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ABSTRACT 

 

A National System of Innovation (NSI) represents the strength and quality of the systematically organized 

interactions and linkages between Government, Knowledge-Based Institutions (KBIs), Industry and 

Financial Arbitrageurs. A comprehensive understanding of the factors that affect innovation in the NSI 

would be crucial in enhancing and promoting innovation as a development asset. The purpose of this paper 

is to identify the latent factors affecting innovation in NSI. Data used was from Ghana National System 

of Innovation Survey conducted in 2012.Exploratory factor analysis with principal component analysis 

extraction method and varimax rotation was used. The analysis produced four latent factors; Poor Human 

Capital, Regulatory Indiscipline, Undemanding Markets and Regulatory Risks. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

 

Innovation is widely recognized by industry and academics as an essential competitive enabler for any 

enterprise that wants to remain competitive, survive and grow. 

Organizations operating under the present conditions of global competition and rapid technological 

change must innovate in order to grow and survive. Changes in consumer desires, manufacturing 

technology and information technology are occurring at an increasing pace forcing corporations which do 

not lead or quickly adapt to these changes to cease to exist (Tushman & Anderson, 1986). Therefore, 

fostering innovation remains a major challenge for business executives and an area in which academic 

research can make valuable contributions. 

Surveys such as the annual innovation survey from The Boston Consulting Group [1] however, suggest 

that although the importance of innovation is fully realized by most enterprises and they continue to spend 

more and more on innovation, many of these initiatives do not generate satisfactory profit or competitive 

advantage. The problem does not lay in the invention part or the generation of innovative ideas, but more 

in the successful management of the innovation process from an idea to a successful product in the market. 

Piater (1984) has stated that a barrier to innovation is any factor that influences negatively the innovation 

process. There is a general assumption that an identification and removal of a barrier, will improve partly 

or completely the innovation process. In accordance with Hadjimanolis thoughts (2003) this is far from 

true, as removal of a barrier does not automatically guarantee smooth flow of the innovation process. 

Barriers to innovation can be classified in different ways and different typologies e.g. origin, source. A 

useful classification of barriers is made by Piatier (1984); he classifies company’s internal and external 

barriers.  

Hadjimanolis (2003) admits that external barriers have their origin in the surrounding environment and 

cannot be influenced. However, a company can affect internal ones. According to King’s (1990) 

classification there are individual, group, firm, inter-organization and regional/national level barriers. 

 An identification of barriers can assist in fostering an innovative culture in firms by supporting new ideas 

or galvanizing proper innovation management. On a national level, it is important to identify and remove 
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barriers in order to foster innovation based competition and do not allow failures to innovation (Woolthuis, 

2005; Chaminade et al., 2009). 

 There are contradictory assumptions regarding new firms: they are expected to participate in innovative 

activities more than established firms. New firms might be less constrained by risks of cannibalizing 

existing product portfolios. However, new firms confront barriers to innovation due to a lack of prior 

expertise and lack of financial resources (Schoonhoven et al., 1990).  

Classified parameters of barriers are: identification of a barrier, estimation of its frequency and ranking of 

importance. Barriers may vary also by sector (Preissl, 1998). 

 

1.2 Statement of Problem   

 

Innovation is becoming a part of public discussions, business forums, and media announcements more 

often than it did in the past. However, the term ‘innovation’ carries multiple meanings, and is often used 

in the narrow context of short-term relevance. 

Thus the answer to any question about ‘innovativeness’ varies considerably, depending on the sector and 

the context under discussion. Many analysts, business planners, and researchers now recognize that macro 

indicators—such as national investment in research and development (R&D), the patents filed in a year 

etc. are inadequate to capture the realities of innovation system. These indicators alone are not sufficient 

to provide policy makers with the necessary evidence to take concrete actions to stimulate and accelerate 

innovation in academia and the industry, agriculture, and services sectors. Multiple elements need to be 

considered in totality in order to address the challenges of innovation. 

Innovation studies have extensively examined the drivers and sources of innovation, paying particular  

attention to the technological  and organizational  capabilities that firms need to develop to become 

successful innovators (e.g. Schumpeter, 1950; Dosi, Nelson and Winter,  2002;  von  Hippel,  1994).  This 

literature, however, has been comparatively less systematic in examining the factors that block innovation 

or cause innovation failures. Redressing this unbalance is crucial for at least two reasons. On the one hand, 

from an innovation policy perspective, it is important to identify the entry barriers faced by potentially 

innovative firms, in order to foster innovation based competition dynamics and attenuate systemic failures 

to innovation (Woolthuis, 2005; Chaminade etal., 2009). 

On the other hand, from an innovation management perspective, It is important to identify the obstacles 

most commonly faced by firms along their  innovative  activities,  in order  to enhance  the economic  pay-

offs  from innovation-related efforts (Dougherty, 1992; Ferriani et al., 2008). 
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1.3 Objectives 

 

The overall objective of this study is to determine the statistical method that can be used to analyze data 

from national systems of innovation surveys. 

The specific objective will be; 

 To identify the factors that affect the national systems of innovation using factor analysis being 

one of the data reduction techniques. 

 

1.4 Significance of Study 

 

Innovation is the key to the economic development in today’s knowledge driven economy. Innovation has 

experienced a remarkable change in recent years as a consequence of a number of factors including the 

advance of science and technology and the increasing globalization of a number of markets and activities. 

The growing heterogeneity of sources affecting the process of firms’ innovation has led to the knowledge 

created out of the companies themselves achieving greater importance, and therefore to the central role to 

be played by the capacity of integrating inner and outer sources of technological capabilities with other 

competitive forces.  

To become competitive in today’s market it needs urgent shift towards a more knowledge-based economy 

which requires strong innovation system. Hence the need to investigate the factors hindering innovation. 

This study aims at improving the understanding of the factors that act as obstacles to innovation. 

Chapter 2 of this report describes what has been done before in the field of innovation. Chapter 3 describes 

the methods used to conduct the study. Chapter 4 describes the results of the study and finally chapter 5 

concludes on the result and give the necessary recommendations. 
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CHAPTER 2: LITERATURE REVIEW 

 

Some of the basic ideas behind the concept ‘national systems of innovation’ go back to Friedrich List (List 

1841). His concept ‘national systems of production’ took into account a wide set of national institutions 

including those engaged in education and training as well as infrastructures such as networks for 

transportation of people and commodities (Freeman 1995). He focused on the development of productive 

forces rather than on allocation issues. Referring to the ‘national production system’ List pointed to the 

need for the state to build national infrastructure and institutions in order to promote the accumulation of 

‘mental capital’ and use it to spur economic development rather than just to sit back and trust ‘the invisible 

hand’ to solve all problems.   

According to Chris Freeman recollections, the first person to use the expression 'National System of 

Innovation' was Bengt-Ake Lundvall and he is also the editor of a highly original and thought-provoking 

book (1992) on this subject. However, as he and his colleagues would be the first to agree (and as Lundvall 

himself points out) the idea actually goes back at least to Friedrich List's conception of "The National 

System of Political Economy' (1841), which might just as well have been called 'The National System of 

Innovation'. 

The main concern of List was with the problem of Germany overtaking England and, for underdeveloped 

countries (as Germany then was in relation to England), he advocated not only protection of infant 

industries but a broad range of policies designed to accelerate, or to make possible, industrialization and 

economic growth. Most of these policies were concerned with learning about new technology and 

applying it. 

At the outset, the NIS approach has been applied to reveal the structure of and the main actors involved 

in innovation processes in a couple of highly industrialized countries as well as in a smaller number of 

emerging countries. Typically, these early NIS studies (see Nelson (1993)) did not follow a formalized 

structure and concentrated at one country at a time. Due to the insights on the distinctive patterns of 

innovation processes and their determining forces that have been gained in these studies, and due to the 

realistic assumptions underlying the NIS approach, it disseminated rapidly through the economics of 

innovation literature.   

 This has led to the introduction of related but otherwise confined approaches to innovation systems. 

Consequently, the systemic approach to innovation now consists of various branches. Depending on the 
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chosen level of analysis, the concepts of regional innovation systems (e.g. Braczyk et al. (1998), Ohmae 

(1995)), sectoral innovation systems (Breschi and Malerba (1997), Malerba (2002), Cooke et al. (1997)) 

and technological systems (Carlsson (1995, 1997), Carlsson and Stankiewicz (1995)) constitute three 

alternatives to the concept of national systems. In addition, related concepts like the concept of industrial 

clusters (e.g. Porter (1998)) have been introduced. 

