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ABSTRACT 
 

Pork is widely consumed worldwide. One potential threat to food security is ASFV 

(African Swine Fever Virus), the etiological agent of ASF (Africa Swine Fever) in pigs. To date 

there is no known vaccine for this disease that is characterized by 95-100% mortality rate and 

frequent outbreaks. The study aimed at predicting protein structures of the 83 unpredicted ORFs 

in ASFV because of the low sequence identity. I-TASSER an integrated platform that uses low 

sequence identity is used for protein structure prediction. It combines abinitio folding and 

template-based modeling for genome-wide structure prediction. The study managed to identify 

an essential protein for the survival of ASFV in stressful environments. The identified protein, 

H171R, is predicted to belong to the ferritin group and is essential for survival of the virus in the 

macrophages. Of the 83 uncharacterized proteins in ASFV ORFs, I-TASSER generated models 

with an average TM-score of 0.7185. TM-Score is a quantitative criterion for structure 

classification, if it is greater than 0.5 protein structures are classified to belong to the same class. 

SCOP (Structural Classification of Proteins), a manual based fold classification system for 

proteins was unable to classify 56% of PDB101 experimentally solved structures we used as 

templates.TM fold classified 99%. NetMHCIIpan3.0 identified viral peptides that bind to Swine 

Leukocyte Antigen. This may be useful for vaccine development. In conclusion, the study of 

ASFV proteins, represent promising progress towards genome-wide structure modeling and fold 

family assignment when the sequence homology is less than 20%.We identified an immunogenic 

protein H171R, a protein previously uncharacterised, and found it is a strong binder to Swine 

Leukocyte Antigen-DQ, hence it should be considered as a vaccine candidate.  
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Chapter 1 
1.0  INTRODUCTION. 
 

Africa swine fever virus from Asfarviridae family infects domesticated pigs causing a fatal 

hemorrhagic fever. Their natural hosts are warthogs, bush pigs and the soft tick vector. It was 

described in Kenya in the 1920`s, however, regular outbreaks of ASFV (Dixon et al. 2004; 

Atuhaire et al. 2013) have emerged and reemerged on a regular basis. Lack of a vaccine 

contributes to the difficulties in controlling this contagious disease that is characterised by 95-

100% mortality rate. In the absence of vaccines, the only available option for ASFV eradication 

is by slaughter and disposal of all infected and potentially infected pigs causing huge loses. In 

Africa the significance of pigs in assuring food security is being recognized especially by the 

rural poor. An extensive free-range pig breeding is of a growing importance for the subsistence 

of village farming in sub-Saharan African countries. During the last decade, small and 

sometimes bigger commercial pig farms have been developed in urbanized areas. Pig owners are 

mostly women farmers who play a major role in the feeding and the management. Availability of 

several sequenced viral genomes (http://www.uniprot.org/taxonomy/10497) have been made, 

these will help in the understanding the function of ASFV encoded proteins and of the host 

response to infection. Methods of manipulation of ASFV genome and new virus vectors make it 

suitable for delivery of foreign genes in pigs. These advances make the development of new 

diagnostic reagents and a vaccine for control of ASFV a realistic possibility. Currently genome 

sequencing projects end up producing linear amino acid sequences, but full understanding of the 

biological role of these proteins will require knowledge of their structure and function. Although 

experimental structure determination methods are providing high-resolution structures, they are 

often expensive and a certain subset of proteins is not crystallizable. Computational structure 

prediction methods used here provide valuable information for the large fraction of sequences 

whose structures have not been determined experimentally. Computational structure prediction 

methods have produced structures that are as good as native and therefore are of considerable 

accuracy. Computational structure prediction methods generally fall into three classes. The first 

class of protein structure prediction methods is knowledge based and includes comparative 

modeling. In comparative modeling the protein structure is predicted by aligning the unknown 

http://www.uniprot.org/taxonomy/10497
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sequence to an evolutionary related solved template structure sequence. The second class is 

threading, where similarity at sequence level is low having less than 30 percent, the structure 

within the amino acid is calculated by a suitable scoring function that is devised to help match 

the sequence and the existing finite fold numbers. The third class of fold prediction methods uses 

lattices and simulations to build full length models extracted from already established databases. 

These methods are also known as de novo or Abinitio methods, in predicting the structure from 

sequence alone searches can be done to establish the protein functions by comparing the 

generated models to an existent protein database, in this project, threading and abinitio method 

have been applied to the ORFs sequences of the African Swine Fever Virus with the aim of 

annotating all uncharacterized hypothetical proteins of the ASFV. This has helped to bridge the 

gap between known sequences and existing structures.                                             
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 1.1  PROBLEM  STATEMENT 

 

A significantly low number of Open Reading Frames in ASFV viral genome have been predicted 

and methods of ASFV survival are therefore not fully understood. By predicting ASFV protein 

structures and assigning structures to function, we hope to come up with new viral proteins 

involved in evading host defenses and therefore have more understanding in developing better 

vaccines against ASFV. 

 1.2  RESEARCH QUESTION 

The biological question of genome scale protein structure prediction and its application to ASFV 

when sequence identity is below 30% has not been exploited fully. The study attempts answer 

this question using I-TASSER method. 

 1.3  MAIN  OBJECTIVE 

To use I-TASSER to predict  83 unknown proteins of the ASFV genome. 

1.3.1 SPECIFIC OBJECTIVES 

1. To structurally classify predicted proteins. 

2. To identify a possible vaccine candidate in ASFV. 

3. To understand mechanisms of viral survival. 
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1.4 JUSTIFICATION 

  ASF is a threat to food security and the disease is endemic in half the African continent with 

frequent emergence and reemergence. Many ORFS in the ASFV genome have no known 

functions, with a large portion of Open Reading Frames annotated as hypothetical (83 out of 

149), therefore its of much use to predict the proteins to enable us understand their functions and 

design potentially better effective vaccines, experimental protein structure prediction methods 

are expensive and take quite long. Therefore computational protein structure prediction offer a 

reasonable means for this undertaking. 

1.5 CURRENT STATUS 

A large proportion of Open Reading Frames are annotated as hypothetical with no known 

function   based on homology searches. 

There is no known effective vaccine against the African Swine Fever Virus with frequent 

emergence and reemergence. 

1.6 SCOPE 

This project involves protein structure prediction on a genomic scale. Understanding the protein 

structure and function during the prediction is a useful step in effective vaccine development. 

1.7   CONTRIBUTIONS 

The project has identified an immunogenic protein H171R that is essential for survival in 

macrophages. The protein was previously uncharacterized. This has added new knowledge to the 

existent knowledge base, and therefore contributed towards understanding how the virus survives 

in the host. The project has also classified 82 of the 83 proteins this provide a  base for function 

prediction all the objectives set out to be achieved have been realized. 
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Chapter 2 
 

2.0  LITERATURE REVIEW: 

2.1 AFRICAN SWINE FEVER VIRUS 

African Swine Fever Virus (ASFV), the etiological agent of ASF,is a large, enveloped, double-

stranded DNA virus which replicates predominantly in the cytoplasm of Macrophages. The virus 

is morphologically similar to the Iridoviridae virus family but has a similar genome structure and 

replication strategy to the Poxviridae and therefore has been placed in a separate virus family the 

Asfarviridae, genus Asfivirus  in which it is the only member. ASFV is currently the only known 

DNA arbovirus. The Iridoviridae, Poxviridae and Asfarviridae virus families all belong to a 

group of Nucleocytoplasmic Large DNA Viruses (NCLDV) which also includes the 

Phycodnaviridae, and Mimivirus (Iyer et al. 2001). 

2.2 AFRICAN SWINE FEVER DISEASE 

African swine fever (ASF) is a devastating disease of domestic swine. The disease is 

characterized as a severe hemorrhagic fever with up to 100% mortality in infected herds. The 

disease was first described by Montgomery in 1920. Contact of domestic pigs with warthogs was 

identified as the source of infection. In Africa, ASF remains endemic, affecting almost half the 

continent. Outbreaks of ASF have occurred on a regular basis in many African countries since 

the mid 90s to date causing devastating losses to the rural poor as well as commercial farms.  In 

Kenya the disease re-emerged in 2013 in Mahimahiu killing 80 Pig. In Uganda and Tanzania, 

frequent outbreaks of African Swine Fever (Atuhaire et al. 2013) have occurred.  

The global pig industry is worth around $150 billion. In absence of a vaccine, the only available 

option for ASF eradication is stamping out by slaughter and disposal of all infected and 

potentially infected pigs. However this method is not practical in the poor African farmer 

context. ASFV is thus is a huge threat to food security for the rural poor whose livelihood 

depends on the pig industry. 
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2.3  ASFV INFECTION.  

Macrophages are key cells involved in activating and co-coordinating the innate and adaptive 

immune response to infection. The ability of ASFV to infect and replicate in macrophages 

(Basta et al. 2010) is thought to play a critical role in ASFV disease pathology. ASFV has been 

reported to infect other cell types, including endothelial cells, fibroblasts and reticular cells 

(Abrams et al. 2008) . However, infection of these cells is limited to the late stages of infection 

after the characteristic symptoms of ASFV and therefore does not play a central role in disease 

pathology. ASFV exhibits a predominantly cytoplasmic replication cycle. Entry of the virus 

occurs via receptor-mediated endocytosis, and is energy and temperature dependent. Following 

internalization, the viral envelope fuses with that of endosomes at an acidic pH releasing the viral 

core to the cytoplasm of the host cell (Alonso et al. 2013). The virus initiates gene expression 

immediately following entry into the cytoplasm, using enzymes and factors packaged into the 

virus core. Viral gene transcription does not require the host RNA polymerase and is dependent 

on the viral RNA polymerase and specific virus-encoded transcription factors. 

 

2.4  ASFV HOST EVASION MECHANISMS 

Various authors have made an effort in understanding viral proteins involved in evading host 

defense mechanisms (Dixon et al. 2004; Yáñez et al. 1995). ASFV uses various mechanisms to 

evade the host immune system: The virus encodes A238L protein that inhibits activity of NF-KB 

directly and NFAT indirectly via inhibition of calcineurin activity (Abrams et al. 2008; Miskin et 

al. 2000). Hence this protein can inhibit the expression of a wide range of immunomodulatory 

proteins in macrophages whose expression depends on these factors. 

 C-type lectin prevents the presentation of  MHC class 1 antigens, ASFV CD2v protein encoded 

by the virus is expressed on the surface of infected cells  causes red blood cells to adhere to the 

surface of infected cells, camouflaging them from the immune system (Goatley & Dixon 2011). 

