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ABSTRACT

Exponential distribution has been constructed in this thesis using transformations of
uniform and Pareto distributions. It has also arisen from the Poison process and it is a
special case of the gamma distribution.

The basic properties of the exponential distribution considered are the r-th moments in
general.

Derived from the moments are mean, variance, skewness and kurtosis. The moment
generating function, cumulant generating function and characteristic function have
been stated.

There are many ways of characterizing the exponential distribution. In this work we
have concentrated on characterization by lack of memory property and its extensions,
and, three cases involving order statistics. These are: minimum and spacing between
two order statistics, spacing between adjacent order statistics and the k-th order
statistic. We have, however, stated other forms of characterizations including many
also based on order statistics.

Distributions of sum, difference, quotient and product of exponential distributions have
been derived. The beta-exponential and the exponentiated exponential distributions
have also been derived. These are generalizations of the exponential distribution.

Exponential mixtures have been obtained for nine discrete mixing distributions-the
Bernoulli, binomial, geometric types | and Il, negative binomial types | and Il, Poisson,
discrete uniform and logarithmic distributions. Mixtures for thirteen continuous mixing
distributions have also been determined. These are: beta, exponential, one-parameter
gamma, two-parameter gamma, chi-square, inverse gamma, Erlang, inverse Gaussian,
generalized inverse-Gaussian, half-normal, Rayleigh, uniform(rectangular) and chi
distributions.

The survival-time function, hazard rate function, cumulative distribution function and
the probability density function have been obtained for each mixture by using the
moment generating function technique. Some of the mixture distribution functions
were obtained explicitly. Others were obtained in terms of special functions such as
modified Bessel, generalized hyper geometric and parabolic cylindrical functions.

Density curves with arbitrary parameter values have been sketched for each mixture. An
exponential curve, also with arbitrary parameter value, has been superimposed on each
mixture density for a rapid visual comparison.
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Chapter 1
Introduction
1.0 Background

The exponential distribution is one of the most extensively applied life-time and reliability
analyses distributions. The distribution finds applications in diverse areas when events
occur independently, at random but with mean rate A, per unit of time, distance, volume
etc, for instance, in modeling

(i) the distance of encountering a particular type of wild growing plant along a
transect line in a forest as an ecologist may be interested in finding;

(ii) the length of time between emissions of a radio-active substance;

(iii)  the failure time of manufactured items;
(iv)  theinter-arrival times at ticket counters;
(v) the length of queues at particular sections of highway at various times;

(vi)  ininsurance, the amount of insurance losses.

The distribution therefore, plays a crucial role in probability and statistics and an organized
study of its properties is necessary.

Characterization of a distribution is an important tool in its application. In this study
characterization of the exponential distribution by the lack of memory property and three
cases involving order statistics have been examined in detail. Characterization by use of
other properties have also been briefly covered.

The study also looks at resulting processes when exponential distributions are manipulated
among themselves, for instance as sums, differences, products or quotients.

Very often however, populations are not homogeneous, so that the appropriate
distributions to handle them are mixtures. This study examines mixtures involving the
exponential distribution with nine discrete distributions and thirteen continuous

distributions. The mixtures were derived by use of an innovative method based on
moment generating functions. It is noted that this method of mixture derivation only
applies to the exponential distribution due the special form of its function. This makes it
possible to derive its mixtures with other distributions through the moment generating
functions of the mixing distributions. 1



The rest of the study is organized as follows: constructions, moments and definitions
concerning the exponential distribution are dealt with in chapter two. Chapter three deals
with characterizations. Chapter four deals with distributions resulting from the actions of
the exponential distribution on other exponential distributions. Chapter five deals with the
derivation of the moment generating functions of the mixing distributions used in the
study. Chapter six deals with the survival-time and related functions of the mixtures.
Chapter seven is the conclusion.

The appendices contain extracts of pages from the sources quoted in the footnotes. These
include theorems, lemmas, examples or table values that were needed by the proofs,
other theorems or procedures used in the study.

1.1 Objective of the study

The objective of this study is to bring together the various properties of the exponential
distribution that underlie its applications. This information is required of researchers in
diverse fields such as engineering, biology, medicine, economics, epidemiology and
demography.

1.2 Literature review

Characterization: Many researches have been conducted in the area of characterization of
the exponential distribution. A number of the research findings have been new. Others
have, however, been different forms of already available findings.

Furguson (1964), characterized the exponential distribution by the conditional
independence between min(X, Y) and Y-X when X and Y were two exponential random
variables with different means. This characterization was extended by Basu(1965) when
both X and Y were exponential random variables with the same mean. Dallas, A.C.(1981)
[8] accomplished a similar characterization by requiring that only one of the random
variables be exponential. The other variable only needed to be continuous and have a
positive real line support.

Srivastava, M.S.(1967) [23]has given characterization by considering the independence of
functions of order statistics for a given population. Epstein, B. and Sobel, M. (1953) [11]
have characterized the exponential distribution by the independence of spacings between
adjacent order statistics. This property had however, already been identified by Sukhatme,
P.V.(1937)[24].

Ahsanulla, M. (1977)[3] and Tavangar. M & Asadi.M.(1977) [24] characterized the
exponential distribution by considering functions of order statistics having identical
distributions. Khan, A. H., Faizan, M. and Haque, Z.(2009) [18] characterized the 2



distribution by expected values of functions of order statistics. By assuming the existence

of a finite first moment for a continuous random variable, X, Wang, Y. H. and Srivastava, R.
C.(1980)[27] have characterized the exponential distribution via linear regression of two
functions of order statistics.

Ahsanulla, M. & Rahman, M. (1972) [2] characterized the exponential distribution by the k-
th order statistic. Galambos, J. & Kotz, S. (1978) [12] have characterized the distribution by
the lack of memory property. They have shown extensions of the lack of memory property
and how other forms of characterization of the exponential distribution such as via
constancy of hazard rate, constancy of residual life and the equivalency of the distribution
of the first order statistic to that of the parent population are equivalents of the lack
memory property.

LAU, K. S. & RAO, P. B. L. S. (1990) [19] provided a characterization by the relevation
property.

Tavangar. M & Asadi.M.(2010) [25] characterized the distribution by residual life through
the use of a Cauchy functional equation. Huang, W.J. & Li, S.H. A.C.(1993)[17] have
characterized the distribution via the variance of the residual life.

Hamdan, M. A.(1972) [15] Characterized the exponential distribution via conditional
expectation of a function of a random variable. Chang, T.(2001). [6] has provided another
form of characterization via conditional expectation of a function of random variable but
with additional conditionality. Galambos, J. & Kotz, S. (1978) [12] provide another
characterization in terms of conditional expectation of moments of a random variable
about some fixed value on the positive real axis. Chong, M.(1977). [7] has given a
characterization by means of the distributions truncated from below at various points.

Dallas, A.C.(1981) [8] has characterized the exponential distribution via the independence
between the spacing of two adjacent records and their minimum. Huang, W.J. & Li, S.H.
A.C.(1993). [17] characterize the exponential distribution by use of the expectation of a
function of a backward spacing between two record values conditioned on their minimum.
They also show a characterization based on a forward spacing between two record values
conditioned on their minimum. Ahsanullah, M. (1991) [4] characterizes the exponential
distribution by the equivalence of the expectation of the spacing between two record
values and the expectation of the record value corresponding to the difference between
their record times. Gupta, R.C.(1984) [14] has characterized the exponential distribution by
deriving a general theorem on the independence of the expectation of the spacing
between two adjacent record values and their minimum and showing that theorems by



Dallas, A.C.(1981) [8], Huang, W.J. & Li, S.H. A.C.(1993) and Ahsanullah, M. (1991) [4] are
its special cases.

Mixtures. Mixture distributions provide more flexibility for modelling populations than
simple distributions. A number of researches have been conducted in this area.

Xekalaki, E. & Karlis, D. (2005)[28] have ably illustrated the underlying principles of mixture
distributions in their paper. They have singled out mixtures of the Poisson distribution for
special attention.

Saralees Nadarajah and Samuel Kotz(2006)[20] have listed the probability densities of a
number of mixtures of the exponential distribution with the reciprocal rate (section 5.1).
This form of the exponential distribution does not lend itself well to direct integration or
other methods in obtaining its mixtures. The authors therefore, relied wholly on special
functions to obtain all the mixture densities. Some of the mixture densities have very
complex forms and it would be difficult to obtain related survival-time functions from
them.

Miroslav Drodzenko and Mikhael Yadrenko [10]have in their paper considered mixtures of
the exponential distribution from two angles: one in which they consider the exponential
distribution parameter A to be a linear function of the random variable X of the form

A(x) = b + h(x), and two, a linear function of the form A(x) = bh(x). b is some positive
constant.

Roy Kirk (1997)[22]has, in his thesis paper provided a probabilistic interpretation of the
Laplace transform and its discrete equivalent, the z-tranform. He shows how the Laplace
and Z-transforms of functions can be considered as mixtures of the exponential
distribution with the said functions. The transforms acquire probabilistic meaning when
the mixing functions are probability functions.

Enrique R. Villa and Luis A. Escobar[26] have shown, in their paper the efficiency of using
moment generating functions, when available, to obtain mixtures for a varied number of
distributions. This process, however, requires knowledge of moment generating functions
both of the conditional distribution and the mixing distribution. One also needs to be able
deduce a distribution from its moment generating function. They have also highlighted the
advantages of mixtures in applications over simple distributions. In addition, they cite a
number of situations that give rise to mixture distributions.

Ole Hesselar, Shaun Wang and Gordon Willmot(1998)[16] have also demonstrated the
relationship between mixtures of the exponential distribution and the Laplace transform of
any probability density that has support on [0, o).



Chapter 2
Exponential distribution Constructions, moments and definitions

In this chapter a number of construction methods, moments and some other basic
statistical definitions relating to the exponential distribution have been examined.

2.1 Construction
The exponential distribution can be constructed by various methods.
2.1.1 Construction from the uniform distribution

The exponential distribution can be obtained as a function of a uniform random variable.

Let Y = — % [InX where A> 0 is a constant and X has a uniform distribution on the interval

[0, 1]. We find the pdf of Y.

Using the method of variable transformation;

X=e*
d—x = —/le_ly
dy

Thus the pdf of Y, g(y), is given by
d _
90) = f@ 5] = 1.2e7

= /’l,e_ly (1)
which is an the exponential distribution of rate A.

2.1.2 Construction from the Pareto distribution

The exponential distribution can be obtained as a function of a Pareto random variable.

Let Y = —ln% where f is a constant and X has a Pareto distribution given by

F =250, x>p

We find the pdf of Y using:

(i) variable transformation technique
(ii) cumulative distribution technique
Using the variable transformation technique;



X = pe¥
"= = BeY
dy pe

Thus the pdf of Y, g(y), is given by

d B
g) =fx) ﬁ = :a+1 pe”
ap”®
= ey P
= aqe”
Putting a =A,
g(y) = eV

This is an exponential distribution with rate A.
Using the cumulative distribution technique;

Let G(y) = P(Y < y) where G(y) is the cumulative distribution of Y.

=P(ln%£y>

=P<ln%£y>

=P(X < Be?)
Be

= J f(x)dx
0

Be”

af®
=f xa+1 dx

0

‘ af” 117
-0 = [ Tma=pfg]
pey

— _pa [o _ (ﬂely)a]

=e Y, a>0y>0



SGH) =1—e

N (€]
g\y dy
_ d[1—e %]
= o
= ae~ %, which is an exponential distribution with parameter «.
LetA = «a,

cf(x) =2, 2>0, y>0
2.1.3 Construction from the gamma function
The exponential distribution can be obtained from the gamma function.

For a constant @ > 0, and variable t > 0,
o
MN'a) = f t* e tdt
0

Dividing by I'(a),

o) t(x—le—t
) A
0

I'(a)
Thus,
ta—le—t
t) = , t>0, >0
f(®) M@ a
T
Let X = E
Thus,
(<)o"
f(X) = ——
I'(a)
ﬁa
= @ x% " 1e™xB x>0, a>0, g >0
Puttinga =1,

f(x) = pe >k, x>0, >0



This is exponential distribution with parameter 8
Let A = B,
o f(x) = e, x>0 A>0
2.1.4 Construction from a stochastic process
Consider a finite time interval (0, t).
Dividing the interval into n sub-intervals each of length h, then,
t =nh
Let P,(h) = P(number of events in a time interval h)
Let: Py(h) =1 —2Ah + 0(h)
P,(h) = Ah + 0(h)
P,(h) =0(h) forn>1

where 0(h) means a term Y(h) with property limh_,o% =0

Let P{T > t} = P{no event in (0,t)}
~ T = time for 15tevent
Let the probability of events in any sub-interval be independent of each other.
Then,
PAT >t} =[1—-Ah+0(h)]"
- o]
=[1-Z+om

n n—-1

=(1—%) +n.0(h)(1—;> 4o

_ oAt

o PA{T >t} =limy_o P{T >t}
— oMt

The pdf of T is,



d -2t
_E{P {T > t}} = 2e™*

This is an exponential distribution with parameter A.

Fig. 2.1 shows the probability curves for an exponential distribution with three rate
parameters, 0.5, 1 and 2.

Curves of exponential distribution with different rate parameters
A=0.5, A=1, and A=2
2.5
) 2
1.5 +—
e \=0.5
1
—\=1
0.5 = -
\\\ A=2
O ! I T I T
0 0.5 1 1.5 2 2.5 3 3.5
X
Fig. 2.1
2.2 Moments

The r-th moment of a random variable X is given by
E[X"] =f x"f(x)dx
0

Thus when X is exponentially distributed,

E[X"] =j x" e dx

0

1
Let u = Ax, dx = Idu

a1
E[Xr]:/ljo (I) e ! Zdu



= ljooure‘“ du
AT )y

1
= F F(T‘ + 1)
7!
i
for positive integerr.

7!
Thus E[X"] = —

/11‘
Hence,
1
ElX|==—=
[X] 7= H
2! 2
E[XZ]:ﬁ:ﬁ

Thus u, = E[X — u]? = o2

= E[X?] — 2uE[X] + u?

= E[X*] —u®
2 1 1 1
ETETE 7%
Also,
. pz = E[X —u]®

= E[X3] — 3uE[X?] + 3u2E[X] — 113
= E[X3] — 3uE[X?] + 3u2E[X] — 113

= E[X3] — 3uE[X?] + 3u2E[X] — 113

3l 31 2 L3 11 1
IV EREa B AR P I E
2



B ==7
“ Uy = E[X —p]*
= E[X*] — 4uE[X3] + 6u2E[X?] — 4u3E[X] + u*
4l 4q_m+61 2 41 1+1
I R ER EAV R E BT
9
Tt

2.3 Definitions

2.3.1 Mean

The mean

w=ElXl =7

2.3.2 Variance

The variance
0.2 — E[XZ] _ MZ

2 1 1

PR PR
2.3.3 Skewness

The skewness of a curve y;, is a measure of the symmetry of the curve in comparison with
the normal curve and is given by

M3

V1= —=3
53

Thus for an exponential curve,

The normal curve has y; =0

11



2.3.4 Kurtosis

The kurtosis of a curve, y,, is a measure of the sharpness of its peak and the width and
length of its tail in comparison with the normal curve and is given by

y, =&
2 0_4,
Thus for an exponential curve,

9
A

G

The normal curve has y, = 3

=9

Y2 =

2.3.5 Moment generating function

The moment generating function is
A .
M(t) = E[e®™] = T (section 5.5.2)

2.3.6 Cumulant generating function
The cumulant generating function is

K(t) = logE[e™] = logA —log (A — t)
2.3.7 Characteristic function

The characteristic function is

A

¢(t) = E[e"] = 7—

2.3.8 Survival function

Let T denote the time from a well-defined starting point until some event called “failure”,
occurs. T is referred to as survival time and let f(t) denote its probability density function.

For an exponentially distributed process with parameter A

f(t) = e ™
12



The probability that the survival time T exceeds some value t, S(t), is given by
St)=P(T>1)
=1 — F(t), where F(t) is the cumulative distribution function.

For an exponential distribution,

t
0

F(t) = ftle"lxdx = —[e"lx]

Ft) =1—-e™™
Thus the survival function is
S)=1—-F(t) =e™
2.3.9 Hazard rate function

The hazard rate function is

f) le M

MO =50 = e

= A, a constant.

2.3.10 Memoryless property
Consider two survival timest > 0, s > 0.

P(T>t+sT>t)
P(T > t)

P(T>t+s|T>t)=

_P(T>t+5s)
 P(T>0)

e —A(t+s)

e~ At

=e™ =P(T >5)

This is the memory-less property of the exponential distribution which shows that the life-
time of an exponentially distributed object is independent of its current age. The
exponential distribution is the only continuous distribution with this unique property.

13



Chapter 3
Characterization
3.1 Introduction

There are many ways of characterizing the exponential distribution. We have
characterizations based on:

Lack of memory property;
order statistics;

record values;

convolution and relevation;
residual lifetime;

moment properties, and
conditional expectations

In this chapter we shall examine the lack of memory property and sample three
characterizations by order statistics. A brief discussion of the other characterizations is also

given.
3.2 Memory-less and related properties

Definition (Ross, 2000).
A random variable X is said to be without memory or memory-less if

Pr(X>s+t|X>t) =Pr(X >s)foralls,t >0 (3.1)
If we think of X being the life-time of some instrument, then (3.1) states that the
probability that the instrument lives for at least s+t hours given that it has survived t hours
is the same as the initial probability that it lives for at least s hours. In other words, if the
instrument is alive at time t, then the distribution of the remaining amount of time that it
survives is the same as the original life-time distribution, that is, the instrument does not
remember that it has already been in use for a time t.

The condition (3.1) is equivalent to

Pr(X>s+t, X>t)

Pr(X > t) = PriX >s)

or
PriX>s+t, X>t)=PrX>s)Pr(X >t) (3.2)

or

Pr(X>s+t) =Pr(X >s)Pr(X > t) (3.3) 14



Since (3.2) or (3.3) is satisfied when X is exponentially distributed (for e s+t =

e"“e"“), it follows that exponentially distributed random variables are memory-less.

It turns out that not only is the exponential distribution “memoryless” but it is the unique
continuous distribution possessing this property. The following theorem characterizes the
exponential distribution by the lack of memory property.

Theorem 3.2.1
The exponential distribution is the only continuous distribution which is memory-less

Proof:
For a random variable X having a cdf F(x) = Pr(X < x), its survival functionis 1 — F(x) =
Pr(X > x)

Re-writing (3.3) in terms of survival functions,

1—F(s+t)=[1=-F(s)][1-F(t)] (3.4)
We show that the exponential distribution is the only continuous distribution to satisfy
(3.4).

Re-arranging (3.4), we have

F(s+t)=1—[1—-F(s)|[1 - F(t)]

=1—{1—-F(t)—F(s)+ F(s)F(t)}
=F(t) + F(s) — F(s)F(t)
~F(s+t)—F(t) =F(s) = F(s)F(t)
=F(s)[1-F(t)] (3.5)
Dividing (3.5) by s we have
F(t+sZ—F(t) _ ng) [ - F(O)] 3.6)
Taking limits of (3.6) ass —» 07
lim F(t+s)—F(t)

o =FO=f'®
lim F(s)
and —— = b, a constant
s—->0" s
~ fH() = b[1 = F(b)] (3.7)

Equation (3.5) can also be written as

F(t)—F(t—s)=F(s)[1-F(t—ys)] (3.8)15



Dividing (3.8) by s,

F(t)—F(t—s) _ F(s) [1— F(t — )]
s s
~ lim F(t)—F(t—s)_ v e
“ o =F'() = f~(t)
lim F(s)

and —— = b,a constant

s—>0" s
~ f=(t) = b[1 = F(b)] (3.9)
Combining (3.7) and (3.9) (since both LHS and RHS derivatives exist),

f(@) =b[1-F(0)] (3.10)
But
d|F

PG

dt

Therefore, (3.10) can be written as

dlF()] _
dt

b[1 — F(t)] (3.11)
Solving (3.11) by variable separation,

d[F(1)]
1—F(t)

[T [ b

& —In[1 — F(t)] = bt + ¢, cis a constant of integration

= bdt

In[1-F(t)]=-bt+c,, ¢4 =—c

a1 —F(t) = e btta

~F()=1—e b =1 — Ae bt (3.12)
F(t)isacdfon [0, ]

~F(t)=0att=0

Substituting this initial condition in (3.12) 16

0=1-A=4=1



Hence F(t) =1 — e P, b > 0, t > 0, which is the distribution function of an exponential
distribution.

3.2.2 Characterization by extension of the lack of memory property

Other characterizations of the exponential distribution are extensions of its lack of memory
property.

The following theorem extends the lack of memory property of the exponential
distribution [12]. The theorem requires the following definition:

Definition
A function is said to be absolutely continuous in an interval iff it is continuous and
differentiable at every point in the interval.

Theorem 3.2.2

Consider a sample of size n of independent random variables X, X,,. . . , X, taken from a
population with an absolutely continuous distribution functionF (x).

Let G(x) = 1-F(x).

If G(x1#x5+...4X, ) = G(x1) G(x5)... G(x,), then
F(x)=1—e? x>0, withsomeb > 0.

Proof.

The lack of memory property 1 — F(s + t) = [1 — F(s)][1 — F(t)] intheorem 3.3.1
can be restated as:

G(x+z) = G(x).G(z). forall x,z> 0.

Substituting for x and z with x; and x,, we have
G(xq +x;) = G(x1) G(x,), and by induction,

G(X1+Xy +...+X, ) = G(X1) G(X3)... G(X,).
Hence the theorem is proved.
3.2.3 An extension of the lack of memory property through order statistics

In this section an extension of the lack of memory property has been used in conjunction
with order statistics to characterize the exponential distribution [12]. 17



(Section 3.3 gives a more expanded overview of some properties of order statistics)

Let X;, X,. .. X, beasample of independent and identically distributed random
variables from a population X. The associated sample order statistics are obtained by

re-arranging the variables X;'s in ascending order as X1y, X(2). . - X(n), so that Xy is
the smallestand Xy is the largest of the X|’s.

