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Abstract 

Broadcast Encryption (BE) means transmitting information that 
anyone listening can access but only those selected by the 
transmitter, using a suitable criteria, can understand. An example is 
the pay TV system. An existing solution known as the Subset 
Difference Revocation (SDR) performs this in a stateless manner i.e. 
once the system is set up, new receivers are not allowed to join 
though existing receivers can each be revoked and restored as 
necessary. 

This statelessness can lead to unnecessary high key storage for a 
receiver and messaging overhead due to potentially poor adjacency of  
receivers to each other on the binary key tree when the number of  
receivers is much smaller than the number of  potential receivers. 

This thesis is about a scheme that converts this static SDR into a 
dynamic SDR scheme. Rather than use multi-tree solution which 
employs multiple equally sized binary trees known as allocation 
units that are added and discarded on demand, it uses a single 
binary tree that shrinks and grows on demand. 

When the positions to be assigned to active members all get filled, 
the tree grows by one level rather than in breadth. Similarly when 
the number of  members is not more than half  the tree capacity, the 
tree shrinks by one level. Therefore, there is no need to know the 
maximum number of  potential receivers in advance, a value that 
can be difficult to estimate in practice. 

In this thesis, we investigated how this solution compares in 
efficiency to the multi-tree solution that uses allocation units in 
terms of  key storage at the receiver, the multicast cost and the 
inevitable unicast cost. The methodology used is simulation. 

The results obtained show that the single-tree solution in typical 
usage performs, at worst, like the multi-tree solution and this is the 
major contribution. 

Keywords: dynamic scheme, broadcast encryption, stateless scheme, binary tree, 
key tree. 
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Chapter 1: Introduction 

1.1 Background 

Broadcasting means transmitting information through a medium or channel 
that is accessible to more than one receiver. Radio transmission for 
example uses air as a medium and anyone who has a radio receiver is able 
to listen to the broadcast. Most of the time, broadcast communication is 
one-way1. 

There are many situations where one or more senders want to transmit a 
message to only a selected subset of  receivers, using a one-way broadcast 
channel - where not everyone that has access to the channel should have 
access to the content passing through the channel. These are membership-
based applications, such as pay-per-view and specialized information 
services (e.g., stock price, live news) that require that information content 
be delivered to, and only to, subscribed members or authorized receivers. 

This should be achievable using encryption - since the message must be 
protected from other receivers than the ones that have been selected to 
receive it, for example by paying for it, it can be encrypted before it is sent. 
This is what is called broadcast encryption. Broadcast encryption is a problem 
because partly, in practice, receivers of  the message to be sent do not all 
share the same decryption key, therefore multiple copies of  the message must 
first be encrypted separately for these users before sending each encrypted 
copy of  the message. Some equivalent definitions from literature of  the 
term broadcast encryption are: 
� The cryptographic method for a centre to efficiently broadcast 

encrypted digital content to a system of users so that only an intended 

subset can correctly decrypt it (Bhattacherjee & Sarkar, June, 2012). 

� Broadcast encryption is an application of cryptography which allows 

one to broadcast a secret to a changing group of intended recipients in 

such a way that no one outside this group can view the secret (Obied, 

April 2005) 

� A method to efficiently broadcast information to a dynamically 

changing group of users who are allowed to receive the data  (Naor, 

Naor, & Jeff, 2001). 

� Broadcast encryption is a way to broadcast information securely, that is 

to say, broadcasting a secret to a dynamically changing set of intended 

                                                             

1
 receivers cannot send anything back to the broadcaster. 
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recipients in such a way that no one outside this set can recover the 

secret (Obied, April 2005). 

� Broadcasting a message (e.g. a key to decipher a video clip) to a 

dynamically changing privileged subset of users in such a way that 

non-members of the privileged class cannot learn the message. (Fiat & 

Naor, 1994). 

� Broadcasting the same message to all users, and those users in the 

privileged group recover the message while all others derive 

nonsense or nothing at all (Lassalle, January 2005). 

� Broadcast encryption is the cryptographic problem of encrypting broadcast 

content (e.g. TV programs) in such a way that only qualified users 

(e.g. subscribers who've paid their fees) can decrypt the content. 

(Wikipedia, 2014). 

Like general broadcast, in broadcast Encryption, two-way communication 
is not allowed on the channel and other channels may not be used except 
when setting up the system and distributing initial secret decryption keys 
(or key material) to possible receivers. 

As we see in the following sections, broadcast encryption is a problem and a 
solution to the problem is called a broadcast encryption scheme. In membership-
based applications, it is also desirable to be able to revoke users who have 
become untrusted without effecting the remaining members. A Broadcast 
encryption scheme implements this by revoking the decryption keys of  such 
users, thus, broadcast encryption scheme are also known as key revocation schemes. 
So an efficient broadcast encryption solution, or scheme as they are more 
popularly known, would make it possible to revoke departing users and 
send further communication only to the remaining users. Similarly the 
scheme would make it possible to add new members into the set of  
privileged users. Naturally, the non-members are curious about the contents 
of  the message that is being broadcast, and may try to learn it. The 
schemes should be resilient to any subset of  revoked users that collude as 
well as any disjoint subsets (of  any size) of  privileged users. The scheme is 
considered broken if  a user that does not belong to the privileged set can 
read the transmission. 

There are different opinions about when the idea of  broadcast encryption 
was introduced. For a little detail on this, see (Anderson, 2005).. 
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1.2 The Broadcast Encryption Problem 

In traditional cryptography, the focus is to enable secure communication 
over an insecure medium. This is accomplished by symmetric key (also 
known as secret key) cryptography. In symmetric key cryptography, the key used 
for encryption is the same key used for decryption, thus anyone having the 
key can both encrypt and decrypt messages. Normally, the scenario where 
only two parties are communicating (and thus share the key) is considered. 
Symmetric key cryptography works well for a group communication too 
and is also the one used by Broadcast Encryption schemes. 

However this works correctly only as long as the group is static (i.e. no one 
leaves or joins). Should someone leave, they must be prevented from being 
able to decrypt further group communication. However, the only means 
the group has of  communicating securely is by using the shared group key, 
which the party now excluded also knows! The challenge arises from the 
requirement that un-subscription of  some users should not affect the 
remaining users. This is the Broadcast Encryption Problem. The solution to the 
problem, as already pointed out, is known as Broadcast Encryption Scheme or 
Key Revocation Scheme.  

The Broadcast Encryption Problem consists of  two parts (Anderson, 2005).. 
� Deciding that a particular user should have particular decryption 

key(s). 

� Selecting the encryption keys to use when sending a message to specific 

subset(s) of users. 

In a fully resilient scheme, even if  an adversary has the decryption keys of  
all the remaining non-privileged users in the system (the revoked users), the 
adversary will not be able to correctly decrypt the content. A crucial 
requirement for a Broadcast Encryption scheme is that it should facilitate 
dynamic revocation of  decryption privilege from any subset of  users at any 
point in time (based on their subscription or privilege status). 
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Typically broadcast encryption scheme allows licensors to "revoke" 

individual users, or more specifically, the decryption keys associated 

with the users. Thus, if a given user’s keys are compromised and 

published, the licensors can simply revoke those keys in future content, 

making the keys useless for decrypting new broadcasts. 

The problem of  rogue users sharing their decryption keys with unqualified 
users is mathematically insoluble. There are algorithms known as traitor tracing 
algorithms that aim to minimize the damage by retroactively identifying the 
user or users who leaked their keys, so that punitive measures, legal or 
otherwise, may be undertaken. In practice, pay TV systems often employ 
set-top boxes with tamper-resistant smart cards that impose physical restraints on 
a user learning their own decryption keys. 

1.3 How Broadcast Encryption Schemes Work 

In all Broadcast encryption Schemes there is a pre-processing phase in which the 
centre distributes a number of decryption keys to the users. It is these keys 
that the centre later uses to encrypt the messages to be sent to users. The 
obvious and simple solution is to distribute one unique symmetric key to each 

user, for a total of  keys. The broadcast centre then encrypts the message 
once for each privileged user with the key of the user and finally broadcasts 
all these encrypted messages over the broadcast channel. This makes the 

space requirements for the users be 2, but the transmission length is 
3 where is the number of receivers! This means that the message 

expansion, the number of transmissions per message, is equal to the number 
of privileged users. Clearly, this scheme is only useful if the number of 
privileged users is small. 

                                                             

2
 Each user only needs to store one key so it is very efficient in terms of storage at users. 

3
 This requires a very long transmission (the number of members  the length of the 

message) 
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To reduce the message expansion, broadcast encryption schemes group users 
into sets and distribute keys giving all users in the same set a common 
decryption key. This way, the number of  broadcast transmission reduces to 

the number of  sets whose members are in the privileged set . But more 
often than not, a message to be broadcasted is meant for users in more 
than one set and therefore still requires transmission by broadcast encryption 
i.e. the message is encrypted multiple times separately with the key of  each 
set so that the message is decryptable by those users in the set. So it is 
practically impossible to reduce the message expansion to 1. 

1.3.1 Traffic Encryption Keys and Key Encryption Keys 

Unless the broadcaster is sending the message to all the users – using one 
key that they all share - it would clearly be a bad solution to transmit the 
actual message using broadcast encryption as the message may be for example 
a video stream of a movie which will be quite long. 

Think of this; to send an encrypted message such as a video stream to k 

subsets of users, a broadcaster would first have to encrypt the video 

with the enciphering key assigned to each subset and transmit the k 

versions of the video. A cable operator would typically be providing 

services to a million users! 

Instead the actual message is encrypted just once using one common key, 
known as Traffic Encryption Key (TEK)4 and broadcasted. Obviously for the 
legitimate users to recover the message, they must have this key. It is this 
TEK that is transmitted to them using broadcast encryption. How? There 
is a preprocessing phase in which the center, not knowing the privileged set 
of  users nor the common key (TEK), distributes a number of  keys to the 
users. It is these keys that the centre uses to encrypt the TEK. For every set 
of  users who should receive the TEK, the centre encrypts the TEK with 
the key assigned to that set. These keys assigned to the user sets are thus a 
kind of  Key Encryption Keys (KEKs). There are two approaches to how to 
deliver these multiple encryptions of  the TEK. 

                                                             

4
 Also known as Group Key or Media Key or Session Key or Common Group Key. The most 

popular in literature of these seem to be “session key”. 
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In the schemes based on Key Management Block, the broadcaster composes a 
message with two parts - the message body that contains the protected actual 
secret message and the message header that consists of  the multiple 
encryptions of  the TEK. Once a legitimate receiver has recovered the 
TEK, they go ahead to use it to recover the secret from the message body. 
A key management block is a block of  data located at the beginning of  a 
broadcast or pre-recorded onto some type of  blank media, most often a 
smart card. From this key management block, each recipient can derive the 
management key (KEK). A device not in the privileged group of  devices even 
with access to the encoded data will derive the wrong answer from the key 
management block. Restricted devices can attempt to process the key 
management block but they will not yield the correct key.  (Lassalle, January 
2005).. 

In the Key Pre-distribution based schemes, the broadcaster  broadcasts each 
encryption of  the TEK. But this really is a multicast of  each encryption by 

 because only intended receivers will be able to decrypt their copy.  
could as well package all the encryptions into one message. Once the centre 
has transmitted the TEK, it can start broadcasting the messages encrypted 
using the session key (TEK). 

The message header in the Key Management Block scheme must be in a 

suitable representation such that members can compute what part of 

the message to decrypt using one of the keys they are assigned at 

initialization. This is also true for Key Pre-distribution if all the 

encryptions of TEK are packaged into one message. 

Thus, the TEK is encrypted using Key Encryption Keys (KEKs) and then 
multicast by the key server. This TEK is shared by all privileged users5 no 
matter which subset they belong to. When a member joins the group, the 
TEK must be changed to ensure that the newly joining member cannot 
decrypt previous communications (a requirement known as “backward 
confidentiality”). Similarly, the TEK must be changed when a member leaves 
the group to ensure that future messages cannot be decrypted by the 
departing member (a requirement known as “forward confidentiality”). In 
addition, the TEK could also be updated at timed intervals. 

                                                             

5
Also known simply as members. Other terms one may come across are intended recipients, 

active users and receivers among others. 
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1.3.2 Rekeying 

The procedure of delivering a new TEK to members is known as rekeying - 
basically a multicast by the key server. During rekeying, a user receives this 
key only if the user belongs to one of the sets the key server is sending it to. 
In other words the user recovers the TEK if, in the user’s set of keys, the 
user has one that can decrypt the message containing the TEK. Even if 
they know all the broadcast messages of the other users, a coalition of non-
privileged users cannot recover any information regarding the common 
key. 

Whichever of  the two approaches is used to deliver the TEK, the rekeying 
message is known as the message header. The transmission overhead of  a 
scheme is determined by the header length (the number of  encryptions of  
the session key). The header in a broadcast message is the most important 
part when one analyses any broadcast encryption scheme. 

To summarize, a basic broadcast encryption scheme consists of  four 
algorithms which can be performed in polynomial time6 as illustrated in 
Figure 1. These algorithms are as follows: 
� Initialization: 

This is the preprocessing/initialization phase in which the key 

distribution centre,  not knowing the members of  nor the common 

key (TEK), generates7 the decryption keys and selects sets of users and 

distribute the keys giving all users in the same set a common 

decryption key. Thus a user gets a set of keys one for each of the sets 

they are a member of. 

� Registration 

The broadcaster,  identifies the sets of users who should receive the 

message. This algorithm is used to register new users that can view 

some secret message . In particular, whenever a new user  

wants to join , then the key server,  removes  from  and adds it 

to . If a user  wants to leave , then  removes  from  and 

adds it to . 

� Broadcast Encryption Phase 

For every set registered by the previous algorithm, the broadcaster , 

encrypts the message once with the key assigned to such a set for 

transmission. 

                                                             

6
 The time taken or number of operations performed is a polynomial function of n, the size 

of the problem/input i.e.  for some constant . 

7
 This can also be done by a trusted authority 
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� Decryption: 

This is done by the users. Each user tries to decrypt each message 

using each of the keys in their key ring. 
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Figure 1: The Rekeying Process 

1.4 Importance of Broadcast Encryption 

Broadcast encryption schemes provide many benefits over other 
technologies especially when used in the realm of content protection. 
Copyright protection using Digital Rights Management [DRM] techniques is 
an important application of Broadcast Encryption. Out of the different 
facets of copyright protection, Broadcast Encryption handles the content 
protection part. The application of Broadcast Encryption systems is pretty 
wide in the implementation of DRM for content protection in digital data 
distribution technologies such as pay-TV, Internet or mobile video 
broadcast, optical discs, etc. It can be useful in pay-TV system distributing 
copyrighted information of CD and DVD disks, and multicasting music 
and video on the internet. An alternative possible solution is public-key 
cryptography. The advantages of Broadcast Encryption over public-key 
cryptography (Lotspiech, Nusser, & Pestoni, August 2002) stem from the 
following: 
� Its low overhead 

Broadcast encryption is fast. All its calculations are done using simple 
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symmetric encryptions. In contrast, actual public key calculations 

require exponentiation operations over a finite field. The processor 

load to calculate a management key in a broadcast encryption scheme 

literally requires less than 1,000 times the load required to perform a 

public key signature calculation. 

� Its Revocability 

The ability to remove compromised keys from the system is a major 

advantage to provide longer life and durability to the system. Without 

a means to revoke compromised individual keys, a public key system 

degenerates into a global/shared secret scheme: The first break (one 

key is discovered by an unauthorized party) defeats the entire system. 

If a proposed public key system contains a flaw—and, sadly, many do 

these days—it is almost axiomatic that the revocation information fails 

to travel through the system. 

� Its resistance to reverse engineering 

Public-key systems perform a handshake at the link-level requiring 

keys to be placed in the link-level code where they might be easier to 

find by malicious users. On the other hand, since their systems are 

one-way, broadcast encryption schemes have the advantage that they 

can hide their keys much deeper in the software making the keys 

more difficult for malicious users to discover. 

These three advantages of  Broadcast Encryption are of  utmost importance 
in consumer electronics. Advanced Access Content System (AACS), 
Blu-ray and HD DVD use broadcast encryption schemes. 

1.5 Evaluation parameters of Broadcast Encryption schemes 

The simple broadcast scheme described at the start of section  makes  

transmissions to send one secret message when sending the message to  
users because it has to encrypt each transmission with each user’s unique 
key. This results in minimal storage on the user’s side since each user only 
needs to store one key. But it also results in the longest possible 
transmission since the message must be sent to each member encrypted 
separately with that user’s key. 
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The other extreme is instead to distribute one key to each possible subset 

of  users, yielding a total of  keys. That is, one key for each subset 
except when no users are in the privileged set and therefore there is no 
need to transmit at all. This means every user receives the keys 
corresponding to the subsets they belong to thus each user then needs to 

store one key for each subset he belongs to, in total  keys per user! 
This scheme yields no message expansion because whichever subset is the 
privileged one, there is always one key corresponding to that particular 
subset. 

These two schemes might be appropriate in certain specific scenarios with 
few users and where one condition is extremely important while the other 
is totally irrelevant. It is, however, highly likely that these scenarios are not 
very common and instead there are different conditions of  varying 
importance but none can be completely ignored. 

Generally, efficient broadcast encryption schemes must be efficient in both 
measures, i.e. transmission length and storage at the user’s end. In practice, several 
solutions exist offering various tradeoffs between the increase in the size of  
the broadcast, the number of  keys that each user needs to store, and the 
feasibility of  an unqualified user or a collusion of  unqualified users being 
able to decrypt the content. They take into consideration many other 
factors some of  which are described ahead in within this section. The list is 
not exhaustive and it deals almost exclusively with performance, not so 
much with security. The reason for this is an assumption that the 
encryption algorithms are strong enough for the purposes they are used for 
(Anderson, 2005). Some of  these parameters are used to evaluate the 
single-tree solution proposed in this thesis. 

1.5.1 Collusion resistance 

The collusion resistance is a measure of the security of a scheme, how well 
it resists attacks from cooperating non-privileged users. If a scheme with 
perfect collusion resistance is used then even if all non-privileged users 
cooperate they will not be able to decrypt the message. 
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1.5.2 Backward secrecy/confidentiality 

Backward secrecy is the property that any newly authorized users should 
not be able to decrypt messages that were sent before they were privileged 
users. In other words backward secrecy means that a privileged receiver 
cannot use the information it has to recover material that was broadcast 

before it was added. Imagine a situation when the broadcaster,  wants to 

broadcast secrets  where such secrets messages are related, that is, 

one can think of it as a TV show which has  minutes and each  

corresponds to 1 minute in the show. If a revoked receiver  

eavesdrops and records secrets  and right before  is 

broadcast  registers, that is,  gets removed from  and added to . If  

now broadcasts the ciphertext of , and  uses his knowledge of 

recovering  to recover  and fails then backward secrecy is 
maintained. 