ASFV CD2v is also present on extracellular virus particles, which adhere to red blood cells, 

facilitating dissemination of ASFV in infected animals. Expression of CD2v in infected 

macrophage also interferes with the ability of T cells to divide (Goatley & Dixon 2011; Dixon et 

al. 2004). Virus infection causes apoptosis in neighboring T and B cells  (Vallée et al. 2001), 

thus reducing populations of these important immune cells. The virus also encodes proteins 

which inhibits apoptosis (Revilla et al. 1997) of the host cell, thereby promoting virus 
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replication. In this study as one of the objectives was finding any protein the virus uses for 

survival and evading host defenses, previous studies show that half to two-thirds of the 

approximately 149 genes encoded by ASFV are not essential for replication in cells but have an 

important role for virus survival and transmission in its hosts (Dixon et al. 2004). These genes 

provided an untapped repository, and will be valuable tools for deciphering not only how the 

virus manipulates the host response to infection to avoid elimination, but also provided a useful 

understanding important in host anti-viral mechanisms and discovery of novel vaccines.  
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2.5  UNCHARACTERISED    OPEN READING FRAMES OF BA71V ISOLATE 

A comprehensive list of 83 uncharacterized proteins that genomic scale protein structure 

prediction will be applied to using I-TASSER is shown in Table 1.     

 

Table 1: Summary of 83 uncharacterized proteins in BA71V ASFV isolate 

 

  ORF SEQ No 

 

  ORF SEQ No 

 

  ORF SEQ No 

 

  ORF SEQ No 

 

  ORF SEQ No 

1 KP86R* 1   21 A280R 22 

 

41 C122R 60 

 

59 H124R 109 

 

79 DP148R 144 

2 KP93L 2   22 A505R 23 

 

42 C275L 61 

 

60 H233R 112 

 

80 DP96R 146 

3 KP360L 3   23 A498R 24 

 

43 C62L  65* 

 

61 H240R 113 

 

81 DP363R 147 

4 KP362L 4   24 A528R 25 

 

44 B169L 71 

 

62 E184L 118 

 

82 DP42R 148 

5 L83L 6   25 A506R 26* 

 

45 B475L 72 

 

63 E423R 120* 

 

83 DP60R 149 

6 L356L 7*   26 A542R 27 

 

46 B354L 73 

 

64 E146L 122 

    
7 L270L* 8   27 A118R 31 

 

47 B125R 77* 

 

65 E111R 128 

    
8 U104L 9   28 A151R 32 

 

48 B117L 78 

 

66 E66L 129 

    
9 XP124L 10*   29 A276R 33 

 

49 B407L 79 

 

67 I267L 130 

    
10 V82L 11   30 F317L 38 

 

50 B263R 81 

 

68 I226R 131 

    
11 Y118L 12   31 F165R 41 

 

51 B66L 82 

 

69 I73R 133 

    12 UP60L 13   32 K205R 43 

 

52 CP123L 85 

 

70 I329L 134 

    
13 X69R 14   33 K145R 46 

 

53 CP312R 90 

 

71 I177L 136 

    
14 J268L 15   34 K421R *47 

 

54 D129L 97 

 

72 I196L 137 

    
15 J154R 16   35 EP84R 49 

 

55 D79L 98 

 

73 DP238L 138 

    
16 J104L 17   36 EP152R 51 

 

56 D339L 99 

 

74 DP311R 139 

    
17 J182L 18   37 M1249L 55 

 

57 S183L 104 

 

75 DP63R 140 

    18 J319L 19   38 M448R 56 

 

58 H171R 108* 

 

76 DP542L 141* 

    
19 A125L 20   39 C84L 58 

     

77 DP141L 142 

    
20 A489R 21   40 C717R 59* 

     

78 DP146L *143 
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2.6  STRUCTURAL BIOINFORMATICS 

Structural bioinformatics and modeling of protein tertiary structure is a potentially attractive 

route to identify unknown proteins and understand the biological role of these proteins .This will 

improve our understanding of an organism’s biology. Although experimental structure 

determination methods provide high-resolution structure information, computational structure 

prediction methods provide valuable information for the large fraction of sequences whose 

structures will not be determined experimentally. There are 3 main methods of structure 

prediction. Comparative modeling, fold recognition and abinitio methods.  

2.6.1 COMPARATIVE MODELING 

If the sequence for which the structure  to be predicted has a close homolog of greater than 50% 

sequence identity with  an experimental  structure solved, (Schwede 2003) it is possible to use 

the solved experimental structure and the sequence  template to accurately build  a full length 

structure. Comparative modeling does this and it’s possible to assign function. 

2.6.2 FOLD RECOGNITION 

Fold recognition involves fitting a protein sequence into a protein structure.subsequently an 

overall score is then assigned and its structure predicted. The general belief is that different 

proteins fold into similar 3D shapes because at some level, they share similar interaction patterns 

among their residues and between the residues and the environments. It has been shown that 

these interaction patterns could possibly be captured using simple statistics-based energy models 

(Bowie et al. 1991; Fischer et al. 1996). These simple statistics-based energy functions have been 

used in many cases, to distinguish the correct structural folds from the incorrect ones and to 

distinguish the correct placements of the residues in a query protein into the structural positions 

of a correct structural template. 

2.6.3 ABINITIO   

In many cases neither comparative modelling nor threading can provide a useful model for a 

sequence under study if local conformations are nonexistent. If protein templates are not 

available, we have to build the 3D models from scratch. This procedure is  called abinitio 

modelling  (Klepeis et al. 2005). 
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2.6.4      I-TASSER  

I-TASSER ( Roy et al. 2010a; Zhang 2008;  Wu et al. 2007; Zhou et al. 2007)
 
is an integrated 

package for protein structure prediction employing both threading and Abinitio methods, it runs 

as a standalone algorithm or may be run from the main server Zhang lab. I-TASSER algorithm is 

based on a knowledge based potential that reduces the search space by using local conformations 

of short amino acid fragments from the PDB ( Dong Xu and Yang Zhang 2013; Zhang & 

Skolnick 2005a). The initial search is done in centroid mode and an optional subsequent model 

refinement is done in a full atom mode. The algorithm was developed under the assumption that 

a short sequence of amino acids have a finite number of conformations (Bystroff & Baker 1998)        

and that these conformations are represented in the PDB (Berman 2008). For a given sequence, 

I-TASSER first identifies template proteins from the Protein Data Bank PDB by multiple 

threading techniques LOMETS (Local Metathreading Server) (Wu & Zhang 2007). The 

continuous fragments excised from the template alignments are used to assemble full-length 

models by iterative Monte Carlo simulations. The best models are then selected from the Monte 

Carlo trajectories by decoy clustering. The final atomic models are rebuilt from the structure 

clusters by atomic-level structural refinements. The I-TASSER algorithm ("Zhang-Server") 

participated in the Server Section of 7
th

 (2006), 8
th

 (2008), 9
th

 (2010) 10
th

 (2012) and   was 

ranked as the No1 server in CASP7 (Critical Assessment of Structure Prediction) and CASP8 

 (Zhou et al. 2007). In CASP9, I-TASSER server and QUARK (another server from the same 

lab) were ranked as number one and number two servers, respectively in CASP (2010) while in 

2012 it was ranked first. Based on these performances, we will implement the algorithm in our 

genomic scale Protein Structure Prediction procedure. 

2.6.5  GENOME-SCALE STRUCTURE   PREDICTIONS 

Genome scale structure predictions have been performed by many authors (Zhang & Skolnick 

2004a; Malmström et al. 2007; Wu et al. 2007; Fischer & Eisenberg 1997; Sánchez & Sali 1998; 

Kihara et al. 2002; Kim et al. 2003) on different organisms. The methods used have been  based 

on threading and refined forms of threading (Roy et al. 2010a; Zhang 2008; Wu et al. 2007; 

Zhou et al. 2007) these methods have been performing considerably well in CASP on medium-

size proteins particularly (Zhang & Skolnick 2004e; Zhang 2008; Zhou et al. 2007). This could 

be  attributed to the completeness of  PDB  for single domain proteins majority of which are 
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medium sized proteins ( Skolnick et al. 2012; Skolnick et al. 2009 ; Zhang, Hubner, et al. 2006;  

Zhang & Skolnick 2005a; Kihara & Skolnick 2003;),
 
it was therefore  necessary to check the 

number of domains in an ORF  (Xue et al. 2013) then apply genome scale prediction to it, if the 

prediction target is multidomained and hard to recognize then splitting it into individual domains 

can help in protein structure prediction. Studies have been applied to various organisms ( Idrees 

& Ashfaq 2013; Idrees et al. 2013; Xu & Zhang 2013; Jethra et al. 2012; Kemege et al. 2011; 

Franceschini et al. 2006; Kihara et al. 2002; Fischer & Eisenberg 1997)
 
 and have demonstrated 

genome scale predictions as being possible, recently
 
(Xu & Zhang 2013)  demonstrated  with a 

65% success rate on hard proteins having less than 12% identity, using Quark an abinitio protein 

structure prediction software from Zhang lab (Zhang 2014) that 321 of 465 hard targets  proteins 

were predicted as having a TM-Score of greater than 0.5. These have a high reliability for fold 

family classification based on TM align. TASSER has also been benchmarked on automated 

prediction of weakly homologous protein on a genomic scale and the accuracy was 

approximately 67%, Our study therefore finds it appropriate to apply the protein structure 

prediction on a genomic scale to the ASFV genome consisting of 83 Open Reading Frames, we 

expect a similar success rate of fold family classification with Template Modeling Score (TM-

Score ) values of ~65% of the Open Reading Frames  being greater than 0.5 for accurate protein 

structure prediction and classification. 

2.6.6  STRUCTURAL SIMILARITY  

Structures are traditionally compared using a metric called Root Mean Square Deviation 

(RMSD). That is, the root of the sum of the squared distance between alpha carbons of 

equivalent amino acids.    

                Equation 1                                            

 rai and rbi are the coordinates of atom i of structure a and structure b n is the number of residues. 

See equation 1. When structures differ by a mean deviation less than 2Å, they are considered 

structurally equivalent. RMSD has two fundamental flaws of being dependent on length and 

sensitive to outliers, A unified statistical framework developed by (Levitt & Gerstein 1998) made 

improvements  on sensitivity to outliers during structural comparisons of protein structures, later 
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improvements led to the development of the TM Score. TM Score is length dependent and 

independent on outliers. TM-align is a structural alignment algorithm that uses TM-score to 

identify the best structural alignment between protein pairs. It combines the TM-score, a rotation 

matrix and Dynamic Programming (DP). TM align finds close structural analogs and ranks them 

based on a TM-score see Equation 2. The TM-score defined assess the topological similarity of 

two protein structures where L is the length of the target protein, and Lali is the number of the 

equivalent residues in two proteins. di is the distance of the i-th pair of the equivalent residues 

between the two structures, which depends on the superposition matrix; the ‘max’ means the 

procedure to identify the optimal superposition matrix that maximizes the sum in Equation 2 

.The scale d0= 
3
√(L−15)−1.8 is defined to normalize the TM-score in a way that the magnitude of 

the average TM-score for random protein pairs is independent on the size of the proteins. TM-

score ranges between (0, 1] with a higher value indicating a stronger similarity. 

