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ABSTRACT 

Exponential distribution has been constructed in this thesis using transformations of 

uniform and Pareto distributions. It has also arisen from the Poison process and it is a 

special case of the gamma distribution. 

The basic properties of the exponential distribution considered are the r-th moments in 

general. 

Derived from the moments are mean, variance, skewness and kurtosis. The moment 

generating function, cumulant generating function and characteristic function have 

been stated. 

There are many ways of characterizing the exponential distribution. In this work we 

have concentrated on characterization by lack of memory property and its extensions, 

and, three cases involving order statistics. These are: minimum and spacing between 

two order statistics, spacing between adjacent order statistics and the k-th order 

statistic. We have, however, stated other forms of characterizations including many 

also based on order statistics. 

Distributions of sum, difference, quotient and product of exponential distributions have 

been derived. The beta-exponential and the exponentiated exponential distributions 

have also been derived. These are generalizations of the exponential distribution. 

Exponential mixtures have been obtained for nine discrete mixing distributions-the 

Bernoulli, binomial, geometric types I and II, negative binomial types I and II, Poisson, 

discrete uniform and logarithmic distributions. Mixtures for thirteen continuous mixing 

distributions have also been determined. These are: beta, exponential, one-parameter 

gamma, two-parameter gamma, chi-square, inverse gamma, Erlang, inverse Gaussian, 

generalized inverse-Gaussian, half-normal, Rayleigh, uniform(rectangular) and chi 

distributions. 

The survival-time function, hazard rate function, cumulative distribution function and 

the probability density function have been obtained for each mixture by using the 

moment generating function technique. Some of the mixture distribution functions 

were obtained explicitly. Others were obtained in terms of special functions such as 

modified Bessel, generalized hyper geometric  and parabolic cylindrical functions. 

Density curves with arbitrary parameter values have been sketched for each mixture. An 

exponential curve, also with arbitrary parameter value, has been superimposed on each 

mixture density for a rapid visual comparison. 
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         Chapter 1 

Introduction 

1.0 Background 

The exponential distribution is one of the most extensively applied life-time and reliability 

analyses distributions. The distribution finds applications in diverse areas when events 

occur independently, at random but with mean rate λ, per unit of time, distance, volume 

etc, for instance, in modeling 

(i)  the distance of encountering a particular type of wild growing plant along a 

transect line in a forest as an ecologist may be interested in finding; 

(ii) the length of time between emissions of a radio-active substance; 

(iii) the failure time of manufactured items; 

(iv) the inter-arrival times at ticket counters; 

(v) the length of queues at particular sections of highway at various times; 

(vi) in insurance, the amount of insurance losses. 

The distribution therefore, plays a crucial role in probability and statistics and an organized 

study of its properties is necessary. 

Characterization of a distribution is an important tool in its application. In this study 

characterization of the exponential distribution by the lack of memory property and three 

cases involving order statistics have been examined in detail. Characterization by use of 

other properties have also been briefly covered.  

The study also looks at resulting processes when exponential distributions are manipulated 

among themselves, for instance as sums, differences, products or quotients.   

Very often however, populations are not homogeneous, so that the appropriate 

distributions to handle them are mixtures. This study examines mixtures involving the 

exponential distribution with nine discrete distributions and thirteen continuous  

distributions. The mixtures were derived by use of an innovative method based on 

moment generating functions. It is noted that this method of mixture derivation only 

applies to the exponential distribution due the special form of its function.  This makes it 

possible to derive its mixtures with other distributions through the moment generating 

functions of the mixing distributions. 
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The rest of the study is organized as follows: constructions, moments and definitions 

concerning the exponential distribution are dealt with in chapter two.  Chapter three deals 

with characterizations. Chapter four deals with distributions resulting from the actions of 

the exponential distribution on other exponential distributions.  Chapter five deals with the 

derivation of the moment generating functions of the mixing distributions used in the 

study. Chapter six deals with the survival-time and related functions of the mixtures. 

Chapter seven is the conclusion. 

The appendices contain extracts of pages from the sources quoted in the footnotes. These 

include theorems, lemmas, examples or table values that were needed by the proofs, 

other theorems or procedures used in the study. 

1.1 Objective of the study 

The objective of this study is to bring together the various properties of the exponential 

distribution that underlie its applications.  This information is required of researchers in 

diverse fields such as engineering, biology, medicine, economics, epidemiology and 

demography. 

1.2 Literature review 

Characterization: Many researches have been conducted in the area of characterization of 

the exponential distribution. A number of the research findings have been new. Others 

have, however, been different forms of already available findings.  

 Furguson (1964), characterized the exponential distribution by the conditional 

independence between min(X, Y) and Y-X when X and Y were two exponential random 

variables with different means. This characterization was extended by Basu(1965) when 

both  X and Y were exponential random variables with the same mean. Dallas, A.C.(1981)  

[8] accomplished a similar characterization by requiring that only one of the random 

variables be exponential. The other variable only needed to be continuous and have a 

positive real line support. 

Srivastava, M.S.(1967)  [23]has given characterization by considering  the independence of 

functions of order statistics for a given population. Epstein, B.  and Sobel, M. (1953) [11] 

have characterized the exponential distribution by the independence of spacings between 

adjacent order statistics. This property had however, already been identified by Sukhatme, 

P.V.(1937)[24]. 

Ahsanulla, M. (1977)[3] and Tavangar. M & Asadi.M.(1977) [24]  characterized the 

exponential distribution by considering functions of order statistics having  identical 

distributions. Khan, A. H., Faizan, M. and Haque, Z.(2009) [18] characterized the  
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distribution by expected values of functions of order statistics. By assuming the existence  

of a finite first moment for a continuous random variable, X, Wang, Y. H.  and Srivastava, R. 

C.(1980)[27] have characterized the exponential distribution via linear regression of two 

functions of order statistics. 

Ahsanulla, M. & Rahman, M. (1972) [2] characterized the exponential distribution by the k-

th order statistic. Galambos, J. & Kotz, S. (1978) [12] have characterized the distribution by 

the lack of memory property. They have shown extensions of the lack of memory property 

and how other forms of characterization of the exponential distribution such as via 

constancy of hazard rate, constancy of residual life and the equivalency of the distribution 

of the first order statistic to that of the parent population are equivalents of the lack 

memory property. 

LAU, K. S. & RAO, P. B. L. S. (1990) [19] provided a characterization by the relevation 

property. 

Tavangar. M & Asadi.M.(2010) [25]  characterized the distribution by residual life through 

the use of a Cauchy functional equation. Huang, W.J. & Li, S.H. A.C.(1993)[17] have 

characterized the distribution via the variance of the residual life. 

Hamdan, M. A.(1972) [15] Characterized the exponential distribution via conditional 

expectation of a function of a random variable. Chang, T.(2001). [6] has provided another 

form of characterization via conditional expectation of a function of random variable but 

with additional conditionality.  Galambos, J. & Kotz, S. (1978) [12] provide another 

characterization in terms of conditional expectation of moments of a random variable 

about some fixed value on the positive real axis. Chong, M.(1977). [7] has given a 

characterization  by means of the distributions truncated from below at various points. 

Dallas, A.C.(1981) [8] has characterized the exponential distribution via the independence 

between the spacing of two adjacent records and their minimum. Huang, W.J. & Li, S.H. 

A.C.(1993). [17] characterize the exponential distribution by use of the expectation of a 

function of a backward spacing between two record values conditioned on their minimum. 

They also show a characterization based on a forward spacing between two record values 

conditioned on their minimum. Ahsanullah, M. (1991) [4] characterizes the exponential 

distribution by the equivalence of the expectation of the spacing between two record 

values and the expectation of the record value corresponding to the difference between 

their record times. Gupta, R.C.(1984) [14] has characterized the exponential distribution by 

deriving a general theorem on the independence of the expectation of the spacing 

between two adjacent record values and their minimum and  showing that theorems by  
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Dallas, A.C.(1981) [8], Huang, W.J. & Li, S.H. A.C.(1993) and Ahsanullah,  M. (1991) [4] are 

its special cases. 

 Mixtures. Mixture distributions provide more flexibility for modelling populations than 

simple distributions. A number of researches have been conducted in this area. 

Xekalaki, E. & Karlis, D. (2005)[28] have ably illustrated the underlying principles of mixture 

distributions in their paper. They have singled out mixtures of the Poisson distribution for 

special attention. 

Saralees Nadarajah and Samuel Kotz(2006)[20] have listed the probability densities of a 

number of mixtures of the exponential distribution with the reciprocal rate  (section 5.1).  

This form of the exponential distribution does not lend itself well to direct integration or 

other methods in obtaining its mixtures. The authors therefore, relied wholly on special 

functions to obtain all the mixture densities. Some of the mixture densities have very 

complex forms and it would be difficult to obtain related survival-time functions from 

them. 

Miroslav Drodzenko and Mikhael Yadrenko [10]have in their paper considered mixtures of 

the exponential distribution from two angles: one in which they consider the exponential 

distribution parameter λ to be a linear function of the random variable X of the form ���� � � � 	���, and two, a linear function of the form ���� � �	���.  b is some positive 

constant. 

Roy Kirk (1997)[22]has, in his thesis paper provided a probabilistic interpretation of the 

Laplace transform and its discrete equivalent, the z-tranform. He shows how the Laplace 

and Z-transforms of functions can be considered as mixtures of the exponential 

distribution with the said functions. The transforms acquire probabilistic meaning when 

the mixing functions are probability functions.  

Enrique R. Villa and Luis A. Escobar[26] have shown, in their paper the efficiency of using 

moment generating functions, when available, to obtain mixtures for a varied number of 

distributions. This process, however, requires knowledge of moment generating functions 

both of the conditional distribution and the mixing distribution. One also needs to be able 

deduce a distribution from its moment generating function. They have also highlighted the 

advantages of mixtures in applications over simple distributions. In addition, they cite a 

number of situations that give rise to mixture distributions. 

Ole Hesselar, Shaun Wang and Gordon Willmot(1998)[16] have also demonstrated the 

relationship between mixtures of the exponential distribution and the Laplace transform of 

any probability density that has support on [0, ∞�. 
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Chapter 2 

Exponential distribution Constructions, moments and definitions 

In this chapter a number of construction methods, moments and some other basic 

statistical definitions relating to the exponential distribution have been examined. 

2.1 Construction 

The exponential distribution can be constructed by various methods. 

2.1.1 Construction from the uniform distribution 

The exponential distribution can be obtained as a function of a uniform random variable. 

 Let   � � �� ��� where λ> 0 is a constant and X has a uniform distribution on the interval 

[0, 1]. We find the pdf of Y. 

Using the method of variable transformation; 

                                      � � ���� 

                  � ���� � ������ 

Thus the pdf of Y, g(y), is given by 

 ���� � ���� �� ��� � 1. ����� 

                       � �����                                                                                                             (1)                                                                                                         

which is an the exponential distribution of rate �. 

2.1.2 Construction from the Pareto distribution 

The exponential distribution can be obtained as a function of a Pareto random variable. 

Let   � ��� #$ where % is a constant and X has a Pareto distribution given by  

   ���� � &%'�'(�  , � ) % 

We find the pdf of Y using: 

(i) variable transformation technique 

(ii) cumulative distribution technique 

Using the variable transformation technique; 
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� � %�� 

        � ���� � %�� 

Thus the pdf of Y, g(y), is given by 

 ���� � ���� �� ��� � '$*
 *+,  %�� 

  � '$*
�$-.�*+,  %��  

                        � &��'� 

Putting  & � λ, 

          ���� � ����� 

This is an exponential distribution with rate λ. 

Using the cumulative distribution technique; 

Let /��� � 0� 1 �� where /��� is the cumulative distribution of Y. 

                 � 0 2�� �% 1 �3 

                � 0 2�� �% 1 �3 

                � 0�� 1 %��� 

                 � 4 ������$-.

5
 

                � 4 &%'�'(�  ��$-.

5
 

         �     1 � /��� �   4 &%'�'(�  ��6
$-.

� �%' 7 1�'8$-.
6

 

                � �%' 70 � 1�%���'8 

               � ��'�, & ) 0, � ) 0  
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� /��� � 1 � ��'� 

    ���� � �9/���:��  

                � �91 � ��'�:��  

                � &��'�, which is an exponential distribution with parameter &. 

Let � � & , 
� ���� � �����,   � ) 0  , � ) 0 

2.1.3 Construction from the gamma function 

The exponential distribution can be obtained from the gamma function. 

For a constant & ) 0, ;�� <;=>;��� ? ) 0,  
                    Γ�&� � 4 tB��e�Ddt6

5  

Dividing by Γ�&�, 

                       1 � 4     tB��e�DΓ�&�  dt6
5  

Thus,   

              ��?� � tB��e�DΓ�&�  , ? ) 0, & ) 0 

Let   X �      GH   

Thus,   

              ���� � �xβ�B��e�KHΓ�&�   
                          � %'Γ�&� xB��e�KH, x ) 0, & ) 0, % ) 0  
Putting & � 1, 

���� � %e�KH  , x ) 0,    % ) 0 
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This is exponential distribution with parameter % 

L�? � � %, 

� ���� � �e�K�  , x ) 0,    � ) 0 

2.1.4 Construction from a stochastic process 

Consider a finite time interval �0, ?�. 

Dividing the interval into n sub-intervals each of length h, then, 

     ? � �	 

Let 0M�	� � 0��NO��= P� �<��?Q >� ; ?>O� >�?�=<;� 	� 

Let: 05�	� � 1 � �	 � 0�	� 

       0��	�  � �	 � 0�	� 

       0M�	�  � 0�	� �P= � ) 1  
where 0�	� means a term ψ(h) with property limUV5 W�U�U � 0 

Let 0MXY ) ?Z � 0X�P �<��? >� �0, ?�Z 

            � Y � ?>O� �P= 1[\�<��? 

Let the probability of events in any sub-interval be independent of each other. 

Then,  0MXY ) ?Z � 91 � �	 � 0�	�:M   

                     � 71 � �?� � 0�	�8M
 

                     � 21 � �?� 3M � �. 0�	� 21 � �?� 3M�� � ] 

                     � ���\ 

 �  0 XY ) ?Z � �>OUV5  0MXY ) ?Z 

                     � ���\ 

The pdf of T is, 
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             � ��? ^0 XY ) ?Z_ � ����\ 

This is an exponential distribution with parameter �. 
Fig. 2.1 shows the probability curves for an exponential distribution with three rate 

parameters, 0.5, 1 and 2. 

 

                                   Fig. 2.1 

 

2.2 Moments 

The r-th moment of a random variable X is given by 

`9�a: � 4 �a������6
5    

Thus when X is exponentially distributed, 

`9�a: � 4 �a�e�K�  ��6
5  

L�? N � ��, �� � 1� �N 

`9�a: � � 4 bN�ca e�d  1� �N6
5  

 

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3 3.5

f(x)

x

Curves of exponential distribution with different rate parameters 

λ=0.5, λ=1, and λ=2

λ=0.5

λ=1

λ=2
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             � 1�a 4 Nae�d  �N6
5  

             � 1�a Γ�= � 1� 

             � =!�a    
for positive integer r. 

Y	NQ `9�a: � =!�a 

Hence, 

`9�: � 1� � f 

`9�g: � 2!�g � 2�g 

Thus fg � `9� � f:g � ig 

                � `9�g: � 2f`9�: � fg 

                � `9�g: � fg 

                 � 2�g � 1�g � 1�g            � i � 1� 

Also, 

 `9�j: � 3!�j � 6�j 

   �  fj � `9� � f:j 

             � `9�j: � 3f`9�g: � 3fg`9�: � fj 

             � `9�j: � 3f`9�g: � 3fg`9�: � fj 

             � `9�j: � 3f`9�g: � 3fg`9�: � fj 

              � 3!�j � 3. 1� . 2�g � 3. 1�g . 1� � 1�j 

              � 2�j 
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`9�m: � 4!�m � 24�m  

   �  fm � `9� � f:m 

              � `9�m: � 4f`9�j: � 6fg`9�g: � 4fj`9�: � fm 

� 4!�m � 4. 1� . 3!�j � 6. 1�g . 2�g � 4. 1�j  . 1� � 1�m 

� 9�m 

2.3 Definitions 

2.3.1 Mean 

The mean 
                f � `9�: � 1� 

2.3.2 Variance 

The variance                 ig � `9�g: � fg 

                      � 2�g � 1�g � 1�g 

2.3.3 Skewness 

The skewness of a curve p�, is a measure of the symmetry of the curve in comparison with 

the normal curve and  is given by 

         p� � fjij 

Thus for an exponential curve, 

         p� � 2�j
b1�cj � 2 

 The normal curve has    p� � 0 
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2.3.4 Kurtosis 

The kurtosis of a curve, pg, is a measure of the sharpness of its peak and the width and 

length of its tail in comparison with the normal curve and is given by 

         pg � fmim 

Thus for an exponential curve, 

         pg � 9�m
b1�cm � 9 

The normal curve has  pg � 3 

2.3.5 Moment generating function 

The moment generating function is 

          q�?� � `9�\ : � �� � ?       �Q�r?>P� 5.5.2�      
2.3.6 Cumulant generating function 

The cumulant generating function is 

           t�?� � �P�`9�\ : � �P�� � log �� � ?� 

2.3.7 Characteristic function 

The characteristic function is 

w�?� � `9�x\ : � �� � >? 

2.3.8 Survival function 

Let T denote the time from a well-defined starting point until some event called “failure”, 

occurs. T is referred to as survival time and let ��?� denote its probability density function. 

For an exponentially distributed process with parameter λ 

                ��?� � ����\ 
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The probability that the survival time T exceeds some value t, y�?�, is given by 

                y�?� � 0�Y ) ?� 

                          � 1 � z�?�, where z�?� is the cumulative distribution function. 

For an exponential distribution,   

                   z�?� � 4 ���� ��\
5  � �{��� |5\  

           �   z�?�  � 1 � ���\ 

Thus the survival function is  

                     y�?� � 1 � z�?�    � ���\ 

2.3.9 Hazard rate function 

The hazard rate function is 

                   	�?� � ��?�y�?� � ����\���\ � �, ; rP�Q?;�?. 
2.3.10 Memoryless property 

Consider two survival times ? ) 0,    Q ) 0. 

0�Y ) ? � Q|Y ) ?� � 0�Y ) ? � Q, Y ) ?�  0�Y ) ?�  

    

                                      � 0�Y ) ? � Q�  0�Y ) ?�  

                                    � ����\([�  ���\  

                                          � ���[  � 0�Y ) Q�  
This is the memory-less property of the exponential distribution which shows that the life-

time of an exponentially distributed object is independent of its current age. The 

exponential distribution is the only continuous distribution with this unique property.  
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Chapter 3 

 Characterization 

3.1 Introduction 

There are many ways of characterizing the exponential distribution. We have 

characterizations based on: 

Lack of memory property;                                                                                                       

order statistics;                                                                                                                    

record values;                    

convolution and relevation;                      

residual  lifetime;                                                                                                          

moment properties, and                                                                                             

conditional expectations  

In this chapter we shall examine the lack of memory property and sample three 

characterizations by order statistics. A brief discussion of the other characterizations is also 

given.                            

3.2 Memory-less and related properties 

Definition (Ross, 2000).                    

A random variable X is said to be without memory or memory-less if                                  

 Pr�� ) Q � ?|� ) ?� � Pr�� ) Q� �P= ;�� Q, ? ) 0                                               (3.1)     

If we think of X being the life-time of some instrument, then (3.1) states that the 

probability that the instrument lives for at least s+t hours given that it has survived t hours 

is the same as the initial probability that it lives for at least s hours. In other words, if the 

instrument is alive at time t, then the distribution of the remaining amount of time that it 

survives is the same as the original life-time distribution, that is, the instrument does not 

remember that it has already been in use for a time t. 

The condition (3.1) is equivalent to 

Pr�� ) Q � ?,   � ) ?�Pr�� ) ?� � Pr�� ) Q� 

         or     Pr�X ) Q � ?, � ) ?� � Pr�� ) Q�Pr �� ) ?�                              (3.2) 

         or    

 Pr�X ) Q � ?� � Pr�� ) Q�Pr �� ) ?�                                           (3.3) 
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Since (3.2) or (3.3) is satisfied when X is exponentially distributed (for ����[(\� ����[���\�,   it follows that exponentially distributed random variables are memory-less.     

It turns out that not only is the exponential distribution “memoryless” but it is the unique 

continuous distribution possessing this property. The following theorem characterizes the 

exponential distribution by the lack of memory property. 

Theorem 3.2.1                        

The exponential distribution is the only continuous distribution which is memory-less 

Proof:              

For a random variable X having a cdf z��� � Pr�� 1 ��, its survival function is 1 � z��� �Pr�� ) ��  

Re-writing (3.3) in terms of survival functions,  

1 � z�Q � ?� � 91 � z�Q�:91 � z�?�:                                                                                  (3.4)                                                                                                     

We show that the exponential distribution is the only continuous distribution to satisfy 

(3.4). 

