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ABSTRACT

In an effort to identify antiplasmodial and/or cytotoxic secondary metabolites,
three African medicinal plants, Ekebergia capensis, Turraea nilotica and Turraea
robusta were investigated for antiplasmodial and cytotoxic compounds. Except
for T. nilotica, the other plants were selected on the basis of previous reports on
antiplasmodial activities of crude extracts. A combination of different
chromatographic techniques including preparative HPLC was employed in
isolation of compounds. The characterization of compounds was done using 1D
and 2D NMR as well as MS analyses. The crude extracts and the isolated
compounds were evaluated for antiplasmodial activity against the chloroquine-
resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum
using a semiautomated micro dilution technique which measures the ability of the
compounds to inhibit the incorporation of (G-*H) hypoxanthine into the malaria
parasite. They were also evaluated for cytotoxicity properties against African
green monkey kidney (vero), using a rapid colourimetric assay that employs 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) as a viability
indicator. Selectivity index (SI) defined as ICsy (Vero cells) / 1Cs (P. falciparum)
was also determined.

A total of twenty six compounds were isolated. From the stem bark of Turraea
robusta seven compounds were isolated of which acetoxy-7-deacetylazadirone
(28) and 11-epi-toonacilin (62) were new to the species whereas azadironolide
(192) was new to the genus. Turraea nilotica leaves, root and stem bark yielded
twelve compounds of which five [mzikonone (17), azadirone (19), acetoxy-7-
deacetylazadirone (28), 1la,3a-diaacety-7a-tigloylvilasinin (40) and hipidol B
(96)] were new to the species and four [toonapubesins (194) and phytosterols
(195-197)] were new to the genus. From the root bark and leaves of Ekebergia
capensis ten compounds were isolated with two glycoflavonoids (199-200) being
new to the genus and a new natural product, 3-oxo0-12p3-hydroxy-oleanan-28,13-
olide (198).

Azadironolide (192) displayed the highest antiplasmodial activity with an 1Cs, of
1.1 and 2.4 uM against W2 and D6 strains respectively, with a SI > 10.5. This
compound can be evaluated further for its antimalarial activity in a mouse model.
The rest of the compounds displayed moderate to low antiplasmodial activities
with 1Csq ranging 14.4-205 puM against the two P. falciparum strains with low
selectivity index (< 10). The low SI values indicate that the observed moderate
antiplasmodial activity may be due to general cytotoxicity rather than the activity
against the parasites. This motivated further cytotoxicity investigation on
cancerous cell lines, mouse breast cancer (4T1), human larynx carcinoma (HEp2)
and human breast cancer (MDA-MB-231). Six compounds were cytotoxic to cell
lines 4T1 and HEp2 (ICsp < 20 uM) with oleanonic acid (160) being the most
cytotoxic to HEp2 cell line with an 1ICsy value of 14 uM.



Interaction of oleanonic acid (160) isolated as a major compound from E.
capensis, with  five triterpenoids; 2,3,22,23-tetrahydroxy-2,6,10,15,19,23-
hexamethyl-6,10,14,18- tetracosatetraene (151), 2-hydroxymethyl-2,3,22,23-
tetrahydroxy-6,10,15,19,23-pentamethyl-6,10,14,18 tetracosatetraene (152),
ekeberin A (158), oleanolic acid (159) and 3-epi-oleanolic acid (161) was
evaluated against vero and HEp2 cell lines. No appreciable synergism was
observed.

Structure-Activity—Evaluation by acetylating niloticin (25), piscidinol A (27) and
oleanolic acid (159) was carried out. The derivatives were evaluated for
cytotoxicity activity where niloticin acetate (201) and piscidinol A diacetate (203)
were of lower activity than the parent molecules while oleanolic acid acetate
(202) was seven folds more active than oleanolic acid.

Vi
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CHAPTER ONE

INTRODUCTION
1.1. GENERAL OVERVIEW
Plants have been used as a source of important products with nutritional and
therapeutic values. In early days, before the ‘synthetic era’ medicinal plants were
used in their crude form as teas, powders, tinctures and other formulations (Balunas
and Kinghorn, 2005; McChesney et al., 2007). Knowledge on the use of herbal
remedies was orally passed from one generation to another. In countries such as
China and India, well developed systems of traditional medicine are in practice and
are very popular (Yuan and Lin, 2000). The use of medicinal plants as crude extracts
has gradually changed to using purified compounds in drug discovery and

development.

Medicinal plants have served as a significant source of new drugs, drug templates and
new chemical entities for pharmaceutical development. Though there has been a lot of
interest in high throughput synthesis, combinatorial chemistry and other synthetic
techniques that produce large libraries of compounds, medicinal plants still remain an
unbeaten reservoir of new molecules with unique structural features that have
potential for application in drug discovery (Rates, 2001). In recent times, there has
been a greater need for new drugs to fight emerging and re-emerging diseases such as
malaria and cancer (Wells and Poll, 2010; Zheng et al., 2010) and so the search for

drug leads from higher plant continues.



Malaria is a parasitic disease caused by Plasmodium species. It causes great global
public health problems especially in sub-Saharan Africa despite being a preventable
and curable disease (Kaur et al., 2009). According to WHO there were about 207
million cases of malaria in 2012 and an estimated 627 000 deaths (WHO malaria fact
sheet, 2014). In Kenya, malaria is a leading cause of morbidity and mortality. It
accounts for 30-50% of all outpatient attendance and 20% of all admissions to health
facilities (Division of Malaria Control, 2011). Several malaria control measures such
as environmental improvements, use of insecticide impregnated nets, residual indoor
spraying, early case detection and treatment with Artemisinin Combination Therapy
(ACT) has led to a reduction in malaria burden in many areas (Barnes et al., 2005;
Bhattarai et al., 2007). However, the adaptation of the mosquitoes and Plasmodium
parasite to insecticides and drugs respectively, is a drawback to these interventions.
Thus, the mortality and morbidity due to malaria is still high and the challenge for the

future remains significant.

Antimalarial drugs play a significant role in the control and elimination of malaria.
Quinine an alkaloid isolated from Cinchona succiruba is the oldest antimalarial drug
and it is still in use today. It has served as a template for the development of drugs
such as chloroquine and amodiaquine (Schlitzer, 2008). Chloroquine was widely used
as a first-line antimalarial drug for many years but the emergence of resistant parasites

rendered it ineffective (Payne, 1987).

Plasmodium falciparum resistance to chloroquine and sulphadoxine—pyrimethamine
led to adoption of Artemisinin-based Combination Therapies (ACTSs) as the first line
treatment against malaria (Eastman and Fidock, 2009). However, recent reports
indicate a decline in efficacy of artesunate monotherapy and artesunate-mefloquine

along the Thai-Cambodia border, a site historically known for emerging antimalarial

2



drug resistance (Phyo et al., 2012). The spread of artemisinin derivative resistant
parasites to other malaria endemic areas is therefore not a question of if but when.
Without an apparent class of antimalarial drugs ready to replace the artemisinin
derivatives, the search for new lead compounds has to continue. In this regard,

screening of plants especially those used to treat malarial traditionally is promising.

In the in vitro screening of plants and compounds, often positive activity is due to
cytotoxicity. Although such cytotoxic compounds have no potential as antimalarial
agents, they could be developed into anticancer drug leads. Cancer is a leading cause
of death accounting for 8.2 million deaths in 2012 according to WHO Cancer fact
sheet 297 of February 2014 (WHO Cancer Fact sheet, 2014). Drug discovery from
natural products has played a key role in management and treatment of cancer. This is
evidenced in a review by Newman and Cragg (2012) which indicates that of the 175
anticancer drugs approved worldwide, 131 (74.9%) were nature inspired agents. In
Kenya, cancer treatment is expensive and not readily accessible to majority of the
patients. Also, effectiveness of most anticancer drugs is limited by toxicity to normal
rapidly growing cells. Further more, cancerous cells which are initially suppressed by
a specific drug may develop a resistance to that drug (Zheng et al., 2010). These
emphasize the need to get better alternatives. Medicinal plants have played a
significant role in anticancer drug discovery and development. Infact, there are a
number of anticancer drugs in clinical use directly derived from plants. These include.
vinblastine and vincristine from Cantharanthus roseus, paclitaxel from Taxus
brevifolia and camptothecin from Camptotheca acuminata (Jacobs et al., 2004;

Oberlies and Kroll, 2004).

In our efforts to search for promising cytotoxic or antimalarial compounds, Ekebergia

capensis, Turraea nilotica and Turraea robusta were investigated. There is a report
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on antiplasmodial secondary metabolites isolated from the stem bark of Ekebergia
capensis, a medicinal plant traditionally used by Abagusii community in Kenya to
treat malaria (Murata et al., 2008; Muregi et al., 2004). Also, documented is
antiplasmodial and antimalarial activity of crude stem bark extract whereas there are
no reports on antiplasmodial and cytotoxicity of E. capensis leaves and root bark
(Muregi et al., 2004; 2007). Antiplasmodial and antimalarial potential of T. robusta
root bark is reported (Gathirwa et al., 2008: Irungu et al., 2007). Though there are no
reports indicating antiplasmodial activity of T. nilotica it was included in this study
since it has been shown that plants belonging to the same genus have related
compounds and activities. Plant parts with no documented antiplasmodial and
cytotoxicity activities were selected. Use of combination therapy in treatment of
diseases such as cancer and malaria, is used to delay resistance and also increase
activity of two or more compounds that act synergistically. Hence, interaction studies
on selected compounds were carried out. Also, carried out is the structure-activity-

evaluation of selected compounds.

1.2. Statement of the Problem
Emergence and spread of drug resistant parasites, absence of a vaccine, lack of
systematic vector control strategies and limitations of the existing drugs (such as high
cost, non compliance, low efficacy and toxicity) are some of the factors contributing
to the escalating prevalence and distribution of malaria. Hence, in the absence of a
widely readily available vaccine and the inevitable emergence of drug resistant
parasites, search for promising antiplasmodial compounds from plants that are
documented to be used traditionally in treatment of malaria and/ or those that are

shown to possess antiplasmodial activity continues.



Cancer is one of the leading causes of death in the world and is still increasing,
particularly in developing countries where treatment is expensive and inaccessible to
majority of patients. In addition, majority of the available drugs have associated side
effects. Medicinal plants are useful sources of clinically relevant antitumour compounds.
Kenya has a rich heritage of indigenous knowledge on the use of traditional medicinal
plants that have been used to treat several diseases. In spite of the success of natural-
products approach to anticancer drug discovery, scientific reports on medicinal plants
with anticancer activity are rare in Kenya. As a result, extracts and compounds found

cytotoxic to normal cells were evaluated further against cancerous cell lines.

1.3. Objectives

1.3.1. General Objective
To establish antiplasmodial and cytotoxic potential of extractives from Ekebergia

capensis, Turraea nilotica and Turraea robusta.

1.3.2. Specific objectives
1. To determine the antiplasmodial and cytotoxic properties of extracts from E.

capensis, T. nilotica and T. robusta.

2. To isolate and characterize secondary metabolites from E. capensis, T. nilotica

and T. robusta.

3. To establish antiplasmodial and cytotoxic properties of isolated compounds.

4. To evaluate combination effects of selected secondary metabolites.

5. Carry out structural activity —evaluation on selected compounds.



1.4. Justification

Medicinal plants have served as a source of compounds for discovery and
development of new drugs for several diseases. Previously, they provided compounds
and/or templates for drug development, some of which have been employed clinically
in the treatment of malaria and cancer. Continuing search for natural products that can
be developed into clinically relevant compounds has offered secondary metabolites
with either potent antiplasmodial and cytotoxic effects and with structural diversity
(Batista et al., 2009; Hideji et al., 1992; Nogueira and Lopes, 2011; Tan and Luo,
2011). They remain an unbeaten reservoir for compounds with diverse structures and

biological activities that can serve as leads for development of new drugs.

Three plants from family Meliaceae Turraea nilotica, Turraea robusta and Ekebergia
capensis were investigated in this work. Previous phytochemical work on T. nilotica
and T. robusta leaves room for more research as not all parts were investigated.
Moreover, there are no reports on antiplasmodial and cytotoxic properties of isolated
compounds. There are previous reports on antiplasmodial activity of triterpenoids
isolated from stem bark of Ekebergia capensis. However, there are no reports on
cytotoxicity. Additionally, there are no reports on phytochemical investigation of the
root and leaves of this plant. It is expected that at least one hit compound with either

potential antiplasmodial or cytotoxicity activity will be isolated and characterized.



CHAPTER TWO

LITERATURE REVIEW

2.1. Background on Malaria

Malaria is a life-threatening disease caused by parasites of Plasmodium species and
transmitted to people through the bites of infected female Anopheles mosquitoes. It
claims more than 600,000 lives every year, mostly children under the age of five and
pregnant women who lack protective immunity. Most of these deaths occur in sub
Saharan-Africa where it imposes a heavy economic burden on individuals and nations

(White et al., 2011; WHO Malaria Fact Sheet, 2014).

There are four species of Plasmodium causing human malaria with distinct disease
pattern; Plasmodium falciparum, P. malariae, P. ovale and P. vivax. A simian
parasite, P. knowlesi, occasionally infect human (Flannery et al., 2013; Schlitzer,
2008). Of these P. falciparum is responsible for most of severe and fatal cases.
Furthermore, resistance development of this parasite to most antimalarial drugs has

reached an alarming level (Na-Bangchang and Karbwang, 2009).

Malaria was once found in many parts of the world including North America and
Europe. The WHO led malaria eradication campaign of the 1950’s and 1960’s,
through the use of the synthetic insecticide, dichlorodiphenyltrichloroethane (DDT)
and synthetic drugs such as chloroquine and sulfadoxine-pyrimethamine, managed to

get rid of malaria from vast endemic areas (Baird, 2005; Flannery et al., 2013).



In later years however, following development of resistance to these drugs and
restriction on the use of DDT, malaria re-emerged in many areas (Baird, 2005). In
response to the call for widespread control of malaria and the challenge to meeting
millennium development goal 6, various interventions have been scaled up. These
include the use of insecticide treated bednets, improved diagnosis using rapid
diagnostic tests and use of artemisinin combination therapy (White et al., 2011).
Though there are reports on reduction in malaria burden in many areas (Barnes et al.,

2005; Bhattarai et al., 2007), deaths associated with malaria are still high.

2.2.  Antimalarial Drugs
Antimalarial drugs play a key role in the fight against malaria. These drugs act at
different stages of the malaria life cycle, with most of them targeting the

intraerythrocytic phases of the parasite (Delfino et al., 2002).

2.2.1. Artemisinin and its derivatives

Artemisinin (1), a sesquiterpene lactone was isolated from a Chinese herb, Artemisia
annua. Dihydroartemisinin (2), artemether (3) and artesunate (4) are semi synthetic
derivatives of the endo-peroxide artemisinin, retaining the peroxide functionality
(Taylor and White, 2004; Schlitzer, 2008). The drugs are active against all species of
Plasmodium and are able to clear blood stage parasites and reduce fever rapidly.
However, they are limited by their short half-lives, which is why they are used in
combination with longer lasting drugs (Schlitzer, 2008; Flannery et al., 2013;
Burrows et al., 2014). Thus, Artemisinin Combination Therapy (ACT) is currently
recommended as first line drugs for treatment of malaria (Burrows et al., 2014; WHO
Malaria Fact Sheet, 2014). Artemether-lumefantrine, a fixed combination oral drug

combines the fast onset of action of artemether in terms of parasite clearance with a



high cure rate of lumefantrine in treatment of acute uncomplicated P. falciparum
malaria (Alkadi, 2007). Unfortunately, recent reports indicate the emergence of
resistance to artemisinin derivatives along Thai—Cambodia border (Dondorp et al.,
2010; Maude et al., 2010). There are chances that resistant will evantually spread to
other malaria endemic areas as it previously happened with chloroquine. Hence, new
drugs, that are cheap, readily available and active against artemisinin resistant

parasites will be needed.

Figure 2-1: Structure of artemisinin and its derivatives

2.2.2. 4-Aminoquinolines

Chloroquine (5), a 4-aminoquinoline derivative was the mainstay treatment for
malaria both for prophylaxis and treatment for many years. It was cheap, safe and
adequate for outpatient use before resistant strains began to emerge in the 1960°s. It is
no longer in use due to reduced parasite sensitivity (Payne, 1987; Schlitzer, 2008).
Incorporation of an aromatic structure into chloroquine's side chain resulted in
amodiaquine (6), as chloroquine it was considered to be safe for use in pregnancy
despite the availability of limited data on its toxicity (Thomas et al., 2004). However
its use is severely limited by cross resistance with chloroquine in P. falciparum

(Nosten et al., 2006).



Figure 2-2: Structure of chloroguine and amodiaquine

2.2.3. Arylaminoalcohols

Quinine (7) a natural compound isolated from Cinchona trees is one of the oldest
drugs used to treat malaria. There are no well documented cases of high grade
resistance to quinine treatment (Pukrittayakamee et al., 1994; White, 1998). However,
diminished sensitivity of P. falciparum to quinine has been widely documented in
Asia and South America (Mayxay et al., 2007; Legrand et al., 2008). It is still relied

upon for treatment of complicated malaria (Sinclair et al., 2012).

Mefloquine (8) structurally analogous to quinine, is an effective antimalarial drug. It
is an effective prophylactic drug when used appropriately (Taylor and White, 2004).
However, its use is limited by its prohibitive cost (Delfino et al., 2002; Nosten et al.,
2006). Mefloquine was widely used in Asia until Plasmodium parasites resistant to it

were reported along Thai-Cambodia border (Schlitzer, 2008).

Halofantrine (9) is an expensive drug active against chloroguine resistant Plasmodium
strains. However, it has been withdrawn from the market in several countries due to

its toxicity (Delfino et al., 2002; Schlitzer, 2008).
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Figure 2-3: Structures of arylaminoalcohols quinine, mefloquine and halofantrine

2.2.4. 8-Aminoquinolines

Primaquine (10), the only 8-aminoquinoline in use is different from other drugs as it is
active in the liver and sexual blood stages of different Plasmodia species (Schlitzer,
2008). It is primarily used to achieve cure of P. vivax and P. ovale. Most antimalarial
drugs target the intraerythrocytic phases of the parasite (Schlitzer, 2008).
Unfortunately use of primaquine is limited by toxicity (Taylor and White, 2004). A
drug that targets sexual stages of the parasite is needed so as to block the transmission

of the parasites from the mosquitos to humans.
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Figure 2-4: Structure of primaquine

2.2.5. Antifolates: Sulfadoxine-Pyrimethamine

Combination of sulfadoxine (11) and pyrimethamine (12) was known under its brand
name fansidar. Kenya recognized sulphadoxine-pyrimethamine (SP) as a first line
treatment of malaria in 1997 following a number of CQ treatment failures (Ogutu et

al., 2000). Fansidar did not last long as it was lost to resistance in many malaria
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endemic areas (Jelinek et al., 1999; Ogutu et al., 2000). The risk of resistance to

antimalarial drugs means that search for new a drugs continues.
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Figure 2-5: Structure of sulfadoxine and pyrimethamine

2.3.  Medicinal plants as a source of antiplasmodial agents
The appearance of resistant P. falciparum strains to chloroquine and thereafter
fansidar (sulfadoxine and pyrimethamine) which were cheap and readily available
antimalarial drugs and most recently indications of emergence of parasites resistant to
artemisinin derivatives, used in combination with other drugs (Artemisinin
Combination therapy), has promoted research on development of new drug leads.
Natural products have played a major role in discovery and development of
antimalarial drugs (Batista et al., 2009). It is anticipated that medicinal plants would
still serve as a source of new drug leads given their chemodiversity (Batista et al.,
2009). There are reports on antiplasmodial activity of extracts and pure compounds
from a large number of plant species against different strains of P. falciparum. A
review by Batista and co-workers gave details on antiplasmodial and antimalarial
activities of crude extracts and non alkaloidal natural products, a total of 126 extracts
and 194 compounds were included in this review (Batista et al., 2009). A review by
Nogueira and Lopes highlighted 360 natural products displaying moderate to high
antiplasmodial activity (Nogueira and Lopes, 2011). Kaur and co-workers published
a review on 266 antiplasmodial compounds isolated from both plant and marine

extracts (Kaur et al., 2009) whereas Saxena and co-workers published a review which
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detailed antiplasmodial activities of crude extracts and 250 compounds against
different P. falciparum strains (Saxena et al., 2003). Though none of the above
reviews reported the discovery of a new antimalarial drug, they provided a positive
outlook on continuing investigation of plants as a source of antiplasmodial agents
having new chemical entities that can serve as templates in drug discovery and

development.

2.4. Natural products as a souce of anticancer drugs
Cancer is one of the leading causes of death worldwide accounting for 8.2 million
deaths in 2012 according to WHO (WHO Cancer Fact sheet, 2014). Lung, liver,
stomach, colorectal and breast cancers cause most cancer deaths each year (WHO
Cancer Fact sheet, 2014). Conventional cancer treatment consists of radiotherapy and
chemotherapy alone or in combination. Unfortunately, none of the cancer treatment is
100% effective (Gottesman, 2002). Also, a single "cure"” for cancer has proved elusive
since there are over 100 different types of cancer. Moreover, effectiveness of many
anticancer drugs is limited by their toxicity to normal and rapidly growing cells (Basu

and Lazo, 1990).

Natural products have played a leading role in cancer chemotherapy. According to a
review by Newman and Cragg, of the 206 anticancer drugs approved worldwide 131
are naturally inspired agents (Newman and Cragg, 2012). Some of the plant-derived
antitumour compounds include vinblastine (13), vincristine (14), camptothecin (15)

and epipodophyllotoxin (16) (Balunas and Kinghorn, 2005).
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Figure 2-6: Structures of anticancer compounds derived from plants

Plant secondary metabolites and their semi-synthetic derivatives play a key role in
anticancer drug discovery and development. In 2008, there were 56 plant derived
anticancer compounds on clinical trials (Saklani and Kutty, 2008). In a review by Pan
and co-workers, they documented 20 anticancer compounds derived from higher
plants on clinical trials (Pan et al., 2010). These two reviews demonstrate that plants
will continue to be an important source of compounds for anticancer drug discovery

and development.

2.5. Ethnobotanical, Ethnopharmacological and Phytochemical Information
on Turraea robusta, Turraea nilotica and Ekebergia capensis.

2.5.1. The Genus Turraea

The genus Turraea (family Meliaceae) consists of some 60-70 species of shrubs and
small trees widely distributed in Eastern Africa. There are about 11 species growing
in Kenya some of which have been used traditionally to manage various illnesses such

as coughs, diarrhoea and stomach-pains (Beentje, 1994; Kokwaro, 2009).

The genus Turraea is rich in different classes of limonoids. The word “limonoid”
originated from the bitterness of lemon or other citrus fruits (Tan and Luo, 2011).
Structurally, limonoids are formed by loss of four terminal carbons of the side chain

in the apotirucallane or apoeuphane skeleton and then cyclized to form the 17p-furan
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ring and thus limonoids are also known as tetranortriterpenoids (Tan and Luo, 2011).
Hence, a common feature in all limonoids is the presence of a furan ring characterized
by three resonances in the *H NMR ranging 8y 7.30-6.30 ppm for H- 21, H-22 and H-
23 and in **C NMR spectrum signals appear at ca. 5c 110 (C-22), 8¢ 120 (C-20) and
d¢ 142-140 (C-21 and C-23). Oxidation and skeletal rearrangements can occur, which

lead to various classes of limonoids.

Different classes of limonoids are reported in the genus Turraea with each species
synthesizing more than one class of limonoids (Bentley et al., 1992, 1995; Adul et al.,
1993; McFarland et al., 2004; Owino et al., 2008). Classes of limonoids isolated from
Turraea species include ring intact limonoids of the (a) azadirone class which are
characterized by a ketone at C-3 and a C-1/C-2 double bond; (b) vilasinin class
characterized by a 6a-28 ether bridge with rings A-D intact; (c) havanensin class that
bears a substituent at C-1, C-2 and C-3 and the degree of oxidation at C-28 varying
from methyl to carbonyl (Tan and Luo, 2011). Ring intact limonoids are reported in
eight Turraea species which include robusta, nilotica, cornucopia, parvifolia,
floribunda, holstii, wakefieldii and pubescens (Bentley et al., 1992, 1995; Ndung’u et

al., 2004; Owino et al., 2008; Yuan et al., 2013a).

Various ring seco limonoids are isolated; (a) ring A-B seco limonoids of the
prieurianin class that arises from cleavages of C-3/C-4 and C-7/C-8 and formation of
3 (4)-lactone with substitution of a formyl oxy or acetoxy group at C-11 (b) ring B
seco limonoids characterized by cleavage of C-7/C-8 and formation of C-8/C-30
double bond (c) ring C seco limonoids of azadirachtin and nimbolinin class
characterized by cleavage of C-12/C-13 and oxidation of ring C (C-12/C-13) (d) Ring
A seco limonoids characterized by loss of methyl 25 to form C-1/C-25 bond, a ketone

at C-1 and oxidation of ring A (C-3/C-4). So far this latter class of ring seco limonoids
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has only been isolated from T. wakefieldii (Ndung’u et al., 2003). Ring B seco
limonoids are reported in species floribunda, holstii and pubescens (Mulholland et al.,
1998b, 1999; McFarland et al., 2004; Yuan et al., 2013a). Ring A-B seco are reported
in T. mombassana and T. obtusifolia while ring C seco are reported in T. holstii and T.
pubescens (Adul et al., 1993; Sarker et al., 1997; Mulholland et al., 1998b; Yuan et
al., 2013a). Interestingly, there are no reports on ring D seco limonoids from genus

Turraea.

Terpenoid derivatives characterized by absence of a furan ring with either rings A-D
intact or ring B seco are also reported in species robusta, parvifolia, floribunda and
holstii (Bentley et al., 1992; Mulholland et al., 1999; Cheplogoi and Mulholland,

2003b; McFarland et al., 2004).

2.5.2. Biosynthesis of Limonoids

Limonoids are modified triterpenes with, or derived from a precursor with a 4, 4, 8-
trimethyl-17-furanylsteroid skeleton. They are biogenetically thought to originate
from A’ tirucallol [20 (S) or A’- euphol (20R)]. The bond A is epoxidized to a 7-
epoxide and is then opened inducing a Wagner-Meerwein shift of Me-14 to C-8 which
leads to formation of 7-OH and introduction of a double bond at C-14/15 (Figure 2-7).
This scheme accounts for both the ubiquitous presence of oxygen at C-7 and correct
stereochemistry of the C-30 methyl group. Oxidative degradation of C-17 side chain
results in loss of four carbon atoms and formation of the 17 B-furan. Successive
oxidations and skeletal rearrangements of one or more of the four rings, which are
designated as A, B, C and D, gives rise to different groups of limonoids (Figure 2-8).
That the latter step is accomplished after formation of 4,4,8-trimethyl-steroidal
skeleton is indicated by the occurrence of several protolimonoids (Champagne et al.,

1992; Tan and Luo, 2011).
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Figure 2-7: Biosynthetic pathway leading to formation of a basic limonoid skeleton
(Champagne et al., 1992)
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Figure 2-8: Biogenetic map showing classification of meliaceous limonoids (Tan and

Luo, 2011).

2.5.3. Compounds isolated from Turraea species

Turraea robusta Guerke is a small tree found in East Africa. It is a medicinal plant
traditionally used to treat diarrhoea and other stomach associated troubles (Kokwaro,
2009). Antiplasmodial and antimalarial activities of the crude methanol root bark

extract was previously reported (Irungu et al., 2007; Gathirwa et al., 2008). The
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extract is also reported to be safe in mice with an oral LDs, value > 5000 mg/kg body
weight (Gathirwa et al., 2008). Previous phytochemical investigation on the root bark
led to isolation of limonoids [mzikonone (17), mzikonol (18), azadirone (19) 1,2-
dihydroazadirone (20) and nimbolinin B (21)]; triterpenoids [turranolide (22) and
butyrospermol (23)] (Rajab et al., 1988; Bentley et al., 1992). Except for azadirone
(19), antiplasmodial and cytotoxicity activity of the other compounds is not reported.

Furthermore, there are no phytochemical reports on the stem bark.

Figure 2-9: Limonoids and triterpenoids isolated from T. robusta root bark

Turraea nilotica Kotschy and Peyr is a shrub or tree growing along the coastal region
in Kenya. In traditional medicine a decoction from the root is used for stomach upset
(Kokwaro, 2009). Previous phytochemical investigation on the root and stem bark led
to isolation of limonoid nilotin (24) and protolimonoids niloticin  (25),
dihydroniloticin (26) and piscidinol A (27) (Mulholland and Taylor, 1988; Bentley et

al., 1995). Cytotoxic properties of compounds 24 and 27 are documented (Hideji et
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al., 1992; Mitsui et al., 2007). However, there are no reports on antiplasmodial

activity.

25R=0
24 26 R=-OH 27

Figure 2-10: Limonoid and protolimonoids isolated from T. nilotica

Other Turraea species have been phytochemically investigated and a number of
limonoids, protolimonoids and triterpenoids isolated. From Turraea cornucopia the
limonoids mzikonone (17), 12a-acetoxy-7-deacetylazadirone (28) and la,12a -
diacetoxy-7-deacetyl-1,2-dihydro-3a -hydroxyazadiron (29) were reported (Owino et

al., 2008).

Figure 2-11: Limonoids isolated from T. cornucopia

From the root bark of Turraea mombassana C. DC, a shrub whose roots are

traditionally used for the treatment of excess bile, an emetic for malaria and other
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fevers (Kokwaro, 2009), the limonoids mombasone (30) and mombasol (31) were

isolated (Adul et al., 1993).