 

                Equation 2 

 

The  TM-score of protein pairs sharing the same fold in abinitio and template-based protein 

structure prediction helps in  judging  whether a predicted model has the same fold or topology 

as the experimental solved structure (Zhang & Skolnick 2004b; Xu & Zhang 2010; Zhang 2010)
. 
  

for TM-score <0.5, proteins are mostly not in the same fold while for TM-score >0.5, proteins 

are generally in the same fold, there exists a significant correlation between the correctness of the 

predicted structure and the structural similarity of the model to the other proteins in the PDB. 

The correlation could be used to assist in model selection in blind protein structure predictions.  
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2.7 FUNCTIONAL  ANNOTATION  

Involves the use of an online server Cofactor.( Roy et al. 2012).Cofactor employs Enzyme 

Commissioning, Gene Ontology and ligand binding site prediction. 

 

2.7.1 THE GENE ONTOLOGY 

The Gene Ontology (GO) is a hierarchical ontology developed by Ashburner and colleagues 

(Gene & Consortium 2000).
.
GO describes a proteins function from three perspectives or 

branches, its localization (cellular component), its biochemical function (molecular function) and 

the proteins context in the cell (biological process). Each branch is organized in a tree like 

structure with a single root with one or more children. A function is a node in this tree like 

structure and a relation between functions is called an edge. The lower down in the tree like 

structure, the more specific the term, and terms with no children are the most specific functions 

called leafs. Each branch is a directed acyclic graph (DAG), in our study GO score values range 

between zero to one where a higher value indicates a better confidence in predicting the function 

using an existent template. 

2.7.2 LIGAND BINDING SITES 

Protein–ligand binding sites and ligand-interacting residues in the query protein are identified 

based on both global and local structural similarities to a comprehensive binding site template 

library BioLiP (Yang et al. 2013) BioLiP is a semi-manually curated database for biologically 

relevant ligand–protein interactions, which contains greater than 204 223 entries, including 

information on protein–protein, protein–nucleic acid, protein–lipid and protein–small molecule 

interactions. Cofactor uses this database for functional site assignment. The binding position of 

the template ligand in the query structure is predicted based on the superposition matrix acquired 

from the local alignment of query and template binding site residues. Binding site score greater 

than 1.1, indicates a better confidence in predicting the function of the modeled structure using 

the template. 
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2.8 MODEL EVALUATION 

Procheck (Laskowski et al. 1993) evaluates the quality of the model, this  is summarized via a 

Ramachandran plot showing the phi-psi torsion angles for all residues in the structure (except 

those at the chain termini). Glycine residues are separately identified by triangles as these are not 

restricted to the regions of the plot appropriate to the other side chain types. The 

coloring/shading on the plot represents the different regions; the darkest red areas correspond to 

the "core" regions, representing the most favorable combinations of phi-psi values. Ideally, it’s 

suitable to have over 90% of the residues in these "core" regions. The percentage of residues in 

the "core" regions is one of the better guides to stereochemical quality. We used Procheck to 

evaluate our predicted models and establish its accuracy.  

2.9 PROTEIN STRUCTURE CLASSIFICATIONS 

 

The number of potential protein structures is enormous but many of these potential protein 

structures will resemble each other. By grouping proteins with structures that resembles each 

other in a tree structure, where groups closer to the leafs are more similar, and closer to the root 

are less similar, it is possible to reduce the complexity. This is difficult because it is complicated 

to define a single metric that describes structural similarity. Murzin and colleagues (Murzin et al. 

1995; Fox et al. 2014)  have developed a classification system named SCOP, (SCOP; Structural 

classification of Proteins). The SCOP classification classifies protein structures according to a 

hierarchical 4 level tree. The levels are Class, Fold, Superfamily and Family. The current SCOP 

database, version 1.75C or 2.03e, has 59514 protein structures, 167547 domains divided into 

1194 folds, 1961 superfamilies and 4493 protein families. There are a number of classes in 

SCOP, 4 of which are more prominent than the others. All alpha proteins consist of mostly alpha 

helices and beta proteins contain only beta sheets. The alpha+beta proteins contain both alpha 

helices and beta sheets but the different elements are spatially grouped with secondary structure 

elements of similar kind and beta sheets being mostly antiparallel. The last group, the alpha/beta 

group contains alpha helices and beta sheets mixed together and beta strands are parallel. Other 

minor groups exist, for example multidomain proteins, membrane and cell surface proteins, the 

study attempted to classify proteins based on SCOP classification. We used the SCOP database 

for fold assignment during the study to help us assign structure to function.  
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2.10 BIOLOGICAL USEFULNESS OF PREDICTED MODELS 

The biological usefulness of the predicted protein models relies on the accuracy of the structure 

prediction (Zhang 2010). For example, high-resolution models with RMSD in 1–2 Armstrong’s, 

typically generated by Comparative modeling using close homologous templates, usually meet 

the highest structural requirements and are suitable for computational ligand-binding studies and 

virtual compound screening (Ekins et al. 2007). Medium-resolution models, roughly in the 

RMSD range of 2~5 Armstrong’s and typically generated by threading and CM from distantly 

homologous templates, can be used for identifying the spatial locations of functionally important 

residues, such as active sites and the sites of disease-associated mutations (Arakaki et al. 2004). 

However, many of the functionally important sites are located on loop regions show large 

structural variability although the scaffold of the protein structures is conserved. Thus, accurately 

modeling of the loop regions is still an important yet unsolved problem in template-based 

modeling, models with the lowest resolution, from an otherwise meaningful prediction, models 

with an approximately correct topology, predicted using either abinitio approaches or based on 

weak hits from threading, have a number of uses including protein domain boundary 

identification, topology recognition and family/superfamily assignment (Zhang, Devries, et al. 

2006).the biological function of protein molecules is determined by their 3D shape (which 

dictates how the protein interacts with ligands or other protein molecules), one of the most 

common motivations for predicting the protein structure is to use the structural information to 

gain insight into the protein’s biological function. A convenient approach to the structure-based 

functional assignment involves global structural comparison of protein pairs for fold recognition 

and family assignment which in many cases can be directly used to infer function. However, it is 

increasingly recognized that the relationship between structure and function is not always 

straightforward, as many protein folds/families are known to be functionally promiscuous, and 

different folds can perform the same function (Bork et al. 1993). When the global structures are 

not similar, functional similarity may arise due to the conserved local structural motifs which 

perform the same biochemical function, Cofactor helped us in binding site prediction for 

functionally promiscuous structures that cannot be accurately determined but local binding sites 

are of consensus. One main challenge encountered was predicting small domain proteins that are 

below 80 residues, ThreaDom assumes they are single domain proteins and ITASSER 

predictions are not very reliable because they lack templates in the PDB. 
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2.11 PEPTIDE VACCINES AND IMMUNOINFORMATICS 

 

The general idea behind peptide vaccines is based on the chemical approach to synthesize the 

identified T-cell epitopes that are immunodominant and can induce specific immune responses. 

Because ASFV infects macrophages which interact with T cells the study will confine itself to T-

Cell epitopes. The T-cell epitopes are typically peptide fragments, an attempt to predict T-cell 

epitopes that are immunogenic is therefore necessary. Peptides have become desirable vaccine 

candidates owing to their comparatively easy production and construction. The methodology of 

analyzing the pathogen genome to identify potential antigenic proteins is known as ‘reverse 

vaccinology’. Normally, the investigation of the binding affinity of antigenic peptides to the 

MHC Class II molecules is the main goal when predicting epitopes. Using NetMHCIIpan3.0 

(Nielsen et al. 2010) the study intended to predict epitope binders that potentially elicited a 

strong immune response, 

NetMHCIIpan3.0 (Karosiene et al. 2013) server (http://www.cbs.dtu.dk/services/NetMHCIIpan/) 

predicted binding of peptides to MHC class II molecules, in swine macrophages   SLA-DR and 

SLA-DQ membrane markers present peptides (Piriou-Guzylack & Salmon 2008), for T-Cell 

recognition, NetMHCIIpan 3.0 server produced predictions for peptides of 9 - 19 amino acids in 

length. The server also provides a possibility for the user to upload the Specific SLA protein 

sequence of interest that present the cleaved peptides to the T-cells, The prediction values are 

given in nM IC50 values and as % Rank to a set of 200000 random natural peptides. Strong and 

weak binding peptides were indicated in the output.  

In summary genomic scale sequencing projects end up producing linear amino acid sequences, 

but full understanding of the biological role of these proteins require knowledge of their structure 

and conserved functional sites. There is a high demand of the for protein structures to help us 

understand how an organism functions. Computer-based protein structure prediction, provides a 

means to alleviate the problem that is growing at an unprecedentedly critical position is,to bridge 

the gap between sequence and functional structure annotation, we used I TASSER the best 

ranked algorithm in protein structure prediction in an attempt to annotate proteins of low 

sequence identity.NetMHCIIpan3.0 was used to check if a protein is immunogenic, this 

information is useful in vaccine and  diagnostic kit development.  
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Chapter 3 

3.0  METHODOLOGY: 
 

Five main processes that were involved in the prediction are; domain prediction, structure 

modeling, model evaluation, function prediction and immunodominance determination a similar 

methods have been successfully used  (Roy et al. 2010b; Wu et al. 2007)in protein structure 

prediction . A schematic representation for the modeling of tertiary structures for the proteins 

under study and function assignment of the entire ASFV genome is illustrated below see figure 1. 

 

Figure 1: A schematic representation of the protein structure prediction and immunodominance 
determination. Diagram courtesy of Roy et al. 2010. 

3.2  DATA SOURCES  AND MATERIALS: 

ASFV isolate BA71V avirulent strain sequenced ORF was used, the ORFs were downloaded in 

Fasta format available online at (http://www.uniprot.org/taxonomy/10497).The SLA-DR and 

SLA-DQ Porcine peptides that bind immunogenic peptides were also downloaded from Uniprot 

http://www.uniprot.org/uniprot/Q31072and http://www.uniprot.org/uniprot/?query=sla+dq&sort=score. 

