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ABSTRACT 

We formulate a deterministic mathematical model for the HIV/AIDS.  
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MODEL FORMULATION 
 
In modeling the total human population at any time t, denoted by N(t). The total population is subdivided into sub-
population namely, Susceptible S(t), who are not yet infected but can be infected by HIV individuals through sexual 
contacts, HIV infected individuals not yet displaying symptoms of AIDS IH(t), individuals treated for HIV showing 
symptoms of AIDS, T(t)  and individuals with full blown AIDS still, A(t). 
 
Thus we have ( ) ( ) ( ) ( ) ( )tAtTtItStN H +++=                                 (1.1)                                                                                                                                                                                         
 
Where 1β  is per capita contact rate susceptible human with HIV infected individuals. λ  is recruitment rate/birth rate 

of humans. 1δ  is rate at which HIV infected individuals progress for treatment. 2ε  is the progression rate at which 

HIV will go back to HIV infected class after treatment. δ is treatment rate and π  is progression rate from treatment. 
 
The resulting system of equations is shown below: 
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We normalize the system (3.2) by introducing the following 
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Thus the system becomes 
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Positivity and boundedness of solutions 
 
Theorem 3.1: If S(0), I(0) and A(0) are non-negative, then so are s(t), i(t), th(t) and w(t) for all t>0. Moreover 
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From this theorem we conclude that it is sufficient to consider the dynamics of 3.2 in Ω . In this region, the model can 
be considered as being epidemiologically well posed (Hethcote, 2000). 
 
Stability of the disease-free equilibrium (DFE) 
 
At disease free equilibrium, it is assumed that there is no infection. Then we set 0=== wti (which can be 
interpreted as a quarantine program). But at disease free equilibrium, the susceptible population is equal to total 
population, that is to say 1=s . 
 
Therefore the Disease Free Equilibrium (DFE) denoted by 0E of the model system (1.3) is given by 

( ) ).0,0,0,1(0,0,0,0 == sE  
 

The Basic Reproduction Number, 0R  
 
The basic reproduction number of the model (3.3) is calculated using the next generation matrix (Driessche and 
Watmough, 2002). Using this approach, we have, 
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After taking partial derivatives we have  
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And then we have  
 



Francis Odundo*1, Richard Simwa2 and Omolo Ongati3/ Mathematical Modelling Of HIV Infection/ IJMA- 4(12), Dec.-2013. 

© 2013, IJMA. All Rights Reserved                                                                                                                                                       64   

 
( )

( ) ( )( )




















++−+++

+

=−

000
000

00
1 12

1

1
σλδεπδλδλ

λδβ

FV  

 
The reproduction number is the dominant eigenvalues of 1−FV . Thus 
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The threshold quantity R0 is the basic reproduction number of the normalized model system (1.3) for HIV/AIDS 
infection in a population with treatment. It measures the average number of new infections generated by a single 
infected individual in a completely susceptible population (Anderson et al 1995) 
 
Local Stability of Disease Free Equilibrium (DFE) – HIV/AIDS only 
 
Theorem 1: The Disease-free Equilibrium of the system (2.3) is locally asymptotically stable if R0 <1, and unstable if 
R0 >1. . Thus the theorem implies the disease can be eliminated from the community. Now to determine the local 
stability of E0, the following variation matrix is computed corresponding to equilibrium point E0. 
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From (2.7) clearly λη =1 , )(2 λαη +−= , 3η and 4η are obtained from 
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Thus the characteristic equation corresponding to 0M is given by  
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Thus according to Routh Hurwitz Criteria for a 2 x 2 system, E0 is locally asymptotically stable when 
 

1a  > 0 and 2a  > 0, 
 
Then from 2a > 0 we will have 
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This means 
 

10 <R  
 
The condition (3.8) is sufficient to satisfy all the equations 
 

1a  > 0 and 2a  > 0, 
 
It is clear that for 10 <R the disease free equilibrium 0E is locally asymptotically stable such that the infection does 

not persist in the population and under this condition the endemic equilibrium does not exist. It is unstable for 10 >R
and then endemic equilibrium exists and the infection is maintained in the population. 
 
Global stability of the disease free equilibrium 
 
The disease free equilibrium of the system (3.3) is globally asymptotically stable whenever 10 <R  and unstable if

10 >R . 
 
This is based on the comparison theorem (Lakshmkantham et al, 1989) to prove the global stability. The rate of change 
of the variables representing the infected components of the system can be written as follows. 
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According to (Castillo-Chavez et al 2002) and (Driessche and Watmough 2002), all eigenvalues of the matrix F -V 
have negative real parts. It follows that the linearized differential inequality above is stable whenever 10 <R . 

Consequently ( )0,0,0,00 →=== wti h as .∞→t . 
 
Substituting 0=== wti h in (3.3) gives ( ) ( )0sts → as .∞→t  Thus we have established that the disease free 

equilibrium is globally asymptotically stable whenever 10 <R  and unstable if 10 >R . 
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Local Asymptotic Stability (LAS) of Endemic Equilibrium 
 
We shall now analyze the local asymptotic stability (LAS) of endemic equilibrium, by using the Centre Manifold 
theory (Gumel et al 2009). The application of this theorem (Centre Manifold).  
 