AcO CO,Me
30 31

Figure 2-12: Limonoids isolated from T. mombassana

From the seeds and roots of T. parvifolia previous phytochemical investigation led to
isolation of triterpenoids [turraparvin A (32), 12a-acetoxyazadironolide (33),
turraparvin B (34), turraparvin C (35), 11-epi-hydroxytoonacilide (36), 11-epi-23-
hydroxytoonacilide (37) and turraparvin D (38)]; limonoids mzikonone (17) lo-
acetyl-3a-propionylvilasinin -~ (39), 1la,3a-diacetyl-7a-tigloyvilasinin  (40), 120-

acetoxy-1,2-dihydroazadirone (41) (Cheplogoi and Mulholland, 2003a, 2003b).
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Figure 2-13: Triterpenoids and limonoids from isolated T. parvifolia

Previous phytochemical investigation of T. floribunda seeds yielded limonoids
turraflorin A (42), turraflorin B (43), turraflorin C (44), turraflorin G (45), turraflorin
H (46) and turraflorin 1 (47) (McFarland et al., 2004). From the root bark limonoids
la,70,11B-triacetoxy-4a-carbomethoxy-12a-(2-methylpropanoyloxy)-14p,15p
epoxyhavanensin (48), la,7a,11B-triacetoxy-4a-carbomethoxy-12a-(2-
methylbutanoyloxy)-14p,15p-epoxyhavanensin (49), la,11pB-diacetoxy-4a-
carbomethoxy-7a-hydroxy-12a-(2-methylpropanoyloxy)-15-oxohavanensin (50), 28-
nor-4a-carbomethoxy-11p-acetoxy-12a-(2-methylbutanoyloxy)
14,15deoxyhavanensin-1,7-diacetate  (51), 28-nor-4a-carbomethoxy-11p-hydroxy-
12a-(2-methylbutanoyloxy)-14,15-deoxyhavanensin-1-acetate ~ (52),  18-nor-4a-
carbomethoxy-11B-acetoxy-12a-(2-methylbutanoyloxy)-14,15-deoxyhavanensin-1-
acetate (53), 28-nor-a-carbomethoxy-7-deoxy-7-oxo-11p-acetoxy-12a(2-
methylbutanoyloxy)-14,15-deoxyhavanensin-l-acetate (54), 11B-acetoxy-3,7-
diacetyl-4a-carbomethoxy-12trisobutyryloxy-28-nor-1-tigloyl-havanensin (55), 11B-
acetoxy-7a-acetyl-12a-hydroxy-1,2-dihydroneotrichilenone  (56), 12a-acetoxy-7-

acetyl-1,2-dihydroneotrichilenone (57); triterpenoids turraflorin D (58), turraflorin E
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(59) and turraflorin F (60) (Torto et al., 1995; Mulholland et al., 1998b; McFarland et

al., 2004; Ndung’u et al., 2004).
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Figure 2-14: Limonoids and triterpenoids isolated from T. floribunda

Limonoids reported from the root and stem bark of T. holstii are la,3a-
diacetylvilasinin (61), 11-epi-toonacilin (62), 11p,12a-diacetoxycedrelone (63), 12-O-
methylnimbolinin (64), 12a-acetoxyneotrichilenone (65), 12a-acetoxy-7-acetyl-1,2-
dihydroneotrichilenone (66), 12a-acetoxy-1,2-dihydroneotrichilenone (67) and 11p-
acetoxy-7-acety-12a-hydroxy-1,2-dihydroneotrichilenone (68): triterpenoids
holstinone A (69), holstinone B (70) and holstinone C (71) (Mulholland et al., 1998b,

1999).
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Figure 2-15: Limonoids and triterpenoids from T. holstii

From the root bark of T. wakefieldii limonoids 11, 12a-diacetoxyneotecleanin (72),
11B,12a-diacetoxy-14p,15p-epoxyneotecleanin ~ (73),  7a,12a-diacetoxy-14p,15p-
epoxy-11pB-hydroxyneotecleanin  (74), 7a,12a-diacetoxy-11pB-hydroxyneotecleanin
(75), 11pB,12a-diacetoxy-1-deoxo-14p,15B-epoxy-3p-hydroxy-2-oxo-neotecleanin (76)
and la-acetoxy-3a-propanoyloxyvilasinin (77) are reported (Ndung’u et al., 2003,

2004) .

Rl = OCOCH2CH3
77

Figure 2-16: Limonoids isolated from T. wakefieldii
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From the twigs and leaves of T. pubescens several limonoids, protolimonoids and
triterpenoids are reported. Limonoids include mzikonone (17), turraflorin A (42), 11-
epi-toonacilin ~ (62), 12a-acetoxy-7-deacetylazadirone  (28), la,acetoxy-3a-
propanoyloxyvilasinin (77), turrapubin A-G, 1-K (78-87), turrapubesin A and C (88-
89), nimonol (90) and azadirachtin (91). Protolimonoids dihydroniloticin (26),
piscidinol A (27), turrapubin H (92), 7-deacetylbruceajavanin B (93), 7-deacetyl-21a-
methoxydihydrobruceajavanin (94), dihydrosapelin E acetate (95), hispidol B (96),
mesendanin T (97), mesendanin U (98), turrapubesols A—C (99-101), bourjotinolone
B (102), grandifoliolenone (103), hispidone (104), bourjotinolone A (105) and 3-
episapelin A (106). Other triterpenoids isolated are 11-epi-23-hydroxytoonacilide
(37), 2B,3B,5p-trinydroxy-pregn-20-en-6-one (107), 3p-hydroxy-5a-pregn-7,20-dien-
6-one (108), and 3pB-acetoxy-5a-pregn-7,20-dien-6-one (109), turrapubesin B, D-G
(110, -114), turrapubesic acid A-C (115-117), guaidiol (118), turranin A-F (119-124),
2,3B,5B-trinydroxypregn-20-en-6-one (125), 1a,4adihydroxyeudesman-11-ene (126),
cyperusol C (127), 1B,4Bdihydroxyeudesman-11-ene (128), clovandiol (129) and
caryolane-1,9B-diol (130) (Wang et al., 2006a, 2006b, 2007, 2008; Yuan et al., 2013a,

2013D).
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Figure 2-17: Limonoids and protolimonoids isolated from T. pubescens

From the seeds of Turraea obtusifolia the limonoids prieurianin (131), rohitukin (132)
and rubrin E (133) were isolated (Fraser LA et al., 1995; Sarker et al., 1997). A
pregnane steroid villosterol (134) is reported from aerial parts of Turraea villosa

(Chiplunkar et al., 1993).

Figure 2-18: Limonoids isolated from T. obtusifolia

2.5.4. Antiplasmodial and cytotoxic activities of compounds isolated from Genus
Turraea

Cytotoxicity properties of protolimonoids niloticin (24), dihydroniloticin (26),
hispidol B (96), turrapubesol B-C (100-101), grandifoliolenone (103), hispidonone

(104) and bourjitinolone (105) and limonoids turrapubesin A (88) and azadirone (19)

29



isolated from Turraea pubescens, T. robusta and T. nilotica are reported to be
cytotoxic to P-388 cell lines with ICsy values of less than 10 uM (Hideji et al., 1992;
Mitsui et al., 2007; Wang a et al., 2006a, 2006b;). Thus, triterpenoids obtained from
this work were tested for cytotoxicity and since cytotoxic compounds can be useful
anticancer drug leads, they were also tested for cytotoxicity against cancerous cell
lines. There are no reports on antiplasmodial activitity of Turraea triterpenoids except
for azadirone (19) (Chianese et al., 2010). Antiplasmodial activity of several
triterpenoids isolated from plants belonging to family Meliaceace is reported (Bickii
et al., 2000; Chianese et al., 2010; Mohamad et al., 2009). It is for this reason that

secondary metabolites isolated in this work were tested for antiplasmodial activity.

2.6. Ekebergia capensis
Ekebergia capensis Sparrm (family Meliaceae) is a deciduous tree attaining 30 m high
and is widely distributed in Central and Nyanza regions of Kenya (Beentje., 1994;
Gacathi., 2007). It is also widespread in South Africa, Swaziland, Zimbabwe, Uganda
and Ethiopia. The Zulu community in South Africa uses the wood to facilitate
childbirth (Sewram et al., 2000). In Kenya, the Sabaot community uses leaf
macerations internally or externally to treat headache, fever, cough and skin
complaints while the Agikliyli community uses the stem bark to treat diarrhoea
(Gacathi, 2007; Okello et al., 2010). Pharmacological studies have showed that the
crude E. capensis extracts have antiplasmodial, anti-inflammatory, hypotensive
effects, uterotonic, cardiovascular effects and antituberculosis activities (Lall and
Meyer, 1999; Sewram et al., 2000; Muregi et al., 2004; Kamadyaapa et al., 2009;
Mulaudzi et al., 2013). Previous investigations on seeds and stem bark led to
isolation of the limonoids capensolactone 1, (135) capensolactone 2a (136),

capensolactone 2b (137), capensolactone 3a (138), capensolactone 3b (139), methyl
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3a-hydroxy-3-deoxyangolensate (140), ekebergin (141), methylangolensate (142),
ekeberins C1-C3 (143-145), 7-deacetoxy-7-oxogedunin (146), 7-acetylneotrichilenone
(147), proceranolide (148), mexicanolide (149) and swietenolide (150) (Taylor, 1981;
Mulholland and lourine, 1998; Murata et al., 2008). Also isolated from the stem bark
are acyclic triterpenoids  2,3,22,23,-tetrahydroxy-2,6,10,15,19,23-hexamethyl-
6,10,14,18-tetracosatetraene (151), 2-hydroxymethyl-2,3,22,23-tetrahydroxy-
6,10,15,19,23-pentamethyl-6,10,14,18-tetracosatetraene (152),  ekeberins D1-D5
(153-157); triterpenoids ekeberin A (158), oleanolic acid (159), oleanonic acid (160),
3-epi-oleanolic acid (161), 3,11-dioxoolean-12-en-28-oic acid (162), melliferone
(163) and 3-0x0-11,13(18)-oleandien-28-oic acid (164) ; coumarins ekersenin (165),
4,6-dimethoxy-5-methylcoumarin (167) and 7-hydroxy-6-methoxycoumarin (167);
pregnanes ekeberin B (168) and (Z)-volkendousin (169 ) (Nishiyama et al., 1996a;

Sewram et al., 2000; Murata et al., 2008).
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Figure 2-19: Compounds previously isolated from E. capensis

Phytochemical investigation on the seeds of E. pterophylla led to isolation of the
limonoids EP1-EP6 (170-175) (Taylor and Taylor, 1984; Kehrli et al., 1990). The
bark yielded atraric acid (176), B-amyrin (177), B-amyrone (178), B-sitosterylacetate
(179), B-sitosterol (180), pterophyllin 1 (181) and pterophyllin 2 (182) while
extractive from the wood yielded pterophylin 3-5 (183-185). Lupeol (186) was

isolated from the leaves (Mulholland et al., 1998a).
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Figure 2-20: Compounds isolated from E. pterophylla

From the root bark of E. Dbenguelensis coumarins 4-methoxy-5-
hydroxymethylcoumarin (187) and stilbenes (188-191) were isolated (Jonker et al.,

1997; Chévez et al., 2001).

CH,OH
i) §
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188 R=H 190 R=Me
187 189 R=Glc 191 R=H

Figure 2-21: Compounds isolated from E. benguelensis
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2.6.1. Antiplasmodial and cytotoxic activities of compounds isolated from Genus
Ekebergia

Besides the use of E. capensis in traditional medicine to treat malaria, crude extract
from the stem bark is reported to possess antiplasmodial activity (Muregi et al., 2004,
2008). Secondary metabolites from the stem bark were isolated and tested for
antiplasmodial activity with compounds 7-deacetoxy-7-oxogedunin (146) and 2-
hydroxymethyl-2,3,22,23-tetrahydroxy-2-6,10,15,19,23-pentamethyl-6,10,14,18
tetracosatetraene (152) displaying the highest activity against FCR-3 and K-1 P.
falciparum strains. Lupeol (186) is another compound isolated from E. pterophylla

whose antiplasmodial activity is documented (Fortie et al., 2006).

Triterpenoids have previously been shown to be cytotoxic (Kim et al., 2012; Leal et
al., 2013). Infact, two triterpenoid isolated from Ekebergia species, oleanolic acid
(159) and lupeol (186) are reported to possess anticancer activity (Liu 2005; Saleem et
al., 2008; Siddique et al., 2011). Other triterpenoids isolated from Ekerbergia reported
to have cytotoxic activities include oleanonic acid (160), 3-epi-oleanolic acid (161),
3,11-dioxoolean-12-en-28-oic acid (162) and 7-deacetoxy-7-oxogedunin (146) (Kwon
et al ., 1997; Pudhom et al., 2009; Sakai et al., 2004). The above reported
antiplasmodial and cytotoxic properties on secondary metabolites isolated from
Ekebergia species motivated the investigation of root bark and leaves of E. capensis
whose secondary metabolites and antiplasmodial and cytotoxicity activities are not

documented.
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CHAPTER THREE

Materials and Methods

3.1. General Overview on Chromatography and Spectroscopic Techniques
Column chromatography (CC) on Scharlau silica gel 60, 0.06-0.2 mm (70-230 mesh
ASTM) and Fluka Sephadex” LH-20; preparative thin layer chromatography (PTLC)
on locally made plates, 20 x 20 cm glass, using Macherey-Nagel silica gel G/UV 254
for thin layer chromatography (TLC). TLC on Fluka silica on TLC alu foils and
visualized under UV light (254 or 366 nm) followed by spraying with 1% vanillin in
sulphuric acid. LC-ESI-MS spectra on a Perkin Elmer PE SCIEX APl 150EX
instrument equipped with a Turbolon spray ion source and a Gemini 5 mm C-18 110A

HPLC column using water acetonitrile gradient (80:20 to 20:80) at 30 eV.

High resolution mass spectral analysis (Q-TOF-MS) was done by Stenhagen
Analyslab, using a micromass QTOF micro instrument with lockmass-ESI source and
negative ion detection. Preparative HPLC was run on a Waters 600E HPLC system
using the Chromulan software (Pikron Ltd., Praha, Czech Republic), a Kromasil C-8
250 x 25 mm C-8 column and water-acetonitrile eluent mixture. For structure
elucidation gCOSY, gNOESY, gHSQC and gHMBC NMR spectra were acquired on

Varian 800, 500 and 400 MHz spectrometers.
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3.2. Plant Materials
The stem bark of Turraea robusta Guerke (BN/2011/1) was collected from University
of Nairobi, Chiromo Campus in July 2011 (01°16731.34"'S; 036°3864  E) and while
Turraea nilotica Kotschy and Peyr leaves, stem and root bark (BN/2012/1) were
collected in February 2012 in Mombasa Diani area (039°38717.06™ E; 04°19°04.72°°S).
The root bark and leaves of Ekebergia capensis Sparrm (BN/2013/1) were collected
from Gakoe forest Kiambu County in April, 2013(01°04°33.78" 'S; 36°1446.74" E).
The plants were authenticated by Mr. Patrick Mutiso of the Herbarium, School of

Biological Science, University of Nairobi where voucher specimens are deposited.
3.3. Extraction and Isolation
3.3.1. Turraea robusta

Air dried and ground T. robusta stem bark (1.4 kg) was extracted with MeOH/CH,ClI,
(1:1) for 48 hours (x2) at room temperature. The filtrate was evaporated using a rotary
evaporator to yield 144 g of dark red oil. A portion (79 g) was fractionated on CC by
silica gel with gradient elution using petroleum ether (40-60 °C) and ethyl acetate in
the following ratios: 100:0, 99:1, 98:2, 94:6, 92:8, 90:10, 88:12, 86:14, 8:2, 15:5, 7:3,
6:3, 1:1, 5:15, 0:100. A total of 41 eluents (ca. 250 ml each) were collected and
combined into 11 fractions (A-K) on the basis of TLC profiles. Fraction D (1.17 g)
was re-chromatographed over silica gel column eluting with petroleum ether and
acetone (95:5) to yield azadirone (19, 32.4 mg). Fraction G (4 g) was further
fractionated on Sephadex™ LH-20 CC eluting with methanol to obtain fraction G1
(415.3 mg) which was purified on PTLC eluting with petroleum
ether/chloroform/methanol (16:2:1) to yield 12a-acetoxy-7-deacetylazadirone (28, 7

mg) and mzikonone (17, 6.3 mq). Fraction H (3 g) was re-chromatographed on silica
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gel CC eluting with petroleum ether/ethylacetate (9:1) to obtain fraction H1. This
subfraction was purified on PTLC eluting with petroleum ether/acetone (7:4) to yield
azadironolide (192, 16.5 mg). Fraction I (80 mg) was crystallized in acetone to yield
stigmasterol (193, 6.2 mg). Fraction J (145.2 mg) was subjected to further separation
on PTLC eluting with petroleum ether/chloroform/methanol (10:2:1) yielding 11-epi-
toonacilin (62, 3 mg). Fraction K (331.9 mg) was subjected to PTLC eluting with
petroleum ether/chloroform/methanol (12:2:1) to yield turranolide (22, 17.7 mg).
Fraction A, B C, E and F which contained mostly oils and phytosterols were not

investigated.

3.3.1.1. Physical and spectroscopic data of compounds isolated from Turraea
robusta

Mzikonone (17); white amorphous solid, mp (100-101 °C); *H NMR, (acetone-ds) &
(600 MHz, ppm), Appendix 1: 7.47 (1H, t, J=1.2 Hz, H-23), 7.35 (1H, t, J=1.2 Hz, H-
21), 6.36 (1H, m, H-22), 5.70 (1H, dd, J=3.6, 1.8 Hz, H-15), 5.06 (dd, J=7.2, 9 Hz, H-
12), 4.05 (brs, 1H, H-7), 3.01 (1H, dd, 7.8, 10.8 HZ, H-17), 2.59 (1H, m, CH,-16a),
2.56 (1H, m, CH,-2a), 2.4 (1H, m, CH,-16b), 2.35 (1H, m, CH,-2b), 2.23 (1H, m, H-
9), 2.19 (1H, m, CH,-11a), 2.12 (1H, dd, J=2.4, 12.6, Hz, H-5), 1.95 (1H, m, CH.-6a),
1.81 (1H, m, CH,-1a), 1.7 (1H, m, CH,-6b), 1.52 (1H, m, CH,-1b), 1.43 (1H, m, CH,-
11b), 1.88 (3H, s, Ac-Me), 1.17 (3H, s, Me-30), 1.07 (3H, s, Me-19), 1.06 (3H, s, Me-
18), 1.03 (3H, s, Me-29), 1.02 (3H, s, Me-28): *C NMR, (Acetone-dg); & (150 MHz,
ppm) Appendix 1A: 216.5 (C-3), 171.4 (Ac-CO), 159.5 (C-14), 143.7 (C-23), 141.9
(C-21), 126.5 (C-20), C-123.6 (C-15), 113.4 (C-22), 79.1 (C-12), 73.1 (C-7), 52.8 (C-
13), 51.9 (C-17), 48.1 (C-8), 48.0 (C-5), 45.1 (C-4), 44.0 (C-9), 40.0 (C-1), 38.4 (C-

10), 38.1 (C-16), 35 (C-2), 28.6 (C-30), 27.2 (C-28), 27 (C-11), 26.9 (C-6), 22.1 (Ac-
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Me), 22.0 (C-18), 16.2 (C-19), 15.9 (C-29); ESI-MS (30 eV): m/z 455.5 [M+H]",

Appendix 1B.

Azadirone (19); yellowish gum; *H NMR, (CD.Cly) & (600 MHz, ppm), Appendix 2
£ 7.39 (1H, t, J=3 Hz, H-23), 7.18 (1H, d, J=10.2 Hz, H-1), 7.16 (1H, m, H-21), 6.32
(1H, m, H-22), 5.79 (1H, d, J=10.2 Hz, H-2), 5.36 (1H, dd, J=1.2, 3, Hz, H-15), 5.25
(1H, dd, J=1.8, 3 Hz, H-7), 2.82 (1H, dd, J = 7.8, 11.4 Hz, H-17), 2.45 (1H, ddd, J =
1.8, 11.4, 25.6 Hz, CH,-16a), 2.32 (1H, ddd, J=3.6, 7.2, 18.6 Hz, CH,-16h), 2.23 (1H,
dd, J= 2.4, 13.2 Hz, H-5), 2.22 (1H, m, H-9), 2.0 (1H, m, CH,-6a), 1.98 (1H, m, CH,-
11a), 1.93 (1H, m, CH,-12a), 1.92 (3H, s, Ac-Me), 1.8 (1H, m, CH;-6b), 1.79 (1H, m,
CH,-11b), 1.65 (1H, m, CH,-12b), 1.20 (6H, s, Me-30, Me-19), 1.06 (3H, s, Me-29),
1.05 (3H, s, Me-28), 0.7 (3H, s, Me-18); *C NMR (CD,Cl,); & (150 MHz, ppm), ,
Appendix 2A: 204.6 (C-3), 170.1 (Ac-CO), 159.3 (C-14), 158.6 (C-1), 142.7 (C-23),
140.0 (C-21), 125.4 (C-2), 125.1 (C-20), 119.2 (C-15), 111.4 (C-22), 74.6 (C-7), 51.8
(C-17), 47.4 (C-13), 46.3 (C-5), 44.3 (C-4), 43.1 (C-8), 40.2 (C-10), 38.9 (C-9), 34.6
(C-16), 33.2 (C-12), 27.3 (C-30), 27.0 (C-29), 24.0 (C-6), 21.3 (C-28), 21.2 (Ac-Me),

20.6 (C-18), 19.1 (C-19), 16.7 (C-11). EIMS: m/z 436, Appendix 2B.

Turranolide (22); whitish amorphous powder, mp 198-200 °C: *H NMR (acetone-ds)
§ (600 MHz, ppm) Appendix 5: 5.26 (1H, dd, J=11.8, 3.6 Hz, H-15), 5.17 (1H, dd,
J=11.8, 3.6, Hz, H-7), 4.96 (1H, t, J=8.4 Hz, CH,-21a), 3.93 (1H, dd, J=19, 10.2 Hz,
CH,-21b), 2.8 (1H, m, H-20), 2.61 (1H, m, CH,-2a), 2.44 (1H, dd, J=17.8, 16.8 Hz,
CH,-22a), 2.3 (1H, m, CH,-2b), 2.28 (1H, dd, J=11.4, 16.8 Hz, CH»-22b), 2.15 (2H,
m, CH,-16), 2.13 (1H, m, H-9), 1.99 (1H, m, CH.-16a), 1.94 (1H, m, H-5), 1.92 (3H,
s, Ac-Me), 1.8 (1H, m, CH,-11a), 1.78 (1H, m, H-17), 1.76 (2H, m, H-12), 1.68 (1H,

m, CH,-11b), 1.69 (1H, m, CH,-16b), 1.19 (3H, s, Me-18), 1.1 (6H, s, Me-19, Me-
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30), 1.02 (3H, s, Me-29), 0.98 (3H, s, Me-28); *C NMR, (acetone-dg) & (150 MHz,
ppm), Appendix 5A: 216.1 (C-3), 177.6 (C-23), 171.1 (Ac-CO), 161.0 (C-14), 119.8
(C-15), 76.1 (C-7), 73.5 (C-21), 59.6 (C-17), 49.6 (C-5), 48.1 (C-10), 48 (C-13), 44.1
(C-9), 43,5 (C-8), 40.1 (C-1), 38.9 (C-20), 38.4 (C-4), 35.9 (C-16), 35.1 (C-22), 35
(C-12), 34.9 (C-2), 28.0 (C-18), 26.8 (C-28), 25.5 (C-6), 22.0 (C-29), 21.8 (Ac-Me),

20.5 (C-30), 17.7 (C-11), 16.0 (C-19); EIMS m/z 456, Appendix 5B.

120-acetoxy-7-deacetylazadirone (28); whitish amorphous powder: 'H NMR,
(acetone-dg) 6 (600 MHz, ppm) Appendix 3: 7.47 (1H, t, J=3 Hz, H-23), 7.36 (1H, m,
H-12), 7.17 (1H, d, J=10.2, Hz, H-1), 6.37 (1H, m, H-22), 5.74 (1H, m, H-2), 5.73
(1H, d, J=2.4, Hz, H-15), 5.12 (1H, dd, J=7.2, 9 Hz, H-12), 4.09 (1H, brs, H-7), 3.05
(1H, dd, J=7.8, 11.4 Hz, H-17), 2.6 (1H, m, CH,-16a), 2.51 (1H, dd, J=7.2, 9 Hz, H-
9), 2.45 (1H, dd, J=3, 13.2 Hz, H-5), 2.4 (1H, m, CH,-16b), 2.35 (1H, m, CH,-11a),
2.04 (1H, m, CH,-6a), 1.90 (3H, s, Ac-Me) 1.78 (1H, m, CH.-6b), 1.75 (1H, m, CH,-
11b), 1.22 (3H, s, Me-30), 1.12 (3H, s, Me-29), 1.11 (3H, s, Me-28), 1.06 (3H, s, Me-
19), 1.05 (3H, s, Me-18); °C NMR, (acetone-de)d (150 MHz, ppm), Appendix 3A:
205.9 (C-3), 171.4 (Ac-CO), 159.4 (C-1, C-14), 143.7 (C-23), 142.0 (C-21), 126.4
(C-2, C-20), 123.7 (C-15), 113.4 (C-22), 79.0 (C-12), 72.7 (C-7), 52.8 (C-13), 52.0
(C-17) 46.1 (C-5), 45.8 (C-8), 45.4 (C-4), 41.5 (C-10), 39.8 (C-9), 38.1 (C-16), 29.1
(C-30), 28.1 (C-28), 26.9 (C-6), 26.7 (C-11), 22.5 (Ac-Me), 22.0 (C-18), 20.0 (C-29),

16.3 (C-19). EIMS (observed m/z 452.2555, calcd 452.2557) Appendix 3B.

11-epi-toonacilin (62); White and crystalline, mp 117-122 °C: *H NMR, (acetone-de)
§ (600 MHz, ppm): Appendix 4: 7.51 (1H, dd, J=10.8Hz, H-1), 7.47 (1H, m, H-23),
7.25 (1H, m, H-21), 6.29 (1H, m, H-22), 6.02 (1H, d, J=10.2 Hz, H-2), 5.75 (1H, d,
J=10.8 Hz, H-12), 5.56 (1H, dd, J=7.8, 10.8 Hz, H-11), 5.51 (1H, d, J=0.6 Hz, H-30a),

5.48 (1H, d, J=1.2 Hz, 30b), 4.07 (1H, brs, H-15), 3.62 (3H, s, OMe), 3.11 (1H, d,
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J=7.2 Hz, H-5), 3.08 (1H, dd, J=7.8, 10.8 Hz, H-9), 2.96 (1H, dd, J=7.2, 10.8 Hz, H-
17), 2.58 (1H, dd, J=2.4, 16.8 Hz, CH,-6a), 2.47 (1H, J=2.4, 16.8 Hz, CH,-6b), 2.21
(1H, m, CH,-16a), 1.96 (1H, m, CH,-16b), 1.86 (3H, s, Ac-Me), 1.70 (3H, s, Ac-Me),
1.10 (3H, s, Me-29), 1.04 (3H, s, Me-19), 0.96 (3H, s, Me-28), 0.95 (3H, s, Me-18);
13C NMR, (acetone-dg); & (150 MHz, ppm), Appendix 4A: 204.2 (C-3), 175.6 (C-7),
153.8 (C-1), 171.1 (Ac-C0), 170.2 (Ac-CO), 144.2 (C-23), 142.0 (C-21), 138.6 (C-8),
124.2 (C-20), C-30 (C-30), 113.0 (C-22), 76.8 (C-12), 72.7 (C-11), 61.3 (C-15), 54.4
(C-9), 52.7 (OMe), 47.6 (C-5), 46.6 (C-5), 46.5 (C-13), 43.5 (C-10), 39.8 (C-17), 34.7
(C-16), 32.4 (C-6), 24.1 (C-28), 23.7 (C-29), 22.4 (C-19), 21.4 (Ac-Me), 21.3 (Ac-

Me), 14.6 (C-18). EIMS (observed m/z 554.2506, calcd 554.2510), Appendix 4B.

Azadironolide (192); a clear gum: *H NMR (acetone-dg), 8 (600 MHz, ppm);,
Appendix 6:7.27 (1H, d, J=10.2 Hz, H-1), 7.18 (1H, d, J=6.6 Hz, H-22), 6.18 (1H, s,
H-23), 5.76 (1H, d, J=10.2 Hz, H-2), 5.36 (1H, s, H-15), 5.32 (1H, d, J=3.2 Hz, H-7),
2.76 (1H, m, H-17), 2.27 (1H, m, H-5), 2.24 (1H, m, H-5), 1.94 (3H, s, Ac-Me), 1.3
(3H, s, Me-30), 1.24 (3H, s, Me-19), 1.06 (3H, s, Me-28), 1.03 (3H, s, Me-29), 0.94
(3H, s, Me-18); *C NMR (acetone-dg); & (150 MHz, ppm), Appendix 6A: 204.6 (C-
3), 173.0, 172.8 (C-21), 170.7 (Ac-CO), 160.6 (C-14), 159.7 (C-1), 148.8 (148.5) (C-
22), 138.1 (C-20), 126.4 (C-2), 119.9(199.8) (C-15), 98.6 (98.4) (C-22), 75.7 (C-7),
54.5 (C-17), 52.3 (C-13), 47.8 (C-5), 45.3 (C-4), 41.4 (C-10), 40.2 (C-8), 40.1(C-9),
35.1 (C-16), 34.7 (C-12), 28.4 (C-30), 28.0 (C-29), 25.1 (C-6), 22.3 (C-28), 22.0 (C-

18), 20.1 (C-19), 17.7 (C-11).

Stigmasterol (193); Whitish crystals, mp 175-278 °C: *H NMR (acetone-ds) & (600
MHz, ppm) Appendix 7; 5.31 (1H, d, J=5.4 Hz, H-6), 5.21 (1H, dd, 9, 15, Hz, H-22),
5.08 (1H, dd, 8.4, 15 Hz, H-23), 3.39 (1H, m, H-3), 2.20 (1H, m, H-4), 2.01 (1H, m,

CH2-7a), 2.00 (1H, m, CHp-1a), 1.90 (1H, m, CH,-2a), 1.80 (1H, m, CH,-7h), 1.75
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(1H, m, CH,-1b), 1.63 (1H, m, CH,-15a), 1.62 (3H, m, CH»-28a, CH-11), 1.50 (1H,
m, CH,-8), 1.42 (1H, m, H-20),1.40 (1H, m, CH,-12a), 1.34 (1H, m, CH,-2b), 1.24
(2H. m, CH,-16), 1.20 (1H, m, H-14), 1.19 (1H, m, H-17), 1.18 (1H, m, CH,-18b),
1.17 (1H, m, CH,-15b), 1.06 (3H, s, Me-21), 1.04 (3H, s, Me-19), 0.87 (3H, s, Me-
27), 0.84 (3H, s, Me-26), 0.83 (3H, s, Me-29), 0.75 (3H, s, Me-18): *C NMR
(acetone-d); & (150 MHz, ppm). Appendix 7A: 143 (C-5), 140 (C-22), 130.7 (C-23),
122.2 (C-6), 72.4 (C-3), 58.3 (C-14), 57.6 (C-17), 52.8 (C-24), 51.9 (C-9), 44.0 (C-
4, 42.1 (C-13), 37.6 (C-20), 35.3 (C-12), 33.4 (C-1, C-10), 33.3 (C-8, C-7, C-15),
29.6 (C-2), 27.4 (C-16), 25.6 (C-28), 24.4 (C-11, C-15), 22.5 (C-21, C-26), 20.5 (C-

19,C-27), 12.9 (C-29).