The study used the following software; ThreaDom for domain prediction, I-TASSER for 

structural modeling, TM Align for structural comparison, TM fold for model classification, 

Cofactor for function prediction and Procheck for stereochemistry checking these softwares are 

http://www.uniprot.org/taxonomy/10497
http://www.uniprot.org/uniprot/Q31072
http://www.uniprot.org/uniprot/?query=sla+dq&sort=score
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available as online servers for academic users, we opted for the online version because of time 

constraints and powerful processing technologies. 

3.3  DOMAIN  BOUNDARY PREDICTION USING THREADOM: 

The sequenced ORFs of the ASFV genome BA71V were fed into ThreaDom, a domain 

boundary prediction algorithm, http://zhanglab.ccmb.med.umich.edu/ThreaDom/  

Domain predictions in ThreaDom are based on two assumptions: first homologous proteins have 

similar domain structures; second residues in the core regions of domain structures are 

evolutionally more conserved than those in the boundary (or linker) regions between domains. 

Following these assumptions, the ThreaDom procedure contains three steps, Target sequences 

were threaded through the PDB by eight, LOMETS programs, and a multiple sequence 

alignment is constructed based on the target sequence. A Domain Conservation Score (DCS) is 

calculated for each residue position based on the LOMETS multiple sequence alignments, which 

counts for the balance of conservation and gap penalty scores. Domain boundaries were assigned 

based on the DCS profile using a target-specific scoring cut-off. The target open reading frame 

was then judged as being a multiple domain protein or a single domained. 

We proceeded with I TASSER modeling for all ORFs but if the TM-SCORE was less than 0.5 

for multidomained proteins then it  was desirable to split  the long multi-domain proteins and 

model each domain separately ,if the single domain had a TM Score less than 0.5 then we 

assumed it belonged to a new fold, Modeling domains individually has been shown to speed up  

the prediction process, it also increases the quality of query-template alignment resulting in more 

reliable structure, the PDB library is complete for single domain proteins (Skolnick, Zhou, & 

Brylinski, 2012; Zhang, Hubner, Arakaki, Shakhnovich, & Skolnick, 2006; Zhang & Skolnick, 

2005;
 
Zhang & Skolnick, 2005;Kihara & Skolnick, 2003), at low to moderate resolution 

,therefore there is a higher expectation in modeling single domain proteins  in that one already 

solved structure exists in the PDB that has a RMSD from native < 4 Amstrongs for 90% of its 

residues (Zhang & Skolnick 2004a). Therefore the likelihood of success in protein prediction is 

maximized. Domains having less than 80 residues are considered to be single domains. (Xue et 

al. 2013) if a segment of the target sequence with >80 residues has no aligned residues in the top 

two threading templates. 

http://zhanglab.ccmb.med.umich.edu/ThreaDom/
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3.4    I-TASSER PREDICTION PROCESS 

The I-TASSER prediction process consisted of four major steps: Template identification, 

Structure assembly/reassembly, Atomic model construction, and Final model selection. I-

TASSER has been benchmarked (Zhang 2008) with good performance on medium sized 

proteins.  

3.4.1 TEMPLATE IDENTIFICATION 

The Open Reading Frames of the ASFV  were  threaded through a non-redundant PDB structure 

library (http://zhanglab.ccmb.med.umich.edu/library/PDB.tar.bz2)  within the I-TASSER server 

for identifying appropriate global-structure templates Threading was done by LOMETS (Wu & 

Zhang 2007) a Local Metathreading Server consisting of 10 individual servers, LOMETS was 

used to detect homologous templates from the PDB library, for each threading program the 

significance of target template alignment was measured by a Z-score, consensus amongst the 

individual servers via a 3D jury (Ginalski et al. 2003) system, 3D-Jury is an algorithm that 

aggregates and compares models from various protein structure prediction servers. It takes in 

groups of predictions made by a collection of threading software and assigns each pair a 3D-Jury 

score, based on structural similarity. The score is generated by counting the number of Cα atoms 

in the two predictions within 3.5 Å of each other after being super positioned; the approach was 

used to identify the 10 best protein scoring templates from LOMETS.  

3.4.2 STRUCTURE ASSEMBLY 

Continuous fragments excised from the LOMETS threading templates were used to assemble 

full-length models (Roy et al. 2010b)
 
the unaligned loop regions were built by abinitio modeling 

in a lattice system (Zhang et al. 2003). Structure assembly process consisted of two sets of 

simulations. The first set uses the threading templates as initial structures. In the second set, the 

simulations start from the cluster centroids generated by SPICKER a simple and efficient 

strategy to identify near native folds by clustering protein structures generated during computer 

simulations (Zhang & Skolnick 2004d), Spatial restraints collected from the PDB structures hit 

by TM-align (Zhang & Skolnick 2005b) using the cluster centroids as query structures are also 

incorporated in the I-TASSER simulations. The purpose of the second stage is to refine the local 

geometry as well as the global topology of the SPICKER centroids. 

http://zhanglab.ccmb.med.umich.edu/library/PDB.tar.bz2
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 3.4.2.1 ENERGY FORCE FIELD 

The structure assembly simulations (for both the threading-aligned and the Abinitio modeled 

regions) were guided by a unified knowledge-based force field, which includes four components 

:( 1) general knowledge-based statistics terms from the PDB (C-alpha/side-chain Correlations) 

 (2) H-bonds and hydrophobicity. (3) spatial restraints from threading templates; (4) sequence-

based contact predictions from SVMSEQ(Wu & Zhang 2008).SVMSEQ is a  

Support-Vector-Machine (SVM) based residue-residue contact predictor that only uses sequence 

information. It was trained using local window features (position-specific scoring matrices, 

secondary structure and solvent accessibility predictions) and in-between segment features 

(residue separations, secondary structure of the contacting residues, and state distributions of the 

contacting residues. 

3.4.3    ATOMIC MODEL CONSTRUCTION 

The SPICKER cluster centroids from I-TASSER are reduced models, with each residue 

represented by its Cα and side-chain center. The full-atomic models were built by REMO 

(Li & Zhang 2009), a protocol developed for constructing full-atomic models from C-alpha 

traces by optimizing the H-bond networks. The basic backbone fragments (Cα, C, N, O) were 

matched from a secondary structure specific backbone isomer library which consist of a total of 

68,206 non-redundant isomers from high-resolution PDB structures. The driving force in the 

REMO refinement protocol includes H-bonding, clash/break-amendment, I-TASSER restraints, 

and the CHARMM22 potential. Based on a test set of 230 non-homologous proteins, REMO has 

the ability of removing steric clashes while retaining a topology score (TM-score). 

3.4.4  MODEL SELECTION AND EVALUATION 

Structural analogs of the top-scoring I-TASSER model in the PDB library as identified by the 

structural alignment program TM-align(Zhang & Skolnick 2005b) were ranked based on the 

TM-score(Zhang & Skolnick 2004c) this was done by comparison of the  I-TASSER model and 

the experimentally solved PDB proteins. Structural analogs with a TM-score >0.5 were used for 

classifying the modeled structure (Xu & Zhang 2010)TM fold server/software calculated the 

posterior probability of the modeled structure and an experimentally solved PDB protein in 

belonging to the same class. High scoring relevant models were evaluated using Procheck to 

ascertain if greater than 90 % of residues lie in the favourable region, if it met this criteria then 
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the model was classified as being good enough. 

3.5.  FUNCTION PREDICTION OF THE PREDICTED  STRUCTURE 

. The function prediction result was divided into four subsections: TM Align, Enzyme 

Classification, (EC) numbers, Gene Ontology (GO) terms, and Ligand binding. Structural 

homology was used to assign if a model and an experimentally solved PDB native perform the 

same function, though there is also overlapping functions amongst various microorganisms 

having similar structures hence binding sites may assist in assignment of functions since they are 

the basic level of conservation. Enzyme commissioning was also used to predict enzyme-

catalyzed reactions .TM-score (template modeling score) was defined to assess the topological 

similarity of protein structure pairs with a value in the range of (0, 1], a higher score indicated 

better structural match both in Binding  site  assignment and fold function assignment ,binding 

site score was  incorporated to assess function prediction, a threshold greater than 1.1 is assigned 

as good binding sites  and can be used to infer functions(Roy et al. 2010b).for the gene ontology 

Go score of 0.5 are desirable for functional inferences 

3.6   TIMING 

On average the procedure of structure and function prediction by the I-TASSER server is 72 

hours for a typical medium-size protein (~100–300 residues), although larger proteins required a 

longer Monte Carlo simulation and hence longer waiting time the actual processing time also 

depended on the number of jobs in the queue. I TASSER online server is run on a cluster of 2000 

HP DL1000h (Nehalem) processors.  

3.7   STATISTICAL ANALYSES AND VISUALIZATIONS 

Posterior probabilities and p-Value calculations were calculated by TM-Fold  (CSU & Zhang 

2010) the software is available online and downloadable as a free academic software at  

http://zhanglab.ccmb.med.umich.edu/TM-fold, 3D modeled structures for the generated models  

were visualized  using chimera version 1.8.   

http://zhanglab.ccmb.med.umich.edu/TM-fold,
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3.8   IMMUNODOMINANCE 

Investigation of the binding affinity of antigenic peptides to the MHC Class II was done using 

NetMHCIIpan3.0 (Nielsen et al. 2010; Lundegaard et al. 2010) this was done to predict epitope 

binders which potentially elicited immune responses for the ASFV Viral proteins. NetMHCIIpan 

3.0 server (http://www.cbs.dtu.dk/services/NetMHCIIpan/)  outputted 15mmer peptides that bind 

to MHC class II porcine peptides , the porcine  isotypes SLA-DR (Gustafsson et al. 1990) and 

SLA-DQ (Kim et al. 2012) were used  because these two membrane markers are the ones that 

present cleaved peptides (Piriou-Guzylack & Salmon 2008) on infected swine macrophages, 

NetMHCIIpan 3.0 server can produce predictions for peptides of 9 - 19 amino acids in length. 

The MHC pseudo sequence generated by the servers for optimal output based on the   

Servers trained neural network algorithms, are as follows. 

QEFFIASGAAVDAILHLFLEQYDLQRETYHILFL for SLA-DRalpha\beta and 

YLFHETSGARTLHIVYFGHTYFDFQTETVHIETT for SLA-DQalpha\beta. 

(see appendix page 46 for SLA sequences). 

NetMHCpanII3.0 server provided a possibility for the user to upload the specific MHC protein 

sequence of interest, for the pig (sus-scrofa) we have the SLA-DQ and SLA-DR experimental 

solved proteins  available, we use the SLA-DQ and SLA-DR  to maintain the accuracy and avoid 

cross species based predictions . The prediction values were given in nM and to a set of 200.000 

random natural peptides. Strong and weak binding peptides were ranked in the output and the top 

10 peptide sequences of ASFV used.  