The cumulative distribution of the i-th order statistic X;) is given by

F(x@) = ZralFOOI 1 = FoI™ . (1)

By putting i=1 in (1) we obtain the distribution of the minimum of the sample values
X(l) = mln{ Xl' Xz. - Xn} as

Flrw) = ). [FGOTIL= FI™

= 1= [F)I™°[1 = F (0]~
=1-[1-Fx)]" (2)
Theorem 3.2.3

Let X;, X,. .. X, beasample of independent and identically distributed random
variables from a population X. Let F(x) = 1- e ™ pbe the distribution of X forsomeb > 0.
IJ‘ X(l) = Xl:n=min{ Xl' Xz. - Xn}, then

Xp = X/n
Proof:
From Theorem 3.2.2, welet x; = x, =. .. X, =X
G x+ X+ .+ x,) =G6nx) =[G
ie.1-F(nx) =[1-F@)]"
~Fnx) =1—-[1-F()]" (3)
Comparing equations (2) and (3) we can write
Xin = X/n

Hence the theorem is proved.
18



3.3 Characterization by order statistics
3.3.0 Introduction

In this section a brief overview of some properties of order statistics is given. These
properties form the basis for the characterizations in Theorem 3.31, Theorem 3.32

and Theorem 3.33. A brief discussion of other characterizations by order statistics is also
given.

Let X4, X, ..., X, be independent and identically distributed values of a random variable X

of sample size n. Their associated order statistics are found by rearranging the variables in
increasing order and are denoted by X;.,,, X5.1, --» Xpin-

Thus X, ., is the first order statistic and is the smallest of the X;'s. X,,.,, is the n-th order
statistic and is the largest of the X|s.

There exist other notations for order statistics such as

X1 Xon s Xpp OF

Xy Xy Xy

Let the sample of X;'s be from a population with distribution function F(x). Using the later
notation, the cdf of the i-th order statistic is given by

F(x(i)) = P(X(i) < x) = P(at least i of the X;s are less than x)

- Z () tFeor - Faorr (1)

By substituting i=1 in (1) we obtain the cdf of the first order statistic X4, as
Few) = () Feori-rer—

=1-(, : ) IF@I=[1 - FGor=e=

=1-[1-F@)]" (2)
By substituting i=n in (1) we obtain the cdf of the n-th order statistic Xy, as
Flo) =y, () FGoI - Feor— €
oo F(X(n)) = {F(x)}n (4)

Differentiating (1) w.r.t x, we can obtain the pdf of the i-th order statistic as follows: 19



dx Z" ( )[F( )" [1—F(x)]n—r}
) an( )di{[F(x)] [1-FI™™"}

Using the product rule, letu = [F(x)]" and v = [1 — F(x)|™ "

dv

du _ _ n—-r—
o S TIF@IT @, === = FW]" (%)

dv du

f(X(l)) = u_'l‘ va

= () UF@I=t= Dl = FEI @) + [1 = FeI™ TP £ ()
= ()i Fer @

=Y =0 ()P =PI e
) = 1) L= FOOI-IFel £ ()

+Z . Y1 = FOI™ T [FG)l ' (x)

= =0 () Rl [ - Fl o

Since

> =0 () F@I [ - FEI T =0

Also,

My n! o n!
l(i)_i!(n—i)!l_(i—1)!(n—i)!

o) = T (n 5P L = FQI™f ()

20



+y G+D( ) ) F@IT - FEIT

n-1
-> =0 () Py - F@r e

n! 4 1) = n! _n!(n—r)

(" )=
But (r + )(r+1)—(r+1)!(n—r—i)!

-0 ()

() ) FrE - Fol
- Zr = (O FI 11 - FOI G

rin—r—0! ri(n—r)!

FG50) = T F@I T = FT 6o )

By substituting i=1 in (5), we obtain the pdf of X4, as
) = 1), [FGI°[1 = FI™ f ()

f(X(1)) =n[1-F)]" ' f(x) (6)
By substituting i=n in (5), we obtain the pdf of X, as

n!

f(xmy) = =Dl (= n)! [F)]" 1 = FOI™ " f (x)

 f (%) = nlF Q" f(x) (7)
The joint cumulative distribution function of X(yand Xy (1 <r < s < n) is given by

Foys)(x,y) = Pr(at least rX; < x,atleast sX; <y), x<y

Zzu(] l)v(n ]).[F(x)] 'F) - F@V ™ [1 - F)I*™ @)

j=s i=r

The joint pdf of Xy and X(5) (1 < r <'s < n) denoted by f(;-(5)(x, ¥) is given by

21



n! f)f ()
r—DI(s—r—1!(n-s)!

fryey) = ( [FOOIHF@) = FOOIPP 1 - F)I™~*

(9)

The joint pdf of X(4), X(2), -, X(n) iS given by
fxu),x(z)... x(n)(xl, Xope oo Xp) =0 f(x)f(x0). .. flxy), x < x,<...< x,

=0, otherwise (10)

We now apply the above properties to characterize the exponential distribution in the next
three theorems.

3.3.1 Characterization by minimum and spacing between two order statistics
Let X(m) and X471y be two adjacent order statistics from a sample of size n with
X(m) < X(m+1) , 1<m<n.

Thus X1y is the minimum of the two order statistics and the spacing between them is

Xm+1) ~ X(m)
The following theorem characterizes an exponential distribution of pdf

f(x) =0e "9 x>0, 6 >0 (1D
by the independence between Xy and X1y — X(m) - [23]
Theorem 3.3.1

Let F be an absolutely continuous distribution function of the random variable X with
F(8)=0, 6 > 0, and with probability density function f(x). Let X1y, X(2), .., X(n) be order

statistics of a random sample of size n from this distribution. Then in order that the
statistics X m11) — X(my and Xy for fixed m, 1 < m < n, be independent, it is necessary
and sufficient that the random variable X has the exponential distribution in (1).

Proof:
Let U = X(m) and V = X(m+1).
Then the pdf of U is [by using section 3.3.0 (5)]

! -1 n-m
Do~ F @I L= FaoI™™f ()

And the joint pdf of U and V is [by using section 3.3.0 (9)] 22



n!

(m—-1!'n—m-—1)! [FQOI™ ™ [1 = F@I" ™ f(w)f (v)

Hence the conditional pdf of V|U=uis

i @I [ = FO) T ) f ()

n!

— D=y F@IM L= F@I ™ f (W)

(m

(m

_ (n-m)(A-F@)» !
(1-Fw)" ™

We show that the independence of V-U and U implies that X has the exponential
distribution in (1).

fw) (2)

Due to independence of V-U and U, E[V-U]=E[V-U|U=u] is free of u. Thus

E[V-U]l =E[V -U|U = u]

~ 0 (1 _ F(U))n—m—l
=-m) [ w-w o ro O 3)
and is free of u.
Differentiating (3) w.r.t. u, we obtain
= Fe)T
0= y (1—F( ))n—m f()dv
Lmmfa e (- Fw) T
1-F(uw) ] S (1-Fw)" " fw)dv
- ]w e F(v))”‘m‘l f)dv + n—m)f ) E[V - U] (4)
v (1=-Fw)"™ 1—-F(u)
Since E[V — U] is independent of u and
© (1 . F(v))n—m—l
Ju (1 _ F(u))n—m f(U)dl?
is a constant, (4) can be written as
f@)

1-Fu) 5) 23



where o is some constant not equal to zero. (5) can be written as

dF (u) 3
1—-F(uw)

odu

Solving,

—In (1 — F(u))=ou + ¢ where c is a constant of integration.

Therefore, F(u) =1 — e 9%°¢

Thus f(u) = ge %% ¢

But f is a probability density function in the range [0, ), it follows that ¢ = —c6

and 8 > 0.

Therefore, f(u) = e 9, >0, u>86, o> 0.

3.3.2 Characterization by spacing between adjacent order statistics

Let X, X,, ..., X, be independent and identically distributed values of a random variable X
of sample size n.

Let X1y, X2y, -o» Xn) (1)
be the associated order statistics for the sample.

Also, let

Y1 =X

Y2 =X = Xa

Y; = X3 —X(»)

YIZX(I)_X(I—l)' ZSISH, (2)

be spacings between the respective adjacent order statistics.
The following theorem characterizes the exponential distribution of cdf

Fx)=1—e™% x>0,6>0 (3)
24
by the mutual independence of the Y;'s [11].



Theorem 3.3.2

The random variables Y; defined by (2) are mutually independent. Further, for each i,
(n-i+1)Y;.,, is distributed with common distribution (3)

Proof 1: (Mutual independence of Y;)

We shall prove the theorem by use of multivariate transformation and induction.
Letn=2;

(1) becomes X4y, X(2)

The corresponding Y; variables in (2) will be will be

Y; = X = X =Y,

Y2 = X(Z) - X(l) = X(Z) = Yz + X(l) = Yz +Y1

Let X = [ig; = [ Y1 ] andY = Yl]
[ax(l) ax(l)]
Ldx _|ay, oy, | _ N
dy |0Xz) 0X@|
dy, ady,

Therefore, the Jacobian,

dx
-l 9

Assume the X; have a distribution (3).
Therefore, the joint probability density function of the X(i)’s is[by using section 3.3.0 (10)]

fX(l).X(Z).(xl' xz) = 2! f(x)f (x2)
11 1
=21 e 0" 1 _ o 9*2
g © e

1 1
= 21— o g(*1+x2)
92

1
— o1 mpZix
=21—e 071%
Thus the joint distribution of Y; is

fror, W1, ¥2) = fx(l)‘x(z),(yp Y2)

dx 25
dy



— z!i e‘%()’1+3’2+)’1)

92
1 1 21 la, o
= Z!E e 8(Y1ty2) ﬁe_g 2(2-i+1)y;
2 _2n\/1 _»
=G ")) @

Let n=3;
(1) becomes X (1), X(2), X(3)

The corresponding Y; variables in (2) will be will be

Y1 = X = X() =Y,
Yz == X(Z) - X(l) = X(z) == Yz + X(l) == Yz +Y1
Y3 = X(3) - X(Z) = X(3) == Y3 + X(Z) - Y3 + Yz +Y1
I R(cb Y _[h
LetX - X(Z) = Y2+Y1 andY = YZ
X(3) Y3 + Y2 +Y1_ Y3

[ aX(l) aX(l) aX(l) ]

dy, ady, dys
. d% aX(z) aX(z) aX(z) [1 0 0]

dy, ady, dys
aX(3) aX(3) aX(3)

L dy, dy; 0y

Therefore, the Jacobian

B N o
ayl 11 1 1

Assuming the X; have a distribution (3), the joint probability density function of the X(i)’s is

fX(l)'X(Z)‘XB)'(xl' xg,%3) = 3! f () f (32) f (x3)

1.1 1.1 1
=3l—e 01— 02 — 73
0 6

1
— 3|i e—g(x1+x2+x3) 26
‘N2



1 143

—2y3x;

=3l— e 6717
93

Thus the joint distribution of Y; is
dx

frvys V1 ¥2,¥3) = fx(l)_x(z)‘x(@_(%r Y2,¥3) d_7

1 1

— 3|_ e—g(x1+x2+x3)
‘N3
1 1
= 31— o g1t Y2tyitys +¥2+y1)
‘N3

1 | 1 .
= 3l l e_§(33’1+ 2y,+Yy3) — 16—523(3—1+1)yi
A3

93
() ) G s
“\g € g ° 9 ° ®)
dx
“ave . O Yo oo Yn) = fxaxa X(n),(h» Yare ++ »Vn) @
B (n _%) (n -1 _(n—@l)n) (3 _33’(3—2)) (2 _Zy(g—m) (1 _%n> 6
—\° g ¢ ~\g € g ° g ° (6)
n! _Lim-i+y;
= ﬁ e [Z] (7)

Since the joint pdf in (6) is a product of the individual pdfs of the Y;s, the Y;s are mutually
independent.

Proof 2:(The distribution of the normalized spacings (n-i+1)Y; is that of the population X)

. Z;

Let Zi=(n—1+1)Yi =Y, =n——i+1
_in_ 1

Tdz, n—i+1

dv.
o @) =, @) |

From (4),(5) and (6),

o ) = e T



—q (n—i+1)  z;
Me [Z] (n—;+1) 1

“fa (2) =T =i+ D

1 _z

=—e 0
96’

which is the pdf of the population X ..

Remark: Z; = (n — i+ 1)Y;, where Y; = X(;) — X(j-1), 2 <1 <n, arei.i.d exponential

random variables having the same distribution as the population X.
3.3.3 Characterization by k-th order statistics

Consider n independent random variables X;, X5, ..., X;, from an absolutely continuous
distribution function F (x).

Let X (1), X(2), -+, X(n) be the associated order statistics.
Also, let Z; = (n —j + 1) (X — X(j-1) (1)
The Z]fs are known as normalized spacings.

The following theorem characterizes an exponential distribution of pdf

1 —x
foy=ig¢"  *7°
0, x<0 (2)

via the k-th order statistics [2].
Theorem 3.3.3

A necessary and sufficient condition that a non-negative r.v. X having absolutely continuous
probability distribution F (x) has the probability density function in (2) is that its kth-order
statistics can be expressed as

k

Z.
X =z—’ 3
(k) n—j+1 (3)

J=1

for an integer k such that 1 < k < n, where the Z]fs are i.i.d. and have the probability
distribution as X, F(x).

Proof:

From Theorem 3.3.2, the normalized spacings Z]fs are independent and identically 2



distributed random variables having the same distribution as the population X, when X has
the distribution in (2).

Expressing Xy in terms of Z; from (1), we have;

Zy
Z1 = TlX(l) = X(l) = ;
Z, = (- 1D(Xe) - Xu))
-X:ZZ+X :>X=ZZ+é
A2 n—1 & @ n—1 n
Zy = (n-2)(X@) — X))
Z3 Z3 ZZ Zl
o.o = : = —
X(3) n—2+X(2) X(3) n—2+n—1+n
Zy = —-3)(Xw — X@)
Z4 Z4 Z3 ZZ Zl
"'X(4):n—3+X(3) :X(4):n—3+n—2+n—1+7
Zy Zy_1 Zy—, Z3 Z, 7y
..X<k)—n_k+1+n—k+2+n—k+3+"'+n—2+n—1 n
k
zzi
j=1n_]+1

by induction. The theorem is proved.

Remark: Theorem 3.3 implies that an order statistic from an exponential distribution can
be represented by a weighted sum of i.i.d. exponential random variables.

3.3.4 Characterization by expected values of functions of order statistics

—Ax

An exponential distribution with distribution function F(x) =1 —e is characterized as

a special case from the general class of distributions
F(x) =1—e %™ g £, (1)
where h(x) is a monotonic and differentiable function of x such that h(x) > 0asx - «a

and h(x){1 —F(x)} > 0asx — B [18]
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Theorem 3.3.4
Let X be an absolutely continuous random variable with the distribution function F(x) and
pdf f(x) in the interval (a, ) where a and B may be finite or infinite, then for

1<m<r<s<n

s—1
1 1
E[h(Xs:n) - h(Xr:n)lxm:n = x)] = az Tl_—] (2)
j=r
iff X has the distribution in (1)
Proof.
Necessity.

Rearranging (1), we get

f(x)
ah’(x)

We need to prove that (1) implies (2).

1-F(x) =

(3)

Consideringthecase1 <r<s<n

Then

E[h(Xsp) — h(Xr:n)er:n = X)]

(5 e nnrfhw—m P

s—r—1
—F)]"*" dy

Therefore, for
I1<m<r<s<n

E[h(Xsp) — h(Xr:n)le:n = x)]

=§(?:m>[1—p( NG mfh W[ -F@y) —-FX]' ™1
_;;(Y)]m_] dy

_12 1
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comparing with (3), proving the necessary part.

Sufficiency.
s—1
1 1
Let c = —Z —
Aéeein —J
j=r

Then E[h(Xs:n) — h(Xpn) [ X = x)] = c implies

(n—m)!
(s—m-1D!'(n-—s

B
[ HOMFG) = FGOF (= PO ) dy

(n—m)!
_(r—m—l)!(n—r

B
5 [ H0MFG) - F@Y T = PO ) dy

=c[1-F)]*™™

Differentiating (3) (r-m) times w.r.t. x, we get

(n—r)!
(s—=r—D!'(n-s

B
S [ H0dPO) — F@IT 1= PO £ dy

= {h(0) + c}[1 - FI*"

Integrating the LHS of (4) and simplifying, we obtain

(n—r)!
(s—=r—=-2)!(n—s+1)!

B
j ROIFG) = FGOT=2 [1 = FO)S*1£(y) dy

(n—r1r)!
(s—=r—=D!'(n—s+1)!

B
] W )IFG) = FG)IS [1 = FO)]"™5*1f () dy

={h(x) + c}[1 = F)]*T

From (4) and (5), it follows that

(4)

()
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, [1-F)]™"
Tan—=s+ DI (n—-s+1)!

B
—7)!
- e [ WO)FO) PG - PO ay

s—=r—D!'(n—s+1)!

Differentiating (s-r) times both sides w.r.t. x, we get

fx)

W GOl - F(0] = ==

Which is (3). Hence the theorem.

By substituting A for a and x for h(x), it can be seen that (3) characterizes the

exponential distribution, F(x) = 1 — e ™

3.3.5 Characterization by linear regression of functions of order statistics

In the following theorem, the exponential distribution is characterized by the linear
regression between functions of order statistics.

Introduction. Let X, ... ,X,, be n > 2 be independent observations on a random variable
X having a two parameter distribution defined by [26]

“Lx-0)
Fx)=1—-e5 , x>0>—00, 0>0 (1)
= 0, elsewhere

Also, let Y;,Y,, ..., Y, be the corresponding order statistics from the sample of size n from
this distribution.

Let
Ug = Y — Y1, Yo = 0, the corresponding spacings and Z = n_il B (Yin — Xy
1
Zy = n—k it (Yi—Y), fork=1,..,n-1
1 ke
Wy = EZ%(=11(Yk -Y), fork=2.. k-1 @)

Theorem 3.3.5

If the distribution function F of X in (1) is continuous with finite first moment, then for some
1<k<n-1,

ElZi|Y, = y] = B a.e. (dF) (3p



where [ is a constant, iff F is given by (1) with c = > 0 and some 6 > —oo
Proof: Fix 1<k <n-—1
Let s € @ where @ is a subset of size kof {1,. . .,n}

Let (po == {1, ey k}

Let Ags = {(Xy, .. . X):X; <y forjedand j#s; X; =yandX; >y
forj¢ o} (4)
For each fixed s, there are (7_) disjoint A s’s and Uy s Ags = {¥y = y} a.e.
P(.|Yy = y). On Ay, it can be written thus:
k1 —Y) = Yieo(Xj— ).

Therefore, since

1
P(Aps|Ye =y) = (nT

Is constant with respect to @ and s, we can write

1 n
E[Z,|Y, = y] = HE{ z Yi — Y [V = )’}

i=k+1

n_kzm Z(X — ) [Aos ¢ P(Aps|V =)

jj&®

1 n
= — > E{0 =9} a0

jk+1
= E(X, — yldoy0)
=EXy —y|Xa > ) (5)
Thus
F(d “ wF(d
EIZilY, = ](w D= | Torea-y ©)
y
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[0e]

B[1—-F(y)] = J wF(dw) for almost all y(dF) (7)
y

From 7, we can write fyoo wF(dw) = fyoo fow dt F(dw)
B[1 —F(y)] = f 00(1 — F(t))dt for almost all y(dF) (8)
y

Let H(y) = fy°°(1 — F(t))dt 9)
Then H(y) is a non-negative differentiable function with

H'(y) =-(1-F) (10)
Combining (8), (9) and (10),

H() dinH®)]  (1-F@) 1 (11)

Hy)  dy  BA-Fy) B

Solving (11),

InHG) =l {B(L~F)) =7y +c,

Where cis a constant of integration.

1
F(y) = 1 —_ e_Ey-i-C

1
Butc=—-0
B

1
Thus F(y) =1 — e BY7? which is (1)
3.4 Characterization by conditional independence

In the following theorem the exponential distribution has been characterized by the
independence between min(X, Y) and Y-X with only Y as the exponential random variable
and X a non-lattice random variable with a positive real line support [21].

Theorem 3.4 Let X and Y be independent non-negative r.v.'s. Let Y be anr.v. with a
continuous reliability function R, (y)(= Pr(Y>y)). Let X be an r.v. which has a non-lattice
distribution with a cumulative distribution function F,(x) such that F,(0)=0, and F, (x)
>0, for x>0. ThenY - X and V =min(X, Y) (=X) are independent in their joint

distribution given X <Y, if and only if Y has a negative exponential distribution.
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Proof.

If Y has a negative exponential distribution with £, (y) = Ae™*Y  fory > 0,where 1 is a
positive constant then
fo e—/'l (x+u) de(X)

Jy e** dF,(x)

PY—-X)>ulX<Y)=

=e " foru=0

Jy e** dF(x)
P(X<Y)

PX <v|X<Y)= ,forv=0

And

Jy e dE (x)
P(X<Y)

PY-X>uX<vX<Y)= ,foru=0,v=0

Thus the two random variables are independent.
If the two random variables are independent then
PY—-X>uX<vX<Y)=PY —-X>ulX<Y)P(X<v|X<Y)foru=0v=0.

As P(X <Y) is positive, then,
v v

] Ry(x + wdFE,(x) =P(Y —X>ulX < Y)] Ry (x)dE.(x),foru=0,v=0
0 0

Then there exist @ and 8 ' between 0 and v such that

Ry(u + 0)(F,(v) — F(0) = P(Y = X > ulX < Y)Ry(8") (F.(v) — E,(0)), foru >
0,v=0.

As F,(v) — F,(0) >0 forallv>0
ThenRy(u+8) =P(Y =X >ulX <Y)Ry,(6"') forallu=0,v=0
Letting v — 0 gives
R,(u) =P —-X>ulX<Y),foruz=0
Hence, by applying Theorem 4 of Shimizu (1978), Y has a negative exponential
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3.5 Characterization by relevation-type equations

3.5.0 Introduction. The convolution of two distribution functions F and G is given by
(F «G)(x) =f F(x —u)G(uw)du, —o<x <™
If the support of Fand G are contained in [0, o), then
X
(F+G)(x) = ] F(x —uw)G(uw)du, x=0
0

This is the distribution of the time to failure of the second of two components when the
second component with life G is placed in service after the failure of the first component
with life distribution F. When the second component with life distribution G is of the same

age as the first, the survival function of the time to system failure is called relevation of the
survival function F(t) = 1 — F(t) with G(t) = 1 — G(¢t). [19]

It is denoted by F# G (t)
F# G(t) = P(system survivves beyond time t)
= P(first component with survival function F survives beyond time t)

+

first component with survival function F fails sometime before t and the second

p component with survival function G survives beyond time t given that it has ()
survived up to time to failure of the first component

¢t |second component survives beyond time t given that it has
=F(t) + ] P survived beyond time u when the first component dF (u)
0 failed

L P(life of second component > t)

=F(O) + ] dF (u)

o P(life of second component > u)

G(t)

()dF()

=F(t)+f

36
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F#G(t) = (F * 6)(x) iff

G o (f ~
Lmdp(u)_joa(t—u)dz:(u), t>0 (1

3.5.1 Characterization by the relevation transform

The following theorem characterizes the exponential distribution by relevation-type
equations

Theorem 3.5.1
Suppose Fand G are continuous survival functions and G' . (0) exists. Further, suppose that
forany x > 0, F has a point of increase in (0, x). If G satisfies

x_ _ o (TG
JOG(x—t)dF(t)— Lmdﬂt)' (2)

for all x ,where G(x) # 0
then G is exponential, i.e. G = e %%, x > 0, for some a = 0
Proof:
Let ¢ = sup {x: G(x) > 0}. Let h be the non-negative function such that h(0)=0 and

e "™ =G(x), x €I =[0,c). Then h’,(0) exists by hypothesis and
X
J (e Mx=8) _ g=hX)+ROVGF (L) = 0, x €1
0

by (2).

