TI-approach is considered better than the FOI-approach are discussed.

These are:
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� The speci�cation of the model

� Natural assumptions that aid computations

� Comparison of di¤erent models

� Estimation of probabilities or intensities and the statistical properties
of the estimators

A simple example of a multiple state model is then used to illustrate the

TI-approach.

In this project, we consider a transition intensities approach with a dis-

cussion on the �rst three aspects.

(Jones,1994) presents a method for �nding probabilities needed for ac-

tuarial calculations in applications that can be modelled as multi-state

processes. The paper begins with a review of the properties of the Markov

process. A key result that exploits the tractability of Markov processes with

constant forces of transition is then presented. The paper explains also how

the results can be used in the case of piecewise constant forces.

A decomposition of the force of transition matrix is used which leads to a

convenient representation of the transition probability matrix. The situation

in which the Markov assumption is inappropriate is then addressed.

Jones suggests that duration dependence be re�ected by increasing the

number of states in the model instead of using the Semi-Markov model. This

is justi�ed by a limiting result that illustrates the convergence of the approx-

imating Markov process to the semi-Markov process. Finally an example is

demonstrated that applies the approach to select and ultimate mortality.

In this paper, we review the Markov process, perform a decomposition

of the transition intensities matrix with piece-wise constant intensities and

�nally present our transition probabilities matrices.
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(Leung, 2004) develops a model for pricing LTC insurance contracts in

Australia using the disability prevalence contained in the 1998 Australian

Bureau of Statistics (ABS) Survey of Disability, Ageing and Carers. Pre-

mium and Reserve calculations are performed by applying generalizations

of Thiele�s di¤erential equation for a multiple state model within a Markov

framework. The sets of results presented capture a varying range of possible

scenarios and demonstrate the �exibility of the model.

Leung�s primary objective is to develop and test a multiple state model for

pricing and reserving LTC insurance products. In Leung (2004), a discrete

time multiple state model is developed for projecting the needs and costs

of LTC in Australia. However, in the current paper, the assumption of

discrete time is relaxed and the underlying process is modelled in a continuous

time Markov framework. This enables calculation of transition intensities for

application in Thiele�s di¤erential equation.

The aforementioned data which is deemed relevant in Australia for pricing

and reserving LTC insurance is surveyed. This is followed by a brief review

of existing LTC pricing and reserving literature emerging from Australia

and abroad. Multiple state models are then developed and a discussion on

the probabilistic structure used to calculate premiums and reserves for a

set of illustrative hypothetical insurance products is put forward. Finally,

an analysis of the sensitivities of the model is done and avenues for further

research are presented.

In this project, we employ a probabilistic structure in calculations of

premiums and reserves for a hypothetical bene�ts structure.

Haberman et. al. (1997) illustrates how mathematics of Markov stochas-

tic processes can be used through the framework of multiple state models

in the actuarial modelling of di¤erent types of Long-Term Care Insurance.

The paper begins by describing multiple state models and actuarial values of

streams of payments. A review of long term care insurance bene�ts is then

put forward and actuarial calculations for time-continuous and time-dicrete

cash�ows are discussed.
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In this project, we discuss actuarial calculations for a stand-alone LTC

insurance product using time-dicrete cash�ows.

2.3 Summary of the Literature Review

From the literature reviewed, we have been able to come up with a clear

guideline for our research. The guideline is as follows:

� We consider a transition intensities approach where the transition in-
tensities are the fundamental quantities of the multiple state model

� We review the Markov process, perform a decomposition of the transi-
tion intensities matrix with piece-wise constant intensities and �nally

present our transition probabilities matrices

� We employ a probabilistic structure in calculations of premiums and
reserves for a hypothetical bene�ts structure of a stand-alone LTC in-

surance product with dicrete-time cash�ows

In the study of Multiple state models using a Markovian approach, most

authors have not allowed for recoveries in their models. In our model, we

relax the "no recovery"assumption.
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Chapter 3

METHODOLOGY

3.1 Introduction

Actuaries use various methods in pricing disability related insurance prod-

ucts. The main reason for using di¤erent approaches is the availability or

lack thereof of data. Actuaries face the challenge of scanty statistical data

and more often than not, calculation procedures used for pricing and reserv-

ing have to be simpli�ed. In this section we embark on the mathematics of

applying a Markov framework to multiple state models for LTC insurance

products.

We also introduce actuarial calculations based on discrete time cash�ows.

3.2 Multiple state modelling approach

A multiple state model is a model in which the subject of interest is in

one of a number of states at each point in time. In modelling insurance

products, actuaries are interested in modelling the payments made while the
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policyholder is in a particular state. These payments are premiums,bene�ts

and reserves.

The study of multiple state models can be approached in a Markov

or semi-Markov framework. These approaches can be de�ned in a time-

continuous and/or a time-discrete context. The current project focusses on

multiple state modelling of LTC insurance products in a time-discrete Markov

framework.

In the following sections, we provide a description of the general setup

of Markov multi-state models.Transition probabilities and transition intensi-

ties are then de�ned and their Chapman-Kolmogorov equations derived.The

relationship between the transition probabilities and the transition intensi-

ties is given by the Kolmogorov Forward Di¤erential equation. Since we

are interested with multiple state models in which transitions are dependent

on age, we introduce notations that take into account the age of the sub-

ject. Thereafter multiple state models are introduced beginning with the

simplest case of the alive-dead model and working our way to a �ve-state

model. For each of the state models we introduce, we show how transition

probability matrices are derived by using Chapman-Kolmogorov equations.

These expressions show the relationship between transition probabilities and

transition intensities.

Ideally, transition intensities for a disability related model should progress

smoothly with age. We deal with this as an assumption but explain the

methods that can be used in graduating these intensities.

3.2.1 Setup of Markov multiple state models

Suppose there are n states. Denote the state space by S where S is a count-

ably �nite set such that:

S = f1; 2; :::; ng
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Denote the set of direct transitions by � :

� � (i; j) ji 6= j; i; j 2 S

The pair (S;�) is called a multiple state model. De�ne X(t) as the state

occupied by the subject under consideration at time t, where t � 0 and the
time unit is 1-year. fX (t) ; t � 0g is said to be a time-continuous Markov
process if, for each �nite set of times 0 � t0 � t1 � ::: � tn and corresponding
set of states i0; i1; :::; in; j 2 S with

pr [X (tn) = in; X (tn�1) = in�1; :::; X (t0) = i0] > 0

the process satis�es the Markov property:

pr [X (tn) = injX (tn�1) = in�1; X (tn�2) = in�2; :::; X (t0) = i0]
= pr [X (tn) = injX (tn�1) = in�1]

The Markov property shows that this probability does not depend on the

history of the event but depends only on the immediate past. We say that

fX (t) ; t � 0g is a time-continuous Markov process since we are dealing with
continuous time.

To deal with a time-discrete Markov model we de�ne X(t) as above but

with t = 0; 1; 2; 3; :::. We can again say that fX (t) ; t = 0; 1; 2; 3; :::g is a
time-dicrete Markov process if it satis�es the Markov property.

Transition probabilities of the Markov process are denoted by pij (s; t) and

de�ned by

15



pij (s; t) = conditional probability that an individual is in state j at time t

given that they were in state i at time s

= pr [X (t) = jjX (s) = i] (3.1)

=
pr [X (t) = j;X (s) = i]

pr [X (s) = i]
; t � s � 0; i; j 2 N

if pr [X (s) = i] > 0; otherwise pij (s; t) = 0:

We also have:

pij (s; s) = �ij; s � 0

�ij is referred to as the Kronecker delta and is equal to 0 for i 6= j and
equal to 1 for i = j.

The transition probabilities satisfy the following properties:

0 � pij (s; t) � 1; i; j 2 N ; (3.2)X
j2N

pij (s; t) = 1; 0 � s � t (3.3)

We assume that transition probabilities for each �xed period of time, vary

in time. As such, we need to specify the beginning and the end of the time

interval [s; t], instead of just its length t� s. Hence, the time-continuous or
time-discrete Markov process is assumed to be time inhomogeneous. Equa-

tion (3:4) is the Chapman-Kolmogorov equation for a time inhomogenous

Markov chain. The equation states that a process that starts in state i at

time s and is in state j at time t occurs via some state k 2 N at an arbitrary

intermediate time � .
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pij (s; t) =

nX
k=1

pik (s; �) pkj (� ; t) (3.4)

where

0 � s � � � t

Proof

pij (s; t) =

nX
k=1

pr [X (s; t) = j;X (s; �) = kjX (s) = i]

=

nX
k=1

pr [X (s; t) = j;X (s; �) = k;X (s) = i]

pr [X (s) = i]

=
nX
k=1

(
pr [X (s; t) = jjX (s; �) = k;X (s) = i]

�pr [X (s; �) = k;X (s) = i]

)
pr [X (s) = i]

=
nX
k=1

pr [X (s; t) = jjX (s; �) = k;X (s) = i] � pr [X (s; �) = kjX (s) = i]

using the Markov property we have:

pij (s; t) =
nX
k=1

pr [X (s; t) = jjX (s; �) = k] � pr [X (s; �) = kjX (s) = i]

=
nX
k=1

pkj (� ; t) pik (s; �)

=

nX
k=1

pik (s; �) pkj (� ; t)

Kolmogorov Forward Equation

Using the Chapman-Kolmogorov formula given in equation (3:4), we de-

duce that:
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pij (s; t+ h) =
X
k 6=j

pik (s; t) pkj (t; t+ h) (3.5)

=
X
k 6=j

pik (s; t) pkj (t; t+ h) + pij (s; t) pjj (t; t+ h)

pij (s; t+ h)� pij (s; t) =
X
k 6=j

pik (s; t) pkj (t; t+ h) + pij (s; t) pjj (t; t+ h)� pij (s; t)

=
X
k 6=j

pik (s; t) pkj (t; t+ h)� [1� pjj (t; t+ h)] pij (s; t)

lim
h!0

pij (s; t+ h)� pij (s; t)
h

= lim
h!0

P
k 6=j pik (s; t) pkj (t; t+ h)� [1� pjj (t; t+ h)] pij (s; t)

h
@

@t
pij (s; t) =

X
k 6=j

pik (s; t) lim
h!0

pkj (t; t+ h)

h
� pij (s; t) lim

h!0

[1� pjj (t; t+ h)]
h

=
X
k 6=j

pik (s; t)�kj � pij (s; t)�j

where lim
h!0

pkj (t; t+ h)

h
= �kj and lim

h!0

[1� pjj (t; t+ h)]
h

= �j; k 6= j

The Kolmogorov Forward equation is thus:

@

@t
pij (s; t) =

X
k 6=j

pik (s; t)�kj � pij (s; t)�j

�ij (t) is de�ned as the transition intensity between two states i and j. To

be precise, �ij (t) is the rate of change of the probability pij in a very small

time interval, h:

�ij (t) = lim
h!0

pij (t; t+ h)

h
; i 6= j

for any given time ft : 0 < t < Tg and interval length h > 0.