Re-arranging (3.4), we have         

  

z�Q � ?� � 1 � 91 � z�Q�:91 � z�?�: 

                     � 1 � X1 � z�?� � z�Q� � z�Q�z�?�Z                                                        � z�?� � z�Q� � z�Q�z�?�                                                                                          � z�Q � ?� � z�?� � z�Q� � z�Q�z�?�                                                                                                                                                                  � z�Q�91 � z�?�:         (3.5)                

Dividing (3.5) by s we have          

         z�? � Q� � z�?�Q � z�Q�Q  91 � z�?�:                                                                             �3.6� 

 Taking limits of (3.6) as Q V 0(                                                        

   �>OQ V 0(  z�? � Q� � z�?�Q � z��?� � �(�?� 

;��  �>OQ V 0( z�Q�Q � �, ; rP�Q?;�? 

� �(�?� � �91 � z�?�:                                                                                                                 �3.7� 

                                                                                                                                                         

Equation (3.5) can also be written as  

z�?� � z�? � Q� � z�Q�91 � z�? � Q�:                                                                                   �3.8�      
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         Dividing (3.8) by s,                

         z�?� � z�? � Q�Q � z�Q�Q  91 � z�? � Q�: 

 

� �>OQ V 0�  z�?� � z�? � Q�Q � z��?� � ���?� 

 

;��  �>OQ V 0� z�Q�Q � �, ; rP�Q?;�? 

� ���?� � �91 � z�?�:                                                                                                                  �3.9�    

Combining (3.7) and (3.9) (since both LHS and RHS derivatives exist),                       ��?� � �91 � z�?�:                                             (3.10) 

But   

  ��?� � �9z�?�:�?  

Therefore, (3.10) can be written as  

          �9z�?�:�? � �91 � z�?�:                                                                                                       �3.11� 

Solving (3.11) by variable separation,                      

                 �9z�?�:1 � z�?� � ��? 

 

          � 4 �9z�?�:1 � z�?� � 4 ��? 

� ���91 � z�?�: � �? � r, c is a constant of integration 

��91 � z�?�: � ��? � r�,     r� � �r 

� 1 � z�?� � ���\(�,  

� z�?� � 1 � ���\(�, � 1 � ����\                                                                                           �3.12� 

z�?� is a cdf on 90, ∞: 

� z�?� � 0 ;? ? � 0 

Substituting this initial condition in (3.12) 

0 � 1 � � � � � 1 
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Hence z�?� � 1 � ���\ , � ) 0, ? � 0, which is the distribution function of an exponential 

distribution. 

         

3.2.2 Characterization by extension of the lack of memory property 

Other characterizations of the exponential distribution are extensions of its lack of memory 

property. 

The following theorem extends the lack of memory property of the exponential 

distribution [12]. The theorem requires the following definition: 

Definition               

A function is said to be absolutely continuous in an interval iff it is continuous and 

differentiable at every point in the interval. 

Theorem 3.2.2 

Consider a sample of size n of independent random variables ��,  �g, .  .  .  , �M taken from a 

population with an absolutely continuous distribution functionz���. 

Let G(x) = 1-F(x).  

 If G(x1+x2 +...+xn ) = G(x1) G(x2)… G(xn), then 

    z��� � 1 � ��� ,      � � 0,     �>?	 QPO� � ) 0. 

Proof.     

The lack of memory property 1 � z�Q � ?� � 91 � z�Q�:91 � z�?�:   in theorem 3.3.1  

can be restated as: 

 G(x+z) = G(x).G(z).  for all  x, z � 0. 

Substituting for x and z with x1 and x2 , we have                 

G(x1 +x2) = G(x1) G(x2), and by induction, 

  G(x1+x2 +...+xn ) = G(x1) G(x2)… G(xn). 

Hence the theorem is proved. 

3.2.3 An extension of the lack of memory property through order statistics 

In this section an extension of the lack of memory property has been used in conjunction 

with order statistics to characterize the exponential distribution [12]. 
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(Section 3.3 gives a more expanded overview of some properties of order statistics)   

Let  X�,   Xg.  .  .   X� be a sample of independent and identically distributed random 

variables from a population X. The associated sample order statistics are obtained by  

re-arranging the variables   X�’s in ascending order as   X���,   X�g�.  .  .   X���, so that   X��� is 

the smallest and   X��� is the largest of the   X�’s. 

The cumulative distribution of the i-th order statistic   ��x� is given by                                                            z���x�� � ∑ 9z���:a91 � z���:M�aMa�x  .                                                                                      (1)  

                                                                                                                                                                                                                                                            

By putting i=1 in (1) we obtain the distribution of the minimum of the sample values    X��� � minX  X�,   Xg.  .  .   X�Z as 

z������ � � 9z���:a91 � z���:M�aM
a��  

              � 1 � 9z���:a�591 � z���:M��a�5� 

              � 1 � 91 � z���:M                                                                                                               (2)                                                                                                       

Theorem 3.2.3 

Let  ��,   �g.  .  .   �M be a sample of independent and identically distributed random 

variables from a population �. Let F(x) = 1- e 
–bx

 , be the distribution of  X for some b > 0.  

If  X��� � ��:M=min{  ��,   �g.  .  .   �M},  then 

                  ��:M ��  �/� 

Proof: 

From Theorem 3.2.2, we let  �� �   �g �.  .  .   �M � � 

        � /�  �� �   �g�.  .  . �  �M� � /���� � 9/���:M 

i.e. 1 � z���� � 91 � z���:M         

 � z���� � 1 � 91 � z���:M                                                                                                     (3)          

Comparing equations (2) and (3) we can write 

                  ��:M ��  �/� 

Hence the theorem is proved. 
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3.3 Characterization by order statistics 

3.3.0 Introduction 

In this section a brief overview of some properties of order statistics is given. These 

properties form the basis for the characterizations in Theorem 3.31, Theorem 3.32 

and Theorem 3.33. A brief discussion of other characterizations by order statistics is also 

given.                                                    

 Let X�, Xg, … , X� be independent and identically distributed values of a random variable X            

 of sample size n. Their associated order statistics are found by rearranging the variables in 

increasing order and are denoted by X�:�, Xg:�, … , X�:�.                                                                                                                                                         

Thus X�:� is the first order statistic and is the smallest of the X��s. X�:� is the n-th order 

statistic and is the largest of the X��s.                                                                                            
There exist other notations for order statistics such as                                                   X�,�, Xg,�, … , X�,� or                                                                                                    X���, X�g�, … , X���.                                                                                                                               

Let the sample of �x�Q be from a population with distribution function z�x�. Using the later 

notation, the cdf of the i-th order statistic is given by  

z�x���� � 0�X��� 1 �� � 0�;? ��;Q? > P� ?	� X��s ;=� ��QQ ?	;� ��                                      
    

                                              � � b�=cM
a�x 9z���:a91 � z���:M�a                                                 �1�  

 By substituting i=1 in (1) we obtain the cdf of the first order statistic X���, as 

z������ � � b�=c 9z���:a91 � z���:M�aM
a��  

              � 1 � b �= � 0c 9z���:a�591 � z���:M��a�5� 

              � 1 � 91 � z���:M                                                                                                               �2� 

By substituting i=n in (1) we obtain the cdf of the n-th order statistic X���, as 

 z�x���� � � b��c 9z���:M91 � z���:M�MM
a�M                                                                             �3� 

�  z�x���� � Xz���ZM                                                                                                                         �4� 

Differentiating (1) w.r.t x, we can obtain the pdf of the i-th order statistic as follows: 
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��x���� � �{z�x����|�� � ��� �� b�=cM
a�x 9z���:a91 � z���:M�a� 

                                      � � b�=c ��� X9z���:a91 � z���:M�aZM
a�x  

 

Using the product rule, let N � 9z���:a and < � 91 � z���:M�a  

�N�� � =9z���:a������,          �<�� � ��� � =�91 � z���:M�a������                              
 

� ��x���� � N �<�� � < �N�� 

� � b�=c X9z���:a9��� � =�91 � z���:M�a������: � 91 � z���:M�a=9z���:a������ZM
a�x  

� � = b�=c 91 � z���:M�a9z���:a������M
a�x  

                                                               � � �� � =� b�=c 9z���:aM
a�x 91 � z���:M�a������ 

� ��x���� � > b�> c 91 � z���:M�x9z���:x������ 

                                                        � � = b�=c 91 � z���:M�a9z���:a������M
a�x(�  

                                           

                                                       � � �� � =� b�=c 9z���:aM��
a�x 91 � z���:M�a������ 

Since 

� �� � =� b�=c 9z���:aM
a�M 91 � z���:M�a������ � 0 

Also, 

 > b�> c � �!>! �� � >�! > � �!�> � 1�! �� � >�! 
� ��x���� � �!�> � 1�! �� � >�! 9z���:x��91 � z���:M�x���� 
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                                    � � �= � 1� b �= � 1c 9z���:a91 � z���:M�a������M��
a�x  

� � �� � =� b�=c 9z���:aM��
a�x 91 � z���:M�a������ 

 

�N? �= � 1� b �= � 1c � �!�= � 1�! �� � = � >�! �= � 1� � �!=! �� � = � >�! � �! �� � =�=! �� � =�! 
                                        � �� � =� b�=c 

� � �= � 1� b �= � 1c 9z���:a91 � z���:M�a������M��
a�x � � �� � =� b�=c 9z���:aM��

a�x 91 � z���:M�a������ 

� ��x���� � �!�> � 1�! �� � >�! 9z���:x��91 � z���:M�x����                                                      �5� 

By substituting i=1 in (5), we obtain the pdf of X��� as 

��x���� � �!0! �� � 1�! 9z���:591 � z���:M������ 

� ��x���� � �91 � z���:M������                                                                                                    �6� 

By substituting i=n in (5), we obtain the pdf of X��� as 

��x���� � �!�� � 1�! �� � ��! 9z���:M��91 � z���:M�M���� 

� ��x���� � �9z���:M������                                                                                                            �7� 

The joint cumulative distribution function of X��� and X���        �1 1 r 1 s 1 n� is given by 

z�a��[���, �� � Pr�;? ��;Q? =X� 1 x, at least  QX� 1 y� ,    x � � 

                      � � � �!>! �� � >�! �� � ��! 9z���:x9z��� � z���: �x 
x�a

M
 �[

91 � z���:M�               �8� 

The joint pdf of X��� and X���     �1 1 r 1 s 1 n� denoted by ��a��[���, �� is given by 
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��a��[���, ��  � �! �������� �= � 1�! �Q � = � 1�! �� � Q�! 9z���:a��9z��� � z���:[�a��91 � z���:M�[ 

                                                                                                                                                              (9) 

The joint pdf of X���, X�g�, … , X��� is given by    

� �,�,¡�¢�.  .  .   ¡�£� ���,  �g, .  .  .  �M� � �! ��������g�.  .  .   ���M�,     �� �  �g �.  .  . �  �M                
                                                        � 0,      P?	�=�>Q�                                                                    �10� 

We now apply the above properties to characterize the exponential distribution in the next 

three theorems. 

3.3.1 Characterization by minimum and spacing between two order statistics 

Let X�¤� and X�¤(�� be two adjacent order statistics from a sample of size n with 

  X�¤� �  X�¤(�� ,  1 1 m 1 n.    
Thus X�¤� is the minimum of the two order statistics and the spacing between them is                 X�¤(�� �  X�¤�                                                                                                                                          

The following theorem characterizes an exponential distribution of pdf 

 ���� � i��¥� �¦�,  � ) §,   i ) 0                                                                         �1� 

by the independence between X�¤� and  X�¤(�� � X�¤� . [23] 

Theorem 3.3.1 

Let F be an absolutely continuous distribution function of the random variable X with 

F(§)=0,  § ) 0, and with probability density function f(x).  Let ����, ��g�, … , ��M� be order  

statistics of a random sample of size n from this distribution. Then in order that the 

statistics ��¨(�� � ��¨� ;�� ��¨� for fixed m, 1 1 O � �, be independent, it is necessary 

and sufficient that the random variable X has the exponential distribution in (1). 

Proof: 

Let © � ��¨� ;��  ª � ��¨(��. 

Then the pdf of U is [by using section 3.3.0 (5)] �!�O � 1�! �� � O�! 9z�N�:¨�� 91 � z�N�:M�¨��N� 

And the joint pdf of U and V is [by using section 3.3.0 (9)]   
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�!�O � 1�! �� � O � 1�! 9z�N�:¨�� 91 � z�<�:M�¨����N���<� 

Hence the conditional pdf of  ª|©=u is 

�!�O � 1�! �� � O � 1�! 9z�N�:¨�� 91 � z�<�:M�¨����N���<��!�O � 1�! �� � O�! 9z�N�:¨�� 91 � z�N�:M�¨��N�  

 

          �  �� � O��1 � z�<��M�¨��
�1 � z�N��M�¨ ��<�                                                                                        �2� 

We show that the independence of V-U and U implies that X has the exponential 

distribution in (1). 

Due to independence of V-U and U, E[V-U]=E[V-U|U=u] is free of u. Thus  

 `9ª � ©: � `9ª � ©|© � N:
� �� � O� 4 �< � N�6

«
�1 � z�<��M�¨��
�1 � z�N��M�¨ ��<��<                                  �3� 

and is free of u. 

Differentiating (3) w.r.t. u, we obtain 

0 � � 4 �1 � z�<��M�¨��
�1 � z�N��M�¨

6
« ��<��<

� �� � O���N�1 � z�N� 4 �< � N� �1 � z�<��M�¨��
�1 � z�N��M�¨

6
« ��<��< 

� � 4 �1 � z�<��M�¨��
�1 � z�N��M�¨

6
« ��<��< � �� � O���N� 1 � z�N�   `9ª � ©:                                   �4� 

Since `9ª � ©: is independent of u and 

                            4 �1 � z�<��M�¨��
�1 � z�N��M�¨

6
« ��<��< 

 is a constant, (4) can be written as 

                   ��N� 1 � z�N� � i,                                                                                                        �5� 
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where i is some constant not equal to zero. (5) can be written as 

                   �z�N� 1 � z�N� � i�N 

Solving, 

�ln �1 � z�N��= iN � r where c is a constant of integration. 

Therefore, z�N� � 1 � ��¥«�� 

Thus ��N� � i��¥«�� 

But f is a probability density function in the range 9§, ∞�, it follows that r � �i§ 

and § ) 0. 
Therefore, ��N� � i��¥�«�¦�, § ) 0, N ) §, i ) 0. 
3.3.2 Characterization by spacing between adjacent order statistics 

Let X�, Xg, … , X� be independent and identically distributed values of a random variable X  

of sample size n. 

Let X���, X�g�, … , X���                                                                                                                          (1) 

be the associated order statistics for the sample. 

Also, let 

 Y� � X���  

Yg � X�g� � X��� 

Yj � X�j� � X�g� 

. . . 

. . . 

 Y� � X��� � X����� ,  2 1 i 1 n ,                                                                           (2)                   

be spacings between the respective adjacent order statistics.                                 

The following theorem characterizes the exponential distribution of cdf      

            z��� � 1 � �� /¦ , � ) 0, § ) 0                                                                                       �3� 

by the mutual independence of the Y��s [11].  
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Theorem 3.3.2 

The random variables x  defined by (2) are mutually independent. Further, for each i,          

(n-i+1) x:M is distributed with common distribution (3) 

Proof 1: (Mutual independence of Y�) 
We shall prove the theorem by use of multivariate transformation and induction. 

Let n = 2; 

 (1) becomes X���, X�g� 

The corresponding Y� variables in (2) will be will be  

 Y� � X���                   �  X���                                           � Y� 

Yg � X�g� � X���        � X�g� � Yg � X���                     � Yg�Y� 

Let � � ®�,�®�¢�¯ �  °,°¢(°,¯ and � °,°¢¯ 

� ���� �
±²²
²³´x���´y�

´x���´yg´x�g�´y�
´x�g�´yg µ¶¶

¶· � 1 01 1¯ 

Therefore, the Jacobian, 

               ¸ � ¹����¹ � �1 01 1� � 1 

Assume the X� have a distribution (3).                           

Therefore, the joint probability density function of the X����s is[by using section 3.3.0 (10)]   

�#�,�,#�¢�,���,  �g� � 2! ��������g�      
                             � 2! 1§  ���¦ , 1§ ���¦ ¢      
                            � 2! 1§g  ���¦� ,( ¢�

 

                            � 2! 1§g  ���¦ ∑  º¢,  

Thus the joint distribution of Y� is  

��,,�¢,���,  �g� � �#�,�,#�¢�,���,  �g� ¹����¹ 
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                        � 2! 1§g  ���¦��,(�¢(�,�
 

                        � 2! 1§g  ���¦�g�,(�¢� � 2!§g ���¦ ∑ �g�x(���º¢,  

                        � 22§  ��g�,¦ 3 21§  ���¢¦ 3                                                                                              �4�  
Let n=3; 

(1) becomes X���, X�g�, X�j� 

The corresponding Y� variables in (2) will be will be  

Y� � X���                    �  X���                                           � Y� 

Yg � X�g� � X���       � X�g� � Yg � X���                     � Yg�Y� 

Yj � X�j� � X�g�        � X�j� � Yj � X�g�                     � Yj   � Yg�Y� 

 

Let � � »X���X�g�X�j�
¼ � ½ Y�Yg�Y�Yj   � Yg�Y�

¾ and � ½Y�YgYj
¾ 

� ���� �
±²
²²
²²
³
 
´x���´y�

´x���´yg
´x���´yj´x�g�´y�

´x�g�´yg
´x�g�´yj´x�j�´y�

´x�j�´yg
´x�j�´yj

  
µ¶
¶¶
¶¶
·

� ½1 0 01 1 01 1 1¾ 

Therefore, the Jacobian 

¸ � ¹����¹ � ¿1 0 01 1 01 1 1¿ � 1 

Assuming the X� have a distribution (3), the joint probability density function of the X����s is 

�#�,�,#�¢�,#�À�,���,  �g, �j� � 3! ��������g����j�      
                                           � 3! 1§  ���¦ , 1§ ���¦ ¢  1§ ���¦ À     
                                           � 3! 1§g  ���¦� ,( ¢( À�
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                                           � 3! 1§j  ���¦ ∑  ºÀ,  

Thus the joint distribution of Y� is  

��,,�¢,�À,���,   �g, �j� � �#�,�,#�¢�,#�À�,���,   �g, �j� ¹����¹ 
                                    � 3! 1§j  ���¦� ,(  ¢(  À�

 

                                     � 3! 1§j  ���¦��,( �¢(�,(�À ( �¢(�,�
 

                                 � 3! 1§j  ���¦�j�,( g�¢(�À � � 3!§j ���¦ ∑ �j�x(���ºÀ,  

                                 � 23§  ��j�,¦ 3 22§  ��g�¢¦ 3 21§  ���À¦ 3                                                                  �5� 

� ��,,�¢, .  .  .  ,   �£,���,   �g,.  .  .  , �M� � �#�,�,#�¢�,.  .  .  ,   #�£�,���,   �g, .  .  .  , �M� ¹����¹ 
                        
� b�§  ��M�,¦ c 2� � 1§  ���M����¢¦ 3 … 23§  ��j��£Á¢�¦ 3 22§  ��g��£Á,�¦ 3 21§  ���£¦ 3                                   �6� 

� �!§M  ��∑ �M�x(���º£, ¦                                                                                                                                       �7� 

Since the joint pdf in (6) is a product of the individual pdfs of the  Y�s, the  Y�s  are mutually 

independent.                                 

Proof 2:(The distribution of the normalized spacings (n-i+1)Y� is that of the population  X)

  

L�?  Z� � �n � i � 1�Y�    � Y�   � Z�  � � > � 1 

                                             � �y��z� � 1� � > � 1 

                                     � �Äº  �Åx� � ��º  �Åx� Æ�y��z�Æ 
From (4),(5) and (6), 

                                     � ��º  ��x� � � � > � 1§ ��M�x(�¦ �º  
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                                     � �Äº  �Åx� � �� � > � 1�§ ���M�x(��¦  ÇÈ  �M�x(��    1�� � > � 1� 

                                                          � 1§ ��ÇÈ  ¦  

which is the pdf of the population X . 

Remark: Z� � �n � i � 1�Y�, where Y� � X��� � X����� ,  2 1 i 1 n , are i.i.d exponential 

random variables having the same distribution as the population X. 

3.3.3 Characterization by k-th order statistics 

Consider n independent random variables   ��, �g, … , �M from an absolutely continuous 

distribution function z���. 
Let ����, ��g�, … , ��M� be the associated order statistics. 