 

 

 

 

 

http://www.cbs.dtu.dk/services/NetMHCIIpan/)
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Chapter 4 
4.0  RESULTS  

4.1    THREADOM RESULTS: 

 

 ThreaDom (Xue et al. 2013) was used for domain boundary identification the reason being the 

force field of I TASSER performs much better on single domain proteins and the domain space 

for single domain proteins is nearly complete in the PDB (Zhang, Hubner, et al. 2006; Zhang & 

Skolnick 2005a; Skolnick et al. 2012). ThreaDom defines a total of 94 domains from the 83 

Open Reading Frames.  

 

Figure 2: Showing the Domain distribution of single domain and multiple domained ORFs of ASFV a total of 

83 ORFs have been classified to fall into the 3 groups. red are 1 domained , green 2 domained and blue 3 

domained ,a total of 94 domains are classified    

 

the 83 uncharacterized Open Reading Frames have their domain boundaries determined,75 of 

them are single domained, Meaning they have one functional domain,5 of them have 2 domains , 

while 3 of them have 3 domains  making a total of 94 domains (75+10+9). For the predicted  75 

single domain open reading frames  we are certain  of  structurally predicting each one of them 

after I-TASSER modelling this is because of  the completeness of the PDB for single domain 

proteins (Skolnick et al. 2012; Zhang, Hubner, et al. 2006; Zhang & Skolnick 2005a).  
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4.2    I-TASSER RESULTS 

To analyze the ASFV uncharacterized ORFs, the sequenced BA71V genome and the sequences 

were pipelined to I-TASSER for protein structure prediction. I-TASSER pulled the modeled 

templates closer to PDB structures, as observed in  previous  benchmark tests (Wu et al. 

2007)and CASP (Zhang 2009; Kopp et al. 2007; Zhou et al. 2007), the fragment assembly I-

TASSER procedure  consistently drives  the  local excised fragment structures closer to the 

experimentally solved PDB natives. As anticipated nearly all single domain (74 out of 75) 

modeled structures have a structurally related fold in the PDB (Zhang, Hubner, et al. 2006; 

Kihara & Skolnick 2003) , from the  I- TASSER results  82 of the 83 TM –Scores lie above 0.5 

see figure3, meaning 82 models are viable for fold classification because they have a TM score 

greater than 0.5 (Xu & Zhang 2010).The average TM score is 0.7185. There was no need for 

spliting multiple domain proteins into single domains because the I-TASSER predicted models 

had TM Scores greater than 0.5.A summary of the TM –Scores is as shown. See figure3.   

 

Figure 3: TM-scores of 83 I-TASSER Modelled 3D structures. TM-Scores lie above the 0.5 minimal threshold 

for fold family assignment in SCOP. Y-axis represents TM-Score and the X axis 83 proteins that will be 

classified by TM-Fold. 

4.3    STRUCTURAL CLASSIFICATION  

Structural classification was carried out by TM-Fold software that incorporates TM-Align and a 

Perl script that calculates the posterior probabilities and p-Values, Structure similarity was 

measured by Template Modeling score (TM-score). TM score was used because it provided a 

quantitative relation between scores and conventional fold classifications (Xu & Zhang 

2010;Zhang & Skolnick 2005b; Zhang & Skolnick 2004b)
.  
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Table 2: A summary of the structural classification of  ASFVs’  83  I-TASSER  predicted protein 
structures  done using TM-Fold a fold classification software, I-TASSER modelled the structures, TM 
Align calculated the structural similarity , TM-Fold calculated the fold  assignment posterior 
probabilities  and p-Values for all the 83 Predicted proteins.  

 

ORF 

Sequence 

number of 

ORF 

NO OF 

DOMAINS 

HIGHEST 

TM SCORE 

POSTERIOR 

PROBABILITY 

TO SCOP 

P-Value 

(to 4dp) SCOP-Assignment 

KP86R* 1 1 0.6700 0.8636            <0.0000 a.45.1.1 

KP93L 2 1 0.5420 0.4332            <0.0000 PDB entry is not classified in SCOPe 2.03 

KP360L 3 1 0.9100 0.9969            <0.0000 PDB entry is not classified in SCOPe 2.03 

KP362L 4 1 0.8890 0.9946            <0.0000 PDB entry is not classified in SCOPe 2.03 

L83L 6 1 0.5920 0.7120 <0.0000               

0.0090 

PDB entry is not classified in SCOPe 2.03 

L356L 7 1 0.9390 0.9974            <0.0000 c.37.1.8 

L270L* 8 2 0.8880 0.9962            <0.0000 PDB entry is not classified in SCOPe 2.03 

U104L 9 1 0.5330 0.5199            <0.0000 PDB entry is not classified in SCOPe 2.03 

XP124L 10 1 0.6170 0.8107            <0.0000 a.29.2.0 

V82L 11 1 0.5590 0.8778           <0.0000 PDB entry is not classified in SCOPe 2.03 

Y118L 12 1 0.6490 0.8214           <0.0000 a.45.1.0 

UP60L 13 1 0.5900 0.5371           <0.0000 PDB entry is not classified in SCOPe 2.03 

X69R 14 1 0.6670 0.7755           <0.0000 PDB entry is not classified in SCOPe 2.03 

J268L 15 1 0.5800 0.5012           <0.0000 a.118.1.1 

J154R 16 1 0.6040 0.6246           <0.0000 PDB entry is not classified in SCOPe 2.03 

J104L 17 1 0.7430 0.9638           <0.0000 PDB entry is not classified in SCOPe 2.03 

J182L 18 1 0.7300 0.9589           <0.0000 PDB entry is not classified in SCOPe 2.03 

J319L 19 1 0.8900 0.9963            <0.0000 d.211.1.1 

A125L 20 1 0.7900 0.9847            <0.0000 d.211.1.1 

A489R 21 1 0.6910 0.9931            <0.0000 d.211.1.1 

A280R 22 1 0.7110 0.9405            <0.0000 d.211.1.1 

A505R 23 1 0.6660 0.9946            <0.0000 d.211.1.1 

A498R 24 1 0.6850 0.9954          <0.0000 d.211.1.1 

A528R 25 1 0.6600 0.9947          <0.0000 d.211.1.1 

A506R 26 1 0.6570 0.9921          <0.0000 d.211.1.1 

A542R 27 1 0.6010 0.9873          <0.0000 d.211.1.1 

A118R 31 1 0.6450 0.6650          <0.0000 PDB entry is not classified in SCOPe 2.03 

A151R 32 1 0.6860 0.9832          <0.0000 PDB entry is not classified in SCOPe 2.03 

A276R 33 1 0.8380 0.993          <0.0000 d.211.1.1 

F317L 38 1 0.7950 0.986          <0.0000 d.185.1.1 

F165R 41 2 0.8190 0.9927          <0.0000 PDB entry is not classified in SCOPe 2.03 

http://scop.berkeley.edu/sunid=52592
http://scop.berkeley.edu/sunid=191428
http://scop.berkeley.edu/sunid=227130
http://scop.berkeley.edu/sunid=48372
http://scop.berkeley.edu/sunid=48404
http://scop.berkeley.edu/sunid=48404
http://scop.berkeley.edu/sunid=48404
http://scop.berkeley.edu/sunid=48404
http://scop.berkeley.edu/sunid=48404
http://scop.berkeley.edu/sunid=48404
http://scop.berkeley.edu/sunid=48404
http://scop.berkeley.edu/sunid=48404
http://scop.berkeley.edu/sunid=48404
http://scop.berkeley.edu/sunid=63412
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ORF Sequence 

no 

Domain TM-Score Posterior prob P-VALUE SCOP assignment 

 K205R 43 1 0.8500 0.9941          <0.0000 PDB entry is not classified in SCOPe 2.03 

2.032.03 K145R 46 1 0.6890 0.9696          <0.0000 PDB entry is not classified in SCOPe 2.03 

K421R 47 3 0.8880 0.9765          <0.0000 PDB entry is not classified in SCOPe 2.03 

EP84R 49 1 0.6050 0.6379          <0.0000 d.68.4.1 

EP152R 51 1 0.6650 0.9893          <0.0000 PDB entry is not classified in SCOPe 2.03 

M1249L 55 1 0.8050 0.997          <0.0000 PDB entry is not classified in SCOPe 2.03 

M448R 56 1 0.7710 0.9956          <0.0000 a.4.5.11 

C84L 58 1 0.6510 0.8101          <0.0000 d.58.7.1 

C717R 59 1 0.9340 0.9974          <0.0000 a.118.1.1 

C122R 60 1 0.4860 0.1863          <0.0000 Probability of classification low 

C275L 61 1 0.7120 0.9509          <0.0000 PDB entry is not classified in SCOPe 2.03 

C62L 65 3 0.5130 0.525         <0.0000 PDB entry is not classified in SCOPe 2.03 

B169L 71 1 0.6720 0.8648         <0.0000 c.37.1.3 

B475L 72 1 0.7290 0.9524         <0.0000 PDB entry is not classified in SCOPe 2.03 

B354L 73 3 0.8500 0.9964         <0.0000 PDB entry is not classified in SCOPe 2.03 

B125R 77 1 0.8750 0.9953         <0.0000 b.91.1.1 

B117L 78 1 0.6100 0.692         <0.0000 PDB entry is not classified in SCOPe 2.03 

B407L 79 1 0.9450 0.9975         <0.0000 PDB entry is not classified in SCOPe 2.03 

B263R 81 2 0.6560 0.9965         <0.0000 d.129.1.1 

B66L 82 1 0.7490 0.9791         <0.0000 PDB entry is not classified in SCOPe 2.03 

CP123L 85 1 0.6440 0.8801         <0.0000 PDB entry is not classified in SCOPe 2.03 

CP312R 90 2 0.8480 0.9967         <0.0000 PDB entry is not classified in SCOPe 2.03 

D129L 97 1 0.5360 0.7424         <0.0000 PDB entry is not classified in SCOPe 2.03 

D79L 98 1 0.6390 0.7719         <0.0000 PDB entry is not classified in SCOPe 2.03 

D339L 99 1 0.8820 0.996         <0.0000 PDB entry is not classified in SCOPe 2.03 

S183L 104 1 0.8050 0.9912         <0.0000 PDB entry is not classified in SCOPe 2.03 

H171R 108 1 0.7400 0.9929         <0.0000 a.25.1.0 

H124R 109 1 0.7430 0.9867         <0.0000 PDB entry is not classified in SCOPe 2.03 