Studies of national systems of innovation are founded on the view that the innovation process of a country 

as well as of an industry sector depends not only on how the individual institutions (e.g. firms, research 

institutes, universities) perform in isolation, but on how they interact with each other as elements of 

collective system of knowledge creation and use, and on their interplay with social institutions (such as 

values, norms and legal frameworks) (Gu, 1999, OECD, 1997).  An understanding of these systems is 

seen to be an aid to help policy makers develop approaches for enhancing innovative performance. 

While a significant amount of international literature is currently emerging on the concept of national 

systems of innovation, very little of this work has, however, been sector specific – and much of the work 

has been at a broad macro-level.  

Since the pioneering work on the nature of innovation in the 1970s (Gibbons and Johnston, 1974; Freeman, 

1974), a substantial literature has developed on the innovation process. This process is now known to be 

highly systemic and complex, to vary across industry, technology, and with different size of firm. In many 

ways it is idiosyncratic, as firms individually respond to their particular market and technological 

challenges. Research in this area points to the importance of managerial factors— in strategy, 

organizational structure and choices about technology— in determining the sources, nature and outcomes 

of innovation. All these factors make the innovation process difficult to measure in complete and 

standardized ways. Given the importance of innovation for national and corporate wealth and welfare, 

however, assessing the way it can be measured in a manner that can account for these factors is a valuable 

thing to do. Measurement enables comparisons to be made, and helps identify the need for improvement. 

A framework proposed by Neely et al (2001) suggest that the firm’s capacity to innovate and innovation 

itself do not depend upon a company’s resources and internal environment, but also on external facilitating 

factors (business support agencies, public grants, active local business networks etc) which tend to be 

different in different contexts. In detail the proposed framework is based on the following assumptions:  

  

1. A firm possesses an inherent capacity to innovate, which is embedded in the firm’s culture, internal 

processes and capabilities to understand the external environment.  
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2. The capacity to innovate of firm affects the innovativeness of the firm in terms of product and 

process innovation, and also organizational innovation.   

3. Even if a firm is highly innovative, it has to exploit its innovations in terms of outcomes – i.e. use 

them to reduce costs and/or to offer products or services to its customers. This is a condition to 

gain better business performance, such as market share and financial performance.  

  

The external contextual environment can influence both the firm’s capacity to innovate and the innovation 

itself. On the other hand the following factors are identified as factors inhibiting innovation:  

 Innovation is poorly defined because customer requirements are not well understood and therefore 

the goals are not established properly. This is often because some organizations tend to be 

internally focused and innovating activity is weighted in terms of economic returns and short- term 

goals such as profit improvement targets.   

 Culture is too inhibitive and as such does not foster innovation as an ongoing activity. Employees 

are not fully aware of the need to be proactive and innovate, and not necessarily encouraged and 

motivated to perform using their creative potential. There is lack of involvement, absence of team 

work, and the thinking that innovation is a management responsibility  

 Organizational factors such as attitudes of doing more of the same, rewarding the status quo, poor 

resource allocation and utilization.  

 

Booz Allen Hamilton [11] found that a common denominator among successful innovators is “a 

rigorous process for managing innovation, including a disciplined, stage-by-stage approval process 

combined with regular measurement of every critical factor, ranging from time and money spent to the 

success of new products in the market." 

 

If a substantial portion of the potentially innovative firms do not invest in innovation related activities, it 

is plausible to claim that the innovation system is suffering from systemic failures to innovation.  

Following Chaminade and Edquist (2006) and Chaminade et al.  (2008), we define systemic failures to 

innovation as factors weakening the capabilities of firms to engage in interactive learning and innovation, 

and therefore, hampering innovation at a system level. Systemic failures to innovation include: a) the lack 

of private institutional support for innovation, as for instance the 

restricted  availability  of  finance  for  activities  that  entail  high  levels  of  risk  and uncertainty; b) the 

lack of information on technological and market opportunities for 
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innovation,  as  a  consequence,  for  instance,  of  a  weak  connectivity  between organizations  in the  

innovation system;  c)  the lack of  an adequate  scientific  and research infrastructure,  as for instance,  

the weakness in the supply of an adequate skill-base from secondary and tertiary education; and d) the 

characteristics associated with the market  structure and the potential  entry barriers from incumbents;  

among other factors. 

One first indication of the extent to which barriers to innovation are prevalent among  firms in a particular 

system,  is provided by the proportion of firms that  assess that certain factors have been ‘highly important’ 

in hampering their innovation activities or shaping their decision of not engaging in innovative activities. 

From the Spanish Innovation Survey 2007, factors associated with availability of finance are deemed as 

the most important barriers for firms (about 30% of firms reporting that these barriers have been very 

important), followed by market related barriers (about 20%) and knowledge related barriers (about 10%). 

 

Most studies focus on the determinants of innovation (Freeeman, 1990; Cohen, 1995; Kleinknecht and 

Mohnen, 2001). Researchers and theorists agree that the organizations can have specific features like 

structure, culture, and processes that stimulate innovation (Amabile, 1988; Hamel, 2000). Obstacles to the 

innovation are of opposite nature and are discussed less in comparison to determinants. Still several 

empirical studies of innovation obstacles have been executed in Europe: Ylinenpää (1998) in Sweden, 

Mohnen and Rollers (2003) have made research for Ireland, Denmark, Germany and Italy. Galia and 

Legros (2004), Savignac (2006) researched obstacles for French firms.  

Using Community Innovation Survey data for European countries, Canepa and Stoneman (2002) found 

that financial constraints have more of an impact on not starting, delaying or postponing projects than 

other internal or external hampering factors. Other obstacles to innovations have received some attention 

too in the theoretical and empirical literature. Tiwari et al. (2007) found that older firms and firms that 

belong to a group are less likely to be financially constrained. 

Government, its policies and regulations, is a frequent source of barriers to innovation (Pol et al., 1999). 

He views barriers as a component of a national innovation climate in the country. Bureaucratic procedures, 

lack of properly settled national strategy, problems in policy communication and execution may cause 

abnormal external barriers for innovation process.  Piater (1984) admits that lack of government assistance 

was the third most important barrier to innovation in European countries.   

Mohnen and Röller (2005) consider the obstacles to innovation as indications of failures or weaknesses in 

the corresponding innovation policies. They argue whether innovation policies are enforcers or substitutes 

in the sense of reinforcing their negative effect on innovation behaviour and innovation result. The 



14 
 

research evidence suggests that substitutability among policies is more often the norm as far as the 

intensity of innovation is concerned. Governments should adopt a different types and elements of policies, 

for instance aide access to finance, promotion of Triple helix; allow firms to cooperate with other firms 

and technological institutions, or increase the amount of skilled personnel and reduce the regulatory issues.   

 Klein (2002) has classified five barriers existing on ‘’ individual’’ or ‘’organizational’’ level: ability 

barriers; knowledge barriers; functional barriers; intentional barriers and affective barriers. Internal 

barriers have to be perceived to be more important than the external ones. They are easier to identify and 

deal with. 

Klein’s (2002) classification of innovation barriers is similar to Corsten’s (1989), which defines that 

innovation barrier can be individual or organization related. 

Two most important groups among ‘’person’’ or ’’ individual’’ barriers are: ability and motivation. 

Abilities can be restricted by person’s knowledge and functional level. The knowledge barriers arise due 

to lacking knowledge or low absorptive capacity. Organizational barriers may arise from ineffective 

structure or culture. Financial barriers are among the most often mentioned to innovation fostering. The 

risk of costs, viability assessment and financing of innovation according to Freel (2000) are the main 

obstacles. Hall (2000) also admits that financial problems are particularly acute in the case of innovation 

activities due to some of their inherent characteristics. Innovation projects are riskier than physical 

investment projects and therefore outside investors require a high risk taking approach for the financing 

of innovation activities. Savignac (2006) reports that 17.25 % businesses with more than 500 employees 

and a sample of small business firms suffer from financing constraints.  

Another area of innovation obstacles is related to a weak management commitment, which does not 

support innovation culture. Most issues related to unsupportive innovation culture are directly related to 

manager management style (Mosey et al. 2002). 
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CHAPTER 3: METHODOLOGY 

 

3.1 Data Source 

 

The data used in this survey is from Ghana National System of Innovation Survey that was carried out by 

the United Nations Industrial Development Organization (UNIDO), and looked at Ghana’s National 

System of Innovation. The study that was concluded in late 2012, was conducted in conjunction with 

Ghana’s Ministry of Trade and Industry and key national stakeholders, the Kwame Nkrumah University 

of Science and Technology (KNUST), and the Science and Technology Policy Research Institute 

(STEPRI). 