Also, let É  � �� � � � 1���� � � �� ����                                                                                       �1� 

The É �Q  are known as normalized spacings. 

The following theorem characterizes an exponential distribution of pdf  

                         ���� � Ê1i �� ¥ , � ) 00, � 1 0                                                                                         �2�Ë 
via the k-th order statistics [2]. 

Theorem 3.3.3 

A necessary and sufficient condition that a non-negative r.v. X having absolutely continuous 

probability distribution z��� has the probability density function in (2) is that its kth-order 

statistics can be expressed as 

                                           ��Ì� � � É � � � � 1
Ì

 ��                                                                               �3� 

for an integer k such that 1 1 Í 1 � , where the  É �Q  are i.i.d. and have the probability 

distribution as X, z���. 

Proof:  

From Theorem 3.3.2, the normalized spacings É �Q  are independent and identically  
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distributed random variables having the same distribution as the population X, when X has 

the distribution in (2). 

Expressing  �� � in terms of É  from (1), we have; 

É� � �����                                                         � ���� � É��  

Ég � �� � 1����g� � �����  
� ��g� � Ég� � 1 � ����                                     � ��g� �  Ég� � 1 � É��   
Éj � �� � 2����j� � ��g��  
� ��j� � Éj� � 2 � ��g�                                 � ��j� �  Éj� � 2 � Ég� � 1 � É��  

Ém � �� � 3����m� � ��j�� 

� ��m� � Ém� � 3 � ��j�                                  � ��m� � Ém� � 3 �  Éj� � 2 � Ég� � 1 � É��   
            � ��Ì� � ÉÌ� � Í � 1 �  ÉÌ��� � Í � 2 � ÉÌ�g� � Í � 3 � .  .  . � Éj� � 2 � Ég� � 1 � É��  

                        � � É � � � � 1
Ì

 ��  , 
by induction. The theorem is proved. 

Remark: Theorem 3.3 implies that an order statistic from an exponential distribution can 

be represented by a weighted sum of i.i.d. exponential random variables. 

 

3.3.4 Characterization by expected values of functions of order statistics 

An exponential distribution with distribution function z��� � 1 � ���  is characterized as 

a special case from the general class of distributions 

              z��� � 1 � ��ÎU� � , ; Ï 0,                                                                                   (1) 

where 	��� is a monotonic and differentiable function of � such that 	��� V 0 ;Q � V &  

and 	���X1 � z���Z V 0 ;Q � V % [18] 
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Theorem 3.3.4 

Let X be an absolutely continuous random variable with the distribution function F(x) and  

pdf f(x) in the interval (&, %) where & ;�� % may be finite or infinite, then for 

              1 1 O � = � Q 1 � 

`9	��[:M� � 	��a:M�|�¨:M � ��: � 1; � 1� � �
[��
 �a                                                               �2�  

 iff X has the distribution in (1)  

Proof. 

Necessity. 

Rearranging (1), we get 

1 � z��� � ����;	����                                                                                                        �3�     
    We need to prove that (1) implies (2). 

Considering the case 1 1 = � Q 1 �  

Then  

`9	��[:M� � 	��a:M�|�a:M � ��:
� b � � =Q � = � 1c 191 � z���:M�a 4 	����91 � z��� � z���:[�a�� 91$

 � z���:M�[(a �� 

Therefore, for                1 1 O � = � Q 1 � 

`9	��[:M� � 	��a:M�|�¨:M � ��:
� � 2� � O� � O 3[��

 �a
191 � z���:M�¨ 4 	����91 � z��� � z���: �¨ 91$

 � z���:¨�  �� 

                          � 1; � 1� � �
[��
 �a   , 
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comparing with (3), proving the necessary part. 

Sufficiency. 

L�?              r � 1; � 1� � �
[��
 �a    

Y	�� `9	��[:M� � 	��a:M�|�¨:M � ��: � r implies 

�� � O�!�Q � O � 1�! �� � Q�! 4 	���9z��� � z���:[�¨�� 91 � z���:M� ����$
 

�� 

� �� � O�!�= � O � 1�! �� � =�! 4 	���9z��� � z���:a�¨�� 91 � z���:M�a����$
 

�� 

                    � r91 � z���:M�¨                                                                                                         (3) 

Differentiating (3) (r-m) times w.r.t. �, we get 

�� � =�!�Q � = � 1�! �� � Q�! 4 	���9z��� � z���:[�a�� 91 � z���:M�[����$
 

�� 

                                          � X	��� � rZ91 � z���:M�a                                                                  (4) 

Integrating the LHS of (4) and simplifying, we obtain    

�� � =�!�Q � = � 2�! �� � Q � 1�! 4 	���9z��� � z���:[�a�g 91 � z���:M�[(�����$
 

�� 

� �� � =�!�Q � = � 1�! �� � Q � 1�! 4 	����9z��� � z���:[�a�� 91 � z���:M�[(�����$
 

�� 

                                                       � X	��� � rZ91 � z���:M�a                                                          �5�                                              

From (4) and (5), it follows that 

                       r�  � 1; � 1� � �
[�g
 �a    
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� 91 � z���:M�a;�� � Q � 1�! �� � Q � 1�!
� �� � =�!�Q � = � 1�! �� � Q � 1�! 4 	����9z��� � z���:[�a�� 91 � z���:M�[(�

$
 

�� 

Differentiating (s-r) times both sides w.r.t. �, we get 

	����91 � z���: � ����;  

Which is (3). Hence the theorem. 

By substituting   λ for ; ;�� � �P= 	��� , it can be seen that (3) characterizes the 

exponential distribution, z��� � 1 � ���  

3.3.5 Characterization by linear regression of functions of order statistics 

 In the following theorem, the exponential distribution is characterized by the linear 

regression between functions of order statistics. 

Introduction.  Let ��, … , �M be  � � 2  be independent observations on a random variable 

X having a two parameter distribution defined by [26] 

 z��� � 1 � ��,Ñ� �¦� , � ) § ) �∞, i ) 0                                                            (1) 

  � 0, ��Q��	�=� 

Also, let Y�, Yg, … , Y� be the corresponding order statistics from the sample of size n from 

this distribution. 

Let 

UÓ � YÓ � YÓ��,  Y5 � 0, the corresponding spacings and  Z � ���� ∑ �Y�:� � X�:�����g  

Ê ZÓ � ���Ó ∑ �Y� � YÓ����Ó(� ,    for  k � 1, … , n � 1                                                        WÓ � �Ó�� ∑ �YÓ � Y��Ó����� ,      for  k � 2, … , k � 1                                                                          �2�Ë        
Theorem 3.3.5 

If the distribution function F of X in (1) is continuous with finite first moment, then for some 1 1 Í 1 � � 1,  

`9ÉÌ|Ì � �: � % a.e. (dF)                                                                                                              (3) 
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where % is a constant, iff F is given by (1) with i � % ) 0 and some § ) �∞ 

Proof:  Fix  1 1 Í 1 � � 1   

 Let Q Ö × where × is a subset of size k of X1, .  .  . , �Z 

Let ×5 � X1, … , ÍZ 

 

Let  �Ø,[ � X���, … , �M�: �  � �  �P= � Ö × ;��  � Ï Q; �[ � � ;���  ) �  
�P= � Ú ×  Z                                                                                                                                           �4� 

For each fixed s, there are �M��Ì��� disjoint �Ø,[’s and Û  �Ø,[ � XÌ � �Z ;. �.Ø,[  

0�. |Ì � ��.  On  �Ø,[, it can be written thus: 

∑ �  � ÌM �Ì(� � �     ∑ ��  � �� ÚØ  . 
Therefore, since 

  0��Ø,[ÜÌ � �� � 1�M��Ì���� 

Is constant with respect to × ;�� Q, we can write 

`9ÉÌ|Ì � �: � 1n � k E Ê � �Y� � YÓ��
��Ó(� |Ì � �Þ                        

� 1n � k � E ß � �Xà � y��
à ÚØ |�Ø,[áØ,[   0��Ø,[ÜÌ � �� 

                           � 1n � k � E^�Xà � y�_�
à�Ó(� |�Øâ,Ì� 

                           � E�X� � y|�Øâ,Ì� 

                           � E�X� � y|X� ) ��                                                                                               (5) 

Thus 

`9ÉÌ|Ì � �: � 4 �w � y� F�dw�1 � F�y� � 4 wF�dw�1 � F�y� � y                                                       �6�  6
å

6
å

 

From (6), it follows that `9ÉÌ|Ì � �: � % is equivalent to 
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β91 � F�y�: � 4 wF�dw�             for  almost all y�dF�                                                          �7�  6
å  

From 7, we can write æ wF�dw� �  æ æ dtç5 F�dw�    6å  6å  

β91 � F�y�: � 4 �1 � F�t��dt          for almost all y�dF�                                                      �8�  6
å  

Let è��� � æ �1 � F�t��dt                                                                                                            �9�  6å  

Then   è��� is a non-negative differentiable function with  

 è���� � ��1 � z����                                                                                                                   �10� 

Combining (8), (9) and (10), 

è����è��� � �9ln è���:�� � � �1 � z����β�1 � F�y�� � � 1%                                                                           �11� 

Solving (11), 

       ln è��� � ln X%�1 � z���� � � �$ � � r, 

Where  c is a constant of integration. 

� z��� � 1 � ���$�(�
 

But r � � �$ § 

Thus z��� � 1 � ��,é���¦�
 which is (1)                        

3.4 Characterization by conditional independence  

In the following theorem the exponential distribution has been characterized by the 

independence between min(X, Y) and Y-X with only Y as the exponential random variable 

and X a non-lattice random variable with a positive real line support [21]. 

Theorem 3.4 Let X and Y be independent non-negative r.v.'s.  Let  Y be  an r.v.  with a 

continuous reliability function Ry (y)(= Pr(Y>y)). Let  X be  an  r.v. which  has a  non-lattice 

distribution  with  a cumulative  distribution  function  Fx (x)  such  that    Fx (0) =0, and  Fx (x) 

> 0,  for  x > 0.  Then Y  -  X  and  V =min(X,  Y) (=X)  are independent in  their joint 

distribution given X <Y,  if  and only if  Y has a negative  exponential distribution. 
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Proof. 

If Y has a negative exponential distribution with ����� � ���� å   , �P= � � 0, where   �  is  a 

positive constant  then 

                   0� � �� ) N|� � � � æ ��� �K(d�  �z ���65æ ��� K  �z ���65
 

 

                                                             � ��� d   �P= N � 0 

                   0�� 1 <|� � � � æ ��� K  �z ���ê5 0�� � �  , �P= < � 0 

And 

                   0� � � ) N, � 1 <|� � � � æ ��� �K(d�  �z ���ê5 0�� � � , �P= N � 0, < � 0 

Thus the two random variables are independent. 

If the two random variables are independent then  

0� � � ) N, � 1 <|� � � � 0� � � ) N|� � �0� � 1 <|� � � �P= N � 0, < � 0. 

As 0�� � � is positive, then, 

4 ë��� � N��z ��� � 0� � � ) N|� � � 4 ë�����z ��� , �P= N � 0, < � 0 ê
5  ê

5  

Then there exist §  and § ' between 0 and v such that 

ë��N � §��z �<� � z �0� � 0� � � ) N|� � �ë��§ ') �z �<� � z �0��, �P= N �0, < � 0. 
As  z �<� � z �0� ) 0 �P= ;�� < ) 0 

Then ë��N � §� � 0� � � ) N|� � �ë��§ ')  �P= ;�� N � 0, < � 0 

Letting  < V 0 gives 

ë��N� � 0� � � ) N|� � �, �P= N � 0 

Hence, by applying Theorem 4 of Shimizu (1978), Y has a negative exponential  

distribution.
1 

( APPENDIX 1) 
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3.5 Characterization by relevation-type equations 

3.5.0 Introduction. The convolution of two distribution functions F and G is given by 

�z ì /���� � 4 z�� � N�/�N��N, �∞ � � � ∞6
�6  

If the support of F and G are contained in [0, ∞), then  

�z ì /���� � 4 z�� � N�/�N��N, � � 0 
5  

This is the distribution of the time to failure of the second of two components when the 

second component with life G is placed in service after the failure of the first component 

with life distribution F. When the second component with life distribution G is of the same  

age as the first, the survival function of the time to system failure is called relevation of the 

survival function zí�?� � 1 � z�?� �>?	  /î�?� � 1 � /�?�. [19]    
It is denoted by zí# /î�?� 

zí# /î�?� � 0�Q�Q?�O QN=<><<�Q ���P�� ?>O� ?� 

� 0��>=Q? rPOðP���? �>?	 QN=<><;� �N�r?>P� zí QN=<><�Q ���P�� ?>O� ?� 

                              + 

0 ñ�>=Q? rPOðP���? �>?	 QN=<><;� �N�r?>P� zí �;>�Q QPO�?>O� ���P=� ? ;�� ?	� Q�rP��rPOðP���? �>?	 QN=<><;� �N�r?>P� /î  QN=<><�Q ���P�� ?>O� ? �><�� ?	;? >? 	;Q QN=<><��  Nð ?P ?>O� ?P �;>�N=� P� ?	� �>=Q? rPOðP���? ò �?� 

� zí�?� � 4 0 »Q�rP�� rPOðP���? QN=<><�Q ���P�� ?>O� ? �><�� ?	;? >? 	;Q QN=<><�� ���P�� ?>O� N �	�� ?	� �>=Q? rPOðP���?�;>��� ¼ �z�N�\
5  

 

� zí�?� � 4 0��>�� P� Q�rP�� rPOðP���? )  ?�0��>�� P� Q�rP�� rPOðP���? )  N� �z�N�\
5  

 

� zí�?� � 4 /î�?�/î�N� �z�N�\
5  

� zí�?� � 4 /î�?�/î�N� �zí�N�\
5  
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zí# /î�?� � �z ì /����íííííííííííííí  iff 
4 /î�?�/î�N� �zí�N� � 4 /î�\

5
\

5 ? � N��zí�N�,     ? � 0                                                                            �1� 

3.5.1 Characterization by the relevation transform  

The following theorem characterizes the exponential distribution by relevation-type 

equations 

Theorem 3.5.1 

Suppose zí;�� /î  are continuous survival functions and /î�(�0� exists. Further, suppose that 

for any � ) 0,  zí has a point of increase in �0, ��. If /î  satisfies 

4 /î�� � ?��zí�?� 
5 �    4  /î���/î�?� �zí�?� 

5 ,                                                                               �2� 

�P= ;�� � , �	�=�  /î��� Ï 0    
then /î  is exponential, i.e.  /î �  ��' , � � 0, �P= QPO� & � 0 

Proof: 

Let r � sup X�: /î��� ) 0Z. Let h be the non-negative function such that h(0)=0 and  

��U � /î���, � Ö õ � 90, r�. Then  	�(�0� exists by hypothesis and  

4 X��U� �\� � ��U� �(U�\� 
5 Z�zí�?� � 0, � Ö õ 

by (2). 

Since ��?� � ��U� �\� � ��U� �(U�\�, 0 1 ? 1 � and ��?� �  zí�?� satisfy the conditions in 

Proposition 2.2 in [19], there exists 0 1 ö 1 �, such that ��ö� � 0 or 

equivalently, 	��� � 	�� � ö� � 	�ö� � 0. This equation holds for all � Ö õ,  by  

Proposition 2.1 by LAU, K. S., PRAKASA RAO,  B. L. S. (1990) [19] 
004

. (APPENDIX 4)   

Therefore,   	��� � &�   �	�=� & � 	�(�0� � 0. Hence 

/î �  ��' , � Ö õ.  Since by assumption, /î  is continuous, õ � 90, ∞�. 
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3.6 Characterization via the residual lifetime 

3.6.0 Introduction 

In the following section the exponential distribution will be characterized via the residual 

lifetime through the application of the integrated Cauchy functional equation in (1) 

(Tavangar. M.  &  Asadi, M.(2010) [25]) 

We consider the functional equation 

F (x) = F (xy) + F (xQ(y)), x, xQ(y) Ö [0, θ), y Ö [0, 1],                                                                     (1) 

where F and Q satisfy certain conditions. 

Let X be a lifetime (non-negative) random variable with cumulative distribution function 

(cdf ) F , and survival function S = 1 − F . The random variable X is said to have exponential 

distribution with mean λ if 

     y��� � �� /� , x ≥ 0,  λ > 0,                                                                                                         (2) 

3.6.1 Characterization by use Cauchy functional equation 

The following theorem characterizes the exponential distribution via residual life using the 

Cauchy functional equation 

Theorem 3.6.1 

 Let F be any cdf with support R+, and S = 1 – F, the survival function . 

Assume that Q : R+ → R+. The functional equation 

  S(x) = S(x + y) + S(x + Q(y)), x, y Ö [0, ∞),                                                               (3) 

holds if and only if F is an exponential distribution with mean λ, for some λ > 0, and Q(y) = 

−λ log(1 − ���/�), y > 0. 

Proof. 

 Let the cdf G  be G(z) =S(− log z), z Ö [0, 1), where S is the survival function defined in the 

theorem. Let u= �� ,   v= ���, and Q ì(v) = exp{−Q(− log v)}. 

Thus Qì: [0, 1] → R+.  

Eq. (3) implies that G(u) = G(uv) + G(uQì(v)), u, uQì(v) Ö [0, 1), v Ö [0, 1]. 

That is, the pair of functions (G, Qì) satisfies Eq. (1) with θ = 1. 
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Therefore, using Theorem 2.1
  
 by Tavangar. M.  &  Asadi, M.(2010) [25]

 
,( APPENDIX 5) we 

have /��� � �',   x Ö [0, 1)  and ÷ì��� � �1 � �'��/' , y Ö [0, 1], for some constant α > 0. 

This means that F is an exponential cdf with mean λ = 1/α, and Q is as stated in the 

theorem. The proof is complete. 

3.6.2 Another application of the Cauchy functional equation 

Theorem 3.6.2 Let X be a non-negative random variable with the survival function S.  

Suppose that Q : R+ → R+ is a strictly decreasing function. Let also  

�\ � 9� �  ? | � )  ?:  be the residual life random variable. Then 

�\  �� ÷��\�, for almost all t Ö R+ (with respect to Lebesgue measure) with S(t) > 0, if and 

only if S is the survival function of an exponential random variable with mean λ, for some 

constant λ > 0, and ÷��� � �� log �1 � ��.ø�, y > 0. 

Proof. Since S(t) > 0, the conditional random variable �\  is defined.  Also, since every 

monotone function is measurable, ÷��\  � is a random variable. Thus, 

P [÷��\  ≥ x] = 1 − P [�\ >÷�� (x)] 

                       � 1 � P 9X )  ? � ÷�� �x�:P 9X )  ?:  

Let U be a random variable with uniform U (0, 1) distribution. Using Laplace trasforms, we 

have X 
��  zù�N�, where  zù�. � is the quantile function.  It follows from Lemma 3.1by 

Tavangar. M. & Asadi, M.(2010)[25] that 

                         P 9÷��\  �  x:  � 1 � P 9U ) F� t � ÷�� �x��:P 9U ) F� t�:  

� 1 � S� t � ÷�� �x��S� t�  

and  

                             P 9��\  �  x: � P 9�  � t �  x: P 9�  ) ?:  

                                                      � 1S�t� XS�t � x� � F�t � x� � F��t � x� ��Z 

We prove that 

                             P 9�\  �  x: � S �t �  x� S �t�                                                                                �1� 
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Let D = {x Ö R+ | F has jump at x} denote the set of discontinuity points of F which is known 

to be countable. If D is an empty set, then the result is trivial. Therefore, letD = {��, �g, . . .}. 

Let the sets 

x̀�Q, i = 1, 2, . . ., be defined as x̀  = {(t, x) Ö R+ × R+ | t + x =�x} = {��x- x, x) |x Ö [0, �x]}. 
 It can be observed that the Ei ‘s are measurable sets of planar Lebesgue measure zero 

which, in turn, implies that D is a set of planar Lebesgue measure zero. Therefore, Eq. (1), 

and consequently the following equation hold for almost all pairs (t, x) Ö R+ × R+ with 

respect to planar Lebesgue measure: 

 S�t� � S�t � x� � S� t � ÷�� �x�� 

3.7 Characterization by conditional expectations 

3.7.0 Introduction. Characterizations under conditional expectations also encompass 

characterization cases under left- or right-truncated distributions. 