1.5.3 Forward secrecy/confidentiality 

Forward secrecy means that a revoked user should not be able to decrypt 
any future messages sent to the privileged set. In other words, forward 

secrecy means that when a privileged receiver is removed from  then it 
must not be able to continue viewing protected content of the broadcast. 
Imagine a situation similar to the one described above, that is, a 

broadcaster  wants to broadcast secrets messages  

where such secrets are related. If a privileged receiver  receives 

 and right before  is broadcast  leaves , that is,  gets 

removed from  and added to . If  now broadcasts the ciphertext of , 

and  uses his knowledge of recovering  to recover and 
fails then forward secrecy is maintained. 

1.5.4 Amount of keys to store at receiver 

The receivers can be small devices with a limited possibility for storage, 
especially secure storage, and thus the amount of keys that each receiver is 
required to store is an important parameter in many applications. 

1.5.5 Amount of keys to store at sender 

Although the sender usually is considered to have far more storage 
available than the receivers, there is of course some limit even on the 
amount of keys that the sender can store. 
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1.5.6 Amount of heavy computations required of receivers 

As an alternative to storing a large amount of keys some schemes require 
users to store only a little key material but instead perform many 
computationally heavy operations on this material. Depending on the 
scenario, this can be a good solution or not. If the receivers have very 
limited computational power then it is important that they are not required 
to perform many demanding operations. In general there are no such 
restrictions on the sender which is assumed to be quite powerful, although 
of course extreme cases can occur where a scheme involves computations 
that are too heavy for the sender. 

1.5.7 Number of broadcast transmissions per message 

An important parameter is the number of broadcast transmissions of the 
same message, each encrypted with a different key, that have to be made 
for each message. This is also known as message expansion. 

1.6 Statement of the problem 

In stateless schemes, several secret decryption keys are distributed to the 
users when they join the system and these keys are never updated by the 
scheme. This implies that there is never any updating of secret keys, the 
keys given to the users at setup are the keys that are used throughout the 
lifetime of the system. We term such users stateless and the scheme a 
stateless scheme. It is the disadvantages that trace their root to the stateless 
of the Subset Difference Revocation Scheme that this thesis addresses - by 
converting the stateless Subset Difference Revocation Scheme to a stateful. Because 
the solution allows new users to be admitted, the solution can also be called 
Dynamic Subset Difference Revocation Scheme (see the title of this thesis). Note 
that stateless Subset Difference Revocation Scheme is also known as a Static Subset 
Difference Revocation Scheme. 

The following are the shortcomings of  stateless schemes in general. The 
cause of  these shortcomings is easily visible as the statelessness of  the 
schemes. 
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1.6.1 Static 

The key server initially generates a key tree large enough to accommodate 
the currently active members and no more members are allowed once the 
initial set up has been done. The keys used to encrypt the session key are 

never changed neither is the secret information,  given to each member 
as part of the initialization. Why not just generate new secret information 
and hand to a new user? This is not possible by design. The secret 
information is determined by the position of the member on the key tree. 
As a consequence, once a leaf position in the key tree is assigned to a 

member , that position cannot be assigned to any other member even 

when  is currently not in the group. Typically, in static SDR, a returned 
member (a member joining the group again after leaving) is assigned to the 
position that the member was assigned last time. 

1.6.2 Large Key Tree 

The key server in static SDR needs to maintain a key tree large enough for 
all the potential members, N. This is a consequence of the previous 
property. When users are revoked, the leaves they were assigned to 
(positions they occupied) on the key tree cannot be assigned to anybody 
else. So what happens to the size of the Key Tree as active users reduce? 
Nothing! 

1.6.3 Message Expansion 

When the session key (one message) is to be sent to  subsets of users, the 

number of broadcast transmissions is also , each encrypted with a 
different key, that have to be made for each message. This can also be 
referred to as message overhead, message expansion or even time per message as the 
number of broadcasts that have to be made in order to send one message 
will affect the total time to send the message. In some cases this parameter 
can be referred to as cover size. 
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This number of  the resultant subsets  is determined by the adjacency (or 

positions) of  members of   in the key tree of  size . Generally speaking, 
under the assumption that member activity is independent of  position in 

the key tree, the larger the difference between  and , the more likely that 
active members are sparsely distributed in the key tree, resulting in 

disjoint subsets. On the other hand, the smaller the difference 

between  and , the more adjacent the positions of  active members in 
the key tree. 

1.7 The proposed single-tree solution 

As stated in , all broadcast encryption schemes consists of a pre-
processing phase in which the centre distributes a number of decryption keys 
to the users that the centre uses later to encrypt the messages to be sent to 
users. In stateless schemes these keys don’t change throughout the lifetime of 
the system. Some of the disadvantages are that the centre must know in 
advance the number of users, and more users cannot be admitted once the 
system is up and running. 

This thesis is about converting the well-known stateless Subset Difference 
Scheme into a statefull scheme. This involves the users being given one special 
lifetime secret key that the centre uses to transmit new broadcast encryption 
keys to each new user or a returning user who was previously revoked but 
whose keys must be changed – a unicast. 

In literature, there seem to be only one attempt to do this (Chen, Ge, 
Zhang, Kurose, & Towsley, 2004). The solution proposes using fixed-
equally-sized binary trees that are added and removed on demand. All the 
trees share a virtual root, therefore the tree as a whole increases in breadth 
only. 

The solution in this thesis proposes uses a single binary tree that increases 
or reduces in size on demand. This is because the goal is to improve the 
stateless SDS which uses a key tree. More details on this are presented in 
section 2.1. Because the tree is both complete and full – a perfect binary 
tree (Black, 2014)- it increases in height, and also breadth to accommodate 
more users and similarly decreases in both height and breadth when users 
reduce in number. 
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This implementation addresses each of  the three shortcomings of  the 

stateless schemes discussed in : 
� Static Nature 

Each user (in this proposal) is given a special secret key that is used to 

transmit the secret information . Each time a new user is admitted, 

they are sent  encrypted with this special key. Also when a user who 

was previously revoked is reinstated, the user must be unicast their  

if the tree they are returning to is not the one they were in when they 

were revoked – like the user trying to occupy a different location on 

the key tree, therefore their  is different. 

� Large Key Tree 

The tree is always only big enough to accommodate the number of 

privileged users – members. 

� Message Expansion 

The users are always packed as close as possible to each other, 

therefor they have common ancestors in the key tree. A node 

corresponds to the encryption key to use when encrypting a message 

for users who are leaves in the subtree whose root this node is. So 

when users are packed close together, chances that they share a 

common key are high and therefore message expansion is low. 

1.8 The Research Question 

The broadcast encryption problem is a big problem which has been studied 
by many authors. The scope of this thesis is only a small aspect of this 
problem. The specific problem this thesis addresses is the static nature of 
Subset Difference Schemes. 

Thus the research question for this thesis is: 

In a situation where users can change their state, can a single tree that 
grows and shrinks, according to the population size of  members, efficiently 
implement a stateful revocation scheme in terms of  the following 
parameters, in comparison to the multi-tree solution proposed in (Chen, 
Ge, Zhang, Kurose, & Towsley, 2004)? 
� The key storage cost at the member side, 

� The multicast cost and 

� The unicast cost. 

1.9 Research Objectives 

The parameters outlined in the research question are measurable quantities. 
The research objectives pursued in order to answer the research questions 
are: 
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�  To determines the factors that influence these BE evaluation 

parameters specified in the research question  

� To develop a simulator program for each of the two solution whose 

output variables are each of a value of the evaluation parameters 

specified in the research question. 

� To use the simulator to investigate the performance of the single-tree 

solution and the multi-tree solution in terms of the key storage cost at 

the member side, the multicast cost and the unicast cost under various 

conditions. 

1.10 Significance of the study 

Conditional Access System (CAS) is used for securing the digital TV 
content. It's one of the most important part of Pay-TV system. There are 
several practical CAS systems now. In Digital Video Broadcasting (DVB) 
system, for instance, a typical CAS system usually include a three-level 
encryption scheme. 
� The raw content is scrambled or encrypted by control word (CW). The 

CW corresponds to the Session Key in Broadcast Encryption Schemes. 

� The CW is encrypted by the Service Key (SK) and embedded into 

Entitlement Control Message (ECM). The Service Key corresponds to the 

broadcast encryption key in Broadcast Encryption Schemes. In Broadcast 

Encryption Schemes it is a referred to as key encryption key (KEK) and 

Entitlement Control Message correspond to the message header. 

� The SK is encrypted by Personal Distribution Key (PDK) of authorized 

users and embedded into Entitlement Management Message (EMM). 

The PDK correspond to the special secret key referred to in Section 

1.6. In stateless schemes the KEK are permanent but in the solution 

proposed in this thesis each user has state and therefore must receive 

a new set of KEKs for each subset they belong to. This message that 

contains the KEKs is a unicast message to the individual. In DVB 

system, this message is known as EMM and the secret key used to 

encrypt it is the PDK. PDK is a fixed information only known to the 

service provider, and is embedded into the user’s secure module 

(smart card) 
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Scrambled content, ECM and EMM are broadcasted to public. The refresh 
frequency of  CW is about several seconds or several minutes, and renew 
interval of  SK is usually from several hours to several days. The refresh 
rate of  CW and SK depends on several conditions such as system capacity, 
system security evaluation, network performance and so on. PDK is a fixed 
information only known to service provider, and is embedded into user's 
secure module (smart card). At user side, each receiver first filters the 
corresponding EMM messages and decrypts the SK, and then decrypts 
ECM using SK. After authorized user gets CW from ECM, he could 
descramble the content. 

However, this hierarchical encryption scheme is not efficient for frequent 

key refreshment. If  there is a CAS serving  subscribers and channels, 

then key distribution scheme needs to generate  ECM messages for 

channel's CW refreshment, and  EMM messages for service key 
refreshment. (Zhang, Yang, Liu, & Tian, May 22-24, 2009). 

There is a case to show how the traditional CAS system suffers from key 
refreshment. Suppose a CAS system contains one million subscribers and 
30 channels. The control word for scrambling is refreshed every ten 
seconds. The service key for ECM generation and CW encryption is 
changed every day. The minimum bit-length of  ECM message is about 168 
bits. The bit-length of  EMM message is at least about 488 bits. Then the 
minimum bandwidth for ECM transmission is: 

 

In order to improve subscribers' user experience, the CA system has to 
broadcast EMM repeatedly. Suppose the CAS system needs to ensure every 
subscriber is receiving renewed EMM every hour, then the required 
bandwidth for EMM broadcast is: 

 

From the case study above, we could find that EMM message broadcast 
needs too much bandwidth for service running, and key refresh problem 
limits the CAS system for mass-scale environment such as Direct-to-Home 
Broadcasting (DTH). 

In order to overcome the EMM refreshment problem, the authors of  
(Zhang, Yang, Liu, & Tian, May 22-24, 2009) shows how we can introduce 
the broadcast encryption scheme into CAS system and give an analysis of  
its advantages and challenges. 
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But their proposed solution is still based on a stateless scheme. The 
broadcast centre decides the CAS system's capacity, and then make a 
broadcast encryption system according to capacity and security parameters. 
In order to finish the setup phase, the centre has to pre-assign the subset 
keys for every user ID in the broadcast encryption scheme and embeds 
them into the smart-cards in manufacture or burn-in phase. And the 
mechanism for informing which subsets the smart-card belongs to is also 
required. 

With their solution therefore, we could still end up in a situation where 
rekeying cost is unnecessarily high because users are scattered at the base 
of  the key tree but one cannot shift them to reduce this cost. Also the 
solution breaks down if  the system’s capacity is to be exceeded. 

The single-tree solution has all the advantages discussed in (Zhang, Yang, 
Liu, & Tian, May 22-24, 2009) plus the advantages of  being able to change 
the state of  a user i.e. assign them fresh KEKs instead of  permanent pre-
assigned keys. There is no possibility of  exhausting the system capacity and 
the rekeying cost is guaranteed to be lower. The price to pay for this, as we 
later, is the occasional unicast to each member when the new set of  KEKs 
has to be sent to each member. 
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1.11 Convention, Terminology and Notation 

Broadcast encryption involves a network denoted as  made up of  

nodes; a set of  users (receivers) and two other nodes the 

broadcaster or broadcast centre denoted as (a.k.a the transmitter), and the key 

server or simply the server denoted as . The broadcaster  has a set of  

secrets  which can only be viewed by a set of privileged users 8 

where  and the key server  has a set of  symmetric keys. 

Any key  can be used to encrypt a secret  using an encryption 

function  and decrypt  using a decryption function .  is 
responsible for both generating the symmetric keys and associating them with 

the users in . The set of non-privileged9 users (users who will not be able to 

decrypt the message) will be denoted as  where  and  

along with must both be true. Any user  is said to be a 

privileged user and any user  is said to be a revoked user. If a user  

and  then  is considered an eavesdropper and it is computationally 

infeasible for  to recover .  

In symmetric encryption techniques, the key used by  to encrypt the secret  

is also the key used by  to recover . The key is known as a shared key 
since the sender and the recipient must both use it. The key must be known 
only to members of  the group using the key and therefore this key is also 
known as the secret key and the technique as secret key cryptography. Broadcast 
encryption schemes use symmetric encryption techniques. 

                                                             

8
 Some authors use the symbol  for “members” instead of  but  is the standard 

notation. These are the users who will be able to decrypt the message. 

9
 While the term privileged set is a common one in the broadcast encryption literature the 

name for the non-privileged set varies between different authors. Many use the term 

revoked set, thus the notation , but someone may feel that this term is not quite suitable 

because in order to be revoked, a user must first have some right, be authorized to 

something, but a non-privileged user may very well never have been a privileged user and 

thus has never been revoked. The  notation for the non-privileged set, however, can be 

considered a standard notation. 



 

Page 30 of 121 

It is assumed in this model that there is a “secure” key server which uses a 
protocol to authenticate the broadcaster, and the users (e.g. has a list of  
privileged and revoked users). Furthermore, it is assumed that a 

communication medium exists between the nodes in  and there is a 

secure channel between  and . 

The broadcast encryption scheme proposed in thesis and the others it is 
based on and discussed in Chapter 2, Literature Review, use a binary tree to 
organize users and keys. In Table 1 are some of  the terms and definitions 
about binary trees that the reader should be familiar with to be able to 
understand most of  the rest of  the thesis. Each of  these definition are 
from (Black, 2014) with slight modifications where necessary for clarity for 
the purpose of  the reader of  this thesis. 

Table 1: Some tree terminology 

Term Means... 

Node A unit of reference in a data structure. Also called 

a vertex in graphs and trees. 

Root node The distinguished initial or fundamental node of a tree.  

Parent of a node 

The node conceptually above or closer to the root than the node 

and which has a link to the node. The root is the only node with no 

parent. 

Child of a node Any node it has a link to and is one level further from the root. 

Every node, except the root, is the child of some other node. 

Binary tree 

An empty structure or a node known as the root node which has, 

as its children, the roots of two disjointed binary trees, known 

respectively its left subtree and its right subtree. (A tree with at 

most two children for each node.) 

Size of a tree The number of nodes of the tree 

Edge 

A connection between two vertices (nodes) of a graph. In a 

directed graph (rooted tree), an edge goes from one vertex, the 

source, to another, the target, and hence makes connection in 

only one direction. Also known as arc. 
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Term Means... 

Path (between two 

nodes) 

A sequence/list of nodes where each node has an edge from it to 

the next node in which the two nodes are the terminal nodes of 

the sequence. 

Path length 

The number of edges in the path, equivalently, one less the path. A 

path with one node does not contain an edge, therefore its length 

is 0. 

Depth of a node The path length of the path from the node to the root. 

Leaf A node in a tree without any children. Also known as external 

node or terminal node. 

Height of a tree 

The maximum depth of any leaf from the root. If a tree has only 

one node (the root), the height is zero. The height of an empty 

tree is not defined. The height of a tree is also known as the order. 

Level Any depth in a tree that is not empty ie that contains one or more 

nodes. 

Subtree of a node A tree whose root is a child of the node. 

ancestor of a node 

All the nodes on the path between the root and the node 

excluding the node itself. The root is the only node which has no 

parent and therefore ancestor. 

Descendant of a node Each node that lies on the path from the node to a leaf. The leaf is 

the only item which has no child and therefore descendant. 

Internal node 
A node of a tree that has one or more child nodes, equivalently, 

one that is not a leaf. Also known as nonterminal node. 

Siblings Nodes that have the same parent. 

Degree (of a node) The number of child nodes the node has. 
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Chapter 2: Literature Review 

2.1 Broadcast Encryption Schemes 

A broadcasting scheme involves encrypting a message so that more than 
one privileged receiver can decrypt it. To achieve this, privileged receivers 
are grouped together either dynamically or statically according to the 
scheme being used. 

The performance of  any broadcast encryption scheme depends on how the 
privileged receivers are grouped. All modern Broadcast Encryption 
schemes use a graph to organize keys and users. The graph is called a key 
graph and can have varying properties but the most common type of  graph 
discussed in the literature seems to be a directed acyclic graph which forms a 

rooted tree with some maximum degree , a key tree, and that is the only type 
considered in this thesis. It is, however, worth noting that a key graph in 
general can be any directed acyclic graph (Anderson, 2005).. 

In particular, the tree considered in this thesis is a perfect binary tree – a 

full and complete tree (Black, 2014) of  degree . All the nodes of  the tree 

(see Figure 2) are -nodes to signify that they store or correspond to keys. 

Each of  the leaves of  the key tree is associated with a -node which is a 

node that stores or corresponds to a user. In a diagram, the -nodes have 

no incoming edges. See Figure 2. A directed path in the graph from a -

node  to a -node  represents the fact that user  has key . 

In a key tree, the users are organized in a hierarchical fashion (see Figure 2) 
so that all users with a common ancestor also have a common key. Thus 
these related users can form their own group and broadcast to all users in a 
group is done using their common key – the key stored in their common 
ancestor. 
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Figure 2: An example of a key tree showing users and the keys. 

In Figure 2, all users  have their own key . Users  have the 

common key  and user  and  have the common key . All users 

have the common key . 