3.3.2. Turraea nilotica

Air dried and ground stem bark of Turraea nilotica (1.16 kg) was extracted as
described in section 3.3.1. The filtrate was dried in vacuo using a rotary evaporator to
yield 59 g of a dark gum. A portion (58 g) of the extract was fractionated by CC on
silica gel eluting with petroleum ether (40-60 °C) and ethyl acetate in the following
ratios: 100:0, 98:2, 96: 4, 92:8, 9:1, 88:12, 86:14, 8:2, 7:3, 1:1, 5:15, 0: 100. A total of
50 eluents (ca. 250 ml each) were collected and combined to 20 fractions (A-T) after
TLC. Fraction L (1.35 g) was fractionated further by CC on Sephadex” LH-20 eluting
with methanol to vyield fractions L1-L3. Subfraction L2 (300 mg) was re-
chromatographed (silica gel CC eluting with petroleum ether/acetone, 95:5) yielding
fractions L2 (A-D). Fraction L2D (131.6 mg) was purified on PTLC eluting with
petroleum ether/chloroform/methanol (18:2:1) to yield niloticin (25, 9.3 mg).
Fractions M, N, O and T were combined (7 g) and re-chromatographed on silica gel
gradient CC eluting with petroleum ether and acetone in the following ratios: 98:2,

95:5, 9:1, 85:15, 8:2, 7:3, 1:1. Eleven eluents of ca. 100 ml each (MNOT 1-11) were
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collected. Fraction MNOT 11 (619.8 mg) was re-chromatographed on Sephadex® LH-
20 column (eluting with methanol) to yield fractions MNOT 11 (A-C). Fraction
MNOT 11B (215.2 mg) was crystallized from acetone/dichloromethane mixture to
yield toonapubesins F (194, 20.1 mg). Fraction P (3 g) was fractionated on silica gel
CC eluting with petroleum ether/acetone ratios: 98:2, 96:4, 9:1, 85:15. Twenty
fractions (ca. 100 ml each) were collected and combined to 3 fractions (P1-P3) after
TLC. Fraction P2 was crystallized from acetone to yield piscidinol A (27, 775.6 mg).
Fraction R was crystallized from mixture of methanol and dichloromethane to yield
hispidol B (96, 84.2 mg). Fractions A-K were difficult to fractionate with the
available chromatographic techniques while Q and S were similar to R and hence

were not worked on.

The root bark of Turraea nilotica (837 g) was extracted as described in section 3.3.1
above. The filtrate was dried in vacuo yielding 13 g of a yellowish gum. A portion of
the extract (11 g) was fractionated by CC over silica gel eluting with petroleum ether
(40-60 °C) and acetone in the following ratios: 99.9: 0:1, 99.8: 0.2, 99.6: 0.4,
99.4:0.6, 99.2: 0.8, 99:1, 98.8:0.2, 98.6:0.4, 98.2: 0.8; 98:2, 97.8:0.2, 97.4: 0.6,
97.2:0.8, 97:3, 96.5:3.5, 96:4, 95.5:4.5, 95:5, 94.5:5.5, 94:6, 93.5:6.5, 93:7, 92.5:7.5,
92:8, 91.5: 8.5 9:1. Forty six eluents (ca. 100 ml each) were collected and combined
into 12 fractions (A-L) after TLC. Fraction G (140.7 mg) was purified on PTLC
eluting with petroleum ether/acetone (9:1) to yield azadirone (19, 8.3mg). Fraction L
(366 mg) was subjected to RP-HPLC (CH;OH/water) yielding 12a-acetoxy-7-
deacetylazadirone (28, 18.5 mg) and mzikonone (17, 4.4 mg). Fraction K (358 mg)
was subjected to further CC on Sephadex® LH-20 eluting with methanol and
dichloromethane (1:1). Sixteen eluents (ca. 100 ml each) were collected and

combined into 3 fractions (K1-K3) after TLC. Fraction K1 was further purified on
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PTLC eluting with petroleum ether/chloroform/methanol (10:2:1) to yield la,3a-
diacetyl-7a-tigloyvilasinin (40, 11.6 mg). There was no phytochemical investigation

carried out on Fractions A-F, H, I and J as the amounts were inadequate.

Dried and ground leaves of T. nilotica (500g) were extracted with MeOH/CH,Cl,
(1:1) for 48 hours (x2) at room temperature yielding 30 g of a dark green gum. A
portion (20 g) was fractionated on CC over silica gel eluting with petroleum
ether/acetone in the following ratios: 100:0, 9.75: 0.25, 9.25:0.75, 9:1, 8.75:1.25,
8.5:1.75, 8:2. A total of fifty eight eluents (ca. 100 ml each) were collected and
combined into 12 fractions (A-L) after TLC. Fraction C was crystallized from acetone
giving stigmasterol (193) and B-sitosterol (180) as a mixture (4.72 mg). Fraction J
crystallized from acetone yielding sitosterol 3-O-f-D-glucopyranoside acetate (195)
and stigmasterol-3-O-f-D-glucopyranoside acetate (196) as a mixture (9.8 mg).
Fraction L crystallized in acetone to yield sitosterol-3-O-f-D-glucopyranoside (197,
4.7 mg). Fraction A-B and contained oils while fractions D-I were heavily loaded with

chlorophyll and were not investigated.

3.3.2.1. Physical and spectroscopic data of compounds isolated from Turraea
nilotica
Niloticin (25); white crystals, mp (138-142 °C); *H NMR (acetone-dg), & (600 MHz,
ppm), Appendix 27; 5.35 (1H, dd, J=7.2, 3 Hz, H-7), 3.49 (1H, dd, J=13.8, 6.6 Hz, H-
23), 2.81 (1H, dt, J=14.4, 5.4 Hz, CH,-2a), 2.56 (1H, d, J=8.4 Hz, H-24), 2.4 (1H, m,
H-9), 2.13 (1H, dt, J=5.4, 14.4 Hz, CH»-2b), 2.1 (2H, m, CH,-6), 2.08 (1H, m, CH,-
16a), 2.02 (1H, ddd, J=3, 5.4, 13.2 Hz, CH,-1a), 1.87 (1H, m, CH,-12a), 1.75 (1H,
dd, J=6, 17 Hz, H-5), 1.67 (1H, m, CH,-12b), 1.64 (1H, m, CH,-22a), 1.63 (2H, m,

CH,-11), 1.60 (1H, m, CH-17), 1.56 (2H, m, CH,-15), 1.51 (1H, m, CH-20), 1.45
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(1H, m, CH,-1b), 1.36 (1H, m, CH»-22b), 1.26 (3H, s, Me-19), 1.25 (3H, s, Me-27),
1.10 (3H, s, Me-29), 1.06 (3H, s, Me-30), 1.05 (3H, s, Me-18), 1.00 (3H, s, Me-28),
0.99 (3H, s, Me-21), 0.87 (3H, s, Me-26); *C NMR (acetone-dg),; & (150 MHz, ppm),
Appendix 27A: 214.3 (C-3), 145.8 (C-8), 117.9 (C-7), 69.2 (C-23), 68.4 (C-24), 58.1
(C-25), 53.4 (C-17), 52.2 (C-5), 51.1 (C-14), 48.4 (C-9), 47.4 (C-4), 43.5 (C-13), 41.1
(C-22), 38.2 (C-1), 34.9 (C-10), 34.5 (C-2), 33.9 (C-15), 33.6 (C-20), 33.3 (C-12),
28.5 (C-16), 27.0 (C-30), 24.3 (C-28), 24.2 (C-6, C-27), 21.3 (C-29), 20.9 (C-26),
19.8 (C-21), 19.3 (C-19), 18.1 (C-11), 12.2 (C-18). ESI-MS (30 eV): 457.6

[M+H]*Appendix 27B.

Piscidinol A (27); white crystals, mp (81-82 °C); 'H NMR (CD,Cl,) & (600 MHz,
ppm), Appendix 8: 5.32 (1H, m, H-7), 4.08 (1H, dd, J=8.6, 5 Hz, H-23), 3.14 (1H, d,
J=5.6 Hz, H-24), 2.76 (1H, td, J=5.5, 14.5 Hz, CH,-2a), 2.39 (1H, m, H-9), 2.18 (1H,
td, J=14.2, 7.1 Hz, CH,-2b), 2.10 (2H, m, CH,-6), 2.02 (1H, m, CH,-16a), 2.00 (1H,
m, CH,-1a), 1.84 (1H, m, CH,-22a), 1.83 (1H, m, CH,-12a), 1.72 (1H, dd, J=10.9, 6.7
Hz, H-5), 1.66 (1H, m, CH,-12b), 1.56 (2H, m, CH»-11), 1.50 (1H, m, H-17), 1.49
(2H, m, CH,-15), 1.40 (1H, m, CH,-1b), 1.36 (1H, m, H-20), 1.30 (1H, m, CH,-16b),
1.26 (6H, s, Me-26, Me-27), 1.15 (1H, m, CH,-22b), 1.10 (3H, s, Me-29), 1.01 (6H, s,
Me-19, Me-30), 0.92 (3H, d, Me-21), 0.82 (3H, s, Me-18); *C NMR (CD,Cl,), 5 (150
MHz, ppm) Appendix 8A: 216.5 (C-3), 145.8 (C-8), 118.0 (C-7), 74.9 (C-24), 74.1
(C-25), 69.6 (C-23), 53.1 (C-17), 52.3 (C-5), 51.2 (C-14), 48.5 (C-9), 47.5 (C-4), 43.5
(C-13), 40.5 (C-22), 38.5 (C-1), 35.0 (C-10), 34.9 (C-2), 34.0 (C-20), 33.7 (C-12, C-
15), 28.4 (C-160, 27.1 (C-27, C-30), 26.1 (C-26), 24.4 (C-6), 24.3 (C-28), 21.7 (C-
18), 21.4 (C-29), 18.5 (C-21), 18.3 (C-11). ESI-MS (30 eV): m/z 475.5 [M+H]"

Appendix 8B.
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1a, 3a-diacety-7a-tigloyvilasinin (40); white amorphous powder; mp 196-197 °C: *H
NMR (CD,Cl,), & (600 MHz, ppm), Appendix 12; 7.28 (1H, t, J=3.4 Hz, H-23), 7.15
(1H, m, H-21), 6.80 (1H, qq, J=1.5, 7.1 Hz, H-3"), 6.20 (1H, m, H-22), 5.51 (1H, d,
J=2.8 Hz, H-7), 5.42 (1H, dd, J=1.5, 3.2 Hz, H-15), 4.82 (1H, t, J=5.9 Hz, H-3), 4.62
(1H, t, J=5.8 Hz, H-1), 4.10 (1H, dd, J=2.8, 12.6 Hz, H-6), 3.35 (1H, m, H-28), 2.71
(1H, dd, J=10.9, 7.4 Hz, H-17), 2.59 (2H, m, H-5, H-9), 2.3 (1H, ddd, J=1.7, 11, 2.2
Hz, CH,-16a), 2.22 (1H, ddd, J=3.5, 7.4, 15.3 Hz, CH,-16b), 2.15 (1H, dt, J=6.5, 16.6
Hz, CH,-2a), 2.02 (1H, dt, J=5.2, 16.6 Hz, CH,-2b), 1.92 (3H, s, Ac-Me), 1.88 (3H,
s, Ac-Me), 1.78 (3H, 2, Me-5), 1.78 (3H, s, Me-4"), 1.70 (1H, m, CH»-12a), 1.56
(1H, CH,-11a), 1.50 (1H, m, CH,-12b), 1.26 (1H, m, CH,-11b), 1.11 (3H, s, Me-30),
1.10 (3H, s, Me-29), 0.95 (3H, s, Me-19), 0.67 (3H, s, Me-19): *C NMR (CD,Cl,); &
(150 MHz, ppm), Appendix 12A: 169.8 (Ac-C0O), 169.5 (Ac-CO), 166.5 (C-17), 158.1
(C-14), 142.5 (C-23), 139.7 (C-21), 136.6 (C-3’), 128.8 (C-2’), 124.9 (C-20),
120.3(C-15), 111.1 (C-22), 77.7 (C-28), 73.9 (C-7), 72.7 (C-6), 72.4 (C-1), 71.7 (C-
3), 51.5 (C-17), 47.3 (C-13), 44.6 (C-8), 42.1 (C-4), 41.4 (C-5), 39.2 (C-10), 34.8 (C-
9), 34.2 (C-16), 32.7 (C-12), 27.4 (C-2), 26.0 (C-30), 21.1 (C-18), 21.0 (Ac-Me), 20.8
(Ac-Me), 19.1 (C-29), 15.2 (C-11), 14.1 (C-4*), 11.9 (C-9°). EIMS: m/z 594 [M]"

Appendix 12B

Hispidol B (96); White crystals, mp 133-135°C. *H NMR (DMSO-ds) & (600 MHz,
ppm), Appendix 10, ; 5.22 (1H, d, J=3.6 Hz, H-7), 4.37 (1H, d, J=4.8 Hz, H-23), 4.15
(1H, d, J=6 Hz, H-3), 4.11 (1H, d, J=8.4 Hz, H-24), 2.12 (1H, m, H-9), 2.06 (1H, m,
CH,-6a), 1.90 (2H, m, CHy-6b, CH,-16a), 1.35 (3H, m, CH,-15, CH,-16b), 1.23 (1H,
m, H-5), 1.11 (3H, s, Me-27), 1.08 (3H, s, Me-26), 0.94 (3H, s, Me-30), 0.86 (6H, s,
Me-28, Me-21), 0.77 (3H, s, Me-19), 0.75 (3H, s, Me-29), 0.68 (3H, s, Me-18): °C

NMR (DMSO-dg); & (150 MHz, ppm), Appendix 10A:146.0 (C-8), 118.0 (C-7), 77.4
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(C-3), 75.9 (C-24), 72.9 (C-25), 67.9 (C-23), 53.9 (C-17), 51.2 (C-14), 50.6 (C-5),
48.9 (C-9), 43.5 (C-13), 41.8 (C-22), 37.2 (C-1), 34.9 (C-10), 34.0 (C-15), 33.8 (C-
12), 33.6 (C-20), 28.4 (C-16, C-2), 28.2 (C-28), 28.0 (C-27), 27.6 (C-30), 26.4 (C-
26), 24.0 (C-6), 22.2 (C-19), 19.4 (C-21), 18.1 (C-11), 15.4 (C-29), 13.4 (C-18).

EIMS m/z 476.3868, calcd 476.3860), Appendix 10B.

Toonapubesins F (194); white armophous powder: *H NMR (CD,Cl,) & (600 MHz,
ppm), Appendix 11; 5.67 (1H, m, C-7), 4.09 (1H, m, H-23), 4.08 (1H, d, J=10 Hz,
CH,-29a), 3.60 (1H, d, J=10.9 Hz, CH,-29b), 3.14 (1H, s, H-24), 2.69 (1H, td, J=5.8,
14.6 Hz, CH,-2a), 2.30 (1H, td, J=3.2, 4.4, 14.6 Hz, CH,-2b), 2.34 (1H, m, H-9), 2.16
(1H, m, CH,-6a), 2.05 (1H, m, CH,-6b), 2.02 (1H, m, CH,-1a), 2.00 (2H, m, CH,-16),
1.88 (1H, m, CH.-22a), 1.87 (1H, m, H-5), 1.83 (1H, m, CH,-12a), 1.66 (1H, m, CH,-
12b), 1.52 (1H, m, CH.-1b), 1.51 (1H, m, H-17), 1.50 (4H, m, CH,-11, CH,-15), 1.40
(1H, m, H-20), 1.27 (6H, s, Me-26, Me-27), 1.12 (1H, m, CH,-22b), 1.12 (3H, s, Me-
28), 1.02 (3H, s, Me-30), 0.98 (3H, s, Me-19), 0.82 (3H, s, Me-18): *C NMR
(CD,Cl,); 6 (150 MHz, ppm), Appendix 11A: 215.7 (C-3), 146.0 (C-8), 118.0 (C-7),
74.9 (C-24), 74.1 (C-25), 69.6 (C-23), 65.7 (C-29), 53.7 (C-17), 53.4 (C-5), 53.1 (C-
4), 51.2 (C-14), 48.3 (C-9), 43.5 (C-13), 40.5 (C-22), 37.8 (C-1), 35.6 (C-2), 35.0 (C-
10), 34.0 (C-15), 33.7 (C-12, C-20), 28.4 (C-16), 27.2 (C-30, C-27), 26.0 (C-26), 24.7
(C-6), 21.9 (C-18), 20.1 (C-28), 18.8 (C-21), 18.5 (C-11), 13.4 (C-19). ESI-MS (30

eV): m/z 491.6 [M+H]" Appendix 11B.

B-sitosterol and stigmasterol (180); white crystals, mp 129-131 °C.*H NMR (CDCl3)
d (800 MHz, ppm), Appendix 15; 5.35 (1H, m, H-6), 3.52 (1H, m, H-3), 0.96 (1H, d,
J=6.5 Hz, H-24), 0.94 (1H, d, J=6.5 Hz, H-9), 1.03 (3H, s, Me-19), 0.87 (3H, t, Me-
29), 0.85 (3H, d, Me-26), 0.84 (3H, d, Me-27), 0.70 (3H, s, Me-18): *C NMR

(CDCl3); § (200 MHz, ppm), Appendix 15A: 140.7 (140.6) (C-5), 121.73, 121.7 (C-
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6), 71.8 (C-3), 56.8 (C-14), 56.1, 56.0 (C-17), 50.1 (C-9), 45.9, (51.3) (C-24), 42.3
(C-4), 42.2 (C-13), 39.7, 39.8 (C-12), 37.3 (C-1), 36.5 (C-10), 36.2 (40.5) (C-20),
34.0 (C-22), 31.6 (C-2), 31.9 (C-7, C-8), 29.3 (C-25), 29.2, 28.3, (C-16), 26.1 (C-
23), 24.4 , 24.3 (C-15), 21.2, 21.1 (C-11), 23.1 (C-28), 19.8 (C-26), 19.4 (C-19), 19.0

(C-27), 18.8 (C-21), 12.0 (C-29), 11.9 (C-18),

Sitosterol 3-O-p-D-glucopyranoside acetate (195) and stigmasterol 3-O-g-D-
glucopyranoside (196); White amorphous powder: *H NMR (CDCl3) & (800 MHz,
ppm), Appendix 13; 5.37 (1H, s, H-6), 4.50 (1H, dd, J=12, 4.8 Hz, CH,-6’a), 4.25
(1H, dd, J=12, 4.8 Hz, CH,-6’b), 4.38 (1H, d, J=8 Hz, H-1°), 3.56 (2H, m, H-3, H-3"),
3.46 (1H, m, H-5°), 3.37 (2H, H-2’, H-4), 1.01 (3H, s, Me-19), 0.92 (3H, Me-21),
0.84 (6H, s, Me-26, Me-29), 0.83 (3H, s, Me-27), 0.68 (3H, s, Me-18):*C NMR
(CDCls); 6 (200 MHz, ppm), Appendix 13A: 175.1 (Ac-CO), 140.2 (C-5), 122.1 (C-
6), 101.5 (C-1°), 79.5 (C-3), 76.2 (C-3°), 74.3 (C-5), 73.9 (C-2°), 70.3 (C-4’), 63.4
(C-6"), 56.7 (C-14), 56.0 (C-17), 50.5 (C-9), 46.2 (C-24), 42.6 (C-13), 40.1 (C-12),
39.2 (C-4), 37.6 (C-1), 37.0 (C-10), 36.5 (C-20), 34.5 (C-22), 32.4 (C-7), 32.3 (C-8),
29.8 (C-2), 29.4 (C-25), 28.6 (C-16), 26.4 (C-23), 24.6 (C-15), 23.0 (C-28), 21.4 (C-

11), 20.1 (C-26), 19.7 (C-19), 19.3 (C-27), 19.0 (C-21), 12.3 (C-29).

sitosterol-3-O-#-D-glucopyranoside (197); white amorphous powder: *H NMR
(CDCl3) & (800 MHz, ppm), Appendix 14; 5.37 (1H, s, H-6), 4.43 (1H, d, J=8 Hz, H-
1), 3.92 (1H, m, CH2-6’a), 3.81 (1H, m, CH,-6b), 3.61 (1H, m, H-4"), 3.60 (1H, m,
H-3), 3.59 (1H, m, H-3), 3.42 (1H, m, H-5"), 3.36 (1H, m, H-2"), 1.01 (3H, s, Me-
19), 0.95 (2H, d, J=6.4 H-9, H-24), 0.92 (3H, d, Me-21), 0.84 (3H, d, Me-26), 0.83
(3H, t, Me-29), 0.81 (3H, d, Me-27), 0.68 (3H, s, Me-18): *C NMR (CDCls); & (200

MHz, ppm), Appendix 14A: 140.6 (C-5), 121.4 (C-6), 100.9 (C-1°), 77.1 (C-3), 76.9
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(C-3°, C-5), 73.6 (C-2°), 70.2 (C-4"), 61.2 (C-6"), 55.6 (C-17), 56.3 (C-14), 49.7 (C-
9), 45.3 (C-24), 42.0 (C-13), 40.1 (C-12), 38.4 (C-4), 37.0 (C-1), 36.4 (C-10), 35.6
(C-20), 335 (C-22), 31.6 (C-7), 31.5 (C-8), 29.4 (C-2), 28.8 (C-25), 27.9 (C-16),
25.3 (C-23), 24.0 (C-15), 22.8 (C-28), 20.7 (C-11), 19.9 (C-27), 19.3 (C-26), 19.1

(C-19), 18.8 (C-21), 11.9 (C-29), 11.8 (C-18).
3.3.3. Ekebergia capensis

The air dried and ground root bark (600 g) of E. capensis was extracted as described
in section 3.3.1 above. The filtrate was dried in vacuo to yield a blackish gum (97 g).
A 30 g portion of the extract was fractionated in a gradient CC eluting with petroleum
ether (40-60 °C) and ethyl acetate in the following ratios: 100:0; 19:1; 9:1; 4:1; 3:2;
1:1; 2:3; 1:4; 0:100. A total of 86 eluents (ca. 250 ml each) were collected and
combined into 22 fractions (labeled A to V) based on TLC profiles. Fraction B was
crystallized from acetone to yield oleanonic acid (160, 2.7 g). Supernatant from
fraction B was re-chromatographed over Sephadex™ LH-20 eluting with methanol to
yield fraction B1 which was crystallized from acetone to yield ekeberin A (158, 2.1
mg). Fraction C was crystallized from acetone to yield whitish crystals C1 (762.8 mg)
which were further fractionated on RP-HPLC (CH3;OH/water) to yield 3-epi-oleanolic
acid (161, 7.4 mg). Whitish amorphous powder settled in fraction D yielding 3-oxo-
12a- hydroxy-oleanan-28,13p3-olide (198, 2.3 mg). Fraction G yielded oleanolic acid
(159, 284 mg) as whitish powder. Fractions | and M were separated on PTLC eluting
with petroleum ether and acetone (7:3) to vyield 2-hydroxymethyl-2,3,22,23-
tetrahydroxy-6,10,15,19,23-pentamethyl-6,10,14,18-tetracosatetraene (152, 30.3 mg)

and 2,3,22,23-tetrahydroxy-2,6,10,15,19,23-hexamethyl-6,10,14,18-tetracosate (151,
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90.6 mg) respectively. The rest of the fractions were not investigated as they were

small in quantity.

Dried and ground leaves of E. capensis (500 g) were extracted with MeOH/CH,CI,
(1:1) to yield 21 g of a greenish gum. A 20 g portion was fractionated on CC over
silica gel eluting with petroleum ether and acetone as follows: 100:0, 9.75: 0.25,
9.5:0.5, 9.25:0.75, 9:1, 8.75:1.25, 8.5:1.5, 8.25:1.75, 8:2, 7:3, 1:1, 0:100. Total of 81
eluents (ca. 100 ml each) were collected and combined into 22 fractions (A-V) after
TLC. Fraction Q was further fractionated with RP-HPLC (CH3;OH/water) to yield
subfractions Q2 and Q6. Fraction Q2 was purified on preparative TLC eluting with
iso-hexane and acetone (4:1) to yield proceranolide (148, 5.7 mg). Fractions T and W
were separately re-fractionated with RP-HPLC (CH3OH/Water) to yield kaempferol-
3-O-p-D-glucopyranoside (199, 3.5 mg) and quercetin-3-O-4-D-glucopyranoside
(200, 10.1 mgq) respectively. The rest of the fractions were having large amounts of

chlorophyll and were not investigated.

3.3.3.1. Physical and spectroscopic data of compounds isolated from

Ekebergia capensis

Proceranolide (148); Yellowish gum: *H NMR (CDCls) & (799.88 MHz, ppm),
Appendix 26: 0.73 (3H, s, Me-29), 0.81 (3H, s, Me-28), 1.03 (3H, s, Me-18), 1.12
(3H, s, Me-19), 2.38 (1H, m, CH,-6a), 2.38 (1H, m, CH,-6b), 3.05 (1H, ddd, J=10.7,
6.0, 2.7, Hz, CH-2), 3.19 (1H, dd, J=14.5, 3.0 Hz, CH-30), 3.24 (1H, dd, J=11.4, 2.7
Hz, CH-5), 3.74 (1H, m, CH-3), 3.70 (3H, s, OMe), 4.05 (1H, dt, J=21.4, 2.12, 2.12
Hz, CH-15), 5.58 (1H, s, CH-17), 6.49 (1H, d, J=2.3 Hz, CH-22), 7.39 (1H, s, CH-
23), 7.56 (1H, s, CH-21); *C NMR (CDCls); 5 (201.20 MHz, ppm), Appendix 26A:

17.2 (C-19), 19.1(C-11), 20.5 (C-29), 24.1 (C-28), 28.9 (C-12), 33.4 (C-15), 33.6 (C-

50



6), 33.9 (C-30), 38.2 (C-13), 39.6 (C-5), 50.3 (C-2), 52.1 (OMe), 52.3 (C-9), 53.9 (C-
10), 77.5 (C-3), 80.5 (C-17), 110.4 (C-22), 121.1 (C-20), 128.5 (C-8), 131.7 (C-14),
142.0 (C-21), 142.9 (C-23), 171.7 (C-16), 174.7 (C-7), C-1 (218.3); ESI-MS (30 eV):

m/z 471.9 [M+H]" Appendix 26B.

2-hydroxymethyl-2,3,22,23-tetrahydroxy-6,10,15,19,23-pentamethyl-6,10,14,18-

tetracosatetraene (152):colourless oil; *H NMR (DMSO-ds) & (799.88 MHz, ppm),
Appendix 22: 0.93 (3H, s, Me-25), 0.96 (3H, s, Me-24), 0.99 (3H, s, Me-30), 1.50
(12H, s, Me-26, 27, 28, 29), 3.03 (1H, d, J=10.2 Hz, CH-22), 3.20 (1H, d, J=10.8 Hz,
CH,-1a), 3.24 (1H, d, J=10.4 Hz, CH-3), 3.32 (1H, d, J=10.8 Hz, CH,-1b), 5.04 (4H,
br's, CH-7, 11, 14, 18); *C NMR (DMSO-ds);  (201.20 MHz, ppm), Appendix 22A:
16.33, 16.34 16.4, 16.5, (Me- 26, 27, 28, 29), 21.2 (C-25), 25.2 (C-24), 26.0 (C-30),
26.65, 26.7 (C-17 and C-8), 28.3 (C-11/C-12), 29.8 (C-4), 30.1 (C-21), 36.9 (C-5),
37.1 (C-20), 39.82 (C-9), 39.83 (C-16), 67.2 (C-1), 72.4 (C-23), 74.5 (C-2), 74.6 (C-
3), 124.0 (C-11/C-14), 124.4 (C-7), 124.44 (C-18), 134.8 (C-6), 134.9 (C-10/C-15),

134.9 (C10/C15), 135.0 (C19); ESI-MS (30 eV): m/z 495.7 [M+H]" Appendix 22B.

2,3,22,23-tetrahydroxy-2,6,10,15,19,23-hexamethyl-6,10,14,18-tetracosate  (151);
Yellowish oil: *H NMR (CDCl3) & (500 MHz, ppm), Appendix 23: 1.13 (6H, s, Me-1,
24), 1.18 (3H, s, Me-25, 30), 1.58 (6H, Me-27, Me-28), 1.60 (6H, s, Me-26, 29), 3.33
(2H, dd J=10.5, 1.9 Hz), 5.13 (2H, m, CH-11, 14) 5.17 (1H, t, J=6.4 Hz, CH-7); **C
NMR (CDCls) & (125.00 MHz, ppm), Appendix 23A: 16.3 (C-27/C-28), 16.4 (C-
26/C-29), 23.6 (C-1/C-24), 26.78 ( C-8), 26.8 (C-17), 26.9 (C-25), 28.6 (C-12/C-13),
30.1 (C-4/C-21), 37.2 (C-5/C-20), 40.0 (C-9/C-16), 73.4 (C-2/C-23), 78.6 (C-3/C-22),
124.8 (C-11/C-14), 125.4 (C-7/C-18), 135.2 (6, 10, 15,19), 135.3(6, 10, 15,19); ESI-

MS (30 eV): m/z 479.4 [M+H]" Appendix 23B.

51



Ekeberin A (158); white and crystalline, *H NMR (CDCls) & (500 MHz, ppm),
Appendix 17: 0.88 (3H, s, Me-30), 0.89 (3H, s, Me-29), 0.90 (3H, s, Me-27), 0.96
(3H, s, Me-25), 1.03 (3H, s, Me-24), 1.06 (3H, s, Me-26), 1.07 (3H, s, Me-23), 1.42
(1H, d, J=2.6 Hz, CH-9), 2.03 (1H, ddd, J=13.1, 5.4, 2.5 Hz, CHy,-12), 2.44 (1H, ddd,
J=11.3, 7.8, 3.9 Hz, CH2.-2), 2.51 (1H, ddd, J=15.7, 9.5, 7.6 Hz, CH,-2b), 3.44 (1H,
dd, J =8.5, 1.7 Hz, CH2.-28), 3.55 (1H, dd, J=10.3, 1,7 Hz, CH-18), 4.25 (1H, dd,
J=8.5, 3.2 Hz, CH,-28b); **C NMR (CDCls) 6 (125.00 MHz, ppm), Appendix 17A:
14.8 (C-27), 16.1 (C-26), 16.8 (C-25), 17.4 (C-29), 17.7 (C-30), 20.1 (C-6), 21.5 (C-
24), 21.8 (C-11), 24.7 (C-12), 27.2 (C-23), 28.0 (C2-1), 26.9 (C-15), 29.0 (C-16), 31.9
(C-17), 33.3 (C-22), 33.4 (C-7), 34.6 (C-2), 37.5 (C-10), 35.9 (C-20), 39.9 (C-13),
40.3 (C-1), 41.2 (C-8), 41.9 (C-14), 47.8 (C-4), 50.8 (C-9), 55.5 (C-5), 69.6 (C-28),

79.3 (C-18), 98.0 (C-19), 218.6 (C-3).