3.7.1 Characterization as a special case of characterizations by conditional expectations 

 In the following theorem the exponential distribution has been characterized as a special 

case of the general theorem of characterization by conditional expectations [15].Consider 

the exponential distribution function in (1).  

z��� � 1 � �� /� , � ) 0, � ) 0                                                                                    �1� 

Theorem 3.7.1 

An absolutely continuous random variable X has cumulative distribution function 

0�� 1 �� � 1 � ��U� �/U���,   �P= � Ö 9&, %� 

                  � 0, �P= � Ú 9&, %�                                                                                                   �2� 

Where b is a constant and 	 is a strictly increasing differentiable function from 9&, %� on to 90, ∞� if and only if  

 `X	���|� ) �Z � 	��� � 	���,       �P= � Ö 9&, %�9&, %�                                                     �3� 

Proof:                                                                                                                                                                                                              

(3) may be written as 

4 	����z���1 � z���$
� � 	��� � 	��� 
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Or       

X1 � z���ZX	��� � 	���Z � 4 	����z���$
�  

                                          � `X	�Y�Z � 4 	����z���         �
'                                                 �4� 

Using integration by parts in (4), 

X1 � z���ZX	��� � 	���Z � `X	�Y�Z � 9	���z���:'� � 4 	����z���  ��       �
'  

� `X	�Y�Z � 9	���z���:'� � 4 	����z���  ��       �
'  

� `X	�Y�Z � 	���z��� � 	�&�z�&� � 4 	����z���  ��       �
'  

� X1 � z���ZX	��� � 	���Z � `X	�Y�Z � 	���z��� � 4 	����z���  ��                          �5� �
'  

since 	�&� � z�&� � 0. 

Differentiating (5) w.r.t.y, 

X1 � z���Z	���� � X	��� � 	���Z �z����� � �	����z��� � 	��� �z����� � 	����z���    �6� 

� 	��� �z����� � X1 � z���Z	����                                                                                                   �7� 

   �   �z���X1 � z���Z � 	������	���                                                                                                           �8� 

  � ���X1 � z���Z � 	���	��� � r                                                                                                     �9� 

� 1 � z��� � ���U��� U���⁄                                                                                                           �10� 

� z��� � 1 � ���U��� U���⁄                                                                                                              �11� 

where A is a constant. 

Substituting the boundary condition z�&� � 0 in (11) yields � � 1. 

Hence,       z��� � 1 � ��U��� U���⁄                                                                                          �12� 
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By substituting  	��� � � ;�� 	��� � � it can be seen that (3) characterizes the 

exponential distribution in (1) 

3.7.2 Characterization via conditional expectation of a function of a random variable 

on a fixed value 

 An exponential distribution with the following distribution function is characterized by the 

expectation of a random variable X being conditioned on some fixed value yÖ �0, ∞� [6] 

���� � ���� , � ) 0, � ) 0                                                                                        �1� 

Theorem 3.7.2 

Let a<b be extended real numbers and g and h be real functions defined on (a, b). Assume g 

is continuous and hÏ 0, ∀ y ≥ 0, Then there exists an absolutely continuous random 

variable X with support ý#=(a, b) such that 

E[ g(X)|X1 �] is finite ∀ y Ö ý#, and 

`9 ����|� 1 �: � 	��� ����z���   ,    ∀ � Ö ý#                                                                                  �2� 

iff, for any Í Ö �;, �� the following conditions hold: 

(i) æ þ�«�U�«� �N�Ì  is finite 

(ii) æ exp �þ�«�U�«� �N� /|	���|�Î  �� <∞ 

(iii) �>O�VÎ æ þ�«�U�«� �N�Ì � �∞ 

Also, the p.d.f. of the random variable X which satisfies (2) with ý#=(a, b) 

              ���� � 1&Ì|	���| exp X4 ��N�	�N� �NZ ,   ∀  ; � � � �  �
Ì  

�	�=�  &Ì � æ exp �þ�«�U�«� �N� /|	���|�Î  ��. 

Proof of the theorem is provided by Chang, T.(2001) [6].
006

(See APPENDIX 6)  

We now show that the exponential distribution in (1) is characterized if  

g(X)=X, 	��� � �����(-ø.
�¢ ,  ý#=(0,∞), � > 0                                                                   (3) 

If X is an exponential random variable, 
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`9 �|� 1 �: � æ ������5 ��0�� 1 ��  

� æ ����� �5 ��z#���  

(integrating by parts) 

� ������ � 1� {��� |5�z#���  

� ������ � 1� {���� � 1|z#���  

� ��� � 1 � ����g  ����z#��� 

� ��� � 1 � ����g  �#���z#��� 

Since conditions (i)-(iii) in (2) are satisfied by h and g, the theorem is proved. 

3.7.3 Characterization via conditional expectation of moments on a fixed value 

 In the following theorem, the exponential distribution is characterized by conditional 

expectations of moments about some fixed value Å ) 0.    

Theorem 3.7.3 

 Let � � 0  be a random variable with distribution function F(x). Assume that E(X 
k
) is finite 

where Í � 2 is a given integer. If  

E[(X-z)
k
| � � Å  ]  = E(X 

k
)  for  all   Å � 0   ,  

then F(x)  =  1-e 
-bx

,   � � 0  ,  and b  >  0.  

Proof:   

Let m = E(x 
k
). Since  

        `9�� � Å�Ì |� � Å:   � 4 �� � Å�Ì  �z���/91 � z�Å�:  (6
�  

 

                 4 �� � Å�Ì��/������� � OÍ ¯ /�Å�  (6
� ,      Å � 0                                         �1� 
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Where G(u)=1-F(u). Denoting the LHS of (1) by H(z), then repeated differentiation of (1) 

gives  

                 ��1�¨Í! èÌ�Å� � è�Å�                                                                                                        �2� 

Manipulation as shown by Galambos, J. &  Kotz, S. (1978) [12](theorem 2.3.2)
007 

(APPENDIX 

7) results in 

                          è�Å� � r����� 

which leads to                            z�Å� � 1 � /�Å� � 1 � �Ír�/O�����,   � ) 0,   Å � 0 

But since m = E(x 
k
), (1) together with z = 0 and lemma 1.2.1 by Galambos, J. &  Kotz, S. 

(1978)  [12], imply that (APPENDIX 8) 

G(0+)= 1 and  F(0+) = 0 which leads to�Ír�/O) = 1. 

This completes the proof. 

3.7.4 Characterization by trunctated distributions 

 In the following theorem, the exponential distribution with the distribution function  

z��� � 1 � �� /� , � ) 0, � ) 0                                                                                �1� 

is characterized by means of the distributions truncated from below at various points [7]. 

Theorem 3.7.4 

A non-negative random variable X with finite expectation is exponentially distributed iff, for 

some constant & ) 0,  
          `9�� � Q�(:`9�� � ?�(: � &`9�� � Q � ?�(:                                                               �2� 

�P=  ;�� Q, ? belonging to a dense subset of �(, where �� � N�( � QNðX� � N, 0Z, denotes 

the positive part of � � N, ;�� N � 0. 
Proof: 

Using the Lebesgue dominated convergence theorem, the function  

          N V `9�� � Q�(:, N � 0 is a continuous function. 

Thus , (2) holds for all  Q , ? � 0. 
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(2) implies `9Y: � & 

Let (2) hold. Then ��Q� � `9�� � Q�(:/&  

satisfies the Cauchy equation  

��?���Q� � ��Q � ?�,             Q, ? � 0                                                                         �3� 

Whose solution is  

��Q� � ���[  �P= ;�� Q � 0  and some constant �, since the function ��Q� is  continuous   �P= ;�� Q � 0 .  
Thus 

 `9�� � Q�(: � &���[       �P=  Q � 0                                                                                   �4�  
Now, � ) 0 since `9�� � Q�(: V 0  ;Q  Q V ∞ 

Let ë�?� � 0�� ) ?�, ? � 0                                                                                              (5) 

Therefore, (5) is Lebesgue integrable and  

`9�� � Q�(: � æ ë�?��?, Q � 0.6[                                                                                    (6) 

Hence,  æ ë�?��? � &���[      ,                                       Q � 0.6[                                         (7) 

And differentiating (7) w.r.t. s, gives  

ë�Q� � &����[                                                                                                                      (8)             

 for almost all s with respect to Lebesgue measure. 

 (8) holds for �P=  Q � 0, since both sides of (8) are continuous. 

Since ë�0� � 0�� ) 0� � 1,              

                   & � 1� 

And 0�� ) Q� � ��[/'      which proves the theorem. 

3.8 Characterization based on record values 

3.8.0 Introduction. 

Let ,2,1 XX ... be a sequence of independent random variables with a common distribution  
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function ),(xF  and let kY  = max { }.,...,, 21 kXXX  Then Xj , is a record value of the sequence 

if .1−> jj YY  By definition 1X  is a record value. The sequence of indices at which records  

occur is defined by { }110 ,min,1 −− >>== ntjnn XXLjjLL for n = 1, 2,... Also, let .
1tj XR =  The 

sequence ,...1,0, =jR j ... is called the sequence of (upper) records. Let )(xF  be a continuous 

function.  

3.8.1 Characterization by minimum and spacing between two upper record values 

In the following theorem, an exponential distribution of the form                                     z��� � 1 � ���� �Î� ,     � ) 0, � � ; 

                                              � 0,        P?	�=�>Q�                                                                                                      (1) 

is characterized by the independence of RiRj − and iR for some fixed i and j with 0≥> ij  

among the continuous distributions [8]. 

 

Theorem 3.8.1  

Let Ro, R1,  .  .  . be a record sequence  coming from  a continuous  distribution F(x). Then  ë  

and ë  � ëx  with 0 1 i <j arbitrary but fixed, are independent if and only if F(x) is the 

exponential distribution (1)                             
Proof.  

When F(x) is the exponential distribution, using Tata's results, we arrive at the  conclusion  

that  ë  � ëx     and ëx     are independent and this  for 0 1 > � � 

Conversely, let Ri and Rj -Ri be independent. 

Then the conditional probability element ofë     given  ëx � �x  is given by  

 

�z���� Üëx � �x� � ��log 0�� �0��x��
 �x�� X�� � > � 1�! 0��x�Z���z��x�                              �2�   

 

Thus, the conditional probability element of  	 � ë  � ëx|ëx � �x    
is a function of the values of D only. 

Thus from (2)  we get: 

��log 0��x � ��0��x� � �x�� X0��x�Z���z��x � �� � ����  �P= � � 0.                                  �3� 

From  �3� it can be observed that �x � ;  for some constant a since the RHS is fixed while 

the LHS tends to 0 as �x V �∞. 

 

Integrating  �3� with respect to d from 0 to a value p and setting 

               0��x � ��0��x� � Å 
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The equation becomes æ ��P�Å� �x���Å 
�¡º+��
�¡º�� � ��p�, �P= ;�� p � 0,    �x � 0   
Thus,               � º(��� º� � ��p� ,      �P= ;�� p � 0, �x � 0    
which is the lack of memory property of the exponential distribution.  

1This concludes the proof of the theorem. 

 

 

3.8.2 Conditioning on a backward difference 

In the following theorem, the exponential distribution is characterized by the expectation 

of a function of a backward spacing conditioned on a certain record value ë 917: 

Theorem 3.7.2  

 Assume )(xF   has density )(xf . Let  G   be a non-decreasing function such that for every 

Gx ,0>   has a point of increase in  ),0( x .   Assume for some fixed interger ,1≥j      

   

;0),)((()((( 01 >∀===− − xxRRGExRRRGE jjjj                                                (1) 

Then 1X    has an exponential distribution. 

Proof.   

(1) implies 

  ∫∫ ==− =−

x

j

x

xjRj dyyxRfRyGdyyRfyxG
0 00 1 ,)()()()(              (2) 

Or, by equations (1.2) and (1.3) in Huang, W.J. & Li, S.H. A.C.(1993)  [17],
9 

(See APPENDIX 9) 

∫∫
−− −=−

x jx j dyyryRxRyGdyyryfRyxG
0

1

0

1 )())()()()()()(                          (3) 

Integration by parts implies .0,0)()))()(()((
0

>∀=−−−∫ xydGyRxRyxR
x jj   .  Hence, 

by Proportions 2.1 and 2.2 of Lau and Rao (1990),
4
 (APPENDIX 4) xxR α=)( , where  

)0( += rα . This in turn implies 1X  is exponentially distributed 

 

3.8.3 Conditioning on a forward difference  

In the following theorem, the exponential distribution is characterized by the expectation 

of the spacing between two adjacent record values after a certain record value ë [17] 

 

Theorem 3.8.3     Assume that )(xF   has density function )(xf  and 0)( >xF  for 0>x  Let 

G be a non-decreasing function having non-lattice support on  0>x   with  0)0( =G   and 

∞<))(( 1XGE  .   If,  for some fixed non-negative integers j   and k  , 

  cxRRRE jkjkj ==− +++ ))(( 1                 (1) 
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for every 0>x , where 0>c  is a constant, and if for some 0>ξ  ((2.13) Huang, W.J. & Li, 

S.H. A.C.(1993) [17])
10

 (APPENDIX 10) holds, then c= ))(( 1XGE  and 1X  is exponentially 

distributed. 

Proof.   Using equation (1.5) by Huang, W.J. & Li, S.H. A.C.(1993)  [17] ,(APPENDIX  11) we 

have 

))(( 1 xRRRE jkjkj =− +++  

  
)())(

0 1 ydGxRyRRP jkjkj∫
∞

+++ =>−=
 

  
∫ ∫ ∫

∞ ∞ ∞

=+++=
0 ,1 )(),,(

y x xRjkRjkRi ydwdzdGwwzf
 

  
∫ ∫

∞ −∞

Γ
−−=

0

1

)()(

)()())(((
)( dwdz

xFk

zwfwrxRwR
zG

k

x
 

∫∫
∞−∞

+−
Γ

=
0

1 )()()())()((
)()(

1
dzdwzwfzGwrxRwR

xFk
k

x  

 

.)()()())()((
)()(

1
0

1
∫∫

∞−∞
+−

Γ
= dwwzdGzFwrxRwR

xFk
k

x                         (2) 

Since ∞<))(( 1XGE , we have 

 ∫
∞

∞→∞→∞→
=≤≤−≤

zzzz
xdFxGzFzGzFwzG .0)()(lim)()(lim)()(lim0

 

Using this and integrating by parts we have; 

 ∫ ∫∫
∞ ∞∞

−=−−=+
0

).()()()()()( wzdGzFzFdwzGdzzwfzG
ww                 (3) 

Thus, the last equation of (2) holds.  (1) implies 

 ∫ ∫
∞ ∞− Γ=−−
x w

k xFkcdwwzdGzFwrxRwR ).()()()()())()( 1
                (4) 

Differentiating both sides of (4) k  times, with respect to x , we obtain 

 ∫
∞

=+
x

xFczdGxzF ).()()(
_

                     (5) 

The solution of (5) is ,0,1)( >−= − xexF xλ
where λ is the positive number defined by       

cxdGe x =−∞

∫ )(
0

λ .  By letting ,0→x in (5) we obtain )).(( 1XGE  This completes the proof.  

 

 

3.8.4 Characterization by independence between functions of record values 

Theorem 3.7.4 below characterizes the exponential distribution with the following results 

being special cases[14]: 

i) The independence of jj RR −+1 and jR  characterizes the exponential distribution.  

Srivastava (1978).  Ahsanullah (1979) and Pfeifer (1982). 

ii) )( 1 jjj RRRE −+  is independent of jR  characterizes the exponential  
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distribution, Srivastava (1978).  Ahsanullah (1978) and Nagaraja(1977).  

iii) )(Var 1 jjj RRR −+ is independent of jR  characterizes the exponential 

 distribution (Ahsanullah (1981b)). 

 

Theorem 3.8.4 

 

cyRRRE j
r

jj ==−+ )|)(( 1  (independent of y ) for fixed j  and 1, >rr  if F   is exponential.  

 

Proof. Since the survival function of jj RR −+1  given yRj =  is ),(/)( ySyxS + where 

)(1)( xFxS −= , we have, 

   
∫

−= −x r du
yS

yuS
ruc

0

1

)(

)(

 

or 

      ∫
−−=

x r dxxSyxrycS
0

1 )()()(                                                                              (1) 

 

Since ∫
∞

∞<=
0

)()( XEdyyS  , the Mellin transforms of both sides of (1) exist 

Thus we have, 

  

*

0

1 )()()(* 




 −= ∫

∞ − dxxSyxrscS r

 

   ).(
)(

)()1( * rsS
sr

sr +
+Γ

Γ+Γ=                                                                                  (2) 

Letting ),()(/)(* shssS =Γ (2) can be written as 

  )()( sAhrsh =+                                                                                                           (3) 

 

where ).1(/ +Γ= rcA  

Equation (3) can be written as 

  .0)()( =−− rtAhth                        (4) 

This is a differential difference equation,(Bellman and Cooke (1963), p.54), with auxiliary 

equation 01 / == − srAe  giving brInAs == /)( .
 12  

(APPENDIX 12) 

Hence the solution of (4) is 

      ,)( bxkexh =  

where k  is an arbitrary constant.  This gives ./)()()(* 3λskesksS bs Γ=Γ=  where  

0>= −beλ   This implies that ,)( xkexS λ−=  Since 
xexSS λ−== )(,1)0(  and hence exponential. 
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3.8.5 Characterization by conditional expectation of a spacing between two record 

values  

Introduction.Let X�M, � � 0Z be a sequence of independent and identically distributed 

absolutely continuous random variables with cumulative distribution function F(x) and 

corresponding density function (pdf), f(x). The ratio, r, given by =��� � ����/zí��� where  zí��� � 1 � z��� on 	 � X�|z��� � 1Z    is called the hazard rate. 

A distribution F of a random variable X is said to have an increasing (IHR)(or decreasing )  

hazard rate (DHR) if r is an increasing (decreasing) function on 	( � X�|z��� � 1, � ) 0Z .    

z Ö r� if r is monotone 	( 

F is called ‘’New better than used’’ (NBU) if  zí�� � �� 1 zí���zí���,   �P= �, � � 0   

F is called ‘’New worse than used’’(NWU) if  zí�� � �� � zí���zí���,   �P= �, � � 0   

z Ö rg if the distribution function F is either NBU or NWU. 

Let X be a r.v.  whose density is given by  

���� � §����� ¦�, � � 0                                                                                                   �1� 

          � 0, P?	�=�>Q� 

� Ö `�§� if the pdf of X is of the form in (1) 

The following theorem characterizes the exponential distribution by the equivalence of the 

expectation of the spacing between two record values and the expectation of the record 

value corresponding to the difference between their record times[4]. 

 Theorem 3.8.5 

Let, )1,{ ≥nX n   be a sequence of independent and identically distributed non-negative 

random variables with absolutely continuous (with respect to Lebesgue measure) 

distribution function )(xF   and the corresponding probability density function )(xf
.
  

If z Ö r�  and for some nm,   with  ),((,1 )()()( mnLmLnL XEXXEnm −=−<≤  then )(σεEX n  for 

some 0>σ . 

Proof.   Let  )(4 xf   and )(5 xf  be respectively the p.d.f’s of )( mnLX −  and  )()( mLnL XX −   then  

 

with ∫−==−
x

duufxFxF
0

444 .)(1)()(1     and ∫−=−=
x

duufxFxF
0

555 .)(1)(1)( we have 

 ∫
∞

− =
0

4)( ,)(( dxxFXE mnL                  (1) 
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and  

  ∫
∞

=−
0

5)()( ,)(( dxxFXXE nLmL                  (2) 

Writing )(4 xf  and )(5 xf  in terms of )(xR  and f(x), we have   

 ),(1)( 44 xgxF −=
 

Where   ,
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 Equating (2) and (3), we have on simplification, 
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Since z�r� for (5) to be true, we must have =�N � �� � =�N� for almost all N ;�� �,        0 � N, � � ∞. Hence �M�`�i� 
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CHAPTER 4 

Related distributions 

4.0 Introduction 

In this chapter distributions resulting from interactions between and among exponential 

distributions are investigated. These include sums, differences, products and quotients of 

exponential distributions. 

Exponential distributions have been generalized using the beta and exponentiated 

generators. 

4.1 Sums of independent exponential random variables 

Let y� � ��+�g +. . .+��   

We wish to obtain distributions for y�  for three cases. 

Case (i): ��’s are i.i.d exponential random variables with parameter  � for fixed N=n 

Using the Laplace transform technique, we have the Laplace transform for yM 

L�£�Q� � `9��[�£: 

               � `9��[�#,( ...( #£�: 

               � `9��[#, :… `9��[#£ : since the the �x�Q are independent 

But the �x’s  are also identical. 

� L�£�Q� � `9��[#º : M 

 � L�£�Q� � `9L#º�Q�: M, 
where   

                   L#º�Q� � �� � Q 

is the Laplace transform of the density of �x, �x being an exponential random variable with 

parameter �. 
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� L�£�Q� � 7 �� � Q8M
 

which is the Laplace transform of a gamma distribution with parameters n and  �.  

But n is a positive integer. Such a gamma distribution is called an Erlang distribution. 