Since g(t) = e "= — o=h)+h(®) 0 < t < x and I(t) = F(t) satisfy the conditions in
Proposition 2.2 in [19], there exists 0 < ¢ < x, such that g(¢) = 0 or

equivalently, h(x) — h(x — &) — h(&) = 0. This equation holds for all x € I, by
Proposition 2.1 by LAU, K. S., PRAKASA RAO, B.L.S.(1990) [19] °®*. (APPENDIX 4)
Therefore, h(x) = ax where a = h'.(0) = 0. Hence

G = e %, x € I. Since by assumption, G is continuous, I = [0, ©).
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3.6 Characterization via the residual lifetime
3.6.0 Introduction

In the following section the exponential distribution will be characterized via the residual
lifetime through the application of the integrated Cauchy functional equation in (1)
(Tavangar. M. & Asadi, M.(2010) [25])

We consider the functional equation
F(x) = F (xy) + F (xQ(y)), x, xQ(y) €[0, 9), y €[0, 1], (1)
where F and Q satisfy certain conditions.

Let X be a lifetime (non-negative) random variable with cumulative distribution function
(cdf ) F, and survival function S =1 - F. The random variable X is said to have exponential
distribution with mean A if

S(x) =e™* x>0, A>0, (2)
3.6.1 Characterization by use Cauchy functional equation

The following theorem characterizes the exponential distribution via residual life using the
Cauchy functional equation

Theorem 3.6.1
Let F be any cdf with support R+, and S = 1 — F, the survival function .
Assume that Q : R+ - R+. The functional equation
S(x) =S(x +y) +S(x+Q(y)), x, y €[0, =), (3)

holds if and only if F is an exponential distribution with mean A, for some A > 0, and Q(y) =
Alog(1-e7 /%), y>0.

Proof.

Let the cdf G be G(z) =S(- log z), z €[0, 1), where S is the survival function defined in the
theorem. Let u=e™*, v=e7Y, and Q *(v) = exp{-Q(- log v)}.

Thus Qx*: [0, 1] - R+.
Eq. (3) implies that G(u) = G(uv) + G(uQx(v)), u, uQx(v) € [0, 1), v € [0, 1].

That is, the pair of functions (G, Q#) satisfies Eq. (1) with & = 1.
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Therefore, using Theorem 2.1 by Tavangar. M. & Asadi, M.(2010) [25],( APPENDIX 5) we
have G(x) = x% x €[0, 1) and Q*(y) = (1 — y*)Y/*,y €0, 1], for some constant a > 0.
This means that F is an exponential cdf with mean A = 1/a, and Q is as stated in the
theorem. The proof is complete.

3.6.2 Another application of the Cauchy functional equation

Theorem 3.6.2 Let X be a non-negative random variable with the survival function S.
Suppose that Q : R+ - R+ is a strictly decreasing function. Let also

X =[X — t|X > t] betheresidual life random variable. Then

X; i Q(X;), for almost all t € R+ (with respect to Lebesgue measure) with S(t) > 0, if and

only if S is the survival function of an exponential random variable with mean A, for some

constantA >0, and Q(y) = —Alog (1 — e_%), y>0.

Proof. Since S(t) > O, the conditional random variable X; is defined. Also, since every
monotone function is measurable, Q (X; ) is a random variable. Thus,

PIQ(X; 2x]=1-P[X,>Q " (x)]
PIX >t +Q'X)]
P[X > t]

Let U be a random variable with uniform U (0, 1) distribution. Using Laplace trasforms, we
have X i F~(u), where F=(.) is the quantile function. It follows from Lemma 3.1by
Tavangar. M. & Asadi, M.(2010)[25] that

P[U >F(t +0Q 1 (x)]
P[U > F(t)]

—1_ S(t +Q7' (%)
B S(t)

PQX, = x] =1-

and

P[X >t+ x|
P[X >t]

P[(X, = x] =

1

= %{S(t +x) +F(t+x) —F((t+x) —)}

We prove that
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Let D = {x € R+ | F has jump at x} denote the set of discontinuity points of F which is known
to be countable. If D is an empty set, then the result is trivial. Therefore, letD = {d,,d>, . . .}.

Let the sets
E/'s,i=1,2,... bedefinedas E; ={(t,x) ER+ xR+ | t+x=d;} = {(d;- x, x) |[x € [0, d;]}.

It can be observed that the E; ‘s are measurable sets of planar Lebesgue measure zero
which, in turn, implies that D is a set of planar Lebesgue measure zero. Therefore, Eq. (1),
and consequently the following equation hold for almost all pairs (t, x) € R+ x R+ with
respect to planar Lebesgue measure:

S =St+x)+S(t +Q01(x)
3.7 Characterization by conditional expectations

3.7.0 Introduction. Characterizations under conditional expectations also encompass
characterization cases under left- or right-truncated distributions.

3.7.1 Characterization as a special case of characterizations by conditional expectations

In the following theorem the exponential distribution has been characterized as a special
case of the general theorem of characterization by conditional expectations [15].Consider
the exponential distribution function in (1).

Fx)=1—e™? x>0, b>0 (1)
Theorem 3.7.1
An absolutely continuous random variable X has cumulative distribution function
P(X<x)=1-—e /B forx € [a,p)

=0, forx & [a,B) (2)

Where b is a constant and h is a strictly increasing differentiable function from [, ) on to
[0, 00) if and only if

E{h(X)|X >y} =h(y) + h(b), foryc€[a,pla,p) 3)
Proof:

(3) may be written as

B h(x)dF (x)
——————~ =h(y)+h(b
|, gy =ror e he 0



Or

B
{1 - FO)HR(G) + h(b)} = f h(x)dF (x)

y
y
= E{A(T)} - ] h(x)dF (x) 4)

Using integration by parts in (4),

y
{1 - FOM}Hr(O) + h(b)} = E{R(T)} — [RCIF (O] + f h'(xX)F (x) dx

= E{h(D)} — [RCOF (O], + fyh’(x)F(x) dx

a

y
= E{h(D)} — RO)F() + h(@F (@) + f W OFG) dx

y
= {1 = F()}h(y) + h(b)} = E{h(T)} — hR(MF (y) + f R (OF (x) dx ()

since h(a) = F(a) = 0.

Differentiating (5) w.r.t.y,

dF dF
(1= FOW )~ )+ H 2 = - 0IFO) ) L2+ KOIF) (@
d
h ) B2~ 1 - o) 7)
y
dF(y)  h'(y)dy
T U-FOB T A0 ©
h
o -In{l-F@)} = % +c 9
& 1—F(y) = Ae"0)/h®) (10)
2 F(y) = 1 — Ae~h)/n(®) (11)

where A is a constant.
Substituting the boundary condition F(a) = 0in (11) yields A = 1.

Hence, F(y)=1— e "0/h®) (12) 41



By substituting h(y) = y and h(b) = b it can be seen that (3) characterizes the
exponential distribution in (1)

3.7.2 Characterization via conditional expectation of a function of a random variable
on a fixed value

An exponential distribution with the following distribution function is characterized by the
expectation of a random variable X being conditioned on some fixed value y€ (0, o) [6]

f(x) = 2e=2*, x>0, A>0 (D)
Theorem 3.7.2

Let a<b be extended real numbers and g and h be real functions defined on (a, b). Assume g
is continuous and h+ 0, ¥’y >0, Then there exists an absolutely continuous random
variable X with support Cx=(a, b) such that

E[ g(X)|X< y] isfinite ¥y € Cy, and

E[g(OIX < y] = h()i% vy € Gy @

iff, for any k € (a, b) the following conditions hold:

0 e g“‘) ) du is finite

(i) f,exp {iﬁ du} /Ih()| dy <o

. ygw)
(iii)  limy.g [} o du =~

Also, the p.d.f. of the random variable X which satisfies (2) with Cy=(a, b)

Y g(w)

fO) =——+ )

{ ——du}, Va<y<bhb

achO)

(w)
where a, = f exp {i( )du}/lh(y)| dy.

Proof of the theorem is provided by Chang, T.(2001) [6].9%°(See APPENDIX 6)

We now show that the exponential distribution in (1) is characterized if

—Ay—-1+ety

T 6= (09), 4> 0 ©

a(X)=X, h(y) =

If X is an exponential random variable,
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E[XIX <yl =

foy xAe * dx
- Fx(y)
(integrating by parts)

_ye—/'ly _ % [e—/'lx]y

Jo xf () dx
P(X<y)

Fx(y)

—ye W —%[e‘ly —1]

Fx(y)

_—Ay—1+ ey e~

A2 Fx(¥)

_ly—1+eY f;()

A2 Fx(¥)

Since conditions (i)-(iii) in (2) are satisfied by h and g, the theorem is proved.

3.7.3 Characterization via conditional expectation of moments on a fixed value

In the following theorem, the exponential distribution is characterized by conditional

expectations of moments about some fixed value z > 0.

Theorem 3.7.3

Let X = 0 be a random variable with distribution function F(x). Assume that E(X k) is finite

where k = 2 is a given integer. If

E[(X-2)"| X =z ] =E(X¥) for all z=0 ,
then F(x) = 1-e™ x>0, andb > 0.
Proof:

Let m = E(x k). Since

E[(X—2)f x> 2] = ] v — D% dF)/[1 - F()]

fm(y —2)*6(d(y) = [%] G(z) , z=20

(1
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Where G(u)=1-F(u). Denoting the LHS of (1) by H(z), then repeated differentiation of (1)
gives

=™
k!

H*(2) = H(2) (2)

Manipulation as shown by Galambos, J. & Kotz, S. (1978) [12](theorem 2.3.2) (APPENDIX
7) results in

H(z) = cie™??

which leads to
F(z)=1-G(2) =1~ (kc,/m)e™, b>0, z20

But since m = E(x k), (1) together with z=0and lemma 1.2.1 by Galambos, J. & Kotz, S.
(1978) [12], imply that (APPENDIX 8)

G(0+)=1 and F(0+) = 0 which leads to(kc;/m) = 1.

This completes the proof.

3.7.4 Characterization by trunctated distributions

In the following theorem, the exponential distribution with the distribution function
Fx)=1—e>? x>0, b>0 (1)

is characterized by means of the distributions truncated from below at various points [7].

Theorem 3.7.4

A non-negative random variable X with finite expectation is exponentially distributed iff, for
some constant a > 0,

E[(X —$s)TIE[X —)*] = aE[(X —s — t)"] (2)

for all s, t belonging to a dense subset of R*, where (X — u)* = sup{X — u, 0}, denotes
the positive part of X —u, and u = 0.

Proof:
Using the Lebesgue dominated convergence theorem, the function
u - E[(X — s)*],u = 0is a continuous function.
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(2) implies E[T] = a
Let (2) hold. Then £(s) = E[(X — s)*]/a
satisfies the Cauchy equation
f@Of(s) =f(s+1), s,t=0 3)
Whose solution is

f(s) =e™S forall s > 0 and some constant A, since the function f(s) is continuous
foralls > 0.

Thus

E[(X—=s)fl=ae™ for s=>0 (4)
Now, A > Osince E[(X —s)*] - 0 as s » o

LetR(t) =P(X>¢t), t=0 (5)
Therefore, (5) is Lebesgue integrable and

E[(X —s)*] = [ R(t)dt, s > 0. (6)

Hence, fSOOR(t)dt =qe ™ | s> 0. (7)

And differentiating (7) w.r.t. s, gives

R(s) = ale ™ (8)

for almost all s with respect to Lebesgue measure.

(8) holds for for s = 0, since both sides of (8) are continuous.

SinceR(0) =P(X>0) =1,

a’=z

And P(X > s) = e~5/* which proves the theorem.
3.8 Characterization based on record values

3.8.0 Introduction.

Let X1 X2.... be a sequence of independent random variables with a common distributiorf*



function F(X). and let Y = max {X1, Xz00 Xi}- Then X , is a record value of the sequence

if Y; >Y.1- By definition X1 is a record value. The sequence of indices at which records
occur is defined by Lo =1L, = min{j‘j >L, ., X, > th-l}for n=1,2,.Also,letR =X . The

sequence Rj. ] =0L... s called the sequence of (upper) records. Let F(X) be a continuous
function.
3.8.1 Characterization by minimum and spacing between two upper record values
In the following theorem, an exponential distribution of the form
Fx)=1—e -0 2>, x=a

=0, otherwise (2)

is characterized by the independence of Rj — Riand R for some fixed iand jwith j>i>=0

among the continuous distributions [8].

Theorem 3.8.1

Let R, Ry, . . . be arecord sequence coming from a continuous distribution F(x). Then R;
and R; — R; with 0 < i <j arbitrary but fixed, are independent if and only if F(x) is the
exponential distribution (1)

Proof.

When F(x) is the exponential distribution, using Tata's results, we arrive at the conclusion
that R; — R; and R; areindependent and this for0 <i <j

Conversely, let R; and R; -R; be independent.

Then the conditional probability element ofR; given R; = x; is given by

j—i-1

M} (G—i—1D'Px)}dF(x;) (2)

dFR].(xj|Rl- = xl-) = {—log P(x)
l

Thus, the conditional probability element of D = R; — R;|R; = x;
is a function of the values of D only.
Thus from (2) we get:
{ | P(x; +d)
% TP
From (3) it can be observed that x; > a for some constant a since the RHS is fixed while
the LHS tends to 0 as x; = —e°.

j—i-1
} (P(x)} YdF (x; + d) = w(d) ford > 0. (3)

Integrating  (3) with respect to d from 0O to a value y and setting
—_— 7
P(x;)
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P(x;+y)
The equation becomes [, Plx) (logz)!""tdz =W (), forally =0, x; >0
Thus, % =b(y), forally=0,x;=>0
which is the lack of memory property of the exponential distribution.

1This concludes the proof of the theorem.

3.8.2 Conditioning on a backward difference

In the following theorem, the exponential distribution is characterized by the expectation
of a function of a backward spacing conditioned on a certain record value R;[17]

Theorem 3.7.2

Assume F(X) has density T(X). Let G be a non-decreasing function such that for every

X>0,G hgs g point of increase in (0.X) . Assume for some fixed interger 121,

E(G((R, -R_| R, =x) = E(G((Ry)| R, =x),0x>0; (1)
Then X1 has an exponential distribution.

Proof.

(1) implies

[[G0=y) faul Ro()dy = [ G(y) fR| R, =x(y)dl, 2)
Or, by equations (1.2) and (1.3) in Huang, W.J. & Li, S.H. A.C.(1993) [17],°
(See APPENDIX 9)
[ GOy R (y)r(y)dy = [T GRK) = R(y) ™r(y)dy (3)
Integration by parts implies '[:(Rj (x—y) - (R(X) = R(Y)) )dG(y) =0,0x > 0. . Hence,

by Proportions 2.1 and 2.2 of Lau and Rao (1990),* (APPENDIX 4) R(x) =ax, where
a =r(0+). Thisin turn implies X, is exponentially distributed

3.8.3 Conditioning on a forward difference

In the following theorem, the exponential distribution is characterized by the expectation
of the spacing between two adjacent record values after a certain record value R;[17]

Theorem 3.8.3  Assume that F(X) has density function f(X) and F(X)>0 for x>0 [et
G be a non-decreasing function having non-lattice support on x>0 wijth G(0)=0 gnd
E(G(X,)) <« . If for some fixed non-negative integers | and K ,

E((Rj.s ~Riu) Ry =x) =c (1)

47



for everyX >0, whereC >0 js g constant, and if for some ¢ >0 ((2.13) Huang, W.J. & Li,

S.H. A.C.(1993) [17])*° (APPENDIX 10) holds, then c=E(G(X,)) and X. is exponentially
distributed.

Proof. Using equation (1.5) by Huang, W.J. & Li, S.H. A.C.(1993) [17] ,(APPENDIX 11) we
have

E((Rj+k+1 j+k)| Rj = X)
= I: P(Rj+k+1 - Rj+k > y)| Rj = X)dG(y)
:.[o I .[ fRi+k+1,Rj+k\ Rj:x(Z1W1W)deZdG(y)

[ o RW-RO W iwW=2)
: rF ()

r(k)F( FEOF Gy (R —RO) (W) G(2)f (w+ dzdw

F(k)F()-[ (RW) = RO0) " r(w) [ F(2)dG(z +w)cw. 2)

Since E(G(X,)) < e have

0<lim G(z-W)F(2) < lim G(2)F(2) < lim J';G(x)dF(x) =0.
Using this and integrating by parts we have;

[[G@f(w+2)dz=~[" G(z-w)dF(2) = [  F(2)dG(z~w). (3)
Thus, the last equation of (2) holds. (1) implies

j“’ R(W) = R(X))“r (w) jv‘:’ F (2)dG(z-w)dw = cT (k) E (x). (4)
Differentiating both sides of (4) K times, with respect to X, we obtain

j‘” F(z+x)dG(2) = cF(X). (5)
The solution of (5) is F(X)=1-€™,x>0,where 4 is the positive number defined by

_[0 e ™dG(x) =c. By letting X ~ 0,in (5) we obtain E(G(X,)). This completes the proof.

3.8.4 Characterization by independence between functions of record values
Theorem 3.7.4 below characterizes the exponential distribution with the following results
being special cases[14]:

i) The independence of Riu~Riand R; characterizes the exponential distribution.
Srivastava (1978). Ahsanullah (1979) and Pfeifer (1982).

i) E(R., ~R| R)) isindependent of R; characterizes the exponential 48



distribution, Srivastava (1978). Ahsanullah (1978) and Nagaraja(1977).

iii) Var(R;,, - Rj| R)is independent of R; characterizes the exponential
distribution (Ahsanullah (1981b)).

Theorem 3.8.4
E((Ri.. = R)" IR, =Y) =C (independent of ¥ ) for fixed i and "-'>1 if F is exponential.

Proof. Since the survival function of R~ R; given Ri=Yy is S(x+Yy)/S(y), where
S(X) =1-F(X), we have,

c= Iru 1 S(U= y)du
S(y)

or

cS(y) = onr(x— y)"S(x)dx (1)

Since I:| S(y)| dy = E(X) <  the Mellin transforms of both sides of (1) exist
Thus we have,
CS* (s) = (j: F(x— y)r‘ls(x)dx)*
_M(r+nr(s

fr+9) S (s+r). (2)
Letting S* (S)/T(s) = h(s),(2) can be written as
h(s+r) = Ah(s) (3)
where A=c/T(r +1).

Equation (3) can be written as
h(t) — Ah(t-r) =0. (4)
This is a differential difference equation,(Bellman and Cooke (1963), p.54), with auxiliary
equation 1= Ae”"* =0 gjying S=(INA)/r =b 12 (APPENDIX 12)
Hence the solution of (4) is
h(x) = ke,
where K is an arbitrary constant. This gives S*(S) =Kk (s)e™ =k (s)/A*. where

A=e">0 Thisimplies that S(X) = ke™™, since S(0) =1S(x) =€™ and hence exponential.
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3.8.5 Characterization by conditional expectation of a spacing between two record
values

Introduction.Let {X,,,n = 0} be a sequence of independent and identically distributed
absolutely continuous random variables with cumulative distribution function F(x) and
corresponding density function (pdf), f(x). The ratio, r, given by 7(x) = f(x)/F (x) where
F(x) =1—F(x)onD = {x|F(x) < 1} is called the hazard rate.

A distribution F of a random variable X is said to have an increasing (IHR)(or decreasing )
hazard rate (DHR) if r is an increasing (decreasing) functionon D, = {x|F(x) < 1, x > 0}.

F € ¢, ifris monotone D,

Fis called “New better than used” (NBU) if F(x +y) < F(x)F(y), forx,y =0
Fis called “New worse than used”(NWU) if F(x +vy) = F(x)F(y), forx,y =0
F € c, if the distribution function F is either NBU or NWU.

Let X be ar.v. whose density is given by

-
f)=0"%"®@, x>0 (1)
=0, otherwise
X € E(0) if the pdf of X is of the form in (1)

The following theorem characterizes the exponential distribution by the equivalence of the
expectation of the spacing between two record values and the expectation of the record
value corresponding to the difference between their record times[4].

Theorem 3.8.5
Let, {X,,n=1) be a sequence of independent and identically distributed non-negative

random variables with absolutely continuous (with respect to Lebesgue measure)
distribution function F(x) and the corresponding probability density function f(x)

IfF € ¢c; and for some mn with 1<sm<n,E(X_, =X, =E(X ) then X (o) for
some 0 >0.

Proof. Let f4(X) and fs(X) be respectively the p.d.f's of Xi-m and Xim ~Xim then

with 1= F, (0 =F, (0 =1=[ f,(Wdu.  ang F0) =1-F,(%) =1 [ f5(U)du. e have
0 0

E(X e = | F4 (0, (1) 50



and
E(XL(m) - XL(n) = J‘ Ifs(x)dx, (2)
0

Writing f,(X) and f5(X) in terms of R(X) and f(x), we have
F,(X) =1-9,(x),

_ 00 ="5 B gy 5
and "

FL09 =1] 9,060 (RW)™ f W)d, )
where 0

nzn:m—l (R(u + x) R(u))’ e RU)-R(W),

j=0

gs(x,u) =

Equating (2) and (3), we have on simplification,

O3

1 m -
’([H R(u))™ f (u)H, (x,u)dudx = 0, (5)

Where
Hy(x,u) = gs3(x,u) — g4(x)

But H2x0) =044

4 (Ru+x) = (Ru)™

o = ~(R(u+x)=R(u)) _
auHz(x,u) (n—m-1) e (r(x) = U+ X)).