H233R 112 2 0.7130 0.9372         <0.0000 c.94.1.1 

H240R 113 1 0.6380 0.7665         <0.0000 b.1.18.15 

E184L 118 1 0.8320 0.996         <0.0000 a.4.1.9 

E423R 120 1 0.8790 0.9975         <0.0000 PDB entry is not classified in SCOPe 2.03 

E146L 122 1 0.5220 0.6791         <0.0000 PDB entry is not classified in SCOPe 2.03 

E111R 128 1 0.5650 0.709         <0.0000 PDB entry is not classified in SCOPe 2.03 

E66L 129 1 0.5940 0.5631         <0.0000 PDB entry is not classified in SCOPe 2.03 

I267L 130 1 0.7010 0.978       <0.0000 c.108.1.10 

I226R 131 1 0.8200 0.9923       <0.0000 d.159.1.3 

I73R 133 1 0.6590 0.8583       <0.0000 a.4.5.34 

I329L 134 1 0.7410 0.9861       <0.0000 c.72.1.5 

http://scop.berkeley.edu/sunid=46819
http://scop.berkeley.edu/sunid=52569
http://scop.berkeley.edu/sunid=51333
http://scop.berkeley.edu/sunid=55946
http://scop.berkeley.edu/sunid=191307
http://scop.berkeley.edu/sunid=53851
http://scop.berkeley.edu/sunid=46764
http://scop.berkeley.edu/sunid=82388
http://scop.berkeley.edu/sunid=56310
http://scop.berkeley.edu/sunid=74679
http://scop.berkeley.edu/sunid=82515
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      ORF SEQ.No Domain TM-Score Posterior prob P-value SCOP assignment 

I177L 136 1 0.7510 0.9825       <0.0000 PDB entry is not classified in SCOPe 2.03 

I196L 137 1 0.6750 0.9089       <0.0000  b.18.1.3 

DP238L 138 1 0.8110 0.9909       <0.0000 c.1.8.0 

DP311R 139 1 0.8610 0.9949        <0.0000 d.211.1.1 

DP63R 140 1 0.7020 0.9229        <0.0000 a.47.4.0 

DP542L 141 1 0.9590 0.9976        <0.0000 a.118.1.2 

DP141L 142 1 0.6770 0.6559         < 0.0000 PDB entry is not classified in SCOPe 2.03 

DP146L *143 1 0.8370 0.9929        <0.0000 g.3.11.1 

DP148R 144 1 0.5900 0.567        <0.0000 a.118.8.1 

DP96R 146 1 0.7560 0.9857        <0.0000 PDB entry is not classified in SCOPe 2.03 

DP363R 147 1 0.6700 0.9919        <0.0000 d.211.1.1 

DP42R 148 1 0.8510 0.9954        <0.0000 PDB entry is not classified in SCOPe 2.03 

DP60R 149 1 0.5010 0.7787        <0.0000 PDB entry is not classified in SCOPe 2.03 

    94 0.7185       

 

 

 

TM-Score was based on a previously benchmarked set (Xu & Zhang 2010), with an all-to-all 

gapless structural match on 6684 non-homologous single-domain proteins in the PDB. TM-score 

of the non homologous set followed an extreme value distribution. The dataset used was from 

SCOP 1.75. Ankyrin group d.21.1.1 formed the largest group of families their functions are very 

diverse.  

 

 

 

http://scop.berkeley.edu/sunid=48404
http://scop.berkeley.edu/sunid=191661
http://scop.berkeley.edu/sunid=48371
http://scop.berkeley.edu/sunid=57197
http://scop.berkeley.edu/sunid=48453
http://scop.berkeley.edu/sunid=48404
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 4.4  H171R THREADOM  RESULTS  

The 171 residue H171R (ASFV108) ORF has not been characterized and the protein function has 

not been assigned. (http://www.uniprot.org/uniprot/P0CA73), see appendix page 50&51. Based 

on our results this protein may be of importance to the virus in macrophage survival and  may be 

immunogenic. (Papinutto et al. 2002). Prediction of the domain boundary was done by 

ThreaDom and found to be a single domain protein. see figure4. Meaning we expect to find a 

PDB hit due to the likely completeness of the PDB for all single domain proteins (Zhang, 

Hubner, et al. 2006). 

 

 

Figure 4: Illustration of domain decision by ThreaDom for  H171R ORF  based on domain conservation score 

profile one domain has been defined by the  ThreaDom algorithm 

4.5  H171R  TM FOLD AND I-TASSER  RESULTS  

From the prediction  study of H171R, I-TASSER pipeline  generated 5  models, the first model 

which represents the best template was considered, Figure 5 was used (Roy et al. 2010a; Zhang 

2008). Structural  comparison  of this model was done to the preexisting experimentally solved 

proteins in PDB 101 database by the structural alignment program TM align, a ferritin like 

subunit  (PDB ID: 2C41C)  (Franceschini et al. 2006) was found to be the structural analog. 

Figures 6, TM align the structural alignment programs’ TM-score was 0.740 with an RMSD of 

2.25 to the top scoring PDB 2C41C experimentally solved native. See appendix page 48. The 

significance of this  TM-score was calculated to prove it was not a random score, TM fold was 

http://www.uniprot.org/uniprot/P0CA73),%20see
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used to calculate posterior probabilities and p-Values, we used an Extreme Value Distribution, 

the best fitting parameters being  $u=0.1512 and $sigma=0.0242 which were estimated by 

maximum likelihood from a benchmarked set of 71583085 random protein pairs. Equation.4 was 

used  

                              Equation 4 

     $pvalue= 1-exp(0-exp(($u-$tms)/$sigma));    $u =0.1512 and $sigma =0.0242. 

The p-Value calculated by our TM-Fold Perl script was found to be 0.000000000002354 see 

excerpt page 47 showing the significance of the TM-score against randomly paired TM-Score. 

 A SCOP assignment was done to the modeled  protein to show if it  belonged to the same group 

as the 2C41C  native , TM- Fold a structural classification  software was used  to ascertain the  

SCOP family probability of classification, the posterior probabilities of  SCOP family  have been 

benchmarked (Xu & Zhang 2010) and calculated using Bayes formula  in Equation 3,   

             P(F|TM)  =                P(TM|F)P(F)           . 

                               P(TM|F)P(F)+ P(TM| F¯)P(F¯)                        Equation 3(Bayes Equation) 

Here in Equation 3, TM stands for the TM-score of the compared proteins as calculated by the 

structural alignment program TM-align, (F) and (F¯) represent the events that the proteins 

belong to the same and different Fold in SCOP, respectively P(F)and P(F¯) are the prior 

probabilities of proteins in same and different folds; P(TM|F) and PTM|F¯) are the conditional 

probabilities of TM-score when the two proteins are in the same or different Fold families 

respectively. P(F|TM) is the posterior probability of the fold sharing the same group conditioned 

at a particular TM. All the data and parameters have been extracted from SCOP database. The 

posterior probabilities were curve fitted into a sigmoidal Boltzmann model and used to calculate 

the posterior probabilities. See Equation 5 

Boltzmann Model. Y= max+(min-max)/(1+exp((TMn – Tmscop)/ $dx_scop))          Equation 5  

The parameters for the Boltzmann model incorporated into a Perl script to calculate the posterior 

probability are:  $a1_scop (min)=-0.0071735;   $a2_scop(max)=0.99803; $x0_scop 

Tm_scop)=0.57917       $dx_scop=0.048934;                                          (see Perl excerpt pg 46)            

min is the  initial value (left horizontal asymptote) max final value (right horizontal asymptote) 

x0 center (point of inflection), dx is the width (the change in X corresponding to the most 



30 
 

significant change in Y values). 

   The posterior probability from the Boltzmann fit equation was found to be 0.9929 for the 

SCOP family classification of H171R (ASFV108). Which proved with a 99.29% certainty, the I-

TASSER modeled protein belonged to the same family as the experimentally solved PDB 2C41 

Native, SCOP classification code for the family was a.25.1.0. A ferritin like protein. This close 

analogy protein (PDB ID: 2C41C) resembles a subunit of DNA-binding protein from starved 

cells in bacteria. 

 

Figure 5:H171R  I-TASSER modelled  subunit resembling  Ferritin like domain  by I-TASSER  the TM score 

.740 and the RMSD 2.25 to 2C41C,The N terminus starts from M (BLUE ) to (N red) . 

 

 

Figure 6: Structural superimposition of H171R  I-TASSER model (Blue)and the native structure 2C41C ,The 

red model   2C41C  is a  representative  of the PDB. 
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4.5.1 H171R BINDING SITE RESULTS 

Further analysis of the binding site and ligand screening see Figure 7 and appendix page 48 

confirmed that the binding site was similar to  that of 1n1qA 
,
 which is a subunit of DPS with 

ferroxidase activity in the            

 

Figure 7: Predicted binding site of the model with FEO ligand the model binds to residues Glu22, Val60 and 

Tyr 67. 

same family with a TM-Score of 0.707 at the ligand binding site, the ligand that binds was found 

to be FEO and it binds to residues 22 Glu, 60 Val and 67 Tyr, the binding site score was found to 

be 1.17 which is greater than 1.1. BS-score is a measure of local similarity between template 

binding site and predicted binding site in the query structure, It is based on large scale 

benchmarking analysis, it has been observed that a BS-score >1.1 reflects a significant local 

match between the predicted and template binding site. 

4.5.2 H171R PROCHECK RESULTS 

 A Ramachandran plot was done using Procheck (Laskowski et al. 1993) for the structure 

validation Figure 8. The plot developed validates the structure as all the empirically distributed 

data-points present in the structure are observed to lie in the allowed region. This indicates, the 

H171R model 1 predicted with the help of I-TASSER has approx. 90% of the residues in the 

allowed region conformation. The I-TASSER modeled and refined structure had approximately. 

91.3% of the residues in the allowed region conformation by Procheck. 
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Figure 8: A Ramachandran plot  showing angular distribution in H171R , 91.3% of the residues lie in the 

allowed region using Procheck if a model has 90% of its residues in the allowed region it is good enough. 
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4.6 IMMUNODOMINANT PEPTIDES RESULTS: 

NetMHCIIpan 3.0 an online web tool for the prediction of peptide binding was used, we used 

Swine Leukocyte Antigens DQ and Swine Leukocyte Antigens DRB proteins. The top ten 

epitopes in the tabular form are listed below see Table 3 and Table 4.  

 

Table 3: MHC class I1  binding peptides ranked on the basis of strong binding to MHC pseudo 

sequence YLFHETSGARTLHIVYFGHTYFDFQTETVHIETT: Swine Leukocyte Antigen –DQ 

Alpha and Beta protein sequences were  used.  