Using convolution approach and mathematical induction, let us start with 

�#,(#¢�?� � 4 �#,�Q�\
5 �#¢�? � Q��Q 

                  � 4 ����[�\
5 ����\�[��Q 

                  � �g 4 ���[��\(�[\
5 �Q 

                  � �g���\ . ? 

                  � ����\ . ��?) 

Next 

�#,(#¢+�À �?� � 4 �#,(#¢�Q�\
5 �#À�? � Q��Q 

                         � 4 ����[�Q.\
5 �����\�[��Q 

                         � �g. � 4 Q���[��\(�[\
5 �Q 

                         � �g. � 4 Q���\\
5 �Q 

                        � �g. ����\ �Qg2 �5
\
 

                        � ����\ ��?�g2!  
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By induction, assume that  

                ��+�g +. . .+�M�� 

has a pdf given by 

                       �#,(#¢+].�£Á, �?� � ����\ ��?�M�g�� � 2�! 
Hence 
   �#,(#¢+].�£ �?� � 4   �#,(#¢+].�£Á, �Q�\

5 �#£�? � Q��Q 

                            � 4 ����[ ��Q�M�g�� � 2�!\
5 �����\�[��Q 

                           � �M���\�� � 2�! 4 QM�g\
5 �Q 

                           � �M���\�� � 2�! � QM��� � 1�5
\
 

                            � ����\ ��?�M���� � 1�! 
                             � �M?M������ ���\,     ? � 0 

                            � �M���� ���\?M��,     ? � 0 

which is a gamma distribution with parameters n and � 

Case (ii): Independent non-identical exponential random variables with fixed N=n 

Let �x, i=1, 2, . . . .,n  be independent exponential random variables with respective rates �x   , > � 1, … , �, and suppose �x   Ï �  , �P= > Ï �.  
The random variable ∑ �xMx�5 , is said to be a hypo-exponential random variable. 

To compute its pdf, let us start with the case n=2. Now  

�#,(#¢�?� � 4 �#,�Q�\
5 �#¢�? � Q��Q 
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                  � 4 �����,[�g
\

5 ���¢�\�[��Q 

                   � ���g���¢\ 4 ����,��¢�[\
5 �Q 

                 � ���g���¢\ � ����,��¢�[���� � �g��5
\
 

              � ���g���¢\���� � �g� �����,��¢�\ � 1� 

             � ���g�� � �g ����¢\ � ���,\� 

            � ���� � �g �g���¢\ � �g�g � �� �����,\ 

For n=3 

�#,(#¢+�À �?� � 4 �#,(#¢�Q�\
5 �#À�? � Q��Q 

                         � 4 7 ���� � �g �g���¢[ � �g�g � �� �����,[8 �j���À�\�[�\
5 �Q 

                          � 4 7 ���g�j�� � �g ���¢[��À\(�À[ � ���g�j�g � �� ���,[��À\(�À[8\
5 �Q 

                          � �,�¢�À�,��¢ ���À\ æ ����¢��À�[\5 �Q +
�,�¢�À�¢��, ���À\ æ ����,��À�[\5 �Q 

                          � ���g�j�� � �g ���À\ � ����¢��À�[���g � �j��5
\ � ���g�j�g � �� ���À\ � ����,��À�[���� � �j��5

\
 

                          � ���g�j�� � �g ���À\ �����¢��À�\ � 1���g � �j� � � ���g�j�g � �� ���À\ �����,��À�\ � 1���� � �j� � 
 

                         � �g���¢\ ���� � �g . �j�j � �g � �j���À\ ���� � �g . �g�g � �j 

                                                                            + 
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                                           �����,\ �g�g � �� . �j�j � �� � �j���À\ ���g � �� . �g�� � �j 

  � �#,(#¢+�À �?�    � �����,\ �g�g � �� . �j�� � �j � �g���¢\ ���� � �g . �j�j � �g� �j���À\ 7 1��� � �g���g � �j� � 1��g � ������ � �j�8 ���g 

But 1��� � �g���g � �j� � 1��g � ������ � �j� � ��� � �j� � ��g � �j���� � �g���g � �j���� � �j� 

                                      � �� � �g��� � �g���g � �j���� � �j� 

                                      � 1��� � �j���g � �j� 

� �#,(#¢+�À �?� �   �����,\ �g�g � �� . �j�j � �� � �g���¢\ ���� � �g . �j�j � �g 

                                                           ��j���À\ . ���� � �j . �g�g � �j 

� �#,(#¢+�À �?� � � ß  �x���º\ � � �  � �x �x áj
�  

which suggests the general result to be   

� �#,(#¢+.  .  .+�£ �?� � � ß  �x���º\ � � �  � �x �x áM
�  

                                  � � ßñ� � �  � �x �x ò   �x���º\áM
�                                                         �ì� 

                        

                                  � � ýx,M
M
� �x���º\ 

where 
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                      ýx,M � � � �  � �x �x  

We will now prove the formula in �ì� by induction on n. 

Since the formula has already been established for n=2 and n=3, assume it to be true for  

n and consider n+1 arbitrary independent exponentials �x with distinct rates �x, i= 1, 2, . . ., 

n+1. Now 

� �#,(#¢+.  .  .+�£+, �?� � 4 �#,(#¢+.  .  .+�£ �Q�\
5 �#£+,�? � Q��Q 

                                      � 4 � ñ� � �  � �x �x ò   �x���º[ . �M(����£+,�\�[�M
�

\
5 �Q 

                                       � � ýx,M 4   �x   �M(����º[���£+,�\�[��Q\
5

M
�  

     

                                       � � ýx,M 4   �x   �M(����º[��£+,\(�£+,[�Q\
5

M
�  

                                       � � ýx,M   �x �M(����£+,\ 4 ����º��£+,�[�Q\
5

M
�  

                                       � � Êýx,M   �x �M(����£+,\ � ����º��£+,�[���x � �M(���5
\ ÞM

�  

                                     � � �ýx,M   �x �M(����£+,\ �����º��£+,�\ � 1���x � �M(�� ��M
�  

                                     � � �ýx,M   �x �M(� ����º\ � ���£+,\���x � �M(�� ��M
�  

                                   � � ýx,M �  �x���º\ �M(��M(� � �x � �M(����£+,\ �x�x � �M(��M
�  

                                  � � ýx,M �M(��M(� � �x   �x���º\ � � ýx,M �x�x � �M(� �M(����£+,\M
�  M

�  

� � ýx,M �M(��M(� � �x   �x���º\ �  tM(�M
� �M(����£+,\ 
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where 

                    tM(� � � ýx,M �x�x � �M(�
M
�  

But  
                      ýx,M � � � �  � �x � ���� � �x

�g�g � �x �x … �M�M � �x  
 

            �   ýx,M . �M(��M(x � �x � ���� � �x
�g�g � �x … �M�M � �x

�M(��M(� � �x 

                                          � � � �  � �x  �P= � � 1, 2, … , � � 1 �x  

                                          �   ýx,M(� 

� �#,(#¢+.  .  .+�£+, �?� � � ýx,M(�  �x���º\ �  tM(�M
� �M(����£+,\                            �ìì� 

where tM(� is a constant and does not depend on t. 

Next, 

�#,(#¢+.  .  .+�£+, �?� can also be written as  

�#,(#¢+.  .  .+�£+, �?� � 4 �#¢(#¢+.  .  .+�£+, �Q�\
5 �#,�? � Q��Q 

                                 � 4 7�  ýx,M(�ì  �x���º[M(�
g 8\

5 �����,�\�[� �Q 

                                  � �  ýx,M(�ì  �xM(�
g �� 4 ���º[��,\(�,[\

5  �Q 

                                � �  ýx,M(�ì  �x�����,\M(�
g 4 ����º��,�[\

5  �Q 

                              � �  ýx,M(�ì  �x�����,\ � ����º��,�[���x � ����5
\M(�

g  

                               � �  ýx,M(�ì  �x�����,\ �����º��,�\ � 1���x � ��� �M(�
g  
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                              � �  ýx,M(�ì  �x�����,\ � ���º\���x � ��� � ���,\���x � ����M(�
g  

                              � � 7ýx,M(�ì ���� � �x �x���º\ � ýx,M(�ì �x�x � �� �����,\8M(�
g  

                              � � ýx,M(�ì ���� � �x �x���º\ � � ýx,M(�ì �x�x � �� �����,\M(�
g

M(�
g  

                              � � ýx,M(�ì ���� � �x �x���º\ �M(�
g t������,\                                            �ììì� 

where t� � ∑ ýx,M(�ìM(�g �º�º��, 

Equating the two formulae �ìì� and �ììì�, we have 

� ýx,M(�  �x���º\ �  tM(�M
� �M(����£+,\ � � ýx,M(�ì ���� � �x �x���º\ �M(�

g t������,\ 

But 

ýx,M(�ì ���� � �x � �� � �  � �x �x, �g,j,…,M(� � ���� � �x  

                           � 7 �g�g � �x
�j3 � �x … �M(��M(� � �x8 ���� � �x 

                           � ���� � �x
�g�g � �x … �M(��M(� � �x � ýx,M(� 

Therefore, 

� ýx,M(�  �x���º\ �  tM(�M
� �M(����£+,\ � � ýx,M(��x���º\ �M(�

g t������,\ 

i.e, 

ý�,M(�  �����,\ � � ýx,M(�  �x���º\ �  tM(�M
g �M(����£+,\

� � ýx,M(��x���º\ �M
g ýM(�,M(��M(����£+,\ � t������,\ 

ý�,M(�  �����,\ � tM(��M(����£+,\ � ýM(�,M(��M(����£+,\ � t������,\ 

Comparing the coefficients of �M(����£+,\, we have 



   

60 

 

                                   tM(� � ýM(�,M(� 

Comparing the coefficients of  �����,\, we have 

t� � ý�,M(� 

Thus 

�#,(#¢+.  .  .+�£+, �?� � � ýx,M(�  �x���º\ �  tM(�M
� �M(����£+,\ 

                                                              � � ýx,M(�  �x���º\ � ýM(�,M(� M
� �M(����£+,\ 

                                                              � � ýx,M(�  �x���º\ M(�
�  

                                                              � � �� � �  � �x �x �   �x���º\ M(�
�  

Alternatively, 

�#,(#¢+.  .  .+�£+, �?� � � ýx,M(�ì ���� � �x �x���º\ �M(�
g t������,\ 

                                   � � ýx,M(��x���º\ �M(�
g ý�,M(� �����,\ 

                                   � ý�,M(� �����,\ � � ýx,M(��x���º\M(�
g  

                                  � � ýx,M(��x���º\M(�
�  

Remark: This proof has been given by Chiang (1980) and Ross (2000). 

Case(iii) A random number of i.i.d exponential random variables 

Let  Let y� � ��+�g +. . .+��   

where the �x�Q are i.i.d random variables and N is also a random variable independent of �x�Q 

Suppose �x�Q are continuous random variables. Then, let 

H(s)= the Laplace transform of y�  
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       � `9��[��: 

F(s)=the probability generating function of N 

      � `9y�: 

And 

L(s)=the Laplace transform of �xfor i=1, 2, . . ., N 

      � `9��[#º: 

� è�Q� � `9��[��: � ``9��[��/� � �:  

              � ``{��[�#,(#¢ (...(#��| 

             � `X`���[#,� `���[#¢� … ` ���[#��Z 

             � `9L�Q�:� 

             � z9L�Q�: 

             � z�{L#º�Q�| 

which is called a compound distribution. 

If N is Poisson, then H(s) becomes a compound Poisson distribution. Suppose N is Poisson 

with parameter§, then 

            è�Q� � ��¦9����[�: 
If N is binomial, then è�Q� becomes a compound binomial distribution. Suppose N is 

binomial with parameters n and p, then 

            è�Q� � 9� � ðL�Q�:M 

where q= 1-p 

If N is negative binomial, then è�Q� becomes a compound negative binomial distribution. 

Suppose N is binomial with parameters & and p, then 

è�Q� � 7 ð1 � �L�Q�8' ,   & ) 0, 0 � ð � 1, � � ð � 1 

If N is shifted geometric with parameter p, then 
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                                 z�Q� � ðQ1 � �Q , � � 1 � ð 

           �  è�Q� � z�9L#�Q�: 

                           � ðL#�Q�1 � �L#�Q� 

Further, if X is exponential with parameter�, then 

                L#�Q� � �� � Q 

           �  è�Q� � ð�
�� � Q� 21 � ��� � Q3 

                             � ð�
�� � Q� 21 � ��� � Q3 

                              � ð��� � Q� � �� 

                              � ð�ð� � Q 

which is the Laplace transform of an exponential distribution with parameter ð�. 

� 0=P��y� � �� � ð��� ��; � � 0 

The distribution of y�  can also be looked at as a mixture as follows: 

0=P��y� � �� � � 0=P��y� � �,� � ��
M  

                            � � 0=P��y� � �/ � � ��0=P��� � ��
M  

                            � � 0=P���� � �g(.  .  .(#£ � ��0=P��� � ��
M  

                            � �X� ZìMðMM  

where X� ZìM is the n-fold convolution of �x�Q and ðM � 0=P��� � �� 
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Thus 0=P��y� � �� is a mixed distribution with ðM as the mixing distribution.  

If the �x�Q are i.i.d exponential random variables of parameter�, then 

0=P��y� � �/ � � �� is a gamma distribution with parameters n and �. 

� 0=P��y� � �� � � 7 �M���� �����M��8 ðMM  

For shifted parametric, 

                           ðM � ð�M��, � � 1,2,3, … 

� 0=P��y� � �� � � �M���� �����M��ð�M��6
M��  

� 0=P��y� � �� � ð���� � �M�M���M������6
M��  

                                � ð����� � �����M������6
M��  

                                � ð����� � �����M���� � 1�!6
M��  

                                 � ð��������! 

                                 � ð�����(��! 

                                  � ð�����(���� �� 

                                  � ð�����(��� �� 

                                  � ð��� ��, � ) 0, 

which  is an exponential distribution with parameter ð�. 

4.2 Distribution of the difference between two exponential random variables 

Let ��, and  �g  be two independently distributed exponential random variables with 

respective rates �x, i= 1, 2. 

Let  � �� � �g  

� �∞ � � � ∞ 
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Thus the CDF of Y,  z����, is piecewise, when � 1 0 or  � � 0. 

The c.d.f. of Y is z���� � 0� 1 ��. 

case (i) " 1 #; 

                    z���� � 0� 1 �� 

                                � 0��� � �g 1 �� 

                                � 0��g � �� � �� 

                                

� 4 4  �#,#¢� ��, �g��#¢���      6
 ,Á.

6
5  

        � 4 4  ���g���,  ,���¢  ¢     �#¢���       6
 ,Á.

6
5  

� ���� � �g ��¢�{����,(�¢�  ¢|56 

                                                  � ���� � �g ��¢� , � 1 0. 
Case (ii)" � #; 

 

                    z���� � 0� 1 �� 

                                 � 1 � 0� ) �� 

                                � 1 � 0��� � �g ) �� 

                                � 1 � 0��g � �� � �� 

                                

                                � 1 � 4 4  �#,,#¢� ��, �g��#¢���       ,Á.
5

6
�  

                              � 1 � 4 4  ���g���,  ,���¢  ¢     �#¢���        ,Á.
5

6
�  

                               � 1 � ���� � �g ��¢�{����,(�¢�  ¢|5 ,Á.
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                                � 1 � �g�� � �g ���,�, � ) 0. 
Differentiating   z���� in sections 4.3.1 ad 4.3.2 gives  

  ����� �
$%
& 1�� � �g ��¢�, � 1 0

1�� � �g ���,�,   � ) 0 Ë 
which is the pdf of a Laplace random variable with parameters �� ;�� �g 

4.3 Distribution of the product of two exponential random variables 

Let �� and  �g  be two independently distributed exponential random variables with 

respective rates �x, i= 1, 2.     Let                         � ���g 

The CDF of Y is 

/��� � 0� 1 �� � 0����g 1 �� 

                                  � 0��� 1 �/�g� 

                                 � 0��� 1 ��g , 0 1 �g � ∞� 

                                 � 4 z� 2��g36
5 ���g���g 

where z����� � 0=P�(�� 1 ��) 

              � /��� � 4 71 � ���,� ¢86
5 �g���¢ ¢��g  

���� � �/�����  

            � 4 ��� g ���,� ¢6
5 �g���¢ ¢��g 

            � ���g 4 1�g ���,� ¢��¢ ¢6
5 ��g 

            � ���g 4 �g�����¢ ¢Áø,.,¡¢  6
5 ��g 
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                   � ���g 4 �g5�����¢� ¢(�,� ¢� ¢�. 6
5 ��g 

Let �g � Å(�,.�¢  ,    � ��g � (�,.�¢ �Å 

� ���� � ���g 4 »Å)����g ¼
5��

���¢)�,.�¢ ��(�/���)����g �Å 6
5  

               � ���g 4 Å5����*��¢�,��(�/����Å 6
5  

               � ���g 4 Å5����g*��¢�,g ��(�/����Å 6
5  

               � 2���g t5�2*��g��) 

where  tê��� is the modified Bessel function of the third kind with index v=0 and  

� � 2*��g�� 

4.4 Distribution of the quotient of two exponential random variables 

Let        � ��/�g 

where  �� and  �g  are independently distributed exponential random variables with 

parameters �� ;�� �g =�Qð�r?><���. 
The CDF of Y is 

/��� � 0� 1 �� � 0� ���g 1 �� 

                                   � 0�  �� 1 �g�� 

                                   � 0��� 1 �/�g� 

                                   � 0��� 1 �g�, 0 1 �g � ∞� 

                                   � 4 z���g��6
5 ���g���g 

                                  � 4 {1 � ���, ¢�|6
5 �g���¢ ¢��g  
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               ����         � 4 ���g���, ¢�6
5 �g���¢ ¢��g 

                                 � ���g 4 �g���, ¢���¢ ¢6
5 ��g 

                                 � ���g 4 �g����,�(�¢� ¢6
5 ��g 

L�? Å � ���� � �g��g, � ���,�(�¢ � ��    
�    ���� �  ���g 4 Åg����� � �g ��� �Å��� � �g

6
5 ��g      

                   �   ���g���� � �g�g ��2� 

                   �   �g
�� b� � �g��cg ,     � ) 0 

,  

4.5 Beta-Exponential distribution 

The Beta-exponential distribution was introduced by Nadarajah and Kotz (2006) as a 

generalization of the exponential distribution. 

The distribution based on what is called the beta generator approach, briefly discussed 

below. 

The classical beta (type I) pdf is given by  

                    ���� � �Î���1 � �������;, �� , 0 � � � 1,      ;, � ) 0 

where 

                 ��;, �� � ��;�������; � ��  

The  cdf is given by 

z��� � Pr �� 1 �� 
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          � 4 ��?��? 
5 � 4 ?Î���1 � ?������;, �� �? 

5  

For any random variable, Y, where �∞ �  � ∞, its cdf, /��� � 0=P�� 1 �� has the 

property; 0 1 /��� 1 1. 

Consider the case 0 �  � ∞. 

So 0 1 � 1 1 can be replaced by /���. 

                  � z9/���: � 4 ?Î���1 � ?������;, �� �?+���
5  

Let ���� � z9/���: � æ \,Á,���\�-Á,
.�Î,�� �?+���5  

� ���� � ������� � ��� 4 ?Î���1 � ?������;, �� �?+���
5  

                                 � � 4 ?Î���1 � ?������;, ��+���
5  

                                � �?Î���1 � ?������;, �� �5
+��� ��/������  

                                � �/����Î���1 � /�������
��;, �� ���� 

(Using Leibniz’s theorem) 

Thus 

           ���� � �/����Î���1 � /�������
��;, �� ���� 

This is called the beta-generated distribution. 

From this distribution, distributions of order statistics can be obtained by letting 

               ; � > ;�� � � � � > � 1,  

so that, 
           ���� � �/����x���1 � /����M�x

��;, �� ���� 
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where i and n are positive integers. This is the probability density of the i-th order statistic 

from a random sample of size n. 

Let us consider Y to be an exponential random variable with parameter � 

� ���� � ����� ;�� /��� � 1 � ����,    � ) 0,   ����,    � ) 0  

The beta-exponential distribution is given by the pdf 

           ���� � {1 � ����|Î�� {1 � �1 � �����|����������;, ��  

which simplifies to 

         

               ���� � �������1 � �����Î�� ��;, ��  

(Note: If a=b=1, ���� � ������ 

Let ��� � �g� � ] . � �M� be the order statistics from an exponential distribution. 

The i-th order statistic has its pdf given by taking ; � > and � � � � > � 1 in the above 

formula. i.e. 

               ����x�� � �����M�x(���{1 � ����|x�� ��;, ��   , ��x� ) 0 

��;, �� � ��;�������; � �� � ��>���� � > � 1���� � 1�  

                                        

                                         � �> � 1�! �� � >�!�!  