3-p-hydroxyolean-12-en-28-oic acid (Oleanolic acid) 159; white crystals, mp 308-
311°C: *H NMR (CDCl5) 6 (500 MHz, ppm), Appendix 18: 0.77 (3H, s, Me-26), 0.79
(3H, s, Me-24), 0.92 (3H, s, Me-29), 0.93 (3H, s, Me-25), 0.95 (3H, s, Me-30), 1.00
(3H, s, Me-23), 1.15 (3H, s, Me-27), 2.83 (1H, dd, J=13.8, 4.5 Hz, CH-18), 3.24 ( 1H,
dd, J=10. 5 Hz, CH-3), 5.28 (1H, s, CH-12); **C NMR (CDCls) § (125.00 MHz, ppm),
Appendix 18A: 15.5 (C-24), 15.3 (C-25), 17.1 (C-26), 18.3 (C-6), 22.9 (C-11), 23.4
(C-16), 23.6 (C-30), 25.9 (C-27), 27.2 (C-2), 28.1 (C-23), 30.7 (C-20), 32.4, (C-22),
32.6 (C-29), 33.1 (C-7), 33.8 (C-21), 37.1 (C-10), 38.4 (C-1), 38.8 (C-4), 39.3 (C-8),
41.0 (C-18), 41.6 (C-14), 45.9 (C-19), 47.6 (C-9), 55.2 (C-5), C-3 (79.0), 122.6 (C-

12), 143.6 (C-13), 182.9 (C-28).

3-Oxo-olean-12-en-28-oic acid (Oleanonic acid) 160; White crystals, mp185-189
°C: 'H NMR (DMSO-dg) & (799.88 MHz, ppm):, Appendix 20: 0.77 (3H, s, Me-26),

0.88 (6H, Me-29, 30), 0.94 (3H, s, Me-24), 0.97 (3H, s, Me-25), 1.00 (3H, s, Me-23),
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1.11 (3H, s, Me-27), 1.38 (1H, m, CH,-1a), 1.77 (1H, ddd, J=11.8, 7.4, 3.8 Hz, CH,-
1b), 2.30 (1H, ddd, J=15.9, 7.1, 3.7 Hz, CH,-2a), 2.75 (LH, dd, J=14, 4.5 Hz, CH-18),
5.19 (1H, s, CH-12); *C NMR (DMSO-dg): 5 (201.20 MHz, ppm), Appendix 20A.
15.1 (C-25), 17.2 (C-26), 19.6 (C-6), 21.6 (C-24), 23.1 (C-11), 23.5 (C-16), 23.8 (C-
8), 25.9 (C-27), 26.7 (C-23), 27.7 (C-15), 30.9 (C-20), 32.3 (C-7), 32.5 (C-22), 33.3
(C-29), 33.8 (C-21), 34.1 (C-2), 36.7 (C-10), 38.9 (C-1), 29.3 (C-8), 41.4 (C-18), 41.9
(C-14), 46.0 (C-19), 46.1 (C-9), 46.6 (C-17), 47.1 (C-4), 54.8 (C-5), 121.9 (C-12),
1443 (C-13), 179.1 (C-28), 216.9 (C-3); ESI-MS (30 eV): m/z 455.4 [M+H]®

Appendix 20B.

3-a-hydroxyolean-12-en-28-oic acid (3-epi-Oleanolic acid) 161; White crystals: ‘H
NMR (DMSO-ds) & (799.88 MHz, ppm), Appendix 21: 0.71 (3H, s, Me-26), 0.75
(3H, s, Me-24), 0.83 (3H, s, Me-23), 0.85 (3H, s, Me-25), 0.86 (6H, s, Me-29), 1.09
(3H, s, Me-27), 2.77 (1H, dd, J=15, 5, CH-18), 3.17 (1H, s, CH-3), 5.08 (1H, s, CH-
12); *C NMR (DMSO-dg): & (201.20 MHz, ppm),Appendix 21A: 15.0 (C-25), 17.0
(C-26), 17.8 (C-6), 22.3 (C-24), 22.9 (C-11), 23.5, (C-16),23.6 (C-30), 25.2 (C-2),
25.7 (C-27), 27.3 (C-15), 28.7 (C-23), 30.5 (C-20), 32.3 (C-1), 32.5 (C-7), 32.6 (C-
21), 32.7 (C-22), 33.0 (C-29), 36.7 (C-10), 36.9 (C-4), 41.0 (C-8), 41.4 (C-18), 45.5
(C-14), 46.1 (C-19), 46.9 (C-17), 48.3 (C-9), 48.6 (C-5), 73.8 (C-3), 120.5 (C-12),

144.1 (C-13), 178.3 (C-28).

3-ox0-12p-hydroxy-oleanan-28,13p-olide (198); White and crystalline: *H NMR
(DMSO-ds) 6 (800 MHz, ppm), Appendix 16: 3.91 (1H, d, J=3.3 Hz, H-12), 2.53 (1H,
ddd, J=4.4, 9.8, 15.7 Hz, CH,-2a), 2.45 (1H, ddd, J=4.4, 7.6, 15.7 Hz, CH,-2b), 2.14
(1H, ddd, J=5.9, 13.3, 13.3 Hz, CH,-16a), 2.06 (1H, m, CH,-11a), 2.05 (1H, dd,
J=3.5, 13.4 Hz, H-18), 2.01 (1H, dd, J=13.1, 13.4 Hz, CH,-19a), 1.94 (1H, ddd, J=4.4,

7.6, 12.5 Hz, CH,-1b), 1.88 (1H, ddd, J=2.6, 2.6, 12.4 Hz, CH,-15a), 1.87 (1H, dd,
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J=3.5, 13.1 Hz, CH-19b), 1.72 (1H, dd, J=2.3, 13.1 Hz, H-9), 1.64 (2H, m, CH,-22),
1.60 (1H, m, CH-7a), 1.55 (1H, m, CH,-6a), 1.48(1H, m, CH,-6b), 1.47 (1H, ddd,
J=7.6, 9.8, 12.5 Hz, CH,-1a), 1.46 (1H, m, CH,-11b), 1.39 (1H, dd, J=2.7, 12.0 Hz,
H-5), 1.38 (1H, m, CH,-21a), 1.32 (3H, s, Me-27), 1.30 (1H, m, CH-7h), 1.29 (1H,
m, CH,-16b), 1.27 (1H, m, CH,-21b), 1.20 (1H, m, CH,-15b), 1.20 (3H, s, Me-26),
1.10 (3H, s, Me-23), 1.05 (3H, s, Me-24), 0.99 (6H, s, Me-25, Me-29), 0.91 (3H, s,
Me-30). °C NMR (DMSO-dg); & (200 MHz, ppm), Appendix 16A: 217.7 (C-3),
179.9 (C-28), 90.6 (C-13), 76.2 (C-12), 55 (C-5), 51.3 (C-18), 47.5 (C-4), 44.9 (C-
17), 44.0 (C-9), 42.3 (C-8, C-14), 39.8 (C-1), 39.7 (C-19), 36.3 (C-10), 34.3 (C-21),
34.1 (C-2), 33.5 (C-7), 33.4 (C-29), 31.8 (C-20), 29.3 (C-11), 28.2 (C-15), 27.6 (C-
22), 26.7 (C-23), 24.0 (C-30), 21.2 (C-24), 21.3 (C-16), 19.2 (C-6), 18.6 (C-27), 18.4
(C-26), 16.4 (C-25). HR (ESI)MS observed [M+H]", m/z 471.3386, calcd 471.3474),

Appendix 16F.

Kaempferol-3-O-£-D-glucopyranoside (199); Yellow amorphous powder, mp 230-
232 °C. White amorphous powder: *H NMR (DMSO-dg) & (799.88 MHz, ppm),
Appendix 24: 3.08 (2H, s, H-4”, H-57), 3.13 (1H, m, CHz,-67), 3.17 (1H, s, H-2"),
3.21 (1H, s, H-3"), 3.56 (1H, m, CH»-6"b), 5.46 (1H, d, J=7.2 Hz, H-17), 6.20 (1H, s,
H-6), 6.42 (1H, s, H-8), 6.88 (2H, m, CH-3’, H-5") 8.04 (2H, d, J=7.2 Hz, H-2’, CH-
6’); °C NMR (DMSO-ds) 5 (201.20 MHz, ppm), Appendix 24A: 61.3 (C-6), 70.4
(C-47), 74.7 (C-27), 76.9 (C-3"), 78.0 (C-57), 94.1 (C-8), 99.2 (C-6), 101.3 (C-17),
104.4 (C-10), 115.6 (C-3’/C-5"), 121.4 (C-1), 131.3 (2°/6"), 133.6 (C-3), 156.1 (C-2),
156.9 (C-9), 160.4 (4%), 161.9 (C-5), 177.9 (C-4); ESI-MS (30 eV): m/z 449.1

[M+H]", Appendix 24B.
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Quercetin-3-O-#-D-glucopyranoside (200); Yellow amorphous powder, mp 225-
227 °C. *H NMR (DMSO-ds) & (800 MHz, ppm), Appendix 25: 3.08 (2H, s, CH-4"/
H-5”), 3.22 (2H, m, H-2"/H-3"), 3.33 (1H, m, CH»-6"a), 3.58 (1H, dd, J=11.9, 4 Hz,
CH,-67b), 5.46 (1H, d, J=7.4 Hz, H-17), 6.20 (1H, d, J=2.0 Hz, H-6), 6.40 (1H, d,
J=2.0 Hz, CH-8), 6.84 (1H, d, J=10.0 Hz, CH-5"), 7.57 (1H, m, CH-2"), 7.58 (1H, m,
H-6"); *C NMR (DMSO-ds); & (201.20 MHz, ppm), Appendix 25A: 61.0 (C-6), 69.9
(C-4”), 74.1 (C-27), 76.5 (C-3”), 77.6 (C-57), 93.5 (C-8), 98.6 (C-6), 100.8 (C-17),
104.0 (C-10), 115.2 (C-5°), 116.2 (C-2°), 121.2 (C-1°), 121.6 (C-6"), 133.3 (C-3),
144.8 (3°), 148.5 (C-4"), 156.2 (C-2), 156.3 (C-9), 161.2 (C-5), 164.1 (C-7), 177.4 (C-

4); ESI-MS (30 eV): m/z 465.1 [M+H]" Appendix 25B.
3.4. Acetylation

Method described by Mulholland and co-workers (1999) was adopted. Briefly, 20 mg
portion of compound to be acetylated was dissolved in 1 ml of pyridine followed by
addition of 1 ml acetic anhydride. The mixture was left to stand overnight. Methanol
was added to the reaction mixture and the solvents removed under vacuum. The
acetate was precipitated by addition of water while stirring briskly. The acetate was
filtered and dried (Mulholland et al., 1999). Niloticin (25), oleanolic acid (159) and
piscidinol A (27) were acetylated to yield niloticin acetate (201), oleanolic acid

acetate (202) and piscidinol A diacetate (203) respectively.

3.4.1.1. Physical and spectroscopic data of acetate derivatives

Niloticin acetate (201): white amorphous powder, mp 157-159 °C. *H NMR (CDCls)
200 (MHz, ppm), Appendix 28; 5.32 (1H, d, J=3 Hz, H-7), 4.86 (1H, m, H-23), 2.76
(1H, d, J=9.6 Hz, H-24), 2.08 (3H, s, Ac-Me), 1.37 (3H, s, Me-19), 1.34 (3H, s, Me-
27), 1.12 (3H, s, Me-29), 1.06 (6H, s, Me-18, Me-30), 1.01 (6H, s, Me-28, Me-21),
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0.81 (3H, s, Me-36). °C NMR (CDCls); & (50 MHz ppm), Appendix 28A: 217.2 (C-
3), 170.6 (Ac-CO), 145.9 (C-8), 118.3 (C-7), 72.3 (C-25), 65.6 (C-24), 59.6 (C-25),
53.2 (C-17), 52.5 (C-5), 51.5 (C-14), 48.7 (C-9), 48.1 (C-4), 43.8 (C-13), 38.7 (C-1,
C-22), 35.2 (C-2, C-10), 34.1 (C-15), 33.8 (C-20), 33.5 (C-12), 29.0 (C-16), 27.6 (C-
30), 24.9 (C-28), 24.6 (C-6), 24.6 (C-27), 22.0 (Ac-Me), 21.8 (C-29), 21.5 (C-26),
20.1 (C-21), 19.8 (C-19), 18.5 (C-11), 13.0 (C-18). ESI-MS (30 eV): m/z 499.8

[M+H]+, Appendix 28B

Oleanolic acid acetate (202); white amorphous powder; *H NMR (CD,Cl,) 600
(MHz, ppm), Appendix 19; 5.27 (1H, t, J=3.7 Hz, H-12), 4.47 (1H, m, H-3), 1.14 (3H,
s, Me-27), 0.95 (3H, s, Me-23), 0.92 (3H, s, Me-30), 0.90 (3H, s, Me-25), 0.85 (3H, s,
Me-29), 0.86 (3H, s, Me-24), 0.75 (3H, s, Me-26); *C NMR (CD.Cl,) (150 MHz,
ppm), Appendix 19A; 184.2 (C-28), 171.3 (Ac-CO), 144.3 (C-13), 123.1 (C-12), 81.3
(C-3), 55.8 (C-5), 47.1 (C-9), 46.3 (C-19), 42.1 (C-14), 41.6 (C-18), 39.8 (C-8), 38.6
(C-4), 38.1 (C-1), 37.5 (C-10), 34.3 (C-7, C-21), 33.3 (C-29), 33.0 (C-22), 31.1 (C-
20), 28.3 (C-23), 26.2 (C-2), 24.1 (C-27), 24.0 (C-30), 23.9 (C-16), 23.4 (C-11), 21.6

(Ac-Me), 18.7 (C-6), 17.7 (C-26), 17.0 (C-25), 15.4 (C-24).

Piscidinol A diacetate (203): white amorphous solid *H NMR (CD,Cl,) 600 (MHz,
ppm), Appendix 9; 5.37 (1H, ddd, J=9.3, 5.1, 1.7 Hz CH-23), 5.35 (1H, m, CH-7),
4.86 (1H, d, J 1.6 Hz, H-24), 1.20 (Me-27), 1.15 (Me-26), 1.01 (Me-28), 0.99 (Me-
19, Me-30), 0.94 (Me-21), 0.80 (Me-18). *C NMR (CD.Cl,) (150 MHz, ppm),
Appendix 9A: 216 (C-3), 170.54 (C-24 Ac-CO), 170.2 (C-23;Ac-CO), 146.3 (C-8),
118.6 (C-7), 77.2 (C-24), 72.8 (C-25), 70.6 (C-23), 53.9 (C-17), 52.8 (C-5), 51.7 (C-
14), 50.0 (C-9), 48.2 (C-4), 39.0 (C-22), 38.4 (C-1), 35.5 (C-1), 25.4 (C-2), 34.5 (C-

20), 34.4 (C-20), 33.6 (C-12), 28.4 (C-16), 27.7 (C-30), 27.4 (C-27), 26.7 (C-26), 24.9
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(C-6, C-28), 22.2 (C-18), 22.0 (C-29), 21.8 (C-23; Ac-Me), 21.2 (C-24: Ac-Me), 18.8

(C-21), 18.6 (C-11), 13.1 (C-19).

3.5. Cytotoxicity assay

Rapid colorimetric assay was carried out using 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetra-zolium bromide (MTT) (Mosmann, 1983; Prayong et al., 2008). This
assay is based on the ability of a mitochondrial dehydrogenase enzyme from viable
cells to cleave the tetrazolium rings of the pale yellow MTT and thereby form dark
blue formazan crystals, which are largely impermeable to cell membranes, resulting in
their accumulation within healthy cells. The amount of generated formazan is directly
proportional to the number of cells (Mosmann, 1983). In this assay, the mammalian
cell lines African monkey kidney (vero), mouse breast cancer (4T1) and human larynx
carcinoma (HEp2) were used. Cells were maintained in Eagle’s Minimum Essential
Medium (MEM) containing 10% fetal bovine serum (FBS). A cell density of 20,000
cells per well in 100 pul were seeded on 96-well plates and incubated for 12 hours at
37 °C and 5% CO, to attach to the surface. After 12 hours, the medium was replaced
with maintenance medium containing the appropriate drug concentrations (0.14 to 100
pg/ml) or vehicle control (< 1.0% v/v . DMSO). After 48 hours incubation, cell
viability was measured by addition of 10 pL of MTT reagent (5 mg MTT in 1 ml of
PBS). The plates were incubated for additional 4 hours at the same conditions. Next,
all media was removed from the plates and 100 ul DMSO added to dissolve the
formazan crystals. The plates were read on a Multiskan EX Labsystems scanning
multi-well spectrophotometer at 562 nm and 620 nm as reference. The results were
recorded as optical density (OD) per well at each drug concentration. Data was

transferred into the software Microsoft Excel 2007 and expressed as percentage of the
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untreated controls. Percentage cytotoxicity (PC) as compared to the untreated controls

was calculated using the following equation:
PC =T x100 (1)

Where A is the mean OD of the untreated cells and B is the mean OD at each drug
concentration (Prayong et al., 2008). The drug concentration required for 50%
inhibition of cell growth, using nonlinear regression analysis of the dose-response

curve is reported.

Cytotoxicity tests on MDA-MB-231 cells were carried out following a previously
described procedure (Abdissa et al., 2014). MDA-MB-231 human breast cancer cells
were cultured in Dulbecco’s modified eagle medium (DMEM) supplemented with
10% (v/v) fetal bovine serum, 2 mM L-glutamine, 100 units / ml penicillin and 100
pg/ml streptomycin at 37 °C in humidified 5% CO,. For cytotoxicity assays, cells
were seeded in 96-well plates at optimal cell density (10,000 cells per well) to ensure
exponential growth for the duration of the assay. After a 24 hrs preincubation growth,
the medium was replaced with experimental medium containing the appropriate drug
concentrations or vehicle controls (0.1% or 1.0% v/v DMSO). After 72 hours
incubation, cell viability was measured using Alamar Blue reagent (Invitrogen Ab,
Liding6, Sweden) according to the manufacturer’s instructions. Absorbance was
measured at 570 nm with 600 nm as a reference wavelength. Results were expressed
as the mean + standard error for six replicates as a percentage of vehicle control
(taken as 100%). Experiments were performed independently at least six times.
Statistical analyses were performed using a two-tailed Student’s t-test. P < 0.05 was

considered to be statistically significant.
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The interaction of oleanonic acid (160) with other triterpenoids was studied using
fixed concentration ratios; oleanonic acid versus ‘other triterpenoid.” Following ratios
were adopted; 0:1, 1:3, 1:1, 3:1, 1:0. The vero cell cytotoxicity assay was used, as
described above, to evaluate the cytoxicity of the mixtures. To determine whether
there was synergy, additive effect or antagonism, the sum of fractional inhibition

concentration (3 FIC) was calculated using the following formula:

Ax Bx
K=2T+5 @

Where K is Y FIC, A4 and By are the ICso values when the substances are used in
combination, and Ay and By are the 1Cs, values when the substances are used alone.
The data was scored with the scale }FIC <1 = synergism, 2 > YFIC > 1 =
additive, 4 > Y FIC = 2 = slight antagonism, ) FIC = 4= marked antagonism

(Gupta et al., 2002).

3.6. Antiplasmodial bioassay

Continuous in vitro cultures of asexual erythrocytic stages of P. falciparum strains
(W2 and D6) were maintained following previously described procedures (Trager and
Jensen, 1976; Kigondu et al., 2009). Drug assay was carried out following a
modification of the semiautomated micro dilution technique which measures the
ability of the extracts to inhibit the incorporation of (G-*H) hypoxanthine into the
malaria parasite (Desjardins et al., 1979). Plates were harvested onto glass fibre filters
and (G-*H) hypoxanthine uptake determined using a micro-beta trilux liquid
scintillation and luminescence counter (Wallac, MicroBeta TriLux) and results
recorded as counts per minute (cpm) per well at each drug concentration. Data was

transferred into a graphic programme (Microsoft Excel 2007) and expressed as
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percentage of the untreated controls. Results were expressed as the drug concentration
required for 50% inhibition of (G-3H) hypoxanthine incorporation into parasite
nucleic acid, using non linear regression analysis of the dose-response curve. Criterion
for scoring activity described by Batista and co-workers was adopted (Batista et al.,
2009): 1Cs0 < 1 uM, highly active; ICsp > 1 and <20 uM, Active; 1Cso > 20 and <100

uM, moderate activity; ICso >100 inactive.

3.7.  X-ray diffraction
All crystals were selected and mounted under a stereo microscope on to a glass fiber
and transferred to a Rigaku R-AXIS llc image plate system. Diffracted intensities
were measured using graphite-monochromated Mo Ka (A = 0.710 73 A) radiation
from a RU-H3R rotating anode operated at 50 kV and 40 mA. Using the R-AXIS llc
detector, 90 oscillation photos with a rotation angle of 2° were collected and
processed using the CrystalClear software package. An empirical absorption
correction was applied using the REQAB program under CrystalClear. All structures
were solved by direct methods (SIR 97) (Altomare et al., 1999) and refined using full-
matrix least-squares calculations on F2 (SHELXL-97) (Sheldrick, 2007) operating in
the WIinGX program package (Farrugia, 2012). Anisotropic thermal displacement
parameters were refined for all the non-hydrogen atoms. Hydrogen atoms were
included in calculated positions and refined using a riding model. Displacement

ellipsoids are drawn with ORTEP-3 for Windows (Farrugia, 1997) under WinGX.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1. Secondary metabolites isolated from the stem bark of Turraea robusta

The stem bark of Turraea robusta Guerke afforded three ring intact limonoids;
mzikonone (17), azadirone (19), 12a-acetoxy-7-deacetylazadirone (28) and a ring B
seco limonoid 11-epi-toonacilin (62). It also afforded three triterpenoids turranolide
(22), azadironolide (192) and stigmasterol (193). Secondary metabolites present in T.
robusta stem bark are similar to those reported from other Turraea species where
limonoids are the main constituents. Compounds (17), (22) and (19) were previously
isolated from the root bark of Turraea robusta (Rajab et al., 1988; Bentley et al.,
1992) whereas (28) and (62) are reported from this species for the first time there is

no previous report on compound (192) from genus Turraea.
4.1.1. Rings intact limonoids from Turraea robusta stem bark

4.1.1.1. 12a-Acetoxy-1,2-dihydro-7-deacetylazadirone (17) (mzikonone)
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Mzikonone (17) was isolated as a whitish amorphous solid. The limonoid nature of
this compound was indicated from the *C NMR spectrum (Tabel 4.1; Appendix 1A)
and by presence of five tertiary methyls at 6y 1.02, 1.03, 1.06, 1.07 and 1.17 in the H
NMR spectrum (Appendix 1). Resonances at 6y 7.47 (t, J = 1.2 Hz), 7.35 (t, J = 1.2
Hz) and 6.36 (m) and the corresponding *C NMR signals at 8¢ 141.9, 113.5, 143.7
were characteristic of a furan ring (Akinniyi et al., 1986; Rajab et al., 1988).
Resonances at dc 216.5 and 8¢ 171.4 in the **C NMR spectrum indicated presence of
a ketone and an acetyl group respectively. A ketone group was assigned to C-3
following HMBC correlation of Me-28 (64 1.02, s), Me-29 (dy4 1.03, s), CH,-2a (dy
2.35, m) and CHy-2b (84 2.56, m) with C-3 (3¢ 216.5) while the acetyl was assigned to
C-12. Placement of acetyl group to C-12 was confirmed by HMBC correlation of Me-
18 (814 1.05, s) with C-12 (8¢ 79.1) and H-12 (8 5.06) with Ac (3¢ 171.4). Presence of
a double bond at C-14/C-15 was indicated by resonances at d¢ 159.5 (C-14) and 123.6
(C-15) in the *C NMR spectrum and a proton resonance at 8 5.70 assigned to H-15.
This was further confirmed by HMBC correlation of Me-30 (64 1.17, s) and Me-18
0y 1.06, s) with C-14 (¢ 159.5). A hydroxyl group was placed at C-7 following
HMBC correlation of Me-30 (64 1.17, s) with C-7 (6¢c 73.1). The relative
configuration at C-7 and C-12 was established from the NOESY spectrum where H-
12 and H-7 correlated with Me-30 which is in B orientation hence a-orientation of the
hydroxyl and acetyl groups. ESI-MS (30 eV) indicated pseudo molecular ion peak at
m/z 455.5 [M+H]* (Appendex 1B). This molecular ion peak together with *H and **C
NMR data led to the suggestion of the molecular formula CygH3gOs for this
compound, consequently it was identified as mzikonone previously isolated from the
root bark of T. robusta, T. cornucopia and T. parvifolia (Rajab et al., 1988; Cheplogoi

and Mulholland, 2003a; Owino et al., 2008).
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Table 4.1: *H (600 MHz) and *C (150 MHz) NMR data for compound 17 in

Acetone-ds
Position | 84 (J in Hz) Oc Position | 84 (J in Hz) Oc
la 1.8l m 40.0 14 - 159.5
1B 1.52m 15 5.70 dd (3.6, 1.8) 123.6
2 2.56m 35.0 16 2.40m 38.1
2.35m 2.59m
3 - 2165 | 17 3.01dd (7.8, 10.8) 51.9
4 - 45.1 18 1.06s 22.0
5 2.12 dd (2.4,12.6) | 48.0 19 1.07s 16.2
6 1.95m 26.9 20 - 126.5
1.70m 21 7.35t(1.2) 141.9
7 4.05 brs 73.1 22 6.36 m 1134
8 - 48.1 23 7.471(1.2) 143.7
9 2.34m 44.0 28 1.02s 27.2
10 - 38.4 29 1.03s 15.9
11 1.43m 27.0 30 1.17s 28.6
2.19m Ac (Me) | 1.88s 22.1
12 5.06 dd (7.2, 9) 79.1 Ac (CO) | - 171.4
13 - 52.8

4.1.1.2. Azadirone (19)

Compound 19 was isolated as a yellowish gum with EIMS at m/z 436 (Appendix 2C)
consistent with molecular formula CysH3s0,. The 'H and *C NMR (Table 4.2,
Appendices 2 and 2A) spectra showed the compound to be a limonoid (Bordoloi et
al., 1993; Mulholland et al., 1999) with resonances at oy 7.36 (m), 6.31 (m) and 7.38
(t, J = 3 Hz) and the corresponding carbon signals appearing at 6¢c 140.0 (C-21), 111.4
(C-22) and 142.8 (C-23) characteristic of a furan ring (Siddiqui et al., 2000). The 'H
and *3C NMR spectra further indicated the presence of a 1-en-3-one system where a
pair of AB doublets at 6y 7.18 (d, J = 10.2 Hz) and 5.79 (d, J =10.2 Hz) and carbon

resonances at 6¢c 158.6 (C-1), 125.4 (C-2) and 204.6 (C-3) were observed (Siddiqui et

63

3




al., 1999, 2000). Also present in the *H NMR spectrum were five tertiary methyls at
on 0.79, 1.05, 1.07, 1.20 and 1.23 common with limonoids having rings A-D intact
(Bordoloi et al., 1993; Mulholland et al., 1999). The presence of an acetyl group was
also indicated in the *H and **C NMR spectra by an ester resonance at 8¢ 170.1; &y
1.93 (s, 3H) and placed at C-7 with the deshielded proton of the acetoxy methine
appearing at oy 5.25 (dd, J = 3, 1.8 Hz) and corresponding carbon (C-7) at 6c 74.6. A
doublet of doublets at 6y 5.36 (J =1.2, 3 Hz) was due to a vinyl proton ascribable to
H-15. The above data is in agreement that this compound is azadirone (19) previously
isolated from the root bark of Turraea robusta and Melia toosendan (Bentley et al.,

1992; Zhou et al., 1997).