 

The sample population was composed of senior persons within the hierarchy of Government, KBIs, 

Medium- and High-Tech Industry (MHTI) and Arbitrageurs, and the rate of response from such a group 

is expected, at best, about 32%. For the GNSI survey a universe of 558 respondents was identified. From 

this, due to changes in contact information and inability to access current information and inactive email 

addresses, a convenient sample of 444 was obtained.  The convenient sample was surveyed for a period 

of 6 months the end result being a total number of 234 responses (52.7%). 

 

Actor  Universe  

Convenient 

Sample  Responses  Response Rate (%) 

Government  260 166 39 33.6 

MHT Industry  120 87 60 68.9 

Knowledge-Based Institutions  182 175 129 73.3 

Arbitrageurs (Financial Institutions, 

Venture Capitalists/Knowledge 

Brokers) 16 16 6 37.5 

All Actors  578 444 234 52.7 

*Note: the convenient sample represents Respondents whose contact details were verified through the UNIDO 

verification protocol. 
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Data was collected using the FOSS application Lime Survey. The online questionnaire consisted of 138 

variables. Some of the variables include level of innovativeness; barriers to innovation and policy 

instrument success; underlying factors to barriers to innovation; policy instruments and success; and 

underlying factors to policy success. 

For this study data on “Which of the following variables constrain innovation in your country?” 

question/variable is used do carry out the analysis. The question/variable had following variables; 

 

Which of the following variables constrain innovation in your 

country? 

d101 Lack of explicit policy support 

d102 Lack of finance 

d103 Lack of technically trained manpower 

d104 Quality of technically trained manpower 

d105 Hierarchical organizations 

d106 Brain Drain 

d107 Lack of competition 

d108 Lack of demanding customers 

d109 Lack of innovative customers 

d110 Lack of higher resolution regulations 

d111 Lack of information (knowledge gap) 

d112 Organizational rigidities 

d113 Innovation costs (too high) 

d114 Excessive perceived economic risk 

d115 Restrictive public / governmental regulations 

d116 Rate of access to ICT 

d117 ICT capacity 
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3.2   Factor Analysis. 

 

Factor analysis is a method for investigating whether a number of variables 1 2 m, ,...,YY Y of interest are  

linearly related to a smaller number of unobservable factors 1 2,F ,...,FKF . 

The starting point of factor analysis is a correlation matrix, in which the intercorrelations between the 

studied variables are presented. The dimensionality of this matrix can be reduced by “looking for variables 

that correlate highly with a group of other variables, but correlate very badly with variables outside of that 

group” (Field 2000: 424). These variables with high intercorrelations could well measure one underlying 

variable, which is called a ‘factor’. 

Factor analysis has the following two assumptions; 

 The variables should be quantitative at the interval or ratio level. Data for which Pearson 

correlation coefficients can sensibly be calculated should be suitable for factor analysis. 

 The data should have a bivariate normal distribution for each pair of variables, and observations 

should be independent.  

3.2.1 Testing normality 

 

There are several methods of assessing whether data are normally distributed or not. They fall into two 

broad categories: graphical and statistical. The some common techniques are: 

 

Graphical 

 Q-Q probability plots 

 Cumulative frequency (P-P) plots 

 

Statistical 

 W/S test  

 Jarque-Bera test 

 Shapiro-Wilks test 

 Kolmogorov-Smirnov test 

 D’Agostino test 
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Statistical tests for normality are more precise since actual probabilities are calculated. 

Tests for normality calculate the probability that the sample was drawn from a normal population. 

We will use Shapiro-Wilk (SW) test to demonstrate how statistical test for normality can be done. 

The basic approach used in the Shapiro-Wilk (SW) test for normality is as follows: 

 Rearrange the data in ascending order so that 
1 ... .nx x   

 Calculate SS as follows: 

2

1

( )
n

i

i

ss x x


   

 If n is even, let m =  n/2, while if n is odd let m = (n–1)/2 

 Calculate b as follows, taking the ai weights from Appendix 10 (based on the value of n) in the 

Shapiro-Wilk Table. Note that if n is odd, the median data value is not used in the calculation of 

b. 

i 1

1

a ( )
m

n i i

i

b x x 



   

 Calculate the test statistic W = b2 ⁄ SS 

 Find the value in Appendix 11 of the Shapiro-Wilk Table (for a given value of n) that is closest to 

W, interpolating if necessary. This is the probability that the data comes from a normal distribution. 

For example, suppose W = .975 and n = 10. This means that the probability that the data comes from a 

normal distribution is somewhere between 90% and 95%. SW is valid for samples from about n = 7 to 

2000. 

3.2.2 Correlation matrix. 

Covariance measures the relationship between two variables. It is given by; 

( ) ( )( )i j i i j jCov X X E X X      

http://www.real-statistics.com/statistics-tables/shapiro-wilk-table/
http://www.real-statistics.com/statistics-tables/shapiro-wilk-table/
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The correlation matrix comes from the variance-covariance matrix. Recall that the sample variance is;

2

2

( )

1

i

i S

x x

S
n









 the numerator of which can be written as: ( ) ( ).i i

i S

x x x x


  It is a sum of squares. 

This idea of sum of squares can be generalized, for example, to ( )(y ).xy i i

i S

SS x x y


   we see that with 

the generalized notation ( )( ).xx i i

i S

SS x x x x


    If there is a third variate like then 

(y )(z ),yz i i

i S

SS y z


   and so on. These sums of squares are consolidated into a compact form by using 

the notation of matrices as in: 

 

1

1

xx xy xz

yx yy yz

zx zy zz

S S S

S S S
n

S S S

 
 

   
 
 

         [1.1] 

 

 Which gives us the variance covariance matrix shown below; 

11 12 1

21 22 2

1 2

...

...

. . .

. . .

. . .

...

p

p

p p pp

  

  

  

 
 
 
 

   
 
 
 
  

 *Note  
2

ii i        [1.2] 

 

 has p and ( 1) / 2p p  covariance (symmetric). 

 

The matrix  is estimated by matrix S given by; 

 

 

 

Where 1 2[ , ,..., ]i i i ipX X X X  , S - sample covariance matrix. 

  

The correlation between two variables X and Y is defined from the covariance as follows; 

1

1
( )( )

1

n

i i i i

i

S X X X X
n 
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cov(X,Y)

var(X)Var(Y)

XY
XY

XX YY




 
   

The advantage of the correlation is that it is independent of the scale, i.e., changing the variables' scale of 

measurement does not change the value of the correlation. Therefore, the correlation is more useful as a 

measure of association between two random variables than the covariance. The empirical version of XY  

is as; 

XY
XY

XX YY

s
r

s s
  

 

The correlation is in absolute value always less than 1. It is zero if the covariance is zero and vice-versa. 

For p-dimensional vectors 1 2( , ..., )T

pX X X we have the theoretical correlation matrix; 

1 1 1 2 1

2 1 2 2 2

1 2

12 1

21 2

1 2

... 1 ...

.... 1 ...

. ..

. ..

. ..

... 1...

p

p

p p p p

X X X X X X
p

X X X X X X p

p pX X X X X X

xx xy xz

yx yy yz

zx zy zz

    

    



   

  

   

  

   
   
   
   
    
   
   
   
     

 
 

  
 
 

,  [1.3] 

 

and its empirical version, the empirical correlation matrix which can be calculated from the observations 

is; 

 



21 
 

1 1 1 2 1

2 1 2 2 2

1 2

...

....

.

.

.

...

p

p

p p p p

X X X X X X

X X X X X X

X X X X X X

r r r

r r r

R

r r r

 
 
 
 
 
 
 
 
 
 

       [1.4] 

 

3.2.3 Factorability of the correlation matrix 

 

A correlation matrix should be used in the EFA process displaying the relationships between individual 

variables.  Henson and Roberts pointed out that a correlation matrix is most popular among investigators. 

Tabachnick and Fidell recommended inspecting the correlation matrix (often termed Factorability of R) 

for correlation coefficients over 0.30.  

Hair et al. (1995) categorized these loadings using another rule of thumb as ±0.30=minimal, 

±0.40=important, and ±.50=practically significant. If no correlations go beyond 0.30, then the researcher 

should reconsider whether factor analysis is the appropriate statistical method to utilize. 