            �    ����x�� � �! �> � 1�! �� � >�!  �����M�x(���{1 � ����|x��  
Putting i=1, we obtain the distribution ���� � min��,g  , … M� ,  i.e, 

�    ������� �  �����M� ,    ���� ) 0  

For max ��,g  , … M�, let i=n. 
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�    ����M�� � �! �� � 1�! 0!  �����{1 � ����|M��
 

                      �   �������1 � �����M��    ,    ��M� ) 0.  
4.6 Exponentiated exponential distribution 

Let  z��� � 9/���:' 

where /��� is the cdf and z��� is the new cdf and & ) 0. 

� ���� � �z����� � &9/���:'������ 

���� ;�� ���� are old and new pdfs. 

The new pdf ���� is called the exponentiated generated distribution. 

For exponentiated exponential distribution, we have 

 

               ���� � &{1 � ����|'������� 

                          � &�����{1 � ����|'��, � ) 0, & ) 0, � ) 0 

which is also a generalization of exponential distribution by Gupta and Kundu (1999). 

When & � 1, the exponential distribution is generated. 
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CHAPTER 5 

Mixtures 

5.0 Introduction 

As mentioned in Chapter 1, in many situations involving the exponential distribution the 

populations may not be homogeneous. Such populations are therefore appropriately 

handled by the exponential mixture distributions. Mixture populations are modeled by 

considering the exponential distribution rate parameter as a random variable. The 

distribution of the rate parameter is called the mixing distribution.  

In this chapter mixtures of the exponential distribution with nine discreet distributions and 

thirteen continuous distributions are constructed. In doing this, an innovative method 

employing the moment generating function is used first to determine the survival function 

of a mixture. This technique is employed due to the fact that the survival function of a 

mixture of the exponential distribution with any mixing distribution is the same as the 

moment generating function of the mixing distribution. Once the mixture’s survival 

function has been determined, all of its other associated functions are then derived. 

Sections 5.1and 5.2 highlight the method linking the survival function of an exponential 

distribution mixture with the moment generating function of a mixing distribution. Section 

5.3 deals with the derivation of moment generating functions for the discreet and 

continuous mixing distributions covered in the study. Section 5.4 applies the moment 

generating functions in section5.3 in obtaining survival functions of the various mixtures 

together with the other functions associated with the mixtures. Frequency curves 

associated with the mixtures have also been drawn together with that of the exponential 

distribution for comparison.  The parameters for the exponential distribution and its 

mixtures were arbitrarily selected to simulate a possible occurrence.  Mixture distributions 

with more than one parameter have been depicted using more than one chart to provide a 

wider perspective of the effects of the various parameter combinations on the mixture 

curves.  

Densities involving the following functions were computed with the assistance of the 

indicated packages in CRAN R: 

confluent hypergeometric function –hypergeo 

error function- NORMT3 

modified Bessel function of the second kind-Bessel 
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standard normal-stats 

 Plotting was done using Excel.   

5.1 Methodology  

A mixture of the exponential distribution will arise when the parameter λ in the 

exponential density 

  ���� � λe�/K , or                                                                                            (1) 

    ���� � �/ e�¡0                      (2) 

is also a random variable. This means that the random variable X is conditioned on λ. 
It should be noted that two-parameter formats exist for the distributions in �1� and �2�. They are, respectively, 
                       ���� � λe�/�K�8�                                                                                                   (1a) 

   ;��            ���� � �/ e�¡Á90                                                                                                            (2a) 

In both (1a) and (2a), the parameter θ represents the location while � is the scale 

parameter. 

We have restricted ourselves to mixtures of the exponential distribution in (1). 

The general form of the pdf of the mixtures of (1) may be given as 

      ���� � æ �e�/K������                                                                                                    �3� 

where  ���� is called the mixing density.    

When  � is a discreet random variable with pmf  ð� ��  (3) becomes 

  ���� � ∑ � e�/Kð� � �                                     (4) 

The pdf of the distribution in (1) has a form that makes it convenient to find its mixtures 

simply by determining the moment generating function of the mixing density or mass 

function. This arises from the fact that for mixing distributions defined on [0,∞), the 

survival functions of their mixtures with the exponential distribution is the moment 

generating function of the mixing distribution with a negative parameter. This is the same 

as the Laplace transform of the mixing distribution. However, In this study we shall mostly 

refer to moment generating function because it is the most adopted term in statistical  
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literature.  This technique has been alluded to by Hasselager, O., Wang, S. & Gordon, 

W.(1998)
15

.(APPENDIX 13) 

5.2 Derivation of mixtures 

The following terms are frequently used in this paper. 

 ���� � ?	� ���Q>?� �N�r?>P� P� ; O>�?N=� 

           z��� � ?	� �>Q?=>�N?>P�  �N�r?>P� P� ; O>�?N=� 

 y��� � ?	� QN=<><;� �N�r?>P� P� ; O>�?N=� � 1 � z��� 

          	��� � ?	� 	;Å;=� =;?� �N�r?>P� P� ; O>�?N=� � ����y��� 

For a random variable X having an exponential distribution, its density function can be 

expressed as 

 ���� � λe�/K, � ) 0, λ ) 0  

When the parameter λ is also a random variable, then X can be considered to be  

conditioned on λ so that the density of X is now a conditional density written as  

 ���|λ� � λe�/K 

Thus the conditional cumulative distribution function is  

z��|λ� � 4 λe�/å��                                                                                     K
5  

                           � �{e�/å|5K 

      � 1 � e�/K 

Hence the conditional survival function is  

  y��|λ� � 1 � F�x� � e�/K 

The marginal survival function of X which is also the survival function of the mixture of the 

exponential function and the mixing density ��λ�, is  

               y ��� � 4 y��|λ�g�6
5 λ�dλ 

                          � 4 e�/Kg�6
5 λ�dλ �  q� ����                                                                             �5�   

 Equation (1) represents the moment generating function (mgf) of ��λ�  with the mgf  
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parameter ��. 

When the distribution of λ is discreet, equation (1) is replaced by 

       � e�/K ð�λ�
�   � q� ���� � y� ���                                                                                         �6� 

Where  ð�λ� is the probability mass function of  λ .     
Thus by determining the moment generating function of ��λ�  or ð�λ�  and using a 

negative mgf parameter, the survival function of the mixture of ��λ� or ð�λ�  with the 

exponential function is also determined. 

5.3 Moment generating functions 

The moment generating function (mgf) of a random variable Y is given by  

 q��Q�= E[�[�] � ∑ �[� ð��� for discreet Y                                                                (7) 

                            � æ �[� ������ for continuous Y                             (8) 

where s is the mgf parameter, ð��� is a probability mass function, (pmf), if y is discreet and ���� is the probability density function, (pdf), if y is continuous. 

Equations (7) and (8) hold provided E[�[�] exists for every real number s in the 

neighbourhood  �	 � Q � 	 for some positive number h 

5.4 Moment generating functions of discreet distributions 

Equation (7) will apply in the sections 5.3.1.1 - 5.3.1.9 with x replacing s and λ replacing y 

5.4.1 Bernoulli distribution 

When ð�λ; §� � �1 � §, λ � 0§, λ � 1Ë 
or        ð�λ; §� �  §/�1 � §���/    for λ � 0, 1 and  0 1 § 1 1. 

The mgf of a Bernoulli distribution is 

 q� ��� � `9� �: � ∑  � � ð�λ��5  

                                          � ∑   � � §/�1 � §���/�5  

            � 1 � § � §�  

                                          � 1 � §�1 � � � 
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5.4.2 Binomial distribution 

When ð�λ; §, �� � �M/�§/�1 � §���/           λ � 0, 1,2 … , � ,      0 1 § 1 1 

 

The mgf of a Binomial distribution is 

q� ��� � `9� �: � ∑  � � ð�λ�M5  

                                � ∑  �M/� §/�1 � §���/M5    � � 

                                � ∑  �M/� �§� �/�1 � §���/M5  

                      � 9�1 � §� � §� :M 

5.4.3 Geometric distribution type I 

when λ is the number of failures before a success 

or        ð�λ; §� �  §�1 � §�/��    for λ � 0, 1,2, …  and  0 1 § 1 1. 

The mgf of a geometric type I distribution is  

 q� ��� � `{� �| �  �  � �  ð�λ�6
�               

                                          

                                  � �  � � M
�  §�1 � §�/�� 

                           

                                  � §1 � § �  � �  M
�  �1 � §�/ 

                                           

                                  �  §1 � § �  M
�  9�1 � §� � :/       

              

                                  � §1 � §   �1 � §� � 1 � �1 � §� �  

                   

                                  �  §� 1 � �1 � §� �                 
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5.4.4 Geometric distribution type II 

when λ is the number of trials for a first success 

or        ð�λ; §� �  §�1 � §�/    for λ � 0, 1,2, …  and  0 1 § 1 1. 

 

The mgf of a geometric type II distribution is  

 q� ��� � `{� �| �  �  � �  ð�λ�6
�               

                                          

                                  � �  � � M
�  §�1 � §�/�� 

                                          

                                  �  § �  M
�  9�1 � §� � :/ 

 

                                  �  §�1 � §� � 1 � �1 � §� �                
5.4.5 Negative binomial distribution type I 

When λ is the number of failures before the rth success 

           ð�λ; §, =� � �/(M��M�� �§��1 � §�/,     λ � 0, 1,2 … , � ,    0 1 § 1 1                       
The mgf of a negative binomial type I distribution is 

 

 q� ��� � `{� �| �  �  � �  ð�λ�6
5                        

                                 �  �  � � 2λ � = � 1= 3 §��1 � §�/                 6
5  

                                � §� � 2λ � = � 1= 3 �1 � §� � :/6
5  

                                 � 2 §1 � �1 � §� � 3a                                   
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5.4.6 Negative binomial distribution type II 

When λ is the total number of trials to achieve r successes,    

 ð�λ; §, �� � 2λ � 1= � 13 §��1 � §�/��, λ � = , = � 1, … ,    0 1 § 1 1                             
The mgf of a negative binomial type II distribution is 

      

 q� ��� � `{� �| �  �  � �  ð�λ�6
5                        

                                  �  �  � � 2λ � 1= � 13 §��1 � §�/��                 6
��a  

      

                                  � ���1�a6
��a b �=λ � =c �1 � §���a  §���  

                                              
                                  � ���1�a6

��a b �=λ � =c �1 � §���a� § �K��  ��K� ��a 

     

                                  � �§�K� a ���1���a6
��a b �=λ � =c ��1 � §��K���a   �§ �K��   

                                  � �§ �K��  91 � �1 � §��K:�a   

 

                                  � 7 § �K1 � �1 � §��K8a                 
 5.4.7 Poisson distribution 

 �	��       ð�λ; §� � ��¦§/λ!  

for  λ � 0, 1,2, …  and  § ) 0. 

The mgf a Poisson distribution is, 

 q� ��� � `{� �| �  �  � �  ð�λ�6
5                        
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                                  �  �  � � ��¦§/λ!                6
��5       

                                  �  ��¦ � �§ � �/λ!                6
��5  

                                  �  ��¦�¦ -¡
 

                                   �  �¦� -¡���                                                    
 5.4.8 Discrete uniform distribution 

�	��  ð�λ; �� � 1n  ,                            λ �  1,2, … , �  , n Ö �.                     
The mgf of a discrete uniform distribution is 

q� ��� � `{� �| �  �  � �  ð�λ�M
�  

                                                                                   

                                 � 1n �  � �  M
�  

                                 � � � 21 � �M 1 � � 3 

5.4.9 Logarithmic distribution 
�	�� ð�λ; § � � � §�����1 � §�  ,                    λ � 0,1, 2, …     0 � § � 1                        

The mgf of a logarithmic distribution is 

q� ��� � `{� �| �  �  � �  ð�λ�6
5     

                    

                                �  � �  � � §�����1 � §� 6
�  

                                � � 1���1 � §� �  6
�

�§� ���                                    
 

                                � � 9����1 � §� �:���1 � §�  � ���1 � §� ����1 � §�                     
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5.5 Moment generating functions of continuous distributions 

Equation (8) will apply in the sections 5.3.2.1 - 5.3.2.13 with x replacing s and λ replacing y 

5.5.1 Beta distribution 

�	��  ��λ; &, %� � λ'���1 � λ�$����&, %� , 0 1   � 1  1, & ) 0, % ) 0 

The mgf of a beta distribution is  

q� ��� � `{� �| �  æ  � ��������5                                 

 

            �  4  � � λ'���1 � λ�$����&, %� ��     �
5                                       

                         � �.�',$� æ λ'���1 � λ�$��  � ���                                �5  

                                    � �.�',$� ��&, %� 1 z1(&; & � %; �� 16
 (APPENDIX 14)        

                          � 1 z1(&; & � %; ��,  where for constants a, b and variable z, 

 1 z1(;; �; Å� is the confluent hypergeometric function defined by 

1 z1(;; �; Å� � ∑ �Î�; �;���;Ì!6Ì�5  , and where for a parameter = , �=�Ì denotes 

Pochhammer’s symbol for increasing factorial given by 

�=�Ì � =�= � 1��= � 2��= � 3� … �= � Í�         

          � Γ�= � Í�Γ�=�             
5.5.2 Exponential distribution 

When ��λ; § � � §��¦/,   § ) 0,      � ) 0, 

The mgf of an exponential distribution is 

q� ��� � `{� �| �  4  � �������6
5  

   

                                 �  4  � �§��¦/��6
5  
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                                 �  § 4 ��/�¦� ���6
5  

                                     � � ¦�¦� �  {��/�¦� �|56                                                                                
                                 � §�§ � ��                     
5.5.3 One-parameter gamma distribution 

�	�� ��λ; §� � �� � λ8��Γ�§� ,       λ ) 0,    § ) 1      
q� ��� � `{� �| �  4  � �������6

5  

 

                                 � 4 e/K  �� � λ8��Γ�§�6
5 dλ 

                                 � 4  λ8���� ���� � Γ�§�6
5 dλ 

Using substitution, let   N �  ��1 � ��                       

� �� � �N�1 � ��                                                   
       Thus,        

q� ��� � < b u1 � xc8��  �� «Γ�§�
6

5
du�1 � x�                                                        

                                     

    � 1�1 � x�¦ < u8����« Γ�§�
6

5
�N                                                     

                            � 1�1 � ��¦ 

5.5.4 Two-parameter gamma distribution 

�	�� ��λ;α, β � � %'Γ�&�  �� �$λB��, � ) 0, & ) 0, % ) 0.     
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The mgf of a two-parameter gamma distribution is 

 q� ��� � `{� �| �  4  � �������6
5                                                                         

                                           �  4  � � %'Γ�&�  �� �$λB����6
5         

                                           

                                           � %'  4  ����$� �Γ�&�  λB����              6
5  

Using substitution, let   N �  ��% � �� ,                      

� �� � �N�% � �� 

  Thus    

q� ��� � %'  < 2 uβ � x3B��  �� «Γ�&�
6

5
du�β � x�                                                        

                                     

� %'�β � x�' < uB����« Γ�&�
6

5
�N                                                     

                         � 2 %β � x3B
 

5.5.5 Chi-square distribution 

�	��   ��λ; n � � �g�M� �  2� g⁄Γ��/2�  �� g�λ��/g��� 

The mgf of a gamma distribution is 

  q� ��� � `{� �| �  æ  � �������65                                                                          

   
                                  �  4  � �  2� g⁄

Γ b�2c  �� g�λb�gc����6
5                

                                  �   2� g⁄
Γ b�2c 4 λb�gc��� –��g� � ��6  

5  
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Using substitution, let 

��2 � �� � N                     � �� � �N2 � �                                        
  �  q� ��� �   2� g⁄

Γ b�2c 4 u�� g⁄ ����2 � ���M g⁄ ��� � –« �N�2 � �� 6  
5  

                       �   2� g⁄�2 � ���M g⁄ � 4 u�� g⁄ ���Γ�n 2⁄ � � –« �N 6  
5  

                        �  2 22 � �3� g⁄  , � � 2                                
5.5.6 Inverse gamma distribution 

When  ��λ;α, β � � $*
 ?�'�  /@+,   �� $/�,        λ ) 0,    & ) 0,      % ) 0    

The mgf of an inverse gamma distribution is  

 q� ��� � `{� �| �  4  � �������6
5  

                                 � 4 �� 6
5

%' Γ�&�  λB(�   �� $/� �� 

                                 � %' Γ�&� 4   λ�B���� � $/�6
5   �� 

                                 � $*
 ?�'� . 2 b $� cÁ*¢ t�'�2*��%��� .�A(APPENDIX 15) 

                                 � g$*�� �*¢ ?�'� t�'�2*��%���,   where for a constant v and a parameter z,  tê�Å� is the modified Bessel function of the second kind and order < defined by ;   tê�Å� � æ   e�ÇBC�DDcosh<?65   �? .�E ( APPENDIX 16) 

5.5.7 Erlang distribution 

�	�� ��λ; �, % � �   $£
�M���! λM��   �� �$ ,     λ ) 0,    % ) 0, � Ö N  

The mgf of an Erlang distribution is 

  q� ��� � `{� �| �  4  � �������6
5  
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                                   � 4  � � %M�� � 1�! λM��   �� �$ ��6
5  

                                   � %M�� � 1�! 4 λM��   �� ��$� � ��                      6
5  

                                   � %M�� � 1�! 4 2 z% � �3���  �� � �Å% � � ,   6
5  

�	�=� Å �  ��% � ��, 
                                �  2 %% � �3M 4 1Γ��� z��� �� ��Å,   6

5   
                 

                                �  2 %% � �3M
 

5.5.8 Inverse Gaussian distribution 

 �	��  ��λ; f, % � � 2 %2G3� g⁄ λ�j g⁄ ��$�/�µ�¢gI¢/   , λ ) 0, f ) 0, % ) 0 

The moment generating function of the Inverse Gaussian (Wald) Distribution is given by 

  q� ��� � `{� �| �  4  � �������6
5  

              � 4  � � 2 %2G3� g⁄ λ�j g⁄ ��$�/�µ�¢gI¢/  ��6
5  

                               

                � 2 %2G3� g⁄ 4 λ�j g⁄  � ���$�/�µ�¢gI¢/  ��6
5                      

               �   2 %2G3� g⁄ 4 λ�j g⁄ ���$�gKµ¢�/gI¢ � $g/($µ  ��6
5                      

               �   2 %2G3� g⁄ �$µ 4 λ�j g⁄ ���$�gKµ¢�/gI¢ � $g/ ��6
5  

 � 2 2 %2G3� g⁄ �$µ  � %µg%�2xµg��� m⁄ t�� g⁄ 71µ*%�%�2xµg�8 .�E �APPENDIX 15�          
               � 2 2G%µ3� g⁄ �%�2xµg�� m⁄ �$µ  t�� g⁄ 71µ*%�%�2xµg�8 
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5.5.9 Generalized Inverse Gaussian distribution 

 �	��  ��λ; §,ψ, χ � �  2ψχ3¦g λ¦��
2t¦�*χψ� ���gbN�(O�c  , λ ) 0,   

χ ) 0, ψ � 0   �	�� § � 0 

χ ) 0, ψ ) 0   �	�� § � 0 

χ � 0, ψ ) 0   �	�� § ) 0 

The mgf of the Generalized Inverse Gaussian distribution is given by 

q� ��� � `{� �| �  4  � �������6
5  

                          �  4  � � 2ψχ3¦g λ¦��
2t¦�*χψ� ���gbN�(O �c��6

5  

� 2ψχ3¦g 12t¦�*χψ� 4 λ¦�� � ����gbN�(O �c��6
5  

                              � 2ψχ3¦g 12t¦�*χψ� 4 λ¦�� � ����gbN�(O �c��6
5  

                               � bONc9¢ �gP9�*QR�  æ λ¦�����b,¢O�K c�,¢Qø  ��65       

 

                           � 2ψχ3¦g 2 χψ � 2x3¦g   t¦�*χ�ψ � 2x�t¦�*χψ�    .�S  �APPENDIX 9�                   
5.5.10 Half-normal distribution 

When ��λ;  i � � �¥  bgTc,¢ �� 0¢¢Ñ¢, λ ) 0,   i ) 0 

The moment generating function of the half-normal distribution is given by 

 q� ��� � `{� �| �  4  � �������6
5  
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                            �  4  � � 1i  22G3�g �� /¢g¥¢  ��6
5  

                                  � 1i  22G3�g  4 �� /¢g¥¢( � ��6
5   

                                  � 1i  22G3�g 4 �� �g¥¢��¢�g¥¢ �(¥U ¢�¥U ¢� ��6
5  

 

                                  � 1i  22G3�g �  V¢ ¢g 4 �� �g2��¥¢ ¥ 3¢  ��6
5  

L�? Å � � � ig� i   ,   �� � i�Å        
                                     Limits 