 

PROTEIN POSITION  PEPTIDE 1-log50k AFFINITY 

ASFVgp069 146 WARFGVAKAQMSALA 0.79 9.71 

ASFVgp145 13 KHVRFAAAVEVWEAD 0.782 10.53 

ASFVgp047 4 VDVVGIAEASAALYV 0.755 14.12 

ASFVgp083 284 LINFTYARAQQVIAK 0.745 15.72 

ASFVgp067 135 GLIYATAGVLLAQLH 0.742 16.29 

*ASFVgp108 14 IDVLRFVEANLAAFN 0.738 17.01 

ASFVgp095 37 LFKTVYEALVAQEIP 0.726 19.46 

ASFVgp064 73 FEATRLVAVRAQQLA 0.726 19.47 

ASFVgp030 71 HHSEFSAEIAALLKL 0.724 19.81 

*ASFVgp010 2 VIFLGILGLLANQVL 0.723 19.96 

 

 
Table 4:MHC class I1  binding  peptides ranked on the basis of strong  binding strength to MHC  

pseudo sequence QEFFIASGAAVDAILHLFLEQYDLQRETYHILFL:  

Swine Leukocyte Antigen –DR Alpha and Beta protein sequences were used.  

 

Protein Position Peptide 1-log50k affinity 

ASFVgp038 236 ILDIFMMLTSRRSLV 0.931 2.12 

ASFVgp127 159 KELFLRIRNTRLKQI 0.922 2.33 

ASFVgp093 1380 NVLLRMALSSPVQVL 0.911 2.61 

ASFVgp026 370 PERVVKMAARLMRVD 0.896 3.09 

ASFVgp091 119 VSYLIRIRAALKKKN 0.89 3.3 

*ASFVgp010 4 FLGILGLLANQVLGL 0.887 3.39 

ASFVgp059 26 RKWLTLQPSLLRYSG 0.887 3.41 

ASFVgp037 74 ILNFLRLISGHRVVL 0.885 3.48 

ASFVgp115 190 YNNIMQAKNIRILFL 0.885 3.48 

ASFVgp053 3 FISIISVLSIRRKRK 0.884 3.51 
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Chapter 5 
5.0 DISCUSSION AND CONCLUSION 

5.1   DISCUSSION 

5.1.1 PROTEIN STRUCTURE PREDICTION AND CLASSIFICATION 

As anticipated in our study, nearly all the 75 single domain Open Reading Frames assigned 

domain boundaries by ThreaDom and modeled by I TASSER, have structurally related 

experimentally solved folds in the PDB. This is shown by I TASSER having 74 out of the 75 

Modeled structures, with a TM score greater than 0.5. Eight of the multidomained proteins 

predicted, had using had TM scores greater than 0.5. Therefore, there was no need for splitting 

the domains further. Structures were classified to belong to the same fold group if the TM. Score 

is greater than 0.5 (Xu & Zhang 2010).The likelihood of correctly assigning an accurately 

modeled single domain protein structure to a fold family was observed, and the near 

completeness of the PDB, for single domain proteins, as previously seen in genome scale 

applications is verifiable, making the protein structure prediction problem solvable (Zhang, 

Hubner, et al. 2006; Kihara & Skolnick 2003). The average TM score was 0.7185 for all the 83 

Open Reading Frames. Only the ORF; C122R, had a TM-Score of 0.486, most probably it 

belonged to the category of new folds which do not have any local conformations in the PDB. 

SCOPe 2.03e, the manual classification system, assigns only 37 of the 83 modeled structures 

which have experimentally solved natives as templates and TM Scores greater than 0.5, to 

known protein families highlighting the  slow nature and shortcomings of a manual structural 

classification  system.This represents only  44% of the modeled structures.  

5.1.2   ASFV H171R 

ASFV has a host of survival mechanism that facilitate its persistence in macrophages, as one of 

the objectives the study has identified a subunit of the self assembling DPS (DNA binding 

Protein during Stress.) like protein (Zhang & Orner 2011). DPS was first characterized as a 

DNA-binding protein and was not at that time known to exhibit any ferroxidase activity. 

Extensive studies have shown it possesses, ferroxidase activity, the protein is classified to belong 
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to the ferritin like family.DPS maybe crucial for viral survival in macrophages. Previous studies 

have shown the usefulness of DPS in surviving the oxidative stressful environment of 

macrophages (Theoret et al. 2011).Macrophages are phagocytic cells involved in immune 

coordination and RBC destruction ,90% of RBCs are removed from the circulation by the 

phagocytic activities of macrophages in the liver, spleen and lymph nodes, the Macrophage 

oxidative environment has free Fe(II) and Hydrogen peroxide which are potentially dangerous to 

ASFV,  damaging effects arises when Fe
2+

and H202 through Fentons reaction, see figure 9. leads 

to the production of  OH· radicals .The OH· radicals  can damage virtually all types of 

macromolecules (Tu et al. 2012): nucleic acids damage is severe as OH· radicals cause strand 

breaks, depyrimidation, depurinations and oxidation of bases. Lipids are damaged by 

peroxidation that decreases membrane fluidity. Proteins are damaged by oxidation of amino 

acids leading to fragmentation. 

The diffusion of OH· radicals is limited, in that it is likely to react with an oxidizable substrate 

before travelling a long distance. However, OH· radicals can start a radical reaction which can 

result in injury far away from the site of OH· radical formation. From an enzymatic point of 

view, OH· radical, has a half life of 10
-9

s .Therefore its detoxification is not enzymatically 

feasible. The study results therefore hypothesize, based on Insilco protein structure prediction, 

the existence of a DPS like protein, that self assembles, and  ASFV uses to protect itself from 

peroxide stress by inhibiting the iron-catalyzed production of OH· radicals. See figure 9. 

 

Figure 9: Iron Oxidation: Oxidation of ferrous ions in may occur via the Fenton Reaction. In this instance, 

the stoichiometeric ratio of iron to hydrogen peroxide is 1: 1 and thus results in the production of hydroxyl 

radicals that can lead to damage of vital macromolecules and cell death. (b) Oxidation of ferrous ions occurs 

in the ferroxidase centre of Dps and proceeds via a reaction whereby the stoichiometric ratio of iron to 

hydrogen peroxide is 2 : 1.This reaction does not produce hydroxyl radicals; thus, the potential damage to 

cellular components is alleviated. Diagram courtesy of (Calhoun & Kwon 2011) 
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5.1.3. EPITOPE PREDICTION  

For proteins binding to SLA-DQ, Epitope WARFGVAKAQMSALA of ASFV 069 was found 

to have the highest antigenicity among all epitopes assuring maximum binding affinity after 

proteasome digestion. It is a prenyl transferase, gene deletion of this protein has been shown to 

have an effect virulence replication in macrophages and its conserved in isolates, (Alejo et al. 

1999; Dixon et al. 2004).  

 H171R predicted peptide sequence IDVLRFVEANLAAFN ranked 6
th 

Of the 149 

peptides in binding to Swine Leukocyte Antigen DQ. confirming it was good enough as a 

potential candidate in peptide vaccine development, the protein has an effect on replication in 

macrophages (Carrillo et al. 1994; Moore et al. 1998),the primary cells ASFV targets. The 

peptide is conserved in all ASFV isolates.    

Another peptide sequence which may be of value is ASFV 010 which binds both to SLA 

DQ and SLA DR strongly using the same peptide core ILGLLANQV underlying its importance 

as an immunogenic peptide, The protein for this sequence has only been assigned a family there 

is no general consensus on its function, it may be a Bromodomain, Bromodomains (BRDs) are 

protein interaction modules that specifically recognize ε-N-lysine acetylation motifs but further 

investigation should be done. 
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5.2 CONCLUSION  

In conclusion, this study found that the library of solved PDB structures is likely 

complete and clearly demonstrates that the majority of secondary structural elements and global 

chain contour similarity are retained for structures with a TM-score to native greater than 0.5. 

The key issue of identifying templates for the 83 of 149 targets where contemporary sequence 

identity and structure prediction methods fail is improved and applied on a genomic scale. 

 TM-score thresholds may be suitable for automated protein structure classifications, 

because of the rapid increase of protein structures accelerated by various proteomic projects, it is 

becoming increasingly infeasible as exemplified by SCOP, for the manual human visualization 

to conduct large-scale protein structure classifications. SCOP only managed to classify 37 out of 

the 83 possible targets. Therefore the usage of these quantitative scoring functions that 

corresponds to specific structural similarity levels is should be adopted. The severity of this is 

seen with more than half the experimentally solved PDB natives not being able to be classified 

by SCOP. 

 The study identified and modeled ASFV108 ORF H171R, accurately, I-TASSER managed 

to build a full length model for this  BA71V Isolate ORF that shares less than 13%   primary 

sequence homology with any experimental solved protein structure  an accurate functional 

assignment of ferroxidase activity was inferred ,the  protein is crucial for ASFV  survival in 

macrophages oxidatively stressful conditions, this protein has been considered as a vaccine 

candidate in various studies (Papinutto et al. 2002) and is a strong binder to SLA-DQ. 

5.3 RECOMMENDATIONS: 

There are still questions that remain to be addressed in future studies, one is the function of 

Ankyrin repeats in ASFV. Ankyrin repeats form the largest family and their functions are 

diverse. An extensive study should be done to see if they are implicated in virulence 

enhancement. Investigation of ASFV 010 should also be done it uses the same peptide binding 

core in binding to SLA DQ and SLA DR and is also immunogenic. However, there is no general 

consensus in its function. Investigations involving gene deletion of H171R as an attenuation 

mechanism and observation of the virus in an oxidatively stressful environment having H202 and 

Fe
2+ 

can add more insight.  
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        APPENDICES 

APPENDIX I   :  PREDICTED PROTEINS 

  

PROTEINS     BA71V 

GENE 

NAME 

 