Another method of checking the suitability of factor analysis is to check the determinant of the correlation 

matrix. The determinant should be greater than 0.00001, showing that there is no multicollinearity 

problem. If multicollinearity is there one should consider removing some of the variables. 

Suppose we have a square matrix 

a b c

A d e f

g h i

 
 


 
  

,then its determinant which is denoted by A will be 

given by; 

      [1.5] 
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3.2.4 Sample Adequacy and Sphericity 

 

Prior to the extraction of the factors, several tests should be used to assess the suitability of the respondent 

data for factor analysis. These tests include Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy, 

and Bartlett's Test of Sphericity. The KMO index, in particular, is recommended when the cases to variable 

ratio are less than 1:5.  The KMO index ranges from 0 to 1, with 0.50 considered suitable for factor 

analysis. 

 

Let 
2 1 1(R )S diag    and 

1 .Q SR S Then Q is said to be the anti-image intercorrelation matrix. Let 

2 2sumr R  and
2 2sumq Q   for all off diagonal elements of R and Q,then 

  2 2 2( /    )MSA sumr sumr sumq  Although originally MSA was 1  2 / 2sumq sumr (Kaiser, 1970), 

this was modified in Kaiser and Rice, (1974) to be  2 2 2( /    )MSA sumr sumr sumq    This is the 

formula used by Dziuban and Shirkey (1974) and by SPSS. 

 

The Bartlett’s test checks if the observed correlation matrix 
(p p)

( )ijR r


  diverges significantly from the 

identity matrix (theoretical matrix under H0: the variables are orthogonal). The PCA can perform a 

compression of the available information only if we reject the null hypothesis.  

 

In order to measure the overall relation between the variables, we compute the determinant of the 

correlation matrix |R|. Under H0, |R| = 1; if the variables are highly correlated, we have 0.R     

The Bartlett's test statistic indicates to what extent we deviate from the reference situation |R| = 1. 

It uses the following formula. 

2 2 5
1 ln

6

p
n R

 
     

 
 where n-instance and p-variables. 

Under H0, it follows a 
2  distribution with a [p x (p-1) / 2] degree of freedom. 

 

 The Bartlett's Test of Sphericity should be significant (p-value<.05) for factor analysis to be suitable. 

 



23 
 

A p-value is something you calculate when you want to evaluate two competing hypotheses.  Given a pair 

of competing hypotheses ( 0 AH and H ), a p-value is calculated from relevant data you have gathered.  The 

p-value you get from your data will give you an idea of how plausible the hypotheses you are evaluating 

are. 

Suppose we have a game in which people bet on whether a coin will come up heads or tails when it is 

tossed. This game is perfectly legal as long as the coin is fair, meaning that every time it is tossed there is 

a 50 percent chance it comes up heads and a 50 percent chance it comes up tails. An agent from the Betting 

and Control Board suspects that the game has been using a weighted coin that has a greater probability of 

coming up heads than of coming up tails.  The owner of the game is arrested and is on trial. 

We can have the null hypothesis, that the game owner is innocent, and the alternative, that he is guilty, 

can be written like this: 

0 : 0.5

: 0.5A

H p

H p




 

Where p represents the probability that the coin comes up heads on any toss.   

Suppose ten tosses are made and the outcome is HHHHTHHHTH. To get the p-value, we define a “test 

statistic,” a value that we calculate from our raw data that will be useful in evaluating the competing 

hypotheses. The choice of a test statistic is an intuitively plausible. So let us take the number of heads 

observed in ten tosses as the test statistic. 

Next, we ask: “Qualitatively speaking, what values of the test statistic would challenge the null and support 

the alternative?”  In this example, it is large values of the test statistic that look inconsistent with the null. 

If we let X represent the number of heads in ten tosses of the coin, we can write; 

 trueishypothesisnulltheXPvaluep |8   

To calculate this probability, we somehow need to figure out the probability distribution of the test statistic 

X.  In this case, it is easy:  assuming the tosses of the coin are mutually independent (which is reasonable 

in this case), the number of heads in ten tosses is a binomial random variable. But what are the parameters 

of this binomial random variable?  The number of trials is ten, but do we know the probability of getting 

heads on any given trial?  If we did, we wouldn’t have to do this hypothesis test!  So all we can say is that 

the probability of heads on any trial is p, where p is the true, but unknown, probability of getting heads on 

any toss.  So what we know for sure about the distribution of X can be written as



X ~ Bin 10, p . 



24 
 

But the p-value is not simply the probability that X is greater than or equal to eight.  The question is, what 

would that probability be if the null hypothesis were true?  And since the null hypothesis is that 5.p , 

we can say the following:  If the null hypothesis is true, then



X ~ Bin 10,.5 . [You sometimes hear 

terminology like “under the null hypothesis,



X ~ Bin 10,.5 ,” or “the null distribution of X is binomial 

with n=10 and p=.5.”] 

So now we can say more about the p-value.  In fact we can calculate it: 



p value  P X  8 | the null hypothesis is true , where X ~ Bin 10, p 

 P X  8 , assuming X ~ Bin 10,.5 

 .0547

 

This means that there is just a 5.47 percent chance of getting eight or more heads in ten tosses of a fair 

coin.  More pointedly, if the coin in question in this trial were fair, there would be just a 5.47 percent 

chance of getting as many heads as we did when we tossed it ten times. 

3.2.5 Mathematics of the factor analysis model. 

We assume that we have a set of observed or manifest variable 1 2( , ,... )X X X Xq  ,assumed to be linked 

to a smaller number of unobserved latent variable 1 2f , f ,...fk ,where k<q ,by a regression model of the form; 

 

1 11 1 12 2 1 1

2 21 1 22 2 2 2

1 1 2 2

....

....

.

.

.

....

k k

k k

q q q qk k q

X f f f

X f f f

X f f f

   

   

   

    

    

    

        [1.6] 

 

The 'ij s are weights showing each iX  depends on the common factors. 

The 'ij s  are used in the interpretation of the factors i.e. larger values relate a factor to the corresponding 

observed variable and from this we infer a meaningful description of each factor. 

Equation [1.6] may be written more concisely in matrix form as; 
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X f              [1.7] 

Where 

11 1

21 2

1

...

...

.

.

.

...

k

k

q qk

 

 



 

 
 
 
 

  
 
 
 
  

 represent the factor loadings. 

1

.

.

.

k

f

f

f

 
 
 
 
 
 
 
 

 represent the factors. 

1

.

.

.

q







 
 
 
 
 
 
 
 

 represent the specific variate. 

In equation [1.7], the following assumptions are made; 

 The “residuals” term 1 2, ..., q   are uncorrelated with each other and with the factors 1 2, ..., kf f f . 

 The elements of   are specific to each ix  and hence are known as specific variates. 

The two assumptions above imply that given the value of the factors, the manifest variable are independent 

i.e. the correlations of the observed variable arise from their relationship with the factors. In factor 

analysis, the regression coefficients in  are more usually known as factor loadings. 

Since factor analysis usually works with the variances and covariances of the observed x  variables, it is 

sometimes referred to as ‘‘the analysis of covariance structures’’. Some hint of this is apparent in equation 

(1.6), where the absence of an intercept term suggests that the means of the observed variables are either 

zero or of no direct interest. Indeed, this is typically the case in factor analysis, where the task is to learn 

about inter-relationships among variables rather than model the levels of each variable. Moreover, it is 

generally not possible to estimate both the factor loadings and intercept terms (cf Jöreskog and Sörbom, 
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1989, ch10). Consequently, all the x variables and the unobserved f  are presumed to have zero means, 

constraining any intercept term in equation (1.6) to zero. 

Variance of variable ix ; 

2 2

1

k

i ij i

j

  


   

Where i is the variance of i  i.e. variance of ix can be split. 

2 2

1

k

i ij

l

h 


  is known as the communality. Which is the variance shared with other variable via the 

common factors. 

i  is the specific or unique variance. It is the variability of ix  not shared with other variables. 

1

cov( )
k

i j ij il jl

l

X X   


   

ij  do not depend on the specific variates in any way, the common factors above accounts for the 

relationship between the manifest variables i.e. 

     Where, ( )idiag         [1.8] 

3.2.6 How to decompose 

To decompose  or estimate S or R into the form   we will also need to determine the value of 

K (the number of factors), so that the model provide an adequate fit to S or R . 