� Z 

      0 -σx 

   ∞   ∞ 

 

�    q� ���   � 2�  V¢ ¢g  1√�2G� 4 �� �g�¢  �Å6
�¥  , 

                        � 2�  V¢ ¢g 91 � X��i��: 

                        � 2�  V¢ ¢g 91 � X�i��: 

5.5.11 Rayleigh distribution 

When ��λ;  i � � /¥¢ �� 0¢¢Ñ¢ ,      λ � 0,   σ ) 0 

The moment generating function of a Rayleigh Distribution is 

 q� ��� � `{� �| �  4  � �������6
5  

                            �  4  � � λig �� /¢g¥¢  ��6
5  
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                            � 1ig  4 λ �� /¢g¥¢( � ��6
5  

                            � �  V¢ ¢gig  4 �iÅ � ig���� �g�¢i �Å,6
�¥  

by introducing z as in  section 5. 5.10 

�    q� ��� � �  V¢ ¢gig  4 �iÅ � ig���� �g�¢i �Å,6
�¥  

                � �  V¢ ¢g 4 �Å � i���� �g�¢  �Å,6
�¥  

                      � �  V¢ ¢g 4 Å�� �g�¢  �Å � i��  V¢ ¢g 4    �� �g�¢  �Å6
�¥ 

6
�¥  

  L�? õ� � �  Z¢¡¢¢ æ Å�� ,¢�¢  �Å6�¥   and õg � i��  Z¢¡¢¢ æ    �� ,¢�¢  �Å6�¥  

Considering  õ�; 

L�? � � �g Åg,    �Å � ���                                      

Limits 

� Z 

      �i� 

 

σg�g2  

   ∞   ∞ 

               �  õ� � �  V¢ ¢g 4 Å�� � ��Å  6
V¢ ¢g

 

                         � ��  V¢ ¢g 9�� �:V¢ ¢  g  6 � 1 

Considering õg;  
                  õg � i��  V¢ ¢g  √�2G� 1√�2G� 4    �� �g�¢  �Å6

�¥  

                            � i�√2G    �  V¢ ¢g  91 � X��i��: 
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                            � i�√2G    �  V¢ ¢g  91 � X�i��: 

�    q� ��� � 1 �  i�√2G    �  V¢ ¢g  91 � X�i��: 

5.5.12 Uniform (rectangular)distribution 

When  ��λ; b� � �[   ,        0 � λ � �,   � ) 0    

The mgf of a uniform distribution is 

 q� ��� � `{� �| �  4  � �������6
5  

                                 �  1b4  � ����
5   

                                 �  �� � 1bx  

5.5.13 Chi distribution 

�	�� �;OO;�λ; �� � λ���
 2�g��Γ��/2�  �� �¢/g  , λ � 0,   � � 1,2, …    

The mgf of a chi distribution is 

q� ��� � 4 �� λ���
 2�g��Γ��/2�  �� �¢/g6

5  �� 

             � 1 2�g��Γ��/2� 4 λ���  ���¢g (� 6
5  �� 

            � ?�M�
 g\¢Á,?b£¢c e ¢ m⁄ D������  20 

(APPENDIX 17) 

Where for a parameter z and a constant p, 	 �Å� is a parabolic cylindrical function given by 

	 �Å� � 2� g⁄ ���¢ m⁄ ß √G
Γ b1 � ð2 c z� ��ð2 , 12 ; Åg2 � � √2GÅΓ b�ð2 c z� �1 � ð2 , 32 ; Åg2 ��.�. á .g� 

(APPENDIX 18) 
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Chapter 6  

Exponential mixtures, survival-time and related functions 

In this chapter all survival time and related functions of mixtures of exponential 

distribution with mixing distributions mentioned in sections 5.4 and 5.5 are derived  

6.1 Mixtures with discreet distributions 

6.1.1 Exponential-Bernoulli mixture 

 For a Bernoulli distribution, ð�λ; § � � §��1 � §����,    0 � § 1 1,    � � 0, 1, 

The mgf of a Bernoulli distribution is 

 q� ���  � 1 � §�1 � � � 

The following are survival-time and related functions for the exponential-Bernoulli mixture. 

Survival function: 

  y ��� � q� ���� � 1 � §�1 � �� � 

Cumulative distribution function: 

 z��� � 1 � y��� � §�1 � �� � 

Probability density function:  

              ���� � z���� � §��   

Hazard rate function:     

    	��� � ����y��� � §��  1 � §�1 � �� � �   § �1 � § �� � §                               

     

                     Fig. 6.1.1 
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6.1.2 Exponential-Binomial mixture 

 For a binomial distribution, �λ; §, �� � �M/�§/�1 � §���/ ,    λ � 0, 1,2 … , � ,      0 1 § 1 1  
The mgf of a binomial distribution is 

q� ��� � 9�1 � §� � §� :M 

The following are survival-time and related functions for the exponential-binomial mixture. 

Survival function: 

  y ��� � q� ���� � 9�1 � §� � §�� :M 

Cumulative distribution function: 

 z��� � 1 � y��� � 1 � 9�1 � §� � §�� :M 

Probability density function: 

   ���� � z���� � �§�� 9�1 � §� � §�� :M��                                                                                      � � 0,      0 1 § 1 1,  n= 1, 2, … 

Hazard rate function:     

    	��� � ����y��� � �§�� 9�1 � §� � §�� :M��9�1 � §� � §�� :M  

                           � �§§ � �1 � §��                    

 

  Fig.6.1.2(a) 
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  Fig. 6.1.2(b) 

6.1.3 Exponential-Geometric type I mixture 

when λ is the number of failures before a success, 

        ð�λ; §� �  §�1 � §�/��    for λ � 0, 1,2, …  and  0 1 § 1 1. 

The mgf of a geometric type I distribution is  

    q� ���� �  §� 1 � �1 � §� �                 
The following are survival-time and related functions for the exponential-geometric type l 

mixture. 

Survival function:  

y��� � q� ���� �  §�� 1 � �1 � §� ��  

Cumulative distribution function: 

z��� � 1 � y��� � 1 �  §�� 1 � �1 � §� ��       �  � � 1 � � 1 � §                       
Probability density function: 

���� � z���� �  §� � � � 1 � §�g ,          � � 0,      0 1 § 1 1 

Hazard rate function:     

    	��� � ����y��� �  �  � � 1 � § 
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  Fig. 6.1.3 

Examining the curves of exponential (λ � 1�, exponential-geometric type I (θ=0.1, θ=0.5, 

θ=0.9) in Fig. 6.1.3 clearly shows that the mixtures approaches a uniform distribution as θ 

tends to 1 

6.1.4 Exponential-Geometric type II mixture 

when λ is the number of trials for a first success 

        ð�λ; §� �  §�1 � §�/    for λ � 0, 1,2, …  and  0 1 § 1 1. 

The mgf of a geometric type II distribution is  

 q� ���� �  §�1 � §� � 1 � �1 � §� �  

The following are survival-time functions for the exponential-geometric type II mixture. 

Survival function:  

y��� � q� ���� � §�1 � §� �� 1 � �1 � §� �� � §�1 � §� � � 1 � § 

Cumulative distribution function: 

z��� � 1 � y��� � 1 � §�1 � §� � � 1 � §    �  � � 1 � §g � � 1 � §                        
Probability density function: 

���� � z���� � �1 � §� §� � � � 1 � §�g ,                     � � 0,      0 1 § 1 1 
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  Fig.6.1.4 

Hazard rate function:    

                               	��� � ����y��� �  �  � � 1 � § 

 

6.1.5 Exponential-Negative binomial type I mixture 

When λ is the number of failures before the rth success 

ð�λ; §, =� � �/(M��M�� �§��1 � §�/,     λ � 0, 1,2 … , � ,    0 1 § 1 1 

The mgf of a negative binomial type I distribution is 

  q� ��� � 2 §1 � �1 � §� � 3a                                   
The following are survival-time and related functions for the exponential-negative binomial 

type l mixture. 

Survival function:  

y��� � q� ���� � 2 §1 � �1 � §� �� 3a
 

Cumulative distribution function: 

z��� � 1 � y��� � 1 � 2 §1 � �1 � §� �� 3a                       
 

0

2

4

6

8

10

0 0.5 1 1.5 2 2.5

f(
x

)

x

Curves of exponential(λ=1), exponential-geometric type II mixture(θ=0.1, θ=0.5, θ=0.9)

exponential(λ=1)

mixture(θ=0.1)

mixture(θ=0.5)

mixture(θ=0.9)



   

93 

 

Probability density function: 

���� � z���� � =�1 � §�� §� �a� � � 1 � §�a(� ,       � � 0,      0 1 § 1 1 

 

  Fig. 6.1.5(a) 

 

  Fig. 6.1.5(b) 

Hazard rate function:     

                                             	��� � ����y��� � =�1 � §� � � 1 � § 

6.1.6 Exponential-Negative binomial type II mixture 

When λ is the total number of trials to achieve r successes   ð�λ; §, �� � �/��a���§��1 � §�/��,     λ � =, = � 1, = � 2 …,    0 1 § 1 1                              
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The mgf of a negative binomial type II distribution is 

    q� ��� � 7 § �K1 � �1 � §��K8a                 
The following are the survival-time and related functions for the exponential-negative 

binomial type lI mixture. 

Survival function:  

y��� � q� ���� � 2 §��K1 � �1 � §� �� 3a
 

Cumulative distribution function: 

      z��� � 1 � y��� � 1 � 2 §��K1 � �1 � §� �� 3a � 1 � 2 § � � 1 � §3a                       

 

  Fig.6.1.6(a) 

 

  Fig. 6. 4.1.6(b) 
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Probability density function: 

             ���� � z���� � =  §a� � � � 1 � §�a(�  ,   � � 0, = � 1,2, …       0 1 § 1 1 

Hazard rate function:     

    	��� � ����y��� � = �  � � 1 � § 

6.1.7 Exponential-Poisson mixture 

For a Poisson distribution,   ð�λ; §� � -Á9¦0/! ,      λ � 0, 1,2, …   and  § ) 0           
The mgf of a Poisson distribution is  q� ��� � �¦�-¡���                                                     
               

 

  Fig. 6.1.7 

The following are the survival-time and related functions for the exponential-Poisson 

mixture. 

Survival function:                                   y��� � q� ���� � �¦�-Á¡��� 

Cumulative distribution function: z��� � 1 � y��� � 1 � �¦�-Á¡���                      
Probability density function:                             ���� � z���� � �¦�-Á¡����                    � ) 0,      0 1 § 1 1 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7 8

f(
x

)

x

Curves of exponential(λ=1), exponential-Poisson mixture(θ=0.1, θ=0.5, θ=0.9) 

exponential(λ=1 )

mixture(θ=0.1)

mixture(θ=0.5)

mixture(θ=0.9)



   

96 

 

Hazard rate function:   

                                  	��� � ����y��� �  ��  

 

6.1.8 Exponential-discrete uniform mixture 

when   ð�λ; �� � 1/n ,    λ �  1,2, … , �  ,  n Ö �. 

The mgf of a discreet uniform distribution is 

                       q� ���   � � �1 � �M �n�1 � � �  

The following are the survival-time and related functions for the exponential-discreet 

uniform mixture. 

Survival function:  

y��� � q� ���� � �� �1 � ��M �n�1 � �� � � �M � 1n�M �� � 1� 

Cumulative distribution function: 

z��� � 1 � y��� � 1 � �M � 1n�M �� � 1� � ��M (� � �� � 1��M � 1n�M �� � 1�  

Probability density function: 

���� � z���� � ���� � � � 1��M �� � 2� � �� � 1���M(�� � �� � 1�� � �n�M �� � 1�g  

                                                                                     � ) 0 

 

 Fig. 6.1.8 
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Hazard rate function:     

    	��� � ����y��� � ���� � � � 1��M �� � 2� � �� � 1���M(�� � �� � 1�� � ��� � 1���M � 1�  

 

6.1.9 Exponential-logarithmic mixture 
�	�� ð�λ; § � � � §�����1 � §� , λ � 1, 2, …     0 � § � 1   
The mgf of a logarithmic distribution is 

                       q� ���   � �P��1 � §� �log�1 � §�  

The following are the survival-time and related functions for the exponential-logarithmic 

mixture. 

Survival function:  

y��� � q� ���� �  �P��1 � §�� �log�1 � §�  

Cumulative distribution function: 

z��� � 1 � y��� � 1 �  �P��1 � §�� �log�1 � §�  

Probability density function: 

���� � z���� � � §�� �1 � §�� �log�1 � §�        � ) 0,     0 � § � 1   

 

Fig.6.1.9 

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5

f(
x

)

x

Curves of exponential(λ=1), exponential-logarithmic 

mixture(θ=0.1, 0.5, 0.9)

exponential(λ=1)

mixture(θ=0.1)

mixture(θ=0.5)

mixture(θ=0.9)



   

98 

 

Hazard rate function:     

    	��� � ����y��� � � §�� �1 � §�� �log�1 � §�� � � � §�� � §�log�1 � §�� �  
6.2 Mixtures of the exponential distribution with continuous distributions 

6.2.1 Exponential-beta mixture 

�	��  ð�λ; &, %� � λ'���1 � λ�$����&, %� , 0 1  � 1  1, & ) 0, % ) 0                   
The mgf of a beta distribution is  

  q/��� �1 z1(&; & � %; �� 

The following are the survival-time and related functions for the exponential-beta mixture: 

Survival function:                                y��� � q� ���� � 1 z1(&; & � %; ��� � �� 
 1 z1(%; & � %; �� .gg (See 

APPENDIX 19) 

Cumulative distribution function: 

                                                    z��� � 1 � y��� � 1 � �� 
 1 z1(%; & � %; �� 

 

  Fig.6.2.1 

Probability density function: 

���� � z���� � ��  9   1 � ��  1 z1(%; & � %; �� ],      0 � � � 1 

                                                   � ��  1 z1(%; & � %; �� - �� $'($ 1 z1(% � 1; & � % � 1; ��  

   � �� 9 1 z1(%; & � %; �� - $'($ 1 z1(% � 1; & � % � 1; �� ] 
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Hazard rate function:   

    	��� � ����y��� �  .� F��%; & � %; ��  �  %& � % .� F��% � 1; & � % � 1; ��.� F��%; & � %; ��  

6.2.2 Exponential-exponential mixture 

When ��λ; § � � §��¦/,        § ) 0,      � ) 0, 

The mgf of an exponential distribution is 

                 q� ��� � θθ � �                     
The following are the survival-time and related functions for the exponential-exponential 

mixture. 

                                       

 

Fig. 6.2.2 

Survival function:  

y��� � q� ���� � θθ � � 

Cumulative distribution function: 

z��� � 1 � y��� � 1 � θθ � �     � �θ � � 

Probability density function: 

���� � z���� � ��  9  8(   ],      � ) 0 
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                                                   � §�§ � ��g                                             
Hazard rate function:     

    	��� � ����y��� � §�§ � ��gθθ � � � 1θ � � 

6.2.3 Exponential-one parameter gamma mixture 

When ��λ; §� � -Á ø /]Á,
?�¦� ,        λ ) 0,    § ) 0    

The mgf of a one-parameter gamma distribution is 

 q� ���   � 1�1 � ��¦ 

The following are the survival-time and related functions for the exponential-one-

parameter gamma mixture. 

Survival function:  

y��� � q� ���� � 1�1 � ��¦ 

 

  Fig. 6.2.3 

Cumulative distribution function: 

z��� � 1 � y��� � 1 �  1�1 � ��¦ 
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Probability density function: 

���� � z���� � §�1 � ��¦(� , � ) 0, § ) 0 

This is the pdf of a Pareto distribution of the second kind 

 

Hazard rate function:    

    	��� � ����y��� � §�1 � ��¦(�1�1 � ��¦
� §1 � � 

 6.2.4 Exponential-2-parameter gamma mixture 

When  ��λ;α, β � � $*
?�'�   �� �$λB��  ,        λ ) 0,    & ) 0, % ) 0    

The mgf of a 2-parameter gamma distribution is 

            q� ��� � 2 %% � �3'
 

The following are the survival-time and related functions for the exponential-two 

parameter gamma mixture. 

Survival function:  

y��� � q� ���� � 2 %% � �3'
 

Cumulative distribution function: 

z��� � 1 � y��� � 1 � 2 %% � �3'
 

Probability density function: 

���� � z���� � &%'�% � ��'(�       , x ) 0,    & ) 0, % ) 0   
This is the pdf of a Pareto distribution of the second kind with parameters & ;��  %. 

Hazard rate function:     

    	��� � ����y��� � &% � � 
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  Fig. 6.2.4(a) 

 

 

  Fig. 6.2.4(b) 

 

  Fig. 6.2.4(c) 
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6.2.5 Exponential- chi-square mixture 

Thus when ��λ; n � � �g�M� � �;OO; bλ; Mg , �gc � �
 g\¢?�M/g�   �� �/gλ��/g���, 

The mgf of a chi-square distribution is  

  q� ���� � 2 22 � �3M/g
 

The following are the survival-time and related functions for the exponential-chi-square 

mixture. 

Survival function: y��� � q� ���� � b gg( cM/g
 

Cumulative distribution function: 

z��� � 1 � y��� � 1 � 2 22 � �3M/g
 

Probability density function: 

���� � z���� � �2Mg��
�2 � ��Mg(�       , x ) 0,    � � 1,2, …   

This is the pdf of a Pareto distribution of the second kind with parameter   
Mg . 

Hazard rate function:     

    	��� � ����y��� � �2�2 � �� 

 

    Fig. 6.2.5 
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6.2.6 Exponential-inverse gamma mixture 

When  ��λ;α, β � � $*
 ?�'�  /@+,   �� $/�,        λ ) 0,    & ) 0,      % ) 0    

The mgf of an inverse gamma distribution is  

  q� ��� � 2%'����'g Γ�&� t�'�2*��%��� 

The following are the survival-time and related functions for the exponential-inverse 

gamma mixture. 

Survival function:  

y��� � q� ���� � 2%'���'g Γ�&� t�'�2*�%��� 

Cumulative distribution function: 

z��� � 1 � y��� � 1 � 2%'���'g Γ�&� t�'�2*�%��� 

Probability density function: 

���� � z���� � ���  ½� 2%'���'g Γ�&� t�'�2*�%���¾     , x ) 0,    & � 1,2, …   
� � 2%' Γ�&� ���  ���'g   t�'�2*�%���¯                       

Using the product rule, let N � �'g  ,          �N�� � &2 �'g��
 

And let < � t�'�2*�%��,     �<�� � �&2*�%�� t�'�2*�%�� � t��'�2*�%��.gj 

( APPENDIX 20) 

�            z���� � � 2%' Γ�&� ��N<���   

      � 2%' Γ�&� »�'g ñ &2*�%� t�'�2*�%�� � t��'�2*�%��ò � t�'�2*�%�� &2 �'g��¼ 

� ���� � 2%'�'g Γ�&� �� 1*%� � 1��&2 t�'�2*�%�� � t��'�2*�%��� 
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Hazard rate function:  

 	��� � ����y��� � 2%'�'g
�� 1*�%� � 1��&2 t�'�2*�%�� � t��'�2*�%���

Γ�&� � 2%'���'g  t�'�2*�%���  

 

  Fig. 6.2.6(a) 

 

Fig.6.2.6(b)     

 

6.2.7 Exponential-Inverse Gaussian mixture 

 �	��  ��λ; f, % � � 2 %2G3� g⁄ λ�j g⁄ ��$�/�µ�¢gI¢/   , λ ) 0, f ) 0, % ) 0 
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The mgf the Inverse Gaussian (Wald) distribution is 

M��� � 2 2G%µ3� g⁄ �%�2xµg�� m⁄ �$µ  t�� g⁄ 71µ*%�%�2xµg�8 

The following are the survival-time and related functions for the exponential-inverse 

Gaussian mixture. 