Since Fec; for (5) to be true, we must have r(u + x) = r(u) for almost all
uand x, 0 < u,x < oo, Hence X,,eE (o)
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CHAPTER 4

Related distributions
4.0 Introduction

In this chapter distributions resulting from interactions between and among exponential
distributions are investigated. These include sums, differences, products and quotients of
exponential distributions.

Exponential distributions have been generalized using the beta and exponentiated
generators.

4.1 Sums of independent exponential random variables
Let Sy = X +X, +. . +Xy
We wish to obtain distributions for S for three cases.
Case (i): X;’s are i.i.d exponential random variables with parameter A for fixed N=n
Using the Laplace transform technique, we have the Laplace transform for S,
Ls (s) = E[e™5"]
= E[e~s(1t -+ Xn)]
= E[e™5*1]... E[e”%%n ] since the the X;'s are independent
But the X;’s are also identical.

o Lg (s) = E[e™sXi]m

~ L (s) = E[Lx,(s)] ™,

where

Ly, (s) = A+s

is the Laplace transform of the density of X;, X; being an exponential random variable with
parameter A.
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“ Lsy () = [,1 i S]“

which is the Laplace transform of a gamma distribution with parameters n and A.
But n is a positive integer. Such a gamma distribution is called an Erlang distribution.

Using convolution approach and mathematical induction, let us start with

Frorn® = [ f () f (e = 9)ds
= ] le M) e~ At=5)gg

t
— Azf e—/’ls—)lt+As ds
0

= N2e~M ¢
= 2e~t. (At)

Next
t
fX1+X2+X3 (t) = J;fX1+X2(5) fx, (t — s)ds
t
=J/’le‘ls/1$./1e"1(t‘s)ds
0
t
— Azlﬂf Se—As—At+)ls ds
0
t
= /12./1] se M ds
0

s21
= 22 2e~H | =
3]



By induction, assume that
X+ Xy +. . 4+ X g
has a pdf given by

(A"

fa+xasxns (£) = 2™ (n—2)!

Hence
t
fX1+X2+....Xn (t) = ] fX1+X2+...,Xn_1 (s) fx,(t — s)ds
0

= tle"ls —(/15)”—2 e~ At=9)(g
0 (n—2)!

Ane—lt t
—J Sn_2 ds
0

T (n-2)!
A=At [Sn—l ]f
n-2)!In—-1 o
= le M —(At)n_l
(n—1)!
Antn—l
= I e M t>0
An

— —Atyn—1
= — t , t=0
ON

which is a gamma distribution with parameters n and A
Case (ii): Independent non-identical exponential random variables with fixed N=n

Let X;, =1, 2,....n be independent exponential random variables with respective rates
A, i=1,..,n,andsuppose 4; # A;,for i+ j.

The random variable )}, X;, is said to be a hypo-exponential random variable.

To compute its pdf, let us start with the case n=2. Now

Frorn® = [ f () f (e = 9)ds



t
= ] /116’_)‘15/12 e 12(t=5)g¢
0

t
= Al)lze"lztf e~ (M—22)s g ¢
0

ot e_(ll_AZ)S t
= MhAe "2t |————
e |
ML( —(A1=-2)t _ 1)
—(A1—24,)
1112 2
—_— = - zt — —ﬂ.lt
/11 - 2.2 (e € )
A

2,
— ) -t 1 -4t
4 a2 T e

For n=3

fX1+X2+X3 ) = f fx,+x,(S) fy, (E — s)ds

Ay
1 -8 1 —/115] ﬂ. —A3(t—s) d
J-[/ll—/'lz 2€ +/1 4 1€ e S

J I:AlAZA?’ —2.25—2.31'4‘2.35 + % e—lls—l3t+l3s] ds

=4

—(4 = 43)

_ Mtads st f p—(a—23)s gg yJ1h2ts -2t f e~(-23)s g
2.1 /12 /12_2'1
T, —(A2-23)s 1t - t

= Me—@t e~ (a7t + MAaAs ;. [ €

A=A, (A= A)], -4
_ 2.12.22.3 e_)l3t -e—()lz—/lg)t - 1 + 2.12.22.3 —/131' [e

A=A, | (A= A3) [ -4

A A A A
= /128_1215 ! . 3 + 2.36_/‘131: ! . 2
Al_AZ 13_12 AI_AZ 12_13
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e Mt : . As + Aze st M . :
T Tihs 4 To— 1 A7
A A A A
oo = —Ast 2 3 -yt 1 3
e P 0 P Py A N B
4 Azt [ ! + A,
1)~ A5) | (s~ 1)y — 29)
But
1 N 1 _ (A4 —43) — (A, — 43)
1)y~ 7) U= 200G~ 29) G~ Ay — 25) (s — 23)
_ b~ 2,
(s~ 1) (2~ A5) (g — )
_ 1
(s~ 1)y~ 2)
A A A A
oo = —Ast 2 3 -yt 1 3
A I W b W Rl B e B W
A A
Age Mt —— 2
T L T A,
3 1.
1 LA =4
j#i

which suggests the general result to be

" At )lf
fX1+X2+' : '+X"(t) - 21 Ae 1_[1]' - A

JE!

=Z” [ 4 e )
) L—x ]

JE!

n
= Z Ci,n /lie_/‘lit
1

where
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| | 4
Ci,n = . A _ A
J#1 ] i

We will now prove the formula in (*) by induction on n.
Since the formula has already been established for n=2 and n=3, assume it to be true for

n and consider n+1 arbitrary independent exponentials X; with distinct rates 4;,i=1, 2, ...
n+1. Now

t
“fxyrxay +Xma1 ) = ] fxi+Xos. ,+Xn(5) fx,,., (t = s)ds
0

t n A
= f z 1_[ J Aie_)lis _An+1e_/1n+1(t_s) ds
0 L\ i A=A
n t
= Z Ci,n f /11. An+1e_/‘lise_ln+1(t_s) ds
1 0

n t
= Z Ci,n] A /’[n+1e—3i5—3n+1t+ln+15ds
1 0

t

n
:Z Cin A Ayyo—tmit ] o~ (i—Ans s g
1

0
_ Znic. DA gt [ TS t}
Ly | — (A = An+1) |,
= Zn {C. Ay Ay qe—tntat [e_@"_ln“)t — 1 }
L | —(A = An41)
n e—Ait — p=An+it
= 21 {Ci,n Ai Ansa [ —(h =) ]}
= Zj Cin { Ae~Hit Aln—f/ll + ApyreAnhrt /1—/1—;1%1}

n+1 L

Z Cln/l /1 e_)l ‘ + Z Cln/l An+1e_ln+1t
n+1 = i n+1
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where

K,.,= ch A
n+1 — ) in Al _ /1n+1

But
co 1—[ oo Ay An
e O Ve P Y T I
C- An+1 — /11 /12 An An+1
i — A A=Ay =T Ay — A A — A
1_[ 4 forj=1,2 +1
= orj=12,..,n
jridy = A
Ci,n+1
n
fX1+X2+. A Xn41 (t) = Zlci,n+1 Aie_ait + Kn+1 /’ln+1e_an+1t (**)

where K,, ., is a constant and does not depend on t.
Next,

[ 4%, .+Xn+1(t) can also be written as

fX1+X2+. S Y

t
© = [ Srrrrse ons @ (£ = 9)d5
0

U r—n+l
= f z Clnst Aie"lis] e M=) g
oL 2

t

n+1
— Z Ciﬂ,‘n+1 /11' /11] e—Ais—Alt+/115 ds
2 0

t

n+1
= Z Cintt Aille‘lltj e~ (i=)s (g
2

0

n+1 5 e~ (Ai—A1)s t
= Cr A:A.e” b

n+1 " e_(/li—ﬂ.l)t — 1
— * —Aqt




-t e -t

Zn-l‘l C* A A et [ e
= . . e_ 1 —
2 bl T - =) —(Li—4Ay)

_ n+1 . /11 at /1. ot
C1n+1 /1 + C1n+1 /1 e
2 ! 2.1 - /1,_ A - /11
n+1 /1 n+1 /1
= ZZ Cln+1 /11 _ A A e_l t + Z ln+1/1 /1 /‘lle_Alt

=zn+1 ClniiT— M Ae~tit + K e Mt (%)
2 A=A

A.

n+1
where K; = )} Clnﬂl1 =N

Equating the two formulae (**) and (***), we have

n n+1 /1
Z Ci,n+1 Aie_ait + Kn+1 An+1e_ln+1t = Z Cln+1 _ /1 e_Al +K /1 e_llt
1 2 /11 A
But
C/ M “_[ 4 ] A
Al — A jij=23,.n+1 4 — 4| Ay — 4
_ [ Az A3 Ans1 ]
A, —A;3— )l An“ AdA — A
A Ay Apv1
= Cins1
M—Aid =4 Appr — 4 '
Therefore,
n n+1
Zlci,n+1 Aie™ M+ Ky Ay et = Zz Ci,n+1lie_/1it + K, e~ Mt
i.e,

n

-4t -t -2 t

Cins1 he” "+ § Cin+1 Aie™"" + Kpypq Appie™ 4t
2

n
_ At -1 t —A4t
—§ Cins1die ™" + Copqpy1dnse” ™ + Kjljem™™t
2

—Aqt -1 t -1 t —Aqt
Ciny1 Ae™™" + Kppidppe” 1 = Gy pprdnpre” " + Kjl e
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Kni1 = Cn+1,n+1
Comparing the coefficients of ;e *1¢, we have
Ki = Cipea

Thus

n
— —Ait -1 t
Prutson sy ® = ) Ciner AN+ Ky Ao

n

— —Ait -1 t

- Z Ci,n+1 /11-6' il Cn+1,n+1 /1n+1e ntl
1

n+1

= Z Cins1 A€Mt
1

X () 2o
1 jeidj—A )

Alternatively,

n+1 /11

— * oAt -4t
fx %0, AXne1 (t) = Zz Cin+1 1 — A, Aie + K A ™M

n+1 1 1
_ E At Aqt
= Cinsrdie™ " +Cipyq e
2

n+1
_ -4t —Ait
= Cipy1 M +Z Ciny1die™"
2

n+1
_ At
—Z Cinsrdie™"
1

Remark: This proof has been given by Chiang (1980) and Ross (2000).
Case(iii) A random number of i.i.d exponential random variables
Let Let Sy = X;+X, +. . +Xy

where the X;'s are i.i.d random variables and N is also a random variable independent of
Xi,S

Suppose X;'s are continuous random variables. Then, let

H(s)= the Laplace transform of Sy



= E[e=S5N]
F(s)=the probability generating function of N
= E[SV]
And
L(s)=the Laplace transform of X;fori=1,2,..., N
= E[e~5%1]
~ H(s) = E[e™5N] = EE[e™5N /N = n]
— EE [e—s(X1+X2 +...+XN)]
= E{E(e *1) E(e™5%2) ..E (e S*N)}
= E[L(s)]Y
= F[L(s)]
= Fy [in(s)]
which is called a compound distribution.

If N is Poisson, then H(s) becomes a compound Poisson distribution. Suppose N is Poisson
with parameter@, then

H(s) = e ?11-LG)]

If N is binomial, then H(s) becomes a compound binomial distribution. Suppose N is
binomial with parameters n and p, then

H(s) = [q + pL(s)]"
where g=1-p

If N is negative binomial, then H(s) becomes a compound negative binomial distribution.
Suppose N is binomial with parameters a and p, then

H(s)—[l_ a>00<p<lg+p=1

qL(s )]

If N is shifted geometric with parameter p, then 61



ps
1—gs

F(s) = ,q=1-p

s H(s) = Fy[Lx(s)]

_ pLx(s)
1—qLx(s)

Further, if X is exponential with parameter4, then

A

b =55

pA

= pA
(A +5) (1 - Aqfs)

_ pA
T (A+s)—ga

__pa
CpA+s

which is the Laplace transform of an exponential distribution with parameter pA.
~ Prob(Sy =y) = ple™P¥;y >0

The distribution of Sy, can also be looked at as a mixture as follows:

Prob(Sy =y) = Z Prob(Sy =y,N =n)
n
= Z Prob(Sy =y/ N =n)Prob(N = n)
n

= Z Prob(X, + X, Xy, = y)Prob(N = n)
n

= Z{fx}*"pn

where {f, }'™ is the n-fold convolution of X;’s and p,, = Prob(N = n)
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Thus Prob(Sy = y) is a mixed distribution with p,, as the mixing distribution.
If the X;'s are i.i.d exponential random variables of parameterA, then

Prob(Sy = y/ N = n) is a gamma distribution with parameters n and A.

An
~ Prob(Sy =y) = Z [I"(n) e yntlp,
n

For shifted parametric,

p, =pq" Ln=1273,..

(o] ATL
o P b S = ] Z _/1)/ n-—1 n—-1
rob(Sy = y) n=1F(n)e y© pq
[0} Anyn—lqn—l
. Prob(Sy =) = e"lyz A
Sy=y)=p T
= ple ZOO —(qu)n_l
n=1 I'(n)
= ple ZOO —(qu)n_l
n=1 (Tl - 1)!
= p/’{e_Ayeﬂ-yq
— ple—ﬂy+ﬂyq

= ple~+A1-p)y
= ple~WV+Ay-piy
= p/le‘p’ly, y >0,
which is an exponential distribution with parameter pA.
4.2 Distribution of the difference between two exponential random variables

Let X;, and X, be two independently distributed exponential random variables with
respective rates 4;, i=1, 2.

LetY=X1_X2

.'.—oo<y<oo
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Thus the CDF of Y, Fy(y), is piecewise, wheny < 0or y = 0.

The c.d.f.of Yis Fy(y) = P(Y < y).
case (i) y < 0;

Fy(y) =P <y)
=PX;—X;=<Yy)
=PX, =X, —y)

= J J fxx, (X1, %2)dx, dxq
0

xl_y

oo [ee]
= f J- /11/123_/11 xle_AZ X2 ddexl
0 X

1-y

= —/11 eh2y [e—(h‘”z) xz]oo

A+ A, 0

oo
= 2y, <0.
L+ A, Y
Case (ii)y = 0;
Fy(y) =P <y)
=1-P( >7)

=1-P(X,— X, > )
=1-P(X, 2 X, ~y)

® X1y
=1- ] ] fxl_xz(x1;x2)dxzdx1
y 0

e
—_— 1 - f J- /11/126_/11 xle_lz *2 ddexl
y 0]

_ 1 y) —(A1+2;) x1%1-¥
=1 ———=ph2V][e~(A1th2) xz
5 Jo

64



Az

=1-—2=
A+ A,

e MY, y > 0.

Differentiating Fy(y) in sections 4.3.1 ad 4.3.2 gives

1
A2y

(/’l YA,
fy(y)=i1 H
A+ A,

y<0

e MY, y>0

which is the pdf of a Laplace random variable with parameters 1, and A,

4.3 Distribution of the product of two exponential random variables

Let X; and X, be two independently distributed exponential random variables with

respective rates 4;, i=1, 2.
Let Y = X1X2

The CDF of Y is
Gy)=PY <y)=PX;X; <)
=P(X; < y/x3)

—PX, <2 ,0<x, <)
X2

= ] TR () fedx,

X2

where F,(x,) = Prob(X, < x,)
o’ Y
s G(y) = J [1 —e 1x2]/12e"12x2dx2
0

dG(y)

g) :W

© 3 y

1 42 _

=J — e "'x2 e M¥2dx,
o X2
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(00]
—A2(x2+A
—Al/lzf x,% te 224z xz dx,

letx, =z ’ 2 ndx, = ’Aly
Az
’ R 1y(z+1/z)) ’/1
1y 1y
~gy) = /11/12J lz _12\ 7 dz

_11/12] 70-1o—VAL2y1(z+1/2)) 4,
0

@ \/ 23’1
= 11 f 207 le™F 2 EHD) gy
0

= 20115 Ko(2:/ A22y4)
where K, (w) is the modified Bessel function of the third kind with index v=0 and
w=2 /1/12}/1

4.4 Distribution of the quotient of two exponential random variables
Let Y = Xl/XZ

where X; and X, are independently distributed exponential random variables with
parameters A, and A, respectively.

The CDF of Y is
X4
G)=PY <y = P(X— <)
2

=P( X; < x5y)

=PX; S y/x3)

=P(X; < x3¥,0 < x; < )

=f Fi(x2y) f (x2)dx,

= ] [1— e~M1%2Y] 2, e %2%2dx,
0
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0]
g) = f Ayxge XY ), e~ heXe gy,
0
o0
= 2.12.2 f xze_llxzy_lzxz dxz
0

= 2.12.2 f xze_()lly+A2)x2 dxz
0

dz

Letz= (LY + A%y, & o = dx
()—Mfoo AL
g = Ak 0 /113""/128 My + 2, "2

AA,
re2
(Ay + 2,)? 2)
A
= ZA 5 y>0
/’ll(y+/1—i)

4.5 Beta-Exponential distribution

The Beta-exponential distribution was introduced by Nadarajah and Kotz (2006) as a
generalization of the exponential distribution.

The distribution based on what is called the beta generator approach, briefly discussed
below.

The classical beta (type |) pdf is given by

xa—l(l _ x)b—l

flx) = B(ab) , 0<x<1 ab>0
where
_ I'(a)r(b)
HeD = Tarn

The cdfis given by

F(x) =Pr(X <x)



B x B xta—l(l_t)b—l
—]Of(t)dt—JO B(a,b) dt

For any random variable, Y, where —o0 < Y < oo, its cdf, G(y) = Prob(Y < y) has the
property; 0 < G(y) < 1.

Considerthecase 0 < Y < oo.

So 0 < x < 1 can be replaced by G(y).

G(y) ta—l(l — t)b—l

~FlG(y)] = ]0 B(a.b) dt

G(y) ta1(1-t)b1

Let W(y) = F[G(] = [} s 4

dt

G(y) pa-171 _ +\b-1
iy = W) _ [y

dy  dy B(a, b)

G(y) ta—l(l _ t)b—l
—d f
0 B(a,b)

_ [t -0 a6 o)
B B(a,b) o dy

)T (-6
B B(a,b)

g)

(Using Leibniz’s theorem)

Thus

_(6m) T a-6ee)”
B B(a,b)

w(y) g)

This is called the beta-generated distribution.
From this distribution, distributions of order statistics can be obtained by letting
a=iandb=n—-1i+1,

so that,

_ ) (1-6n)""

w(y) BaD)

g)



where i and n are positive integers. This is the probability density of the i-th order statistic
from a random sample of size n.

Let us consider Y to be an exponential random variable with parameter A
g =AM and G() =1—-e, y>0, e, 1>0

The beta-exponential distribution is given by the pdf

[1—e @] [1-@=e)] "2
B(a, b)

w(y) =

which simplifies to

Ae= My (1 — e"b’)a_1

B(a,b)

w(y) =

(Note: If a=b=1, w(y) = 1e~)
Let Y(q) <Yz <. <Yy bethe order statistics from an exponential distribution.

The i-th order statistic has its pdf given by takinga =iand b =n —i + 1 in the above
formula. i.e.

Le—An—i+1)y [1 _ e—Ay]i_l

g(y(i)) = B(a, b) ’ Y >0
_r@r@)  r@rm-i+1)
Blab) =ran = rm+D
(i—D!(n—0)
- n!

n! o i
Ivw) = G—Dln=0! AeAm-i+DY[1 — ¢ Ay]‘

Putting i=1, we obtain the distribution y) = min(YLY2 ) e Yn) , i.e,

I(yw) = ne™¥, yqy >0

Formax (Y. Y, ,..Y,), leti=n. 69



n! _ _ -1
g(y(n)) = m le /13’[1 —e Ay]n

= n/le‘ly(l — e‘ly)n_l , Y > 0.
4.6 Exponentiated exponential distribution
Let F(x) = [G(x)]*
where G (x) is the cdf and F(x) is the new cdf and a > 0.

dF (x)

L fO) == 2 = 61 g()

g(x) and f(x) are old and new pdfs.
The new pdf f(x) is called the exponentiated generated distribution.

For exponentiated exponential distribution, we have

flx) = a[l — e"ly]a_l/le"ly

= a/le‘ly[l — e"b’]a_l, x>0, a>0, A1>0

which is also a generalization of exponential distribution by Gupta and Kundu (1999).

When a = 1, the exponential distribution is generated.
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CHAPTER 5
Mixtures
5.0 Introduction

As mentioned in Chapter 1, in many situations involving the exponential distribution the
populations may not be homogeneous. Such populations are therefore appropriately
handled by the exponential mixture distributions. Mixture populations are modeled by
considering the exponential distribution rate parameter as a random variable. The
distribution of the rate parameter is called the mixing distribution.

In this chapter mixtures of the exponential distribution with nine discreet distributions and
thirteen continuous distributions are constructed. In doing this, an innovative method
employing the moment generating function is used first to determine the survival function
of a mixture. This technique is employed due to the fact that the survival function of a
mixture of the exponential distribution with any mixing distribution is the same as the
moment generating function of the mixing distribution. Once the mixture’s survival
function has been determined, all of its other associated functions are then derived.

Sections 5.1and 5.2 highlight the method linking the survival function of an exponential
distribution mixture with the moment generating function of a mixing distribution. Section
5.3 deals with the derivation of moment generating functions for the discreet and
continuous mixing distributions covered in the study. Section 5.4 applies the moment
generating functions in section5.3 in obtaining survival functions of the various mixtures
together with the other functions associated with the mixtures. Frequency curves
associated with the mixtures have also been drawn together with that of the exponential
distribution for comparison. The parameters for the exponential distribution and its
mixtures were arbitrarily selected to simulate a possible occurrence. Mixture distributions
with more than one parameter have been depicted using more than one chart to provide a
wider perspective of the effects of the various parameter combinations on the mixture
curves.

Densities involving the following functions were computed with the assistance of the
indicated packages in CRAN R:

confluent hypergeometric function —hypergeo
error function- NORMT3

modified Bessel function of the second kind-Bessel
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standard normal-stats
Plotting was done using Excel.
5.1 Methodology

A mixture of the exponential distribution will arise when the parameter A in the
exponential density

f(x) =2Ae™, or (1)

1 X
fx) = Se 2 (2)
is also a random variable. This means that the random variable X is conditioned on A.

[t should be noted that two-parameter formats exist for the distributions in (1) and
(2). They are, respectively,

f(x) = he™2x9) (1a)
and fx) = %e_$ (2a)

In both (1a) and (2a), the parameter 0 represents the location while A is the scale
parameter.

We have restricted ourselves to mixtures of the exponential distribution in (1).

The general form of the pdf of the mixtures of (1) may be given as

f(x) = [2e™g(D)dA (3)
where g(A) is called the mixing density.