The estimation problem of factor analysis is essentially that of finding ̂ and ̂  which; 

 

ˆ ˆS     or ˆ ˆR             [1.9] 
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3.2.7 Factor Analysis Extraction Methods 

 

There are numerous ways to extract factors: Principal components analysis (PCA), principal axis factoring 

(PAF), image factoring, maximum likelihood, alpha factoring, and canonical. The most common 

extraction methods are listed below; 

 

 Principal components analysis (PCA) 

 Principal axis factoring (PAF) 

 Maximum likelihood 

 Unweighted least squares 

 Generalised least squares 

 Alpha factoring 

 Image factoring 

 

However, PCA and PAF are used most commonly in the published literature. The decision whether to use 

PCA and PAF is fiercely debated among analysts, although according to Thompson the practical 

differences between the two are often insignificant, particularly when variables have high reliability, or 

where there are 30 or more variables. 

Thompson noted that PCA is the default method in many statistical programs, and thus, is most commonly 

used in EFA. However, PCA is also recommended when no priori theory or model exists. Pett et al. (2003) 

suggested using PCA in establishing preliminary solutions in EFA. 

3.2.8 Factor Analysis and Inference for Structured Covariance Matrix. 

The observable random variable X with P components has mean   and covariance matrix  .The factor 

model postulates that X is linearly dependent upon a few unobservable random variable 1 2, ,...., mf f f  

called common factors, and P additional source of variation 1 2, ,..., p   called error or specific factors. 
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1 1 11 1 12 2 1 1

2 2 21 1 22 2 2 2

1 1 2 2

...

...

.

.

.

...

m m

m m

p p p p pm m p

X l f l f l f

X l f l f l f

X l f l f l f

 

 

 

     

     

     

 

In matrix notations; 

X LF              

Since 0  it can be deleted to get;  

( 1)( ) ( 1)
X mp m p

L F  
         [1.10] 

i jl -loadings of the i variable on j factor. 

1 2, ,...., mf f f , 1 2, ,..., p   are unobservable. 

F and  are random vectors satisfying the following conditions (factor analysis model assumptions); 

 The unobservable factors jF  are independent of one another and of the error terms,  

 

[ ] 0 ( ) [ ] m mE F Cov F E FF 
     

 

 The error terms i  are independent of one another,  

 

1

2

0 ... 0

0 ... 0

.
[ ] 0 ( ) [ ]

.

.

0 0 ...

p p

p

E Cov E





   





 
 
 
 

    
 
 
 
  

 



29 
 

( )

( , ) E( ) 0
p m

Cov F F 


  i.e. F  and   are independent. 

A factor model with M common factors will have the following form; 

X LF    , where         [1.11] 

i  - mean of variable i 

i - ith specific factor 

jf  - jth common factor 

i jl - loading of the ith variable on the jth factor 

The unobservable random vectors F and  satisfy the conditions mentioned above. 

3.2.9 Covariance structure  

 

( ) ( )( )Cov X E X X        

          ( )( )E LF LF      

           [ (( ) )]E LF LF      

           E[( ( ) ( ) ]LF LF LF LF          

           ( ) ( ) ( )LEFF L E F L LE F E           

           LL            [1.12] 

Also; 

( , ) ( ) ( ) ( )Cov X F E X F E LF F E LFF F            

         ( ) ( )LE FF E F    

         L  
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3.2.10   Covariance structure of a factor model (orthogonal) 

 

i. ( )Cov X LL    or  

 

2 2 2

1 2

1 1

( ) ...

( ) ...

i i i im i

i k i k im km

Var X l l l

Cov X X l l l l

    

  
 

 

ii. ( , )Cov X F L       

( , )i j i jCov X F L  

The proportion of variance of the ith variable contributed by the m common factors is called the ith 

communality. The proportion of ( )i iiVar X   due to the specific factor is often called Uniqueness 

(specific Variance). 

2

ii i iih     1,2,...pi   

2 2 2

1 2 ...ii i i im i

Specific VarianceCommunality

l l l     
      [1.13] 

( )iVar X Communality Specific Variance   

3.2.11   Non-Uniqueness of Factor Loadings 

Factor loadings L are determined only up to an orthogonal matrix T.  Thus the loadings L LT and L 

both give the same representation. The communalities given by the diagonal elements of ( )( )LL L L  

are also affected by the choice of T. 

Explanation: Let T be an m x m orthogonal matrix, so that; 

TT T T     

X LF LTT F L F            

Where; 
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*L LT and F T F    

[ ] ( ) 0E F T E F    

[ ] [ ] TT m mCov F T Cov F T


      

Thus ( *)( *)LL LTT L L L            

3.2.12   Principal Component Analysis. 

 

Principal component solution of the Factor Model.  

Consider the data below which represent a sample from data collected on variables affecting 

innovation.X1, X2 and X3 represent the variables affecting innovation. Each question was responded to 

using a 5 point Likert scale with possible responses:  

1. Very Strong; 2. Strong; 3. Medium; 4. Weak; 5. Very Weak. 

Table 1: 

Institution Lack of explicit policy(X1) Lack of finance(X2) Lack of technically trained manpower(X3) 

1 3 2 1 

2 1 2 2 

3 2 1 1 

4 1 2 3 

5 2 4 2 

 

The principal component factor analysis of the sample covariance matrix S is specified in terms of its 

eigenvalue-eigenvector pair 1 1 2 2( ), ( ),..., ( )p pe e e   where 1 2 3   
. 

From the data in table 1. 

 

∑=[
0.7 0.05 −0.55
0.05 1.2 0.3
−0.55 0.3 0.7

] 
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            [1.14] 

3.2.13   Eigenvalues and Eigenvectors 

For every square matrix A , a scalar   and a nonzero vector x  can be found such that; 

Ax x  

0Ax x   

( ) 0A x    

The eigenvalues and eigenvectors for equation [1.14] can be gotten as follows; 

 

0.7 0.05 0.55

0.05 1.2 0.3

0.55 0.3 0.

( 0

7

)x



 



 



   



        [1.15] 

1.2 0.3 0.05 0.3 0.05 1.2
0.7 0.05 0.55

0.3 0.7 0.55 0.7 0.55 0.3

 


 

 
 

 
 

 
 

     0.7 ((1.2 ) (0.7 )) (0.3 0.3) 0.05 (0.05 0.7 ) ( 0.55 0.3) 0.55 (0.05 0.3) ( 0.55 (1.2 ))                      

 

Solving this will give the following eigenvalues; 

 1 2 31.42578434; 1.08094374; 0.09327192         [1.16] 

Replacing the values of 1 2 3, and   in [1.16] in equation [1.15] and solving for 'ix s and getting the 

orthogonal gives us the eigenvectors. 

Example let’s take 1 1.42578434 1.43  then; 

1

2

3

0.7 1.43 0.05 0.55

0.05 1.2 1.43 0.3

0.55 0.3 0.7 1.43

0

0

0

x

x

x

     
     

     
     
    



 







 

1 1 2 3

2 1 2 3

3 1 2 3

0.73 0.05 0.55

0.

0 0.73 0.05 0.55 0

0.23 0 0.05 0.23 0.3 0

0 0.55 0.32 0.7

05 0.3

0.55 0.3 0.73 3 0

x x x x

x x x x

x x x x

        
     

           
             



  



   [1.17] 
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Solving [1.17] simultaneously and getting the orthogonal gives us the following eigenvectors; 

1

-0.41

0.70

0.59

x

 
 





 

 

Similarly replacing 2 3and   and solving the equations gives us; 

2

0.63

0.68

0.38

x

 





 
  

   3

0.67

0.22

0.71

x

 






 
  

 

 

3.2.14   Factor loadings 

 

Let m p be the number of common factors. Then the matrix of estimated factor loadings ˆ
ijL is given 

by; 

1 1 2 2
ˆ ˆ ˆˆ ˆ ˆ ˆL ... m me e e   

  
        [1.18] 

For the data in table 1, the matrix will be; 

1 1

2 21 1 2 2 3 3

3 3

ˆ ˆ ˆˆ ˆ ˆ ˆL ;

e x

e e e where e x

e x

  



  
  



 

-0.41 0.63 0.67

1.43 0.70 1.08 0.68 0.09 0.22

0.59 0.38

L

71

ˆ

0.