At initialization phase, the key server  generates random keys and assigns 
them to each node in the tree. 

As already pointed out, Broadcast Encryption scheme begins with an 
initialization phase where every user is given a set of  secrets decryption 
keys. The sender (or a trusted authority) initially generates several secret 
decryption keys, selecting subsets of  users and distribute the keys giving all 
users in the same subset a common decryption key. Thus a user gets a set of  
keys one for each of  the subsets they are a member of. 
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In actual practice, the set of  keys a user receives from the sender is really 

some key information  from which keys can be derived i.e. what the user 

is given is not a set of  keys as implied above but some key information  
from which the user can derive each key associated with all possible subsets 

to which they may belong. The size of    is called the user storage. Schemes 

where  (and the keys it is used to derive) is never updated are called 
stateless, whereas those where it is updated are called stateful. 

A stateful broadcast encryption scheme requires that all the receivers have 
to be able to update the stored keys, usually when receivers are added or 

removed from the privileged receiver set . This implies that any receiver 

 must be connected all the time to the broadcast network  in order 
not to lose any key update message that might be sent. 

2.2 Logical Key Hierarchy – A Stateful Scheme 

The Logical Key Hierarchy (LKH)10scheme is an example of a stateful 
broadcast scheme. All users in the key graph of LKH scheme are privileged 

users (in  ) and the non-privileged users (in ) are not in the key graph. 

This means that when broadcasting to  the root key can be used as all 
privileged users have this key and no other user has it. Every user on the 
tree must know its own key and the keys in the path from its key node up 
to and including the root node. 

At first the set  starts out as empty and the graph only contains one node 
which is the root node. Nodes are added to the graph whenever a revoked 
receiver joins and nodes are removed from the graph whenever a privileged 
receiver revokes. 

                                                             

10
 For the origin of LKH see [And05 pg 12] or [OA05 pg 5] 
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If  possible, the joining user , with his individual key , is just attached to 

one of  the existing -nodes at the second to lowest -node depth in the key 

tree. However, if  all -nodes at that depth are full, i.e. already have 

children, a new depth in the key tree must be created. See the Figure 3 for 
an example. As the new user is added as a leaf  to the key tree, all keys on 
the path from the new user to the root are affected and must be updated. 

 

Figure 3: How a user is added to LKH key tree. 

In Figure 3, (a) is an example of  a key tree with degree of  3, therefore the 

tree is complete (considering the k-nodes only). When a user  joins the 

privileged set, another -node must be created as illustrated in (b) the 
dashed lines indicate new nodes and edges in the key tree. 
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When a user leaves the privileged set, his -node and his individual -node 
are removed from the key tree. In order to ensure that the leaving user 
cannot decrypt any future messages, all keys on the path between this 

departing user’s -node and the root must be changed and updates sent to 
all remaining users. This enforces forward secrecy. 

When a user joins the privileged set he must of  course receive the 
appropriate keys in order to be able to decrypt future transmissions. 
However, LKH is also concerned with backward secrecy and therefore 
several of  the previously used keys need to be updated as well. 

Because keys are updated every time a user joins or leaves, LKH is resilient 
to any number of  attackers from the non-privileged set. 

Whenever a receiver  joins  or leaves , the keys in the graph are 

updated to maintain both forward and backward secrecy. 

2.2.1 Adding a revoked receiver to R 

When a revoked receiver wants to leave  and join , then the 
following is done: 

a)  authenticates  via some authentication protocol and ensures 

that  is allowed to join. 

b)  removes from  and adds it to . 

c)  generates a new leaf key node and assign it to r along with the 

keys from the path where ’s key node is located and up to and 

including the root node. 

d) To maintain backward secrecy and prevent  from decrypting 

previous broadcast, all the key nodes from ’s key node location 

and up to and including the root node are regenerated and sent via 

a rekeying message to the current privileged receivers. 

2.2.2 Removing a privileged receiver from P 

When a privileged receiver wants to leave  and join , then the 
following is done: 

a)  removes  from  and adds it to . 

b)  removes the leaf key node from the key tree. 

c) To maintain forward secrecy and prevent  from decrypting future 

broadcast, all the key nodes from ’s old key node location and up 
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to the root and including the root node are regenerated and sent 

via a rekeying message to the current privileged receivers. 

2.2.3 Rekeying 

Whenever a receiver joins or leaves the set of privileged receiver , some 
keys are regenerated to maintain backward and forward secrecy. The 

process of  sending new keys to some privileged receiver is known as 
“rekeying”. For more on the three different strategies on how to construct 
and send the rekey message, see (Obied, April 2005). 

2.2.4 Encryption 

Any broadcast secret  is encrypted with the key of the root node. If 

the key of the root node is  and the broadcaster  wants to broadcast a 

secret  then  broadcasts 

 

2.2.5 Decryption 

Any broadcast secret  is decrypted with the key of the root node. If 

the key of the root node is  and the broadcast message was 

 
then a privileged receiver can recover s by applying 

 

2.2.6 Broadcast message 

It was mentioned before that any broadcast message has a header and a 
message body. In the LKH scheme, a broadcast message looks as follows: 

 
The header in this scheme contains no information and the body contains 
the cipher text of the broadcast message. 

2.2.7 Analysis and Complexity 

One might wonder what is the point of keeping all the other keys if 
everything is encrypted with the root node key. Basically the other keys are 
used in the rekeying procedure to protect the key of the root node 
whenever it is regenerated and redistributed. Since all the privileged 
receivers know the key of the root node then it is quite efficient in terms of 
encryption and decryption. Table 2 shows the complexity of the LKH 
scheme in terms of big-O notation: 
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Table 2: the complexity of the LKH scheme 

 

2.2.8 The trouble with LKH 

The LKH has two drawbacks: 
� The key tree can become rather unbalanced, after several joins and 

leaves have occurred, thus affecting the efficiency of the scheme. This 

will require balancing the key tree. For methods of balancing the key 

tree, see (Anderson, 2005). 

� The other drawback in terms of performance issues of this scheme is 

the storage space of the keys. If the height of the key graph is then a 

receiver must know all the keys from its assigned key node up to and 

including the root node. 

2.3 Subset cover schemes 

Subset cover schemes are a general class of stateless schemes. To learn 
where they were first introduced see (Johansson, Kreitz, & Lindholm, 
2006). A subset cover algorithm predefines a family of subsets of users 

 , . Each subset  is assigned a long-lived key  such 

that each  can compute   from its secret information  but any 

user  cannot compute . Because subset cover schemes are stateless, 

the sets  and the keys associated with its subsets are fixed. 

Of  these subsets, the ones that contain members are together known as the 
cover or the subset cover and the number of  these subsets called the cover size. 
To distribute a new group key, the key server calculates an exact cover 

 and  i.e. a user is a member if  and only 

if  the user is in  and  (null). 

The Broadcast algorithm at the Broadcast Center does the following: 

� Choose a session encryption key . 

� Encrypt  separately  times with keys  and sends the 

ciphertext  

 
The portion in square brackets preceding is called the header and 

 is called the body.  and  are the encryption algorithms with 

their first parameter the encryption key 
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The Decryption algorithm at the receiver, upon receiving the broadcast 
message 

 

does the following: 

� Find  such that  (in case , the result is null). 

� Extract the corresponding key  from . 

� Compute  to obtain . 

� Compute  to obtain and output . 

The following section is a discussion on two related implementations of  
the subset cover scheme. In both schemes the subsets and the partitions 
are obtained by imagining the receivers as the leaves in a rooted full and 

complete binary tree11 with  leaves ( is a power of  2). Such a tree contains 

 nodes (i.e. leaves plus  internal nodes) and for any 

we assume that  is a node in the tree. The systems differ 

in the collections of  subsets they consider. Like the LKH, the receivers 
are each associated by a leaf  in the key tree12 - the key server maintains a 
perfect binary (key) tree and assigns a fixed position (a leaf  in the key tree) 
to each distinct member. 

                                                             

11
 A perfect binary tree. Some people “wrongly” call this a complete tree while others call it 

a full tree. If it is not the case that  for some integer k then any complete binary tree 

with at least n leaves can be used. The extra leaves are then considered either as 

representing privileged users or as non-privileged users, whichever is the most favourable 

in the particular scenario. If backward secrecy is an issue and the extra leaves will be 

assigned to new users in the future then these leaves must be considered to represent non-

privileged users. 

12
 In this thesis, a leaf node in the key tree and a member assigned to that node are treated 

indistinguishable when there is no risk of ambiguity. 
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2.4 The Complete Subtree Method 

The collections of subsets into which users belong  corresponds 

to subtrees in the perfect binary tree. For any node  in the tree (either an 

internal node or a leaf,  altogether), is therefore an ancestor of 

each user in the subtree rooted at . Let the subset  be the collection of 

receivers that correspond to the leaves of the subtree rooted at node . In 

other words,  iff  is an ancestor of . 

The key assignment method is simple: assign an independent and random 
key to every node in the complete tree and provide every receiver with the 

 keys associated with the nodes along the path from the root to 

leaf  ; a user is given the key in the leaf  node  it is associated with and all 

the keys in nodes that are ancestor of  . See the . This ensures 
that all users whose corresponding leaves have a common ancestor also 
have a common key. In other words, the users whose leaves are in the 

subtree rooted at node have a common key and they are said to belong 

to subset . Thus all users belong to several subsets . 
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Figure 4: The keys given to a user 

In the CS scheme (Figure 4), user  corresponds to a leaf   is given the 

keys from the root to the leaf  , the ones corresponding to the black 
leaves in the figure. 

The method to partitions the  into disjoint subsets is as follows. For a 

given set of  revoked receivers, let  be the leaves corresponding 

to the elements in . A (directed) Steiner tree induced by a set , is 

the minimal subtree of  the perfect binary tree that connects all leaves in  
and the root. See figure 5. 
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Figure 5: A Cover for the CS method generated from a Steiner tree. 

In Figure 5, (a) is an example of  a user configuration in the CS scheme, 
black leaves represent users in R and white leaves represent uses in P. The 
black nodes in (b) make up the Steiner tree generated from the user 
configuration in while white nodes are the ones hanging just off  the Steiner 
tree. When using the CS scheme to send a secret to the user configuration 
in (a), it is thus the keys associated with the subtrees rooted at the white 
nodes in (b) that are used. 
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When this Steiner tree has been generated, the subsets  needed to cover 

the privileged set  can be found as follows; the subtrees hanging just off  

the Steiner tree are the subtrees  whose roots  are 

adjacent to nodes of  outdegree 1 in  but are not in . These 
subtrees include all leaves corresponding to privileged users and only these 
users. For a proof  of  this, see (Naor, Naor, & Jeff, 2001). Therefore the 
keys to use are the ones associated with these subtrees. 

The Decryption process proceeds as follows. Given a message 

 

a receiver  needs to find whether any of  its ancestors is among 

; note that there can be only one such ancestor, so  may 

belong to at most one subset. The user then extracts the corresponding  

from their  and use it to extract  which they then use to extract . 

2.5 The Subset Difference Scheme 

The collection of subsets  defined by this scheme corresponds 

to subsets of the form “a group of receivers  minus another group ”, 

where . The two groups  and  correspond to leaves in two 

perfect binary subtrees this way; a valid subset  is represented by two 

nodes in the tree  and  such that  is an ancestor of and we denote 

such subset as  and defined as  \  and referred to as subset difference 

set. A leaf  iff it is in the subtree rooted at  but not in the subtree 

rooted at , or in other words  iff  is an ancestor of  but  is 

not i.e.  is the set of all leaves in the subtree rooted at , except for 

those in the subtree rooted at . Thus in the SD scheme, a subset of users 
that have a common key is a set difference between two sets hence the term 

set difference. Figure 6 depicts the SD . 
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Figure 6: A Cover for the SDS generated from a Steiner tree. 

An illustration of  the SD  is shown in Figure 6. Note that in CS, the 

cover size would have been 2 i.e. . and . Clearly, the subset difference 
scheme generates a smaller cover compared to complete subtree. 

The goal of  Subset Difference Scheme is to partition the  into fewer 
subsets than the CS scheme while still retaining the collusion resistance. 
However the way it achieves this, as we see in the next section, results in 
the number of  keys stored by each receiver being greater. 

Note that all subsets from the Complete Subtree Method are also subsets 
of  the Subset Difference Method because they, too, can be expressed as a 
complete subtree minus another complete subtree; specifically, a subtree 
appears here as the difference between its parent and a sibling of  the 
parent. The only exception is the full tree itself  which has a special subset. 

Each subset  has an associated key  and for how this is obtained, see 
next section. 
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2.5.1 The Cover 

For a given set  of revoked receivers, let  be the leaves 

corresponding to the elements in . The cover is a collection of disjoint 

subsets  which partitions . There are two algorithms 
presented in (Naor, Naor, & Jeff, 2001) for finding the cover. The one that 
the simulator (see section 2.7, The single Tree solution”), in this thesis 
implements is the second one of the two which uses maximal chains in the 
Steiner tree induced by the non-privileged leaves. 

A chain in a Steiner tree is a set of  nodes along a path where each node 
except the lowest one (the one with the largest depth) has exactly one child. 
A maximal chain is a chain that is not part of  a longer chain. (Anderson, 
2005) The start of  a maximal chain is therefore the root or a node that has 
a sibling and the end is either a leaf  (no child) or a node with two children. 
Also note that the shortest maximal chain consists of  two nodes. 

It finds a cover as follows: 
� Generate the ST(R) 

� For each maximal chain in the ST(R), add a subset  where the top node 

in the chain is  and the bottom node is . 

A maximal chain is obtained as follows: 

a maximal chain is a chain of nodes with outdegree 1 in ST (R) of the 

form  

- all of  have outdegree 1 in ST (R) 

-  is either a leaf or a node with outdegree 2 

-  is either the root or the child of a node of outdegree 2. 

For each such chain where , known as a nonempty chain, add a 

subset  to the cover. Note that all nodes of outdegree 1 in ST 

(R) are members of precisely one such chain. 
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Figure 7: The SDS cover sets 

Figure 7 illustrates a key tree with two SD sets of  members. The active 
users are white leaves for (the privileged users) and black leaves are the 
revokes users. 

It should be clear that a user in the SD scheme belongs to several SD 
subsets. In Figure 7 for example, the user associated with k-node 13 would 

belong to the SD subsets . The figure 7 
shows the Steiner tree corresponding to the privileged set in Figure 6. We 
can see in the diagram (Figure 7) that there is a maximal chain between 

nodes  and  and another between nodes  and , each corresponding 
to an SD subset. 
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Figure 8: Maximal chains in a Steiner tree 

The privileged users represented by the leftmost white leaves if  Figure 8 

can be reached by a transmission to  and these leaves are 

descendants of   but not of  . The privileged users represented by the 
rightmost white leaves can similarly be reached by a transmission to 

. 

2.5.2 Key Assignment to subsets 

The generation of these keys is done this way:  

For each  corresponding to an internal node in the perfect binary 

tree, we choose a random and independent value . i.e. the random label 

for node  is denoted  The initial labels  are used as the first input to a 

(cryptographic) pseudo-random sequence generator (one-way function) 13 
that triples the input, i.e. whose output length is three times the length of 
the input, that is 

 

                                                             

13
 We say that  is a pseudo-random sequence generator  if no 

polynomial-time adversary can distinguish the output of a randomly chosen seed from a 

truly random string of similar length. 
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Of  these three outputs, two are used as labels for the children of  node , 

left third of  the output,  becomes the label of  the left child and the 

right third,  becomes the label of  right child. The middle third of  

the output, , is used as a key corresponding to node . From such 
a recursive top-down labelling process, given the label of  a node, it is 
possible to compute the labels (and keys) of  all its descendants i.e. each 

node  is associated with several labels  each derived from the initial 

label of  each of  its ancestors . Figure 9 shows in a small example which 
nodes have what labels associated with them. 

Consider the subtree  (rooted at ) with the root assigned a label . If  

 is a node in the subtree , then  is label of  node  derived in 

the subtree  i.e. from the random label of  node  (by applying the 

function  one or more times), the key  assigned to set SD set  is 

. 
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Figure 9: An illustration of how labels are generated in the SD scheme. 

This top-down labelling process is continued so that for each child of 

node  the new label is used as input to  and labels and keys are 

created for all nodes in the subtree rooted at . The result is that each 

node will be associated with several labels because the node is a part of 

several subtrees, except the root node which will only have one label. 

The labels with one index, , are the initial random labels assigned to 

each internal node . The labels with two indices are derived from the 

initial labels such that label  is the label at node  derived from label 

. For example, . The tree has been 

rotated in order to avoid too much clutter with all the labels. 
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What is the information that each receiver gets in order to derive the key 

assignment described above? For each subtree  such that  is a leaf  of  , 

the receiver  should be able to compute  iff   is not an ancestor of  . 

Consider the path from  to  and let  be the nodes just 

“hanging off ” the path, i.e. are adjacent to the path but not ancestors of   

(one step sidewise from the path). Each node  in  that is not an 

ancestor of   is a descendant of  one of  these nodes. Therefore if   

receives all the labels (derived, not the initial ones) of  , as 

part of  , then invoking  (which is assumed to be known to ) at most 

 times suffices to compute  for any  that is not an 

ancestor of   i.e. once a user has a label, the user can derive all the other 
labels down the tree. 

How many labels in total are these per user? In each subtree that contains 

, each of  the nodes one step sidewise from the path between  and the 

root of  the subtree contribute the  labels it acquires from its  ancestors 

where  is the depth of  the node. Onto this we add one label for the case 
where there are no revocations for a total of: 

 

labels (Naor, Naor, & Jeff, 2001).. 

Note: For a perfect tree the height,  of  the tree and the number of  nodes, 

 have the relationship: 
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2.6 A Multi Tree solution 

The only work on dynamic subset difference Revocation in literature seem 
to be (Chen, Ge, Zhang, Kurose, & Towsley, 2004). The authors observe 
that: 
� Static SDR generally requires a very large key tree, which must 

accommodate all unique members and as a consequence, 

� currently active members, usually a small fraction of all of the unique 

members, are likely to be widely dispersed in the key tree space. 

Both of  these factors decrease the performance of  SDR. It is these two 
inefficiencies that their proposed approach which they call dynamic SDR 
addresses. 

They argue that, in the binary key tree of  SDR, the probability of  holes 
(positions with departed members) being somewhat distributed fairly 
evenly among members is high and therefore the cover size at most times 
will be made up of  shorter subtrees rather than tall subtrees. The key 
server only needs to maintain a set of  smaller subtrees with an appropriate 

height . Their idea of  dynamic SDR is to dynamically maintain such set 
of  subtrees. 