Table 4.2: *H (600 MHz) and **C (150 MHz) NMR data for compound 19 in CD,Cl,

Position | 84 (J in Hz) oc Position | 84 (J in Hz) dc

1 7.18 d (10.2) 158.6 14 - 159.3
2 5.79.d (10.2) 125.4 15 5.36 dd (1.2, 3) 119.2
3 - 204.6 160 245m 34.6
4 - 44.3 B 2.32m

5 2.23dd (2.4,13.2) | 46.3 17 2.82dd (7.8,11.4) 51.8
6a 2.00 m 24.0 18 0.70 s 20.6
6B 1.80 m 19 1.20s 19.1
7 5.25dd (1.8, 3) 74.6 20 - 125.1
8 - 43.1 21 7.26m 140.0
9 2.22m 38.9 22 6.32m 1114
10 - 40.2 23 7.39t(3) 142.7
11a 1.79m 16.7 28 1.05s 21.3
118 1.98m 29 1.06s 27.0
12a 1.65m 33.2 30 1.20s 27.3
128 1.93m Ac(Me) [1.92s 21.2
13 - 47.4 Ac(CO) | - 170.1

4.1.1.3. 12a-Acetoxy-7-deacetylazadirone (28)




Compound 28 was isolated as a white amorphous powder. EIMS suggested molecular
formula C,gH3605 (0bserved m/z 452.2555, calcd 452.2557, Appendex 3B). Both the
'H and *C NMR spectra (Table 4.3, Appendices 3 and 3A) established a limonod
skeleton whose furan ring resonances appeared at 6y 7.36 (m, H-21), 6.37 (m, H-22),
7.47 (t, H-23, J = 3 Hz) and &¢ 142.0, 113.4 and 143.7 corresponding to C-21, C-22
and C-23 respectively. Five singlets at 64 1.05, 1.05, 1.08, 1.21 and 1.22 each
integrating for three protons indicated presence of five tertiary methyls groups.
Spectroscopic data for this compound is very similar to those of mzikonone (19)
except that compound 28 has extra vinylic protons resonating at 6y 7.17 (d, J =10.2
Hz, H-1) and 5.74 (m, H-2) while *C NMR spectrum had signals at ¢ 159.4 (C-1),
126.4 (C-2) and 204.9 (C-3) indicating presence of a 1-en-3-one system functionality
in ring A (Siddiqui et al., 1999). Resonances at dc 159.4 and d¢ 123.7 were typical of
a C-14/C-15 double bond while the signal at oy 5.73 (m) was assigned to H-15
(Bentley et al., 1992). Carbonyl resonance at d¢c 171.4 was assigned to C-12 based on
HMBC correlation of H-12 (64 5.12, dd, J = 7.2, 9 Hz) with C-18 (¢ 16.3) and C-17
(6c 52.0) and also H-11 (64 1.75; 2.35) with C-12 (8¢ 79.0). A carbinol proton at oy
4.09 (brs) was ascribable to C-7 and the corresponding carbon at d¢ 72.6. The relative
orientation of the hydroxyl and acetoxyl group at C-7 and C-12 were established by
NOESY whereby H-7 correlated with Me-30 which is in B-orientation while H-12
correlated with H-17 which is also in B orienation. Thus the acetoxyl and hydroxyl
group are in a orientation. From the above data, the compound was elucidated as 12a-
acetoxy-7-deacetylazadirone previously isolated from Turraea cornucopia (Owino et

al., 2008).
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Table 4.3: 'H (600 MHz) and **C (150 MHz) NMR data for compound 28 in acetone-dg

Position | 64 (J in Hz) dc Position oy (JinH2) dc
1 7.17 d (10.2) 159.4 14 - 159.4
2 574 m 126.4 15 5.73d (2.4) 123.7
3 - 204.9 160 2.60 m 38.1
4 - 45.4 B 2.40 m
5 2.45 dd (3, 13.2) 46.1 17 3.05dd (7.8,11.4) | 52.0
60 2.04 m 26.9 18 1.055s 22.0
6B 1.78 m 19 1.06 s 16.3
7 4.09 br s 72.7 20 - 126.4
8 - 45.8 21 7.36 m 142.0
9 2.51dd (7.2,9) 39.8 22 6.37 m 1134
10 - 41.5 23 7.471(3) 143.7
11 a 1.75m 26.7 28 1.11s 28.1
11 2.35m 29 1.12s 20.0
12 5.12dd (7.2,9) 79.0 30 1.22s 29.1
13 - 52.8 Ac(Me) 1.90s 22.5
Ac(CO) - 171.4

4.1.2. Ring B seco limonoid from the stem bark of Turraea robusta

4.1.2.1. 11-epi-Toonacilin (62)

EIMS data of compound 62 suggested the molecular formula C3;H33Oq9 (observed m/z
554.2506, calcd 554.2510, Appendix 4B). The *H NMR (Table 4.4, Appendix 4)
indicated resonances at oy 7.47 (m, H-21), 6.29 (m, H-22) and 7.25 (m, H-23) and the
corresponding **C NMR (Appendix 4A) resonances appearing at 5c 144.2, 113.0 and
141.2 respectively, being characteristic of the furan ring of limonoids in this genus
(Yuan et al., 2013a). A 1-en-3-one system in ring A was indicated by presence of a
pair of doublets at 6y 7.51 (H-1, d, J = 10.8 Hz) and 6.02 (H-2, d, J = 10.2 Hz) and
3C NMR resonances at 8¢ 153.8, 126.7 and 204.2 for C-1, C-2 and C-3 respectively.

The presence of an exocyclic 8-30 double bond was indicated by a pair of doublets at
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81 5.51 (s) and 5.48 (d, J = 1.2 Hz) ascribable to methylene group at C-30 and *C
NMR resonances at ¢ 138.6 (C-8) and 122.5 (C-30). The open nature of ring B in
this compound was confirmed by the 'H NMR spectrum that showed four tertiary
methyls at 4 0.95 (6H), 1.04 and 1.10 instead of the usual five methyls and a three
proton singlet at 6y 3.62 (5¢ 52.7) with a carbonyl resonace at 6¢ 175.6 ascribable to a
methyl ester. Two singlets in the "H NMR spectrum at 811.86 (3H) and 1.70 (3H) and
13 C NMR resonances at 8¢ 171.1 and 170.2 indicated presence of two acetoxyl groups
placed at C-11 and C-12. This was based on the *H-"H COSY spectrum whereby H-9
0y 3.11, d, J = 7.2 Hz) coupled with H-11 (&4 5.56, dd, J = 7.8, 10.8 Hz) which also
coupled with H-12 (&4 5.75, d, J = 10.8 Hz). The placement of the acetates at C-11
and C-12 was confirmed by HMBC correlation of H-9 (64 3.08) and Me-18 (64 0.95)
with C-11 (8¢ 72.7) and C-12 (8¢ 76.8). It has been shown that in limonoids with an
open ring B, the 12-a acetyl protons (64 1.7) are usually up field shifted (Fraser et al.,
1995; Mulholland et al., 1998). The relative configuration of C-11 and that of C-12
was confirmed by NOESY spectrum which showed correlation of H-5 (84 3.11), H-9
(81 3.08) and Me-18 (814 0.95) with H-11 (84 5.56) and H-17 (3 2.96) with H-12 (3y
5.75). A broad singlet at 64 4.07 attached to a tertiary carbon at 6¢ 61.3, a quaternary
carbon at dc 72.7 were characteristic of a C-14/C-15 epoxide (Fraser et al., 1994;
Ndung’u et al., 2004). Overall the spectral data for this compound compared well
with those reported for 11-epi-toonacilin previously isolated from the stem bark of

Turraea holstii (Mulholland et al., 1998b).
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Table 4.4: *H (600 MHz) and *C (150 MHz) NMR data for compound 62 in acetone-
ds

Position | 8y (J in Hz) Oc Position éy (JinHz) dc

1 7.51dd (10.8) 1538 |B 221 m

2 6.02 d (10.2) 126.8 | 17 2.96dd (7.2,10.8) | 39.8

3 - 204.2 |18 0.95s 14.6

4 - 47.6 19 1.04s 22.4

5 3.11d (7.2) 46.6 20 - 124.2

6a 2.47dd (7.8,16.8) | 32.4 21 7.25m 142.0

6P 2.58 dd (2.4, 16.8) 22 6.29 m 113.0

7 - 175.6 |23 7.47m 144.2

8 - 138.6 |28 0.96 s 24.1

9 3.08 dd (2.4, 7.8) 54.4 29 1.10s 23.7 -

10 - 43.5 30 5515 122.5

11 5.56 dd (7.8,10.8) | 72.7 5.48d (1.2)

12 5.75d (10.8) 76.8 OMe 3.62s 52.7

13 - 46.5 C-11 Ac(Me) | 1.865s 21.4 or
21.3

14 - 72.8 C-11 Ac(CO) | - 170.2

15 4.07 brs 61.3 C-12 Ac(Me) | 1.70s 21.4or
21.3

160 1.96 m 34.7 C-12 Ac(CO) | - 171.1

4.1.3. Triterpenoids from the stem bark of Turraea robusta

4.1.3.1. Turranolide (22)

Compound 22 was isolated as white amorphous powder with EIMS showing
molecular ion at m/z 456 (Appendix 5B) consistent with the molecular formula
CusHa00s. The *C NMR spectrum (Table 4.5, Appendix 5A) indicated presence of
three carbony carbons vis ketonic carbonyl (5¢c 216.1), an ester carbonyl (6¢c 170.7)
and lactonic carbonyl (8¢ 177.6), two vinyl carbons (8¢ 161.0, 119.8) and two

oxygenated carbons (5¢c 76.1, 73.5). The ketone group was placed at C-3 following
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HMBC correlation of Me-28 (64 0.98) and Me-29 (64 1.02) with C-3 (o¢c 216.1). In
the *H NMR spectrum (Appendix 5) the chemical shifts ascribable to H-7 (8, 5.17)
and H-15 (dy 5.26) were deshielded indicating the presence of an acetoxy group (ou
1.93) at C-7 and a double bond at C-14 (Cheplogoi and Mulholland, 2003a). Hence,
resonances at 6c 76.1, 161.0, 119.8 were assigned to C-7, C-14 and C-15 respectively
while the signal at 6¢c 170.7 was assigned to the acetyl carbon. Relative orientation of
the acetyl group at C-7 was confirmed by NOESY whereby correlation of Me-30 (64
1.19, s) which is B-oriented with H-7 (o4 5.17) were observed. Hence, a-orientation of
acetyl group. *H NMR spectrum indicated tetracyclic nature of this compound where
the precence of five tertiary methyl signals at oy 1.19, 1.10, 1.11, 1.02 and 0.96 were

observed.

The presence of a lactone was established by both the *H and *C NMR spectra, in
which a pair of doublet of doublets at 64 4.96 and 3.93 were assigned to CH,- 21 and
the corresponding carbon appearing at d¢ 73.5. The other signals for the lactone ring

were at ¢ 177.5 (C-23), 38.9 (C-20) and 35.1 (C-21).

The carbon resonances for methylenes, CH,-16 and CH,-12 and the methyl Me- 29
and the acetate methyl have been distinguished and correctly assigned for the first
time in this work by use of HMBC. This compound was hence elucidated as

turranolide previously isolated from the root bark of T. robusta (Bentley et al., 1992).
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Table 4.5: *H (600 MHz) and **C (150 MHz) NMR data for compound 22 in acetone —ds

Position | 64 (J in Hz) dc Position | 84 (J in Hz) dc
1B 1.94 m 40.1 14 - 161.0
lo 1.54m 15 5.26 dd (11.8, 3.6) 119.8
2a 2.61m 34.9 16 2.15m 35.9
b 2.30m 17 1.78 m 59.6
3 - 216.1 18 1.10s 28.0
4 - 38.4 19 1.10s 16.0
5 1.94m 49.6 20 2.80m 38.9
60 1.99m 255 210 3.93dd (1.9, 10.2) 73.5
6P 1.69 m “ 216 4,96t (8.4) “
7 5.17 dd (11.8, 3.6) 76.1 220, 2.28dd (11.4,16.8) | 35.1
8 - 435 228 2.44dd (17.8,16.8) |«
9 2.13m 44.1 23 - 177.6
10 - 48.1 28 0.98s 26.8
11 a 1.80 m 17.7 29 1.02s 22.0
11 1.68 m « 30 1.19s 20.5
120 1.55m 35.0 Ac(Me) |1.92s 21.8
128 1.76 m « Ac(CO) | - 171.7
13 - 48.0

4.1.3.2. Azadironolide (192)

192
The *H NMR spectrum (Table 4.6, Appendix 6) of 192 indicated that the compound

is a triterpenoid with five tertiary methyl resonances at 6y 0.93, 0.94, 1.03, 1.06 and
1.24 indicating that rings A-D are intact. The presence of a 1-en-3-one system in ring
A was indicated by a pair of doublets (J = 10.2 Hz) at 64 7.27 (H-1) and 5.76 (H-2)
with the corresponding *C NMR (Appendix 6A) resonances appearing at 8¢ 159.7
(159.5), 126.4 and 204.6 for C-1, C-2 and C-3, respectively. This was further
confirmed by HMBC correlation of H-1 (6 7.27) with C-3 (3¢ 204.6). A double bond
at C-14/C-15 was indicated by the presence of a singlet 6y 5.36 assigned to H-15

while the *C NMR signals resonated at 8¢ 160.7 (160.6) and & 119.9 (119.8) for C-14
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and C-15 respectively.The presence of an ester group was indicated by *C NMR
resonances at 8¢ 170.0 (Ac-CO) and 75.7 (C-7) and by the corresponding *H NMR
signals at 64 5.32 (H-7, d, J = 1.3 Hz) and 1.94 (s, Ac-Me). The relative orientation of
acetyl was confirmed by NOESY where correlation of Me-30 (64 1.3) and H-7 (64
5.32) was observed. Placement of the acetate group at C-7 was confirmed by HMBC
correlation of Me-30 (dy 1.23) with C-7 (8¢ 75.7). Characteristic resonances
associated with a furan ring were conspicuously missing. Instead resonances typical
of a 23-hydroxyl-21,23 butenolide moiety were present; a lactonic carbonyl resonance
at 6¢c 173.0 (172.8) and two vinylic carbons at 6c 138.1 and 148.8 (148.5) ascribable
to C-21, C-20 and C-22 respectively. The presence of a hemiacetal carbon was
indicated by a resonance at 6c 98.6 (98.4) ascribable to C-23 (Cheplogoi and
Mulholland, 2003b; McFarland et al., 2004). The presence of the butenolide moiety
was further confirmed by HMBC correlation of H-17 (64 2.76) with C-20 (o¢c 138.1)
and C-22 (8¢ 148.8, 148.5), H-22 (8 7.18) with C-21 (8¢ 173.01, 172.82), C-20 (3¢
138.0) and C-23 (98.81, 98.39). The doubling of some of the NMR signals was an
indication that this compound occurred as an epimeric mixture and this is a common
phenomenon in limonoids having a hemiacetal functionality in place of a furan ring
(Siddiqui et al., 1999; Cheplogoi and Mulholland, 2003b; McFarland et al., 2004).
The compound was therefore identified as azadironolide, previously isolated from

fruit coats of Azadirachta indica (Siddiqui et al., 1999).
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Table 4.6: 'H (600 MHz) and **C (150 MHz) NMR data for compound 192 in

acetone-ds
Position |6y (J inHz) | ¢ Position oy (JinHz) Oc
1 7.27d (10.2) | 159.7 14 - 160.6
2 5.76 d (10.2) 126.4 15 5.36s 119.9 (119.8)
3 - 204.6 160, 2.60-2.68 m 35.1
4 - 45.3 B 2.22-2.29m
5 2.24'm 47.8 17 2.76 m 54.5
6a 2.05-2.10 m 25.1 18 0.94s 22.0
6P 1.75-1.80 m 19 1.24s 20.1
7 5.32d (1.3) 75.7 20 - 138.1
8 - 40.2 21 - 173.0 (172.8)
9 2.27m 40.1 22 7.18 d (6.6) 148.8(148.5)
10 - 414 23 6.18 s 98.6 (98.4)
11 a 1.75-2.10 m 17.7 28 1.06 s 22.3
11 2.00-2.05 m 29 1.03s 28.0
120 1.99-2.02 m 34.7 30 1.30s 28.4
128 1.74-1.78 m Ac(Me) 1.94s 21.8
13 - 52.3 Ac(CO) - 170.7
4.1.3.3. Stigmasterol (193)
N\
HO
193

Compound 193 was isolated as white crystals. *C NMR (Table 4.7, Appendix 7A)
indicated presence of four olefinic carbons at ¢ 143.0, 122.2, 140.0 and 130.7
ascribable to C-5, C-6, C-22 and C-23 respectively and their corresponding proton
resonances at 6y 5.31 (H-6, d, J = 1.3 Hz), 5.21 (H-22, dd, J =9, 15 Hz ) and 5.08 (H-
23, dd, J = 8.4, 15 Hz) on a skeloidal skeleton. A carbinol proton at 6y 3.30 (m)
ascribable to H-3 and its corresponding carbon signal at 8¢ 72.4. *H NMR also
indicated presence of six methyl protons at dy 0.75, 0.83. 0.84, 0.87, 1.04 and 1.06.
These data is in agreement with literature data for stigmasterol a ubiquitous

compound in plants (Kojima et al., 1990).
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Table 4.7: *H (600 MHz) and *C (150 MHz) NMR data for compound 193 in
acetone-ds:

Position | 6y (J in Hz) dc Position | 84 (J in Hz) Oc
1 2.00m 33.4 14 1.07m 58.3

1.75m 15 1.63m 24.4
2 1.90 m 29.6 1.17m

1.34m 16 1.24m 27.4
3 3.39m 72.4 17 1.19m 57.6
4 2.20m 44.0 18 0.75s 12.9
5 - 143.0 19 1.04s 20.5
6 5.31d (5.4) 122.2 20 1.42m 37.6
7 201 m 33.3 21 1.06s 225

1.80m 22 5.21dd (9.0, 15.0) | 140.0
8 1.50m 33.3 23 5.08 dd (8.4, 15) 130.7
9 0.96 m 51.9 24 1.20m 52.8
10 - 334 25 1.50s 33.3
11 1.62m 24.4 26 0.84s 22.5
12 1.40 m 35.3 27 0.87s 20.5

1.62m

1.10m 28 1.18 m 25.6

13 - 42.1 29 0.83s 12.9

4.2. Secondary metabolites isolated from Turraea nilotica

Four limonoids mzikonone (17), azadirone (19), acetoxy-7-deacetylazadirone (28),
la,3a-diacety-7a-tigloyvilasinin (40) were isolated from the roots of Turraea nilotica
Kotschy & Peyr; Limonoids 17, 19 and 28 were also isolated from the stem bark of T.
robusta in this work and are discussed in Sections 4.1.1.1- 4.1.1.3. Also isolated are
four protolimonoids niloticin (25), hispidol B (96), piscidinol A (27), toonapubesins F
(194) from the stem bark; phytosterols; a mixture of stigmasterol and B-sitosterol
(180), mixture of sitosterol-3-O-4-D-glucopyranoside acetate (195) and stigmasterol-
3-O-p-D-glucopyranoside acetate (196) and sitosterol-3-O-4-D-glucopyranoside (197)
from the leaves. Compounds 17, 19, 28, 40, 96, are reported from this species for the
first time while there are no previous reports on compounds 194, 195, 196 and 197
from genus Turraea. The root, stem and leaves of Turraea nilotica, were found to

synthesize different secondary metabolites; limonoids are present in the roots,
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protolimonoids in the stem and phytosterols in the leaves. Limonoids, protolimnoids
and steroids have a tetracyclic triterpenoid skeleton. However, they differ in the side
chain where limonoids and protolimonoids have different oxidation states while
steroids have an alkyl chain. From the previously proposed biosynthetic pathway of
limonoids (Champagne et al., 1992; Tan and Luo, 2011) compounds from T. nilotica
may be proposed to follow the following pathway phytosterols (leaves)

protolimonoids (stem bark) and limonoids (root bark).

4.2.1. Protolimonoids from the stem bark of Turraea nilotica

4.2.1.1. Niloticin (25)

Compound 25 was isolated as a white amorphous powder. The 'H and **C NMR,
HSQC and HMBC were used to characterize the structure. ESI-MS (30 eV) showed
an m/z at 457.6 [M+H]" (Appendix 27B). The *H NMR data (Table 4.8, Appendix 27)
showed signals for seven tertiary methyls at 64 1.26, 1.25, 1.10, 1.07, 1.05, 1.00 and
0.87 (3H each), a secondary methyl at 6y 0.99 (3H), an olefinic proton at 6y 5.35 (dd,
J =3, 7.2 Hz) and a carbinol proton at d4 3.49 (dd, J = 6.6, 13.8 Hz) indicating that
this compound possessed a tirucallane protolimonoid skeleton (Wang et al., 2011).
Also present were characteristic resonances at 6y 2.81 (td, J = 5.4, 14.4 Hz) and 2.13
(dt, J = 7.2, 14.4 Hz) for H-2 in a 3-oxo triterpene. The *C NMR spectrum (Table
4.8, Appendix 27A) indicated presence of 30 carbons, that were classified together
with HSQC experiment as a ketone (3¢ 214.3), one trisubstituted double bond (6¢

145.8, 117.9), eight methyls, eight sp> methylenes, five sp® methines and five sp®
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quaternary carbons. The presence of epoxide group was deduced from the doublet at
oy 2.56 (J = 8.4 Hz) which was placed in the side chain at C-24 and C-25 based on
HMBC correlation of H-23 (dy, 3.49) with C-24 (6¢ 68.4); H-24 with C-23 (6 69.2),
C-25 (8¢ 58.1); Me-27 (84 1.35) with C-24 (5c 68.4) and C-25 (3¢ 58.1). The
compound was thus identified as niloticin through comparison of spectroscopic data

with that reported in literature (Gray et al., 1988; Mulholland and Taylor, 1988).

201

Compound 25 was acetylated to give niloticin acetate (201). ESI-MS (30 eV)
indicated a molecular ion peak at m/z 499.8 [M+H]" (Appendix 28B) corresponding
to molecular formula Cs;Hs004. That niloticin formed a monoacetate (201) was
established by the presence of acetate carbon signal at 6¢c 170.6 (ester carbonyl) and d¢
22.0 (acetate methyl carbon) with methyl protons at oy 2.08 (S), a deshielded C-23
acetoxymethine proton at 6y 4.86 (m) and its corresponding carbon signal at 6¢c 72.3

(Table 4.9, Appendices 28 and 28A).
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Table 4.8:*H (600 MHz) and **C (150 MHz) NMR data for niloticin 25 in acetone- ds

Position | 4 (J in Hz) dc Position | 4 (J in Hz) oc
la 2.02ddd (3,54, 13.2) 382 | 16a 2.08 m 28.5
b 1.45m b 1.31ddd (3,54, 8.4)
2a 2.811td (5.4, 14.4) 345 |17 1.60 m 534
b 2.13dt (7.2,14.4) 18 1.05s 12.2
3 - 2143 1 19 1.26s 19.3
4 - 474 |20 1.51m 33.6
5 1.75 dd (6,17) 522 |21 0.99d 19.8
6 210 m 242 | 22a 1.64 m 41.1
7 5.35dd (3,7.2) 1179 | b 1.36 m
8 - 145.8 | 23 3.49 dd (6.6, 13.8) 69.2
9 240 m 484 124 2.56d (8.4) 68.4
10 - 349 |25 - 58.1
11 1.63m 18.1 |26 0.87s 20.9
12a 1.87m 333 |27 1.25s 24.2
b 1.67m 28 1.00s 24.3
13 - 435 |29 1.10s 21.3
14 - 51.1 130 1.06 s 27.0
15 1.56 m 33.9

Table 4.9: *H (200 MHz) and **C NMR (50 MHz) chemical shifts for the side chain
for compounds 25 and 201

Position oy (Jin Hz) (201) dc (201) dc (25)
20 335 33.6
21 19.8 19.8
22 38.7 41.1
23 4.86 m 72.3 69.2
24 2.76d (9.2) 65.6 68.4
25 - 59.6 58.1
Ac (CO) 170.6 -
Ac(Me) 2.08 s 22.0

4.2.1.2. Piscidinol A (27)

Compound 27 was isolated as white crystals. *H and **C NMR, HSQC, DEPT and
ESI-MS (30 eV) indicating an m/z at 475.5 [M+H]" (Appendix 8C) suggested

molecular formula CysHss0s. The *C NMR spectrum (Table 4.10, Appendix 8A)
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showed the presence of 30 carbons that were classified with DEPT and HSQC
experiments as a ketone [d¢c 216. 5 (C-3)], a trisubstituted double bond [d¢c 145.8 (C-
8), 118.0 (C-7)], three oxygenated carbons [oc 74.9 (C-24), 74.2 (C-25) and 69.6 (C-
23)], eight sp® methylenes, four sp® methines, three sp® quaternary carbons and eight
methyls. In addition, 'H NMR data indicated presence of seven tertiary methyls at 8y
1.26 (6H), 1.01, 1.03, 1.01 (6H) 0.82 and a secondary methyl (at oy 0.92), two
carbinol protons [H-23, 64 4.08 (dd, J =5, 8.6 Hz), 3.14 (H-24, d, J = 5.6 Hz)] and an
olefinic proton [H-7, m, oy 5.32]. The above data is consistent with that of a
tirucallane protolimonoid skeleton with a 3-ketone and a 7-8 double bond (Sang et al.,

2009).

The nature of the side chain was established from a deshielded singlet at oy 1.26
integrating for six protons ascribable to Me-26 and Me-27. This was further supported
by HMBC correlation of Me-26 and Me-27 with C-25 (d¢c 74.1). The signals at oc
69.6 and 74.9 were assigned oxymethine carbons C-23 and C-24 following coupling
of H-23 (8 4.08) with H-24 (84 3.14) in 'H-'H COSY spectrum. With the aid of
HSQC, HMBC, *C NMR/ DEPT and *H-'H COSY compound 27 was identified as
piscidinol A, a compound previously isolated from the stem bark of Turraea nilotica
(Mulholland and Taylor, 1988). Its single-crystal x-ray structure is as shown in Figure

4-1.
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Figure 4-1: Single—crystal X-ray structure of piscidinol A (27)

(;Ac

Compound 27 was acetylated to give piscidinol A diacetate (203). The *C NMR
spectrum (Table 4.11, Appendix 9A) indicated the presence of 34 resonances (instead
of 30 as in compound 27) of which two carbonyl resonances (6¢c 170.5 and 170.2), two
vinyl carbons (8¢ 146.3, 118.6), two oxygenated methines (8¢ 77.2 and 70.6) and a
quartenary carbon (d¢c 70.6) were apparent. These data indicated that the two hydroxyl
groups at C-23 and C-24 are acetylated. The presence of two acetate methyls at (dn
2.16 and 2.20) which correlated with the carbonyl signals (6¢ 170.5 and 170.2) in the
HMBC spectrum further confirmed double acetylation. HMBC correlation of terminal
methyls Me-26 (641.15) and Me-27 (8 1.20) with 8¢ 76 and 6¢ 72.8 led to assignment
of these signals to C-24 and C-25 respectively. In the *H NMR, a vinly proton at &y

5.38 was ascribable to H-7 and its corresponding carbon signal at ¢ 118.6. A
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resonance at oy 5.38 (ddd, J = 9.3, 5.1, 1.6 Hz) was ascribable to H-23 while that at oy
4.86 (d, J = 1.58 Hz) to H-24. This was further confirmed by HMBC correlation of H-

24 (514 4.86) with C-23 (3¢ 70.6).

Table 4.10: *H (600 MHz) and *C (150 MHz) NMR data for compound 27 in
CD,Cl,

Position | 6y (J in Hz) dc Position | 64 (J in Hz) oc
lo 1.40 m 38.5 160 2.02m 28.4
B 2.00m B 1.30 m

20, 2.181td (7.1,14.2) | 349 17 1.50 m 53.1
B 2.76 td (5.5, 14.5) 18 0.82's 21.7
3 - 216.5 19 1.01s 12.5
4 - 475 20 1.36 m 34.0
5 1.72dd (10.9,6.7) |52.3 21 0.92 d (6.6) 18.5
6 2.10m 24.4 220, 1.84m 40.5
7 5.32m 118.0 B 1.15m

8 145.8 23 4.08 dd (5, 8.6) 69.6
9 2.39m 48.5 24 3.14 d (5.6) 74.9
10 35.0 25 74.1
11 1.56 m 18.3 26 1.26s 26.1
120 1.83m 33.7 27 1.26s 27.1
B 1.66 m 28 1.02s 24.3
13 43.5 29 1.10s 214
14 51.2 30 1.01s 27.1
15 1.49 m 33.7

Table 4.11: *H (600 MHz) and **C NMR (150 MHz) chemical shifts for the side
chain for compounds 27 and 203

Position o6y (Jin H2)(203) dc (203) dc (27)
20 - 34.4 34.0
21 18.8 18.5
22 39.0 40.5
23 5.37ddd (9.3, 5.1, 1.7) 70.6 69.6
24 4.86 d (1.6) 77.2 74.9
25 - 72.8 74.1
C-24 Ac(CO) 170.5

C-23 Ac(CO) 170.2

C-23 Ac(Me) 2.07 s 21.8

C-24 Ac(Me) 2.20s 21.2
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4.2.1.3. Hispidol B (96)

Compound 96 was isolated as white crystals, was insoluble in common organic
solvents except DMSO. EIMS suggested molecular formula C3oHs,0O4 (Observed m/z
476.3868, calcd 476.3860, Appendix 10B). *H and *C NMR spectra (Table 4.12,
Appendices 10 and 10A) were similar to those of piscidinol A (27) except that the
ketone at C-3 is replaced by a hydroxyl group. Other characteristic resonances
observed in *C NMR spectrum were three oxygenated carbons [5¢ 75.7 (C-24), 72.9
(C-25) and 67.9 (C-23)] and two olefinic carbons [6¢ 146.0 (C-8) and 118.0 (C-7)].
The 'H NMR indicated characteristic seven tertiary methyls resonances at &y 0.62,
0.75, 0.77, 0.86, 0.94, 1.08. 1.12; a secondary methyl at 5 0.84; three oxymethines at
8u 4.11 (H-24, d, J = 8.4 Hz), 4.15 (H-3, d, J = 6 Hz), 4.37 (H-23, d, J = 4.8 Hz) and
an olefinic proton at oy 5.22 (H-7, d, J = 2.6 Hz). Thus, the NMR data is consistent
with a tirucallane protolimonoid skeleton with a 7-8 double bond. Relative
orientation of hydroxyl group at C-3 was established by NOESY whereby H-3
correlates with Me-28. *H and *C NMR, HSQC, HMBC and *H-'H COSY were
carefully used to assign both carbon and proton signals. The compound was identified

as hispidol B previously isolated from Trichilia hispida (Jolad et al., 1981).

80



Table 4.12: *H (600 MHz) and **C (150 MHz) NMR data for compound 96 in
DMSO-dg

Position | 84 (J in Hz) Oc Position | 64 (J in Hz) Oc
la 1.06 m 37.2 16 1.35m 28.4
B 1.27-1.22m 1.90 m

2 1.46-1.40m 28.4 17 1.49-1.40m 53.9
3 4.15d (6) 77.4 18 0.68 s 134
4 - 39.0 19 0.77 s 22.2
5 1.23m 50.6 20 1.49-1.40m 33.6
60 2.06 m 24.0 21 0.86t (6) 194
B 1.90 m 223 0.99m 41.8
7 5.22d (3.6) 118.0 a 1.46-1.40 m

8 - 146.0 23 4.37 d (4.8) 67.9
9 2.12m 48.9 24 4.11d(8.4) 75.9
10 - 34.9 25 - 72.9
11 1.46-1.40 m 18.1 26 1.08s 26.4
12 1.46-1.40 m 33.8 27 1.11s 28.0
13 - 43.5 28 0.86t (6) 28.2
14 - 51.2 29 0.75s 155
15 1.35m 34.0 30 0.94s 27.6

4.2.1.4. Toonapubesins F (194)

Compound 194 was isolated as white crystals. ESI-MS (30 eV) showed a pseudo
molecular ion peak, m/z at 491.6 [M+H]" (Appendix 11B). The NMR data for this
compound (Table 4.13, Appendices 11 and 11A) were very similar to those of
piscidinol A (27) except for the substituents at C-4. The *C NMR resonance
associated with dimethyl substituted C-4 is at ca. d¢c 47 in 27 (Jolad et al., 1981; Gray
et al., 1988; Mulholland and Taylor, 1988; Hideji et al., 1992). This downfield shifted
to 8¢ 53.3 in 194. Furthermore in the 'H NMR spectrum one of the methyl resonace is
replaced by a typical AB type doublet [6y 3.60 (d, J = 10.0 Hz), 4.08 (d, J = 10.9 Hz)].

This is an indication that one of the methyl groups attached to C-4 is oxidized to an
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alcohol. Methyl group at C-29 was the one oxidized. This was established through

NOE cross peaks between H-19/H-29a, H-5/H-28, H-5/H-6a, H-19/H-6b and H-5/H-9

and HMBC correlation of Me-28 (o4 1.12, s) with 6c 65.7 (C-29). This was

confirmed by X-ray crystallography (Figure 4.2, Appendices 11C-F).