ORF 

NUMBER 

1 Thymidylate kinase A240L 30 

2 Thymidine kinase K196R 45 

3 dUTPase* E165R 124 

4 Ribonucleotide reductase (small subunit) F334L 39 

5 Ribonucleotide reductase (large subunit) F778R 40 

6 DNA polymerase β G1211R 84 

7 DNA topoisomerase type II* P1192R 106 

8 Proliferating cell nuclear antigen (PCNA) like E301R 121 

9 DNA polymerase family X * O174L 91 

10 DNA ligase* NP419L 94 

11 Putative DNA primase C962R 66 

12 AP endonuclease class II* E296R 127 

13 RNA polymerase subunit 2 EP1242L 48 

14 RNA polymerase subunit 6 C147L 64 

15 RNA polymerase subunit 1 NP1450L 93 

16 RNA polymerase subunit 3 H359L 107 

17 RNA polymerase subunit 5 D205R 102 

18 RNA polymerase subunit 10 CP80R 89 

19 TFIIB like C315R 63 

20 Helicase superfamily II A859L 35 

21 Helicase superfamily II similar to origin binding protein F1055L 42 

22 Helicase superfamily II B962L 67 

23 Helicase superfamily II VV D6/D11 like involved in D1133L 100 

 transcription termination 

  24 Helicase superfamily II VV D5 like Q706L 115 

25 Helicase superfamily II VV A18 like QP509L 116 

26 Transcription factor SII I243L 132 

27 Guanyl transferase* NP868R 95 

28 Poly A polymerase large subunit C475L 62 

29 FTS J like methyl transferase domain EP424R 50 

30 ERCC4 nuclease domain EP364R 54 

31 Lambda-like exonuclease D345L 103 

32 VV A2L like transcription factor B385R 75 

33 VV A7L like transcription factor G1340L 83 

34 VV VLTF2 like late transcription factor, FCS like fnger B175L 80 

35 VV D5 like ATPase involved in replication C962R 66 
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APPENDIX I 

 OTHER ENZYMES WITH UNKNOWN ROLES 

  1 Prenyl transferase* B318L 69 

2 Serine protein kinase* R298L 114 

3 Ubiquitin conjugating enzyme* I215L 135 

4 Nudix hydrolase* D250R 96 

 
    HOST CELL INTERACTIONS 

  1 IAP apoptosis inhibitor* A224L 28 

2 Bcl 2 apoptosis inhibitor* A179L 36 

3 IkB homolog and inhibitor of calcineurin phosphatase* A238L 

(5EL) 

34 

4 C type lectin like* EP153R 52 

5 CD2 like. Causes haemadsorbtion to infected cells EP402R 53 

6 Similar to HSV ICP34.5 neurovirulence factor DP71L 145 

7 Nif S like PLP dependent transferase QP383R 117 

8 Mn dependent superoxide dismutase C129R 57 

 
    STRUCTURAL PROTEINS AND PROTEINS INVOLVED IN 

MORPHOGENESIS   1 P22 Transmembrane domain. KP177R 5 

2 A104R Histone-like structural protein.HF-like DNA binding protein A104R 29 

3 P11.5 A137R 37 

4 P10 A78R 44 

5 P72 Major capsid protein. Involved in virus entry B646L 76 

6 B438L Required for formation of vertices in icosahedral capsid B438L 70 

7 B602L Chaperone. Involved in folding of p72 capsid protein. . 

 

B602L 74 

8 B119L ERV 1 like. Involved in redox metabolism* Not incorporated into 

virus particles 

B119L 68 

9 Sumo 1 like protease. Involved in polyprotein cleavage S273R 105 

10 P220 Polyprotein precursor of p150, p37, p14, p34 coreshell components. 

Required for packaging of nucleoprotein core 

 

CP2475L 86 

11 P30 Phosphoprotein. Involved in virus entry CP204L 87 

12 P60 Polyprotein precursor of p35 and p15. Present in core shell CP530R 88 

13 P12 Attachment protein involved in virus entry.Transmembrane domain O61R 92 

14 P17 Transmembrane domain. D117L 101 

15 J5R Transmembrane domain. H108R 111 

16 P54 Binds to LC8 chain of dynein, involved in virus entry.Transmembrane 

domain. Required for recruitment of membranes to virus factories 

E183L 119 

17 

J18L Transmembrane domain. VV J5 like membrane protein E199L 123 

18 E248R Possible component of redox pathway required disulfide bond 

formation. Structural protein. 

E248R 125 

19 A151R Contains CXXC motif similar to that in thioredoxins. Binds to 

E248R protein. Possible component of redox pathway 

A151R 32 

20 P14.5 DNA binding. Required for movement of virions to plasma 

membrane 

E120R 126 

21 XP124L Multigene family 110 member. Contains KDEL ER retrieval 

sequence and transmembrane domain 

XP124L 110 
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APPENDIX II : MULTIGENE FAMILIES 

 

 

 

 

 

 

MULTIGENE FAMILIES  UNANNOTATED 

  1 Multi gene family  360 KP360L 003 

2 

 

KP362L 004 

3 

 

UP60L 013 

4 

 

L356L 007 

5 

 

J319L  019 

 

    Multi gene family  110 

  1 

 

U104L 009 

2 

 

XP124L 010 

3 

 

V82L 011 

4 

 

Y118L 012 

 

    Multi gene family  300 

  1 

 

J154R 016 

2 

 

J104R 017 

3 

 

J182L 018 

4 

 

J318L 019 

 

     Multi gene family  505/530 

  1 

 

A125L 020 

2 

 

A489R 021 

3 

 

A280R 022 

4 

 

A505R 023 

5 

 

A498R 024 

6 

 

A528R 025 

7 

 

A506R 026 

8 

 

A542R 027 

 

    Multi gene family  142(DP141L) DP141L    142                 

141  
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APPENDIX III: H171R 

Avirulent isolate pig BA71V ASFV genome uncharacterised  

>ASFVgp108 H171R pH171R 135445:135960 forward MW:19952 

MVVYDLLVSLSKESIDVLRFVEANLAAFNQQYIFFNIQRKNSITTPLLITPQQEKISQIVEF

LMDEYNKNNRRPSGPPREQPMHPLLPYQQSSDEQPMMPYQQPPGNDDQPYEQIYHKKH

ASQQVNTELNDYYQHILALGDEDKGMDSMLKLPEKAKRGSDDEDDMFSIKN 

 

APPENDIX 1V: SLA DQ AND DR PROTEINS.  

>tr|Q31065|Q31065_PIG MHC ClassII OS=Sus scrofa GN=SLA-DR-alpha PE=2 SV=1 

MTILGVPVLGFVITILNLQKSWAIVENHVIIQAEFYLSPDKSGEFMFDFDGDEIFHVDMEKRETVW

RLEEFGHFASFEAQGALANIAVDKANLEILIKRSNNTPNTNVPPEVTVLSDKPVELGEPNILICFID

KFSPPVVNVTWLRNGSPVTRGVSETVFLPREDHLFRKFHYLPFMPSTEDVYDCQVEHWGLDKPL

LKHWEFEAQTPLPETTENTVCALGLIVALVGIIVGTVLIIKGVRKGNATERRGPL 

 

>tr|Q31072|Q31072_PIG MHC class II antigen OS=Sus scrofa GN=LA-DRB-d PE=2 SV=1 

MLHLCFSRGFWMAALTVMLVVLSPPLALARDTPPHFLHLLKFECHFFNGTERVRLLERQYYNGE

EFLRFDSDVGEYRAVTELGRPDAKDWNSQKDLLEQRRAEVDTYCRHNYRILDTFLVPRRAEPTV

TVYPAKTQPLQHHNLLVCSVTGFYPGHVEVRWFRNGQEEAAGVVSTGLIPNGDWTFQTMVML

ETVPQSGEVYSCRVEHPSLTSPVTVEWRARSESAQGKMMSGIGGFVLGLLFVAVGLFIYFKNQK

GRPALQPTGLLS 

 

>tr|Q4W5W7|Q4W5W7_PIG MHC class II antigen OS=Sus scrofa GN=SLADQA PE=2 SV=1 

MVPGRVLMWGALALTTVMSACGGEDIAADHVASYGLNVYQSYGPSGYFTHEFDGDEEFYVDL

EKKETVWRLPLFSEFTSFDPQGALRNIATLKHNLNIVTKRSNNTAAVNQVPEVTVFSKSPVILGQP

NTLICHVDSIFPPVINITWLKNGHSVKGFSETSFLSKNDHSFLKISYLTFLPSDDDFYDCKVEHWGL

DKPLLKHWEPEIPAPMSELTETVVCALGLIVGLVGIVVGTVFIIQGLRSGGPSRHQGSL 

 

>tr|O98263|O98263_PIG MHC class II OS=Sus scrofa GN=SLADQB PE=2 SV=1 

MSGMVALRLPRGLWTAALTVMLVVLGAPVAEGRDSPQDFVYQFKGECYFFNGTQRVRHVTRY

IYNQEEHVRFDSDVGEFRAVTPLGRPDADYWNGQKDFLEQTRAELDTVCKHNYQIEEGTTLQRR

VQPTVTISPSKAEALNHHNLLVCAVTDFYPSQVKVQWFRNGQEETAGVVSTPLIRNGDWTYQVL

VMLEMNLQRGDVYTCRVEHSSLQSPILVEWRAQSESAQSKMLSGVGGFVLGLIFLGLGLFIRHRS

QKGLVR 
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APPENDIX V:   PERL EXCERPT FOR STATISTICAL CALCULATIONS 

#!/usr/bin/perl 

use Math::Trig;  

#that line indicates the path to the language interpreter when the script is run from the command   

line. In the case of perl /usr/bin/perl is the path to the perl interpreter. 

#defines many trigonometric functions not defined by the core Perl 

################## statistical analysis of tmscore ############### 

# set parameters of posterior probability and EVD 

$a1_scop=-0.0071735; 

$a2_scop=0.99803; 

$x0_scop=0.57917; 

$dx_scop=0.048934; 

$u=0.1512; 

$sigma=0.0242; 

# pvalue and posterior probability calculation  

$pvalue=1-exp(0-exp(($u-$tms_new)/$sigma)); 

$prob_scop=$a2_scop+($a1_scop-$a2_scop)/(1+exp(($tms_new-$x0_scop)/$dx_scop)); 

if($prob_scop<0){$prob_scop=0;} 

if($prob_scop>1){$prob_scop=1;} 

if($pvalue<0){$pvalue=0;} 

if($pvalue>1){$pvalue=1;} 

$prob_scop=sprintf ("%.4f",$prob_scop); 

$pvalue=sprintf ("%.15f",$pvalue); 

 

############################outputresult############################# 

print "Statistical Scores:\n"; 

print "Probability of sharing same fold (SCOP):                $prob_scop\n"; 

print "P-value (Significance of the alignment):                   $pvalue\n\n"; 
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APPENDIX VI:   I TASSER  STRUCTURAL PREDICTIONS 

 

All identified structural analogs Similar to the H171R model belong to the Dps (ferritin group) 

APPENDIX VII: COFACTOR BINDING SITE PREDICTION 
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APPENDIX VIII: GENE ONTOLOGY PREDICTIONS 

 

 

APPENDIX IX : PREDICTED ENZYME FUNCTION: 

 

The enzymes 1.16.3.1 are classified as having  ferroxidase activity: 
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APPENDIX X: UNIPROT  UNCHARACTERISED PROTEINS OF H171R 
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  Genome organisation map showing uncharacterised proteins of H171R.  Diagram courtesy of 

(Dixon 2013). 

 