If  each tree has a height of  , each user key storage will be  because a 
user only need to store the key in it user key node because it has only one 
descendant. However, the message expansion will be maximum i.e. as many 
as the users because the broadcaster has to send the message to each user 
encrypted with the user’s key stored in the user’s key node. 

The ideal case is when all the users are on one tree. Assuming that the users 

, are a power of   and all of  them are in privileged, if  they all fit on one 

tree then the message expansion would be  one because they are all 
descendants of  the root node and the key size at the users would be 

maximum because key size is  and the height is the maximum possible 
when the number of  leaves are at a maximum. 
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To achieve this ideal case, requires that the number of  users who will be 
active, be known in advance, something not possible. The authors have 
explained how to determining an appropriate height for each tree. It is a 
design trade off. (Chen, Ge, Zhang, Kurose, & Towsley, 2004). 

2.6.1 Scheme of dynamic SDR 

In dynamic SDR, the positions of members are not pre-assigned. Instead, 
the spaces in the key tree are dynamically allocated and reclaimed, adapting 
to the current set of active members. More specifically, the key server 
dynamically creates leaves when new member joins, or discards a subtree 
when all positions of the subtree are inactive. By doing this, the key server 
maintains active members in a dynamic key tree, rather than a large key tree 
constructed in advance. 

The scheme is fairly simple. The small equally sized disjointed trees are 
atomic allocation units. One can view them as subtrees connected to a 
virtual root r (see Figure 10). 

 

Figure 10: Constructing dynamic SDR key tree using sub-trees as 

allocation units 

Initially, the key server has a single subtree  connected to the virtual root 

. 
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When a member joins the group, regardless of  being a new member or a 
returned member, the member is assigned to the next available position in 
the key tree (from left to right) and is unicast the secret information 
associated with the new position. The key server thereafter encrypts and 
multicasts the updated TEK to the current members in exactly the same 
way as in static SDR. If  new positions are required the key server creates a 

new subtree . When a member, , leaves the group, the position 

becomes empty and will never be used by any member (even  itself) and 
a new TEK is multicast to the members that remain in the group. If  all 
positions of  the leftmost subtree become empty, the key server discards 
that subtree. 

2.6.2 The benefits 

The advantages of maintaining such a dynamic-membership key tree are 
two-fold. 

First, instead of  maintaining a key tree that is sufficiently large to hold all 
potential members, dynamic SDR may require a much smaller key tree of  a 
size sufficient to accommodate the maximum number of  concurrently 
active members. This helps reduce key storage cost, both at the members 
and at the key server. Second, dynamic SDR is able to utilize the temporal 
locality of  the members’ joining and leaving activity. By assigning members 
that arrive close in time to positions that are close in the key tree, the key 
server is likely to find a subset that can cover many adjacent members. As a 
result, a small number of  subsets will typically be needed to cover the 
active members when a new TEK is disseminated. This implies that the 
messaging overhead associated with rekeying is also reduced. 

Since the key tree of  dynamic SDR can be extended arbitrarily, dynamic 
SDR does not require a priori knowledge of  the size of  total member 

population, . This avoids the problem, which exists in static SDR, of  

estimating . Overestimating  makes the static SDR key tree 
unnecessarily large, increasing both rekey communication cost and key 

storage cost, whereas, underestimating  may introduce the problem of  
having to reject members when all positions have been assigned. 
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2.6.3 Key Storage 

In dynamic SDR, the size of secret information, , is reduced from 

 to  where  is the 
maximum number of users per subtree that corresponds to an allocation 

unit. Although the key storage size required by a member is fixed when  is 

chosen, this is not the case for the broadcaster , whose key storage is 

related to the number of subtrees.  i.e. the number of leaves in a 

tree whose height is  is . 

2.6.4 Reducing S by shifting 

Assuming that the key server sequentially assigns the available positions of 

the key tree from the left to the right to the joining members,  is the 
distance from the leftmost position occupied by an active member to the 

first available position at the right side. These  positions, referred to as the 
concurrent spaces, determine the key storage at the key server. 

A large value  results in an increased key storage at the  side. Also, 

currently active members disperse in the key tree as  increases, incurring 
more resultant subsets and thus more rekeying messages. As a result, it is 

desirable to keep  small. 

A simple operation, namely shifting, that can be used to reduce S. This 
defined as the operation of  detaching the leftmost active member in the 
key tree and reattaching the member to the next available position (for new 
arrivals) in the key tree. This is based on the consideration that in a 
dynamic SDR subtree, a leaf  position assigned to a member cannot be 
assigned again. See Figure 11. 
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Figure 11: The Shifting operation 

When some holes (i.e. positions with departed members) are generated in 
the key tree, shifting the leftmost active member may reduce the 

concurrent spaces, , and make active members more adjacent. Here we see 

shifting the leftmost member from left to right reduces  by . 

When active members are shifted, they are delivered new secret 
information associated with the new positions by unicast. From the 
collusion-proof  property of  static SDR, shifting does not jeopardize the 
confidentiality of  the group communication. 

2.7 The Single Tree Solution 

The solution proposed in this thesis uses a single tree that grows and 
shrinks as users come and go respectively. The solution proposed in  in 
(Chen, Ge, Zhang, Kurose, & Towsley, 2004) uses a set of sub-trees 
instead. Like in (Chen, Ge, Zhang, Kurose, & Towsley, 2004), when a new 
member joins the group, the member is assigned to the next available 
position in the key tree (from left to right) and is unicast the secret 

information,  associated with the new position. But unlike unlike (Chen, 
Ge, Zhang, Kurose, & Towsley, 2004) where a returned member, is also 
assigned to the next available position in the key tree, the single tree returns 
the user to their former position - a member reoccupying their former 
position does not compromise the security of the scheme so long as 
rekeying is done. The rekeying is necessary because the return of a member 
to the same position they were in changes the cover. 

All the time, the users are accommodated on a single key tree whose size is 
the smallest possible that can sufficiently accommodate them. This 
achieved as follows: 
� When a user leaves, the systems checks if the remaining members are 

equal to or less than half the base of the tree. If so, this means they can 

be accommodated on a smaller tree and the system destroys the 

current tree and creates a new smaller tree sufficient to accommodate 

them. 

� When a new user or a previously revoked user comes, and there is no 

slot to place them, the system creates a new tree that is sufficient to 

accommodate the current members. The resulting tree will not 
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necessarily be bigger because lack of a new slot does not necessarily 

mean the tree is full; some users may have left and a user slot can only 

be occupied by the user who is initially allocated the slot. Note that 

previously revoked user may lack a slot in the tree because the tree 

from which they were revoked has since been destroyed and this is an 

entirely different tree. 

Keeping users on the smallest possible tree ensures that the key storage 

cost at both  and at the members is always the lowest possible. The 
downside of  the solution is that a unicast is made to each member 
whenever the tree is recreated; a high communication cost. Indeed, the 
performance of  this solution depends on how infrequently these two 
situations occur. 
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Figure 12: Adding a user to a keytree that is already full of members 

In Figure 12, the tree in (a) is full of  members ( members) while the tree 

in (b) is the resulting tree when a new member  joins. Note that if  one 
member leaves the tree in (b), the system creates a new tree of  the same 

size as the one in (a). Also note that a key  in a newly created key tree is 

not related to the key  in the previous tree. This is why the  must be 
unicast to each user each time the key tree is created. 
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To keep the broadcast message expansion low, the tree should be re-created 

whenever the number of  user clusters is “too high”. Consider the  leaves of  

the key tree as a sequence of  users  that can be 

thought of  as a bitmap where a  at position  means that the 

corresponding user, , is in the non-privileged set and  means that  is 

in the privileged set. The sequence  is called a user profile. A cluster is an 

unbroken sequence of  members (1s) in . The number of  clusters of  
members determine the cover size – the number of  transmissions or the 
cover size. 

2.7.1 Clusters and transitions 

The maximum number of clusters  is reached when the user profile, 

 contains the most number of  or  subsequences which is clearly 
half the base of the tree (the maximum possible number of users on the 

tree). This is denoted as  where  stands for transition from the 

interpretation of  or  as a transition in the user profile from a non-
privileged user to a privileged user or from a privileged user to a non-

privileged user respectively.  and  are the same – they are both 

equal in value to half the number of maximum users possible. When  

has been reached, then we have  but we can have  when the 

transitions are not yet .  and  coincide only when each 

member (a  in ) has exactly one non-member neighbour (a  in ) and 

vice versa if the first and last bits in  are opposite bits; if both the last and 

the first members of  are 1s, then  is reachable when one and only 

one of the  has a  as a neighbour or one and only one of the  has a  

as a neighbour and therefore the transitions are less than . Note that 

 is not reachable if both the last and the first are  (non-members). 
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Because the system intervenes whenever the current members become half  

the maximum possible, we can never reach  but the explanation in the 

last paragraph shows it is possible to reach  before the system 

intervenes. Chances that  is reachable are very slim indeed – only 
when the last and the first user in the user profile are members and every 1 
has a 0 as a neighbour in the profile except one and only one member is 
having a member as a neighbour therefore resulting in members being one 

more than half  the maximum possible. Any other way of  reaching  
requires that the members reduce to half  the maximum possible and as we 
have seen, whenever this would be the situation, the system intervenes and 
creates a smaller tree with one cluster of  users. 

Nevertheless, operating at  should be considered unacceptable and 
therefore, when this would be the situation, the system should intervene 
and re-create a smaller tree with one cluster of  users. The relationship 
between the cover size and the number of  user clusters is not one-to-one. 
If  left to the system to intervene only when the members is half  the 

maximum possible,  will be reachable as the Table 3 shows; it is a 
table of  the values of  user clusters and cover size for a key tree whose base 

is  users. The base of  the tree is assumed here to be a zero-based array 

of  size  (The indices are from  to ). The last column of  Table 3 and 
Table 4 shows the situation when the system has intervened. Table 3 is one 

in which revocations produce the  subsequences while Table 4 is the one 

in which revocations produce the  subsequences. 
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Table 3: the "01" subsequences 

revoked(index) 0 2 4 6 8 10 12 14 
cover size 1 3 4 5 5 7 7 1 

member clusters 1 2 3 4 5 6 7 1 
members 15 14 13 12 11 10 9 8 

Table 4: the "10" subsequences 

revoked(index) 1 3 5 7 9 11 13 15 
cover size 1 3 4 5 5 7 7 1 

member clusters 2 3 4 5 6 7 8 1 
members 15 14 13 12 11 10 9 8 

From the tables, one can see a possibility of  reaching  before the 
system intervenes (see table two); the user clusters has reached the 

maximum of   while the users have not reduced to . As pointed out 
already, high user clusters means the system is performing badly in terms 
of  message expansion. 

As already pointed out, the performance of  the single tree solution 
depends on how infrequently the tree creation operation takes place 

because among other things, it involves unicasting the  to each member 
which is a high cost in communication terms. The tree creation operation 
takes place when the following situations show up: 
� admitting a member is going to result in all the users (revoked and 

members) being more than a power of two; the base of the key tree is 

full. 

� revoking a member (privileged user) is going to result in members being 

half the maximum possible; half the key tree base. 

� revoking or admitting a member is going to result in user clusters being 

the maximum possible (half the tree base) 

With these constraints, we have a guarantee that the maximum message 
expansion (broadcast transmissions per message) can never reach the 
maximum possible i.e. half  the base of  the key tree. The downside is that 
whenever these situations show up, the key server is ‘frozen’ i.e. not 
available to be queried for broadcast key(s). It is therefore how frequent 
these situations can occur during operation that determines the efficiency 
of  the scheme. 
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During certain intervals perhaps when there are no essential activities and 
the performance is not so good due to user fragmentation; the tree could 
be optimised by moving the members to a new tree in the process 
consolidating them into one cluster to reduce the cover size. Indeed 
whenever the key tree is created all the users are arranged in one cluster to 
the left as possible. This keeping of  broadcast transmissions per message 

below a certain level and ensuring that the key storage at the broadcaster,  
and at the users are at their minimal level are the key design strategies of  
the single tree solution of  the Dynamic Revocation Problem. 

2.7.2 Summary 

The design goals of the scheme are ensuring that message expansion is 
always less than the maximum possible, and the key storage at the 

broadcaster,  and the users are always at their minimal possible level. As 
pointed out, this comes at a cost of the inevitable maintenance 
communication cost – unicasts of  to members. Whenever these 
maintenance activities are taking place, the key server is ‘frozen’ i.e. not 
available to be queried for broadcast key(s) by the broadcaster. 

The maintenance activities are mainly reconstruction of  the key tree which 

then requires among other things, a unicast of   to each member. The tree 
creation operation takes place when the following situations show up: 
� admitting a member is going to result in all the users (revoked and 

members) being more than a power of two; the base of the key tree is 

full. 

� revoking a member (privileged user) or deleting a member is going to 

result in members being half the maximum possible; half the key tree 

base. 

� revoking/deleting or admitting a member is going to result in user 

clusters being the maximum possible (half the tree base) 

The conceptual diagram is shown in Figure 13. 
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Figure 13: The Conceptual Diagram 
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Chapter 3: Methodology 

Methodology is the path to finding answers to the research questions 
constitutes. The methodology used in this thesis is simulation. It is described 
in detail in Section 3.4 but before that, some background information is 
discussed that illustrate that simulation is a combination of actually two 
methodologies – experiment and model. 

3.1 Research Philosophy 

In an academic context, research is used to refer to the activity of a diligent 
and systematic inquiry or investigation in an area, with the objective of 
discovering or revising facts, theories, applications etc. Research is 
undertaken within most professions. More than a set of skills, it is a way of 
thinking: examining critically the various aspects of one’s professional 
work. It is a habit of questioning what one does, and a systematic 
examination of the observed information to find answers with a view to 
instituting appropriate changes for a more effective professional service. 
The goal is to discover and disseminate new knowledge. 

Research is a process of  collecting, analyzing and interpreting information 
to answer questions. But to qualify as research, the process must have 
certain characteristics: it must, as far as possible, be controlled, rigorous, 
systematic, valid and verifiable, empirical and critical. 

3.2 The Research Process 

The research process is similar to undertaking a journey. For a research 
journey there are two important decisions to make  
� What one wants to find out about or what research questions 

(problems) one wants to find answers to and 

� How to go about finding these answers. 

There are practical steps through which a researcher must pass in their 
research journey in order to find answers to their research questions. The 
path to finding answers to the research questions constitutes research 
methodology. At each operational step in the research process the researcher 
is required to choose from a multiplicity of  methods, procedures and 
models of  research methodology which will help the researcher to best 
achieve their objectives. 

There are several methods that can be used in Computer Science and 
Information Systems. Tasks performed by a single researcher fall within 

different methodologies. Even the activities required to tackle a single 
research question may include several of  these methodologies. [Ama] 
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The remainder of  this section is a discussion of  these methodologies. 

3.2.1 Theoretical/Formal Methodology 

The theoretical approaches to Computer Science are based on the classical 
methodology since they are related to logic and mathematics (Ayash, 2014). 
In Computing Science, formal methodologies are mostly used to prove 
facts about algorithms and system. Researchers may be interested on the 
formal specification of a software component in order to allow the 
automatic verification of an implementation of that component. 
Alternatively, researchers may be interested on the time or space 
complexity of an algorithm, or on the correctness or the quality of the 
solutions generated by the algorithm. 

A formal methodology is most frequently used in theoretical Computing 
Science. Theoretical Computer Science (TCS) is formal and mathematical and it 
is mostly concerned with modelling and abstraction. The idea is to abstract 
away less important details and obtain a model that captures the essence of  
the problem under study. This approach allows for general results that are 
adaptable as underlying technologies and application changes, and that also 
provides unification and linkage between seemingly disparate areas and 
disciplines. TCS concerns itself  with possibilities and fundamental 
limitations. Researchers in TCS develop mathematical techniques to address 
questions such as the following. Given a problem, how hard is it to solve? 
Given a computational model, what are its limitations? Given a formalism, 
what can it express? (Amaral, 2014) 

3.2.2 Build Methodology 

A “build” research methodology consists of building an artifact — either a 
physical artifact or a software system — to demonstrate that it is possible. 
To be considered research, the construction of the artifact must be new or 
it must include new features that have not been demonstrated before in 
other artifacts. (Amaral, 2014) 

3.2.3 Process Methodology 

A process methodology is used to understand the processes used to 
accomplish tasks in Computing Science. This methodology is mostly used 
in the areas of Software Engineering and Man-Machine Interface which 
deal with the way humans build and use computer systems. The study of 
processes may also be used to understand cognition in the field of Artificial 
Intelligence. (Amaral, 2014). 
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Process methodologies are most useful in the study of  activities that 
involve humans. Examples of  such activities in Computing Science include 
the design and construction of  software systems — large or small, the 
design and evaluation of  human-computer interactions, and the 
understanding of  cognitive processes. More recently the creation of  
interactive games has been studied extensively. This activities often involve 
studies with human subjects. 

3.2.4 Experimental Methodology 

Experiments can test the veracity of theories. This method within CS is 
used in several different fields like artificial neural networks, automating 
theorem proving, natural languages, analysing performances and 
behaviours, etc. Experimental methodologies are broadly used in CS to 
evaluate new solutions for problems. Experimental evaluation is often 
divided into two phases. In an exploratory phase the researcher is taking 
measurements that will help identify what are the questions that should be 
asked about the system under evaluation. Then an evaluation phase will 
attempt to answer these questions. A well-designed experiment will start 
with a list of the questions that the experiment is expected to answer. 

It is important to emphasize that all the experiments and results should be 
reproducible. Conducting experiments in a careless fashion can lead to a 
situation where the authors themselves cannot reproduce the experiments. 
The following is some general advise to help preventing one from 
producing worthless experimental papers. (Ayash, 2014). 

3.2.5 Model Methodology 

The real world can be viewed as being composed of systems. A system is a 
set of related components or entities that interact with each other based on 
the rules or operating policies of the system. 

Oftentimes, there arises a need to predict some aspect of  the performance 
of  a system before it is actually built. Since the real machine does not yet 
exist, one cannot measure its performance directly (Lilja, 2000). Instead, 
the best one can do is to model the system. A model is a representation of  
the system. Modeling may be necessary because a system does not 
physically exist or building a system is expensive or measuring (analysing) a 
system is time-consuming requiring vast computing resources. 