When A is a discreet random variable with pmf p( 1) (3) becomes

fOx)=X2e™p(1) (4)

The pdf of the distribution in (1) has a form that makes it convenient to find its mixtures
simply by determining the moment generating function of the mixing density or mass
function. This arises from the fact that for mixing distributions defined on [0,0), the
survival functions of their mixtures with the exponential distribution is the moment
generating function of the mixing distribution with a negative parameter. This is the same
as the Laplace transform of the mixing distribution. However, In this study we shall mostly

refer to moment generating function because it is the most adopted term in statistical
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literature. This technique has been alluded to by Hasselager, O., Wang, S. & Gordon,
W.(1998)".(APPENDIX 13)

5.2 Derivation of mixtures

The following terms are frequently used in this paper.
f(x) — the density function of a mixture
F(x) — the distribution function of a mixture

S(x) — the survival function of a mixture = 1 — F(x)
fx)

h(x) — the hazard rate function of a mixture = 5@

For a random variable X having an exponential distribution, its density function can be

expressed as
f) =2 x>0, 1>0
When the parameter A is also a random variable, then X can be considered to be
conditioned on A so that the density of X is now a conditional density written as
f(x|A) = Ae ™™
Thus the conditional cumulative distribution function is

X
F(x|2) =J e Mdy
0

= —[eT;
=1—e N
Hence the conditional survival function is
S(xI\) =1-Fx) =e™

The marginal survival function of X which is also the survival function of the mixture of the
exponential function and the mixing density g(1), is

S (x) = f S(x|V)g(N)dA

= [ eManir= My ) ©)

Equation (1) represents the moment generating function (mgf) of g(A) with the mgf



parameter —x.

When the distribution of A is discreet, equation (1) is replaced by

D e p0) = My (—x) = 5 () (6)

A

Where p(A) is the probability mass function of A.

Thus by determining the moment generating function of g(A) or p(A) and using a
negative mgf parameter, the survival function of the mixture of g(A) or p(A) with the
exponential function is also determined.

5.3 Moment generating functions

The moment generating function (mgf) of a random variable Y is given by

My (s)=E[eSY] = Y e5Y p(y) for discreet Y (7)
= [ e%" f(y)dy for continuous Y (8)

where s is the mgf parameter, p(y) is a probability mass function, (pmf), if y is discreet and
f (y) is the probability density function, (pdf), if y is continuous.

Equations (7) and (8) hold provided E[e5Y] exists for every real number s in the
neighbourhood —h < s < h for some positive number h

5.4 Moment generating functions of discreet distributions
Equation (7) will apply in the sections 5.3.1.1 - 5.3.1.9 with x replacing s and A replacing y

5.4.1 Bernoulli distribution

1-6,A2=0
0, A=1

When p(}; 0) = {
or p(;0)=6"(1-6)'" forA=0,1and 0 <6 < 1.
The mgf of a Bernoulli distribution is
M; (x) = E[e**] = X5 e* p()
= Y1 ¥ gr(1 — @)i~*
=1—6+0e*

=1-60(1-¢e%) 74



5.4.2 Binomial distribution

Whenp(; 6,n) = (})6*(1 — )2 A=0,12..,n, 0<6<1

The mgf of a Binomial distribution is
My (x) = E[e"] = £} " p(N)
=yn (7;) oM (1 — g)"r ex2
=3¢ (3) @eH -
=[(1—-6)+ 6e*]"
5.4.3 Geometric distribution type |
when A is the number of failures before a success
or pX0)=61-0)* ' forA=0,1,2,...and 0 <0 < 1.

The mgf of a geometric type | distribution is

M, (x) = E[e*}] = ZT e** p()

n
=) e a1 -0y

1

9 " A A
—_— — x -
1_921(3 (1-0)

9 n
= mzl [(1-0)e*]*

0 (1-0)e*
T 1-01-(1-0)e*

_ fe*
T 1-(1-0)e*
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5.4.4 Geometric distribution type Il
when A is the number of trials for a first success

or px;8)=6(1—-6)" foraA=0,12,..and 0<6 < 1.

The mgf of a geometric type Il distribution is

M, (x) = E[e*}] = ZT e** p()
=>" e g1 -0y
1

=0) (-0

6(1-0)e*
1-(1-6)e*

5.4.5 Negative binomial distribution type |

When A is the number of failures before the rth success

p6,r)=*"1er(1-6)%, 1A=0,12..,n, 0<0<1

n-1

The mgf of a negative binomial type | distribution is

M, (x) = E[e*}] = Z:O e** p()

_ Z:O o* (H:_l) 67(1 — 6)*
-0y (1 a-oer
A

=(1—(1—9)ex>
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5.4.6 Negative binomial distribution type Il

When A is the total number of trials to achieve r successes,

pOsom = (" )er-0)",  A=rr41., 0s0<1

The mgf of a negative binomial type Il distribution is

M, (x) = E[e*}] = Z:O e** p()

o A—1
> (e
A=r r_l

Z( 1)7’ - (1 _ 9)1 T Qe Ax

Z( 1)r o (1 _ )/1 r(9 eX)r (eX) A-r

=097 Y P, )@= 0er T @ ey
A=r

=(0e) [1-(1—-06)e*]

0 e* "
“lhi-a- G)ex]

5.4.7 Poisson distribution

—6 A

Al

e

When p(A;0) =

for A=0,1,2,... and 8 > 0.

The mgf a Poisson distribution is,

M, (x) = E[e**}] = Z:)o e** p(A)
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50 Z (6 e¥)
=0 Al

_ x
e Geee

o -6 g
2=0 Al

0(e*-1)

5.4.8 Discrete uniform distribution

1
When p(A;n) = "

The mgf of a discrete uniform distribution is

M, (x) = E[exl] =

5.4.9 Logarithmic distribution

, A= 12,..,n, n € N.
n

Z e p(N)
1

— l Zn PRz

n 1

e* /1 —e™

7( 1—e* )

9/1

< A=012,..
Aln(1 - 0)

Whenp(X;0) = —

The mgf of a logarithmic distribution is

M; (x) = E[e“] =

2:0 e p(n)

Ioe) 9/1
_ ex)l
Zl An(1 — 0)

1 0 (gex)l
T Im(1-6) Zl 2

B [—In(1 — 0e¥)] _In(1-6e%)

In(1-6)  In(1-6)

0<o<1
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5.5 Moment generating functions of continuous distributions
Equation (8) will apply in the sections 5.3.2.1 - 5.3.2.13 with x replacing s and A replacing y
5.5.1 Beta distribution

A1 —)F?
B(a,p)

The mgf of a beta distribution is

When f(;a,B) = 0< A<1, a >0, g >0

M, (x) = E[e*] = [ e¥f()dA

1 }\a—l(l _ )\)B—l
— xA
= J; e B p) dA

f pCan 1(1 }\)[3 1 xld/l

B( ,3)

B(a,pB) 1 Fila; a + f5; x) '° (APPENDIX 14)

B( B)

=, Fi(a; a + B; x), where for constants a, b and variable z,

1 Fi(a; b; z) is the confluent hypergeometric function defined by

(a; b;2) = Yreo ((C;))" ; , and where for a parameter r, (1), denotes

Pochhammer’s symbol for increasing factorial given by
M) =rr+1Dr+2)r+3)..(r+k)

B I'(r+k)
)

5.5.2 Exponential distribution
Wheng(3;8) =6e %, 6>0 1 >0,

The mgf of an exponential distribution is

M, (x) = E[e*}] = f ) e* f(1)dA
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= 9] e 2004
0

= - [e0]"

(6%
0
ICEEY
5.5.3 One-parameter gamma distribution
e—A 7\9—1
Wh NO)=——, A>0, 6>1
eng(0) = o

e}

M, (x) = E[e*!] = f e f(1)da

0

oo \ e—l }\6—1
= e ————dA
]0 ')

dA

o0 )\9—18—/1(1—)6)
- f r(o)

Using substitution, let u = A(1 — x)
B du
C(1-x)

y B ” u \9-1e % du
2 () = (1 _ x) r) (1 —-x)
0

B 1 wue‘le‘” 4
“a-»°| 1@
0
_ 1
(1-x)*

~odA

Thus,

5.5.4 Two-parameter gamma distribution
a

()

When g(; a,B) = e~ ABpa-1 1>0,

a >0,

B> 0.
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The mgf of a two-parameter gamma distribution is

0]

M, (x)=E[ex’1]=f e* f(1)dA

0

* 1 B* ABya—1
= e* e "PAY dA
fo ['(a)

© g=MpH)
— pa o—
B ]0 o) A1d)

Using substitution, let u= A(f — x),
~odA

_du
- (B-x)

Thus

y e ” u \“1e % du
1 () =F <B ) @ G-
0

B 'Ba Oouoc—le—ud
TG0 TT@ "

- (B[jx)a

5.5.5 Chi-square distribution

n/2

. _ _ -2 _
When g(hn) =X?qy = /D) e~ 22 (n/2)-1

The mgf of a gamma distribution is

M, (x) = E[e**] = [7 e**f(1)dA

0 n/2
_ f el L omamy(3)-1gy
0

r2)

/2 oo
2" f A2)1¢ 220 g3
0

r(2)

81



Using substitution, let
du

2—x

A2—-x)=u sdAd =

2 u@2-1 gy

n/2 oo
~ My (x) = . (%)J; (2 — x)(/2-1 e ™™ (2—-x)

e “du

2n/2 0 u(n/2)—1
a (Z—x)<n/2>Jo I'(n/2)

n/2

- (75) <2
- \2—-x ’ x

5.5.6 Inverse gamma distribution

When g()\;a,B)=# e B2 A>0, a>0, B>0

The mgf of an inverse gamma distribution is

M, (x) = E[e**] = ]w e* f(1)dA
0

OOA 'Ba B/A
—Lexwe dA

_ ﬁa j-oo )\—(x—le/lx—ﬁ/)l da
I'(a) Jo

—-a

=L 2(£)* K_o(2/(=Bx)) .7 (APPENDIX 15)

I'a)

26%(-0)2
= @ K_,(2,/(—pBx)), where for a constant v and a parameter z,

K, (z) is the modified Bessel function of the second kind and order v defined by ;
K,(z) = [;° e *shtcoshvt dt.1® (APPENDIX 16)

5.5.7 Erlang distribution

B A1 o8

- A>0, B>0, n€N

)

when g(;n,B) =

The mgf of an Erlang distribution is

e}

M, (x)=E[exl]=] e* f(1)dA

0
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:]w et P _ynm1 -8 gy
0 (n—1)!

B" .
= AL em AMB=X) g
(n—=11)J,

- (nﬂ—nl)! ]000 (,8 i x)n_l e_Z[)’d—Zx ’

where z = A(B — x),

- (/3 [j x)n fooo F(ln) 2 emtdz,

- (ﬁ[jx)n

5.5.8 Inverse Gaussian distribution

B2 ~B-W)
When g, u,B) = (%) A~3/2¢ 2u”n A>0, u>0, g >0

The moment generating function of the Inverse Gaussian (Wald) Distribution is given by

e}

M, (x)=E[e“]=f e* f(1)dA

0

o B 1/2 —BA—p)?
0

BAYE (@ —BO-w?
:(_) J A"3/2 oXo 202X {2
21

B —(B=2xp®)r_B B
L f A~3/2¢ 242 271 g

27r
ﬁ —(B—2xu")A ZXuZ)l B

= 2— euf A2 2w 2hg)
T

B 1/2 B [))MZ -1/4 1 .
_ z(g) eh (ﬂ—qu2> K_1/s _E/ﬁ(ﬂ—ZXHZ)_ 18 (APPENDIX 15)

1/2

2 B 1 ]
= (%) (B—2xp®)Y*ew K_y _H\/ﬂ(ﬂ—zxuz)_




5.5.9 Generalized Inverse Gaussian distribution

0
v

-1
When g(X;0,0,x) = (—) A o~2(5+v2)

2Ky (\/_ ) '

x>0, >0 when8 <0

A>0,

x>0, Y >0 whenf =0
x=0, Y >0 whenf >0

The mgf of the Generalized Inverse Gaussian distribution is given by

M, (x) = E[e*}] = f ) e f(A)dA

- fo e (9)_21(2(:/_) 25+ 2) g
=(9 2K9(J_)f 201 exre=3 ({40 2) g

2]

_ E f
( ZKe(«/_)
¥ o 1 A(l ) 1X

— (¥)2 OO}\9—1 —AJ¥-x -2= da
(x) 2Ko( 157) fo € A

20-1 g3 =25+ ) gy

0

_ (E)E (L|J i‘zx)g Ke (KV ’E%)ZX) 19 (APPENDIX 9)
6

5.5.10 Half-normal distribution

1 2
2\5 A

When g(A; o) =§ (;)Ze_?, A>0 0>0

The moment generating function of the half-normal distribution is given by

e}

M, (x)=E[e“]=f e* f(1)dA

0
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1
— l _ 2 f e 202+x/1
o
1
l Zf _ZL A2—20%xA+0*x%—o*x?)
o
1
1 2 E O-sz co _(l g x)
=—(—)e2fe2fI dAa
o \m 0
A—0o%x
Let z = , dA =o0dz
o
Limits
A Z
0 -0X
(00] (0]

=2e 2 [1+4+ ¢(ox)]
5.5.11 Rayleigh distribution

}\2
When g(A; a)=%e_m, A=>0 0>0

The moment generating function of a Rayleigh Distribution is

e}

M, (x)=E[e“]=f e* f(1)dA

0

© A A2
=J e — e 20Z d)
0 o?

dA
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1 (. 2
=—2f Ae 2077 )
0

o2x2
e 2

(o] 5 _lzz
> (0z+o0°x)e 2 odz,
o —0X

by introducing z as in section 5. 5.10

szz
2

1
M,l(x)— = f (0z + o%x)e” 2* sz

—oXx

22 1
= f (z+ ox)e” 2° dz

—0X

2 2

o

02x2 o2x2

1

= (00] J——
Letly =e 2 [ _ze 2% dz and I, = oxe 2
—0X —0X

Considering I;;

d
Lety=§zz, dz =2

Limits
A y4
—0x o%x?
2
(00] (00]
0.2)(1.2 09} dy
[, =e 2 ze Y —
o2x2 VA
2
02x2
=—e 2 [e7Y]%. =1

02x2

o?x? [ 1, o?x?
—e 2 ze 2° dz+ oxe 2 e
—oX —0X
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o2x

=ox\V2m e [1 + ¢(ox)]

02x2

My (x) =14 oxV2r e 2 [1+ ¢(ox)]
5.5.12 Uniform (rectangular)distribution
When gbb) ==, 0<A<b, b>0

The mgf of a uniform distribution is

M, (x) = E[e*!] = foo e f(A)dA

b
= l] e**da
bJ,
e -1
~ bx
5.5.13 Chi distribution
An—l .
When gamma(A;n) = —4——— e~ /2, A>0 n=12,..
27_1F(n/2)
The mgf of a chi distribution is
co An—l 5
M; (x) =f e ——— e=4/2 g4}

0 227 'T(n/2)

1 °° 22
= f ANl e g
227'T(n/2) %0

= @ ox*/4p_ (—x) 2 (APPENDIX 17)

Where for a parameter z and a constant p, D,,(z) is a parabolic cylindrical function given by

_ 2 A/ _ 2
D,(z) = 2-P/2,-2%/4 LiFl P EZ_ _ﬂipl _1 p EZ_ 21
P F(l—p) 272’2 F(—_P) 2 2’2
2 2

(APPENDIX 18)
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Chapter 6
Exponential mixtures, survival-time and related functions

In this chapter all survival time and related functions of mixtures of exponential
distribution with mixing distributions mentioned in sections 5.4 and 5.5 are derived

6.1 Mixtures with discreet distributions
6.1.1 Exponential-Bernoulli mixture
For a Bernoulli distribution, p(3;8 ) = 6*(1 — 6)**, 0<0<1, 1=0,1,
The mgf of a Bernoulli distribution is
My(x) =1—-6(1—-¢e")
The following are survival-time and related functions for the exponential-Bernoulli mixture.
Survival function:
S) =M (—x)=1-6(1—e™)
Cumulative distribution function:
F(x)=1-S(x)=0(1—e7%)
Probability density function:
f(x) =F'(x) =60e™*

Hazard rate function:

_f(x) B Be™* B 6
) =5y " T-e—e™ - A—8)e" 10

Curves of exponential (A=1), Exponential-Bernoulli mixture (6=0.1, 6=0.5)

1.2
1

0.8

0.6 \

04 +— \

\ ——— mixture(6=0.1)
0.2
0 — e — | mixture(6=0.5)

f(x)

exponential(A=1)
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6.1.2 Exponential-Binomial mixture
For a binomial distribution, (A; 8,n) = ;)97‘(1 -, A=0,12..,n, 0<6<1
The mgf of a binomial distribution is
M, (x) =[(1—0)+ 0e*]"
The following are survival-time and related functions for the exponential-binomial mixture.
Survival function:
Sx)=M; (—x) =[(1—-0)+0e™™]"
Cumulative distribution function:
Fx)=1-S(x)=1—-[(1—-6) + 0e*|"
Probability density function:

f(x) =F'(x) =nfe™[(1—0) + e > 1
x>0, 0<6<1, n=1,2,..

Hazard rate function:
_f(x) nBe*[(1—0) + e ¥

h(x) = S(x) [(1—06)+ 6e*]"
B no
0+ (1-0)e*

Curvess of exponential(A=1), exponential-binomial mixture (n=5,0=0.1,06=0.5, 6=0.9)

exponential(A=1)

— mixture (n=5,6=0.1)
1 \ mixture (n=5,6=0.5)

= mixture (n=5,0=0.9)

f(x)
/

Fig.6.1.2(a)
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Curves of exponential(A=1), exponential-binomial mixture(n=10, 6=0.1, 6=0.5, 6=0.9)

10

exponential(A=1)

f(x)
D
/

fim mixture(n=10,6=0.1)

2 \\ mixture(n=10, 6=0.5)
0 ﬁg‘—= ——mixture(n=10, 6=0.9)
2 0 0.2 04 0l6 0.8 | 1.2 14 1.6
X
Fig. 6.1.2(b)

6.1.3 Exponential-Geometric type | mixture
when A is the number of failures before a success,
p(;0)=6(1—-60)1 forA=0,1,2,.. and 0 <6 < 1.

The mgf of a geometric type | distribution is
fe*

My (=0 =1—a gy e

The following are survival-time and related functions for the exponential-geometric type |

mixture.

Survival function:

SG) = My (—x) = —2
=AY E T T ) e
Cumulative distribution function:
Ge™* e*—1
F =1-S =1- =
() () 1—(1—0)e* e*—1+6
Probability density function:
() = F/(x) = ——2 S0 0<f<1
fO=F0=ra—Trg *=0 0=
Hazard rate function:
it e”

h(x)_S(x)_ eX—1+4+6

90



1.2
Curves of exponential(A+1), exponential-geometric type I mixture (6=0.1,6=0.5, 6=0.9)
1
0.8 -
;_?— 06 exponential(A=1)
\ = mixture(6=0.1)
0.4 mixture(6=0.5)
0.2 \ mixture(6=0.9)
TSN
0 \F
0 2 4 6 X 8 10 12
Fig. 6.1.3

Examining the curves of exponential (A = 1), exponential-geometric type | (6=0.1, 6=0.5,
0=0.9) in Fig. 6.1.3 clearly shows that the mixtures approaches a uniform distribution as 6
tendsto 1

6.1.4 Exponential-Geometric type Il mixture
when A is the number of trials for a first success
p(};6) = (1 —6)* forA=0,1,2,..and 0 <6 < 1.

The mgf of a geometric type Il distribution is
6(1—-0)e*
1-(1—-0)e~

M, (—x) =

The following are survival-time functions for the exponential-geometric type Il mixture.

Survival function:
6(1—6)e™™ _ 6(1-6)

S(x)=MA(_x)=1_(1_9)e—x_ eXx—14+6

Cumulative distribution function:

61—-6)  e*—1+6?
e*x—1+60  e*x—1+86

Fx)=1-S(x)=1-

Probability density function:

1—-0)0e*
) = () = - 0)0e

(ex—1+6)%’
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Curves of exponential(A=1), exponential-geometric type Il mixture(6=0.1, 6=0.5, 6=0.9)

10
g A

exponential(A=1)

f(x)
D
| e

mixture(6=0.1)
2 \ mixture(6=0.5)
4 - mixture(6=0.9)
0 1 I —
0 0.5 1 1.5 2 2.5
X
Fig.6.1.4

Hazard rate function:
f(x) e*

h(x)zS(x)_ ex—1+6

6.1.5 Exponential-Negative binomial type | mixture
When A is the number of failures before the rth success
p(0,r) =" 1erA -6 A=0,12..,n, 0<6<1

The mgf of a negative binomial type | distribution is

My () = (1 — (19— 9) ex)r

The following are survival-time and related functions for the exponential-negative binomial

type | mixture.

Survival function:

S0 =My (=) = (1 —Q - D) e—X)r

Cumulative distribution function:

F(x)=1—5(x)=1_(1_(1f9)e—x)r
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Probability density function:

r(1—6)(6e*)"
(ex—1+6)r+1’

fG) =F(x) =

Curves of exponential(A=1), exponential-neg. binomial type |
mixture(r=3,0=0.1, 6=0.5, 6=0.9)

30
25
20
15 exponential(A=1)
= 10 = mixture(r=3,6=0.1)
5 l mixture(r=3,6=0.5)
0 r—!_ mixture(r=3,6=0.9)
-5 05 ] 15 2 25 2 35

\v) .

Fig. 6.1.5(a)

Curves of exponential(A=1), exponential-neg. binomial type | mixture
(r=6,6=0.1, 6=0.5, 6=0.9)

60
50
40
30
20
10 mixture(r=6,6=0.5)
0 -
-10 ¢ 0.

exponential(A=1)

= mixture(r=6,6=0.1)

f(x)

mixture(r=6,6=0.9)

on
[y
on
N
N
un
(o
w

Fig. 6.1.5(b)

Hazard rate function:
_fe)_ r(A-6)
S(x) e*x—1+6

h(x)

6.1.6 Exponential-Negative binomial type Il mixture

When A is the total number of trials to achieve r successes
p(0,n) =("D)erA -, A=rr+1lr+2., 0<6<1



The mgf of a negative binomial type Il distribution is

My () = [1 - (91 e—xe)ex]r

The following are the survival-time and related functions for the exponential-negative
binomial type Il mixture.