The theorem will be used to determine if the normalised model system (2.3) exhibit a backward or forward bifurcation 
at R0 =1. This will be done by re-naming the variables as follows; 
 
Let 
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The Jacobian of the normalised model system at disease free is given by 
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Let ∗= ββ1 be a bifurcation parameter and if we consider the case R0  =1 and solving for ∗= ββ1 from the equation 
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The linearization system of equation (2.14) is transformed with ∗= ββ1 which has a simple zero eigenvalues. Hence 
the centre manifold theory can be used to analyse the dynamics of (2.14) near  
 

∗= ββ1  
 
It can be shown that the Jacobian of (2.14) at ∗= ββ1 has a right eigenvector associated with the zero eigenvalues 
given by 
 

( )T4321 ,,, ωωωωω = , 
 



Francis Odundo*1, Richard Simwa2 and Omolo Ongati3/ Mathematical Modelling Of HIV Infection/ IJMA- 4(12), Dec.-2013. 

© 2013, IJMA. All Rights Reserved                                                                                                                                                       67   

 
Then 
 

( )
( ) ( )

( ) ( ) 

















=





































+−−
+−−

+−
−−

0
0
0
0

10
010
00

0

4

3

2

1

21

1

211

1

ω
ω
ω
ω

λαεπσ
λδσπ

δεσλβ
αβλ

              (1.16) 

 
This gives  
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Furthermore, the Jacobian at 0E has left eigenvector associated with the zero Eigenvalues at ∗= ββ1  given by
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For which 04 >v is a free left eigenvector. 
 
The Computations of a and b  
 
From the normalised model system (2.1) the associated non-zero partial derivatives of F at disease free equilibrium are 
given by 
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It follows from the above expression that 
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And subsequently 
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Where  

,1m ,2m ,3m and 4m have maintained the same meaning as in equation (3.16) 
 
Therefore ,0>α if all the following inequalities are satisfied: 
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For the sign of b it can be shown that the associated non-zero partial derivatives of F at disease free equilibrium are 
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Implying that 
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Since 0>a and 0>b then the system (2.3) will exhibit a backward bifurcation otherwise it will exhibit a forward 
bifurcation and endemic equilibrium is locally asymptotically stable. 
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Numerical Sensitivity analysis 
 
Numerical sensitivity analysis was done by computing sensitivity indices of basic reproduction number R0 which 
measures initial disease transmission using the approach by (Issa et al., 2010). 
 
Sensitive indices measures the relative change in state variable when the parameter changes. The normalized forward 
sensitivity index of a variable to a parameter is a ratio of the relative change in the variable to the relative change in the 
parameter. When the variable is a differentiable function of the parameter, the sensitivity index may be alternatively 
defined using partial derivatives. The normalized forward sensitivity index of a variable R0 that depends differentiable 
on parameter q is defined as 
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For example, the sensitivity index of parameter value with respect to β1 is given by  
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and other indices 
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 were obtained following the same method and tabulated as follows see Tables 3.3 and 3.4. 
 
Interpretation of Sensitivity Indices 
 
From Table 3.3 generally shows that when parameters β1 and π  increases whilst other parameters are kept constant, 
the value of R0 increases. This implies that the endemicity of the disease increases since they have positive indices. 
While these parameters 12 ,,, σδλε and π  when each one decreases, while keeping other parameters constant they 
decrease the value of 0 R implying that they decrease the endemicity of the disease as they have negative indices. 
 
Analyzing the parameters singularly, we notice that the most sensitive parameter is the contact rate of HIV only 
infection β1 with the susceptible. This is followed by the progression rate to treatment 1σ . The rest follow in this 
decreasing order of sensitivity, human recruitmentλ , tuberculosis related deathγ , HIV treatment rateδ , progression 

rate to HIV class for AIDS infectives’ accessing ARVS 2ε and the least sensitive parameter is the progression rate to 
AIDS class π . 
 
Reducing the number of contacts between susceptible individuals and HIV infected individuals will have a significant 
effect in the reduction of disease transmission and increase treatment awareness on the use of ARVs. 
 
Numerical simulations and discussions 
 
In this section, we illustrate the analytical results of the study by carrying out numerical simulations of the normalised 
model system (2.3) using parameter values from literature. 
 
Other parameter values are estimated to vary within realistic means, see Table 4.1. 
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Fig 1.1: Variation of proportion of HIV infected population for different values of β1 
 
We observe that there is an increase in the population of HIV infectives as we vary the values of the per contact rate β1 
upwards .If no control measures are in place, a large population will be infected with HIV/AIDS. 
 

 
Fig 1.2: Variation of proportion of HIV treated population for different values of δ  
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Fig 1.3: Variation of proportion of HIV patients’ population for different values ofδ  

 
Fig 1.2 shows that as we increase treatment, the treatment proportion decreases due to treated individuals leave the 
class. In Fig 2.4 we observe that when there is no treatment, that is δ = 0, the AIDS population reduces. This implies 
that death rate is high as there since there is no treatment However, when treatment is in progress a significant increase 
in the AIDS patients is observed. This also implies that patients access ARV’s which prolongs their 
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