Models enable seeing how a real-world activity will perform under different 
conditions and test various hypotheses at a fraction of  the cost of  
performing the actual activity. Modeling may also be appropriate when one 
wants to investigate some aspect of  a system’s performance that one 
cannot easily measure directly or indirectly. 
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Modeling is the purposeful abstraction of  a real or a planned system with 
the objective of  reducing it to a limited, but representative, set of  
components and interactions that allow the qualitative and quantitative 
description of  its properties. Scientists build models that capture important 
aspects of  a system and gloss over — either completely ignore or just 
approximate — the aspects that have lesser (or no) impact to their intended 
study. A model is an abstracted and simplified representation of  a system at 
one point in time. Models are an abstraction because they attempt to 
capture the realism of  the system. They are a simplification because, for 
efficiency, reliability, and ease of  analysis, a model should capture only the 
most important aspects of  the real system. 

The decision of  which aspects are important and which ones have lesser 
impact is itself  part of  the modeling strategy. Misleading outcomes are 
produced by models that eliminate what is important or that over-
emphasize what is of  lesser impact. (Amaral, 2014). The finer the level of  
granularity at which the model can simulate the system depends on the 
level of  details necessary in order to make the desired decision and the 
consequences of  being wrong; deciding the level of  detail necessary is 
more art than science (Lilja, 2000). If  the model is valid, the outputs of  the 
simulation will be reflective of  the performance or behaviour of  the real 
system. 

Because a model is much less complex than the system that it models, it 
allows the researcher to better understand the system and to use the model 
to perform experiments that could not be performed in the system itself  
because of  cost or accessibility. Strictly speaking, modeling is a 
methodological aspect of  science. Modeling is not the object of  the 
research, it is part of  an arsenal of  instruments used by researchers to 
study and understand the research’s object. (Amaral, 2014). The model is 
studied as a surrogate for the actual system. 

One of  the principal benefits of  a model is that one can begin with a 
simple approximation of  a process and gradually refine the model as their 
understanding of  the process improves. This “step- wise refinement” 
enables one to achieve good approximations of  very complex problems 
surprisingly quickly. As one adds refinements, the model more closely 
imitates the real-life process. 

The model methodology is often used in combination with the other four 
methodologies. Experiments based on a model are called simulations 
(Amaral, 2014). From the simulations information, one can extrapolate 
how the system will behave once it is actually built (Lilja, 2000). 
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Model methodology is used especially in Computer Science not only 
because it offers the possibility to investigate the systems that is under 
invention or construction but also systems or regimes that are outside of  
the experimental domain. Normally complex phenomena that cannot be 
implemented in laboratories for example evolution of  the universe. Some 
domains that adopt computer simulation methodologies are sciences such 
as astronomy, physics or economics; other areas more specialized such as 
the study of  non-linear systems, virtual reality or artificial life also exploit 
these methodologies. A lot of  projects can use the simulation methods, like 
the study of  a new developed network protocol. To test this protocol one 
has to build a huge network with a lot of  expensive network tools, but this 
network can't be easily achieved. For this reason we can use the simulation 
method. 

Simulation often lacks the power to make definite statements about 
properties of  the system. For instance, the results of  simulations may not 
be used to prove that a deadlock never develops in a concurrent system. 

3.3 Simulation Methodologies 

The formalism used to specify a system is termed a modeling methodology. 
The three main modeling methodologies are continuous, discrete event, and 
discrete rate. 
� Continuous modeling (sometimes known as process modeling) is used 

to describe a flow of values. 

� Discrete event models track unique entities. 

� Discrete rate models share some aspects of both continuous and 

discrete event modeling. 

In all three types of  simulations, what is of  concern is the granularity of  
what is being modeled and what causes the state of  the model to change. 

3.3.1 Continuous 

The time step is fixed at the beginning of the simulation, time advances in 
equal increments, and values change based directly on changes in time. In 
this type of model, values reflect the state of the modeled system at any 
particular time, and simulated time advances evenly from one time step to 
the next. For example, an airplane flying on autopilot represents a 
continuous system since its state (such as position or velocity) changes 
continuously with respect to time. Continuous simulations are analogous to 
a constant stream of fluid passing through a pipe. The volume may increase 
or decrease at each time step, but the flow is continuous. 
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3.3.2 Discrete Event 

The system changes state as events occur and only when those events 
occur; the mere passing of time has no direct effect on the model. Unlike a 
continuous model, simulated time advances from one event to the next and 
it is unlikely that the time between events will be equal. A factory that 
assembles parts is a good example of a discrete event system. The 
individual entities (parts) are assembled based on events (receipt or 
anticipation of orders). Using the pipe analogy for discrete event 
simulations, the pipe could be empty or have any number of separate 
buckets of water traveling through it. Rather than a continuous flow, 
buckets of water would come out of the pipe at random intervals. 

3.3.3 Discrete rate 

Discrete rate simulations are a hybrid type, combining aspects of 
continuous and discrete event modeling. Like continuous models they 
simulate the flow of “fluid” rather than items; like discrete event models 
they recalculate rates and values whenever events occur. Using the pipe 
analogy for a discrete rate simulation, there is a constant stream of fluid 
passing through the pipe. But the rates of flow and the routing can change 
when an event occurs. 

3.4 The Model: A Discrete-Event Model 

The simulator implemented for this thesis is a Discrete-Event Model. Discrete-
Event Simulation relies on a transaction-flow approach to modeling systems. 
A system is a collection of entities (Law, January 2014) that act and interact 
together toward the accomplishment of some logical end. A DES is used to 
model a system whose global state changes as a function of time. The basic 
idea is that the global state is appropriately updated every time some event 
occurs. 
� Discrete System 

In a discrete system, state variables change instantaneously at 

separated point in time, e.g., a bank, since state variables (number of 

customers), change only when a customer arrives or when a customer 

finishes being served and departs. 

� Continuous System 

In a continuous system, state variable change continuously with 

respect to time, e.g., airplane moving through the air, since state 

variables - position and velocity change continuously with respect to 

time 
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As already explained above and in Section 3.4, discrete-event simulation (DES) 
models the operation of  a system as a discrete sequence of  events in time 
i.e. a system whose state may change only at discrete point in time. Each 
event occurs at a particular instant in time and marks a change of  state in 
the system. Between consecutive events, no change in the system is 
assumed to occur; thus the simulation can directly jump in time from one 
event to the next. The events may be generated may be generated externally 
to the model as well as spawned within the simulator by the processing of  
other events. 

Discrete simulators are generally designed for simulating processes such as 
call centers, factory operations, and shipping facilities in which the material 
or information that is being simulated can be described as moving in 
discrete steps or packets.  They are not meant to model the movement of  
continuous material (e.g., water) or represent continuous systems that are 
represented by differential equations. 

In the simulator implemented for this thesis, an event is the successful 
execution of  an operation from the operation queue. While the specific 
details of  every model will be unique, DESs all share a similar overall 
structure. In addition to the logic of  what happens when system events 
occur, each DES will require at least some of  the following components. 
(Lilja, 2000). This section describes the simulator, showing that it has all the 
characteristics of  a generic Discrete-Event Simulator. 

3.4.1 State 

A system state is a set of variables that captures the salient properties of the 
system to be studied. The state trajectory overtime S(t) can mathematically 
represented by a step function whose values change in correspondence of 
discrete events. These are the dependent variables as explained in the, 
Section 3.6, Design of Experiment. The ones of interest in this thesis are 
three 
� Unicast cost 

� Multicast cost and 

� User storage 

But the simulator actually implemented for this thesis also records the 
extraneous value of  event duration in clock ticks. See a sample of  the detailed 
output in Appendix 2. 
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3.4.2 An Events Scheduler 

The event scheduler maintains a list of all pending simulation events in 
their global time order. This list is sometimes called the pending event set 
because it lists events that are pending as a result of previously simulated 
event but have yet to be simulated themselves. It is the responsibility of the 
scheduler to process the next event on the list by removing it from the list 
and dispatching the event to the appropriate event-processing routine. It 
also inserts new events into the appropriate point in the list on the basis of 
the time of the time at which the event is supposed to be executed. 
Updates to the global time variable also are coordinated by the scheduler. 

In this case, the list is a list of  operations from a text file. As part of  the 
construction of  the class, StringReader, whose object tracks this pending 
list, the file’s content is read. 

3.4.3 Clock: The global time variable 

The global time variable records the current simulation time. The 
simulation must keep track of the current simulation time, in whatever 
measurement units are suitable for the system being modeled. In discrete-
event simulations, as opposed to real-time simulations, time ‘hops’ because 
events are instantaneous – the clock skips to the next event start time as 
the simulation proceeds. It can be updated by the scheduler. 

In this case, this is the serial number of  the operation with the first number 
given the serial 1. The way the experiment is designed is such that it reads 
12 operations. See Section 3.6, Design of  Experiment. So the reading 
routine apart from recording the serial number (clock) also ensures that it 
does not overstep. 

3.4.4 Event processing 

Each kind of event in the system will typically have its own event-
processing routine to simulate what happens when that event occurs in a 
real system. These routines may update the global state and they may 
generate additional events that must be inserted into the pending-event list 
by the scheduler. The processing of each event depends entirely on the 
system being simulated though. 

In this case, each solution has its own way of  processing an event. For the 
single-tree solution, every event processing involves testing if  the key-tree 
has tipped over the cliff. If  so, a new tree is created as part of  the event 
processing. See Section 3.6, Design of  Experiment. 
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3.4.5 Event generation 

Discrete event simulators are often classified according to the technique 
used to generate events. Commonly used classifications are execution 
driven, trace driven, and distribution driven. 

The simulator for this thesis obtains the events from a prepared text file. 
There are twelve of  them as explained in Section 3.6, Design of  
Experiment. 

3.4.6 Statistics: Recording and summarisation of data 

In addition to maintaining the state variables necessary for simulating the 
system, the model must also maintain appropriate event counts and time 
measurements. These values are used at the end of the simulation to 
calculate appropriate statistics to summarize the simulation results. 

In this case, the statistics are simply the average of  each variable values as 
recorded after each clock step (event). The summing is also done after each 
event. These averages appear at the end of  the output. See a sample in 
Appendix 2. 

3.4.7 Ending condition 

Because events are bootstrapped14, theoretically a discrete-event simulation 
could run forever. So the simulation designer must decide when the 
simulation will end. Typical choices are “at time t” or “after processing n 
number of events” or, more generally, “when statistical measure X reaches 
the value x” 

In this case the operations to read have been set at 12 therefore after 
“time” 12 it stops. 

3.4.8 Simulation Algorithm or Engine Logic 

The overall processing done by a DES can be summarised in the steps: 
Start 

Initialize the following 

   - number of operations to process (Ending Condition). 

   - the dependent variables(the system state variables). 

   - operation serial number (Clock – to zero). 

                                                             

14
 Bootstrapping usually refers to the starting of a self-sustaining process that is supposed to 

proceed without external input. In computer technology the term (usually shortened to booting) 

usually refers to the process of loading the basic software into the memory of a computer after 

power-on or general reset, especially the operating system which will then take care of loading 

other software as needed. 
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   - the cumulative statistical variables (to zero) 

while operation serial < number of operations to process 

   Pick operation from list (remove next event from pending list) 

   dispatch the operation to appropriate routine 

   increase each cumulative statistical variables 

        by corresponding updated state variables value. 

   increment operation serial by one (i.e. update global time) 

Compute the averages (Generate statistical report). 

3.5 Validation and Verification 

The quality of the results obtained from any simulation of a system is 
fundamentally limited by the quality of the assumptions made in 
developing the simulation model (Lilja, 2000). Verification and validation 
are independent procedures that are used together for checking that a 
product, service, or system meets requirements and specifications and that 
it fulfils its intended purpose. The words "verification" and "validation" are 
sometimes preceded with "Independent" (or IV&V), indicating that the 
verification and validation is to be performed by a disinterested third party. 

3.5.1 Validation of the simulator 

Validation is the process of determining the degree to which a model, 
simulation, or federation of models and simulations, and their associated 
data are accurate representations of the real world from the perspective of 
the intended use(s). The validation process attempts to ensure that the 
simulator accurately models the desired system. In other words, validation 
attempts to determine how close the results of the simulation are to what 
would be produced by an actual system (Lilja, 2000). 

The simulator when run has an execution path for validating it known as 
the “Work Bench”. When the user gets into this branch of  execution, the 
outputs are displayed on the screen for inspection. The user can perform 
all the operations and watch their output; the operation menu is at the 
bottom and the output of  pervious operation at the top. It is interactive; 
the user chooses an operation and sees the outcome. See Section 3.7. 

3.5.2 Verification of the simulator 

Verification is the process of determining that a computer model, 
simulation, or federation of models and simulations implementations and 
their associated data accurately represent the developer's conceptual 
description and specifications. Verification is the process of determining 
that a model is implemented correctly (Lilja, 2000). 
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The adherence of  the simulator to the structure of  a discrete event 
simulator is explained in Section 3.4. 

3.6 Design of Experiment 

In general usage, design of experiments (DOE) is the design of any 
information-gathering exercises where variation is present, whether under 
the full control of the experimenter or not. The primary goal of design of 
experiment is to determine the maximum amount of information about a 
system with the minimum cost. The cost includes the time and effort 
required to gather the necessary data, plus the time and effort needed to 
analyse these data to draw some appropriate conclusions. Consequently, it 
is important to minimise the number of experiments that must be 
performed while maximising the information obtained. (Lilja, 2000). 

From the resulting measurements obtained, from the carefully selected 
experiments, the experimenter can determine the effects on performance 
of  each individual input factor and the effects of  their interactions. 

The simplest design for an experiment varies one input (factor) while 
holding all other inputs constant. The experiments carried out for this 
thesis are all of  this kind. One factor, initial number of  users, is chosen and 
the other, operation stream sequences, is varied. The opposite extreme is a 
full factorial design with replication in which the system’s response is measured 
for all possible input combinations. With this type of  data, it is possible to 
determine the effects of  all input variables and all of  their interactions, 
along with an indication of  the magnitude of  an error. However, full 
factorial design can require a very large number of  experiments. A system 

with  factors each of  which has  possible levels requires  separate 
experiments. To reduce the total number of  experiments that must be 
performed, the experimenter can reduce either the number of  levels used 
for each input variable, or the total number of  inputs. 

3.6.1 Terminology 

Researchers who focus on causal relations usually begin with an effect, and 
then search for its causes. The input variables or cause variable, or the one 
that identifies forces or conditions that act on something else, are called 
factors. In some disciplines the popular term is independent variable. These are 
the variables the experimenter can control or change. 
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The factors for the experiment conducted for this thesis are the initial 
number of  users, operation stream and, in addition, for the multi-tree solution, 
the height for the mini-trees. The specific values to which a factor may be set is 
known as levels of  the factor. For the experiment conducted for this thesis, 
the levels for the initial number of  users is three, for operation stream, it is 
four and for the mini-tree height, it is seven. 

The response variable is the output value that is measured as the input values 
are changed. It is the effect or the result or outcome of  another variable 
and is commonly referred to in some disciplines as the dependent variable. 
Other terms used for it are outcome variable and effect variable. 

This goal of  this thesis is finding out how a broadcast encryption scheme 
implemented using a single binary tree, that shrinks and expands by level is 
response to population of  users, compares in efficiency with the multi-tree 
solution proposed in  (Chen, Ge, Zhang, Kurose, & Towsley, 2004) in 
terms of  the following parameters: 
� The key storage cost at the member side, 

� The multicast cost and 

� The unicast cost 

Therefore these three are the response variables of  the experiment. 

Replication means completely rerunning the experiment with all of  the same 
input levels. This is useful in situations where measurement of  the response 
variable is subject to random variations so that replications of  an 
experiment determine the impact of  measurement error on the response 
variable. The experiment for this thesis deals purely with nonnegative15 
integers and therefore and therefore replication, whatever number of  times 
is carried out, will give the same result. Indeed, the experiments are in a 
way just confirmatory tests that the model is working correctly. 

An interaction between factors occurs when the effect of  one factor depends 
on the level of  another factor. In some disciplines, the variable whose level 
alters the impact of  another is called a moderating variable. A moderating 
variable represents a process or a factor that alters the impact of  an 
independent variable X on a dependent variable Y. It influences, or 
moderates, the relation between two other variables and thus produces an 
interaction effect. In other words, it has a strong contingent effect on the 
independent variable-dependent variable relationship. 

                                                             

15
 A nonnegative integer r, means that r ≥ 0. Positive integer n, means that n > 0. 
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The following sections describe all the variables that were used in the 
experiments. 

3.6.2 The response variables 

As noted in previous section, the response variables are the performance 
metrics set out in the research question, namely message expansion, user storage 
and unicast i.e. outputs from the experiments are the performance metrics. 
The following sections are brief descriptions for each: 

Multicast Cost or Message Length or Message Expansion 

This is the length of the header that is attached to , which is 

proportional to , the number of sets in the partition covering . 
The multicast cost is equal to the minimum number of subsets used to 
cover the active members in the key tree. This is the same as the number of 
maximal chains in the Steiner tree created by the key server. This is 
computed as explained at Section 2.5.1. This is also the same as the 
message header or message expansion and is a measure of the rekeying 
cost. 

Storage size at the receiver 

This is the  the private information the user needs to know in order to 
recover the TEK during rekeying. This has been shown in Section 2.5.2 to 
be  

 
where  is the height of the key tree at the key server. 

 could simply consists of all the keys  such that , or if the key 
assignment is more sophisticated it should allow the computation of all 
such keys. 

This could also be interpreted as a measure of  the time taken to process a 
message at the receiver; i.e. performing decryption and other types of  
operations such as a user determining if  they are one of  the intended 
receivers. 

Unicast Cost 

This is simply the unicast message count - the number of messages 
containing the private information (typically, keys) that a new member 
must be sent. Note that a new member being admitted or a member being 
revoked may cause other users to be sent their private information too. 
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For the experiment of  the thesis, the unicast cost is the number of  joining 
members and shifted members. The secret information is delivered to a 
user when that user joins the group for the first time. Since a member’s 
position in the key tree is fixed, no additional unicast costs are incurred 
when the member returns to the group. But a returning user who has never 
been a leaf  of  the current key tree is really a shifted member and therefore 
also receives a unicast message. 

3.6.3 The Factors 

A factor is the presumed cause in an experimental study. It is the variable 
the experimenter has control over, what they can choose and manipulate 
i.e. the values of a factor are under experimenter control. It is usually what 
the experimenter thinks will affect the dependent variable. In this 
framework, the independent variables are a set of operations and the 
number of initial privileged users also referred to as members. 