   
 



  
     


     
          

 
 
 

 

 -0.48 0.66 0.20

L̂ 0.83 0.71 -0.07

0.71 -0.39 0.22
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But in factor analysis there is a rule that only factors or components with eigenvalue greater than 1 (

1i ) are retained. From [1.16] only 
1 2and  are greater than 1.Hence; 

1 2 2

-0.48 0.66

L̂ 0.83 0.71

0.71 -0.39

0.0340 -0.0202 0.0482

-0.0202 0.0070 -0.0124

0.0482 -0.0124 0.0438

0.0340; 0.0070; 0.0438

0.0340 0 0

0 0.0070 0

0 0 0.0438

  



 
 


 
  

 
 


 
  

  

 
 


 
  

       [1.19] 

 

3.2.15   Communalities 

 

The communalities are estimated as; 

2 2 2 2

1 2 ...i i i imh l l l             [1.20] 

From the data in table1, 

2 2 2

1 2i i ih l l   

Hence; 

2 2 2

1

2 2 2

2

2 2 2

3

(-0.48) 0.66

0.83 0.71

0.71 (-0.39)

h

h

h

 

 

 

 

The estimated specific variance are provided by the diagonal elements of the matrix ˆ ˆS LL  
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1

2

0 ... 0

0 ... 0

. . .

. . .

. . .

0 0 ... p









 
 
 
 

  
 
 
 
  

with 
2 2

1

m

i ii ij i ii i

j

S l S h 


         [1.21] 

From the data in table 1; 

-0.48 0.66
-0.48 0.83 0.71

ˆ ˆ 0.83 0.71
0.66 0.71 -0.39

0.71 -0

0.7 0.05 0.55

0.05 1.2 0.3

0.55 0.3 0.7 .39

S LL

   
           
     



  

 

0.0340 -0.0202 0.0482

-0.0202 0.0070 -0.0124

0.0482 -0.0124 0.0438

 
 


 
  

 

 

Taking the diagonals gives us; 

1 2 20.0340; 0.0070; 0.0438      

Hence;  

0.0340 0 0

0 0.0070 0

0 0 0.0438
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Table 2. Estimated factor loadings, communalities, and specific variances. 

 

 

Variable, 

iX  

Observed 

variance 

2

iS  

Estimated factor 

loadings on 

Communalities Specific 

variances 

 

1 1
ˆ,F l  2 2

ˆ,F l  
2

ih  2

i ii iS h    

Lack of explicit 

policy(X1) 

0.7  -0.48  0.66  0.666  0.0340  

Lack of finance(X2) 1.2  0.83  0.71  1.193  0.0070  

Lack of technically 

trained manpower(X3) 

0.7  0.71  -0.39  0.6562  0.0438  

Overall 2.6  1.4234a  1.0918a  2.5152   

   a Sum of squared loadings  

2

ii iS S  

 

3.2.16   Factor rotation 

 

After factor extraction it might be difficult to interpret and name the factors/components on the basis of 

their factor loadings. In order to improve interpretability of the factor loadings we can rely on the 

invariance to orthogonal rotation property of the factor model. In 1947 Thurston gave a definition of how 

an interpretable (simple) factor structure should be. The variables should be divisible into groups such that 

the loadings within each group are high on a single factor, perhaps moderate to low on a few factors and 

negligible on the remaining factors. One way to obtain a factor loading matrix satisfying such a condition 

is given by the so-called Varimax rotation. It looks for an orthogonal rotation of the factor loading matrix, 

such that the following criterion is maximized; 
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2

4 2

1 1

1

p p

ik ikm
i i

k

V
p p

 
 



  
  
 

   
  
    

 
      [1.22] 

Where  

1
2

2

1

ik ik
ik

m
i

ik
k

h

 





 

 
 
 


 

It should be noted that V is the sum of the variances of the squared normalized (within each row) factor 

scores for each factor. Maximizing it causes the large coefficients to become larger and the small 

coefficients to approach 0. 

A well-known analytical algorithm to rotate the loadings is given by the varimax rotation method proposed 

by Kaiser (1985). In the simplest case of k = 2 factors, a rotation matrix g  is given by; 

 

cos sin
( )

sin cos
g

 


 

 
  

 
       [1.23] 

representing a clockwise rotation of the coordinate axes by the angle . The corresponding rotation of 

loadings is calculated via ˆ ˆ ( ).L Lg   The idea of the varimax method is to find the angle   that 

maximizes the sum of the variances of the squared loadings ˆ
ijl within each column of L̂  is maximized. 

Other methods for carrying out rotation include; 

 Quartimax 

 Equamax 

 Direct oblimin 

 Promax 

Varimax, quartimax and equamax are orthogonal rotations whereas direct oblimin and promax are oblique 

rotations. The choice of rotation depends largely on whether or not you think that the underlying factors 

should be related. If you expect factors to be independent then you should select one of the orthogonal 

rotations (Varimax is the most recommended).However if there are some theoretical grounds supposing 

that your factors might correlate then direct oblimin should be selected. We will use orthogonal rotation 

for our example. 
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Considering the data in table 1 and the factor loadings in [1.19], we will get the following model; 

1 1 2 1

2 1 2 2

3 1 2 3

X -0.48 0.66

X 0.83 0.71

X 0.71 -0.39

F F e

F F e

F F e

  

  

 

         [1.24] 

Plotting the coefficients of F1 and F2 for the three equations and rotating the axes as shown in Figure 

below; 
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Figure 1: Rotation of loadings illustrated 
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The above rotation gives us the following new coordinates; 

1 1 2 1

2 1 2 2

3 1 2 3

X 0 0.82

X 1.09 +0

X 0 -0.81

F F e

F F e

F F e

  

 

 

          [1.25] 

Imagine rotating the coordinate axes anticlockwise as shown in Figure 1(b) above to arrive at the new 

coordinate axes indicated by the dotted lines. The coordinates of the three points with respect to the new 

axes can be calculated as shown in Figure 1(c).The new coordinates for all three points are shown in 

Figure 1(d).We see that the loadings of the Model in [1.25] are the result of applying to the loadings of 

the Model in [1.24] the rotation described above. It can be shown that any other rotation of the original 

loadings will produce a new set of loadings with the same theoretical variances and covariance’s as those 

of the original model. The number of such rotations is infinite large. 

For example the variance and covariance of X1 in [1.24] is given by; 

 

2 2 2 2

1 1 1

1 3

(X ) (0.83) (0.71) 1.19

(X ,X ) ( 0.48)(0.71) (0.66)( 0.39) 0.5982

Var

Cov

     

     
     [1.26] 

 

While X1 in [1.25] is given by; 

 

2 2 2 2

1 1 1

1 3

(X ) (1.09) (0) 1.19

(X ,X ) (0)(0) (0.82)( 0.81) 0.66

Var

Cov

     

    
       [1.27] 

3.2.17   Factor Scores 

 

The estimated values of the factors, called the factor scores, may also be useful in the interpretation as 

well as in the diagnostic analysis. To be more precise, the factor scores are estimates of the unobserved 

random vectors , 1,..., ,lF l k  for each individual , 1,..., .ix i n Johnson and Wichern (1998) describe three 

methods which in practice yield very similar results. Here, we present the regression method which has 

the advantage of being the simplest technique and is easy to implement. 
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The idea is to consider the joint distribution of X  and ,F  and then to proceed with the regression 

analysis. Under the factor model (1.10), the joint covariance matrix of X  and F   is: 

k

LL LX
Var

LF

    
        

       [1.28] 

 

Note that the upper left entry of this matrix equals  and that the matrix has size (p +k)  (p + k). 

Assuming joint normality, the conditional distribution of | XF  is multinormal with; 

 

   1E | XF x L X      

 

The covariance matrix can be calculated as; 

 

  1| X .kVar F x L L      

 

In practice, we replace the unknown ,L  and   by corresponding estimators, leading to the estimated 

individual factor scores: 

 

 1ˆ ˆ

;

ˆ

ˆ

var

i i

th

i

f L S x x

Where

f Estimated i factor score

L Matrix of estimated factor loadings

S VarianceCo iance matrix

 







    [1.29] 

We prefer to use the original sample covariance matrix S  as an estimator of  instead of the factor 

analysis approximation ˆ ˆLL   in order to be more robust against incorrect determination of the number 

of factors. 

The same rule can be followed when using R instead of S. Then (1.28) remains valid when standardized 

variables, i.e.  
1

2Z D X 


   are considered if 11( ,...., )ppD diag    In this case the factors are given 

by; 
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 1ˆ ˆ ,i if L R z  where  
1

2
iz S iD x x


  .       [1.30] 

 

L̂  is the loading obtained with the matrix R , and 11(s ,....,s ).S ppD diag  

If the factors are rotated by the orthogonal matrix g , the factor scores have to be rotated accordingly, that 

is; 

ˆ ˆ .i if g f         [1.31] 

 

CHAPTER 4:    DATA ANALYSIS AND RESULTS 

 

This section will describe how data analysis was conducted and explain the results that were obtained. 