For the interest of our study, we introduce a slightly di¤erent de�nition
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of transition probabilities and transition intensities:

pij (x; t) = The probability that a life now aged x+ t and in state

j was in state i at age x

�ij (x+ t) = The transition intensity/rate from state i to state j at

age x+ t

In both these cases i; j = 1; 2; 3; :::; n; x = 0; 1; 2; 3:::; and 0 � t � 1.

Assuming piecewise constant forces of transition would imply that:

�ij (x+ t) = �ij (x) for x = 0; 1; 2; 3::: and 0 � t � 1

Equation (3:5) which we use in deriving expressions of transition proba-

bilities now becomes:

pij (x; t+ h) =
nX
k=1

pik (x; t) pkj (t; t+ h) (3.6)

Also the Kronecker delta which gives us our initial conditions is now given

as:

pij (x; x) = �ij; x � 0

and is equal to 0 for i 6= j and equal to 1 for i = j. x is taken to mean exact
age.

3.3 A two-state model

In understanding multiple state models, it is only practical to start from

the simplest model and build our way to more complex models. As such we
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begin by reviewing the simple alive-dead model which has transition intensity

in one direction and can be considered as a single decrement model. We

extend this school of thought to the healthy-ill model which brings in the

idea of recovery. For each of the models, we derive the Kolmogorov Forward

Di¤erential Equation and explicit expressions of the transition probabilities

matrix.

3.3.1 Alive-Dead model

Figure 1 represents our �rst two-state model. It is considered to be the

simplest multiple state model in actuarial literature and as such forms an

essential building block in reviewing multiple state models. This model can

also be considered as a single-decrement model.

State 1:

ALIVE

State 2:

DEAD

µ12(x)

FIGURE 1: Alive-Dead Model

We begin by deriving the Kolmogorov Forward Di¤erential Equation for

this model. Recall equation (3:6):

pij (x; t+ h) =
nX
k=1

pik (x; t) pkj (t; t+ h)

In the case of the alive-dead model above, k = 1; 2. We proceed as follows:
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p11 (x; t+ h) =

2X
k=1

p1k (x; t) pk1 (t; t+ h) (3.7)

= p11 (x; t) p11 (t; t+ h) + p12 (x; t) p21 (t; t+ h)

= p11 (x; t) p11 (t; t+ h) + p12 (x; t)� 0

To proceed, we need to de�ne o (h) (order h). A function f(h) is said to

be of o (h) if:

lim
h!0

f (h)

h
= 0

and from calculus we have:

d

dx
f (x) = lim

h!0

f (x+ h)� f (x)
h

Therefore from equation (3:7) we have:

p11 (x; t+ h)� p11 (x; t) = p11 (x; t)
�
�
�
�
12
(x)h+ o (h)

��
Dividing through by h we get

d

dt
p11 (x; t) = lim

h!0
p11 (x; t)

�
�
�
�
12
(x)h+ o (h)

��
h

d

dt
p11 (x; t) = p11 (x; t)

�
��

12
(x)
�

(3.8)

Next:

p12 (x; t+ h) =
2X
k=1

p1k (x; t) pk2 (t; t+ h)

= p11 (x; t) p12 (t; t+ h) + p12 (x; t) p22 (t; t+ h)

= p11 (x; t) p12 (t; t+ h) + p12 (x; t)� 1
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p12 (x; t+ h)� p12 (x; t) = p11 (x; t)
�
�
12
(x)h+ o (h)

�
d

dt
p12 (x; t) = lim

h!0

p11 (x; t)
�
�
12
(x)h+ o (h)

�
h

= p11 (x; t)
�
�
12
(x)
�

(3.9)

In matrix form, the Kolmogorov Forward Di¤erential Equation is given

by:

h
p011 (x; t) p012 (x; t)

i
=
h
p11 (x; t) p12 (x; t)

i "��
12
(x) �

12
(x)

0 0

#
(3.10)

A review of some matrix algebra

Here we introduce some matrix notation that aid in simplifying calcula-

tions.

De�ne:

P (x; t) = fpij (x; t)gni;j=1 = The transition probability matrix

P 0 (x; t) =

�
d

dt
pij (x; t)

�n
i;j=1

Q (x) =
n
�
ij
(x)
on
i;j=1

= The matrix of piecewise constant transition intensities

The Kolmogorov Forward di¤erential equation may now be written as:

P 0 (x; t) = P (x; t)�Q (x) (3.11)

with x = 0; 1; 2; ::: and 0 � t � 1 de�ned as before and with boundary

condition P (0; t) = I (where I is the identity matrix).

The solution to (3:11) can be found as follows:
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P 0 (x; t)
P (x; t)

= Q (x)

d

dt
lnP (x; t) = Q (x)Z
d lnP (x; t) =

Z
Q (x) dt

lnP (x; t) = tQ (x)

P (x; t) = exp (tQ (x))

= I +
tQ (x)

1!
+
(tQ (x))2

2!
+
(tQ (x))3

2!
+ :::

= I +
1X
k=1

(tQ (x))k

k!
(3.12)

If the matrix Q (x) has distinct eigenvalues then it can be expressed in

the form:

Q (x) = A (x)D (x)C (x) (3.13)

where:

A (x) = the matrix of right eigenvectors

D (x) = the diagonal matrix whose elements are eigenvalues of Q (x)

C (x) = A (x)�1 exists

Thus Q (x) = A (x)D (x)A (x)�1

23



Further:

Q (x)k =
�
A (x)D (x)A (x)�1

�k
=

�
A (x)D (x)A (x)�1

� �
A (x)D (x)A (x)�1

�
:::
�
A (x)D (x)A (x)�1

�
= A (x)D (x)A (x)�1A (x)D (x)A (x)�1 :::A (x)D (x)A (x)�1

= A (x)D (x) ID (x) ID (x) ID (x) :::D (x) ID (x) ID (x)A (x)�1

= A (x)D (x)D (x) :::D (x)D (x)A (x)�1

= A (x)D (x)k A (x)�1 (3.14)

Substituting (3:14) in (3:12) we get:

P (x; t) = I +
1X
k=1

(Q (x) t)k

k!

= I +

1X
k=1

tk

k!
Q (x)k

= I +
1X
k=1

tk

k!
A (x)D (x)k A (x)�1

= I + A (x)

 1X
k=1

tk

k!
D (x)k

!
A (x)�1 (3.15)

For this problem we wish to determine D (x) and A (x), i.e. to determine the

eigenvalues and eigenvectors of:

Q (x) =

"
��

12
(x) �

12
(x)

0 0

#
To �nd the eigenvalues we solve the equation
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jQ (x)� �Ij = 0

i.e.

�������12 (x)� � �
12
(x)

0 ��

����� = 0

�
�
�
12
(x) + �

�
= 0

� = 0 or � �
12
(x)

�1 = ��
12
(x) and �2 = 0 are the eigenvalues

The corresponding eigenvectors are:

i)

"
��

12
(x) �

12
(x)

0 0

#"
x1

x2

#
= �1

"
x1

x2

#
��

12
(x)x1 + �12 (x)x2 = �1x1 since �1 = ��12 (x) we have

��
12
(x)x1 + �12 (x)x2 = ��

12
(x)x1

therefore �
12
(x)x2 = 0

x2 = 0 = 0 � x1

eigen vector =

"
x1

x2

#
=

"
x1

0 � x1

#
= x1

"
1

0

#

we take the eigenvector for �1 = ��12 (x) as
"
1

0

#

ii)

"
��

12
(x) �

12
(x)

0 0

#"
x1

x2

#
= �2

"
x1

x2

#
= 0

"
x1

x2

#
since �2 = 0

��
12
(x)x1 + �12 (x)x2 = 0

x1 = x2
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Therefore the eigenvector =

"
x1

x2

#
=

"
x2

x2

#
= x2

"
1

1

#

We take the eigenvector for �2 = 0 as

"
1

1

#

Since the eigenvalues are distinct, we can write:

Q (x) = A (x)D (x)A (x)�1

where:

A (x) =

"
1 1

0 1

#
which implies that A (x)�1 =

"
1 �1
0 1

#

We deduce that:

1X
k=1

(tD (x))k

k!
=

1X
k=1

tk

k!

"
�1 0

0 �2

#k

=
1X
k=1

tk

k!

"
�k1 0

0 �k2

#

=

"P1
k=1

(�1t)
k

k!
0

0
P1

k=1
(�2t)

k

k!