Number of initial Users 

As part of the “booting process”, the algorithms that implement the 
simulators read the users initially from a text file. The number of initial 
users is an input to the algorithm. 

Operation streams 

An operation stream is simply sequence of operations executed by the 
algorithm. A stream can be of any length i.e. any number of operations. 
The operations used to generate the results presented in Chapter 5 are the 
four operation which each lead to an increase or decrease of number of 
users or number of members. 

operation does this… 

admit introduces a new user as a member 

delete removes a user from the system 

revoke suspends a member, making the user a non member 

restore changes the status of a non-member to a member 

An operation stream is a permutation of  any number of  these four 
operations. The single-tree algorithm does not need any other input. See 
figure 14. 
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Figure 14: The single-tree solution 

The mini-trees height 

In the multi-tree solution, the height of the mini trees affect the user 
storage directly since the user storage is a measure of the tree height. This is 
because each user corresponds to a leaf in the key tree and the number of 
ancestors (which is a measure of the tree height) is a measure of the key 
user storage. Therefore the lower in the key tree a user is, the bigger the 
user storage. It may also affect the other variables. For example the bigger 
the height chosen, the bigger the key tree base and therefore the higher the 
chances of a poor user profile resulting in higher message expansion. 
Figure15 depicts the multi-tree solution setup. 

 

Figure 15: The Multi-tree solution 

The following sections are a discussion on the experiment that produced 
the results presented in Chapter 4. 

The experiments are carried out at two possible conditions; the typical 
condition and the cliff  condition. The typical condition is the condition that 
the solution is assumed to operate is most of  the time as justified in the 
explanation. The cliff  condition is a condition in which the server may 
become unavailable for some time after an operation. 
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3.6.4 The cliff condition 

The simulator uses a key tree. The tree used is a perfect binary tree. This 
means that the number of leaves of the tree is a power of two. In a key 
tree, a leaf corresponds to a user. The key tree space usage is therefore best 

when the number of members is a power of  i.e. . It should be clear 
that the worst case key tree space usage is when the number of members is 

one more than a power of 2 i.e. . These two extremes are referred 
to in this thesis as cliff conditions because either adding a member to 

members or removing a member from  members results in tree 
recreation. During tree creation the server cannot process request because 
the key tree which is its most important component does not exist. 

Worst-Case and Best-Case Efficiency 

As explained in Chapter , the tree creation is the costliest operation in the 

single tree solution. When it takes place, the key server,  is not available to 
serve members. The efficiency of the single tree solution depends on how 
infrequently this operation takes place. This costly operation takes place 
because: 
� a user is either being admitted as a member or 

� a member is being revoked or  

� a user is being deleted from the system or 

� a previously revoked member is being readmitted. 

Each of these operations is a complimentary operation to one of the other 
three operations. They are each applied three times in a complimentary 
manner to create an operation stream of 12 operations i.e. if delete is applied 

on user , then the complementary admit is also applied on  in future. 
Each input stream of operations involves six users – three already in the 
system as members and three outside the system. The three users in the 
system are each revoked and reinstated as members while the users outside 
are each admitted as a member and deleted from the system. 

The number of  ways one can order the 12 operations is high. The orders 
that are of  interest are only a few. For each of  the two extreme possible 
space usage of  the key tree, the way in which the operations are ordered 
(streamed) can results in the maximum possible times the key tree creation 
takes place - the worst-case input operation stream for the system. Similarly, 
there is the best-case operation input. 
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Definition: The worst-case efficiency of an algorithm is its efficiency for 

the worst-case input of size  which is an input (or inputs) of size  for 

which the algorithm runs the longest among all possible inputs of that 

size. (Levitin, October, 2011). 

Definition: The best-case efficiency of an algorithm is its efficiency for 

the worst-case input of size  which is an input (or inputs) of size  for 

which the algorithm runs the fastest among all possible inputs of that 

size. (Levitin, October, 2011). 

The worst-case key tree space usage is when the members are more than a 

power of  two by one i.e. . For this number of  users, the worst case 
operation input stream can be encoded WCWC where the first two 
characters correspond to operation and the last two for user space usage so 
that in full it is “worst-case operation stream for the worst-case user input”. 
Similarly there is a BCWC (“best-case operation stream for the worst-case 

user input”) stream. These two streams are summarized in . 
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Table 5: The streams used with worst initial user input 

 

The best-case key tree space usage is when the members are a power of  

two i.e. . For this number of  users, the worst case operation input 
stream will be known as BCWC and the best case operation input will be 

known as BCBC. These two operation inputs are summarized in . 

Less or more than three applications of  an operation in a stream could still 
work. For example one application of  each operation could can work for 
the purpose of  this experiment. However, the results presented are 
statistical – the mean value of  the values obtained after each operation has 
been executed. In table 5, the expected response in terms key tree creation 
is listed for each operation. The worst-case operation input with one 
application of  each of  the four operations would still end up with the key 
tree being created two times. This might lead one to conclude that in the 
best case scenario, the tree creation (a very undesirable action) occurs two 
times within execution of  four operations! 

More than three applications of  each operation lead to a harder means of  
determining the best-case sequence. Beyond three, may require an 
automated juggling of  the operations to determine the best-case input – 
pencil and paper method becomes harder to use. 
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Table 6: The streams used with best initial user input  

 

So there are four streams for the cliff  condition 
Stream name Means… 

WCWC worst-case operation stream input for a worst-

case key tree space usage 

BCWC best-case operation stream input for a worst-case 

key tree space usage 

WCBC worst-case operation stream input for a best-case 

key tree space usage 

BCBC best-case operation stream input for a best-case 

key tree space usage 

From the tables above, we can see that the worst-case operation input is 
like a successful DoS attack on the key server. The system spends all the 
time creating the key tree and doing completely no useful work! But from 
the forgoing discussion, probability of  this situation to occur is practice is 
almost nill. If  it occurs at all, it is highly likely that it is an attack on the 
system. This could form a basis for an algorithm that detects if  the system 
is under attack. 

3.6.5 Typical Test Case 

The four operation streams discussed in the previous section are meant for 
testing performance at boundary condition which in the context of this thesis 
is called cliff conditions tests. They are performed on a key tree that is either 
full completely or one that would be full if one member was not there. 
These two conditions are called the cliff conditions because either adding a 
member or removing a member results in tree recreation. In typical usage, 
the probability of reaching the cliff condition is slim from the following 
observation. If the current condition is cliff and members are  
� increasing, then the next cliff arrives when members double 
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� reducing, then the next cliff arrives when members have reduced by 

half 

Therefore once the key tree crosses a cliff  condition, the tree becomes stable 
for a “long time”. The only other time that the tree is recreated is when the 
holes are “too many” in the user profile. For this to occur, there should be 
admissions of  new users and revocations of  existing users only and these 
two be comparable in number. It is very unlikely in typical usage that 
revocations are comparable in number with admissions of  new members. 

Typical test case consists of  a key tree with  members - this way the 
cliff  condition is furthest and therefore the number of  revocations and 
admissions are unlikely to result in key tree recreation. The operation 
streams used in the experiment are the same ones used for the cliff  
condition test. 

3.7 How the simulator is run 

The single-tree solution and the multi-tree solutions were simulated by a 
computer program written in C++. To ensure fairness for the two 
competing solutions, they are implemented using the same libraries and 
base classes. These are the steps one goes through when running the 
simulator: 
� When one runs the simulator from the operating system command line, 

one may provide as arguments the source file that contains members’ 

names and the number of members to read into the system. If one 

does not provide these, the simulator reads users from a text file 

named “testdataLX.txt” and reads all the user names in the file. This 

default text file must reside in the same directory as the simulator 

executable file. 

� Once the simulator starts running it asks for the height of the tree(s) the 

multi-tree solution will be using. This has to be known in advance and 

cannot change once the system has read it from the user. 

� Then it reads the users into each of the implementations. But just before 

reading, it determines, among other things, the new line delimiter 

used. This differs between windows, Mac and unix-like systems. 

� Once it has read users, it presents a menu of three items “Work Bench”, 

“Test Run” and “Exit”. Exit take the user out of the system back to the 

operating system. The other two lead to menus. See the Figure 16. 
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Figure 16: The simulator running with mini-trees height of 11 for the 

multi tree thread. 

In this example, the users are initially 4; this value, 4 and the input file 

for users have been passed at the command line as arguments to the 

simulator executable. 

If  the user takes the “Test Run” branch, they are confronted with a menu 
of  four choices; each a combination of  “Best or Worst-case operation” and 
“Best or Worst-case user input”. See the screen shot in figure 17. 
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Figure 17: The simulator waiting for user choice for test run. 

For the cliff  condition, the user should have read members totaling a 
power of  two. Before it starts the test run that should be “Worst-case user 
input”, it adds a user whose name is “omaya”. Therefore for this test run to 
succeed there should be no user in the system with the name “omaya”. The 
operation streams come from text files with the names “inop??user??.txt” 
where the “??” could be “bc” for best-case or “wc” for worst-case. Each of  
these files contain 12 lines that correspond to applications of  the four 
operations “add”, “delete”, “revoke” and “restore” each applied three time. 
The first character on each line is a code for the operation as follows; 6 is 
revoke, 7 is restore, 8 is add and 9 is delete. A line that reads “7mangi” 
means restore back the previously revoked user whose user name is 
“mangi”. Below is the actual content of  “inopbcuserbc.txt” used in the test  

 

========= content of “inopbcuserbc.txt” ========== 

6makamba 

7makamba 

6shikanda 

7shikanda 

6abuyeka 

7abuyeka 

8mugabe 

8uhuru 

8opanga 

9opanga 

9uhuru 

9mugabe 
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Once the user run one of  these test runs, the output goes to a 
corresponding file named “outop??user??##.txt” where the “##” stands 
for the height that multi-tree uses in the test for the mini-trees. The content 
of  this file is a detailed output which shows the state of  affairs after each 
operation. It is quite long. The results that are tabled in, Chapter 4, Results, 
are manually gleaned from this output file. An actual output with 524,288 
initial users for “outopbcuserbc11.txt” is shown in Appendix 2 

The flowchart in Figure 18 shows how the simulator runs and interacts 
with the user. 

 

Figure 18: How the user interacts with the simulator 

The summary results presented in the next chapter have been manually 
extracted from the performance output file generated by the simulator for 
presentation. The detailed output of  the simulator has these summaries at 
the end of  the file. As already noted, an actual output with 524,288 initial 
users for “outopbcuserbc11.txt” is shown in Appendix 2. 

3.8 Note on the experiment 

Note that to perform the tests, it is the user to choose the appropriate 
initial number of users. 
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� For the cliff condition test, the number of initial users should be a 

power of two i.e.  or . 

� For the typical condition test, a user must choose number of initial 

users that are half power of two plus a power of two i.e.  
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Chapter 4: Results and Discussion 

The results are presented as a comparison of the performance of the multi-
tree solution proposed in (Chen, Ge, Zhang, Kurose, & Towsley, 2004) 
and the proposed single-tree solution in this thesis using the metrics stated 
in section 1.8. Each of the operation streams described in the Section 3.6, 
Design of Experiment, for the single tree implementation is also applied on 
the implementation of the multi-tree Dynamic SDR running with 
allocations unit whose tree heights are 11, 15, 17, 19, 20, 21 and 22, and the 
“outputs” compared. 

4.1 The cliff condition 

The best case user space usage is attained when members are a power of  

– members are equal to  (n = 0, 1, 2, …, 6316). In such a case, the user 
profile has no holes and the message expansion is 1. On the other hand the 
worst case user space usage is when the members more than a power of 2 

by one – members are equal to . For each of these two cliff 
conditions, there is a worst case operation stream input and a best-case 
operation stream input (see Section 3.6, Design of Experiment). 

The summary of  the cliff  condition test results obtained in are shown in Table 
7. For the boundary/cliff  condition, the members (independent variable) is 

set at  and . The former is the best case key tree usage and the 
latter the worst-case key tree usage. They are called cliff  condition because 
of  the potential “catastrophic” consequence of  adding or removing a 
member. See the previous chapter for more details on this. A sample of  the 
detailed results are in the Appendix 2, 3 and 4. 

Generally, the taller the key tree, the bigger the storage on the user side. 
This is clear from the results of  the multi-tree side. This is true also for the 
single-tree solution indeed for any solution based on a perfect binary (key) 
tree. Another point to note is that the shorter the tree, the lager the 
message expansion. The conservation laws roughly apply to these two 
metrics “when one increase the other must reduce and vice versa”. This 
can be seen as one moves along the rows containing the values for the two 
parameters for the multi-tree solution. 

                                                             

16
 The C++ unsigned int data type limit 
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For the single tree solution, this can also be seen in the details (Appendix 2, 
3 and 4 ) as one moves down the column for the single tree. Whenever the 
tree expands or shrinks the storage size decreases or increases respectively. 
The last column (result for the multi-tree) defy this trend though. The user 
storage goes higher but the message expansion is still stuck at 1. This is 
because of  the weakness in the solution which is a relic of  the static SD 
scheme. In static SD scheme, once a tree size has been chosen, it cannot 
change. This results in space abuse at the user side and even at the server. 
At user side because a user now must store more keys with one completely 
useless and at the server because a smaller tree could accommodate those 
users but now the tree has to as was chosen at initialization stage. As the 
single tree solution shown for the same number of  users, they can fit on a 
smaller tree and the keys at the user can be less. 

In the single-tree solution, the number of  users determines the size of  the 
tree, hence the key storage at the users. The tree size is the smallest 
possible, hence user storage is also the lowest possible. Therefore, 
whenever the multi-tree solution achieves a smaller key storage at the user 
side, it must perform poorer in message expansion. 

Let us now look at the performance of  the two at each performance 
metric. These results obtained confirm all the expectations: 
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Table 7 Cliff Condition mean results 

 
Single-

Tree 

Multi Tree (below is mini-tree height) 

    H=11 H=15 H=17 H=19 H=20 H=21 H=22 

msg expansion BCBC 1 256 16 4 1 1 1 1 

 BCWC 1 257 17 5 2 2 2 2 

 WCBC 1 256 16 4 1 1 1 1 

 WCWC 1 257 17 5 2 2 2 2 

unicast messages BCBC 87381 0 0 0 0 0 0 0 

 BCWC 87381 0 0 0 0 0 0 0 

 WCBC 524288 0 0 0 0 0 0 0 

 WCWC 524288 0 0 0 0 0 0 0 

user storage BCBC 199 67 121 154 191 211 232 254 

 BCWC 202 67 121 154 191 211 232 254 

 WCBC 201 67 121 154 191 211 232 254 

 WCWC 201 67 121 154 191 211 232 254 

4.2 Message Expansion 

This is also known as Multicast Cost or Message Length. Multicast cost 
because you send the same message multiple times each encrypted with a 
different key and Message Length because from the server point of view, it is 
just a bunch of bytes being transmitted. 

The high value for the multi-tree solution when the tree height is 0 is 
expected. Each user is in their tree alone. Therefore when sending a 
message, the message must be separately encrypted using each users key. 
The more users are packed in one tree, the smaller this value. This can be 
seen as bigger trees are used – as the reader move to the right across the 
tables. 
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The single tree-solution packs members in one tree all the time, and this 

tree is full (of  users) on average throughout the  operations. That is why 

this is . If  the reader looks at the details in the appendix, they notice that 

it becomes  at the seventh operation - when the tree expands. 

The message expansion of  the single tree solution is never higher than the 
message expansion of  the multi-tree solution whatever the height for the 
mini-tree chosen. This is partly because of  the design policy of  the single 
tree solution of  ensuring the user fit into the smallest possible tree and 
partly because of  the design of  the multi tree solution of  potentially having 
members in multiple trees at the same time. 

So the single tree solution is at worst as efficient as the multi-tree solution. 
This addresses the research question positively – the single tree solution is 
efficient in message expansion. 

4.3 Storage Size at the Receiver 

How much private information (typically, keys) does a receiver need to 
store? If the key assignment is more sophisticated the information should 

allow the computation of all the keys  such that . For the results 

listed,  is obtained from the formula (see Section ) 

 
When the key tree is small, the key storage is small, because the size of the 
key is proportional to the height of the key tree. This can be seen as one 
moves from the left to the right – the tree that hosts a user becomes bigger 
as one moves from left to right. 

At tree height of   for the multi-tree solution, the tree height is exactly 
the same size as the tree of  the single tree implementation. That is why 
mean user storage are about equal. The small difference is caused by the 
fact that in the multi-tree solution, the user storage is constant while this 
changes in the single-tree solution. 

Looking at the details in the appendix, one should notice that at the  

operation, the user storage goes up to  from . This is because the 
tree becomes bigger at this point. 
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The single tree solution ensures that user storage is always at its minimal. If  
we look at the results, we notice that the mean storage is higher for the 
single tree solution, at the boundary condition tests. This is because in 
these tests, the tree was created with a bigger height during the processing. 
For the multi-tree solution, another tree was created of  the same size to 
accommodate the new user. So the multi-tree does not increase the user 
storage – it keeps it constant throughout – but the price it pays is a bigger 
space for the key tree at the server; the resulting two key trees of  the multi-
tree solution have more nodes in total than the single tree of  the single-tree 
solution. 

Otherwise, as we see later, during typical usage, the user storage remains 
stable for the single tree solution. 

Storage size could also be interpreted as a measure of  the time taken to 
process message at the receiver; i.e. performing decryption and other types 
of  operations such as a user determining if  they are one of  the intended 
receivers. 

Again here, the single tree solution answers the research question positively 
– it is efficient in storage at the user side. Indeed this is a positive 
consequence of  the design goal of  the single-tree solution. (See Section 2.5 
for details) 

4.4 Unicast Count 

This is simply the unicast message count, the number of messages 
containing the private information (typically, keys) that a new member 
must be sent. This message must be sent to a member occupying a new 
location on the key tree – this could be because the member is new or they 
are shifting to new location from where they are now. Note that for the 
single-tree solution, a new member being admitted or a member being 
revoked may cause other users to be sent their private information too. 

For the multi-tree solution, the unicast message count averages to zero 

because it is only the admissions that require unicast. Out of  the  
operations, only three are admissions. 
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The unicast count at the boundary condition tests is higher for the single 
tree solution. This is expected because in each of  the tests, key tree creation 
takes place in the course of  executing the operations – two times for the 
BCWC and BCBC operation streams and 12 times for the WCBC and 
WCWC i.e. each time an operation is executed! When the key tree is 
created, a unicast must be sent to each user who will be hosted on it – all 
the current members. For the single tree solution, this means all members! 
As explained in section 3.6.4, the worst case operation input for either case 
results in the single tree system spending all its time creating the key tree. It 
is explained there that this is may indicate that the system is under a DoS 
attack since the sequence operation stream that should lead to the situation 
is “not natural”. 