 

4.1 Data Analysis 

 

The data was analyzed using SPSS version 21. 

 

4.1.1 Normality Test 

To test normality of variables, a histogram with a normal plot superimposed on it was plotted for each of 

the variable. And from the plots in can be seen that the data is normally distributed. An example of the 

plot is shown below. 
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4.1.2 Correlation Matrix 

 

Appendix 1 shows the R-matrix. It contains the Pearson correlation coefficient between all pairs of 

questions. We can use this correlation matrix to check the pattern of relationships. 

Scan the correlation coefficients and look for any greater than 0.9. If any are found then you should be 

aware that a problem could arise because of singularity in the data: check the determinant of the correlation 

matrix and, if necessary, eliminate one of the two variables causing the problem. 

For this data its value is greater than the necessary value of 0.00001. Therefore, multicollinearity is not a 

problem for these data. Hence there is no need to consider eliminating any questions at this stage.  
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4.1.3 KMO and Bartlett's test 

Output 2 below shows the output: the Kaiser-Meyer-Olkin measure of sampling adequacy and Bartlett's 

test of sphericity. The KMO statistic varies between 0 and 1. A value of 0 indicates that the sum of partial 

correlations is large relative to the sum of correlations, indicating diffusion in the pattern of correlations 

(hence, factor analysis is likely to be inappropriate). A value close to 1 indicates that patterns of 

correlations are relatively compact and so factor analysis should yield distinct and reliable factors.  

Kaiser (1974) recommends accepting values greater than 0.5 as acceptable (values below this should lead 

you to either collect more data or rethink which variables to include). For these data the value is 0.817, 

we should be confident that factor analysis is appropriate for these data.  

Bartlett's measure tests the null hypothesis that the original correlation matrix is an identity matrix. For 

factor analysis to work we need some relationships between variables and if the R-matrix were an identity 

matrix then all correlation coefficients would be zero. Therefore, we want this test to be significant (i.e. 

have a significance value less than 0.05). A significant test tells us that the R-matrix is not an identity 

matrix; therefore, there are some relationships between the variables we hope to include in the analysis. 

For this data, Bartlett's test is highly significant (p < 0.001), and therefore factor analysis is appropriate. 

 

 

KMO and Bartlett's Test 

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.817 

Bartlett's Test of Sphericity 

Approx. Chi-Square 1625.579 

df 136 

Sig. .000 

Output 1: 
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4.1.4 Eigenvalues 

In output 3 below the list eigenvalues associated with each linear component (factor) before extraction, 

after extraction and after rotation are shown. The eigenvalues associated with each factor represent the 

variance explained by that particular linear component. 

The fig also displays the eigenvalues in terms of the percentage of variance explained (so, factor 1 explains 

33.524% of total variance). It should be clear that the first few factors explain relatively large amounts of 

variance (especially factor 1) whereas subsequent factors explain only small amounts of variance. 

In the column labelled Extraction Sums of Squared Loadings. The values in this part of the table are the 

same as the values before extraction, except that the values for the discarded factors are ignored (hence, 

the table is blank after the third factor).  

In the final part of the table (labelled Rotation Sums of Squared Loadings), the eigenvalues of the factors 

after rotation are displayed. Rotation has the effect of optimizing the factor structure and one consequence 

for these data is that the relative importance of the four factors is equalized. Before rotation, factor 1 

accounted for considerably more variance than the remaining two (33.524% compared to 9.671%, 

8.437%and 7.037%), however after extraction it accounts for only 18.553% of variance (compared to 

15.701%, 13.804% and 10.611% respectively). 

Total Variance Explained 

Component 

Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 

Rotation Sums of Squared 

Loadings 

Total 
% of 

Variance 

Cumulative 

% 
Total 

% of 

Variance 

Cumulative 

% 
Total 

% of 

Variance 

Cumulative 

% 

1 5.699 33.524 33.524 5.699 33.524 33.524 3.154 18.553 18.553 

2 1.644 9.671 43.194 1.644 9.671 43.194 2.669 15.701 34.254 

3 1.434 8.437 51.632 1.434 8.437 51.632 2.347 13.804 48.058 

4 1.196 7.037 58.669 1.196 7.037 58.669 1.804 10.611 58.669 

5 0.978 5.754 64.423             

6 0.871 5.122 69.545             

7 0.823 4.844 74.389             

8 0.774 4.555 78.944             
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9 0.645 3.794 82.739             

10 0.573 3.373 86.111             

11 0.548 3.226 89.337             

12 0.475 2.792 92.129             

13 0.412 2.423 94.552             

14 0.346 2.034 96.586             

15 0.276 1.625 98.211             

16 0.157 0.924 99.135             

17 0.147 0.865 100             

Extraction Method: Principal Component Analysis. 

Output 3: 

 

4.1.5 Communalities 

Output 4 below shows the table of communalities before and after extraction. Principal component 

analysis works on the initial assumption that all variance is common; therefore, before extraction the 

communalities are all 1. The communalities in the column labelled Extraction reflect the common variance 

in the data structure. So, for example, we can say that 59.3% of the variance associated with Lack of 

explicit policy is common, or shared, variance. 

Another way to look at these communalities is in terms of the proportion of variance explained by the 

underlying factors. After extraction some of the factors are discarded and so some information is lost. The 

amount of variance in each variable that can be explained by the retained factors is represented by the 

communalities after extraction.  

The output also shows the component matrix before rotation. This matrix contains the loadings of each 

variable onto each factor. By default SPSS displays all loadings; however, we requested that all loadings 

less than 0.5 be suppressed in the output and so there are blank spaces for many of the loadings. 
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Communalities 

  Initial Extraction 

Lack_of_explicit_policy 1 0.593 

Lack_of_finance 1 0.616 

Lack_of_technically_trained_manpower 1 0.63 

Quality_of_technically_trained_manpower 1 0.715 

Hierachical_organizations 1 0.524 

Brain_drain 1 0.342 

Lack_of_competition 1 0.545 

Lack_of_demanding_customers 1 0.741 

Lack_of_innovative_customers 1 0.722 

Lack_of_high_resolution_regulations 1 0.354 

Knowledge_gap 1 0.543 

Organizational_rigidities 1 0.612 

High_innovation_costs 1 0.44 

Excessive_perceived_econ_risks 1 0.644 

Restrictive_govt_regulations 1 0.534 

Access_to_ICT 1 0.723 

ICT_capacity 1 0.696 

Extraction Method: Principal Component Analysis. 

Output 4: 
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Component Matrixa 

  
Component 

1 2 3 4 

Knowledge_gap 0.716       

Access_to_ICT 0.683       

Quality_of_technically_trained_manpower 0.68       

ICT_capacity 0.666       

Organizational_rigidities 0.655       

Lack_of_technically_trained_manpower 0.648       

Restrictive_govt_regulations 0.621       

Hierachical_organizations 0.598       

Lack_of_high_resolution_regulations 0.587       

Excessive_perceived_econ_risks 0.554       

Lack_of_competition 0.533       

Brain_drain 0.52       

High_innovation_costs         

Lack_of_demanding_customers   0.698     

Lack_of_innovative_customers 0.536 0.629     

Lack_of_explicit_policy         

Lack_of_finance         

Extraction Method: Principal Component Analysis. 

a. 4 components extracted. 

Output 4: 
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4.1.6 Factors 

SPSS has extracted four factors. Factor analysis is an exploratory tool and so it should be used to guide 

the researcher to make various decisions. One important decision is the number of factors to extract. By 

Kaiser's criterion we should extract four factors. However, this criterion is accurate when there are less 

than 30 variables and communalities after extraction are greater than 0.7 or when the sample size exceeds 

250 and the average communality is greater than 0.6. 

Another way of determining the number of factors to extract is by using the Scree plot. The scree plot is 

shown in Output 5 with a thunderbolt indicating the point of inflexion on the curve. The curve begins to 

tail off after four factors, before a stable plateau is reached. Therefore, we could probably justify retaining 

four factors. 

 If there are less than 30 variables and communalities after extraction are greater than 0.7 or if the 

sample size exceeds 250 and the average communality is greater than 0.6 then retain all factors 

with Eigen values above 1 (Kaiser’s criterion).   