#

=

"
e�1t � 1 0

0 e�2t � 1

#

26



Now:

P (x; t) = I + A (x)

 1X
k=1

tk

k!
D (x)k

!
A (x)�1

= I +

"
1 1

0 1

#"
e�1t � 1 0

0 e�2t � 1

#"
1 �1
0 1

#

= I +

"
e�1t � 1 e�2t � 1
0 e�2t � 1

#"
1 �1
0 1

#

= I +

"
e�1t � 1 �e�1t + 1 + e�2t � 1
0 e�2t � 1

#

= I +

"
e�1t � 1 �e�1t + e�2t

0 e�2t � 1

#

Setting �1 = ��12 (x) and �2 = 0, we have:

P (x; t) = I +

"
e��12 (x)t � 1 �e��12 (x)t + e0

0 e0 � 1

#

=

"
1 0

0 1

#
+

"
e��12 (x)t � 1 �e��12 (x)t + 1

0 0

#

Thus, transition probabilities for the alive-dead model in terms of the

piecewise constant transition intensities can be expressed as:

"
p11 (x; t) p12 (x; t)

p21 (x; t) p22 (x; t)

#
=

"
e��12 (x)t 1� e��12 (x)t

0 1

#

3.3.2 Healthy-ill model

The healthy-ill model is a two-state model with forces of transition in both

directions.This model introduces the idea of recovery.
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State 1:

HEALTHY

State 2:

ILL

µ12(x)

µ21(x)

FIGURE 2: Healthy-Ill model

Recovery is the ability of a person to go back to a state that they had

visited before.

Using equation (3:6) we derive the Kolmogorov Forward Di¤erential Equa-

tions as follows:

p11 (x; t+ h) =

2X
k=1

p1k (x; t) pk1 (t; t+ h)

= p11 (x; t) p11 (t; t+ h) + p12 (x; t) p21 (t; t+ h)

= p11 (x; t)
�
1�

�
�
12
(x)h+ o (h)

��
+ p12 (x; t)

�
�
21
(x)h+ o (h)

�
d

dt
p11 (x; t) = p11 (x; t)

�
��

12
(x)
�
+ p12 (x; t) � �21 (x)

p12 (x; t+ h) =

2X
k=1

p1k (x; t) pk2 (t; t+ h)

= p11 (x; t) p12 (t; t+ h) + p12 (x; t) p22 (t; t+ h)

= p11 (x; t)
�
�
12
(x)h+ o (h)

�
+ p12 (x; t)

�
1�

�
�
21
(x)h+ o (h)

��
d

dt
p12 (x; t) = p11 (x; t) � �12 (x) + p12 (x; t) �

�
��

21
(x)
�
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p21 (x; t+ h) =

2X
k=1

p2k (x; t) pk1 (t; t+ h)

= p21 (x; t) p11 (t; t+ h) + p22 (x; t) p21 (t; t+ h)

= p21 (x; t)
�
1�

�
�
12
(x)h+ o (h)

��
+ p12 (x; t)

�
�
21
(x)h+ o (h)

�
d

dt
p21 (x; t) = p21 (x; t) �

�
��

12
(x)
�
+ p12 (x; t) � �21 (x)

p22 (x; t+ h) =
2X
k=1

p2k (x; t) pk2 (t; t+ h)

= p21 (x; t) p12 (t; t+ h) + p22 (x; t) p22 (t; t+ h)

= p21 (x; t)
�
�
12
(x)h+ o (h)

�
+ p22 (x; t)

�
1�

�
�
21
(x)h+ o (h)

��
d

dt
p22 (x; t) = p21 (x; t) � �12 (x) + p22 (x; t) �

�
��

21
(x)
�

In matrix form, we have"
p011 (x; t) p012 (x; t)

p021 (x; t) p022 (x; t)

#
=

"
p11 (x; t) p12 (x; t)

p21 (x; t) p22 (x; t)

#"
��

12
(x) �

12
(x)

�
21
(x) ��

21
(x)

#

In compact form, we have

P 0 (x; t) = P (x; t) �Q (x)

where Q (x) =

"
��

12
(x) �

12
(x)

�
21
(x) ��

21
(x)

#
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We �nd the eigenvalues and eigenvectors for Q (x) :

jQ (x)� �Ij = 0�������12 (x)� � �
12
(x)

�
21
(x) ��

21
(x)� �

����� = 0�
��

12
(x)� �

� �
��

21
(x)� �

�
� �

12
(x) � �

21
(x) = 0�

�
12
(x) + �

� �
�
21
(x) + �

�
� �

12
(x) � �

21
(x) = 0

�
12
(x) � �

21
(x) + �

12
(x)�+ �

21
(x)�+ �2 � �

12
(x) � �

21
(x) = 0

�2 + �
�
�
12
(x) + �

21
(x)
�
= 0

Using the quadratic formula:

� =
�
�
�
12
(x) + �

21
(x)
�
�
q�
�
12
(x) + �

21
(x)
�2

2

=
�
�
�
12
(x) + �

21
(x)
�
�
�
�
12
(x) + �

21
(x)
�

2
therefore � = 0 or �

�
�
12
(x) + �

21
(x)
�

�1 = �
�
�
12
(x) + �

21
(x)
�
and �2 = 0 are the eigenvalues
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The corresponding eigenvectors are:

i)

"
��

12
(x) �

12
(x)

�
21
(x) ��

21
(x)

#"
x1

x2

#
= �1

"
x1

x2

#
��

12
(x)x1 + �12 (x)x2 = �1x1 since �1 = �

�
�
12
(x) + �

21
(x)
�

we have� �
12
(x)x1 + �12 (x)x2 = �

�
�
12
(x) + �

21
(x)
�
x1

= ��
12
(x)x1 � �21 (x)x1

=) �
12
(x)x2 = ��21 (x)x1

=) x2 =
��

21
(x)

�
12
(x)

x1

also �
21
(x)x1 � �21 (x)x2 = �

�
�
12
(x) + �

21
(x)
�
x2

= ��
12
(x)x2 � �21 (x)x2

=) �
21
(x)x1 = ��12 (x)x2

=) x2 =
��

21
(x)

�
12
(x)

x1

therefore the eigenvector is =

"
x1

x2

#
=

"
x1

��
21
(x)

�
12
(x)
x1

#
= x1

"
1

��
21
(x)

�
12
(x)

#

we take the eigenvector for �1 = �
�
�
12
(x) + �

21
(x)
�
as

"
1

��
21
(x)

�
12
(x)

#

ii)

"
��

12
(x) �

12
(x)

�
21
(x) ��

21
(x)

#"
x1

x2

#
= �2

"
x1

x2

#
since �2 = 0

��
12
(x)x1 + �12 (x)x2 = �2x1 = 0 =) ��

12
(x)x1 = ��12 (x)x2

=) x1 =
�
12
(x)

�
12
(x)
x2 =) x1 = x2

�
21
(x)x1 � �21 (x)x2 = �2x2 = 0 =) �

21
(x)x1 = �21 (x)x2

=) x1 =
�
21
(x)

�
21
(x)
x2 =) x1 = x2

we take the eigenvector for �2 = 0 as

"
1

1

#
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From equation 3:14 :

Q (x) = A (x)D (x)A (x)�1

where A (x) =

"
1 1

��
21
(x)

�
12
(x)

1

#
and A (x)�1 = 1

1+
�
21
(x)

�
12
(x)

"
1 �1

�
21
(x)

�
12
(x)

1

#

We also had:

1X
k=1

(tD (x))k

k!
=

"
e�1t � 1 0

0 e�2t � 1

#k
But in this case �2 = 0 and the equation becomes:

1X
k=1

(tD (x))k

k!
=

"
e�1t � 1 0

0 0

#k
(3.16)

Replacing A (x), A (x)�1 and equation (3:16) in equation (3:15) we get:

P (x; t) = I +

"
1 1

��
21
(x)

�
12
(x)

1

#"
e�1t � 1 0

0 0

#"
1 �1

�
21
(x)

�
12
(x)

1

#
�
12
(x)

�
12
(x) + �

21
(x)

= I +

"
e�1t � 1 0

��
21
(x)

�
12
(x)

�
e�1t � 1

�
0

#"
1 �1

�
21
(x)

�
12
(x)

1

#
�
12
(x)

�
12
(x) + �

21
(x)

= I +

"
e�1t � 1 0

��
21
(x)

�
12
(x)

�
e�1t � 1

�
0

#24 �
12
(x)

�
12
(x)+�

21
(x)

� �
12
(x)

�
12
(x)+�

21
(x)

�
21
(x)

�
12
(x)+�

21
(x)

�
12
(x)

�
12
(x)+�

21
(x)

35
= I +

24 �
12
(x)

�
12
(x)+�

21
(x)

�
e�1t � 1

�
� �

12
(x)

�
12
(x)+�

21
(x)

�
e�1t � 1

�
��

21
(x)

�
12
(x)+�

21
(x)

�
e�1t � 1

� �
21
(x)

�
12
(x)+�

21
(x)

�
e�1t � 1

�
35

but �1 = �
�
�
12
(x) + �

21
(x)
�

We de�ne a =
�
12
(x)

�
12
(x)+�

21
(x)

�
e�(�12 (x)+�21 (x))t � 1

�
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and b =
�
21
(x)

�
12
(x)+�

21
(x)

�
e�(�12 (x)+�21 (x))t � 1

�
We now have: P (x; t) =

"
1 0

0 1

#
+

"
a �a
�b b

#

Thus the transition probabilities for the healthy-ill model in terms of the

piecewise constant transition intensities can be given as:"
p11 (x; t) p12 (x; t)

p21 (x; t) 0 p22 (x; t)

#
=

"
1 + a �a
�b 1 + b

#

3.4 A Three-State Model

Figure 3 represents a three- state model in which there are no recoveries. It

can also be referred to as a two-decrement model.