The 'H NMR showed the presence of six tertiary methyls resonating at &4 0.82, 0.98,

1.02, 1.12, 1.27 (6H) instead of seven tertiary methyls as in 27. Thus compound 194

was identified as toonapubesin F previously isolated from Toona ciliate var pubescens

(Wang et al., 2011).

Table 4.13: *H (600 MHz) and

B3C (150 MHz) NMR data for compound 194 in

CD,Cl,.

Position | 6y (J in Hz) dc Position | 8y (J in Hz) Oc
la 1.52m 37.8 15 1.50 m 34.0
B 2.02m 16 2.00m 28.4
2a 2.30 ddd (3.2,4.4, 14.6) | 35.6 17 151 m 53.7
B 2.69td (5.8, 14.5) 18 0.82s 21.9
3 215.7 19 0.98 s 134
4 53.1 20 1.40 m 33.7
5 1.87m 53.4 21 0.93d (6) 18.8
60, 2.16 m 24.7 220 1.88 m 40.5
B 2.05m § 1.12m

7 5.67m 118.0 23 4.09 m 69.6
8 146.0 24 3.14s 74.9
9 2.34m 48.3 25 74.1
10 35.0 26 1.27s 26.0
11 1.50 m 18.5 27 1.27s 27.2
120 1.83m 33.7 28 1.12s 20.1
B 1.66 m 29a 4.08 d (10.0) 65.7
13 43.5 b 3.60d (10.9)

14 51.2 30 1.02s 27.2
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Figure 4-2: Relative stereochemistry for compound (194) at C-4 on X-ray

4.2.2. Limonoids from the root bark of Turraea nilotica

4.2.2.1. la, 3a-Diacety-7a-tigloyvilasinin (40)

Compound 40 was isolated as a white amorphous powder with EIMS giving an m/z at
594 [M]* (Appendix 12B) corresponding to the molecular formula CssHasOg. The **C
NMR spectrum (Table 4.14, Appendix 12A) showed characteristic resonances
associated with a furan ring of limonoids at 6¢c 142.5 (C-23), 139.7 (C-21) and 111.1
(C-22) with the corresponding proton resonances appearing at 6y 7.8 (t, J = 3.4 Hz),
7.15 (m) and 6.20 (m), respectively. The presence of a tiglate moiety was indicated by
resonances at 5c 166.5 (C-17), 136.6 (C-3’), 128.8 (C-2°), 14.1 (C-4’) and 11.9 (C-5")
(Ntalli et al., 2010). In the *H NMR spectrum occurence of an olefinic proton at &y

6.80 (qq, J = 1.5, 7.1 Hz) ascribable to H-3 supported the presence of a tiglate moiety.
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In the HMBC spectrum correlation of H-7 (54 5.51, d, J = 2.8 Hz) with C-1 (8¢
166.5), C-14 (8¢ 158.1) and C-6 (6c 72.7) confirmed the placement of the tiglate
moiety at C-7. A double bond at C-14/C-15 was indicated from **C NMR [5¢ 158.1
(C-14) and 120.3 (C-15)] and *H NMR (H-14, &, 5.42 dd, J = 1.5, 3.2 Hz). HMBC
correlation of Me-30 (o4 1.11), CH,-16 (64 2.30, 2.22) and H-7 (64 5.51) with C-14

(6c 158.1) further confirmed presence of a double bond at C-14/C-15.

The presence of a 6a-28 ether bridge was indicated by the appearance of
oxymethylene protons at 64 3.35 (CH;-28, m), an oxymethine at o4 4.10 (H-6) and
two oxygenated carbons at 8¢ 77.7 (C-28) and d¢c 72.6 (C-6). The appearance of only
four tertiary methyls resonating at 6y 0.67, 0.95, 1.10 and 1.11 instead of five methyls
found in ring intact limonoids supports the presence of a 6a-28 ether bridge in this
compound (Mulholland and Taylor, 1988; McFarland et al., 2004). This was further
confirmed by coupling in the *H-"H COSY [showing correlation of H-7 (5 5.51) with
H-6 (o4 4.10)] and HMBC [showing correlation of H-5 (2.59 m) with C-6 (d¢ 72.6)

and C-28 (8¢ 77.7)] spectra.

The acetyl substituents; ¢ 169.8; 169.5 (for carbonyls) and 21.0; 20.8 (for methyls)
with the corresponding 'H NMR signals appearing at &y 1.88 (s) and 1.92 (s) were
fixed at C-3 and C-1 respectively following HMBC correlation of Me-29 with C-3
(8¢ 71.7) and CH»-2a (2.02, dt, J = 5.2, 16.6 Hz), CH,-2b (2.15, dt, J = 6.5, 16.6 Hz)
with C-1 (8¢ 72.4) and C-3 (6¢ 71.7). Relative orientations of the tiglate and acetyl
groups was established from the NOESY spectrum which showed correlation
between H-1 (8 4.62) with Me-19 (814 0.95), CH,-2a (81 2.15) and CH,-11b (84 1.50)
and H-7 (64 5.41) with Me-29 (64 1.10) and Me-30 (64 1.11). This compound was
therefore characterized as 1a,3a-diacety-7a-tigloyvilasinin (40) first isolated from the

root bark of Turraea parvifolia (Cheplogoi and Mulholland, 2003a).

84



Table 4.14: *H (600 MHz) and **C (150 MHz) NMR data for compound 40 in CD,Cl,

Position | 64 (J in Hz) dc Position oy (JinHz) dc
1 4.621(5.8) 724 |17 2.71dd (7.4,10.9) | 515
2a 2.02 dt (5.2, 16.6) 274 |18 0.67 s 21.1
b 2.15 dt (6.5, 16.6) 19 0.95s 15.0
3 4.821(5.9) 71.7 |20 - 124.9
4 - 421 |21 7.15m 139.7
5 259 m 414 |22 6.20 m 1111
6 4.10 dd (2.8, 12.6) 727 |23 7.28t(3.4) 142.5
7 5.51d (2.8) 739 |28 3.35m 77.7
8 - 446 |29 1.10's 19.1
9 2.59m 348 |30 1.11s 26.0
10 - 392 |1 - 166.5
1o 1.26 m 152 |2 - 128.8
B 1.56 m 3 6.80qq (1.5, 7.1) |136.6
120 1.70m 327 |4 1.69's 14.1
B 1.50 m 5 1.78 s 11.9
13 - 473 | C1-Ac(Me) | 1.88s 20.8
14 - 158.1 | C3-Ac(Me) |1.92s 21.0
15 5.42 dd (1.5, 3.2) 120.3 | C1-Ac(CO) | - 169.8
160 2.30ddd (1.7,11,2.2) | 342 | C3- Ac(CO) 169.5
B 2.22 ddd (3.5, 7.4, 15.3)

4.2.3. Phytosterols from the leaves of Turraea nilotica

4.2.3.1. Sitosterol 3-O-p-D-glucopyranoside acetate (195) and Stigmasterol 3-
O-D-glucopyranoside acetate (196)

R

MeOOC
o O
HO
HO OH

195R=a
196R =D

This mixture of glycosides was obtained as white amorphous powder. It consistently
gave a single spot using different solvent systems on TLC. Isolation of the glycosides
mixtures in their pure form is still unresolved (Zhao et al., 1989; Kojima et al., 1990).
The 'H and *C NMR (Table 4.15, Appendices 13 and 13A), HSQC, HMBC and
literature data were used to identify the aglycones in both compounds as stigmasterol
and sitosterol (Zhao et al., 1989; Jares et al., 1990; Kojima et al., 1990). The **C

NMR spectrum indicated two olefinic carbons at d¢c 140.6 (C-5); 122.5 (C-5) and a
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corresponding vinyl proton at o4 5.37 (H-6, s) indicating the glucosterols contain a
double bond at C-5/C-6 (Zhao et al., 1989; Jares et al., 1990). The presence of
stigmasterol aglycone was indicated in the *H NMR spectrum where resonances
appeared at oy 5.15 (dd, J = 8.8, 15.2 Hz) and oy 5.02 (dd, J = 8.8, 15.2, Hz). These
protons coupled each other in the *H-'H COSY spectrum. The corresponding carbon
signals appeared at 5c 138.6 (C-22) and 129.6 (C-23). 'H NMR spectrum further
indicated six methyl groups at 64 0.68, 0.81, 0.83,0.84, 0.88, 0.92, 1.01 that were
comparable to literature values of C-24 ethyl phytosterols (Zhao et al., 1989; Kojima

etal., 1990).

Seven well resolved oxygenated carbon resonances were present in the *C NMR
spectrum six of them resonating at 6c 101.5 (C-1°), 76.2 (C-3"), 74.3 (C-57), 73.9 (C-
2’) and 63.4 (C-6") were associated with a sugar moiety while the remaining at d¢
79.9 was assigned to C-3. The anomeric proton resonated at 6y 4.38 (H-1, d, J =8
Hz) while the rest of the glucose protons resonated between oy 3.37-4.50 ppm. The
large coupling constant of the anomeric proton suggested that the glucoside is in a f3-
configuration (Zhao et al., 1989; Jares et al., 1990). HMBC of anomeric proton H-1’
(On, 4.38, d, J = 8 Hz) with C-3 (879.9) confirmed attachment of the sugar moiety to
C-3. Both *H and **C NMR indicated presence of only one sugar moiety linked to the
sterol. Presence of an acetoxyl group was indicated by a resonance at 6c 175.1.
HMBC of CH,-6a’ (6 4.25, dd, J = 12, 1.6, Hz), CH,-6b’ (64, 4.50, dd, 12, 4.8 Hz)
with 8¢ 175.1 indicated the placement of acetoxyl group to C-6’. From the above data
the major compound was identified as sitosterol 3-O-f-D-glucopyranoside acetate
(195) previously isolated from Prunella vulgaris (Kojima et al., 1990) and the minor
compound as stigmasterol 3-O-g-D-glucopyranoside acetate (196). From *H NMR

spectrum it was concluded that B-sitosterol 3-O-f-D-glucopyranoside acetate formed

86



80% of the mixture. Both 'H and *C NMR data for sitosterol 3-O--D-
glucopyranoside acetate was unambiguously assigned and the values compared well

with the literature values (Kojima et al., 1990).

Table 4.15: *H (800 MHz) and *C (200 MHz) NMR data for compound 195 in
CDCl;

Position | 84 (J in Hz) dc Position | 84 (J in Hz) dc
1 1.80 m 37.6 18 0.68s 12.2
1.04 m 19 1.01s 19.7
2 1.97m 29.8 20 - 36.5
1.62m 21 0.92d (1.72) 19.0
3 3.56m 79.5 22 1.31m 345
4 2.35m 39.2 1.03m
2.28m 23 1.18 m 26.4
5 - 140.2 24 0.93m 46.2
6 5.37s 122.1 25 1.62m 29.4
7 1.98 m 324 26 0.84s 20.1
8 1.54m 32.3 27 0.83d 19.3
9 0.92d (6.41) 50.5 28 1.31-1.27m 23.0
10 - 37.0 29 0.841t 12.3
11 1.44m 214 Ac (CO) | - 175.1
12 2.00m 40.1 Ac (Me) | 1.60s 214
1.16 m 1 4.38 d (8) 101.5
13 - 42.6 2 3.37m 73.9
14 0.97m 56.7 3’ 3.56m 76.2
15 1.50 m 24.6 4 3.37m 70.3
1.17m 5’ 3.46m 74.3
16 1.60 m 28.6 6’ 4.25dd (12,1.6) | 634
1.17m 4.50 dd (12, 4.8)
17 1.01lm 56.0

4.2.3.2. Sitosterol-3-O-p-D-glucopyranoside (197)

HO
o0
Ho&@ 197

HO OH
Compound 197 was isolated as white amorphous powder and consistently gave a
single spot on TLC though both *H and **C NMR (Table 4.16, Appendices 14 and

14A) indicated the presence of minor impurities that did not hinder elucidation of the
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major compound. As earlier mentioned, isolation of sterol glycosides in their pure
form is still an uphill task (Zhao et al., 1989; Kojima et al., 1990). The BC NMR
spectrum showed two vinyl carbon signals at 5c 140.6 (C-5) and 121.4 (C-6) and a
vinyl proton at 6y 5.36 (s, H-6) indicating presence of a double bond at C-5/C-6 of the
aglycon [-sitosterol (Kojima et al., 1990). Presence of a glycoside moiety was
indicated by six well resolved carbon resonances at 6¢c 100.8 (C-17), 76.9 (C-5°, C-3°),
73.6 (C-2’), 70.2 (C-4’) and 61.2 (C-6’). The corresponding proton resonances
appeared between oy 4.43-3.36 ppm. A doublet at oy 4.43 (J = 8 Hz) was assigned to
anomeric proton H-1°. The large coupling constant suggests that the sugar is f-D-

glucoside (Zhao et al., 1989; Kojima et al., 1990).

Six methyl signals at 5 0.68, 0.81, 0.83, 0.84, 0.92 and 1.01 (3H each) confirmed that
the aglycone is the phytosterol sitosterol (Zhao et al., 1989). A carbinol proton at oy
3.66 (m) and it corresponding carbon resonance at d¢c 77.1 was assigned to C-3.
HMBC, HSQC, 'H-'H COSY were carefully used to elucidate the structure. The
compound was identified as sitosterol-3-O-5-D-glucopyranoside previously isolated

from Prunella vulharis (Kojima et al., 1990).
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Table 4.16: 'H (800 MHz) and *C (200 MHz) NMR data for compound 197 in
DMSO6

Position | 84 (J in Hz) Oc Position | 84 (J in Hz) Oc
1 1.88 m 37.0 17 1.15m 55.6
1.07m 18 0.68 s 11.8
2 1.81m 29.4 19 1.01s 19.1
1.49m 20 1.33m 35.6
3 3.59m 77.1 21 0.92d (8) 18.8
4 2.55m 38.4 22 1.30 m 335
2.38 m 1.16 m
5 140.6 23 1.62m 25.6
6 5.37s 121.4 1.16 m
7 1.94m 31.6 24 0.95d (6.4) 45.3
1.40 m 25 1.63m 28.8
8 151 m 31.5 1.15m
9 0.95d (6.4) 49.7 26 0.84d 19.3
10 36.4 27 0.81d 19.9
11 1.47m 20.7 28 1.25m 22.8
1.41m 1.18 m
12 2.00m 40.1 29 0.83t 11.9
1.18 m 1’ 4.43d (8) 100.9
13 42.0 2’ 3.36 m 73.6
14 1.02m 56.3 3’ 3.60m 76.9
15 1.55m 24.0 4’ 3.61m 70.2
1.06 m 5’ 3.42m 76.9
16 1.81m 27.9 6’ 3.92m 61.2
1.24m 3.81m

4.2.3.3. p-sitosterol (180) and Stigmasterol (193)

HO
193

A mixture of of B-sitosterol (180) and stigmasterol (193) consistently gave a single
spot with different solvent systems on TLC. That the sample is a mixture of two was
shown from *H and **C NMR spectra (Table 4.17, Appendices 15 and 15A). The *C
NMR spectrum indicated four vinyl carbons at d¢ 140.8, 140.7 (C-5), 121.73, 121.72
(C6) and a corresponding vinyl proton at 6y 5.35 (H-6). This indicated that the
mixture had C-5/C-6 double bond. Also present were two carbon resonances at dc

138.3 (C-22) and 129.3 (C-23)
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and corresponding proton signals at 64 5.15 (dd, J = 15.2, 8.7, Hz) and 5.02 (dd, J =
15.1, 8.7, Hz) comparable to those of stigmasterol (193) side chain (Kojima et al.,
1990). A carbinol proton at &y 3.52 (H-3, m) and a corresponding carbon signal at dc
71.8 (C-3) was also observed. The rest were sp3 carbons. Careful use of 'H and **C
NMR, HMBC and HSQC together with literature data indicated that the mixture
comprised of p-sitosterol (180) and stigmasterol (193). Compound 193 was
previously discussed under section 4.1.3.3. Isolation of phytosterols as complex
mixtures has previously been reported (Zhao et al., 1989; Jares et al., 1990; Kojima et

al., 1990).

Table 4.17: *H (800 MHz) and **C (200 MHz) NMR data for compound 180 and 193
in DMSO-ds

Position | 84 (J in Hz2) Oc Position | 6y (JinHz) | 8¢
1 1.87m 37.3 1.09 m

1.10 m 16 1.70 m 29.2 (28.3)
2 1.85m 31.6 0.80 m

1.6-1.5m 17 1.08 m 56.0(56.1)
3 3.52m 71.8 18 0.70 s 11.9 (12.1)
4 2.32 ddd (13.1, 5, 42.3 19 1.03s 194

2.3)

2.26 m 20 1.38m 36.2 (40.5)
5 140.7 (140.6) |21 0.92d 18.8 (21.1)
6 5.35m 121.73(121.7) | 22 1.34m 34.0

(138.3)
7 201m 31.9 23 1.17m 26.1
(129.3)

8 1.51m 31.9 24 0.96d (6.5) | 45.9(51.3)
9 0.94d (6.5) 50.1 25 1.69m 29.3 (31.9)
10 36.5 26 0.85d 19.8 (21.1)
11 1.54-147m 21.2 (21.1) 27 0.84d 19.0
12 2.03m 39.7(39.8) 28 1.61m 23.1 (24.3)

1.18 m 1.08 m
13 42.2(42.3) 29 0.87t 12.0 (12.3)
14 1.02m 56.8
15 1.62m 24.4 (24.3)
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4.3. Chemotaxonomic significance of Turraea limonoids
Different classes of limonoids are reported in the genus Turraea with each species
synthesizing more than one class of limonoids. Compounds 17, 19, 28, 40 and 62
were expectable in that limonoids commonly occur in other species of genus Turraea.
Except for compound 19 which has been reported in other Meliaceace genus (Arenas
and Rodriguez-Hahn, 1990; Zhou et al., 1997; Nakatani et al., 2001) there are no
reports outside genus Turraea for compounds 17, 28, 40 and 62 in family Meliaceae.
Mzikonone (17) is the commonest limonoid and is reported in five species as shown

in Table 4.18.

Table 4.18: Occurrence of some limonoids in Turraea species

Limonoid Turraea species isolated from

Azadirone (19) nilotica  robusta

120-acetoxy-7- robusta cornucopia pubescens

deacetylazadirone (28)

Mzikonone (17) robusta cornucopia parvifolia  nilotica pubescens
11-epi-toonacilin (62) robusta  holstii pubescens cornucopia
la,3a-diacety-7a- nilotica parvifolia

tigloyvilasinin (40)

4.4. Secondary metabolites from roots and leaves of Ekebergia capensis

From the root bark of Ekebergia capensis Sparrm seven compounds were isolated of
which, one (compound 198) was new, whereas six were known triterpenoids, namely
2-hydroxymethyl-2,3,22,23-tetrahydroxy-6,10,15,19,23-pentamethyl-6,10,14,18-

tetracosatetraene (152), 2,3,22,23-tetrahydroxy-2,6,10,15,19,23-hexamethyl-6,10,14,18-
tetracosatetraene (151), ekeberin A (158), oleanolic acid (159), oleanonic acid (160)
and 3-epi-oleanolic acid (161). From the leaves, proceranolide (148) and two
glucoflavonoids new to the genus, kaempferol-3-O-4-D-glucopyranoside (199) and

quercetin-3-0O-f-D-glucopyranoside (200) were identified.
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4.4.1. Pentacyclic triterpenoids from the root bark of Ekebergia capensis

4.4.1.1. 3-oxo-12p-Hydroxy-oleanan-28,134-olide 198

23 24 198

Compound 198 was isolated as a white amorphous powder. Its HR(ESI)MS analysis
suggested the molecular formula CsoHss0, (observed [M+H]*, m/z 471.3386, calcd
471.3474, Appendix 16F). The presence of seven methyl singlets in its *H NMR
spectrum at oy 1.32, 1.20, 1.10, 1.05, 0.91 integrating for 3H each, a methyl at 6y 0.99
integrating for 6H (Table 4.19, Appendix 16) and that of thirty *C NMR signals
including an oxygenated methine (dc 76.2), a quaternary carbon (dc 90.5) and two
carbonyls (oc 217.5 and 179.8) was compatible with a pentacyclic triterpenoid
skeleton (Mahato and Kundu, 1994). This presumption was supported by the high
similarity of its NMR data to that of the oleanane triterpenoid 3-o0xo-11a-12a-epoxy-
oleanan-28,13p-olide, which was isolated from Cedrela montana (Castellanos et al.,
2002). The HMBC correlations (Table 4.19, Appendix 16C) of the carbonyl carbon at
oc 217.7 to the methyl protons at Jy 1.10 (Me-23) and Jy 1.05 (Me-24) and to the
methylene protons at oy 2.53 and 2.45 (CH,-2) suggests its C-3 position in the
triterpenoid backbone. The placement of a hydroxyl group at C-12 (dc 76.2) was
established following the *H-"H COSY correlation of H-11 and H-12, and the HMBC
correlation of H-12 (dy 3.91) with C-9 (d¢ 44.0 ), C-13 (dc 90.6) and C-14 (Jc 42.3).
This was further confirmed by the HMBC correlation of H-11 (o4 2.06, 1.46) and H-9

(0w 1.72) to C-12 (Jc 76.2). The relative configuration of the C-12-hydroxyl group
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was determined based on the NOE observed between H-12 (o4 3.91) and H-27 (dy
1.32), revealing their syn orientation (Figure 4.3, Appendix 16E). This assignment
was further supported by the absence of NOE between H-12 (o4 3.91) and Me-26 (dy
1.20). Small, comparable *Jy12-+112 and *Jp1o-na1p indicate the gauche orientation of H-
12 to both CH,-11a and CH,-11b and thus its pseudo-equatorial orientation. The **C
NMR shifts dc 179.9 (C-28) and J¢ 90.6 (C-13) are typical of a 28,13B-lactone moiety
(Castellanos et al., 2002). It should be noted that so far all naturally occurring
triterpenes possessing a 28,13-lactone moiety were reported to have 28,13[-
configuration (Ikuta and Morikawa, 1992; Castellanos et al., 2002; Hu et al., 2012).
The relative orientation of the bridgehead methyl groups and protons was elucidated
based on their NOE correlations, shown in Figure 4-3. Hence, the absence of NOE
between H-18 and H-27, H-5 and H-25, and H-26 and H-27 is diagnostic for their
anti-orientation. The observed NOEs revealed that H-5, H-9, H-12 and H-27 are a-
oriented, whilst H-18, H-25, and H-26 are p-oriented. The assigned relative
configuration is in excellent agreement with previous literature reports (Ikuta and
Morikawa, 1992; Castellanos et al., 2002; Hu et al., 2012). On the basis of the above
spectroscopic data, the new compound was characterized as 3-0xo-12B-hydroxy-

oleanan-28,13p3-olide (198).
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Figure 4-3: Key NOE correlations observed for compound 198 (mixing time 700 ms,
CDCI3, 25 °C, 799.88 MHz) allowing determination of its relative configuration are
shown. An expansion of the NOESY spectrum showing the characteristic NOE
correlations of H-12 is shown above. The NOE correlation of H-12 and H-27, and the

absence of NOE between CH-12 and H-26 indicate the B-orientation of OH-12,
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Table 4.19: *H (800 MHz) and *C (200

MHz) NMR data for compound 198 in

CDCl,
Position | 8y (J in Hz) dc HMBC (*J,%)
1 1.47 ddd (7.6, 9.8, 12.5)

1.94 ddd ( 4.4, 7.6, 12.5) 398 | €2,C3,C5 €10, €25
2 253 ddd (7.6, 9.8, 15.7)

2.45 ddd (4.4, 7.6, 15.7) 341 | CLC3,C4,C10
3 2177
4 475
5 1.39dd (2.7, 12.0) 550 | C4,C6, C7, C9, C10, C23, C25
6 155 m lop | C7.C8,C10,C26

147 m : C7,C8, C10, C25, C26
7 160 m a5 | C5.C6,C8,C26

130m : C5, C8, C9, C26
8 423
9 172dd (2.3, 13.0) 440 | CL, C5,C8, C10, C1L, C25, C26
10 36.3
11 2.06m 293 | C8,C9,CL0,Cl12, C13

146 m
1 3.91d (3.3) 762 | C9,C13, Cl4
13 90.6
14 423
15 igg %dd (2.6,26,12.4) 282 | C14, C16, C17, C18, C27
16 2.14 ddd (5.9, 13.3, 13.3) C17,C18, C22,C28

213

129 m
17 449
18 2.05 dd (35, 13.4) 513 | C12, C13, Cl4, C16, C19, C20
19 201dd (13.1, 13.4)

ST BE 13T 397 | C17,C18,C20, C21, C29, C30
20 ; 318
21 138 m

e 343 | C20,C22,C30
22 164m 276 | Cl6, C17, C18, C20, C28, C29
23 110's 267 | C3,C4, C5 C24
24 1,055 212 | C3,C4,C5, C23
25 0.99s 164 | CL,C5, C9,CL0
26 120's 184 | C7,C9,C13,Cl4, C27
27 132 186 | C8, C13,Cl4,C15
28 ; 179.9
29 0.99s 334 | C19, C20, C21,C30
30 0.91s 240 | C19, C20, C21,C29
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4.4.1.2. Ekeberin A (158)

158

Compound 158 was isolated as needle like crystals. The *H NMR spectrum (Table
4.20, Appendix 17) indicated seven methyl signals; two doublets at o4 0.88 (J = 7
Hz), 0.89 (J = 7 Hz) and five singlets at 5y 0.90, 0.96, 1.03, 1.06 and 1.07. The **C
NMR spectrum indicated 30 carbon signals including one carbonyl (6¢ 218.1), three
oxygenated carbons; quaternary (8¢ 97.6), oxygenated methine (6c 78.8) and
methylene (8¢ 69.2) compatible with a pentacyclic triterpenoid skeleton. HMBC
correlation of CH,-2 (oy 2.51; oy 2.44), H-1 (84 1.98), Me-23 (64 1.06) and Me-24
(61 1.02) with keto resonance at ¢ 218.1 suggested the position of the latter at C-3 in
a pentacyclic skeleton. A carbinol proton at &4 3.55 (dd, J = 10.3, 1.7 Hz) and its
corresponding carbon at &c 78.7 was assigned to H-18 following its HMBC
correlation with C-12 (¢ 24.2), C-22 (8¢ 32.8) and C-19 (8¢ 97.6). The assignment of
the resonance at o¢c 97.6 to C-19 was confirmed by HMBC correlation of this signal
with H-21(64 1.93 m, 1.88 m), H-20 (64 1.69 m) and Me-29 (64 0.89). Relative
orientation of H-18 was established by NOE correlation of H-18 with Me-27. The *H
NMR spectrum also indicated downfield shifted double doublets signals [ 4.25 (dd,
J=8.5, 3.2 Hz) and 64 3.44 (dd, J = 8.5, 1.7 Hz)] as shown by their mutual coupling
in the *H-'"H COSY spectrum. HMBC correlation of the signals at 8y 3.44 with 8¢
78.7 (C-18), 8¢ 97.6 (C-19) and 8¢ 32.8 (C-22) and that of &y 4.25 with 5¢ 78.7 (C-18)

and 8¢ 32.8 (C-22) suggested their assignment at CH,-28. The compound was
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therefore identified as ekeberin A, first isolated from the stem bark of E. capensis

(Murata et al., 2008).

Table 4.20: *H (500 MHz) and **C (125 MHz) NMR data for compound 158 in DMSO-d;

Position | 84 (J in Hz) dc Position | 64 (J in Hz) dc
1 1.45m 39.8 |16 1.38 m 28.5
1.98 m 1.35m
2 2.44 ddd (11.2, 7.8, 3.9) 341 |17 - 314
2.51 ddd (15.7,9.5, 7.6) 18 3.55dd (10.29,1.69) |78.8
3 - 218.1 | 19 - 97.6
4 - 473 120 1.69 m 354
5 1.34m 550 |21 1.93m 27.5
6 1.45m 19.5 1.88 m
1.39m 22 1.64m 32.8
7 1.47m 32.9 1.40m
8 - 40.7 |23 1.07s 26.7
9 1.42 d (2.6) 503 |24 1.03s 21.0
10 - 370 |25 0.96s 16.3
11 1.35m 21.3 | 26 1.06s 15.6
1.53m 27 0.90s 14.3
12 2.03 ddd (13.1,5.4, 2.5) 242 |28 4.25 dd (8.5, 3.21) 69.2
13 1.87m 39.4 3.44 dd (8.5, 1.74)
14 - 414 |29 0.89d (7) 16.9
15 1.46 m 264 |30 0.88d (7) 17.2
0.95m

4.4.1.3. Oleanolic acid (159)

Compound 159 was isolated as white crystals. The '"H NMR spectrum (Table 4.21,
Appendix 18) indicated the presence of seven tertiary methyl singlets each integrating
for three protons at &y 0.75, 0.77, 0.90, 0.91, 0.93, 0.98 and 1.13 thirty *C NMR
signals compatible with a pentacyclic triterpenoid skeleton (Seebacher et al., 2003).
Two olefinic carbons d¢ 143.6 (C-13) and o¢ 122.7(C-12) with the corresponding vinyl

proton appearing at oy 5.28 (d, J = 3.5 Hz) indicated the presence of a C-12/C-13
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double bond. HMBC correlation of Me-27 (4 1.13, s) with C-13 (3¢ 143.6)
confirmed location of the double bond. The presence of a carboxylic acid moiety was
established by the presence of carbon resonance at 6c 182.9 and assigned to C-28
following HMBC correlation of H-18 (64 2.83, dd, J = 13.8, 4.5 Hz) with C-28 (6¢
182.9) while oxymethine at 6c 79.0 and its corresponding carbinol proton at oy 3.24
(H-3 dd, J =10, 5 Hz) was assigned to C-3. HMBC correlation of Me-23 and Me-24
with H-3 (64 3.24) confirmed the placement of hydroxyl group to C-3. The relative
orientation of hydroxyl group at C-3 was established as equatorial following the large
coupling constant between H-3,x and H-2, (J = 10.0 Hz). NOESY correlation of H-3
(0n 3.24) with Me-23, (64 0.98) and Me-26 (64 0.75) showed that they are in the same
face (o-orientation) and hence the hydroxyl group is B-oriented. A methine proton at
dn 2.83 (dd, J = 13.8, 4.5 Hz) was assigned to H-18. The relative configuration at C-
18 was established through NOE correlation of H-18 (6 2.83) with Me-30 (64 0.93),
and H-12 (54 5.28). The *C NMR assignments were in agreement with literature
values reported for oleanolic acid (Mahato and Kundu, 1994; Seebacher et al., 2003).
However, 'H NMR for Me-26, Me-30, Me-29 and Me-25 did not corroborate those
reported by Seebacher and co-workers (Seebacher et al., 2003). HMBC correlation
(Figure 4-4) is used here to unequivocally assign the methyls; vis correlation of Me-27
(8u 1.13) with C-13 (3¢ 143.6); Me-23 (8 0.98) and Me-24 (54 0.77) with C-3 (8¢
79.0), Me-26 (81 0.75) with C-9 (8¢ 47.6), C-14 (5¢ 41.6) and C-7 (8¢ 33.1); Me-25
(5u 0.91) with C-5 (8¢ 55.2), C-4 (5¢c 38.8) and Me-30 and Me-29 with C-20 (5c
30.7). The compound oleanolic acid was previously isolated from the stem bark of E.

capensis (Murata et al., 2008).
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AcO

202

Oleanolic acid (159) was acetylated to form oleanolic acid acetate (202). The *C
NMR spectrum (Appendix 19A) displayed 32 carbon signals including an ester
carbon (d¢c 171.3), an acetyl methyl group resonance at ¢ 21.6 and a two ppm down-
field shift (8¢ 81.3) for C-3. The *H NMR indicated a deshielded proton resonance at
oy 4.45 corresponding to H-3. All the other resonances were comparable to those of

159.