Survival function:

S(x) = My (=x) = ( ge _x)r

Cumulative distribution function:

F) =1-50) =1- (= (f e__;) e) -1~ (5=173)

Curves of exponential(A=1), exponential-negative binomial type
li(r=3, 6=0.1, 6=0.5, 6=0.9)

35

30

25 ‘

20 \ exponential(A=1)
s 15 \ mixture(r=3,0=0.1)

10

\ mixture(r=3,6=0.5)

5 &

0 _¥ . mixture(r=3,6=0.9)

50 0.5 ] 1.5

X
Fig.6.1.6(a)

Curves of exponential(A=1), exponential-negative binomial type Il
mixture(r=6,0=0.1, 6=0.5, 6=0.9)

70
60
50
40 exponential(A=1)
30

20
10 =4 mixture(r=6,6=0.5)

f(x)

mixture(r=6,6=0.1)

0 - mixture(r=6,6=0.9)
-10 ¢ 0.2 0.4 0.6 0.8 ] 1.2 1.4 1.6

Fig. 6. 4.1.6(b)



Probability density function:

r OTe*

fG) =F'(x) =

Hazard rate function:

(ex—1+6)r*1’

fx)

h(x) =

6.1.7 Exponential-Poisson mixture

For a Poisson distribution,

-0pgA
p(;0) ===, 1=0,12,.. and 6 >0

The mgf of a Poisson distribution is
M, (x) = b1

S(x) e*—1+6

Curves of exponential(A=1), exponential-Poisson mixture(6=0.1, 6=0.5, 6=0.9)

1.2
1

0.8 -

f(x)

0.6 +—

0.4 \

0.2

0 ;

exponential(A=1)
= mixture(6=0.1)
mixture(6=0.5)

= mixture(6=0.9)

Fig. 6.1.7

The following are the survival-time and related functions for the exponential-Poisson

mixture.

Survival function:
S(x) = My (—=x) = 7D

Cumulative distribution function:

F(x) =1-5(x) =1— b1

Probability density function:

f(x) =F'(x) = efle™-1)—x
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Hazard rate function:

h(x)z%z e

—-X

6.1.8 Exponential-discrete uniform mixture
when p(;;n)=1/n, A= 12,..,n, nEN.
The mgf of a discreet uniform distribution is

ex(l _ enx)

M; (x) = (1 — )

The following are the survival-time and related functions for the exponential-discreet
uniform mixture.

Survival function:
e—x(l _ e—nx) enx -1

S(x) =My (—x) = n(l—e>*)  ne™(e*—1)

Cumulative distribution function:
e™ —1 ne™*t! —(n+ 1e™ + 1

Fx)=1-5Sx)=1- ne™(e* — 1) - ne™(e* — 1)

Probability density function:

nne—n—1e"™E*-2)+n+1)e™®™V* + (n+1)e* —n
ne™(e* —1)2

fO)=Fx) =

x>0

curves of exponential(A=1), exponential-discrete uniform
mixture(n=1,2,5,10)

50

40 \

30 \ exponential(A=1) 1
E’ 20 \ mixture(n=1)

10 \ mixture(n=2)

0 4 IS — = mixture(n=5)

0 1 5 3 mixture(n=10)

Fig. 6.1.8



Hazard rate function:
f(x) n(ne—n-—1e™(*—-2)+n+ De™D* 4 (n+1)e* —n

h(x) = S(x) (e* —1)(e™ —1)

6.1.9 Exponential-logarithmic mixture
92

Whenp(A;6) = _)1ln(1——9)'

A=12,. 0<6<1

The mgf of a logarithmic distribution is

log(1 — 0e™)
log(1 —6)
The following are the survival-time and related functions for the exponential-logarithmic

M; (x) =

mixture.

Survival function:

log(1 — 0e™™)
= M —_ =
SO =M, (1) = s
Cumulative distribution function:
log(1 —6e™%)
Fx)=1-S(x)=1- log(1 — 8)

Probability density function:

fe™*
(1 —60e*)log(1—0)

fx) =F'(x) =— x>0 0<6<1

Curves of exponential(A=1), exponential-logarithmic
mixture(6=0.1, 0.5, 0.9)

exponential(A=1)

f(x)
ARRFS

mixture(6=0.1)

1 —\ mixture(6=0.5)
\
0 l\‘#_ —miXtUre(e=O.9)

Fig.6.1.9
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Hazard rate function:
f&) fe™* B 0
S(x)  (1—0e®)log(1—60e*)  (e*—0)log(1l — fe~*)

h(x) =

6.2 Mixtures of the exponential distribution with continuous distributions

6.2.1 Exponential-beta mixture
}\a—l(l _ A)B_l
B(a,p)

The mgf of a beta distribution is

When p(A; a,B) =

0<x<1 a>0 >0

M) (x) =1 Fy(a; a + B;x)
The following are the survival-time and related functions for the exponential-beta mixture:

Survival function:
S(x) =M, (—x) =1 Fila;a + B;—x) = e ™ F1(B; @ + B; x) .** (See
APPENDIX 19)

Cumulative distribution function:
Fx)=1-Sx)=1—-e*Fy(B;a+L;x)

curves of exponential(A=1), exponential-beta mixture(a=0.2,a=1,$=0.1)

1.2
1
0.8 -
= 0.6 exponential(A=1)
= 04 - = mixture(a=0.2,$=0.1)
0.2 — '
; \F . mixture(a=1,$=0.1)
0.2 ¢ .5 15 2 :

N
U

(@]
¥
..
..
U
N

Fig.6.2.1

Probability density function:

fO=F@==[1-e* Ffa+fx], 0<x<1

=e‘x1F1(B;a+ﬁ;x)-e‘x0f%ﬁ1F1(,B+1;a+ﬁ+1;x)

= e[ FilBia+ Bix) -2 FaB + La+ B+ 1)) o8



Hazard rate function:
£ 1 F1i(B;a+ B;x) —a"%ﬁ.lFl(ﬁ+1;a+ﬁ+1;x)
S 1 F1(B;a+ B;x)

6.2.2 Exponential-exponential mixture

h(x)

When g(A; 8 ) = 6e~%, 6>0 1>0,
The mgf of an exponential distribution is

0
M, (x) = m

The following are the survival-time and related functions for the exponential-exponential
mixture.

Curves of exponential(A=1), exponential-exponential mixture(6=0.1,6=0.5, 6=0.9)
12
10
8
= 6 exponential(A=1)
=
4 mixture(6=0.1)
2 \ mixture(6=0.5)
0 _¥ mixture(6=0.9)
0 1 2 3 4 5
X

Fig. 6.2.2

Survival function:

S(x) =M, (=x) = e

Cumulative distribution function:

0 X
F)=1-SC) =1-g=7 =57

Probability density function:

f@=F®=2[121] x>0 ”

0+x



0

- (6 + x)2
Hazard rate function:
7]
2 1
h(x) :f(x) _ 6+ x) _
S(x) 0 0+ x
0+ x

6.2.3 Exponential-one parameter gamma mixture

e~ A }‘9—1

When g(}; 0) = r@)

A>0, 6>0

The mgf of a one-parameter gamma distribution is

1
M) (x) =——
The following are the survival-time and related functions for the exponential-one-
parameter gamma mixture.

Survival function:
1

S(x) =My (—x) = AT+ 0°

Curves of exponential(A=1), exponential-1-param. gamma mixture(6=0.1, 6=1, 6=5)

6
5
4
= 3 exponential(A=1)
(=
5 \ mixture(6=0.1)
\ mixture(6=1)
1 -
e mixture(6=5)
0 I T - T
0 1 2 3 4 5

Fig. 6.2.3

Cumulative distribution function:

F(X):l—S(X):l— m
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Probability density function:

0

W’ x>0, 0>0

fO)=Fx) =

This is the pdf of a Pareto distribution of the second kind

Hazard rate function:

0
f) @+t 6
h(x)_S(x)_ 1 T 14x
(1+x)°

6.2.4 Exponential-2-parameter gamma mixture

When g()\;a,B)=% e~ A1 A>0, a>0,>0

The mgf of a 2-parameter gamma distribution is

M () = (ﬂ [j x)a

The following are the survival-time and related functions for the exponential-two

parameter gamma mixture.

Survival function:

B a
() =My (-0 = (5
Cumulative distribution function:

F(x)=1—5(x)=1—<ﬁix)a

Probability density function:

ﬁa

a
f(x)zF(x)zm )

x>0, a>0, g >0

This is the pdf of a Pareto distribution of the second kind with parameters a and f.

Hazard rate function:
fx) «

h(x) = S(x) B+x 101




curves of exponential(A=1), exponential-2-param.gamma
mixture(a=0.1, p=0.1,=1,B=5)
1.2
1
08 N tial(A=1
§ 0.6 LN exponential(A=1)
0.4 -\ mixture(a=0.1,8=0.1)
0.2 B | ; mixture(a=0.1,=1)
0
e mixture(a=0.1,$=5)
0 1 2 3 4 5
X

Fig. 6.2.4(a)

Curves of exponential(A=1), exponential-2-param.gamma(a=1, =0.1, =1, B=5)

12
10
8

= 6 exponential(A=1)

4 mixture(a=1,p=0.1)
2 mixture(a=1,p=1)
0 _hﬁ; mixture(o=1,p=5)
0 1 2 3 4 5
X

Fig. 6.2.4(b)
Curves of exponential(A=1), exponential-2-param. gamma(a=5, p=0.1,8=1,=5)
60
50
40
..3_ 30 exponential(A=1)
20 - mixture(a=5,8=0.1)
10 mixture(a=5,p=1)
0 mixture(a=5,B=5)
0 0.2 0.4 0.6 0.8 1 1.2
X

Fig. 6.2.4(c) 102



6.2.5 Exponential- chi-square mixture

Thus when g(A;n) = X?,,) = gamma (A;E,l) - e~ M2)\(@/2)-1
2 22I'(n/2)

The mgf of a chi-square distribution is

Mﬂ@“):<22 )

— X

n/2

The following are the survival-time and related functions for the exponential-chi-square
mixture.

n/2
Survival function: S(x) = M, (—x) = (i)

2+x

Cumulative distribution function:

F(x)=1—5(x)=1—(2ix)

n/2

Probability density function:

n
n2z 1

f)=F(x)=———5—
(2 + x)zH

) x>0 n=1,2..

This is the pdf of a Pareto distribution of the second kind with parameter g

Hazard rate function:
fx) n
S(x) 22+x)

h(x)

Curves of exponential(A=1), exponential-chisquare mixture(n=1, n=2,n=5)

1.4
1.2
1
= 0.8 \ exponential(A=1)
= 06 i =
mixture(n=1)
mixture(n=2)
- e mixture(n=5)
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6.2.6 Exponential-inverse gamma mixture

When g(?\;a,B)z#;H e B2 x>0, a>0, B>0

The mgf of an inverse gamma distribution is

2%(~x)2
N e 2)

The following are the survival-time and related functions for the exponential-inverse
gamma mixture.

Survival function:

s =My (0 = Lk 2y @)

Cumulative distribution function:

Fe =1-500) =1- 22 o [y

I'(a)
Probability density function:
o d [ 22 )
f(x) =F'(x) = o | T K_,2(Bx)]| , x>0 a=1.2,..

2p% d a
= T@ax @7 K@)

du_a %_
dx_Zx

K—a(z\/ (,Bx) - Kl—a(z\/ (Bx 23

a
Using the product rule,letu = x2 ,

dv -

Andletv = K_o(2\/(Bx), dx  2/(6x)

1

( APPENDIX 20)
v 2B% d(uv)
Fil) = - I'(a) dx
A (2(/(Bx) + K1_o(2y/(Bx) | — (2,/(,[>’x)gx%_1
F(a) 2 (,BX —-a 1-a —-a 2

104
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Hazard rate function:

fx) J(Bx

a
2

(- )52V ) + K0 VB

h(X) = @ = Z,B“x

[(@) — 28%()Z K_q (2 (X))

Curves of exponential(A=1),exponential-inverse gamma
mixture(a=0.1,=0.1,8=1,8=5)

1.2
1
0.8 \
=< 06 \ exponential(A=1) 1
- 04 \ = mixture(a=0.1,$=0.1)
. 1N
\\\ mixture(a=0.1,p=1)
\ mixture(a=0.1,$=5)
0 | — ﬁ=f
0 0.5 1 1.5 2 2.5
X
Fig. 6.2.6(a)
Curves of exponential(A=1), exponential inverse gamma
mixture(a=1, 5, 2, f=0.1, 2)
1.5
1
0.5
exponential(A=1
0 / _— — p (A=1)
= = mixture(a=1,$=0.1)
b -0.5 0, 1.5 2
mixture(a=5,$=0.1)
1 / —— mixture(a=2,p=2)
-1.5
I
-2
X
Fig.6.2.6(b)

6.2.7 Exponential-Inverse Gaussian mixture

B 1/2 -B(A-)?

. — (= -3/2, 2u?x
When g u,B) (27‘[) A3 %e

A>0, u>0 B>0
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The mgf the Inverse Gaussian (Wald) distribution is

1/2

MG = () -2k Ky, [ B2

The following are the survival-time and related functions for the exponential-inverse
Gaussian mixture.

Survival function:
1/2

S(x)=M<—x)=(%) (B+2307) /e K. 1/2[ m}

Cumulative distribution function:
1/2

2
Fx)=1-S(x)=1- (%> (ﬂ+2xu2)1/4eu K_ 1/ [ JB(B+2xp2 )]

Probability density function:

1/2

F@ =@ = () of {2t K [ VB0

T
x>0

2
Using the product rule, let u = (B+2xp?)/*4, W _ K (B+2xp?)3/4
2

dx
And let

17—K1/2[ \/m]

dv
dx 2 B ([3 +2xp?)

Keupa [V B2 Ko [ B2 =

(APPENDIX 20)

1/2 Ed
PG = () = — (/qu> ov L)

2\ B
Y /
= <7T[>)H> en {(ﬂ+2xu2)1 4<

5 ,3([)’+2 ) 1/2[ VB (B+2xp? ]

+ Ky m}) Kooy [ P28 Yy g2ty 3/4}
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2

1/2 g u .
= (%) en {2,81/2 (.3+2Xu2)‘3/4[(ﬂ+2xu2)1/2 _”'31/2]1{_1/2 (E/'B('B-I_ZX”Z))

+ oo (VBT Z0))

Curves of exponential(A=10), exponential-inverse Gaussian
mixture(p=0.1,1=0.1,1,10)

14

12

10

% 8
“ 6
4

2

0

0 1 2 3 4 5
X

exponential(A=10)

mixture(p=0.1,u=0.1)

mixture(B=0.1,u=1)

mixture(f=0.1,u=10)

Fig. 6.2.7(a)

Curves of exponential(A=1), exponential-inverse Gaussian
mixture(p=1,10,5, u=0.1,0.1,5)

1.2
1 S~
0.8 \\
06 \ — exponential(A=1)
“E‘_: 0.4 \ mixture(p=1,u=0.1)
0.2 X mixture(B=10,u=0.1)
S ——
0 Hfr— —  —e—— e mixture (B=5,u=5)
-0.2 4
-04
X
Fig.6.2.7(b)

Hazard rate function:

h(x) = %
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(%)1/2 e% {Zﬁl/z (B+2xp2)~3/4[—pupY/?]K_ 1/2( VB (B+2xp? ))+K1/2( VB (B+2xp? ))}

2 1/2 B
1= (2) " iy e i, [ BT

6.2.8 Exponential-generalized inverse Gaussian mixture
2

When g(d;0,¢,x) = (LIJ)

9—1
e~2({+v) A> 0,

2K (JxP) '

x>0, >0 whenf <0
x>0, >0 whenf =0
x =0, Y >0 whenf >0

The mgf of a generalized Inverse Gaussian distribution is given by

on = (0 ) I

The following are the survival-time and related functions for the exponential-generalized
inverse Gaussian mixture.

Survival function:

:
S() = My (—x) = (‘“)f(w fzf K@%)
Cumulative distribution function:
re =150 =1- (Y ()¢ LTS
Probability density function:
f(x>=F'(x>=—(9)§; 4 (52 )g Ko (0 + 29))
X/ Ko(yxp) dx + 2x
x>0
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Using the product rule, let
0 9
_ ( X )E du —0xz2
e TPy

-
(P + 2x)2**

And let

v = Ko (/x(W + 2x),

d 0
B~ T R (2 — Kowa (V0 29)

( APPENDIX 20)

Thus

q;)% 1 d(uv)

008 s

0 0

P2 1 2 0
() w20 ~ K (Vo 29)

6

—0vy2
+ Kg(,/x(tp + ZX)—XZt9

(P + 2x)2**

0 6
N2 1 |02 Ko(Yx(W + 2x) ( 1 1 )
=|—= —— |+ Kg1(Vx(W + 2x
(X) Koo | g+ 207 Wz ) 3 )

Curvesof exponential(A=1), exponential-generalized inverse Gaussian
mixture(x=1,y=1,6=0, 0.5, 1)

exponential(A=1)

mixture(x=1,{=1,6=0)

mixture(x=1,y=1,6=0.5)

= mixture(x=1,{=1,6=1)

09

Fig.6.2.8(a)



Curves of exponential(A=1), exponential-gen. inv. Gaussian mixture(x=5,10,y=1,6=0,1,5)

3
2.5

2 -+

exponential(A=1)

1.5 mixture(x=5,P=1,0=0)

f(x)

mixture(x=10,{=1,06=0)

1

0.5 mixture(x=5,=1,0=1)
0 — mixture(x=5,{=1,0=5)
05 0.5 15 y 25
X
Fig.6.2.8(b)

Hazard rate function:

0
" 1 |00 Ko (VX + 2x) ( 1 1 ) i
v 1~ 1 +1\/ (P +2
_ W e wrzor \grogt g R
(E)g( X )g Ky (,/X(L|J + ZX)

y + 2x Ke( /Xll")

X
(00 ( 11 ) U+ 207K (X 7 25)
(W + 20x2 Ko (Vx(W + 2x)

W+202 X2

6.2.9 Exponential-half normal mixture

1 /2\2 _»
When g()\;a)z;(;) e 202, A>0, 0>0

The mgf a half-normal distribution is

02x2

M; (x) = 2e 2 [1+ ¢(ox)]

The following are the survival-time and related functions for the exponential-half normal

mixture.

Survival function:
110

S(x) = My (—x) = 2e°%/2[1 — ¢(ox)]



Cumulative distribution function:
F(x) =1—-S(x) =1-2e"%/2[1 — ¢(0x)]

Probability density function:
fo) =F@) == = 2572 [1-¢p(o0)]|, x>0,

Using the product rule, let
du

u=2e°%/2 — = 202xe%°¥*/2
dx
And let
v=[1-¢(ox)], and y = ox
dy _
dx o
dv 1 )
nv=1- , oo =———=e7Y
0169 iy =
dv dv dy 1,
—=—.—"—=——¢e"Y.0
dx dy dx V21
o —0'2X2
=— —e
V2n
L f(x) =F'(x) = dww) _ 2 g0tz 2 e_czzx2 —[1 — ¢p(0x)]20%xe®*"/2
dx V2m

2 .
= 0\/(;) —20%x[1 — $p(0x)]e®**/2 ,x > 0,0 > 0

Curves of exponential(A=1), exponential-half normal(c=0.1,0.5, 1)

1.2

1

0.8

0.6

0:4 . \\ = mixture(c=0.1)
0.2 \X mixture(o=0.5)

ixt =1
0 ﬁ mixture(o=1)

f(x)

exponential(A=1)

Fig.6.2.9
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Hazard rate function:

fG a\/(%) — 20%x[1 — ¢(0ox)]e®**/2
S(x) 2e9°%*/2[1 — ¢(ox)]

h(x) =

6.2.10 Exponential-Rayleigh mixture

When
A A%
g(l;a)=;e 202, A=>0 0>0

The mgf of the Rayleigh distribution is

o2x2

M; (x) =14 oxV2nr e 2 [1+ ¢p(ox)]

The following are the survival-time functions for the exponential-Rayleigh mixture.

Survival function:
2

S(x) =M, (—x) =1— ox\21 e - [1—q5(0x)]

Cumulative distribution function:
2 2

Fx) =1-Sx) = oxV2n e~z [1— ¢(ox)]

Probability density function:
f(x) =F'(x) = O'\/ZT[;—X {x e%"zxz[l — gb(ax)]}, x>0

Using the product rule, let

du
u=xe®* —=(0%x*>+1) e20°%”
dx
And let
[1-g(on], 2= L oo
v=[1—-0¢(ox)], —=—-——e2
dx \2m
Thus,
d(uv du
FG) = F/(x) = ovzr & )—a\/_[u—+va
122 O 1.2 2
= aVZn[ x 29 % —— 729" 4 (¢2x% + 1)[1 — d(0ox 70°x
Nor ( )1 = ¢p(ox)] ez

= oV2m (62x% + 1)[1 — ¢p(ox)] 2 %" — g2y
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Curves of exponential(A=1), exponential-Rayleigh(c=0.1, 0.5, 1)
1.4

1.2
1

0.8 -
0.6 -
0.4
0.2 \\
0 —

exponential(A=1)

f(x)

Mixture(o=0.1)

Mixture(o=0.5)

Mixture(o=1)

Fig. 6.2.10

Hazard rate function:

_ f(x) _ oV2m (o2x% + 1)[1 — ¢p(ox)] 037 x% _ 52y

h(x) = = -
&) 1— ox\2r e 2 [1— ¢(ox)]

6.2.11 Exponential-uniform(rectangular) mixture
When g(b) ==, 0<A<b, b>0

The mgf of a uniform distribution is

eb* — 1
bx

M(x) =

The following are the survival-time and related functions for the exponential-uniform
(rectangular) mixture.

Survival function:

1 —ebx
Sx) =M(—x) =——
bx
Cumulative distribution function:

1—ebx
Fx)=1-S(x)=1——

bx

e P +phx—1 113

bx



Probability density function:

1— (bx +1)e

) , x>0, b>0

f)=F'(x) =

Hazard rate function:

1—(bx +1)e

) b2 1= (bx + e
h(x) = S(x) 1—eb*  x(1—eb¥)
bx

curves of exponential(A=1), exponential-uniform mixture(b=0.5, b=2, b=5)

3

25

)
1.5\

exponential(A=1)

=

1. \ mixture(b=0.5)
05 & mixture(b=2)
. \

0 |\“ ——mixture(b=5)

0 1 2 3 4 5 6
X
Fig.6.2.11

6.2.12 Exponential-Erlang mixture

when g(A;n, B) = %A’H e, A>0, >0 neN

N=the set of natural numbers

The mgf of an Erlang distribution is

n

My (%) = (,Bﬁx)

The following are survival-time and related functions for the exponential-Erlang mixture.