State 1:

HEALTHY

State 3:

DEAD

State 2:

PERMANENTLY
DISABLEDµ21(x)

µ13(x)

FIGURE 3: A three-state model

By the Chapman-Kolmogorov equation:
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pij (x; t+ h) =
X
k

pik (x; t) pkj (t; t+ h)

We proceed to derive Kolmogorov Forward Di¤erential Equations. In

this section we derive equations for transition probabilities using solutions to

ordinary di¤erential equations.

In this case k = 1; 2; 3:

p11 (x; t+ h) = p11 (x; t) p11 (t; t+ h) + p12 (x; t) p21 (t; t+ h) + p13 (x; t) p31 (t; t+ h)

= p11 (x; t)
�
1�

�
�
12
(x) + �

13
(x)
�
h+ o (h)

�
+ p12 (x; t) � 0

+p13 (x; t) � 0
d

dt
p11 (x; t) = p11 (x; t) �

�
�
�
�
12
(x) + �

13
(x)
�
h+ o (h)

�
d

dt
p11 (x; t) = �

�
�
12
(x) + �

13
(x)
�

We assume that observation is done over the interval (0; t) to get:

Z t

0

dp11 (x; t) =

Z t

0

�
�
�
12
(x) + �

13
(x)
�
ds

p11 (x; t) = �
��
�
12
(x) + �

13
(x)
�
s
�t
0

p11 (x; t) = �
�
�
12
(x) + �

13
(x)
�
t

Next:

p12 (x; t+ h) = p11 (x; t) p12 (t; t+ h) + p12 (x; t) p22 (t; t+ h) + p13 (x; t) p32 (t; t+ h)

= p11 (x; t)
�
�
12
(x)h+ o (h)

�
+ p12 (x; t) � 1 + p13 (x; t) � 0
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d

dt
p12 (x; t) = p11 (x; t) � �12 (x)

d

dt
p12 (x; t) = �

�
�
12
(x) + �

13
(x)
�
t � �

12
(x)Z t

0

dp12 (x; t) = ��
12
(x)

Z t

0

�
�
12
(x) + �

13
(x)
�
sds

p12 (x; t) = ��
12
(x)

��
�
12
(x) + �

13
(x)
� s2
2

�t
0

Therefore:

p12 (x; t) = ��12 (x)
�
�
12
(x) + �

13
(x)
� t2
2

Next we have:

p13 (x; t+ h) = p11 (x; t) p13 (t; t+ h) + p12 (x; t) p23 (t; t+ h) + p13 (x; t) p33 (t; t+ h)

= p11 (x; t)
�
�
13
(x)h+ o (h)

�
+ p12 (x; t) � 0 + p13 (x; t) � 1

d

dt
p13 (x; t) = p11 (x; t) � �13 (x)Z t

0

dp13 (x; t) = ��
13
(x)

Z t

0

�
�
12
(x) + �

13
(x)
�
sds

= ��
13
(x)

��
�
12
(x) + �

13
(x)
� s3
3

�t
0

p13 (x; t) = ��
13
(x)

��
�
12
(x) + �

13
(x)
� t3
3

�

We proceed with expressions of the transition probabilities:

p21 (x; t) = 0; p22 (x; t) = 1; p23 (x; t) = 0

p31 (x; t) = 0; p32 (x; t) = 0; p33 (x; t) = 1
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The matrix form of expressions for the transition probabilities in terms

of the piecewise constant transition intensities is therefore given by:

P (x; t) =

264�yt ��
12
(x) t

2

2
y ��

13
(x) t

3

3
y

0 1 0

0 0 1

375
where y = �

12
(x) + �

13
(x)

When Kolmogorov equations can be solved using ordinary di¤erential

equations, the matrix P (x; t) can be calculated directly using transition in-

tensities between the various states in the model.

3.5 A Four-State Model

Figure 4 represents a 4-state multiple state model which can be considered

as a three-decrement model.

State 1:

ACTIVE

State 3:

WITHDRAWN

State 4:

DEAD

State 2:

PERMANENTLY
DISABLED

µ12(x)

µ13(x)
µ14(x)

FIGURE 4: Four-state model
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By Chapman-Kolmogorov Equation:

pij (x; t) =

jX
k=1

pik (x; t) pkj (t; t+ h)

We proceed to derive the Kolmogorov Forward Di¤erential Equations.

In this case k = 1; 2; 3; 4. Solution to the Kolmogorov Equations is ob-

tained by solving ordinary di¤erential equations as follows:

p11 (x; t+ h) =
4X
k=1

p1k (x; t) pk1 (t; t+ h)

= p11 (x; t) p11 (t; t+ h) + p12 (x; t) p21 (t; t+ h) + p13 (x; t) p31 (t; t+ h)

+p14 (x; t) p41 (t; t+ h)

= p11 (x; t)
�
1�

�
�
12
(x) + �

13
(x) + �

14
(x)
�
h+ o (h)

�
+ p12 (x; t) � 0

+p13 (x; t) � 0 + p14 (x; t) � 0
= p11 (x; t)

�
1�

�
�
12
(x) + �

13
(x) + �

14
(x)
�
h+ o (h)

�
d

dt
p11 (x; t) = �

�
�
12
(x) + �

13
(x) + �

14
(x)
�
p11 (x; t)

1

p11 (x; t)

d

dt
p11 (x; t) = �

�
�
12
(x) + �

13
(x) + �

14
(x)
�

d

dt
ln p11 (x; t) = �

�
�
12
(x) + �

13
(x) + �14

�
Z t

0

d ln p11 (x; t) =

Z t

0

�
�
�
12
(x) + �

13
(x) + �

14
(x)
�
ds

ln p11 (x; t) = �
��
�
12
(x) + �

13
(x) + �

14
(x)
�
s
�t
0

ln p11 (x; t) = �
�
�
12
(x) + �

13
(x) + �

14
(x)
�
t

Therefore p11 (x; t) = e�(�12 (x)+�13 (x)+�14 (x))t

Next:
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p12 (x; t+ h) =

4X
k=1

p1k (x; t) pk2 (t; t+ h)

= p11 (x; t) p12 (t; t+ h) + p12 (x; t) p22 (t; t+ h) + p13 (x; t) p32 (t; t+ h)

+p14 (x; t) p42 (t; t+ h)

= p11 (x; t)
�
�
12
(x)h+ o (h)

�
+ p12 (x; t) � 1 + p13 (x; t) � 0

+p14 (x; t) � 0
= p11 (x; t)

�
�
12
(x)h+ o (h)

�
+ p12 (x; t)

d

dt
p12 (x; t) = �

12
(x) p11 (x; t)

= �
12
(x) e�(�12 (x)+�13 (x)+�14 (x))tZ t

0

dp12 (x; t) = �
12
(x)

Z t

0

e�(�12 (x)+�13 (x)+�14 (x))sds

p12 (x; t) =

"
��

12
(x) e�(�12 (x)+�13 (x)+�14 (x))s

�
12
(x) + �

13
(x) + �

14
(x)

#t
0

Therefore p12 (x; t) =
��

12
(x) e�(�12 (x)+�13 (x)+�14 (x))t

�
12
(x) + �

13
(x) + �

14
(x)

Similarly:

p13 (x; t+ h) =
4X
k=1

p1k (x; t) pk3 (t; t+ h)

= p11 (x; t) p13 (t; t+ h) + p12 (x; t) p23 (t; t+ h) + p13 (x; t) p33 (t; t+ h)

+p14 (x; t) p43 (t; t+ h)

= p11 (x; t)
�
�
13
(x)h+ o (h)

�
+ p12 (x; t) � 0 + p13 (x; t) � 1

+p14 (x; t) � 0
= p11 (x; t)

�
�
13
(x)h+ o (h)

�
+ p13 (x; t) � 1
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d

dt
p13 (x; t) = �

13
(x) p11 (x; t)

= �
13
(x) e�(�12 (x)+�13 (x)+�14 (x))tZ t

0

dp13 (x; t) =

Z t

0

�
13
(x) e�(�12 (x)+�13 (x)+�14 (x))sdt

p13 (x; t) =

"
��

13
(x) e�(�12 (x)+�13 (x)+�14 (x))s

�
12
(x) + �

13
(x) + �

14
(x)

#t
0

Thus p13 (x; t) =
��

13
(x) e�(�12 (x)+�13 (x)+�14 (x))t

�
12
(x) + �

13
(x) + �

14
(x)

Using a similar argument, it can be shown that:

p14 (x; t) =
��

14
(x) e�(�12 (x)+�13 (x)+�14 (x))t

�
12
(x) + �

13
(x) + �

14
(x)

For this model we have:

p21 (x; t) = 0; p22 (x; t) = 1; p23 (x; t) = 0; p24 (x; t) = 0; p31 (x; t) = 0;

p32 (x; t) = 0; p33 (x; t) = 1; p34 (x; t) = 0; p41 (x; t) = 0; p42 (x; t) = 0;

p43 (x; t) = 0; p44 (x; t) = 1

We de�ne:

c = e�(�12 (x)+�13 (x)+�14 (x))t

and the matrix representation of our transition probabilities is given as:

P (x; t) =

266664
c

��
12
(x)c

�
12
(x)+�

13
(x)+�

14
(x)

��
13
(x)c

�
12
(x)+�

13
(x)+�

14
(x)

��
14
(x)c

�
12
(x)+�

13
(x)+�

14
(x)

0 1 0 0

0 0 1 0

0 0 0 1

377775
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3.6 A �ve-state long-term care model

We now introduce a �ve-state model in which recovery is allowed in multiple

directions. In reality some of the recoveries in this model are impossible

because an individual would be permanently disabled.