Table 4.21.'H (500 MHz) and **C (125 MHz) NMR data for compound 159 in
DMSO-ds

Position | 84 (J in Hz2) dc Position | é4 (J in Hz) dc
la 0.98 m 38.4 16 1.90m 23.4
B 1.63m 1.60 m
2 1.61m 27.2 17 - 46.5
1.56 m 18 2.83dd (13.8,4.5) |410
3 3.24 dd (11.6, 4.3 Hz) 79.0 190 1.63m 45.9
4 - 38.8 B 1.17m
5 0.74s 55.2 20 - 30.7
60 1.57m 18.3 21 1.24m 33.8
B 1.39m 1.34m
7 1.24m 331 22 1.78 m 324
8 - 39.3 1.60m
9 1.53m 47.6 23 0.98s 28.1
10 - 37.1 24 0.77s 15.6
lla 2.00m 22.9 25 0.91s 15.3
B 1.63m 26 0.75s 17.1
12 5.28d (3.5) 122.7 | 27 1.13s 25.9
13 - 1436 |28 - 182.9
14 - 41.6 29 0.90s 32.6
15a 1.08 m 271.7 30 0.93s 23.6
B 1.72m
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Table 4.22: Key *H (600 MHz) and **C (150 MHz) NMR resonances for compound
159 (DMSO-ds) and 202 (in CD,Cly)

202 159
OoH (J in HZ) Oc O (J in HZ) Oc
3 4.47m 81.3 3 3.24 dd (11.6,4.3 Hz) | 79.0
12 5.27t(3.7) 123.1 12 5.28 d (3.5) 122.7
13 - 144.3 13 - 143.6
28 - 184.2 28 - 182.9
Ac(CO) | - 171.3 - -
Ac(Me) 21.6 - -
0 2% Me-24
ve-27 Me-23 | / /9 \ ‘:/Me—26
= i == —fc7
= = - = cuss=
—_— C-3 c-9 £
T — ; :
c3

= C-13

Figure 4-4: Key HMBC correlation of Compound 159 methyl groups

4.4.1.4. Oleanonic acid (160)

Compound 160 was isolated as white crystals, melting point 153-154°C. ESI-MS (30

eV) indicated [M+H]" at m/ 455.4 (Appendix 20B). The B¢ NMR spectrum (Table

4.23, Appendix 20) indicated presence of two carbonyls [oc 216.2 (C-3), 178.4 (C-

28)] and two olefinic carbons [5c 121.2 (C-12) and 143.6 (C-13)]. The 'H NMR
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spectrum indicated presence of seven tertiary methyls at dy 0.77, 0.94, 0.97, 1.00,
1.11(3H each) and 0.88 (6H), olefinic proton; 64 5.19 (H-12, s) and a methine proton
at oy 2.75 (H-18, dd, J = 14, 4.5, Hz). These data are compatible with oleanane type
pentacyclic triterpenoid skeleton (Mahato and Kundu, 1994). The ketone group was
assigned to C-3 following HMBC correlation of Me-23 (64 1.00) and Me-24 (&4 0.94)
with d¢ 216.2. Using 1D, 2D NMR and comparison with literature information the

compound was identified as oleanonic acid (Kwon et al., 1997).

Table 4.23: 'H (800 MHz) and *C (200 MHz) NMR data for compound 160 in
DMSO-dg

Position | éy (J in HZz) dc Position | 8y (J in Hz) dc
1 1.77 ddd (11.8, 7.4, 3.8) 38.9 15 1.66 m 27.0
1.38m 1.09 m
2a 2.30 ddd (15.9,7.1, 3.7) 34.1 16 1.87m 23.5
b 2.48 ddd (15.8, 7.0, 3.7) 17 - 46.4
3 - 216.2 |18 2.75dd (14,4.5) | 41.3
4 - 48.4 19 1.04m 45.9
5 1.32m 54.1 20 - 30.2
6 1.43m 20.9 21 113 m 335
1.29m 1.32m
7 1.44m 31.9 22 1.62m 32.6
1.29m 1.32m
8 - 38.6 23 1.00s 26.1
9 1.62m 46.4 24 0.94s 215
10 - 36.1 25 0.97s 145
1la 191m 22.8 26 0.77 s 16.5
b 1.50 m 27 1.11s 25.3
12 5.19s 121.2 |28 - 179.4
13 - 1436 |29 0.88 s 33.1
14 - 419 30 0.88 s 23.1

4.4.15. 3-epi- Oleanolic acid (161)
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Compound 161 was isolated as a white amorphous powder. The *H NMR spectrum
(Table 4.24, Appendix 21) indicated the presence of seven methyl signals all of which
attached to saturated carbons at 6y, 0.71, 0.75, 0.83, 0.85, 0.86 (6H) and 1.09; olefinic
proton at oy 5.07 (H-12, s); a methine at 6y 2.77 (H-18, dd, J = 15.0, 5.0 Hz) and a
carbinolic proton 8 3.17 (H-3, s). In the *C NMR spectrum two olefinic carbons; ¢
121.0 (C-12), 144.6 (C-13), a carbony carbon; 178.2 (C-28) and an oxymethine
carbon 8¢ 73.8 (C-3) were observed. Both the *H and **C NMR data are consistent
with an oleanane type triterpene (Mahato and Kundu, 1994; Kwon et al., 1997). The
position of the double bond at C-12/C-13 was established by HMBC correlation of H-
18 (64 2.77, dd, J = 15.0, 5.0 Hz) with C-13 (6¢ 144.6). Relative configuration at C-3
was determined by NOE correlation of H-3 (34 3.17, s) with Me-24 (o4, 0.75, S)
allowing the placement of the hydroxyl group in a-orientation. This is in agreement
with the *3C chemical shift value of C-3 (8¢ 73.8), which is expected to be shielded
(6c less than ¢ 76) for axially oriented OH (Mahato and Kundu, 1994). This
compound is a stereoisomer of compound 159 where they differ in the relative
configuration of hydroxyl group at C-3. Compound 159 (B-OH) has H-3 in axial
position as evidenced by the large coupling constant (64 3.24, dd, J = 11.6, 4.3 Hz)
while H-3 in 161 (a-OH) is in equatorial position (6 3.17 brs). These data compared
well with that of 3-epi-oleanolic acid. The compound has previously been isolated

from the stem bark of E. capensis (Sewram et al., 2000; Murata et al., 2008).
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Table 4.24: 'H (500 MHz) and *C (125 MHz) NMR data for compound 161 in
DMSO-ds

Position | 8y (J in H2) Oc Position | 8y (J in Hz) Oc
1 1.58 m 325 1.82m
1.36 m 17 - 46.1
2 1.34m 25.2 18 2.77dd (15, 5) 41.0
3 3.17 brs 73.8 19 1.02m 455
4 - 36.9 1.59m
5 1.12m 48.3 20 30.5m
6 1.35m 17.8 21 1.40 m 33.6
1.26 m 1.59m
7 1.15m 32.3 22 1.18m 32.7
8 - 39.8 23 0.83s 28.7
9 1.21m 46.9 24 0.75s 22.3
10 - 36.7 25 0.855s 15.0
11 1.45m 22.9 26 0.71s 17.0
12 5.08 m 120.0 27 1.09s 25.7
13 - 144.6 28 - 178.8
14 - 41.4 29 0.86 s 33.0
15 1.70 m 27.3 30 0.86 s 23.6
16 1.48 m 23.5

4.4.2. Acyclic triterpenoids from the root bark of Ekebergia capensis

4.4.2.1. 2,3,22,23-tetrahydroxy-2,6,10,15,19,23-hexamethyl-6,10,14,18-
tetracosatetraene (151)

Compound 151 was isolated as yellowish oil with ESI-MS (30 eV) indicating an
[M+H]" peak at m/z 479.4 (Appendix 23B). The **C NMR spectrum (Table 4.25,
Appendix 23A) indicated 15 carbons, including four olefinic carbons (6¢ 135.1, 134.9,
125.1, 124.6) and two oxygenated carbons (6c 78.63; 73.63). This compound was
predicted to be symmetrical acyclic triterpene and hence, only one half of the carbons
(15) were observed in the *C NMR (Nishiyama et al., 1996). ‘H NMR spectrum
indicated presence of two olefinic protons each integrating for two protons (64 5.17,
H-7, H-18, t, J = 6.4 Hz) ; (64 5.13 H-11, H-14, s); a carbinolic proton signal (o4

3.33 H-3, H-22, dd, J =10.5, 1.9 Hz integrating for 2 protons); eight methyls of which
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four [y 1.13 (s, 6H); 1.18 (s, 6H)] attached to an sp® and the remaining four [8y 1.60

(s, 6H), 8y 1.58 (s, 6H) attached to an sp? carbon. The *H and *C NMR were

carefully assigned using HSQC and HMBC. Consequently the molecule was

elucidated as 2,3,22,23-tetrahydroxy-2,6,10,15,19,23-hexamethyl-6,10,14,15,19,23-

tetracosatetraene previously isolated from the stem bark of E. capensis (Nishiyama et

al., 1996).

Table 4.25:*H (500 MHz) and *C (125 MHz) NMR data for compound 151 in CDCls

Position | 84 (J in Hz) dc Position | 64 (J in Hz) oc

1 1.13s 26.5/23.4 16 1.98 m 39.8

2 - 73.2 17 2.09m 26.7

3 3.33dd (10.5, 78.4 18 5.17t(6.4) 125.1
1.9)

4 1.39m 29.9 19 - 135.1/134.9
1.55m 20 2.26 m 36.9

5 2.26m 36.9 21 1.39m 29.9
2.06 m 1.55m

6 - 135.1/134.9 | 22 3.33 dd (10.5, 78.4

1.9)

7 5.171(6.4) 125.1 23 - 73.2

8 2.09m 26.7 24 1.13s 26.5/23.4

9 1.98 m 39.8 25 1.18s 26.5/23.4

10 - 135.1/1349 | 26 1.60s 16.1

11 5.13s 124.6 27 1.58s 16.06

12 2.00 m 28.3 28 1.58s 16.06

13 2.00m 28.3 29 1.60s 16.1

14 5.13s 124.6 30 1.18s 26.5/23.4

15 - 135.1/134.9

4.4.2.2. 2-Hydroxymethyl-2,3,22,23-tetrahydroxy-2-6,10,15,19,23-pentamethyl-
6,10,14,18 tetracosatetraene (152)

HO

OH

OH

OH

Compound 152 was isolated as an oil. ESI-MS (30 eV) indicated an [M+H]" at m/z

495.7 (Appendix 22B). The 'H NMR spectrum (Table 4.26, Appendix 22) showed

the presence of an olefinic proton [y 5.05 integrating for four protons], three methyl

104



groups [84 0.94 (Me-1), 0.97 (Me-24), 1.00 (Me-30) attached to an sp® carbon] and a
singlet integrating for 4 methyls [8y 1.50 s (Me-26,27,28,29) attached to an sp?
carbon]. The acyclic triterpene nature of the compound was shown by the *C NMR
spectrum which displayed thirty carbon signals including four olefinic quaternary
carbons (8¢ 135.4, 135.4, 134.9, 134.8) and four vinyl methines (¢ 124.23, 124.2,
123.8, 123.8) (Nishiyama et al., 1996). Also present were two oxygenated quaternary
carbons [o¢ 74.3 (C-2), 72.2 (23)] and two oxymethines [6¢c 74.4 (C-3), 77.5 (C-22)]
whose corresponding carbinol proton (2H) appeared at 6y 3.23 (H-3, H-22, dd, J = 15,
5 Hz). An oxymethylene at oy 67.0 (C-25) and corresponding AB type protons at oy
3.33 (CH2-25a, d, J = 10.4 Hz) and oy 3.04 (CH,-25b, d, J = 10.2 Hz) were also
observed. Placement of oxymethylene to C-25 was confirmed by HMBC correlation
of CH,-25 (64 3.33; 3.04) with C-2 (6¢ 74.3) and C-1 (8¢ 20.1). The rest of the signals
were carefully assigned by use of HMBC and HSQC spectra. The structure was
therefore identified as 2-hydroxymethyl-2,3,22,23-tetrahydroxy-6,10,15,19,23-
pentamethyl-6,10,14,18-tetracosatetraene previously isolated from the stem bark of

E. capensis (Nishiyama et al., 1996).

105



Table 4.26: 'H (800 MHz) and *C (200 MHz) NMR data for compound 152 in
DMSO-dg

Position | 84 (J in Hz) Oc Position | 6y (Jin Hz) Oc
1 0.90s 20.9 16 1.88 m 39.1
17 1.97m 26.5/26.4

2 - 74.3 18 5.04 brs 124.23
3 3.23dd (15,5) | 744 19 - 135.4
4 1.23m 29.6 20 211m 36.9
5 211m 36.7 1.83m

1.83m 21 1.16m 29.9
6 - 134.8 22 3.23 dd (15, 5) 77.5
7 5.05 brs 124.2 23 - 72.2
8 1.97m 26.5/26.4 24 0.97s 25.0
9 1.88 m 39.0 25 3.33d(10.8) 67.0

3.04d (10.8)

10 - 135.4/134.9 | 26 1.50s 16.2/16.2
11 5.04 brs 123.8
12 1.90 m 28.1 2713 1.50s 16.1/16.1
13 1.90 m 28.1 29 1.50s 16.2/16.2
14 5.04 brs 123.8 30 1.00s 25.9
15 - 135.4/134.9

4.4.3. Flavonol glycosides from the leaves of Ekebergia capensis

4.4.3.1. Kaemferol-3-O-4-D-glucopyranoside (199)

1" 5" g+ OH
HO

HO O HO 3" 4

199

Compound 199 was isolated as a yellow amorphous powder. Based on ‘H and **C
NMR spectra as well as ESI-MS (30 eV) which indicated [M+H]" at m/z at 449.1 and
a base peak at 287.2 [M+H]" (Appendix 24B) the molecular formular Cy;H,01; was
assigned for this compound. The *H and **C NMR spectra (Table 4.27, Appendices
24A and B) revealed signals similar to those of the flavonol kaempferol (Kim et al.,
2004). Hence, two aromatic protons at oy 6.41 (S) and oy 6.20 (S) were assigned to H-

8 and H-6 respectively, of ring A which is oxygenated at C-5 (OH, due to a broad
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singlet at 6y 12.61) and C-7, as expected biogenetically. The presence of four protons
showing an AA‘XX’ pattern at oy 8.04 (2H, d, J = 8.5 Hz) for H-2’/H-6" and d 6.88
(2H, d, J = 8.5 Hz) for H-3’/H-5" is typical of 4’-oxygenated ring B. The presence of
a sugar moiety was evident from the **C NMR spectrum which indicated six
oxygenated signals at 6c 101.3 (C-1""), 78.0 (C-5""), 76.9 (C-3"’), 74.7 (C-2"*), 70.4
(C-4>") and 61.3 (C-6""). The anomeric proton (H-1") resonated at &y 5.46 (d, J = 7.9
Hz), the large coupling constant of which is consistent with B-orientation of the
aglycone. Attachment of the sugar moiety at C-3 was confirmed by HMBC
correlation of H-1” (64 5.46) with C-3 (6¢ 133.6). Resonances at oy 3.56— 3.08 ppm
were due to protons H-2"’- H-6"" of the sugar moiety. The sugar moiety was identified
as glucopyranose. By the use of *H and *C NMR, HMBC, HSQC, 'H-'H COSY
consequently the compound was elucidated as kaemferol 3-O-4-D-glucopyranoside

previously isolated from Eucomnia ulmoides (Kim et al., 2004).

Table 4.27:*H (800 MHz) and **C (200 MHz) NMR data for compound 199 in
CDCl,

Position | 84 (J in Hz) dc Position | 8y (Jin Hz) dc

1 - 2°6’° 8.04 d (8.5) 131.3
2 - 156.7 3’5’ 6.88 d (8.5) 115.6
3 - 133.6 4 - 160.4
4 - 177.9 1” 5.46 d (7.2)

5 - 161.7 2” 3.17s

6 6.20 s 99.2 3” 3.21s 101.3
7 - 164.7 4 3.08s 74.7
8 6.42 s 94.1 5” 3.08s 76.9
9 - 156.9 6” 3.56m 70.4
10 - 104.4 3.13m 78.0
I - 121.4 61.3
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4.4.3.2. Quercetin- 3-O-4-D-glucopyranoside (200)

Compound 200 was isolated as a yellow amorphous powder from the aerial parts of E.
capensis. ESI-MS (30 eV) which indicated [M+H]" at m/z 465.1 (Appendix 25B)
together with the *H and *C NMR (Table 4.28, Appendices 25 and 25A) molecular
formular C,;H20012 is proposed. This compound is also a flavone glycoside, where a
base peak appeared at m/z 303.3 [M+H]" is due to the loss of sugar moiety. The H
NMR spectrum showed signals at oy 12.61 due to hydroxyl group at C-5; two meta
coupled protons at 6y 6.40 (d, J = 2.03 Hz) and 6.20 (d, J = 2.03 Hz) assigned to H-8
and H-6 of ring A of flavones with the biogenetic oxygenation at C-5 and C-7. In ring
B, the *C NMR spectrum is consistent with oxygenation at C-3’ and C-4’ as in
quercetin (Sanbongi et al., 1998). In agreement with this, aromatic signals at &y 7.58
(m), 7.57 (m) and 6.84 (d, J = 10 Hz) corresponded to H-6’, H-2’ and H-5’
respectively of ring B. Overall these resonances together with those of **C NMR are
consistent with the aglycone part of this compound to be quercetin (Sanbongi et al.,
1998). The presence of additional signals in the *H NMR spectrum in the range &y
5.46 -3.08 ppm indicated presence of a sugar moiety. This was supported by presence
of six oxygenated carbons at 6¢ 100.8, 77.6, 76.5, 74.1, 69.3 and 61.0. The sugar was
established to be p-D- glucopyranoside attached to C-3 of the aglycone. This
attachment was confirmed by HMBC correlation of H-1” (64 5.46) with C-3 (3¢

133.3). The B-orientation was indicated by the large coupling constant of the anomeric
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proton H-1" (64 5.46 d, J =7 .4 Hz) (Slimestad et al., 1995). This compound was
elucidated as quercetin-3-O-4-D-glucopyranoside. NMR data was in agreement with
that reported for the same compound isolated from Picea abies (Slimestad et al.,

1995).

Table 4.28: 'H (800 MHz) and *C (200 MHz) NMR data for compound 200 in CDCl,

Position | 84 (J in Hz) dc Position | é4 (J in Hz) dc

1 2 7.57Tm 116.2
2 - 156.2 3’ - 144.8
3 - 133.3 4 - 148.5
4 - 177.4 5’ 6.84 d (10.0) 115.2
5 - 161.2 6’ 7.58 m 121.6
6 6.20 d (2.0) 98.6 1” 5.46 d (7.4) 100.8
7 - 164.1 2” 3.22m 74.1
8 6.40 d (2.0) 93.5 3” 3.22m 76.5
9 - 156.3 4 3.08s 69.9
10 - 104.0 5” 3.08s 77.6
1’ - 121.2 6” 3.58dd (11.9,4.0) | 61.0

3.33m

4.4.4. A Limonoid from the leaves of Ekebergia capensis

4.4.4.1. Proceranolide (148)

Compound 148 was isolated as a yellowish gum. ESI-MS (30 eV) indicated [M+H]"
at m/z 471.9 (Appendix 28B). The H and **C NMR (Tables 4.29, Appendix 28B)
indicated characteristic resonances associated with a furan ring oy 7.56 (m, H-21),
6.49 (d, H-22, J = 2.3 Hz) and 7.39 (m, H-23) and the corresponding carbon signals at
dc 142.0, 110.4 and 142.9 respectively. Furthermore the presence of carbomethoxy
ester at 6y 3.70 (OMe), 8¢ 52.1 (OMe); 174.66 (C-7) and four tertiary methyl groups
at oy 1.13, 1.03, 0.81 and 0.73 characteristic of mexicanolide class of limonoids

(Coombes et al., 2005) were also observed. Other notable features were hydroxyl
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bearing methine at oy 3.74 (H-3) and a lactone &y 5.58 (H-17) and the corresponding
carbon resonances appearing at 6¢c 77.5 and 80.5 respectively. Two quaternary olefinic
carbons [oc 128.5 (C-8); 131.7 (C-14)] and two carbonyl signals [6¢c 220.1 (C-1); &
171.73, (C-16)] also featured. Using both 1D and 2D NMR spectra the compound was
identified as proceranolide previously isolated from the seeds of Swietenia mahagoni

and the stem bark of E. capensis (Kadota et al., 1990; Murata et al., 2008).

Table 4.29: *H (800 MHz) and **C (200 MHz) NMR data for compound 148 in CDCl,

Position | 84 (J in H2) dc Position oy (Jin H2) dc
1 - 218.9 13 - 38.2
2 3.05 ddd (10.7, 6, 2.7) 50.3 14 - 131.7
3 3.74m 77.5 15 4,05dt(21.4,2.1) | 334
3.47 dt (2.9, 21.3)
4 - 39.6 16 - 171.7
5 3.24 dd (11.4,2.7) 39.6 17 5.58s 80.5
6 2.34m 33.9 18 1.03s 17.9
2.38m 19 1.13s 17.2
7 - 174.7 20 - 121.1
8 - 128.5 21 7.56 m 142.0
9 1.97m 52.3 22 6.49 d (2.3) 110.4
10 - 53.9 23 7.39s 142.9
11 1.78 m 19.1 28 0.81s 24.1
1.80 m 29 0.73 s 20.5
12 1.79m 28.9 30 1.97 m 33.6
1.04 m 3.19.dd (14.5, 3)
OMe 3.70s 52.1

4.5. Antiplasmodial and cytotoxicity activities

The crude extracts from Turraea nilotica, Turraea robusta and Ekebergia capensis
were evaluated for antiplasmodial activity against chloroquine resistant (W2) and
chloroquine sensitive (D6) Plasmodium falciparum strains and also for cytotoxicity
against three mammalian cell lines, African green monkey kidney (vero), mouse
breast cancer (4T1) and human larynx carcinoma (HEp2). Results are as shown in
Table 4.30. Three out of the six extracts tested were classified as active (ICsq < 10

pg/ml) with Turraea robusta stem bark displaying highest antiplasmodial activity
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with 1Cso values of 2.840.02 pg/ml and 2.3+0.05 pg/ml against W2 and D6
respectively. Comparing the ICs, values of T. robusta (SB) and T. nilotica (SB and
RB) to those of fruits of Azadirachta indica (1.92 pg/ml against W2), a plant that has
had a wider use in traditional medicine against malaria, it can be said that these
extracts have promising results (Chianese et al., 2010). Extracts from T. robusta (SB)
and E. capensis (RB) had promising cytotoxic activities when compared to those
reported for other plants such as Phellinus rimosus, Holarrhena floribunda and
Warbugia ugandensis (Ajith and Jonardhanan, 2003; Fotie et al., 2006; Irungu et al.,

2007).

Table 4.30: Antiplasmodial and cytotoxic activities of selected plant parts

1Cso (Lg/ml)
Plant part W2 D6 Vero 4T1 Hep?2
Turraea robusta (SB) 2.8£0.02 | 2.3+0.05 21.9+2 53+0.6 |4.2+1
Turraea nilotica (SB) 7.3£t0.05 | 6.9+0.02 |17.70+1.3 | ND 22.4+4.4
Turraea nilotica (RB) 95+1.0 |7.9+1 13.7+2 18.6+1.2 | 27.2+3.6
Turraea nilotica (L) 59.0£3.6 | 47.4+3 21.5+2 39.1+4 | 37.4+1.3
Ekebergia capensis (RB) | 34.0+2.2 | 18.2+0.1 2.8+0.1 9.3+0.1 | 3.4+0.9
Ekebergia capensis (SB) | 45.3+2.7 | 44.9+0.8 97.840.8 | 82.1+5.7 | 48.6+5.3
Chloroquine %108.0+0 | %7.7+0.02 43.9+0.5 5701

Legend: ND; not done, SB; stem bark; RB; root bark, L; leaves, ®ICsq: half maximal
inhibitory concentration given in nM for chloroquine: The mean values of at least
three independent experiments are reported. Positive control: podophyllum resin, 1Cs
(4T1) = 0.47 £ 0.05 pg/mL; Melarsoprol ICsq (Vero) = 0.76 = 0.01 pg/mL

Previous studies have revealed the antiplasmodial potency of some triterpenoids and
limonoids (Murata et al., 2008; Ngouamegne et al., 2008; Tan and Luo, 2011). Thus,
some of compounds isolated in this work were tested for their antiplasmodial activity
against D6 and W2. Activity was scored according to the classification of Batista and
co-workers (Batista et al., 2009). As shown in Table 4.31, of the nineteen compounds
tested, two showed good activity with the epimeric mixture azadironolide (192),
having the best activity (ICso values less than 2.5 puM) while the rest of the

compounds had moderate activities against the two strains. The activity of this
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compound was comparable to that reported for gedunin (204) and neemfruitin A (205)
triterpenoids from Meliaceae family reported to have good antiplasmodial with ICs
values less than 3 uM (Chianese et al., 2010). This compound warrants further studies
to evaluate it potential as an antimalarial drug lead in an animal model. None of the
tested compounds had an activity comparable to that of the standard drug chloroquine
whose activity is in the nanomolar range. Due to the low isolated amount, the
bioactivity of new compound (198) was not evaluated. The antiplasmodial activity of
compounds 160 and 19 has previously been reported and the data generated here is
comparable with the literature reports (Suksamrarn et al., 2003; Chianese et al.,

2010).

The isolated compounds were also tested for their cytotoxicity against the mammalian
cell line African green monkey kidney (vero cells). Most of the compounds had
moderate cytotoxicity (ICsp > 20 uM). However, selectivity index, [ICso(vero)/ICso
(D6)] for most of the compounds was low (SI < 10). This indicates that the moderate
antiplasmodial activity observed for most of the compounds is probably due to
cytotoxicity rather than activity against the parasite themselves. Notably, compounds
62 and 192 classified as active, had high selectivity index (SI) of 25 and >10.5
respectively. It is worth noting that though the cytotoxicity against vero cells for
oleanonic acid (160), 3-epi-oleanolic acid (161), 2-hydroxymethyl-2,3,22,23-
tetrahydroxy-6,10,15,19,23-pentamethyl  6,10,14,18-tetracosatetraene  (152) and
hispidol B (96) was comparable to that of chloroquine it has a high selectivity for

malaria parasite with a selectivity index of 5702.
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17.1 uM (D6)

14.4 uM (W2) | 1.1 uM (W2)

>10.5 (SI) 0 “oAc 2.4 uM (D6)
25  (SI)

192

Figure 4-5: Compounds classified as active with ICsy’s and SI values

Figure 4-6: Triterpenoids reported to have good antiplasmodial activity (Chianese et
al., 2010)

Some triterpenoids and limonoids isolated from other plants were previously reported
to possess substantial cytotoxicity (Kim et al., 2010; Tan and Luo, 2011). Hence, the
high to moderate cytotoxic activities of the crude extracts and isolated compounds
against ‘normal’ cell line (vero) motivated the evaluation of their cytotoxicity
activities against cancerous cell lines 4T1, HEp2 and MDA-MB-231. The results are
as summarized in Table 4.31. Compounds 25, 27, 19, 160 and 192 (Figure 4.7) had
high cytotoxicity against 4T1 and HEp2 cell lines with ICsq values of less than 20 uM.
None of the tested compounds was cytotoxic against MDA-MB-231. Of interest, these
compounds had low to moderate cytotoxicity against ‘normal cells’, whereas
cytotoxicity against 4T1 and HEp2 was high. This indicates some degree of

selectivity. These compounds may be promising anticancer drug leads. Anticancer
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drugs should demonstrate inhibitory activity and specificity for cancer cells without

causing excessive damage to normal cells (Diantini et al., 2012).

19 © ”7 8.0 uM (4T1)
25 8.4 uM (HEp2)
14.4 uM (4T1) 14.5 uM (4T1) oH
12.8 uM (HEP2) 6.9 uM (HEp2)

OH

13.3 uM (4T1) 14.7 uM (4T1)
2.3 uM (HEp2) 8.5 uM (HEp2)

7.4 uM (HEp2)

Figure 4-7: Compounds cytotoxic to 4T1 and HEp2 cell lines

Compound 159 and 161 are stereoisomers differing in relative stereochemistry of
hydroxyl group at C-3. This difference appears to affect their cytotoxicity. Compound

160 (a-OH) had higher cytotoxicity than 158 (B-OH) against the four cell lines tested.