Survival function:

SG) = My (—x) = (B%)

Cumulative distribution function:
114

FG)=1-Skx) =1- (ﬁix)n



Probability density function:

FG) = /() = —F

(ﬂ + x)n+1 !

Curves of exponential(A=1), exponential-Erlang
mixture(n=1, B=0.1,p=1.5, B=5)

12
10

exponential(A=1)

mixture(n=1,=0.1)

mixture(n=1,p=1.5)

f(x)
O N B O
pnsesstt

= mixture(n=1,p=5)

Fig. 6.2.12(a)

Curves of exponential(A=1), exponential-
Erlang(n=2, =0.1, B=1.5, B=5)

12
10
8 .
= 6 exponential(A=1)
[re=
4 mixture(n=2,=0.1)
2 é mixture(n=2,B=1.5)
0
mixture(n=2,3=5)
0 0.5 1 1.5 2 2.5
X
Fig.6.2.12(b)
culdesiof exponential(A=1), exponential-Erlang(n=5,p=011, B=1.5, B=5)
10
8
6 exponential(A=1)
é . = mixture(n=>5,$=0.1)
mixture(n=>5,=1.5)
2 = mixture(n=>5,p=5)
O _.
) 0 0[5 L 115 2|5 3
X

Fig. 6.2.12(c) 115



Hazard rate function:

n

_f) B+ 1
M) =56 = LY “Bx
p+x

6.2.13 Exponential-chi mixture

An—l
When gamma(; n) = —

——— e ¥2 . A20, n=12,..
22T (n/2)
The mgf of a chi distribution is
I'(n)
My (0 = —g— e /4D ()
2271 (3)

The following are the survival-time and related functions for the exponential-chi mixture

Survival function:

SG) = My (—x) = —

—————e*"/*D_,,(x)
i)
)
2 / 2
— F(n) ex2/42n/26—x2/4 \/T[ F E lx_ —- 2mx F 1+n Ex_
Zg_lr(g) F(1+n)11 2'2° 2 F(E)“ 2 2’2
2 2 2

_ZF(n)\/n 1 _(n 1_x2 V2x _(1+n 3_x2
(@ F(1;n)1F1<§’§'7>_W1F1< 2 'E’?)

by substituting for D_,(x) from section 5.5.13

Cumulative distribution function:

F(x)zl—S(x)zl—nF&

~ 2l(n)Vr 1

F (E 1.£>_ﬁ F <1+" E.x_z)
1“(%) F(lnan)“z’z’z F(n)“ 2 '2"2
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Probability density function:

d I'(n)

fx)=F'(x)=— e /4D_ ()|, x>0 n=12..
dx | o5-1p (E)

_d ZF(n)\/n; L <El_x__ .
Tl (e )

p ]

B ANCONL ) 1 - n 1_x2 V2x 1+n 3_x2

== m ax || 7)) i T
r(z) r(=5+) r(3

L _ - nlx -
etv—r(l_l_n)ll 5,5,7 - 11
2
. - x* dy
By the making the substitution, y = T I X

dv n 1+n 3
And5= 1+ n 1'1< > 5:3’)
r(=2)

(APPENDIX 21)

dv dv dy n F 1+n 3

S—=—— =X =y

dx dy dx 1+n 11( 2 2 )
r(=2)

2x \/_1+n_F (3+n 5_ >+ 1 - (1+n 3_ )
F(%) y 3 141 2 'Z’y 2\/}/11 2 'Z’y

. nx P 1+n 3_x2
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2 [x*1+n _ (3+n
Zalad

Thus,f(x) = F'(x) = 2F(n7)1\/7t ;l:
r(z)

2Vl 2 [x2 1+n 34+n 5 x2 1 14+n 3 x2
= 1 By X +—a b 2'

X
n m|vV2 3 2 2"\ 2’
r(z) (r(z)
nx P 1+n 3 x?
— F(1+n) 111 2 ;577
2
Hazard rate function:
f(x)
h _ _
(x) SO0
n F(1+n§x_2)_ 2 [x_21+nF<3+n§x_2)+iF(1+n§£)]
Py T2 202 I(E) 5 3 Ui\T2 272 S1\T2 2072
(=) 7
1 F (R 1 x2 2x F 1+n 3 x*
r 1+n\1°1\2’2’2 (ﬂ)'l 1 2’2’2
(=57) 7
Curves of exponential(A=1), exponential-chi mixture(a=0.1,b=0.2,n=1,n=2)
50
40
. 30
s 2 exponential(A=1)
mixture(a=0.1,b=0.2,n=1)
10 .
- mixture(a=0.1,b=0.2,n=2)
0 #/
0 0.5 1 1.5 2
X

Fig. 6.2.13(a)
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Curves of exponential(A=20), exponential-chi(a=0.1,b=2,n=1,n=2)

(x)

40

30

20

10

y 4
Y A
V4

T

0 0.5

exponential(A=20)

mixture(a=0.1,b=2,n=1)

1.5

mixture(a=0.1,b=2,n=2)

Fig. 6.2.13(b)

Curves of exponential(A=20), exponential-chi(a=b=5, n=1, n=2)

(x)

40
35
30
25
20
15
10

5

0

v :
y 4
y i
v 4
y 4
v 4

N

i..

exponential(A=20)

mixture(a=5,b=5,n=1)

0 0.5

1.5

mixture(a=5,b=5,n=2)

Fig. 6.2.13(c)
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Chapter 7
Conclusion

Characterization. Characterization of a probability distribution is a powerful tool in
enabling the usage of the distribution. A number of characterization procedures for the
exponential distribution have been highlighted in this study. In particular, the principles
underlying the characterizations by lack of memory and its extensions as well a sample of
three characterizations by order statistics have been clearly analyzed in the study.

Characterization via other properties have also been briefly mentioned together with their
accompanying proofs, lemmas and references. This provides a researcher using the
exponential distribution a basis for the method to adopt in testing the exponentiality of his
data.

Mixtures. Many of the mixtures of exponential distribution have curves whose right tails
resemble that of the exponential distribution but with skewness coefficients that are
clearly parameter dependent. This is true for all parameter values provided that the values
lie in their workable ranges. All exponential mixtures involving discrete distributions fall in
this category. Many of the mixtures involving continuous distributions also fall in the
category.

However, it is also clear in some instances of mixtures of continuous distributions that
certain combinations of parameters result in behavior that is not of a probability
distribution. That means that in the event of application of these mixtures, careful
attention must paid to determining the parameter combinations that are useful. This
presents an area that requires further research.

Mixtures of the exponential-inverse gamma (Figs. 6.2.6 (a),(b)) and exponential-inverse
Gaussian (Fig.6.2.7(a),(b)) are two examples that have this characteristic.

The exponential-chi mixture curves (Figs.6.2.13(a),(b),(c)), do not have the characteristic of
a probability distribution and more investigation is required to determine whether there
exist a band of parameter values and parameter combinations for which the mixture is a
probability distribution.

Since the nature of a tail is an important factor in the applications of a continuous
distribution, the parameter dependence of these tails in mixtures of the exponential
distribution is an area that also requires further investigation for their applications to be
suitably employed.
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APPENDIX 1

SUMMARY. The solutionto a functional equation is given, which is in turn used to
characterize the {semi-) stabhle distributions and the exponential distribution.

1. INTRODUCTION

The classes of non-degenerate characteristic functions ¢(f) which satisfy
the equation

Bt = 1§y 1) T ¢ (—ayy, ) (1)

where +/’s and a’s are non-negative numbers, were determined by Lévy (1937,
¢(t) = ¢"(at)), Laha and Lukacs (1965, all y’s and the sum of squares of a’s
are equal to one), Shimizu (1968, ¢’s are equal to one and the right hand side
of (1) is a finite product), Ramachandran and Rao (1970, general case) and
Davies and Shimizu (1976, general case). In the last two papers the authors
assumed some additional conditions including

1 < % yaf for some > 0 e (2)
i=1
and
@ = supa, < 1. o (3)
ﬂ. -
The equation (1) is expressed in terms of the function f(f) = —log ¢(t) as

F(@) = Zyoaf (@ogt)+Z ¥g5,1 [(—055 t),
[t] <ty <t, =inf{t;t> 0,¢(t) = 0}. e (4)
This equation can be generalized in the form

Jt)y = | flat) dUy(a)+ [ f(—at)dUya), [t| <t ... (5)
©, 1] (0,1]

where U’s are monotone non-decreasing left continuous functions, possibly
Ur(l) = 0. The equation is a special case of the one considered in the book
by Kagan, Linnik and Rao (1973). In the later section (Section 3) we shall
give a complete solution to this equation assuming only that

1= [ a*d(Uy(a)+Uya)) < {ﬂ'[ 1 afd(U,(a)+ Uy(a)) < oo,

(0,1]

for some a> > 0. .. (8)



Theorem 4 : Suppose the characteristic function @(t) of a non-degenerate
distribution is such that f(t) = —log ¢(t) satisfies the equation (B), and suppose
U’s satigfy the condition (6). Then ¢(f) can be put in the form

plt) = exp {ipt—[t]* T(log|t])-+i]¢|* sign (t) A (log|¢])} ... (46)

where o 18 as in (6) and necessarily 0 < f <a< 2, p=0ifa <1, and T is
@ positive constant while A =0 if a = 2, and where T' and A are as follows if
o < 2.

Case 1: T and A are constants, and A = 0 if Q, # ¢. @(t)e~*** is stable.
Case 2: T and A are periodic functions with period p. A = 0 if Q, = ¢.
Case 3: T is a periodic function with period p and A satigfies
Ale+-p) = —A(x) for all a.
A4-3

Especially the characteristic function @(t)e—™"* satisfies (43) with y =
and a = e~2*, p being arbitrary in Case 1.

- Proof of Theorem 4 : With the distribution function G as defined by
(44) and (45) the function '

H(zx) = —e*% log |P(e=2)| = e*=.Re f(e%)
satisfies the equation

H(z) = fﬂ{m-—k—y} dGy), &> 29> o =—logty .. (47)

Unfortunately, however, we do not know if it satisfies the condition (9) of
Theorem 1. So we rather define H(z) by

H(z) = —el#tl)z ? .lag|¢a[£)|dt
1]

- etﬂmi Ro f(t) di(> 0).
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Then H(x) satisfies (9) with C(y) = e**1, and G(x) satisfies (8) with
0<d <(e—f)[2. Also it is not difficult to show that the equation (47)
is satisfied. We conclude from Theorem 1 that H(z) is bounded. We may
therefore apply Theorem 2 to obtain H(z) = ['y(x), where T'g(2-+u) = I'y(x) for
wel) =Q,1JQ, This means that :

190y =TI < . (48)

where I'(z) = (a+1) I'y(z)4-T'y'(x) is again a periodic function with period
ueQ. Especially we have forall 0 <t < t, <t =inf{;¢ > 0, |d(t)] = 0},

[pt)]* = [(at) |,

where ¢ = ¢ %, ueQ and vy =a~% As 0 < a < 1, we conclude that t; = o
and hence that |@(f)|? is the semi-stable characteristic function with charac-
beristic exponent . It then follows that ¢ can be put in the form

—1t1% r(log|t]) —~iA{t)

d(t) =e —0 <t <o

where A(t) is a real valued continuous odd function.

We can apply the similar argument as in the proof of Theorem 2 in
Davies-Shimizu (1976) to conclude that there exists a real number gz such
that I(t) = (ut+A(l))- |t] —* satisfies sup | I(t)—1I(ef)] < co for all ¢ > 0, and

!

that H(x) = I(e%) satisfies the equation (11). As sup |I({)—I(et)| < cois
equivalent to sup | H(z+y)—H(x)| < oo for all y > 0, we can apply Theorem 3
&

to obtain H(x) = A(x), where A(z) is as stated in Theorem 4. Q.E.D.

Shimizu, R. (1978) Solution to a functional equation and its application to some characterization problems, Sankhya A,
40, 319-332.
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APPENDIX 2

Theorem 1.

fx) =e* and f(x) =0

are the most general solutions of

flx + y) = fx)f(y)

(5)

(1)

(far all real or for all positive x, y), that are continuous at one point (or

2.1. Cauchy’s Equations and Jensen’s Equation

39

that can be majorized by a measurable function on a set of positive measure),
while (1) supposed for nonnegative x, y has, in addition to (5), the solution

fO =1, flx)=0 (x>0)

tn these classes of functions.

This reasoning, combined with that in Sect. 2.1.1, can also be used
for the definition of the exponential function (similarly, that of Theorem 2
below for the definition of the logarithmic function).

2. Aczel, J.(1966). Functional equations and their applications Academic Press New York

APPENDIX 3

Lemma 4.1 (Tavangar. M & Asadi.M.(2010) [24])

Let Xi.0, Xo.n, -, Xn.nbe the order statistics from any cdf F . Then,

(i)

(ii)

The survival function of[X,.,, [X1., >t], 1 Sr<n, is given by
T G ID) = TI5(7) {1 - 0¥ {803, x>t
where 6.(x) =S(x)/S (t), and S(x) = 1 - F (x), and

The cdf of [X;., | X1.n S t]is given by
oGl = > (7)) (0¥ - @01, x<t

where @.(x)=F (x)/F (t).

Proof of the lemma is given in Tavangar. M & Asadi.M.(2010) [24] .
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APPENDIX 4
Proposition 2.1

Let I = [0,c)or [0,0). Suppose h:I — R is continuous and h(0) = 0, h/, (0) = a and for
any x € I, there exists 0 < ¢ < x such that

(2.1) h(x) = h(§) + h(x — &)
Then

h(x) = ax forallx €1
Proof:

Let x €1, x # 0,and let h(x)/x = B. Then there exists 0 < {' < x such that let
h(€) /¢ = B.

Setting € asin (2.1), we have

hG) = h() _ h(x =€)

x—£& x—£&
Let h(x — &) = B(x — &).Therefore (2.1) implies that
h(xj)c:?(f) > B :@

A direct calculation shows that éh(x) = xh(§)

orh(§) < p¢

Applying the intermediate value theorem to h(t) — St on the interval determined by ¢ and
x — & there exists a &' such tha h(§") — B&' = 0. Therefore, the claim follows.

To show that f = a:

Let y, = inf{y El:y + O,Mzﬁ}

y
Theny, = 0, forif y, > 0,then h(y,)/yo, = B. And applying the claim made above to y,,
we can find0 < &' < y,, such that @ = [3, which contradicts the fact that y, is the

infimum. Thus there exists a sequence x, — 0 such that

p = lim (h(x)/x) = h3(0) =

Therefore h(x) = ax 128



Proposition 2.2

Let g: [a, b]=>R be continuous, I:[a, b]>N be increasing, and suppose the set of points
of increase D of | is not contained in {a, b} . Then there exists

a < & < b such that

b
2.2) jg@w@=g@mwr4w»

Remark: By mean value theorem of integration, there exists a < £ < b such that the above
holds.

To show that & can be chosen to be different from a or b.

Proof: Let @ = minyepq 51 9(x) = g(x1), B = MaXyeqp) g(x) = g(x;), and

b
aw=jg@m@

Assume x; < x,.Then

a(l(b) —l(a)) = G(b) = B(L(b) — l(a)

If G(b) = a(l(b) — l(a)), then D is contained in {x: g(x) = a). By assumption, D contains
points other than a and b. We can choose ¢ # a, b such that g(¢) = «, and hence

b
g@Ww»Jm»=fg@mw

Similarly G(b) = B(I1(b) — l(a))
Thus if a(I(b) — I(a) < G(b) < B(L(b) — U(a))

Then, by continuity of g, we can find x1, x5 in the neighbourhood of x,, x,, respectively
suchthata < x;,<x; <b

And if g(x{) (U(b) — (@) < G(b) < g(x3)(1(D) — (@)
The intermediate value theorem applied to gin [x;, x3] implies that there exists

§#a,b (x; <& < xj)suchthat

b
aa=fg@m@

LAU, K. S., PRAKASA RAO, B.L.S.(1990). Characterization of the exponential distribution by the relevation transform. J. Appl.
129
Prob. 27, 726-729.



APPENDIX 5
Theorem 2.1. Let F be any cdf with support [0, 8), O > 0. Suppose that
Q : [0, 8) - R+. The functional equation
F(x) = F (xy) + F (xQ(y)), x, xQ(y) €[0, 8), y €0, 1], (2.1)

holds if and only if F is a (rescaled) power function distribution with parameter vector (a, 8),
for some constant a >0, and Q(y) = (1 -ya)l/a,0<y<1

Tavangar. M & Asadi.M.(2010) Some new characterization results on exponential and related distributions, Bulletin of the Iranian
Mathematical Society, Vol. 36 No.1, pp 257-272.

APPENDIX 6
2. Characterization of univariate random variable by a relationship be-

tween the conditional expectation and the probability density function

In this section, according to Theorems 1 and 2 of Huang and Su (2000), we give
the following characterization theorem based on a relationship between the condi-

tional expectation and probability density function.

Theorem 2.1. Let a < b be extended real numbers, and g and h be the real func-
tions defined on (a,b). Assume g is continuous and h(y) # 0, V y € (a,b). Then

there exists an absolutely continuous random variable X with C'y = (a, b), such that

E(g(X) | X <y) is finite, V y € Cx, and

f(z

= =
—

E(g(X) | X <y) =h(y) VyeCx, (1)
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if and only if for any fixed k € (a,b), the following conditions hold.

(1) fy g(u)/h(u) du is finite,

(ii) faexp{f u) du}/ | h(y) | dy < oo,

ﬁmgﬂfgmmmnm:—m
Moreover, the p.d.f. of the random variable X which satisfies (1) with Cx = (a.b) is
[@) = ———— {f ot Va<y<b 2)
o | h

where a, —f exp{f u) du}/ | h(y) | dy.

Proof. First, we prove the necessity. From (1), we have

[ swrw du=n@)sw), Va<y<v 3)
This in turn implies that
v g(u )f (u)
" fiyt= [ e @

in| [ gw)f@) do|=in] [ g()fw) do|

= | h()f@) | =In | hRS(K) |, ¥,k (@b),
thus [Y g(u)/h(u) du is finite, V y,x € (a.b). For any s € (a,b), from (4),

ﬁm_lﬁ?Lf {[ ﬂudﬂ Ya<y<b, (5)

since [° f(y) dy = 1, we have [* exp{[¥ g(u)/h(u) du}/ | h(y) | dy < oo, and the
p-d.f. of the absolutely continuous random variable X satisfies (1), with Cx = (a,b)
is given in (2). Also it is easy to see that (3) implies ;!;in}:h'(y) f(y) = 0. Hence

;ﬂexp{[cy g(u)/h(u) du} =0, ie. ;ﬂﬁy g(u)/h(u) = —oc.
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Next, assume conditions (i)-(iii) hold. For any k € (a,b), let f be defined as in
(2). Conditions (i) and (ii) imply that f is a p.d.f. of some random variable X with

Cx = (a,b). Also it can be shown that

f’ﬁzdu=man+muﬂmmmn, Va<y<b. (6)

The left side of (6) is differentiable with respect to y, taking the derivatives of both

sides of (6) with respect to y, after some manipulations, we obtain

g fly) = d(f(y)h(y)), vy € (ab). (7)

As condition (iii) is equivalent to ;inéh.(y) f(y) =0, (7) implies

[ s du=h@)fw). ¥a<y<o ®)

From (8), we obtain that E(g(X) | X < y) = h(y), V y € Cx. The sufficiency is

proved.
Chang, T.(2001). Characterization of distributions by conditional expectation, Department of Applied Mathematics, National Sun

Yat-Sen University, Kaohsiung, Taiwan, 804, R.0.C

APPENDIX 7

Theorem 2.3.2. Let X = 0 be a random variable with distribution function F(x).
Assume that E(X) is finite where k = 2 is a given integer. If

(33) E[(X-2)IX2z] = E(X) for all z 2 0,

-bx

then F(x) = 1-e ™", x 20, and b > 0.

Proof: Let m = E(XX). Since
k e k
E[(X-2)"|X=z] = [ (y-z) dF(y)/[1-F(z)] ,
Z

an argument similar to the one applied in Lemma 1.2.1 and (32) yields

38 [ o2 ey -Fe@ , 220,
z
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where G(u) = 1-F(u). If we denote the left hand side of (34) by H(z), then repeated
differentiation in (34) gives

k
35y LHM M ) = K

It is well known from the elementary theory of linear differential equations that the

general solution of (35} is

k b.z
(36) H(z) = ] ce’

J

C, .
14
where the Cj are arbitrary constants and bj’ 1= j <k, are the k (complex] solutions

of the equation

g-1g!km ko

Let its negative solution be denoted hy b1 = -b, b > 0 (evidently, b is the positive
real root of (k!)/m). Because, by definition and by (34), H(z) = (m/k)G(z),
H(z) 2 0, decreases and H(z) + 0 as z » +=, We shall show that these properties
can be satisfied only if

k bz
37y T c;ed =0

b

j=2

identically. First let k = 3. Considering the conjugate complex roots, we have

I

Reb, = Reb; =1 > 0 and r < b. Then |exp(bjz}| + 4+ a5 z »~ +o for j = 2,3, Hence,
H(z) 0 and H(z) -+ 0 can be satisfied only if Cy = Cq = 0. If k = 4, then Reb2 =
Rﬁb3 = 0 and b4 = b. In a similar manner as above, we easily verify that ¢, = 0.
On the other hand, since

bzz b.z

Che +
has to be real, H(z) camnot be decreasing for large z unless €y = €5- But then the
above expression is identically zero. Now the general case can be handled similarly.
If one combines two roots bj and b. which are complex conjugates of each other,

j*r1
step by step one indeed arrives at the validity of (37). Hence

Hz) = ce™ b0,
from which
kcl bz
F(z) = 1-G(z) =1 - e “,b>0,z=z0.

But since m = E(Kk), (34) with z = 0 and Lermma 1.2.1 imply that G(0+) = 1 or
F(0+) = 0. Consequently, [kcl)/m=1, which completes the proof. O

133
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APPENDIX 8

The following formula based on integration by parts will be utilized on sever-

al occasions in the sequel.