We de�ne the notations used in the Figure 5 as follows:

� 0 ADLs means that no activities of daily living have been failed

� 1 ADL means that only one activity of daily living has been failed

� 2ADLs means that two activity of daily living have been failed

� 3ADLs means that more than three activities of daily living have been
failed

The activities of daily living (ADLs) considered in order of severity from

least severe to most severe are:

� Eating

� Bathing

� Dressing

� Transference

� Mobility
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State 1:

0 ADLs

State 4:

3 ADLs

State 2:

1 ADL

State 5:

DEAD

State 3:

2 ADLs

µ14(x) µ41(x)

µ13(x)

µ31(x)

µ12(x) µ23(x)

µ21(x) µ32(x)

µ15(x)

µ35(x)
µ42(x)

µ24(x)

µ45(x)

µ25(x)

µ43(x)

µ34(x)

FIGURE 5: Five-state model

To derive equations for transition probabilities, recall equation 3:6 :

pij (x; t+ h) =

nX
k=1

pik (x; t) pkj (t; t+ h)

We use this equation to derive expressions for our transition probabilities.

In this case k = 1; 2; 3; 4; 5:
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p11 (x; t+ h) =

5X
k=1

p1k (x; t) pk1 (t; t+ h)

= p11 (x; t) p11 (t; t+ h) + p12 (x; t) p21 (t; t+ h)

+p13 (x; t) p31 (t; t+ h) + p14 (x; t) p41 (t; t+ h)

+p15 (x; t) p51 (t; t+ h)

= p11 (x; t) [1� (�12 (x) + �13 (x) + �14 (x) + �15 (x))h+ o (h)]
+p12 (x; t) � �21 (x)h+ p13 (x; t) � �31 (x)h
+p14 (x; t)�41 (x)h

lim
h!0

p11 (x; t+ h)� p11 (x; t)
h

= p11 (x; t) [� (�12 (x) + �13 (x) + �14 (x) + �15 (x))]
+p12 (x; t) � �21 (x) + p13 (x; t) � �31 (x) + p14 (x; t)�41 (x)

Therefore
d

dt
p11 (x; t) = p11 (x; t) [� (�12 (x) + �13 (x) + �14 (x) + �15 (x))]

+p12 (x; t) � �21 (x) + p13 (x; t) � �31 (x) + p14 (x; t)�41 (x)

Next we have:

lim
h!0

p12 (x; t+ h)� p12 (x; t)
h

= p11 (x; t) � �12 (x)
+p12 (x; t) [� (�21 (x) + �23 (x) + �24 (x) + �25 (x))]
+p13 (x; t) � �32 (x) + p14 (x; t)�42 (x)

Therefore
d

dt
p12 (x; t) = p11 (x; t) � �12 (x)

+p12 (x; t) [� (�21 (x) + �23 (x) + �24 (x) + �25 (x))]
+p13 (x; t) � �32 (x) + p14 (x; t)�42 (x)
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p13 (x; t+ h) =
5X
k=1

p1k (x; t) pk3 (t; t+ h)

= p11 (x; t) p13 (t; t+ h) + p12 (x; t) p23 (t; t+ h)

+p13 (x; t) p33 (t; t+ h) + p14 (x; t) p43 (t; t+ h)

+p15 (x; t) p53 (t; t+ h)

= p11 (x; t) � �13 (x)h+ p12 (x; t)�23 (x)h
+p13 (x; t) [1� (�31 (x) + �32 (x) + �34 (x) + �35 (x))h+ o (h)]
+p14 (x; t)�43 (x)h

p14 (x; t+ h) =
5X
k=1

p1k (x; t) pk4 (t; t+ h)

= p11 (x; t) p14 (t; t+ h) + p12 (x; t) p24 (t; t+ h)

+p13 (x; t) p34 (t; t+ h) + p14 (x; t) p44 (t; t+ h)

+p15 (x; t) p54 (t; t+ h)

= p11 (x; t) � �14 (x)h+ p12 (x; t)�24 (x)h
+p13 (x; t)�34 (x)h

+p14 (x; t) [1� (�41 (x) + �42 (x) + �43 (x) + �45 (x))h+ o (h)]

lim
h!0

p14 (x; t+ h)� p14 (x; t)
h

= p11 (x; t) � �14 (x) + p12 (x; t)�24 (x) + p13 (x; t)�34 (x)
+p14 (x; t) [� (�41 (x) + �42 (x) + �43 (x) + �45 (x))]

Therefore
d

dt
p14 (x; t) = p11 (x; t) � �14 (x) + p12 (x; t)�24 (x) + p13 (x; t)�34 (x)

+p14 (x; t) [� (�41 (x) + �42 (x) + �43 (x) + �45 (x))]

Finally:
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p15 (x; t+ h) =

5X
k=1

p1k (x; t) pk5 (t; t+ h)

= p11 (x; t) p15 (t; t+ h) + p12 (x; t) p25 (t; t+ h)

+p13 (x; t) p35 (t; t+ h) + p14 (x; t) p45 (t; t+ h)

+p15 (x; t) p55 (t; t+ h)

= p11 (x; t) � �15 (x)h+ p12 (x; t)�25 (x)h+ p13 (x; t)�35 (x)h
+p14 (x; t) � �45 (x)h+ p15 (x; t) � 1

lim
h!0

p15 (x; t+ h)� p15 (x; t)
h

= p11 (x; t) � �15 (x) + p12 (x; t)�25 (x) + p13 (x; t)�35 (x)
+p14 (x; t) � �45 (x)

Therefore
d

dt
p15 (x; t) = p11 (x; t) � �15 (x) + p12 (x; t)�25 (x) + p13 (x; t)�35 (x)

+p14 (x; t) � �45 (x)

Using the compact form of Kolmogorov forward di¤erential equations:

P 0 (x; t) = P (x; t) �Q (x)

where:

P 0 (x; t) =

26666664
p110 (x; t) p120 (x; t) p130 (x; t) p140 (x; t) p150 (x; t)
p210 (x; t) p220 (x; t) p230 (x; t) p240 (x; t) p250 (x; t)
p310 (x; t) p320 (x; t) p330 (x; t) p340 (x; t) p350 (x; t)
p410 (x; t) p420 (x; t) p430 (x; t) p440 (x; t) p450 (x; t)
p510 (x; t) p520 (x; t) p530 (x; t) p540 (x; t) p550 (x; t)

37777775

P (x; t) =

26666664
p11 (x; t) p12 (x; t) p13 (x; t) p14 (x; t) p15 (x; t)

p21 (x; t) p22 (x; t) p23 (x; t) p24 (x; t) p25 (x; t)

p31 (x; t) p32 (x; t) p33 (x; t) p34 (x; t) p35 (x; t)

p41 (x; t) p42 (x; t) p43 (x; t) p44 (x; t) p45 (x; t)

p51 (x; t) p52 (x; t) p53 (x; t) p54 (x; t) p55 (x; t)

37777775
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and Q (x) =

26666664
�d �12 (x) �13 (x) �14 (x) �15 (x)

�21 (x) �e �23 (x) �24 (x) �25 (x)

�31 (x) �32 (x) �f �34 (x) �35 (x)

�41 (x) �42 (x) �43 (x) �g �45 (x)

0 0 0 0 0

37777775
where:

d = (�12 (x) + �13 (x) + �14 (x) + �15 (x))

e = (�21 (x) + �23 (x) + �24 (x) + �25 (x))

f = (�31 (x) + �32 (x) + �34 (x) + �35 (x))

g = (�41 (x) + �42 (x) + �43 (x) + �45 (x))

The next step is to �nd the eigenvalues and eigen vectors for Q (x) :

jQ (x)� �Ij = 0������������

26666664
�d� � �12 (x) �13 (x) �14 (x) �15 (x)

�21 (x) �e� � �23 (x) �24 (x) �25 (x)

�31 (x) �32 (x) �f � � �34 (x) �35 (x)

�41 (x) �42 (x) �43 (x) �g � � �45 (x)

0 0 0 0 ��

37777775

������������
= 0

��

����������

266664
�d� � �12 (x) �13 (x) �14 (x)

�21 (x) �e� � �23 (x) �24 (x)

�31 (x) �32 (x) �f � � �34 (x)

�41 (x) �42 (x) �43 (x) �g � �

377775
����������
= 0

Clearly, solving for explicit expressions of the eigenvalues and eigenvectors

of the expression above is no easy task. The number of unknowns is great

and it would take a great amount of time and concentration to come up with

explicit expressions for the eigenvalues and their corresponding eigenvectors.
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In Chapter 4, where we perform our data analysis, we will employ a

software in performing these calculations.

3.6.1 Graduation of Transition Intensities

We are working with the aim of coming up with expressions for transition

probabilities in terms of transition intensities. An important assumption

imposed on the transition intensities is therefore that:

� The rates are representative of the graduated transition rates

Although graduation of transition intensities is beyond the scope of this

project, we go ahead to describe its importance and the di¤erent methods of

performing it.

(Haberman and Pitacco, 1999) describe graduation as the methods by

which a set of observed probabilities are �tted and smoothed to provide a

suitable basis for inferences (such as calculation of premiums) to be made.

There are three main methods of graduating probabilities:

� Graduation by using a mathematical formulae (parametric graduation)

� Graphical graduation (non-parametric graduation)

� Graduation by reference to a standard table (non-parametric gradua-
tion)

Parametric graduation is the preferred method for large data sets. The

underlying assumption is that the transition intensities can be modelled using

a mathematical formula.

Graphical graduation involves drawing by hand a curve which is thought

by the researcher as the best �t of the transition intensities. As such, this

method falls short on accuracy.
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Graduation by reference to a standard table is applied mostly to a small

dataset, if the lives under consideration in the dataset are believed to be

similar to those of a larger number of lives that form the basis of a standard

table. The basic features of the standard table can then be imported to the

new graduated rates.