For the multi-tree solution, an extra-tree is created and only users shifting 
to this newly created tree are sent a unicast. So in this metric, the single tree 
is potentially inefficient – in case a tree creation takes place. 

4.5 Typical Usage Results 

For typical usage, the value of  used is taken to be 

 

This is a situation where the cliff  condition is far – to reach a cliff, one 
third of  the members need be removed or added. Therefore tree creation is 
unlikely and this is a typical situation in real practice. The same operation 
streams used for the boundary conditions are the same ones used with the 
hope that this can more or less depict typical usage. 

The results shown next are the ones for a typical situation – far away from 
the boundary conditions. 
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Table 8: Typical mean results 

 
Single-

Tree 

Multi Tree 

    11 15 17 19 20 21 22 

msg expansion BCBC 1 192 12 3 1 1 1 1 

  BCWC 2 193 13 4 2 2 2 2 

  WCBC 2 192 12 3 2 2 2 2 

  WCWC 2 193 13 4 2 2 2 2 

unicast messages BCBC 0 0 0 0 0 0 0 0 

  BCWC 0 0 0 0 0 0 0 0 

  WCBC 0 0 0 0 0 0 0 0 

  WCWC 0 0 0 0 0 0 0 0 

user storage BCBC 191 67 121 154 191 211 232 254 

  BCWC 191 67 121 154 191 211 232 254 

  WCBC 191 67 121 154 191 211 232 254 

  WCWC 191 67 121 154 191 211 232 254 

In typical usage, the single-tree implementation is quiet stable; 
� the message expansion is low and remains so 

� the user storage is at its lowest possible and remains so 

� the unicast cost is incurred only when a new user is admitted 

4.6 Discussion 

The design goal of the single key tree solution ensures that the user storage 
and message expansion are all the time at their possible lowest. At the 
boundary conditions, we see that this turns out to be catastrophic for the 
two worst-case operation inputs – the system spends all it time creating the 
key tree. In typical usage however, there is no chance that the tree creation 
takes place - these values remain at their lowest possible. 
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In typical usage, the two solutions tie on each metric when the multi-tree 

solution uses key tree whose height is . This is because the single-tree 
solution is also using a tree of  same height. From the operations being 
used in the test, the tree does not get full for both or for the single-tree 
solution the members do not reduce by one third. When the tree is full, any 
addition of  a member requires that the single-tree solution creates a new 
tree to accommodate them and for the multi-tree solution, it creates 
another tree of  same size as the existing one to accommodate new 
members. 

In typical usage, we see that in all the other columns where the multi-tree 

solution is not using a key trees with height of  , it performs better on 
one metric but very poorly on another metric. When the height is less than 

, the message expansion is worse than the single tree’s although the user 
storage is lower (therefore better). However remember that the header in a 
broadcast message (which is really message expansion) is the most 
important part when one analyses any broadcast encryption scheme. So 
really the single-tree is performing better on this metric. 

At height of  , they tie as pointed out but beyond height , they still tie 
but the user storage is higher for the multi-tree solution. So although they 
tie on the more important metric, the multi-tree solution does poorer on 
the user storage metric – and would do even worse with bigger heights 
because the bigger the key tree height, the higher the user storage. 
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Chapter 5: Conclusions and 

Recommendations 

5.1 Trade-off between unicast cost and multicast cost 

Dynamic SDR reduces multicast costs by inevitably introducing additional 
unicast, by which the secret information is delivered to shifted members or 
new members. In the single tree solution, emphasis is on holding users in 
the smallest key tree possible. A positive consequence is that the message 
expansion will always be low. This inevitably comes at a cost. The cost is an 
additional unicast over and above the multi-tree solution at the boundary 
conditions – when tree must be recreated because the current members are 
more than the existing tree can hold or they are few enough to be held on a 
smaller tree than the existing tree. As explained in Section 3.6.4, the 
probability of this occurring is very low. 

5.2 Spreading the storage burden 

The single tree solution is a more pure implementation of SD dynamic 
Revocation. The multi-tree solution still carries some of the baggage of the 
Static SD. In particular, once a tree size has been chosen, it remains so 
forever. To ensure that new users can be added, the multi-tree solution 
creates more trees of same height. This way, the burden on the user 
remains the constant throughout the operation of the system. 

The single tree solution is more dynamic in the sense that even users take 
part in the implementation of  the dynamism. When the single tree at the 
key server increases or reduces in size, each member feels the shock in the 
form of  an increase or decrease respectively, in size of  their key ring. This 
somewhat ensures the server and the members share the burden of  space 
usage. For the same number of  members, if  they are hosted on multiple 
mini trees in the multi-tree solution, the total size of  the key tree is larger 
than the single tree hosting the same number in the single tree solution. 

There is only one disadvantage of  the single tree solution over the multi-
tree solution; the potential unicast to all members. This is very costly. 
However, as explained, this is an extremely rare event during typical usage 
service. Chances of  this occurring are only real at the cliff  condition – 
when the users are the tree is full (a power of  2) or a power of  two plus 1. 

This disadvantage is more than offset by the difficulty of  making the right 

choice of  the height,  for each tree in the multi-tree solution. The 
following is a quote from the Authors  
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“The choosing of  ( ) is a design tradeoff. Based on Proposition 

1, one subset covers at most  members. Therefore, when  is small, 

more resultant subsets are required to cover . Consequently, the 

multicast cost increases. When  is large, we may still encounter the 

space inefficiency of static SDR that active members disperse in the 

subtree. We thus choose  as a reasonable value of , where 

 is the expected value of the number of concurrent members. 

Ideally, we want to put the concurrent members in one subtree.” (Chen, 

Ge, Zhang, Kurose, & Towsley, 2004). 

The last sentence in the quote is indeed true. When all the users are 
accommodated on a single tree (i.e. the two solutions use a tree of  the 
same the same height), the multi-tree implementation beats the single tree 
solution in time usage and tie in all the other metrics. But knowing the 
maximum number of  members in advance is difficult, a fact that the 
authors acknowledge in their abstract. The consequences of  choosing the 
non-ideal height are clearly stated in the quote and is also explained in 
Section 4.3. 

Another trouble with the multi-tree solution is the proposition that to 
improve the performance of  the solution, the users on a mini-tree that 
have an ill formed user profile be migrated to the left-most tree and if  this 
tree is full, a new tree created for them. This is a very costly event that 
involves among other things, a unicast to each migrating user. 

5.3 Contribution 

The three parameters set forth in the research question on which the 
solutions are compared are User storage, message expansion and unicast 
cost. Of these the most important is message expansion. 
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5.3.1 Typical usage 

Message expansion 

Message expansion is the number of times a message is encrypted and then 
broadcasted. In typical usage, the single tree solution’s worst performance 
on message expansion is like the multi-tree’s best. This is because the only 
time the multi-tree solution could match the single-solution is when all the 
users on the multi-tree are on one tree. More than one tree implies that the 
message expansion is at least two (one for each tree) while it may be one on 
the single-tree solution. 

Unicast cost 

The unicast cost is the number of messages to individual members. This is 

the message that conveys the new  (the new keyring) to a user when the 
user becomes a member. In typical usage, the unicast cost is like the multi-
tree’s. This is because in the single-tree solution, the tree is not recreated. A 
typical case is where the number of revocations and admissions of users is 
unlikely to reach the “cliff condition”. 

User Storage 

The user storage may be equal or higher or lower than the multi-tree’s. 
� When it is higher, it means the multi-tree is more trees which are each 

shorter than the single tree being used by the single-tree solution. This 

translates to higher message expansion on the part of the multi-tree 

solution. 

� When it is lower, it means the multi-tree is using one or more tree 

which are each taller than the single tree used by the single-tree 

solution. This also means that the multi-tree is using more space to 

store the key tree. 

5.3.2 Cliff condition usage 

Message expansion 

Message expansion in cliff condition still remains minimal and the multi-
tree can never do better than the single-tree solution. This is because all the 
time, the single-tree keeps users on the smallest possible tree that can 
accommodate them. 

Unicast cost 

This is the nightmare situation in the single-tree solution. Depending on 
the way the operations are arranged, it can result into the key server 
spending all its time recreating the key tree. As explained, this is a rare ly 
expected occurrence in practice. If it happens, the unicast cost is extremely 
high – whenever a tree is (re)created, a unicast message is sent to each 
member. 
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User storage 

User storage is just like in the typical case and for exactly the same reasons 

5.4 Suggestions for Future Work 

5.4.1 The cliff condition nightmare 

Some other algorithm can came into effect at the boundary condition that 
overrides the FIFO operation execution. Such an algorithm is worth 
designing. It may require one algorithm that detects when there is 
“progress towards a cliff” and another when there is “recession backwards 
to a cliff” and wakes up another to deal with the situation. 

5.4.2 Assertions in this thesis 

Another work that would be worth pursuing is a mathematical proof of 
each of the assertions in this thesis. Here are the assertions: 
� A previously revoked member reoccupying their position in the binary 

tree on returning does not compromise forward secrecy. This 

contradicts  (Chen, Ge, Zhang, Kurose, & Towsley, 2004) where they 

say “When a member, m, leaves the group, the position becomes 

empty and will never be used by any member (even m itself). And a 

new TEK is multicast to the members that remain in the group.” 

� The number of user cluster in the user profile directly affected the most 

important measure of performance of a BE, message expansion. This 

thesis attempts to show that the maximum number of clusters 

depends not only on the number of transitions (i.e.  or  

subsequences in the user profile). A more rigorous mathematical 

proof is worth developing. 

5.4.3 The computational time 

This is caused by the fact that by design, any time a user leaves or is 
admitted, the single-tree implementation must determine if the users as 
they are after the operation (admission or revocation) need to be 
accommodated on a new tree to keep the storage cost at the user and 
message expansion at their lowest possible. 

The computational class this algorithm belongs to could be worth studying. 



 

Page 100 of 121 

References 

Amaral, J. N. (2014, November 28). Retrieved November 28, 2014, from José Nelson 

Amaral's Publications: http://webdocs.cs.ualberta.ca/~c603/readings/research-

methods.pdf 

Anderson, K. (2005). Tree Structures in Broadcast Encryption. Linköpings universitet, SE-581 

83 Linköping, Sweden, LIU-TEK-LIC-2005:70; Department of Electrical Engineering. 

Sweden: Linkoping Studies in Science and Technology, Thesis No. 1215. 

Ayash, M. M. (2014, November 28). Research Methodologies in Computer Science and 

Information Systems. Retrieved November 28, 2014, from 

http://www.ptcdb.edu.ps/ar/sites/default/files/%D9%88%D8%B1%D9%82%D8%A9

%20%D9%85%D9%87%D9%86%D8%AF%20%D8%B9%D9%8A%D8%A7%D8%B4.pdf 

Bhattacherjee, S., & Sarkar, P. (June, 2012). Complete Tree Subset Difference Broadcast 

Encryption Scheme. Designs, Codes and Cryptography. January 2013, Volume 66, 

Issue 1-3., 335-362. 

Black, P. (Ed.). (2014, November 28). Retrieved November 28, 2014, from Dictionary of 

Algorithms and Data Structures: http://xlinux.nist.gov/dads/ 

Chen, W., & Dondeti, L. (October, 2002). Performance Comparison of Stateful and Stateless 

Gruop Rekeying Algorithms. Fourth International Workshop on Networked Group 

Communication (NGC'02). Boston, MA. 

Chen, W., Ge, Z., Zhang, C., Kurose, J., & Towsley, D. (2004). On Dynamic Subset Difference 

Revocation Scheme. 

Fiat, A., & Naor, M. (1994). Broadcast encryption. CRYPTO '93 Proceedings of the 13th 

annual international cryptology conference on Advances in cryptology, ISBN:0-387-

57766-1, 480–491. 

Johansson, M., Kreitz, G., & Lindholm, F. (2006). Stateful Subset Cover. Applied 

Cryptography and Network Security Lecture, Notes in Computer Science, 3989, 178-

193. 

Lassalle, D. (January 2005). Broadcast Encryption. GIAC directory of certified professionals. 

Law, A. M. (January 2014). Simulation Modeling and Analysis (5th ed., Vols. ISBN-13: 978-

0073401324). McGraw-Hill Series in Industrial Engineering and Management. 

Levitin, A. V. (October, 2011). Introduction to the Design & Analysis of Algorithms (3rd ed., 

Vols. ISBN-13: 978-0132316811 ISBN-10: 0132316811). 

Lilja, D. J. (2000). Measuring Computer Performance, A Practitioner's Guide (Vols. ISBN 0-

521-64105-5). New York, NY: Cambridge University Press . 



 

Page 101 of 121 

Lotspiech, J., Nusser, S., & Pestoni, F. (August 2002). Broadcast Encryption's Bright Future. 

Computer, 35(8), 57-63. 

Naor, D., Naor, M., & Jeff, L. (July 2002). Revocation and Tracing Chemes for Stateless 

Receivers. 

Obied, A. (April 2005). Broadcast Encryption. Calgary: Department of Computer Science, 

University of Calgary. 

Wikipedia. (2014, November 28). Broadcast encryption. Retrieved November 28, 2014, 

from Wikipedia: http://en.wikipedia.org/wiki/Broadcast_encryption 

Zhang, Y.-C., Yang, C., Liu, J.-B., & Tian, J.-Y. (May 22-24, 2009). Broadcast Encryption 

Scheme and Its Implementation on Conditional Access System. Proceedings of the 

2009 International Symposium on Web Information Systems and Applications 

(WISA’09), ISBN 978-952-5726-00-8 (Print), 978-952-5726-01-5 (CD-ROM), pp. 379-

382. Nanchang, P. R. China. 

.



 

 Page 102 of 121 

Appendix 1 (Actual Sample Output with WCWC 

stream) 

The following is an actual output obtained for the cliff condition of 524,288 initial 
users and multi-tree implementation running with mini-tree of height 11. The 
operation stream is WCWC stream. 

 

The <P8BESingle> starting... 

Init time = <9221> clock ticks 

 

OPERATION: <Revocation of makamba> 

...Key Tree size after = <1048575> = nodes 

...User space after = <524288> = slots 

...Message Expansion = <1> = messages 

...Users After = <524288> = users 

...Users Storage = <191> = keys 

...Unicast = <524288> = messages 

..Took = <3081> = clock ticks 

OPERATION: <Reinstatement of makamba> 

...Key Tree size after = <2097151> = nodes 

...User space after = <1048576> = slots 

...Message Expansion = <2> = messages 

...Users After = <524289> = users 

...Users Storage = <211> = keys 

...Unicast = <524289> = messages 

..Took = <3419> = clock ticks 

OPERATION: <Revocation of shikanda> 

...Key Tree size after = <1048575> = nodes 

...User space after = <524288> = slots 

...Message Expansion = <1> = messages 

...Users After = <524288> = users 

...Users Storage = <191> = keys 
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...Unicast = <524288> = messages 

..Took = <3019> = clock ticks 

OPERATION: <Reinstatement of shikanda> 

...Key Tree size after = <2097151> = nodes 

...User space after = <1048576> = slots 

...Message Expansion = <2> = messages 

...Users After = <524289> = users 

...Users Storage = <211> = keys 

...Unicast = <524289> = messages 

..Took = <3419> = clock ticks 

OPERATION: <Revocation of abuyeka> 

...Key Tree size after = <1048575> = nodes 

...User space after = <524288> = slots 

...Message Expansion = <1> = messages 

...Users After = <524288> = users 

...Users Storage = <191> = keys 

...Unicast = <524288> = messages 

..Took = <2971> = clock ticks 

OPERATION: <Admission of mugabe> 

...Key Tree size after = <2097151> = nodes 

...User space after = <1048576> = slots 

...Message Expansion = <2> = messages 

...Users After = <524289> = users 

...Users Storage = <211> = keys 

...Unicast = <524289> = messages 

..Took = <3421> = clock ticks 

OPERATION: <Deletion of mugabe> 

...Key Tree size after = <1048575> = nodes 

...User space after = <524288> = slots 

...Message Expansion = <1> = messages 
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...Users After = <524288> = users 

...Users Storage = <191> = keys 

...Unicast = <524288> = messages 

..Took = <3008> = clock ticks 

OPERATION: <Admission of uhuru> 

...Key Tree size after = <2097151> = nodes 

...User space after = <1048576> = slots 

...Message Expansion = <2> = messages 

...Users After = <524289> = users 

...Users Storage = <211> = keys 

...Unicast = <524289> = messages 

..Took = <3420> = clock ticks 

OPERATION: <Deletion of uhuru> 

...Key Tree size after = <1048575> = nodes 

...User space after = <524288> = slots 

...Message Expansion = <1> = messages 

...Users After = <524288> = users 

...Users Storage = <191> = keys 

...Unicast = <524288> = messages 

..Took = <2981> = clock ticks 

OPERATION: <Admission of opanga> 

...Key Tree size after = <2097151> = nodes 

...User space after = <1048576> = slots 

...Message Expansion = <2> = messages 

...Users After = <524289> = users 

...Users Storage = <211> = keys 

...Unicast = <524289> = messages 

..Took = <3438> = clock ticks 

OPERATION: <Deletion of opanga> 

...Key Tree size after = <1048575> = nodes 
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...User space after = <524288> = slots 

...Message Expansion = <1> = messages 

...Users After = <524288> = users 

...Users Storage = <191> = keys 

...Unicast = <524288> = messages 

..Took = <2976> = clock ticks 

OPERATION: <Reinstatement of abuyeka> 

...Key Tree size after = <2097151> = nodes 

...User space after = <1048576> = slots 

...Message Expansion = <2> = messages 

...Users After = <524289> = users 

...Users Storage = <211> = keys 

...Unicast = <524289> = messages 

..Took = <3421> = clock ticks 

... <P8BESingle> finished... 

   ...mean key tree size = <1572863> = nodes 

   ...mean user storage = <201> = keys 

   ...mean msg expansion = <1> = messages 

   ...mean unicast messages = <524288> = messages 

   ...Time taken = <38574> = clock ticks 

 

 

 

The <11P7BEMulti> starting... 