 If none of the above apply, a Scree Plot can be used when the sample size is large (around 300 or 

more cases). 
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4.1.7 Rotated Component Matrix 

Output 6 shows the rotated component matrix (also called the rotated factor matrix in factor analysis) 

which is a matrix of the factor loadings for each variable onto each factor. This matrix contains the same 

information as the component matrix in Output 4 except that it is calculated after rotation. There are 

several things to consider about the format of this matrix. First, factor loadings less than 0.5 have not been 

displayed because we asked for these loadings to be suppressed. Second, the variables are listed in the 

order of size of their factor loadings because we asked for the output to be Sorted by size. 

Compare this matrix with the unrotated solution. Before rotation, most variables loaded highly onto the 

first factor. However, the rotation of the factor structure has clarified things considerably: there are four 

factors and variables load on the four factors. The suppression of loadings less than 0.5 and ordering 
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variables by loading size also makes interpretation considerably easier (because you don't have to scan 

the matrix to identify substantive loadings).  

 

Rotated Component Matrixa 

  
Component 

1 2 3 4 

Quality_of_technically_trained_manpower 0.797       

Access_to_ICT 0.774       

ICT_capacity 0.75       

Lack_of_technically_trained_manpower 0.712       

Knowledge_gap 0.526       

Lack_of_high_resolution_regulations         

Excessive_perceived_econ_risks   0.763     

Organizational_rigidities   0.714     

Hierachical_organizations   0.66     

Restrictive_govt_regulations   0.652     

Lack_of_demanding_customers     0.848   

Lack_of_innovative_customers     0.816   

Lack_of_competition     0.669   

Brain_drain         

Lack_of_finance       0.766 

Lack_of_explicit_policy       0.741 

High_innovation_costs       0.504 

Extraction Method: Principal Component Analysis.  

 Rotation Method: Varimax with Kaiser Normalization. 

a. Rotation converged in 6 iterations. 

Output 6: 
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CHAPTER 5:    CONCLUSIONS AND RECOMMENDATIONS 

 

The study found that 4 latent factors could be used to explain the factor affecting the National System of 

Innovation. Quality of technically trained manpower, access to ICT, ICT capacity, Lack of technically 

trained manpower and Knowledge gap formed the first factor (poor human capital). Excessive perceived 

economic risks, organizational rigidities, hierarchical organizations and restrictive government 

regulations formed the second factor (regulatory Indiscipline). Lack of demanding customers, lack of 

innovative customers and lack of competition formed the third factor (Undemanding custom). Lack of 

finance, Lack of explicit policy and High innovation costs formed the forth factor (Regulatory Risks). 

It is recommended that further research (regression analysis) be done on the four factors to determine the 

extent at which each of them affect the National Systems of Innovation.  
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APPENDIX 

Appendix 1: 

  

Lack_of_

explicit_p

olicy 

Lack_

of_fina

nce 

Lack_of_techn

ically_trained

_manpower 

Quality_of_tec

hnically_traine

d_manpower 

Hierachical

_organizati

ons 

Brain_drai

n 

Lack_of

_competi

tion 

Lack_of_dem

anding_custo

mers 

Lack_of_inno

vative_custo

mers 

Cor

relat

ion 

Lack_of_explicit_p

olicy 
1.000 .431 .130 .165 .231 .098 .091 -.022 .068 

Lack_of_finance .431 1.000 .161 .148 .161 .203 .126 .131 .147 

Lack_of_technicall

y_trained_manpow

er 

.130 .161 1.000 .806 .420 .304 .299 .157 .236 

Quality_of_technic

ally_trained_manp

ower 

.165 .148 .806 1.000 .341 .298 .296 .196 .287 

Hierachical_organi

zations 
.231 .161 .420 .341 1.000 .278 .167 .207 .275 

Brain_drain .098 .203 .304 .298 .278 1.000 .341 .289 .260 

Lack_of_competiti

on 
.091 .126 .299 .296 .167 .341 1.000 .416 .423 

Lack_of_demandin

g_customers 
-.022 .131 .157 .196 .207 .289 .416 1.000 .669 

Lack_of_innovativ

e_customers 
.068 .147 .236 .287 .275 .260 .423 .669 1.000 
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Lack_of_high_reso

lution_regulations 
.239 .198 .284 .366 .253 .198 .345 .210 .351 

Knowledge_gap .163 .169 .446 .464 .341 .344 .339 .236 .316 

Organizational_rig

idities 
.236 .201 .276 .257 .480 .295 .254 .178 .287 

High_innovation_c

osts 
.251 .297 .215 .210 .171 .206 .213 .145 .214 

Excessive_perceive

d_econ_risks 
.173 .223 .287 .208 .424 .181 .130 .246 .264 

Restrictive_govt_r

egulations 
.155 .116 .307 .356 .394 .201 .315 .285 .248 

Access_to_ICT .250 .216 .385 .494 .307 .322 .264 .158 .187 

ICT_capacity .279 .216 .353 .459 .306 .311 .260 .152 .163 

a. Determinant = .001 
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Appendix 2: 
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Appendix 3: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



60 
 

 

Appendix 4: 
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Appendix 5: 

 

 

Appendix 6: 

Component Transformation Matrix 

Component 1 2 3 4 

1 .630 .564 .434 .309 

2 -.364 .018 .820 -.442 

3 -.678 .407 .019 .612 

4 .102 -.718 .373 .579 

Extraction Method: Principal Component Analysis.   

 Rotation Method: Varimax with Kaiser Normalization. 
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Appendix 7: 

Component Score Coefficient Matrix 

 Component 

1 2 3 4 

Lack_of_explicit_policy -.026 -.049 -.084 .467 

Lack_of_finance -.079 -.114 .059 .500 

Lack_of_technically_trained_manpo

wer 
.277 .043 -.059 -.193 

Quality_of_technically_trained_man

power 
.327 -.046 -.028 -.159 

Hierachical_organizations -.007 .323 -.097 -.101 

Brain_drain .098 -.103 .168 .048 

Lack_of_competition .049 -.145 .331 .003 

Lack_of_demanding_customers -.120 -.051 .448 -.034 

Lack_of_innovative_customers -.108 -.020 .410 -.017 

Lack_of_high_resolution_regulations .043 .026 .096 .063 

Knowledge_gap .129 .112 .005 -.068 

Organizational_rigidities -.075 .337 -.071 .009 

High_innovation_costs -.108 .126 .000 .271 

Excessive_perceived_econ_risks -.183 .406 -.060 .032 

Restrictive_govt_regulations -.021 .308 -.030 -.124 

Access_to_ICT .307 -.149 -.062 .121 

ICT_capacity .295 -.140 -.073 .135 

Extraction Method: Principal Component Analysis.  

 Rotation Method: Varimax with Kaiser Normalization.  

 Component Scores. 
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Appendix 8: 

Component Score Covariance Matrix 

Component 1 2 3 4 

1 1.000 .000 .000 .000 

2 .000 1.000 .000 .000 

3 .000 .000 1.000 .000 

4 .000 .000 .000 1.000 

Extraction Method: Principal Component Analysis.   

 Rotation Method: Varimax with Kaiser Normalization.   

 Component Scores. 
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Appendix 9: 

Descriptive Statistics 

 Mean Std. 

Deviationa 

Analysis Na Missing N 

Lack_of_explicit_policy 1.80 .833 234 0 

Lack_of_finance 1.59 .713 234 0 

Lack_of_technically_trained_manpo

wer 
2.20 1.130 234 0 

Quality_of_technically_trained_man

power 
2.19 1.154 234 0 

Hierachical_organizations 2.36 1.023 234 0 

Brain_drain 1.98 .958 234 0 

Lack_of_competition 2.48 1.049 234 0 

Lack_of_demanding_customers 2.50 1.053 234 0 

Lack_of_innovative_customers 2.44 1.048 234 0 

Lack_of_high_resolution_regulations 2.42 1.008 234 0 

Knowledge_gap 2.15 .986 234 0 

Organizational_rigidities 2.24 .986 234 0 

High_innovation_costs 1.89 .816 234 0 

Excessive_perceived_econ_risks 2.15 .953 234 0 

Restrictive_govt_regulations 2.54 1.073 234 0 

Access_to_ICT 2.32 1.034 234 0 

ICT_capacity 2.21 1.033 234 0 

a. For each variable, missing values are replaced with the variable mean. 
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Appendix 10: 

 

Shapiro-Wilk Coefficients Table  
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Appendix 11: 

Shapiro-Wilk p-values Table 
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Appendix 12: 

 

Factor Scores 

 

 

 