Lemma 1.2.1. Let X = 0 be a random variable with a distribution function F(x)

Assume that E[Xa] is finite for some a > 0. Then, for any 0 £ T < + =,

+oo

+0o0
@ [ X2F = T*1-FM] + a [ X 1-Fldx .
T T

In particular, if E(X) is finite, then

+00 +00

(2) % (x-T)dF(x) = [ [1-F(x)]dx .
T

Proof: Let T < N < +» be arbitrary. Then integrating parts yields

N N
[ x¥F(x) = NF(N) - TPE(T) - a | x* TP dx
T T

N
T*[1-F(T)] - N*[1-F(W)] + a [ x¥ [1-F() Jdx .
T

Since, for any T < N < +e,

N +o0 +0o

[ XBdF() + [ xFFX) = [ x¥dFX)

T N T
and the integral on the right hand side is finite, the second term on the left hand
side converges to zero as N + +». Hence, in view of the inequality

+ 00

+00
[ X¥F ) = N [ dF(x) = N*[1-F(N)]
N N

Na[lkF[N)] + 0 as N » +o, Formula (1) thus follows. On the other hand, (2) is a
special case of (1) with a = 1, hence the proof is completed. a

Galambos ,J. & Kotz, S. (1978). Characterizations of Probability Distributions. Springer-Verlag Berlin Heidelberg New York
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APPENDIX 9

1
fr.(y) = Fnt1)

For n > m, the joint density of R, and R, is

fRom R (2, Y)
1

R*(y)f(y), y>0. (1.2)

= F(n— mNm + I)Rﬂ’*(m)(R(y) —R@)" ™ Wr(x)f(y), O<z<y, (1.3)

and the conditional density of Ry, given R, = z is

(R(y) - R@)"™1(y)
I'(n —m)F(z) ’

Huang, W.J. & Li, S.H. A.C.(1993) .Characterization results based on record values. Statistica Sinica 3, pp583-599

fR,; |Rm:m(y) =

APPENDIX 10

0<z<y. (1.4)

Theorem 2. Let G be a non-decreasing function having non-lattice support on

z > 0 with G(0) = 0 end E(G(X;)) < o0.
(i) If

E(G() =c¢, Vi>0, (2.12)

and if

o0
c <f e~ dG(z) < oo (2.13)
0

for some £ > 0, then ¢ = E(G(X1)) and {N(t),t > 0} 15 e homogeneous Poisson

PTOCESS.

Proof. (i) First, ¢ = E(G(X)) is obvious. Next, since

E(G()) = /; P(y; > £)dG(z) = fﬂ e~ Blt+a)+ R g (), (2.15)
(2.12) implies .
ceFlt) = / e~ R+ 4G (x), (2.16)
1]
or (since Ry = X1)
cP(X1 > 1) =f0 P(X: > t + 2)dG(z). (2.17)

This, together with (2.13) implies, by Shimizu (1978) or (1979), X is exponen-
tially distributed. This completes the proof of part (i).

Huang, W.J. & Li, S.H. A.C.(1993) .Characterization results based on record values. Statistica Sinica 3, pp583-599
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APPENDIX 11

TR, R xRy =2 (U, V)
_ (Aw) - R(v))'*(R(v) - R(z))* ' f(u)r(v)

(1 = k)T(k)F(z)  0<z<v<u (15)

Huang, W.J. & Li, S.H. A.C.(1993) .Characterization results based on record values. Statistica Sinica 3, pp583-599

APPENDIX 12

in the latter theory the simple solutions are exponentials, 1t 1s not sur-
prising that we can also find exponential solutions of differential-difference
equations. We have

L(et) = {a¢s + by + bie%)est. (3.5.2)

Hence, u = e**is a solution of L(u) = 0, for all {, if and only if the number
8 is a zero of the transcendental function

h(s) = aps + by + bie™. (3.5.3)

Definition. The function h(s) associated with the equation L(u) = 0 is
called the characteristic function of L, the equation h(s) = 0 is called the
characteristic equation of L, and the roots of h(s) = 0 are called the character-
stic roots of L.

Corresponding to each characteristic root there is a solution (which may
be complex) of L{u) = 0, and to distinct roots correspond linearly inde-
pendent solutions. As we shall see later, there are, in general, infinitely
many roots. Moreover, a multiple root gives rise to several independent
solutions, as we shall now show. We first observe that
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h'(s) = aq — bwe™,
(3.5.4)
h®(s) = (—1)*bwbe e, k=23, +-.

For any » > 1, we have
L(tre*t) = ao(trse®t 4+ nivlest) + botmet? + bi(f — w)me*t=),  (3.5.5)

If (£ — w)is expanded by the binomial theorem, we see that the coefficient
of % (0 < k < n) in (3.5.5) is

(o

Bellman, R and Cooke, K.L (1963) Differential-difference equations, Elsevier, p.54

APPENDIX 13

126 0. Hesselager et al. Scand. Actuarial J. 2

Since most insurance policies contain policy provisions such as deductibles or
limits, the observed data are also subject to such constraints. Insurers (reinsurers)
often observe only losses above the deductible (retention) and below the limit. In
spite of the incomplete observations with censored or truncated data, actuaries are
usually interested in estimating the ground-up losses, which is required in order to
evaluate the effect of inflation or changing deductibles.

If the ground-up loss X is modeled by a distribution with survivor function S(x),
the distribution of the excess loss (X — x, | X > x,) is given by the survivor function
Sy xg| x> xX) = S(x + x)/S(x). In terms of the hazard rate function

h(x)= *% In S(x),

we have that

S(x)= exp{—- jx h(y) dy}
0

and

A =Ny 2 ter '

Q0

Sy oyl ¥ olX) = exn!— P h(y + x5) dy}.

If the hazard rate function has the form

h(x)=fy(x+ 4),

q))

for some simple function f,(-) which depends on one or more parameters J, it

LI7



follows that once the model parameters (4, 9) have been estimated, it is possible to
work with arbitrary deductibles x, simply by redefining the parameter 4 to 1+ x,.
A class of distributions with hazard function (1) is thus closed under the formation
of excess losses.

A layer (a, b] of a risk X is defined as an excess-of-loss cover

0, 0<X<a,
Tun=1(X—a), a<X<b,
bh—a, b< X,

where a is the deductible (or retention), and (b — a) is the limit.

Given that a distribution model has been selected with best-estimate parameter
values, an estimate of the expected loss (or net premium) of the layer («, »] can be
calculated as

]
E[(“_ = '[ S(H) du.

It is often needed to impose risk margins to guard against adverse deviations or
mis-estimations in the expected cost. Wang (1995) suggested that one adjust directly
the survivor function S(x) by a proportional hazard (PH) transform such that the
risk-adjusted premium 1s calculated as

Scand. Actuarial J. 2 Exponential and scale mixtures 127

Al ] = r [S@)'"” du, p>1,

which is the expected loss in the layer (a, b] under the risk-adjusted distribution
with survivor function [S(x)]'/*.

The risk adjusted survivor function [S(x)]"” has a hazard rate function h(x)/p.
Whence, within a model with hazard rate function of the form

h(x) = afy(x + 1), (2)

one may change the deductible by redefining 4, and change the risk load by
redefining the parameter o. A class of distributions (2) is thus closed under the
formation of excess losses as well as risk-adjustment using the PH-transform.

3. EXPONENTIAL MIXTURES
Consider an exponential mixture with a conditional survivor function

S(x|8)= e ™,

where the parameter 9 has a distribution function G(3). If G is absolutely
continuous, denote the density by g(4). The resulting exponential mixture has a
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survivor function

e

S(x)= J.; S(x I 3) dG(3) =.[ e~ ™ dG(9) = Ly(x), (3)
0

0

where L, is the Laplace transform of the mixing distribution G(9).

Recall that a function f on [0, o] is completely monotone (c.m.) if it possesses
derivatives of all orders f? and (—1)"/"(x) = 0, and that a function fis c.m. with
S(0) =1 if and only if it is the Laplace transform for a distribution on [0, «c) (see
e.g. Feller, 1971, p. 439). We summarize some properties for the class of mixed
exponential distributions.

THEOREM 1. 1. A distribution is a mixed exponential distribution if, and only if, its
survivor function is c.m.

2. If X and Y are independent with mixed exponential distributions, then Z =
min(X, Y) has a mixed exponential distribution. The mixing distribution for Z is the
convolution of the mixing distributions for X and Y.

3. A distribution with c.m. hazard function is a mixed exponential distribution.

4. Mixed exponential distributions are DFR (decreasing failure rate), i.e. S(x +t)/
S(x) is a non-decreasing function of x.

5. Mixed exponential distributions are log-convex, i.e. the logarithm of the density
function is convex.

6. Mixed exponential distributions are infinitely divisible.

Hasselager, O., Wang, S. & Gordon, W. (1988): Exponential and scale mixtures and equilibrium distributions, Scandinavian Actuarial
Journal, 1998:2, 3-4
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e

3.382 .
18 f (u— e dr=(—p) ™" e ™y(v +1,—up) [Rev>—-1, u>0 ET 1 137(6)
0
2. / (z—ule®idr=pu " e "™MIE+1) [u=0, Rerv=-1, Repu=0]
L1}
ET 1137(5), ET Il 202{11)
-
3 ]ﬂ (1+a) e #dr =;..t‘5'l|§*:r W—{r,““"l (g} [Rep = 0] WH
= <]
4. f (z+ /e P dr=pu" 1 T (v 4+ 1, 8u) [larg 8| <7, Rep =0
0
ET 1 137(4), ET Il 233(10)
u
5. [ (a + ) 'e ™ dzr = e*[y(p, a + u) —y(u,a)] [Rep = 0] EH Il 130
Jo
iy i
. / (B+ir)y e "™ dr=10 [for p = 0]
o Ir{—py 1P .
=l O o it 1]
[Rer =0, Reg =0l ET 1118(4)
B Y —lg—fp
7. f_m{ﬂ —ir) Ve~ T gy — “WUTH'; lfor p > O]
=10 for p< 0]
[Rev >0, Ref > 0] ET 1118(3)
3.383

u
B ] 7 Hu — o1 dr = Blp, v)ut 1 (Fy (v p + v; fu)
0

[Rep =0, Rev=0] ET 1l 187(14)
W Fi—%
15 /ﬂ oy — pp—tefrdr = ﬁ(%) exXp ('i—u) T(p) I, 4 (%)
._'RE}.I. = []l ET Il 187(13)

- 1 fu\*% BuY .. Fu
-1 —1 p—az _
d. -/; H [1.‘—1'1}“ e TdT_VTE(E) F[F}Eﬂ} (—T) R""_’Jl' (?)
[Rep =0, Repu=0] ET I 202(12)

Gradshteyn, I.S. & Ryzhik, I.M. (2007). Tables of Integrals, Series and Products, Elsevier Inc., Burlington, MA 01803, U.S.A[3.383 1]
pp.347
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u iq
ir gty r}”'le'% dr = A7 *uP () exp (——)
Jo u
Rep =0, u=0] CT Il 187(16)

1
VT

B e m (W) K, ; (%)

=0 Re3=0, Reu=10
ET Il 187(17)

u
5 o e -
fr By — x)E e T dr =
i

f 'z —uj“":‘-’; dr=B(l—pu—v,p)u" ! Fy (1 —u—w;1— i::%)
1

D<Rep<Re(l—w), u=0

ET Il 203{15)
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JE r# (u® —1*) e"Edr 7 (,‘3) T T (p) K, 1 .
[Red =0, ou=0, Reu=10]
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Gradshteyn, I.S. & Ryzhik, I.M. (2007). Tables of Integrals, Series and Products, Elsevier Inc., Burlington, MA 01803, U.S.A. [3.471 9]
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5432 Integral representations ot the functions [,.(z) and K,(z) 9ir

CHt
_':‘1
—
G
—
|
|

L com sinem 7 b
= s LnbﬁEDSEJH!,m_ £ zcosht v I
o i i}

|arg z| < Reyv =10 WA 201(4)

m|=1

See also 3.383 2, 3.387 1, 3.471 6, 3.714 5.
For an integral representation of Iy(z) and I(z), see 3.366 1. 3.534 3.856 6.

The function K ,(z)

5.432
1 Ku(z) = f e CEt posh wt dt [larg zl < % or Rez =0 and v = D]
[
MO 39
2 Ku(2) = (3)° }f e TR sinh ™ t df
r(v+3
[Ruv > —E,_ Rez =0; or Rez =0 and —% < Rev < lzl Wa 190(5), WH
[: J’ —zt {2 V-3
3. K = St ot e | dt
twlz) r{!-'+ L) ( )
[Re {1 + lz]' =0, |largz] < ‘E ofr Rez =0 and v = [I] Wa 100(4)
4. K,ir) = ﬁ cos (7 sinh t) cosh vt dt >0, —-1<Rerv<l] WA 202(13)
= Jo

Gradshteyn, 1.S. & Ryzhik, I.M. (2007). Tables of Integrals, Series and Products, Elsevier Inc., Burlington, MA 01803, U.S.A.

[8.432 1] pp.917
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fAC Ly ey =

EH Il 119(3)a, ET | 313(13)

3.462
1. -[':'-'I.V—lE_j:r'l_"rIdﬂ‘. = [QE}—U;?I"{V'IIEIP (i) iz (;)
0 . ) a5 \,Eﬁ
[Ref =0, Rew =10
{u u R | 1 w d'l'l—l . .I .
g8 /_mgﬂe pri+lqr g, =1p Edq“—l (f_.re“':-”) ip >0)

n |n/2§

i n-
=11 |,|2,-"J'-" E E ; i s
" \/P (p) gu [ — o)) (Jeqz) p >0

o0 ; - o ) )

Bl (100)(8)

LI (100)(8)

ET | 121(23)

EH 11 105(31)

ET I 146[31)a

BI (100)(7)

Bl (100)(8)a

[Rﬂﬁi =0, Rev>=-1, argir= ;sig;n:r]
4, [ 2%exp [—(z — B)2] dx = (2i) "7 H, (iB)
5.1 fm-re'“"!‘z"’f d =t X /Ee% [1 —erf (L_)]
0 2u  2u\ p VE
[|arg v| = i; Rep =(
= %] = o |
6. f T L E\/onp (q_) [Rep = 0]
—oo rypr P '
[ ] = 2 .
7.1 f gy, Ko T ARGE ]2
0 2u® p 4 VI
[|3_rg v < % Reyu > 1:-] ET | 145(32)
o ¥ 2
B, ] il | if{ 1+ EL) e largy| < m, Rep =0
— e Wy op\ H
" = —Fr"+a e 13 i
g, L e dr = WF (HJ Res >0, Ren = 0]

Gradshteyn, I.S. & Ryzhik, I.M. (2007). Tables of Integrals, Series and Products, Elsevier Inc., Burlington, MA 01803, U.S.A.

[3.462 1] pp.365
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3. Wieisu(@)= (12" 2e72%(2u 4+ 1) (2 + 2) - - (2p + 1) B(—1,2p 4 1;2)
= (—1)'z**7e7 2% [[#(2)
MO 116
9.238
1. J,(z) = ﬁm”f—” ® (L + v, 14 2v;2ix) EH 1 265(9)
2—!}
2. Liz)= m:{."e_m @ (L +v,1+4 20:2x) EH | 265(10)
3 K. (z) = y7me " (2x)" ¥ {% +v, 1+ 203 2x) EH 1 265(13)
9.24-9.25 Parabolic cylinder functions D, (z)
1 2\
9.240 Dy(2)=2115 Wi g 1 (?) g
9B _ VT o _B.izi __V2m & 1—p.§::-:2
r L —p 2%2% 2 I‘(—E 2 272
2 2
MO 120a
are called parabolic cylinder functions.
Integral representations
9.241
1 S 2 [
1. Dy(z) = \/___I_QP"'{’E_’ZP‘&T/ gl 22 T2z gy [Rep>—1; forx <0, args? = pmi
‘ MO 122
e_l'l__ = —rz—=2 —p—1 T
2 Dy(z) = e T P dr [Rep < 0] (cf. 3.462 1) MO 122
I'(—p) Jo )
9.242
I'(p+1 T Lk g
LI Dy(z) = —7(2 et / e TEN ()P Ndt [larg(—t)] < ] WH
L Jas
B =11 2
2 Dy(z) = 2%‘-P—1}M/ et (1 4+¢)"2P1(1 — )31 gy
BT M=
w \
[|a.rgz| < 1 larg(1l + )| < TI':[ WH
1 _1.5 [T (3t—2p)T(—1) t—p—2
3. D = T RE 2 2 2 2t dit
o2 =55 f_xi (—p) SO

[|arg 2|l < %TI’; p is not a positive intege]'] WH

Gradshteyn, I.S. & Ryzhik, I.M. (2007). Tables of Integrals, Series and Products, Elsevier Inc., Burlington, MA 01803, U.S.A. [9.240 ]

pp.1028
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§ 9.4 EXAMPLES
Example 4
Show that \Fy(o; f; x) = e* Fy(f — «; f; —x).

From theorem 9.7 we have

Fi(os By %) = P(m;ég) )L(l — P)f et et gy,

If we make the change of variable £ = 1 — 7, we have

1F1 ﬁ,JE} _ )::((g) )J f—x— 1{1 )’.‘ﬁ lemtl—r] dr

el F(ﬁ) - —g--1 —ar
T3 —-#)F{oc).[ (1 —7)*~1¢f e " dr
= e F\(f — o; a; —x)

(using theorem 9.7 again).

Bell, W.W.(1968). Special Functions for Scientists & Engineers. D. Van Nostrand Company Ltd, London [Example 4 ] pp.215
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which, on using the fact that I(x) == i—"] (ix), becomes
1d, . oo
i—Ex[l"x"v‘I,.(x)} = imamin-1, _ (x)
and this equation, on cancelling a factor of i>*~1 throughout, gives
d
a-‘—x{x"f,,(x)} = x"I, i(x).
(ii) From theorem 4.8 (ii) we have
d
a;{x_nj ﬂ(x)} = - x—n] n +l.(x)s

which, on replacing x by ix, becomes

d . . .
a(i—ﬂ{l"“x““]n(w)} = —17% 7 4y(1%).
Thus B
1d . ] ; .
FaliTaL) = it ()
and hence
1d, _—
LT} = il ()
so that
d
L) = 5 ().
Theorem 4.16

() a%{x"Kﬂ(x)} = —x"K,_y(x).
(i) ;;{x—" W(X)} = —xK, a(x).
(iii) K.(x) = —Kn_y(x) — gKn(x).

(iv) Ki(x) = EK,.(x) — Ko ().
8] K,:(x) = —%{Kﬂ—l(x) + Knu(x)}'
(1) Knoa®) — Knsl) = — Kol

Bell, W.W.(1968). Special Functions for Scientists & Engineers. D. Van Nostrand Company Ltd, London[Theorem 4.16 (iv)] pp.114
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CONFLUENT HYPERGEOMETRIC FUNCTIONS

13.4.6

(e—1+2)M(a, b, 2)+ (b—a)M(a—1, b, 2)
+(1—b)M(a, b—1, 2)=0

13.4.7

M1—b+2)M(a, b, 2)+b8(b—1)M{a—1, b—1, 2}
—azM(a+1, b+1, 2)=0

13.48 M'(a, b, 2) =§ M(a+1, b+1, 2)

13.4.9 % {M(a, b, z}}zgi:): M(a+n, b+n, 2)

13410 aM(a+1,b, 2)=aM(a, b, 2)+2M"(a, b, )

13.4.11
(b—a)Me—1, b, 2)={E—a—z)M{a, b, 2)
+z2M(a, b, 2)
13.4.12
(b—a)M(a, 41, 2)=bM(a, b, 2)—bM'(a, b, 2)

13.4.13
(d—1)M(a, b—1, 2)=(b—1)M(a, b, 2)

+zM'(a, b, 2)
1314-14

(b—1)M{e—1, b—1, 2)=(b—1—2)M{a, b, 2)
+zM'(a, b, 2)

13.4.15

Ula—1, b, 2)+(d—2e—2)Ula, b, 2)

I wf1 1 m BAFT/a l 2 B &S

507

13.4.19

{e+z2)Ule, b, 2)—=zUg, b+1, 2)
Falb—ae—1)T{e+1, b, 2)=0

13.4.20

{(e+z—1)Ta, b, 2)—U(e—1, b, 2)

+({14+e—b)Ula, b—1, 2)=0

18.4.21 U'(a, b, 2)=—alla+1, b+1, 2)

13.4.22
d%’:i {Ula, b, 2) }=(—=1)"a)U(a+n, b+n, 2)
13.4.23

a{l+a—b)Ta+1, b, 2)=ali(a, b, 2)
+2U'(a, b, 2)

13.4.24

{(14a—b)Ula, b—1, 2)=(1—=b)Ula, b, 2)
—z0" (g, b, 2)

13.4.25 Ulg, b+1, 2)=Ua, b, 2)—U'(a, b, =)

13.4.26

Ule—1, b, 2)=(a—b+2)T(a, b, 2)—200(a, b, 2)
13.4.27
Ula—1, b—1, 2)=(1—bd+2)F{(a, b, 2)
—zU'(a, b, 2)

13.4.28  2uM, 4 ,0-4(2)—2t M, u(2)=2uM, 43 s 4(2)

13.4.29
(]- -!—2,;1-[—2?4:) Mt-f—l.l(z) "‘{1 +2p—2¢) M, —l.#(z)
22{21_ 3} Mx,j(ﬂ)

Abramowitz, M. & Stegun 1.A.(1972). Handbook of mathematical functions . National Bureau of Standards Applied Mathematics

Series 55, Washington, D.C. 20402 [13.4.8] pp 507
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i 3 {
1: j exp (_E - ’1‘3‘) dr =, E iy (-.f_.!if,-'] Red >0, Rey:=10 ET | 145(25)
¥ : G

= 1 1 1
g 11 s Y o= . T (5= 0l
[%E‘cp[ [I r) ] e ﬂ.r (En) 020

23 ! . b i I« 2 ) )
3.325 /; exp {L—url = F) dz = E\Gexp (—Ev’ﬂh) a=0, b=0 FI I 644
3.326
T 1 1
1B / exp (—z!) dr = E[' (E) Rep = (] Bl (26)(4)
Jr

C(~) _m+1

.10 f ™ pxp ( — ™) dr — — ¥ [Ref# =0, Rem =0, Ren=0|
i ngr n '

r {%:;3[—&]"}

T (L. 5—b
- fi]—{n'ﬁ[ i)
n 2/

7.4 j (5 — a) exp(—B(z —b)™) di — iy v
T n3l/n

Ran =0, Re@=0, lamgh|=<n|
T (L a(—m") —T (2 B(nu—m")
ngn
r(i. p-0™) =T (L, 8(u—0o)n7
—{a—b) {T' A0 ]'n.S”FEn- { ) }
[Ren >0, Ref >0, |argh <7, |arg(u—E)| <]

u
4.* j (x—a)lexpi—F(zr — )"} dz=
C

Gradshteyn, 1.S. & Ryzhik, I.M. (2007). Tables of Integrals, Series and Products, Elsevier Inc., Burlington, MA 01803, U.S.A. [3.324 1]

pp.337

148