3.7 Actuarial Calculations

In this research project, we wish to consider discrete-time Actuarial calcula-

tions. As such our Markov chain is a time-discrete inhomogeneous Markov

chain. We consider premiums and reserves for stand alone annuities.We will

use the �ve-state model in Figure 5 as our reference point.

3.7.1 Premiums and reserves for stand-alone annuities

Assume that bene�ts are only payable when an individual is in states 2

through to 4; with no bene�t being provided to an individual in state 1. We

do not consider death bene�ts.

Let b2; b3 and b4 denote the annual payments related to LTC states 2; 3

and 4 respectively. It is logical to assume that b2 � b3 � b4. We also assume
that bene�ts are paid at policy annivesaries while the insured is claiming

LTC bene�ts.

Denote the actuarial value at time 0, with X (0) = i as �LTCi (0;1).

Now:

�LTCi (0;1) =
+1X
h=1

�
b2pi2 (x; h) + b

3pi3 (x; h) + b
4pi4 (x; h)

�
vh

v = 1
1+i

denotes the annual discount factor where i is the e¤ective interest
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rate per annum.

Assume that annual level premiums are paid form years while the insured

is in state 1 i.e. 0 ADLs. Let P denote the annual premium. The equivalence

principle implies that:

P �a11x:me = �
LTC
1 (0;1)

where:

�a11x:me =

m�1X
k=0

vkp11 (x; k)

Now let us consider prospective reserves at integer times. First we have

reserves relating to state 1 where an individual is not claiming LTC bene�ts.

This reserve is given by:

V 1t = �LTC1 (t;1)� P �a11x+t:m�te if t < m

V 1t = �LTC1 (t;1) if t � m

and is conditional on the life being in state 1 at age x+ t.

Next we have the reserves corresponding to the three LTC states:

V 2t = �LTC2 (t;1)
V 3t = �LTC3 (t;1)
V 4t = �LTC4 (t;1)

conditional on a life being in state 2; 3; 4 at age x+ t respectively.
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Chapter 4

NUMERICAL ANALYSIS

4.1 Introduction

We begin by de�ning our data and describing how we intend to use it.

Data Description

We have a longitudinal dataset derived from Transactions of Society of

Actuaries 1995 Vol.47. It is consists of:

� Three age groups: 65� 74; 75� 84 and 85+ by gender

� Information on ADL status in 1982 and 1984 for each of the age groups
by gender

We assume that transition intensities are not signi�cantly di¤erent for

males and females, especially for the LTC claimable states. As such, we

aggregate their numbers to come up with single tables on the number of

individuals in particular ADL statuses in the given age-groups.

49



We use this data to calculate the rate at which individuals transit from

one ADL status to another as follows:

�ij (x; t) =

The number of individuals in state i in 1982 and in state j

in 1984 from a particular age group

The total number of individuals in state i from

this age group in 1982
(4.1)

In this case x represents an age group and not a speci�c age as we had

stated earlier. (Rickayzen, 2002) proposes that we divide these rates by 2 so

as to get the annual rates. We employ this school of thought.

Also the diagonal entries of our Q (x) matrix are given by:

entry (i; j) = � (sum of all other entries in row i) (4.2)

Once the Q (x) matrix is written, we employ an online matrix calculator

(bluebit) to perform the decomposition of this matrix into the form:

Q (x) = A (x)D (x)k A (x)�1

by assuming that Q (x) has distinct eigenvalues and corresponding eigenvec-

tors. This assumption is proved true by the online calculator. With this

decomposition we then proceed to calculate the P (x; t) matrix using the

following equation:

P (x; t) = I + A (x)

 1X
k=1

tk

k!
D (x)k

!
A (x)�1

We note that since the transition intensities have been converted to annual

rates, we assume that the transition probabilities are also for a one year

period. As such our P (x; t) matrix can be written as P (x; 1).
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Time-inhomogeinity would nowmean that we have P (x; 1) ; P (x; 2) ; P (x; 3) ; :::.

As such we would require a dataset that has recorded observations of initial

and �nal states of individuals at di¤erent time intervals with each observa-

tion period being short enough for us to be able to claim that the transition

intensities are piece-wise constant.

From our data, we will be able to come up with P (x; 1) for each of the

age-groups. We will then give illustrative expressions of time-inhomogeneous

Actuarial calculations for stand alone annuities.

4.2 Calculation of transition intensities

For these calculations we assume that the totals given for each row (in the

original data set) represent the individuals starting from that particular state

in 1982. For each age group we present:

1. The table of total number of individuals in di¤erent states in 1982 and

1984

2. The table of calculated Q(x) matrix using equations 4:1 and 4:2

3. The calculated eigenvalues and eigenvectors for the Q(x) matrix

4. The matrices A(x); A(x)�1 and
P1

k=1
(tD(x))k

k!

5. The computed P (x; t) matrix which we expect to be bounded between

0 and 1 i.e. pij (x; t) 2 (0; 1)

4.2.1 65-74 age group

The table below consists of the total number of individuals starting from

various states in 1982 and the corresponding number of people in those states

in 1984 for the ages between 65 and 74.
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Initial Number 0 ADLs 1 ADL 2 ADLs 3+ ADLs Dead
0 ADLS 18667 17019 214 84 142 1208
1 ADL 285 105 65 28 24 63
2 ADLs 115 24 21 16 23 31
3+ ADLs 145 15 7 12 53 58

1982 Status
 Age 65-74 (1984 status)

TABLE 1: 1982 and 1984 status of persons aged 65-74

The meaning of a transition in our case is that subjects are in a particular

state at one point in time and then they are in another state at another point

in time. As such when an individual is in the same state at the start and at

the end of the observation period, we represent this as NIL in our transition

intensities table as no transition has taken place.

The table below represents calculated transition intensities using equation

4:1

0 ADLs 1 ADL 2 ADLs 3+ ADLs Dead
0 ADLs NIL 0.0057 0.0022 0.0038 0.0324
1 ADL 0.1842 NIL 0.0491 0.0421 0.1105
2 ADLs 0.1043 0.0913 NIL 0.1 0.1348
3+ ADLs 0.0517 0.0241 0.0414 NIL 0.2

1982 Status
Annual µij(x) Age 65-74

TABLE 2: Transition Intensities for ages 65-74

Next, using the rates in TABLE 2 and equation 4:2, we can now come up

with our Q(x) matrix
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Q(x) =

26666664
�0:0441 0:0057 0:0022 0:0038 0:0324

0:1842 �0:386 0:0491 0:0421 0:1105

0:1043 0:0913 �0:4304 0:1 0:1348

0:0517 0:0241 0:0414 �0:3172 0:2

0 0 0 0 0

37777775
Where x represents the age-group 64� 75

We now employ online software (bluebit) to calculate eigenvalues and

eigenvectors for Q(x) yielding the following results:

� Eigenvalues are:

�1 = �0:0382
�2 = �0:2647
�3 = �0:3883
�4 = �0:4866
�5 = 0

� Corresponding eigenvectors are given by:

�1 =

26666664
�0:7561
�0:482
�0:3738
�0:2373

0

37777775, �2 =
26666664
�0:0289
0:4337

0:6167

0:6563

0

37777775, �3 =
26666664
0:0099

�0:7542
�0:4278
0:4981

0

37777775, �4 =
26666664
�0:0017
0:3768

�0:9107
0:1693

0

37777775,
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�5 =

26666664
0:4472

0:4472

0:4472

0:4472

0:4472

37777775
The eigenvalues are distinct, therefore as before we have:

Q (x) = A (x)D (x)A (x)�1

where:

A (x) =

26666664
�0:7561 �0:0289 0:0099 �0:0017 0:4472

�0:482 0:4337 �0:7542 0:3768 0:4472

�0:3738 0:6167 �0:4278 �0:9107 0:4472

�0:2373 0:6563 0:4981 0:1693 0:4472

0 0 0 0 0:4472

37777775
We use online software again to calculate A (x)�1, yielding:

A (x)�1 =

26666664
�1:2906 �0:0267 �0:0135 �0:0265 1:3573

�0:7082 0:4013 0:3367 0:9109 �0:9408
0:3585 �0:7588 �0:1859 0:692 �0:1058
�0:1182 0:6392 �0:7771 0:3026 �0:0464

0 0 0 0 2:2361

37777775
and

P1
k=1

tk

k!
D (x)k =

26666664
e�1t � 1 0 0 0 0

0 e�2t � 1 0 0 0

0 0 e�3t � 1 0 0

0 0 0 e�4t � 1 0

0 0 0 0 e�5t � 1

37777775
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=

26666664
�0:0375 0 0 0 0

0 �0:2326 0 0 0

0 0 �0:3218 0 0

0 0 0 �0:3853 0

0 0 0 0 0

37777775
Now we have:

P (x; t) = I + A (x)
�P1

k=1
tk

k!
D (x)k

�
A (x)�1

=

26666664
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

37777775+
26666664
�0:0425 0:0048 0:002 0:0034 0:0324

0:1523 �0:3179 0:0335 0:0317 0:1005

0:0914 0:0619 �0:3468 0:0704 0:1231

0:0469 0:0184 0:029 �0:2699 0:1756

0 0 0 0 0

37777775

=

26666664
0:9575 0:0048 0:002 0:0034 0:0324

0:1523 0:6821 0:0335 0:0317 0:1005

0:0914 0:0619 0:6532 0:0704 0:1231

0:0469 0:0184 0:029 0:7301 0:1756

0 0 0 0 1

37777775
Due to rounding o¤ the rows may not add up to 1 but using the original

values they add up to 1.