Ester derivatives (201 and 203) were of lower cytotoxicity when compared to the
parent molecules. Infact, compound 201 was 18 folds less active than the parent
molecule (25). This loss of activity may suggest that the pharmacophoric portion is
probably in the side chain. However, more structural activity evaluations are required
before drawing a conclusion on this observation. Activity of oleanolic acid acetate

(202) increased by seven folds in comparison to the parent molecule (159). This
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observation is in agreement with previous reports that have shown that oleanolic acid
derivatives have a higher activity activity than the parent molecule (Astudillo et al.,

2002; Bednarczyk—Cwynar et al., 2012).
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Table 4.31: Antiplasmodial and cytotoxity activity of isolated triterpenes and limonoids

IC50 (uM)

Compound D6 W2 Vero cells Si 4T1 HEp2 MDA-MB-231
azadironolide (192) 2.4 +0.05 | 1.1+0.01 27.6x0.6 25 14.7+0.2 8.5+£0.5 ND
11-epi-toonacilin (62) 17.1+0.2 14.4+0.5 >180.5 >10.5 | 88.6+3.2 68.1+1.3 ND
azadirone (19) 23.4+0.2 29.6+1.0 >229.4 >0.8 14.4+0.01 | 12.8+0.02 ND
2-hydroxymethyl-2,3,22,23-
tetrahydroxy-6,10,15,19,23-
pentamethyl-6,10,14,18-
tetracosatetraene(152) 27.1+0.4 66.940.6 35.74£2.1 1.3 30.2+1.3 19.0 +0.8 74+0.04
12a-acetoxy-7-deacetylazadirone (28) 31.0+0.2 30.2+0.5 134129 | 4.3 104.6+7.1 | 40.3+2.2 ND
mzikonone (17) 36.6+0.8 | 40.5+3.7 139.6+4.7 | 3.8 38.8+0.4 59.3+1.0 69.2+0.03
hispidol B (96) 36.8+2.0 | 37.2+3.2 130+3.1 3.5 21.7+3.2 7.4+0.7 >210.1
piscidinol A (27) 37614 | 36.3+4.4 41.1+5.8 1.1 8.04£0.03 8.440.01 97.2+0.03
oleanonic acid (160) 38.8+0.5 | 76.7+4.0 35.8+1.3 0.9 13.3+0.2 1.440.1 82+0.5
guercetin-3-O-B-D-glucopyranoside
(200) 42.9+0.3 105.8+1.0 | >216 >5.0 >216 >216 > 216
niloticin (25) 48.2+2.3 | 77.05.7 145+04 |03 14.5+0.5 6.940.6 ND
oleanolic acid (159) 49.6+2.3 | 82.7+2.0 112.045.1 |23 117.6+2.6 | 90.2+0.7 87+0.03
2,3,22,23-tetrahydroxy-2,6,10,15,19,23-
hexamethyl-6,10,14,18-
tetracosatetraene (151) 56.1+0.4 64.3+1.0 24.7£1.8 0.4 22.5+3.2 19.0+3.1 > 209
niloticin acetate (201) 68.3+5.3 172.9+45 | 65.5+04 1.0 116.5+0.01 | 121.9+0.08 ND
proceranolide (148) 84.74£0.8 150.243.0 | >213 >2.5 >213 >213 n.d.
kaempferol-3-O-B-D-glucopyranoside
(199) 97.1+1.0 105.8+0.5 | >223 >2.3 >223 >223 > 223
ekeberin A (158) 182.2+6.0 | >219 >219 >1.2 163.2+4.3 | >219 n.d.
3-epi-oleanolic acid (161) 205.0£3.0 | 179.446.0 | 58.0+5.2 0.3 30.3+2.6 29.8+0.3 80+0.02
oleanolic acid acetate (202) ND ND ND ND ND 15.7£2.5 ND
piscidinol A diacetate (203) ND ND >179.2 ND 11.6+0.8 ND
toonapubesins F (194) ND ND >204
Chloroquine 7.7£0.02 108.0+0 43.9+0.5 5701
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Legend for Table 4.31 ®ICsp: half maximal inhibitory concentrationgiven in nM for
chloroquine. The mean values of at least three independent experiments are reported.
Sl: selectivity index (ICsq vero / 1Cso (D6); Positive control: podophyllum resin, 1Cs
(4T1) = 0.47 £ 0.05 pg/ml; Melarsoprol ICsq (Vero) = 0.76 = 0.01 pg/ml

Use of combination therapy in treatment of diseases such as cancer and malaria, is a
commonly employed to delay resistance and also enhance activity of two or more
compounds that act snynergistically. Hence, possible interaction of oleanonic acid
(160), isolated as a major compound and also the most cytotoxic metabolite isolated
from E. Capensis, with triterpenoids 151, 152, 158, 159 and 161 against vero and
HEp2 cells was evaluated. Interaction against vero cells indicated that 3-epi-oleanolic
acid (161) markedly antagonized the cytotoxic effects of 160 at all concentrations
tested, whereas its stereoisomer (159) showed slight antagonistic effect (Table 4.32).
The cytotoxicity of oleanonic acid (160) was antagonized by high concentrations of
ekeberin A (158), but at lower relative concentrations it enhanced the toxicity of 160.

Triterpenoids 151 and 152 showed weak additive effects.

Interaction of the compounds against HEp2 cell indicated that compounds 161, 159
and 158 markedly antagonizes activity of 160 at high concentrations and at lower
concentrations additive effects were observed (Table 4.33). Acyclic triterpenoids 151
and 152 had additive effects in all the three ratio tested except at a ratio of 1:3 where
152 antagonized 160. Overall, no appreciable synergistic effect was observed against

both cell lines.
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Table 4.32: Interaction of oleanonic acid (160) with compounds 152, 153, 158, 159
and 161 from root bark extract of E. capensis against vero cells

S FIC

Compound 0:1° 1:3° 1:1° 3:1°
161 22.5° 0.8° 5.2 5.8°
159 40.3° 3.3¢ 4.7° 3.6°
158 >100° <4° <1.4° <1.3°
152 13.6° 2.2¢ 2.2° 2.3°
151 11° 2° 1.9° 2.2°

®Ratio of oleanonic acid (160) versus various constituents of the root extract. °I1Csp

(ug/ml) in the absence of 160 °Y FIC; ICsq of 160 = 14.8 pg/ml

Table 4.33: Interaction of oleanonic acid (160) with compounds 152, 153, 158, 159
and 161 of the root bark extract of E. capensis against Hep2 cells.

SFIC

Compound 0:1° 1:3° 1:1° 3:1°
161 13.8° 5.0° 3.0° 1.7°
159 41.2° 16.0° 2.7° 1.9°
158 >100° <7.1° <4.2° <1.4°
152 9.4° 2.5° 1.1° 1.1°
151 9.1° 1.7° 1.1° 1.0

®Ratio of oleanonic acid (160) versus various constituents of the root extract. °ICso
(ng/ml) in the absence of 160, “S'FIC; ICs of 160 = 1.06 pg/ml
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CHAPTER FIVE

CONCLUSIONS AND RECOMMENDATIONS

5.1.  Conclusions
In this work extracts from three plants, Ekebergia capensis, Turraea nilotica and
Turraea robusta were investigated. The extracts were initially screened for
antiplasmodial and cytotoxic properties. Turraea robusta stem bark, T. nilotica stem
and root bark indicated high antiplasmodial activities (ICso < 10 pg/ml) against W2
and D6 Plasmodium falciparum strains. They also had moderate cytotoxicities (ICso
> 20 pg/ml) against vero cells. For E. capensis, the root bark had high cytotoxicity
and moderate antiplasmodial activity while leaves of T. nilotica and E. capensis had

moderate activities in both antiplasmodial and cytotoxic assays.

The root bark extract of E. capensis possesses high toxicity against ‘normal’ (2.8
ug/ml) cell line. Although in vitro data cannot be directly extrapolated to in vivo
toxicity, results herein underscores the need for careful use of E. capensis extracts in

traditional medicine

Turraea robusta stem bark yielded seven compounds of which azadironolide (192) is
new to the genus whereas acetoxy-7-deacetylazadirone (28) and 11-epi-toonacilin

(62) are new to the species.

From the leaves, root and stem bark of Turraea nilotica twelve compounds were

isolated. Toonapubesins F (194), mixture of sitosterol 3-O-f-D-glucopyranoside
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acetate (195), stigmasterol-3-O-f-D-gluconopyranoside acetate (196) and sitosterol-3-
O-p-D-glucopyranoside (197) are new to the genus while mzikonone (17), azadirone
(19), acetoxy-7-deacetylazadirone (28), 1a,3a-diaacety-7a-tigloylvilasinin (40) and
hipidol B (96) are new to the species. It appears that roots, stem and leaves synthesize
different secondary metabolites. Limonoids were present in the roots have limonoids,

protolimonoids in the stem bark while phytosterols were in the leaves.

E. capensis root bark yielded seven triterpenoids of which five were pentacyclic and
two acyclic. Pentacyclic triterpenoid, 3-0xo-12p-hydroxy-oleanan-28,133-olide (198)
is a new natural product. From the leaves, two flavanol glycosides new to the genus
[Kaemferol-3-O-4-D-glucopyranoside (199) and quercetin- 3-O-f-D-glucopyranoside
(200)] and one limonoid were isolate. Triterpenoid content present in the root bark is

also present in the stem bark.

Two compounds displayed good antiplasmodial activity, azadironolide (192) [2.4 uM
(D6) ; 1.1 uM (W2)] and 11-epi-toonacilin (62) [ICso 17.1 uM (D6); 14.4 uM (W2)]
with minimal cytotoxicity to vero cells. The rest of the compounds displayed
moderate antiplasmodial activity against the two strains with low selectivity indices

(S1 < 10), revealing their limited applicability for antimalarial drug development.

Six compounds azadirone (19), niloticin (25), piscidinol A (27), hispidol B (96),
oleanonic acid (160) and azadironolide (192) were cytotoxic to HEp2 and 4T1 cells

(ICs50 < 20 pM).

No appreciable synergism on the cytotoxicity of oleanonic acid (160) with other
triterpenoids isolated from E. capensis root bark against HEp2 and vero cell lines was

detected.
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5.2.

1)

2)

3)

4)

Recommendations

11-epi-toonacilin  (62) and azadironolide (192) that displayed good
antiplasmodial activity warrants further investigation to establish antimalarial
activity and explore possibilities of developing them into antimalarial drug
leads.

Compounds 19, 17, 25, 96, 160 and 192 which displayed cytotoxicity against
cancerous cell lines should be evaluated for their potential as anticancer leads
in an in vivo model.

E. capensis (RB) and Turraea robusta (SB) extracts were cytotoxic and should
be evaluated further for their potential as ancancer agents in an in vivo model.

Evaluate bioactivity of compound 198, the new natural product.
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6.0 APPENDICES

Appendix 1: 'H NMR spectrum of mzikonone (1)
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Appendix 1A :

SA-7X in 250 ul acetone-d6 * 13C * AV600
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LC-MS spectrum of mzikonone (17)
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Appendix 2: *H NMR spectrum of azadirone (19)
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Appendix 2A: *C NMR spectrum of azadirone (19)
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Appendix 2B : MS spectrum of azadirone (19)
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Appendix 3: 'H NMR spectrum of 120-Acetoxy-7-deacetylazadirone (28)

1H * AV600

SA-8K in 250 ul acetone-dé *

90'l
€90°1
6S0°1
LLO'T
180°1
60T'1
81CT'L
L'l

LoL't
88L'L
1181
606'1
£00C
110
§20T
870C
90T
80T
190
[LIT
LI¥'T
6Tr'T
SeEV'e
6EV'T
Evr'e
09T
SOv'CT
681'C
08T
018T
LES'T
w60y

NUSY

LIT'S
0TI's
(418
veL's
8TL'S
LELs
LS
¥9¢'9
S9¢€'9
S9¢€'9
L9E9
89¢9

worL
6LT°L
6S¢€°L
19¢°L
0L
£9¢€°L
Y9¢€°L
9L
89¥'L
ILV'L
ILY'L

8¢y

100C

0158
989°¢
T9'e
89¢°¢

L

:

:

139

i

:

|

‘w

IST°T

611°0
/ 20£°0
1A169T
810

g3

6.0

1S0°T

|

1

:

j

060'C
868'I
66vE |
628’1
(444!
IST'T
PLY'1
950°€ |

e

ppm

1.5

3.0 25

3.5

4.5

5.0

55

6.5

7.0

9.0 8.5 8.0

9.5

10.0



Appendix 3A: *C NMR spectrum of 12a-Acetoxy-7-deacetylazadirone (28)
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Appendix 4: *H NMR spectrum of 11-epi-toonacilin (62)
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Appendix 4A
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Appendix 5: *H NMR spectrum of Turranolide (22)
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Appendix 5A: **C NMR spectrum of Turranolide (22)
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Appendix 6: *H NMR spectrum of azadironolide (192)
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Appendix 6A: *C NMR spectrum of azadironolide (192)
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Appendix 7: *H NMR of stigmasterol (193)
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Appendix 7A: *C NMR of stigmasterol (193)
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Appendix 8: *H NMR spectrum of Piscidinol A (27)
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Appendix 8A: *C NMR spectrum piscidinol A (27)
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Appendix 9: LC/MS spectrum of Piscidinol A diacetate (203)
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Appendix 9A: LC/MS spectrum of Piscidinol A diacetate (203)
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Appendix 10: *H NMR spectrum of hispidol B (96)
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Appendix 10A: **C NMR spectrum of hispidol B (96)
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Appendix 11: *H NMR spectrum of Toonapubesins F (194)

[ppm]

g
A
5

co2clz ¢ 1H!
w
B
w
P

SA-13G 100 1 <C:\Bruker\TcpSpin3.2z\examdata

SA-13G ¢ 15.5ng 1.
T

160



Appendix 11A: **C NMR spectrum Toonapubesins F (194)
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Appendix 11C: Crystal data and structure refinement for toonapubesin F (194)

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group

Unit cell dimensions

Volume

Z

Density (calculated)
Absorption coefficient

F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 25.242°
Refinement method

Data / restraints / parameters
Goodness-of-fit on F2

Final R indices [I1>2sigma(l)]
R indices (all data)

Largest diff. peak and hole

C30 H50 05
490.70

100(2) K
0.71073 A
Monoclinic

C2
a=29.412(10) A
b = 7.2554(16) A
c=18.168(6) A
2783.1(14) A3

4

1.171 Mg/m3
0.077 mm1

1080

0.2 x0.2 x0.05 mm?

1.929 to 25.996°.

a= 90°.
b= 134.122(7)°.
g =90°.

-34<=h<=34, -8<=k<=8, -22<=|<=22

9862

5295 [R(int) = 0.0435]

96.9 %

Full-matrix least-squares on F2

5295/1/331
1.085

R1 =0.0631, wR2 = 0.1409
R1=0.0737, wR2 = 0.1469
0.324 and -0.244 . A3
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Appendix 11D: Atomic coordinates ( x 10%4) and equivalent isotropic displacement
parameters (A2x 103) for toonapubesin F (194)

((U(eq) is defined as one third of the trace of the orthogonalized ull tensor.)

X y z U(eq)
C(4) 3698(2) 5537(6) -709(3) 19(2)
C(5) 3728(2) 5818(6) 187(3) 18(1)
C(10) 4262(2) 4805(6) 1231(3) 19(1)
C(1) 4320(2) 2807(6) 1025(3) 22(1)
C(2) 4391(2) 2677(7) 260(3) 23(1)
C(3) 3808(2) 3503(6) -733(3) 22(1)
C(6) 3693(2) 7861(6) 372(3) 21(1)
C(7) 3674(2) 8060(6) 1178(3) 21(1)
C(8) 3818(2) 6687(6) 1810(3) 17(2)
C(9) 4020(2) 4783(6) 1769(3) 16(1)
Cc(11) 4469(2) 3868(7) 2833(3) 23(1)
C(12) 4191(2) 3717(6) 3307(3) 20(1)
C(13) 3671(2) 5159(6) 2886(3) 16(1)
C(14) 3822(2) 6994(6) 2648(3) 18(1)
C(15) 3324(2) 8316(6) 2409(3) 21(1)
C(16) 3290(2) 7743(6) 3195(3) 23(1)
C(17) 3613(2) 5821(6) 3638(3) 18(1)
C(24) 3045(2) 6116(6) -1735(3) 23(1)
C(25) 4207(2) 6607(7) -561(3) 24(1)
C(26) 4913(2) 5782(7) 1925(3) 24(1)
C(28) 4482(2) 7814(7) 3606(3) 25(1)
C(27) 3008(2) 4453(6) 1896(3) 20(1)
C(18) 3264(2) 4567(6) 3796(3) 19(1)
C(19) 3246(2) 5455(6) 4554(3) 19(1)
C(20) 2707(2) 4766(6) 4439(3) 18(1)
C(21) 2055(2) 5513(6) 3468(3) 19(2)
C(22) 1467(2) 4722(6) 3194(3) 20(1)
C(23) 868(2) 5453(7) 2148(3) 26(1)
C(30) 1432(2) 5098(6) 3978(3) 24(1)
C(29) 3551(2) 2635(7) 4170(3) 26(1)
0(2) 4257(2) 5897(5) -1245(2) 29(1)
0(3) 2062(1) 7506(4) 3528(2) 22(1)
0(4) 2849(1) 5337(4) 5347(2) 22(1)
0(5) 1465(1) 2758(4) 3058(2) 22(1)
0(1) 3425(2) 2536(5) -1508(2) 32(1)
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Appendix 11E: Bond lengths [A] and angles [°] for toonapubesin A (194)

C(4)-C(3)
C(4)-C(24)
C(4)-C(25)
C(4)-C(5)
C(5)-C(6)
C(5)-C(10)
C(10)-C(1)
C(10)-C(26)
C(10)-C(9)
C(1)-C(2)
C(2)-C(3)
C(3)-0(1)
C(6)-C(7)
C(7)-C(8)
C(8)-C(9)
C(8)-C(14)
C(9)-C(11)
C(11)-C(12)
C(12)-C(13)
C(13)-C(27)
C(13)-C(14)
C(13)-C(17)
C(14)-C(15)
C(14)-C(28)
C(15)-C(16)
C(16)-C(17)
C(17)-C(18)
C(25)-0(2)
C(18)-C(29)
C(18)-C(19)
C(19)-C(20)
C(20)-0(4)
C(20)-C(21)
C(21)-0(3)
C(21)-C(22)
C(22)-0(5)
C(22)-C(30)
C(22)-C(23)
C(3)-C(4)-C(24)
C(3)-C(4)-C(25)
C(24)-C(4)-C(25)
C(3)-C(4)-C()
C(24)-C(4)-C(5)
C(25)-C(4)-C(5)
C(6)-C(5)-C(10)
C(6)-C(5)-C(4)
C(10)-C(5)-C(4)
C(1)-C(10)-C(26)
C(1)-C(10)-C(9)
C(26)-C(10)-C(9)
C(1)-C(10)-C(5)

1.518(6)
1.535(6)
1.536(6)
1.579(5)
1.540(6)
1.568(6)
1.535(6)
1.548(6)
1.561(5)
1.547(5)
1.499(5)
1.239(5)
1.509(5)
1.346(6)
1.526(6)
1.529(5)
1.538(6)
1.551(5)
1.546(5)
1.555(5)
1.557(5)
1.566(5)
1.539(6)
1.564(6)
1.558(5)
1.559(6)
1.543(5)
1.445(5)
1.531(6)
1.554(5)
1.531(6)
1.453(4)
1.540(6)
1.449(5)
1.539(6)
1.445(5)
1.523(5)
1.528(6)
110.0(3)
107.1(3)
108.5(3)
107.2(3)
110.0(3)
114.0(3)
110.5(3)
112.7(3)
118.5(3)
110.3(4)
108.6(3)
109.8(3)
109.6(3)

C(26)-C(10)-C(5)
C(9)-C(10)-C(5)
C(10)-C(1)-C(2)
C(3)-C(2)-C(1)
0(1)-C(3)-C(2)
0(1)-C(3)-C(4)
C(2)-C(3)-C(4)
C(7)-C(6)-C(5)
C(8)-C(7)-C(6)
C(7)-C(8)-C(9)
C(7)-C(8)-C(14)
C(9)-C(8)-C(14)
C(8)-C(9)-C(11)
C(8)-C(9)-C(10)
C(11)-C(9)-C(10)
C(9)-C(11)-C(12)
C(13)-C(12)-C(11)
C(12)-C(13)-C(27)
C(12)-C(13)-C(14)
C(27)-C(13)-C(14)
C(12)-C(13)-C(17)
C(27)-C(13)-C(17)
C(14)-C(13)-C(17)
C(8)-C(14)-C(15)
C(8)-C(14)-C(13)
C(15)-C(14)-C(13)
C(8)-C(14)-C(28)
C(15)-C(14)-C(28)
C(13)-C(14)-C(28)
C(14)-C(15)-C(16)
C(15)-C(16)-C(17)
C(18)-C(17)-C(16)
C(18)-C(17)-C(13)
C(16)-C(17)-C(13)
0(2)-C(25)-C(4)
C(29)-C(18)-C(17)
C(29)-C(18)-C(19)
C(17)-C(18)-C(19)
C(20)-C(19)-C(18)
0(4)-C(20)-C(19)
0(4)-C(20)-C(21)
C(19)-C(20)-C(21)
0(3)-C(21)-C(22)
0(3)-C(21)-C(20)
C(22)-C(21)-C(20)
0(5)-C(22)-C(30)
0(5)-C(22)-C(23)
C(30)-C(22)-C(23)
0(5)-C(22)-C(21)
C(30)-C(22)-C(21)
C(23)-C(22)-C(21)

113.6(3)
104.7(3)
112.6(4)
107.4(3)
120.9(4)
122.7(4)
116.3(4)
111.0(3)
123.7(4)
122.0(3)
121.4(4)
116.5(3)
110.7(3)
112.6(3)
115.0(3)
113.8(3)
113.6(3)
111.2(3)
109.9(3)
109.4(3)
116.6(3)
107.3(3)
101.9(3)
117.6(3)
110.2(3)
102.2(3)
107.9(3)
106.1(3)
112.9(3)
103.4(3)
107.8(3)
112.1(3)
118.3(3)
102.8(3)
109.9(4)
112.9(3)
109.6(3)
111.0(3)
114.5(3)
107.4(3)
110.1(3)
112.8(3)
110.5(3)
108.9(3)
117.6(3)
110.0(3)
105.5(3)
109.4(4)
107.0(3)
115.0(3)
109.6(3)

Symmetry transformations used to generate equivalent atoms:



Appendix 11F: Anisotropic displacement parameters (A2x 103)for toonapubsins F.
The anisotropic displacement factor exponent takes the form: -2p2[ h2a*2U1l + .. +
2hka*b*Ul2](194)

yll u22 u33 u23 ul3 ul2
C(4) 19(2) 24(2) 15(2) 1(2) 12(2) 2(2)
C(5) 19(2) 22(2) 16(2) 2(2) 13(2) 0(2)
C(10) 16(2) 26(2) 14(2) -1(2) 10(2) 0(2)
C(1) 25(2) 25(2) 22(2) 3(2) 19(2) 4(2)
C(2) 23(2) 28(2) 16(2) 3(2) 13(2) 6(2)
C(3) 21(2) 28(2) 17(2) 0(2) 13(2) 5(2)
C(6) 30(2) 20(2) 22(2) 4(2) 21(2) 3(2)
C(7) 27(2) 19(2) 21(2) 1(2) 18(2) 1(2)
C(8) 17(2) 21(2) 16(2) -1(2) 12(2) 1(2)
C(9) 18(2) 19(2) 16(2) 2(2) 13(2) 1(2)
C(11) 23(2) 31(2) 16(2) 3(2) 15(2) 4(2)
C(12) 22(2) 23(2) 17(2) 7(2) 14(2) 5(2)
C(13) 18(2) 19(2) 14(2) 1(2) 11(2) 1(2)
C(14) 18(2) 20(2) 16(2) -2(2) 13(2) -3(2)
C(15) 29(2) 18(2) 23(2) 2(2) 21(2) 3(2)
C(16) 29(2) 23(2) 27(2) 2(2) 23(2) 3(2)
C(17) 20(2) 18(2) 17(2) -2(2) 14(2) -1(2)
C(24) 20(2) 29(2) 15(2) 2(2) 11(2) 5(2)
C(25) 25(2) 31(2) 20(2) 3(2) 17(2) 2(2)
C(26) 19(2) 38(3) 16(2) 0(2) 12(2) -1(2)
C(28) 28(2) 27(2) 21(2) -6(2) 17(2) -9(2)
C(27) 22(2) 24(2) 18(2) -4(2) 15(2) -5(2)
C(18) 25(2) 19(2) 18(2) -3(2) 16(2) -2(2)
C(19) 23(2) 23(2) 16(2) -3(2) 15(2) -2(2)
C(20) 24(2) 21(2) 14(2) -2(2) 14(2) 0(2)
C(21) 26(2) 15(2) 16(2) -1(2) 15(2) 0(2)
C(22) 25(2) 19(2) 17(2) -2(2) 15(2) 0(2)
C(23) 23(2) 27(2) 21(2) 3(2) 13(2) 5(2)
C(30) 24(2) 30(3) 22(2) -5(2) 17(2) -5(2)
C(29) 38(2) 22(2) 28(2) 4(2) 27(2) 2(2)
0(2) 29(2) 43(2) 21(2) 7(1) 20(2) 9(2)
0®B) 32(2) 16(2) 20(2) 2(1) 19(1) 2(1)
0o®4) 29(2) 28(2) 16(1) 0(1) 18(1) -2(1)
0(5) 28(2) 17(2) 18(1) 2(1) 16(1) 1(1)
o) 37(2) 32(2) 22(2) -5(2) 19(2) 1(2)
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Appendix 12: *H NMR spectrum of 10,3a-diacetyl-7o-tigloyvilasinin (40)
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Appendix 12A: *C NMR spectrum of 1a,3a-diacetyl-7a-tigloyvilasinin (40)
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Appendix 12B: MS spectrum of 1a,3a-diacetyl-7a-tigloyvilasinin (40)
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Appendix 13: 'H NMR spectrum of sitosterol 3-O-$-D-glucopyranoside acetate (195)
and stigmasterol 3-O-f-D-glucopyranoside mixture (196)

1200

1100

1000

900
800
B
600

500

-400

300
200
100

F-100

SEES
9£'E
LEE
BE'E
B6E €
6EE
0% €
PHE

et
bl

T

SV ET

SHE
9 €
S¥E
PS5 E
$SE
SSE
SS'E
9c'E
95'E
{SE
{SE
85°E
65'E
vy
STh
STy
9T
97 b
BEY
6E'F
6F'#
0s'F
5%
5F
e
£S5
0054
105
105
205

£0 51
£S5
€154
pI's
516
91'cH
9¢°¢
9676
266
L6761
2675

Jopt/topspin3.2/data/mate/nmr mate 25

BI243 CDCL3 800 20140119
M_1H1D CDCI3

Bl_243 processed.11.fid

LU

11

12

T
13

f1 {oom)

170



Appendix 13A: *C NMR spectrum of sitosterol 3-O-p-D-glucopyranoside acetate
(195) and stigmasterol 3-O-p-D-glucopyranoside mixture (196)

az
€1
Wyl
orst
w51
961

BI_243 processed.12.fid
BI243 CDCL3 201
M_13C1D ot

171



Appendix 14: 'H NMR spectrum of sitosterol 3-O-4-D-glucopyranoside (197)
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Appendix 14A: *C NMR spectrum of sitosterol 3-O-p-D-glucopyranoside (197)
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Appendix 15: 'H NMR spectrum of p-sitosterol (180) and stigmasterol mixture (193)
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Appendix 15A: *C NMR spectrum of B-sitosterol (180) and stigmasterol mixture
(193)
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Appendix 16: 'H NMR spectrum of 3-oxo-12p-hydroxy-oleanan-28,13f olide (198)
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Appendix 16A: *C NMR spectrum of 3-oxo-12f-hydroxy-oleanan-28,13p olide (198)
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Appendix 16B: HSQC spectrum of 3-oxo0-12B-hydroxy-oleanan-28,13f olide (198)
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Appendix 16C: "HMBC spectrum of 3-oxo-12p-hydroxy-oleanan-28,13p olide (198)
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'H-H COSY spectrum of 3-oxo-12B-hydroxy-oleanan-28,13p olide

Appendix 16D:
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Appendix 16E: NOESY spectrum of 3-oxo-12B-hydroxy-oleanan-28,13f olide (198)
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Appendix 16F: MS spectrum of 3-o0xo-12p-hydroxy-oleanan-28,13f olide (198)
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Appendix 17: *H NMR spectrum of ekeberin A (158)
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Appendix 17A: 13C NMR spectrum of ekeberin A (158)
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Appendix 18: *H NMR spectrum of oleanolic acid (159)
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Appendix 18A: **C NMR spectrum of oleanolic acid (159)
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Appendix 19: *H NMR spectrum of oleanolic acid acetate (202)
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Appendix 19A: **C NMR spectrum of oleanolic acid acetate (202)
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Appendix 20: *H NMR spectrum of oleanonic acid (160)
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Appendix 20A: *C NMR spectrum of oleanonic acid (160)
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Appendix 21: *H NMR spectrum of 3-epi-oleanolic acid (161)
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Appendix 21A: **C NMR spectrum of oleanolic acid (161)
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Appendix 22: *H NMR spectrum of compound 152
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Appendix 22A: **C NMR spectrum of compound 152
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LC/MS spectrum of compound 152

Appendix 22B
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Appendix 23: *H NMR spectrum of compound 151
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Appendix 23A:

BI_209A_CDCI3_500_20131129_13C
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Appendix 23B: LC/MS spectrum of compound 151
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Appendix 24: *H NMR spectrum of kaemferol-3-O-4-D-glucopyranoside (199)
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Appendix 24A: *C NMR spectrum of kaemferol-3-O-4-D-glucopyranoside (199)

1200

1100

1000

900

800

700

600

FS00

400

300

200

100

F-100

BE'SS—

€T—

SE0L~—
9P

889~
HLL—

148 e
0266~
ZETOT~—
0¥ #0T~

95’ SIT—

LETRT—

FEIET——
EYEET—

<
o

Bl_247_DMSO_800_20140111f

3 /opt/lopspln3]2/data/m

M_13C1D DMSO

BI_247 similar to 231.11.fid

201

-10

T T T T T
50 40 30 20 10

T
60

T T T T T T T T T T T
200 190 180 170 160 150 140 130 120 110 100 90 80
f1 (ppm)

T
210




Appendix 24B: LC/MS spectrum of kaemferol-3-O-p-D-glucopyranoside (199)
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Appendix 25: *H NMR spectrum of quercetin-3-O-4-D-glucopyranoside (200)
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Appendix 25A:

3C NMR spectrum of quercetin-3-O-f-D-glucopyranoside (200)
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Appendix 25B: LC/MS spectrum of quercetin-3-O-f-D-glucopyranoside (200)
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Appendix 26: *H NMR spectrum of proceranolide (148)
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Appendix 26A:

3C NMR spectrum of proceranolide (148)
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LC/MS spectrum of proceranolide (148)

Appendix 26B
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Appendix 27: *H NMR spectrum of niloticin (25)
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Appendix 27A: **C NMR spectrum of niloticin (25)
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LC/MS spectrum of niloticin (25)

Appendix 27B
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Appendix 28: 'H NMR spectrum of niloticin acetate (201)
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Appendix 28A: *C NMR spectrum of niloticin acetate (201)
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Appendix 28B: LC/MS spectrum of niloticin acetate (201)
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