Survival function:  

y��� � q���� � 2 2G%µ3� g⁄ �%�2xµg�� m⁄ �$µ  t�� g⁄ 71µ*%�%�2xµg�8 

Cumulative distribution function: 

z��� � 1 � y��� � 1 � 2 2G%µ3� g⁄ �%�2xµg�� m⁄ �$µ  t�� g⁄ 71µ*%�%�2xµg�8 

Probability density function: 

���� � z���� � � 2 2G%µ3� g⁄ �$µ    ��� ��%�2xµg�� m⁄  t�� g⁄ 71µ*%�%�2xµg�8�, 
                                                                                                    � ) 0 

Using the product rule, let N � �%�2xµg�� m⁄  ,          �«� � µ¢
g �%�2xµg��j m⁄  

And let 

< � t�� g⁄ 71µ*%�%�2xµg�8,    
  �<�� � � µ2*%�%�2xµg� t�� g⁄ 71µ*%�%�2xµg�8 � t� g⁄ 71µ*%�%�2xµg�8 .gj 

(APPENDIX 20) 

� ���� � z���� � � 2 2G%µ3� g⁄ �$µ ��N<���     
� 2 2G%µ3� g⁄ �$µ ��%�2xµg�� m⁄ � µ2*%�%�2xµg� t�� g⁄ 71µ*%�%�2xµg�8

� t� g⁄ 71µ*%�%�2xµg�8� � t�� g⁄ 71µ*%�%�2xµg�8 µg2 �%�2xµg��j m⁄ � 
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�  2 2G%µ3� g⁄ �$µ   � µ2%� g⁄ �%�2xµg��j m⁄ {�%�2xµg�� g⁄  � f%� g⁄ |t�� g⁄ 21µ*%�%�2xµg�3
� t� g⁄ 21µ*%�%�2xµg�3�                    

 

  Fig. 6.2.7(a) 

 

  Fig.6.2.7(b) 

 

Hazard rate function:    

	��� � ����y��� 
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� 2 2G%µ3� g⁄ �$µ   � µ2%� g⁄ �%�2xµg��j m⁄ {�f%� g⁄ |t�� g⁄ b1µ*%�%�2xµg�c � t� g⁄ b1µ*%�%�2xµg�c�

1 � 2 2G%µ3� g⁄ �%�2xµg�� m⁄ �$µ  t�� g⁄ 1µ*%�%�2xµg�¯  

 

6.2.8 Exponential-generalized inverse Gaussian mixture 

�	��  ��λ; §,ψ, χ � �  2ψχ3¦g λ¦��
2t¦�*χψ� ���gbN�(O�c  , λ ) 0,   

χ ) 0, ψ � 0   �	�� § � 0 

χ ) 0, ψ ) 0   �	�� § � 0 

χ � 0, ψ ) 0   �	�� § ) 0 

The mgf of a generalized Inverse Gaussian distribution is given by 

q� ���� � 2ψχ3¦g 2 χψ � 2x3¦g   t¦�*χ�ψ � 2x�t¦�*χψ�                        
The following are the survival-time and related functions for the exponential-generalized 

inverse Gaussian mixture. 

Survival function:  

y��� � q� ���� � 2ψχ3¦g 2 χψ � 2x3¦g   t¦�*χ�ψ � 2x�t¦�*χψ�  

Cumulative distribution function: 

z��� � 1 � y��� � 1 � 2ψχ3¦g 2 χψ � 2x3¦g   t¦�*χ�ψ � 2x�t¦�*χψ�  

Probability density function: 

���� � z���� � � 2ψχ3¦g 1t¦�*χψ�   ��� ½2 χψ � 2x3¦g   t¦�*χ�ψ � 2x�¾, 
                                                                                                    � ) 0 
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Using the product rule, let 

N � 2 χψ � 2x3¦g  ,          �N�� � �§χ¦g
�ψ � 2x�¦g(� 

And let < � t¦�*χ�ψ � 2x�,    
  �<�� � §*χ�ψ � 2x t¦�*χ�ψ � 2x� � t¦(��*χ�ψ � 2x�.gm 

( APPENDIX 20) 

Thus 

���� � z���� � � 2ψχ3¦g 1t¦�*χψ� ��N<���     
� � 2ψχ3¦g 1t¦�*χψ� ß2 χψ � 2x3¦g ñ §*χ�ψ � 2x t¦�*χ�ψ � 2x� � t¦(��*χ�ψ � 2x�ò

� t¦�*χ�ψ � 2x� �§χ¦g
�ψ � 2x�¦g(�á 

� 2ψχ3¦g 1t¦�*χψ� »�§χ�¦g  t¦�*χ�ψ � 2x�
�ψ � 2x�¦g(� _ 1

�ψ � 2x��g � 1
χ�g` � t¦(��*χ�ψ � 2x�¼ 

 

 

  Fig.6.2.8(a) 
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  Fig.6.2.8(b) 

Hazard rate function:    

	��� � ����y��� 

�
bψχc¦g 1t¦�*χψ� »�§χ�¦g  t¦�*χ�ψ � 2x��ψ � 2x�¦g(� _ 1�ψ � 2x��g � 1χ�g` � t¦(��*χ�ψ � 2x�¼

bψχc¦g b χψ � 2xc¦g   t¦�*χ�ψ � 2x�t¦�*χψ�
 

� �§χ�¦g  
�ψ � 2x�χ¦g _

1
�ψ � 2x��g � 1

χ�g` � �ψ � 2x�¦gt¦(��*χ�ψ � 2x�t¦�*χ�ψ � 2x�  

6.2.9 Exponential-half normal mixture 

 When  ��λ;  i � � 1i  22G3�g �� /¢g¥¢ ,      λ ) 0,   i ) 0  
The mgf a half-normal distribution is 

  q� ��� � 2�  V¢ ¢g 91 � X�i��: 

The following are the survival-time and related functions for the exponential-half normal 

mixture. 

Survival function:  y��� � q� ���� � 2�V¢K¢/g91 � X�i��: 
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Cumulative distribution function: z��� � 1 � y��� � 1 � 2�V¢K¢/g91 � X�i��: 

Probability density function: 

���� � z���� � �  ��  2 �V¢K¢/g  91 � X�i��:¯,     � ) 0,  
Using the product rule, let 

N � 2�V¢K¢/g    ,          �N�� � 2σg��V¢K¢/g 

And let < � 91 � X�i��: , ;��  � �  i�    
���� � i 

   �  < � 1 � X���, �<�� � � 1√2G ��å¢
 

�<�� � �<�� . ���� � � 1√2G ��å¢ . i 

� �   i√2G  ��V¢K¢g    
� ���� � z���� � ��N<���  � 2 �V¢K¢/g  i√2G ��V¢K¢g � 91 � X�i��:2σg��V¢K¢/g  
                                             �   i√22G3. � 2σg�91 � X�i��:�V¢K¢/g , � ) 0, i ) 0 

 

  Fig.6.2.9 
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Hazard rate function:    

	��� � ����y��� �    i√b2Gc � 2σg�91 � X�i��:�V¢K¢/g
2�V¢K¢/g91 � X�i��:               

6.2.10 Exponential-Rayleigh mixture 

When 

     ��λ;  i � � λig �� /¢g¥¢ ,         λ � 0,   σ ) 0 

The mgf of the Rayleigh distribution is  

   q� ��� � 1 �  i�√2G    �  V¢ ¢g  91 � X�i��: 

The following are the survival-time functions for the exponential-Rayleigh mixture. 

Survival function:  

y��� � q� ���� � 1 �  i�√2G    �  V¢ ¢g  91 � X�i��: 

Cumulative distribution function: 

z��� � 1 � y��� �  i�√2G    �  V¢ ¢g  91 � X�i��: 

Probability density function: 

                ���� � z���� � i√2G ��  �� �,¢¥¢ ¢91 � X�i��:� ,   � ) 0                                                                               

Using the product rule, let 

N � � �,¢¥¢ ¢  ,          �N�� � �ig�g � 1� �,¢¥¢ ¢
 

And let 

< � 91 � X�i��:,     �<�� � � i√2G  ��,¢¥¢ ¢   
Thus, 

���� � z���� � i√2G  ��N<���  � i√2G 7N �<�� � < �N��8  
          �  i√2G 7�� �,¢¥¢ ¢ i√2G  ��,¢¥¢ ¢ � �ig�g � 1�91 � X�i��: �,¢¥¢ ¢8 

          �  i√2G  �ig�g � 1�91 � X�i��: �,¢¥¢ ¢ � ig� 
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  Fig. 6.2.10 

 

Hazard rate function:    

                              	��� � ����y��� � i√2G  �ig�g � 1�91 � X�i��: �,¢¥¢ ¢ � ig�
1 �  i�√2G    �  V¢ ¢g  91 � X�i��:  

6.2.11 Exponential-uniform(rectangular) mixture 

When  ��λ; b� � �[   ,        0 � λ � �,   � ) 0    

The mgf of a uniform distribution is                                    
           q��� � e� � 1��  

The following are the survival-time and related functions for the exponential-uniform 

(rectangular) mixture. 

Survival function:  

y��� � q���� � 1 � e�� ��  

Cumulative distribution function: 

z��� � 1 � y��� � 1 � 1 � e�� ��  

                                  � e�� � �� � 1��  
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Probability density function: 

���� � z���� � 1 � ��� � 1�e�� �xg ,    � ) 0, � ) 0 

Hazard rate function:    

                               	��� � ����y��� � 1 � ��� � 1�e�� �xg1 � e�� �� �  1 � ��� � 1�e�� ��1 � e�� �         

 

  Fig.6.2.11 

6.2.12 Exponential-Erlang mixture 

�	�� ��λ; �, % � �   $£
�M���! λM��   �� �$ ,     λ ) 0,    % ) 0, � Ö N  

N=the set of natural numbers 

The mgf of an Erlang distribution is 

  q� ��� �  2 %% � �3M
 

The following are survival-time and related functions for the exponential-Erlang mixture. 

Survival function:  

y��� � q� ���� �  2 %% � �3M
 

Cumulative distribution function: 

z��� � 1 � y��� � 1 �  2 %% � �3M                      
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Probability density function: 

���� � z���� � %M�% � ��M(� ,        � � 0,      � Ö N, β ) 0 

 

  Fig. 6.2.12(a) 

 

  Fig.6.2.12(b) 

 

  Fig. 6.2.12(c) 
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Hazard rate function:     

    	��� � ����y��� � %M�% � ��M(�
 2 %% � �3M     � 1% � �                                                 

6.2.13 Exponential-chi mixture 

�	�� �;OO;�λ; �� � λ���
 2�g��Γ��/2�  �� �¢/g  , λ � 0,   � � 1,2, …    

The mgf of a chi distribution is 

q� ��� � Γ���
 2�g��Γ b�2c e ¢ m⁄ D������ 

The following are the survival-time and related functions for the exponential-chi mixture. 

Survival function:  

y��� � q� ���� � Γ���
 2�g��Γ b�2c e ¢ m⁄ D����� 

� Γ���
 2�g��Γ b�2c e ¢ m⁄ 2M g⁄ �� ¢ m⁄ ß √G

Γ b1 � �2 c z� ��2 , 12 ; �g2 � � √2G�Γ b�2c z� �1 � �2 , 32 ; �g2 ��.�. á 

� 2Γ���√G Γ b�2c  ß 1
Γ b1 � �2 c z� ��2 , 12 ; �g2 � � √2�Γ b�2c z� �1 � �2 , 32 ; �g2 ��.�. á            

by substituting for D����� from section 5.5.13  

Cumulative distribution function: 

z��� � 1 � y��� � 1 � Γ���
 2�g��Γ b�2c e ¢ m⁄ D����� 

� 1 � 2Γ���√G Γ b�2c  ß 1
Γ b1 � �2 c z� ��2 , 12 ; �g2 � � √2�Γ b�2c z� �1 � �2 , 32 ; �g2 ��.�. á 
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Probability density function: 

���� � z���� � � ���  » Γ���
 2�g��Γ b�2c e� ¢ m⁄ D�����¼  , x ) 0,    � � 1,2, …   

� � ���   »2Γ���√G Γ b�2c  ß 1
Γ b1 � �2 c z� ��2 , 12 ; �g2 � � √2�Γ b�2c z� �1 � �2 , 32 ; �g2 ��.�. á¼   

� � 2Γ���√G Γ b�2c ���  »ß 1
Γ b1 � �2 c z� ��2 , 12 ; �g2 � � √2�Γ b�2c z� �1 � �2 , 32 ; �g2 ��.�. á¼ 

L�? < � 1
Γ b1 � �2 c z� ��2 , 12 ; �g2 � � √2�Γ b�2c z� �1 � �2 , 32 ; �g2 ��.�.  

By the making the substitution, � � �g2 ,     ���� � � 

� < � 1
Γ b1 � �2 c z� 2�2 , 12 ; �3 � √2*2�Γ b�2c z� 21 � �2 , 32 ; �3�.�.  

 

��� �<�� � �
Γ b1 � �2 c z� 21 � �2 , 32 ; �3   �.   

                                                 � 2Γ b�2c �*� 1 � �3 z� 23 � �2 , 52 ; �3 � 12√� z� 21 � �2 , 32 ; �3�.�. � .gm 

(APPENDIX 21) 

� �<�� � �<�� . ���� � �
Γ b1 � �2 c � z� 21 � �2 , 32 ; �3   �.   

                                                 � 2�Γ b�2c �*� 1 � �3 z� 23 � �2 , 52 ; �3 � 12√� z� 21 � �2 , 32 ; �3�.�. � 
� ��

Γ b1 � �2 c z� �1 � �2 , 32 ; �g2 �   �.   
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                                                 � 2Γ b�2c ��g
√2 1 � �3 z� �3 � �2 , 52 ; �g2 � � 1√2 z� �1 � �2 , 32 ; �g2 ��.�. � 

 

Y	NQ , ���� � z���� � 2Γ���√G Γ b�2c    �<��  

� 2Γ���√G Γ b�2c ß 2Γ b�2c ��g
√2 1 � �3 .� z� �3 � �2 , 52 ; �g2 � � 1√2 .� z� �1 � �2 , 32 ; �g2 �.... �

� Ë ��
Γ b1 � �2 c .� z� �1 � �2 , 32 ; �g2 � .. áË   

            

Hazard rate function:     

                                 	��� � ����y��� � 

�Γ b1 � �2 c �.� z� 21 � �2 , 32 ; �g2 3 � ñ 2Γ b�2c 7�g√2 1 � �3 z� 23 � �2 , 52 ; �g2 3 � 1√2 z� 21 � �2 , 32 ; �g2 3�.�. 8ò
1Γ b1 � �2 c .� z�  2�2 , 12 ; �g2 3 � √2�Γ b�2c .� z� 21 � �2 , 32 ; �g2 3  

 

  Fig. 6.2.13(a) 
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  Fig. 6.2.13(b) 

 

  Fig. 6.2.13(c) 
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Chapter 7 

Conclusion 

Characterization.  Characterization of a probability distribution is a powerful tool in 

enabling the usage of the distribution. A number of characterization procedures for the 

exponential distribution have been highlighted in this study. In particular, the principles 

underlying the characterizations by lack of memory and its extensions as well a sample of 

three characterizations by order statistics have been clearly analyzed in the study.  

Characterization via other properties have also been briefly mentioned together with their 

accompanying proofs, lemmas and references. This provides a researcher using the 

exponential distribution a basis for the method to adopt in testing the exponentiality of his 

data.  

Mixtures. Many of the mixtures of exponential distribution have curves whose right tails 

resemble that of the exponential distribution but with skewness coefficients that are 

clearly parameter dependent. This is true for all parameter values provided that the values 

lie in their workable ranges. All exponential mixtures involving discrete distributions fall in 

this category. Many of the mixtures involving continuous distributions also fall in the 

category. 

However, it is also clear in some instances of mixtures of continuous distributions that 

certain combinations of parameters result in behavior that is not of a probability 

distribution. That means that in the event of application of these mixtures, careful 

attention must paid to determining the parameter combinations that are useful. This 

presents an area that requires further research.  

Mixtures of the exponential-inverse gamma (Figs. 6.2.6 (a),(b)) and exponential-inverse 

Gaussian (Fig.6.2.7(a),(b)) are two examples that have this characteristic. 

The exponential-chi mixture curves (Figs.6.2.13(a),(b),(c)), do not have the characteristic of 

a probability distribution and more investigation is required to determine whether there 

exist a band of parameter values and parameter combinations for which the mixture is a 

probability distribution.  

Since the nature of a tail is an important factor in the applications of a continuous 

distribution, the parameter dependence of these tails in mixtures of the exponential 

distribution is an area that also requires further investigation for their applications to be 

suitably employed. 
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APPENDIX 2 

 

 

       2.  Aczel, J.(1966).  Functional equations and  their applications    Academic Press New York 

APPENDIX 3 

Lemma 4.1 (Tavangar. M  &  Asadi.M.(2010) [24] ) 

Let ��:M, �g:M, … , �M:Mbe the order statistics from any cdf F . Then, 

(i) The survival function of[�a:M |��:M > t] , 1 ≤ r ≤ n, is given by  

¯    /a:M�x|t� �  ∑ �Mx � X1 � θD�x�Z�XθD�x�Z���a��x�5 , � ) ?, 
where  §\��� �S(x)/S (t), and S(x) = 1 − F (x), and  

 

(ii) The cdf of [�a:M |��:M ≤ t] is given by 

èa:M�x|t� �  � b�> c  XφD�x�Z�X1 � φD�x�Z���M
x�a , � 1 ?, 

where  φD�x�= F (x)/F (t). 

Proof of the lemma is given in Tavangar. M  &  Asadi.M.(2010) [24] . 
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APPENDIX 4 

Proposition 2.1 

Let õ � 90, r�Pr  90, ∞�. Suppose 	: õ V � is continuous and 	�0� � 0, 	(� �0� � & and for 

any � Ö õ, there exists 0 � ö � � such that  

(2.1)      	��� � 	�ö� � 	�� � ö� 

Then  

                          	��� � &�   �P= ;�� � Ö õ 

Proof: 

Let  � Ö õ,  � Ï 0, and let 	���/� � %. Then there exists 0 � ö� � �  such that let 	�ö��/ö� � %. 

Setting ö as in (2.1), we have 

                          	��� � 	�ö�� � ö � 	�� � ö�� � ö  

Let 	�� � ö� � %�� � ö�.Therefore (2.1) implies that 

                          	��� � 	�ö�� � ö � % � 	����  

A direct calculation shows that ö	��� � �	�ö� 

or 	�ö� 1  %ö 

Applying the intermediate value theorem to 	�?� � %? on the interval determined by ö and � � ö there exists a ö� such tha 	�ö�� � %ö� � 0. Therefore, the claim follows. 

To show that % � &: 
Let �5 � >�� �� Ö õ: � Ï 0, U���� � %� 
Then �5 � 0, for if �5 ) 0, ?	�� 	��5�/�5 � %. And applying the claim made above to �5, 

we can find0 � ö� � �5, such that 
U�cd�cd � %, which contradicts the fact that �5 is the 

infimum. Thus there exists a sequence  �M V 0 such that 

% � limMV6�	���/�M� � 	(� �0� � & 

Therefore 	��� � &� 
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Proposition 2.2 

Let g:  [a,  b]→� be  continuous, l:[a,  b]→� be increasing, and suppose  the  set of points 

of  increase  D of I  is  not contained  in {a,  b}  .  Then there  exists  

 ; � ö � �  such that  

�2.2�           4 ��?����?� � ���
Î ö������ � ��;�� 

Remark: By mean value theorem of integration, there exists ; 1 ö 1 � such that the above 

holds. 

To show that ö can be chosen to be different from a or b. 

Proof: Let & � min Ö9Î,�: ���� � �����,  % � max Ö9Î,�: ���� � ���g�, and  

/��� � 4 ��?����?��
Î  

Assume ��   � �g. Then 

&����� � ��;�� 1 /��� 1 %����� � ��;� 

If /��� � &����� � ��;�),  then D is contained in X�: ���� � &�. By assumption, D contains 

points other than a and b. We can choose ö Ï ;, �  such that ��ö� � &, and hence 

��ö������ � ��;�� � 4 ��?����?��
Î  

Similarly /��� � %����� � ��;�� 

Thus if &����� � ��;� � /��� � %����� � ��;�� 

Then, by continuity of g, we can find ��� , �g�  in the neighbourhood of ��, �g, respectively 

such that ; �  ��� , � �g� � � 

And if ����� ������ � ��;� 1 /��� 1 ���g� ������ � ��;�� 

The intermediate value theorem applied to  g in 9��� , �g� :  implies  that  there  exists  ö Ï ;, �  ���� � ö � �g� �such that 

                                     /�ö� � 4 ��?����?��
Î  

LAU, K. S., PRAKASA  RAO,  B. L. S. (1990).  Characterization  of the  exponential  distribution  by the relevation  transform.  J. Appl.  

Prob.  27, 726-729. 
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APPENDIX  5 

Theorem 2.1. Let F be any cdf with support [0, θ), θ > 0. Suppose that 

Q : [0, θ) → R+. The functional equation 

F (x) = F (xy) + F (xQ(y)), x, xQ(y) Ö [0, θ), y Ö [0, 1], (2.1) 

holds if and only if F is a (rescaled) power function distribution with parameter vector (α, θ), 

for some constant α > 0, and Q(y) = (1 −yα)1/α , 0 ≤ y ≤ 1 

Tavangar. M  &  Asadi.M.(2010) Some new characterization results on exponential and related distributions, Bulletin of the Iranian 

Mathematical Society, Vol. 36 No.1, pp 257-272. 
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