4.2.2 75-84 age group

The table below consists of the total number of individuals starting from

various states in 1982 and the corresponding number of people in those states

in 1984 for the ages between 75 and 84.
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Initial Number 0 ADLs 1 ADL 2 ADLs 3+ ADLs Dead
0 ADLs 9572 7715 352 111 175 1219
1 ADL 345 98 63 26 48 110
2 ADLs 126 19 12 20 28 47
3+ ADLs 157 13 7 15 60 62

1982 Status
 Age 75-84 (1984 status)

Table 3: 1982 and 1984 status of persons aged 75-84

Next, we have the table of calculated transition intensities using equation

4:1

0 ADLs 1 ADL 2 ADL 3 ADL Dead
0 ADLs NIL 0.0184 0.0058 0.0091 0.0637
1 ADL 0.142 NIL 0.0377 0.0696 0.1594
2 ADLs 0.0754 0.0476 NIL 0.1111 0.1865
3+ ADLs 0.0414 0.0223 0.0478 NIL 0.1975

Annual µij(x,t) Age 75-84
1982 Status

TABLE 4: Transition intensities for ages 75-84

Now, we use TABLE 4 and equation 4:2 to come up with the Q(x) matrix

for this age-group.

Q(x) =

26666664
�0:097 0:0184 0:0058 0:0091 0:0637

0:1420 �0:4087 0:0377 0:0696 0:1594

0:0754 0:0476 �0:4206 0:1111 0:1865

0:0414 0:0223 0:0478 �0:3089 0:1975

0 0 0 0 0

37777775
Where x represents the age-group 75� 84

Our eigenvalues are calculated to be:
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�1 = �0:0816
�2 = �0:2640
�3 = �0:4237
�4 = �0:4658
�5 = 0

Corresponding eigenvectors are given by:

�1 =

26666664
0:7985

0:4385

0:3232

0:2564

0

37777775, �2 =
26666664
0:1020

�0:3915
�0:5745
�0:7114

0

37777775, �3 =
26666664
0:0450

�0:8217
�0:4592
0:3343

0

37777775, �4 =
26666664
�0:0083
0:3399

�0:9115
0:2313

0

37777775,

�5 =

26666664
0:4472

0:4472

0:4472

0:4472

0:4472

37777775
The eigenvalues are distinct, therefore as before we have:

Q (x) = A (x)D (x)A (x)�1

where:

A (x) =

26666664
0:7985 0:1020 0:0450 �0:0083 0:4472

0:4385 �0:3915 �0:8217 0:3399 0:4472

0:3232 �0:5745 �0:4592 �0:9115 0:4472

0:2564 �0:7114 0:3343 0:2313 0:4472

0 0 0 0 0:4472

37777775
calculation of A (x)�1, yields:
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A (x)�1 =

26666664
1:1639 0:0776 0:0413 0:0908 �1:3736
0:5419 �0:1854 �0:3197 �0:9677 0:9309

0:3246 �0:8503 �0:1572 0:6415 0:0414

�0:0925 0:5728 �0:8017 0:319 0:0024

0 0 0 0 2:2361

37777775

and
P1

k=1
(tD(x))k

k!
=

26666664
�0:0784 0 0 0 0

0 �0:2320 0 0 0

0 0 �0:3454 0 0

0 0 0 �0:3724 0

0 0 0 0 0

37777775
Therefore:

P (x; t) = I + A (x)
�P1

k=1
tk

k!
D (x)k

�
A (x)�1

=

26666664
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

37777775+
26666664
�0:0910 0:0145 0:0049 0:0082 0:0633

0:1131 �0:3333 0:0264 0:0507 0:1432

0:0629 0:0329 �0:3408 0:0787 0:1663

0:0365 0:0167 0:0336 �0:2631 0:1763

0 0 0 0 0

37777775

=

26666664
0:909 0:0145 0:0049 0:0082 0:0633

0:1131 0:6667 0:0264 0:0507 0:1432

0:0629 0:0329 0:6592 0:0787 0:1663

0:0365 0:0167 0:0336 0:7369 0:1763

0 0 0 0 1

37777775

4.2.3 85+ age group

The table below consists of the total number of individuals starting from

various states in 1982 and the corresponding number of people in those states

in 1984 for ages 85 and above.
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Initial Number 0 ADLs 1 ADL 2 ADLs 3+ ADLs Dead
0 ADLs 2134 1341 173 66 94 460
1 ADL 206 39 49 13 35 70
2 ADLs 84 6 11 11 16 40
3+ ADLs 104 8 5 10 28 53

1982 Status
 Age 85+ (1984 status)

TABLE 5: 1982 and 1984 status of persons aged 85+

Again, we have the table of calculated transition intensities using equation

4:1

0 ADLs 1 ADL 2 ADL 3 ADL Dead
0 ADLs NIL 0.0405 0.0155 0.022 0.1078
1 ADL 0.0947 NIL 0.0316 0.085 0.1699
2 ADLs 0.0357 0.0655 NIL 0.0952 0.2381
3+ ADLs 0.0385 0.024 0.0481 NIL 0.2548

Annual µij(x,t) Age 85+
1982 Status

TABLE 6: Transition intensities for ages 85+

Now, using TABLE 6 and equation 4.1, we calculate Q(x) for this age-

group.

Q(x) =

26666664
�0:1858 0:0405 0:0155 0:0220 0:1078

0:0947 �0:3811 0:0316 0:085 0:1699

0:0357 0:0655 �0:4345 0:0952 0:2381

0:0385 0:0240 0:0481 �0:3654 0:2548

0 0 0 0 0

37777775
Where x represents the age-group 85+

Calculation of the eigenvalues yields:
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�1 = �0:1496
�2 = �0:3131
�3 = �0:4321
�4 = �0:472
�5 = 0

The corresponding eigenvectors are given by:

�1 =

26666664
0:7972

0:4607

0:2922

0:2585

0

37777775, �2 =
26666664
0:3245

�0:4987
�0:5963
�0:539
0

37777775, �3 =
26666664
0:1085

�0:7820
�0:3727
0:4876

0

37777775, �4 =
26666664
0:0324

�0:1138
�0:8998
0:4199

0

37777775,

�5 =

26666664
0:4472

0:4472

0:4472

0:4472

0:4472

37777775
The eigenvalues are distinct and we therefore have:

Q (x) = A (x)D (x)A (x)�1

where:

A (x) =

26666664
0:7972 0:3245 0:1085 0:0324 0:4472

0:4607 �0:4987 �0:7820 �0:1138 0:4472

0:2922 �0:5963 �0:3727 �0:8998 0:4472

0:2585 �0:539 0:4876 0:4199 0:4472

0 0 0 0 0:4472

37777775
We use online software again to calculate A (x)�1, yielding:
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A (x)�1 =

26666664
0:9943 0:2342 0:1216 0:2473 �1:5973
0:5736 �0:2927 �0:3433 �0:8595 0:9219

0:2429 �1:0571 0:4399 0:6376 �0:2633
�0:1579 0:7078 �1:0265 0:3857 0:0909

0 0 0 0 2:2361

37777775

and we have:

1X
k=1

(tD (x))k

k!
=

26666664
�0:1389 0 0 0 0

0 �0:2688 0 0 0

0 0 �0:3509 0 0

0 0 0 �0:3762 0

0 0 0 0 0

37777775

Using the expression:

P (x; t) = I + A (x)

 1X
k=1

tk

k!
D (x)k

!
A (x)�1
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We have:

P (x; t) =

26666664
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

37777775+
26666664
�0:1675 0:0312 0:0123 0:0186 0:1054

0:0732 �0:314 0:023 0:0604 0:1575

0:0299 0:045 �0:35 0:0662 0:2089

0:0308 0:0182 0:0328 �0:3034 0:2216

0 0 0 0 0

37777775

=

26666664
0:8325 0:0312 0:0123 0:0186 0:1054

0:0732 0:6860 0:023 0:0604 0:1575

0:0299 0:045 0:65 0:0662 0:2089

0:0308 0:0182 0:0328 0:6966 0:2216

0 0 0 0 1

37777775

4.3 Transition Probabilities

We would like to collect transition probabilities for the di¤erent age-groups

into tables according to the initial states so that we can see if our expectations

are met.

The table below represents the transition probabilities for the di¤erent

age-groups with initial state 1 (0 ADLs).

65-74 75-84 85+
p11 0.9575 0.909 0.8325
p12 0.0048 0.0145 0.0312
p13 0.002 0.0049 0.0123
p14 0.0034 0.0082 0.0186
p15 0.0324 0.0633 0.1054

State 1

TABLE 7: Initial state 1

Remarks:

62



� The probability of remaining in state 1 reduces as age increases

� The probability of moving to states 2,3,4 and 5 increases with age

The following table represents the transition probabilities for the di¤erent

age-groups with initial state 2 (1 ADL).

�

65-74 75-84 85+
p21 0.1523 0.1131 0.0732
p22 0.6821 0.6667 0.686
p23 0.0335 0.0264 0.023
p24 0.0317 0.0507 0.0604
p25 0.1005 0.1432 0.1575

State 2

TABLE 8: Initial state 2

Remarks:

� The probability of remaining in state 2 is high for the age-group 65-
74, it then reduces for the age-group 75-84 and increases for the 85+

age-group

� The probability of recovery reduces with age

� The probability of moving to state 3 reduces with age

� The probability of moving to states 4 and 5 increases with age

Next, we have the table of transition probabilities for the di¤erent age-

groups with initial state 3 (2 ADLs).
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65-74 75-84 85+
p31 0.0914 0.0629 0.0299
p32 0.0619 0.0329 0.045
p33 0.6532 0.6592 0.65
p34 0.0704 0.0787 0.0662
p35 0.1231 0.1663 0.2089

State 3

TABLE 9: Initial state 3

Remarks:

� The probabilities of remaining in state 3 or moving to state 4 increases
from the �rst age-group to the next and then declines for the 85+

age-group

� The probability of complete recovery (i.e. moving to state 1) reduces
with age

� The probability of partial recovery (i.e. moving to state 2) is highest
for age-group 65-74 with a decline for ages 75-84 and an increase for

ages 85+

� The probability of moving to state 5 increases with age

Finally, we have the table of transition probabilities for the di¤erent age-

groups with initial state 4 (3 ADLs).
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65-74 75-84 85+
p41 0.0469 0.0365 0.0308
p42 0.0184 0.0167 0.0182
p43 0.029 0.0336 0.0328
p44 0.7301 0.7369 0.6966
p45 0.1756 0.1763 0.2216

State 4

TABLE 10: Initial state 4

Remarks:

� The probabilities of remaining in state 4 or moving to state 3 increases
from the �rst age-group to the next and then declines for the 85+

age-group

� The probability of complete recovery (i.e. moving to state 1) reduces
with age

� The probability of moving to state 2 is highest for age-group 65-74 with
a decline for ages 75-84 and an increase for ages 85+

� The probability of moving to state 5 increases with age

4.4 Actuarial Calculations

In this section we wish to use the probabilities in the previous section to

form part of the equations of time-inhomogeneous Actuarial calculations for

stand alone-annuities.

We assume that the transition probability, pij (x; t), for a particular age-

group is the same for all the ages within the age-group where i; j = 1; 2; 3; 4; 5.

Illustration 1
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Consider an individual in the 65-74 age-group. Let b2 = 1000; b3 = 1700

and b4 = 2500 and let the starting state be state 1. Assume further that the

interest rate is 5% e¤ective annually.

Now the actuarial value is given by:

�LTC1 (0;1) =

+1X
h=1

�
b2p12 (x; h) + b

3p13 (x; h) + b
4p14 (x; h)

�
(1:05)�h

=
+1X
h=1

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)] (1:05)
�h

= [1000p12 (x; 1) + 1700p13 (x; 1) + 2500p14 (x; 1)] (1:05)
�1 +

+1X
h=2

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)] (1:05)
�h

where x refers to the age-group 65-74.

Since we have the values for the transition probabilities when h = 1, we

replace them in the equation to get:

�LTC1 (0;1) = [1000 � 0:0048 + 1700 � 0:002 + 2500 � 0:0034] (1:05)�1 +
+1X
h=2

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)] (1:05)
�h

= 15:9048 +
+1X
h=2

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)] (1:05)
�h

We can then express the premium as:

P �a11x:me = �LTC1 (0;1)

= 15:9048 +

+1X
h=2

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)] (1:05)
�h

66



and

�a11x:me =

m�1X
k=0

vkp11 (x; k)

= v0p11 (x; 0) + v
1p11 (x; 1) +

m�1X
k=2

vkp11 (x; k)

= 1 + (1:05)�1 0:9575 +

m�1X
k=2

vkp11 (x; k)

= 1:9119 +
m�1X
k=2

vkp11 (x; k)

Therefore:

P �a11x:me = �LTC1 (0;1)

P

 
1:9119 +

m�1X
k=2

vkp11 (x; k)

!
= 15:9048

+
+1X
h=2

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)]

� (1:05)�h

Therefore:

P =
15:9048 +

P+1
h=2 [1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)]�

1:9119 +
Pm�1

k=2 v
kp11 (x; k)

� (1:05)�h

Now,
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V 1t = �LTC1 (t;1)� P �a11x+t:m�te if t < m

V 1t = �LTC1 (t;1) if t � m

We assume t = 0 to get:

V 10 = 15:9048 +
+1X
h=2

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)] (1:05)
�h

�P
 
1:9119 +

m�1X
k=2

vkp11 (x; k)

!

V 2t ; V
3
t and V

4
t can be calculated using a similar argument and assuming

t = 0:

Illustration 2

Consider an individual in the 75-84 age-group. Let b2 = 1000; b3 = 1700

and b4 = 2500 and let the starting state be state 1. Assume further that the

interest rate is 5% e¤ective annually.

Now the actuarial value is given by:

�LTC1 (0;1) =
+1X
h=1

�
b2p12 (x; h) + b

3p13 (x; h) + b
4p14 (x; h)

�
(1:05)�h

=

+1X
h=1

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)] (1:05)
�h

= [1000p12 (x; 1) + 1700p13 (x; 1) + 2500p14 (x; 1)] (1:05)
�1 +

+1X
h=2

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)] (1:05)
�h

where x refers to the age-group 75-84.
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Since we have the values for the transition probabilities when h = 1, we

replace them in the equation to get:

�LTC1 (0;1) = [1000 � 0:0145 + 1700 � 0:0049 + 2500 � 0:0082] (1:05)�1 +
+1X
h=2

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)] (1:05)
�h

= 41:2667 +

+1X
h=2

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)] (1:05)
�h

We can then express the premium as:

P �a11x:me = �LTC1 (0;1)

= 41:2667 +
+1X
h=2

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)] (1:05)
�h

and

�a11x:me =

m�1X
k=0

vkp11 (x; k)

= v0p11 (x; 0) + v
1p11 (x; 1) +

m�1X
k=2

vkp11 (x; k)

= 1 + (1:05)�1 0:909 +
m�1X
k=2

vkp11 (x; k)

= 1:8657 +

m�1X
k=2

vkp11 (x; k)

Therefore:
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P �a11x:me = �LTC1 (0;1)

P

 
1:8657 +

m�1X
k=2

vkp11 (x; k)

!
= 41:2667

+

+1X
h=2

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)]

� (1:05)�h

Therefore:

P =
41:2667 +

P+1
h=2 [1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)]

1:8657 +
Pm�1

k=2 v
kp11 (x; k)

(1:05)�h

We have,

V 1t = �LTC1 (t;1)� P �a11x+t:m�te if t < m

V 1t = �LTC1 (t;1) if t � m

We assume t = 0 to get:

V 10 = 41:2667 +

+1X
h=2

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)] (1:05)
�h

�P
 
1:8657 +

m�1X
k=2

vkp11 (x; k)

!

V 2t ; V
3
t and V

4
t can be calculated using a similar argument and assuming

t = 0:
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Illustration 3

Consider an individual in the 85+ age-group. Let b2 = 1000; b3 = 1700

and b4 = 2500 and let the starting state be state 1. Assume further that the

interest rate is 5% e¤ective annually.

Now the actuarial value is given by:

�LTC1 (0;1) =

+1X
h=1

�
b2p12 (x; h) + b

3p13 (x; h) + b
4p14 (x; h)

�
(1:05)�h

=

+1X
h=1

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)] (1:05)
�h

= [1000p12 (x; 1) + 1700p13 (x; 1) + 2500p14 (x; 1)] (1:05)
�1 +

+1X
h=2

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)] (1:05)
�h

where x refers to the age-group 85+.

Since we have the values for the transition probabilities when h = 1, we

replace them in the equation to get:

�LTC1 (0;1) = [1000 � 0:0312 + 1700 � 0:0123 + 2500 � 0:0186] (1:05)�1 +
+1X
h=2

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)] (1:05)
�h

= 93:9143 +
+1X
h=2

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)] (1:05)
�h

We can then express the premium as:
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P �a11x:me = �LTC1 (0;1)

= 93:9143 +
+1X
h=2

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)] (1:05)
�h

and

�a11x:me =
m�1X
k=0

vkp11 (x; k)

= v0p11 (x; 0) + v
1p11 (x; 1) +

m�1X
k=2

vkp11 (x; k)

= 1 + (1:05)�1 0:8325 +
m�1X
k=2

vkp11 (x; k)

= 1:7929 +
m�1X
k=2

vkp11 (x; k)

Therefore:

P �a11x:me = �LTC1 (0;1)

P

 
1:7929 +

m�1X
k=2

vkp11 (x; k)

!
= 93:9143

+

+1X
h=2

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)]

� (1:05)�h

Therefore:
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P =
93:9143 +

P+1
h=2 [1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)]

1:7929 +
Pm�1

k=2 v
kp11 (x; k)

(1:05)�h

We have,

V 1t = �LTC1 (t;1)� P �a11x+t:m�te if t < m

V 1t = �LTC1 (t;1) if t � m

We assume t = 0 to get:

V 10 = 93:9143 +
+1X
h=2

[1000p12 (x; h) + 1700p13 (x; h) + 2500p14 (x; h)] (1:05)
�h

�P
 
1:7929 +

m�1X
k=2

vkp11 (x; k)

!

V 2t ; V
3
t and V

4
t can be calculated using a similar argument and assuming

t = 0:

We can perform similar calculations from di¤erent starting states.
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Chapter 5

CONCLUSIONS AND
RECCOMMENDATIONS

5.1 Conclusions

Multiple state models are e¤ective in pricing LTC products because:

� Given a suitably speci�ed model, they provide an accurate representa-
tion of the true process of insurance. In particular these models can

account correctly for the e¤ect of lives that recover and return to the

population exposed to risk.

� Developing and testing these models can give a high level of under-
standing of the product, and particularly the possible outcomes that

can occur over time and in particular scenarios.

On the other hand, these models have the following shortcomings:

� They can be complex to construct, di¢ cult to maintain and take a
considerable amount of computing power.
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� They require a large number of assumptions and many of these assump-
tions are either unknown or poorly speci�ed at the present time.

� The most commonly used multiple state models - Markov processes -
do not deal well with durational variation in transition rates, which

are common in long-term care.To do so either requires a great many

individual states or a semi-Markov model.

5.2 Recommendations

We propose the following improvements to our work:

� For completeness, we propose that a longitudinal dataset be analyzed
which has records of observations of initial and �nal states of individuals

at di¤erent time intervals with each observation period being short

enough for us to be able to assume that the transition intensities are

piece-wise constant.

� A study on Semi-Markov modelling of multiple state models be done
so as to allow for the durational variation in transition intensities.
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