Init time = <9542> clock ticks 

 

OPERATION: <Revocation of makamba> 

...Key Tree size after = <1052415> = nodes 

...User space after = <526336> = slots 

...Message Expansion = <257> = messages 
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...Users After = <524288> = users 

...Users Storage = <67> = keys 

...Unicast = <0> = messages 

..Took = <0> = clock ticks 

OPERATION: <Reinstatement of makamba> 

...Key Tree size after = <1052415> = nodes 

...User space after = <526336> = slots 

...Message Expansion = <257> = messages 

...Users After = <524289> = users 

...Users Storage = <67> = keys 

...Unicast = <0> = messages 

..Took = <0> = clock ticks 

OPERATION: <Revocation of shikanda> 

...Key Tree size after = <1052415> = nodes 

...User space after = <526336> = slots 

...Message Expansion = <257> = messages 

...Users After = <524288> = users 

...Users Storage = <67> = keys 

...Unicast = <0> = messages 

..Took = <0> = clock ticks 

OPERATION: <Reinstatement of shikanda> 

...Key Tree size after = <1052415> = nodes 

...User space after = <526336> = slots 

...Message Expansion = <257> = messages 

...Users After = <524289> = users 

...Users Storage = <67> = keys 

...Unicast = <0> = messages 

..Took = <0> = clock ticks 

OPERATION: <Revocation of abuyeka> 

...Key Tree size after = <1052415> = nodes 
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...User space after = <526336> = slots 

...Message Expansion = <257> = messages 

...Users After = <524288> = users 

...Users Storage = <67> = keys 

...Unicast = <0> = messages 

..Took = <0> = clock ticks 

OPERATION: <Admission of mugabe> 

...Key Tree size after = <1052415> = nodes 

...User space after = <526336> = slots 

...Message Expansion = <257> = messages 

...Users After = <524289> = users 

...Users Storage = <67> = keys 

...Unicast = <1> = messages 

..Took = <0> = clock ticks 

OPERATION: <Deletion of mugabe> 

...Key Tree size after = <1052415> = nodes 

...User space after = <526336> = slots 

...Message Expansion = <257> = messages 

...Users After = <524288> = users 

...Users Storage = <67> = keys 

...Unicast = <0> = messages 

..Took = <1> = clock ticks 

OPERATION: <Admission of uhuru> 

...Key Tree size after = <1052415> = nodes 

...User space after = <526336> = slots 

...Message Expansion = <258> = messages 

...Users After = <524289> = users 

...Users Storage = <67> = keys 

...Unicast = <1> = messages 

..Took = <0> = clock ticks 
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OPERATION: <Deletion of uhuru> 

...Key Tree size after = <1052415> = nodes 

...User space after = <526336> = slots 

...Message Expansion = <257> = messages 

...Users After = <524288> = users 

...Users Storage = <67> = keys 

...Unicast = <0> = messages 

..Took = <1> = clock ticks 

OPERATION: <Admission of opanga> 

...Key Tree size after = <1052415> = nodes 

...User space after = <526336> = slots 

...Message Expansion = <258> = messages 

...Users After = <524289> = users 

...Users Storage = <67> = keys 

...Unicast = <1> = messages 

..Took = <0> = clock ticks 

OPERATION: <Deletion of opanga> 

...Key Tree size after = <1052415> = nodes 

...User space after = <526336> = slots 

...Message Expansion = <257> = messages 

...Users After = <524288> = users 

...Users Storage = <67> = keys 

...Unicast = <0> = messages 

..Took = <1> = clock ticks 

OPERATION: <Reinstatement of abuyeka> 

...Key Tree size after = <1052415> = nodes 

...User space after = <526336> = slots 

...Message Expansion = <257> = messages 

...Users After = <524289> = users 

...Users Storage = <67> = keys 
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...Unicast = <0> = messages 

..Took = <0> = clock ticks 

... <11P7BEMulti> finished... 

   ...mean key tree size = <1052415> = nodes 

   ...mean user storage = <67> = keys 

   ...mean msg expansion = <257> = messages 

   ...mean unicast messages = <0> = messages 

   ...Time taken = <3> = clock ticks 

   ...a tree hieght = <12> levels 
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Appendix 2 (Sample Side-by-Side Output with WCWC 

stream) 

The is the same output shown in Appendix 2 but here the outputs from the two 
solutions are shown side by side. 
 
The <P8BESingle> starting... The <11P7BEMulti> starting... 

Init time = <9221> clock ticks Init time = <9542> clock ticks 

  

OPERATION: <Revocation of makamba> OPERATION: <Revocation of makamba> 

...Key Tree size after = <1048575> = nodes ...Key Tree size after = <1052415> = nodes 

...User space after = <524288> = slots ...User space after = <526336> = slots 

...Message Expansion = <1> = messages ...Message Expansion = <257> = messages 

...Users After = <524288> = users ...Users After = <524288> = users 

...Users Storage = <191> = keys ...Users Storage = <67> = keys 

...Unicast = <524288> = messages ...Unicast = <0> = messages 

..Took = <3081> = clock ticks ..Took = <0> = clock ticks 

OPERATION: <Reinstatement of makamba> OPERATION: <Reinstatement of makamba> 

...Key Tree size after = <2097151> = nodes ...Key Tree size after = <1052415> = nodes 

...User space after = <1048576> = slots ...User space after = <526336> = slots 

...Message Expansion = <2> = messages ...Message Expansion = <257> = messages 

...Users After = <524289> = users ...Users After = <524289> = users 

...Users Storage = <211> = keys ...Users Storage = <67> = keys 

...Unicast = <524289> = messages ...Unicast = <0> = messages 

..Took = <3419> = clock ticks ..Took = <0> = clock ticks 

OPERATION: <Revocation of shikanda> OPERATION: <Revocation of shikanda> 

...Key Tree size after = <1048575> = nodes ...Key Tree size after = <1052415> = nodes 

...User space after = <524288> = slots ...User space after = <526336> = slots 

...Message Expansion = <1> = messages ...Message Expansion = <257> = messages 
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...Users After = <524288> = users ...Users After = <524288> = users 

...Users Storage = <191> = keys ...Users Storage = <67> = keys 

...Unicast = <524288> = messages ...Unicast = <0> = messages 

..Took = <3019> = clock ticks ..Took = <0> = clock ticks 

OPERATION: <Reinstatement of shikanda> OPERATION: <Reinstatement of shikanda> 

...Key Tree size after = <2097151> = nodes ...Key Tree size after = <1052415> = nodes 

...User space after = <1048576> = slots ...User space after = <526336> = slots 

...Message Expansion = <2> = messages ...Message Expansion = <257> = messages 

...Users After = <524289> = users ...Users After = <524289> = users 

...Users Storage = <211> = keys ...Users Storage = <67> = keys 

...Unicast = <524289> = messages ...Unicast = <0> = messages 

..Took = <3419> = clock ticks ..Took = <0> = clock ticks 

OPERATION: <Revocation of abuyeka> OPERATION: <Revocation of abuyeka> 

...Key Tree size after = <1048575> = nodes ...Key Tree size after = <1052415> = nodes 

...User space after = <524288> = slots ...User space after = <526336> = slots 

...Message Expansion = <1> = messages ...Message Expansion = <257> = messages 

...Users After = <524288> = users ...Users After = <524288> = users 

...Users Storage = <191> = keys ...Users Storage = <67> = keys 

...Unicast = <524288> = messages ...Unicast = <0> = messages 

..Took = <2971> = clock ticks ..Took = <0> = clock ticks 

OPERATION: <Admission of mugabe> OPERATION: <Admission of mugabe> 

...Key Tree size after = <2097151> = nodes ...Key Tree size after = <1052415> = nodes 

...User space after = <1048576> = slots ...User space after = <526336> = slots 

...Message Expansion = <2> = messages ...Message Expansion = <257> = messages 

...Users After = <524289> = users ...Users After = <524289> = users 

...Users Storage = <211> = keys ...Users Storage = <67> = keys 

...Unicast = <524289> = messages ...Unicast = <1> = messages 
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..Took = <3421> = clock ticks ..Took = <0> = clock ticks 

OPERATION: <Deletion of mugabe> OPERATION: <Deletion of mugabe> 

...Key Tree size after = <1048575> = nodes ...Key Tree size after = <1052415> = nodes 

...User space after = <524288> = slots ...User space after = <526336> = slots 

...Message Expansion = <1> = messages ...Message Expansion = <257> = messages 

...Users After = <524288> = users ...Users After = <524288> = users 

...Users Storage = <191> = keys ...Users Storage = <67> = keys 

...Unicast = <524288> = messages ...Unicast = <0> = messages 

..Took = <3008> = clock ticks ..Took = <1> = clock ticks 

OPERATION: <Admission of uhuru> OPERATION: <Admission of uhuru> 

...Key Tree size after = <2097151> = nodes ...Key Tree size after = <1052415> = nodes 

...User space after = <1048576> = slots ...User space after = <526336> = slots 

...Message Expansion = <2> = messages ...Message Expansion = <258> = messages 

...Users After = <524289> = users ...Users After = <524289> = users 

...Users Storage = <211> = keys ...Users Storage = <67> = keys 

...Unicast = <524289> = messages ...Unicast = <1> = messages 

..Took = <3420> = clock ticks ..Took = <0> = clock ticks 

OPERATION: <Deletion of uhuru> OPERATION: <Deletion of uhuru> 

...Key Tree size after = <1048575> = nodes ...Key Tree size after = <1052415> = nodes 

...User space after = <524288> = slots ...User space after = <526336> = slots 

...Message Expansion = <1> = messages ...Message Expansion = <257> = messages 

...Users After = <524288> = users ...Users After = <524288> = users 

...Users Storage = <191> = keys ...Users Storage = <67> = keys 

...Unicast = <524288> = messages ...Unicast = <0> = messages 

..Took = <2981> = clock ticks ..Took = <1> = clock ticks 

OPERATION: <Admission of opanga> OPERATION: <Admission of opanga> 

...Key Tree size after = <2097151> = nodes ...Key Tree size after = <1052415> = nodes 
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...User space after = <1048576> = slots ...User space after = <526336> = slots 

...Message Expansion = <2> = messages ...Message Expansion = <258> = messages 

...Users After = <524289> = users ...Users After = <524289> = users 

...Users Storage = <211> = keys ...Users Storage = <67> = keys 

...Unicast = <524289> = messages ...Unicast = <1> = messages 

..Took = <3438> = clock ticks ..Took = <0> = clock ticks 

OPERATION: <Deletion of opanga> OPERATION: <Deletion of opanga> 

...Key Tree size after = <1048575> = nodes ...Key Tree size after = <1052415> = nodes 

...User space after = <524288> = slots ...User space after = <526336> = slots 

...Message Expansion = <1> = messages ...Message Expansion = <257> = messages 

...Users After = <524288> = users ...Users After = <524288> = users 

...Users Storage = <191> = keys ...Users Storage = <67> = keys 

...Unicast = <524288> = messages ...Unicast = <0> = messages 

..Took = <2976> = clock ticks ..Took = <1> = clock ticks 

OPERATION: <Reinstatement of abuyeka> OPERATION: <Reinstatement of abuyeka> 

...Key Tree size after = <2097151> = nodes ...Key Tree size after = <1052415> = nodes 

...User space after = <1048576> = slots ...User space after = <526336> = slots 

...Message Expansion = <2> = messages ...Message Expansion = <257> = messages 

...Users After = <524289> = users ...Users After = <524289> = users 

...Users Storage = <211> = keys ...Users Storage = <67> = keys 

...Unicast = <524289> = messages ...Unicast = <0> = messages 

..Took = <3421> = clock ticks ..Took = <0> = clock ticks 

... <P8BESingle> finished... ... <11P7BEMulti> finished... 

   ...mean key tree size = <1572863> = nodes    ...mean key tree size = <1052415> = nodes 

   ...mean user storage = <201> = keys    ...mean user storage = <67> = keys 

   ...mean msg expansion = <1> = messages    ...mean msg expansion = <257> = messages 

   ...mean unicast messages = <524288> = messages    ...mean unicast messages = <0> = messages 
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   ...Time taken = <38574> = clock ticks    ...Time taken = <3> = clock ticks 

    ...a tree hieght = <12> levels 
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Appendix 3 (All Output with WCWC stream) 

The following are values harvested from the outputs for the WCWC operation stream. 
 
  

Single tree 

Multi-Tree 

  H=00 H=05 H=11 H=15 H=17 H=19 H=20 

Init time (clock ticks) 9221 12401 9671 9542 9531 9530 9578 10838 

Operations                 

Revocation of makamba                 

...Key Tree size after (nodes) 1048575 524289 1032255 1052415 1114095 1310715 2097150 2097151 

...User space after(slots) 524288 524289 524320 526336 557056 655360 1048576 1048576 

...Message Expansion(messages) 1 524288 16385 257 17 5 2 2 

...Users After(users) 524288 524288 524288 524288 524288 524288 524288 524288 

...Users Storage(keys) 191 1 16 67 121 154 191 211 

...Unicast(messages) 524288 0 0 0 0 0 0 0 

..Took(clock ticks) 3081 0 0 0 0 0 0 1 

Reinstatement of makamba                 

...Key Tree size after (nodes) 2097151 524289 1032255 1052415 1114095 1310715 2097150 2097151 
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...User space after(slots) 1048576 524289 524320 526336 557056 655360 1048576 1048576 

...Message Expansion(messages) 2 524289 16385 257 17 5 2 2 

...Users After(users) 524289 524289 524289 524289 524289 524289 524289 524289 

...Users Storage(keys) 211 1 16 67 121 154 191 211 

...Unicast(messages) 524289 1 0 0 0 0 0 0 

..Took(clock ticks) 3419 0 0 0 0 0 0 0 

Revocation of shikanda                 

...Key Tree size after (nodes) 1048575 524289 1032255 1052415 1114095 1310715 2097150 2097151 

...User space after(slots) 524288 524289 524320 526336 557056 655360 1048576 1048576 

...Message Expansion(messages) 1 524288 16385 257 17 5 2 2 

...Users After(users) 524288 524288 524288 524288 524288 524288 524288 524288 

...Users Storage(keys) 191 1 16 67 121 154 191 211 

...Unicast(messages) 524288 0 0 0 0 0 0 0 

..Took(clock ticks) 3019 0 0 0 0 0 0 0 

Reinstatement of shikanda                 

...Key Tree size after (nodes) 2097151 524289 1032255 1052415 1114095 1310715 2097150 2097151 

...User space after(slots) 1048576 524289 524320 526336 557056 655360 1048576 1048576 
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...Message Expansion(messages) 2 524289 16385 257 17 5 2 2 

...Users After(users) 524289 524289 524289 524289 524289 524289 524289 524289 

...Users Storage(keys) 211 1 16 67 121 154 191 211 

...Unicast(messages) 524289 1 0 0 0 0 0 0 

..Took(clock ticks) 3419 0 0 0 0 0 0 0 

Revocation of abuyeka                 

...Key Tree size after (nodes) 1048575 524289 1032255 1052415 1114095 1310715 2097150 2097151 

...User space after(slots) 524288 524289 524320 526336 557056 655360 1048576 1048576 

...Message Expansion(messages) 1 524288 16385 257 17 5 2 2 

...Users After(users) 524288 524288 524288 524288 524288 524288 524288 524288 

...Users Storage(keys) 191 1 16 67 121 154 191 211 

...Unicast(messages) 524288 0 0 0 0 0 0 0 

..Took(clock ticks) 2971 0 0 0 0 0 0 0 

Admission of mugabe                 

...Key Tree size after (nodes) 2097151 524289 1032255 1052415 1114095 1310715 2097150 2097151 

...User space after(slots) 1048576 524289 524320 526336 557056 655360 1048576 1048576 

...Message Expansion(messages) 2 524289 16385 257 17 5 2 2 
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...Users After(users) 524289 524289 524289 524289 524289 524289 524289 524289 

...Users Storage(keys) 211 1 16 67 121 154 191 211 

...Unicast(messages) 524289 1 1 1 1 1 1 1 

..Took(clock ticks) 3421 0 0 0 0 0 0 0 

Deletion of mugabe                 

...Key Tree size after (nodes) 1048575 524289 1032255 1052415 1114095 1310715 2097150 2097151 

...User space after(slots) 524288 524289 524320 526336 557056 655360 1048576 1048576 

...Message Expansion(messages) 1 524288 16385 257 17 5 2 2 

...Users After(users) 524288 524288 524288 524288 524288 524288 524288 524288 

...Users Storage(keys) 191 1 16 67 121 154 191 211 

...Unicast(messages) 524288 0 0 0 0 0 0 0 

..Took(clock ticks) 3008 1 1 1 1 1 1 1 

Admission of uhuru                 

...Key Tree size after (nodes) 2097151 524289 1032255 1052415 1114095 1310715 2097150 2097151 

...User space after(slots) 1048576 524289 524320 526336 557056 655360 1048576 1048576 

...Message Expansion(messages) 2 524289 16386 258 18 6 3 3 

...Users After(users) 524289 524289 524289 524289 524289 524289 524289 524289 
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...Users Storage(keys) 211 1 16 67 121 154 191 211 

...Unicast(messages) 524289 1 1 1 1 1 1 1 

..Took(clock ticks) 3420 0 0 0 0 0 0 0 

Deletion of uhuru                 

...Key Tree size after (nodes) 1048575 524289 1032255 1052415 1114095 1310715 2097150 2097151 

...User space after(slots) 524288 524289 524320 526336 557056 655360 1048576 1048576 

...Message Expansion(messages) 1 524288 16385 257 17 5 2 2 

...Users After(users) 524288 524288 524288 524288 524288 524288 524288 524288 

...Users Storage(keys) 191 1 16 67 121 154 191 211 

...Unicast(messages) 524288 0 0 0 0 0 0 0 

..Took(clock ticks) 2981 2 1 1 1 1 1 1 

Admission of opanga                 

...Key Tree size after (nodes) 2097151 524289 1032255 1052415 1114095 1310715 2097150 2097151 

...User space after(slots) 1048576 524289 524320 526336 557056 655360 1048576 1048576 

...Message Expansion(messages) 2 524289 16386 258 18 6 3 3 

...Users After(users) 524289 524289 524289 524289 524289 524289 524289 524289 

...Users Storage(keys) 211 1 16 67 121 154 191 211 
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...Unicast(messages) 524289 1 1 1 1 1 1 1 

..Took(clock ticks) 3438 0 0 0 0 0 0 0 

Deletion of opanga                 

...Key Tree size after (nodes) 1048575 524289 1032255 1052415 1114095 1310715 2097150 2097151 

...User space after(slots) 524288 524289 524320 526336 557056 655360 1048576 1048576 

...Message Expansion(messages) 1 524288 16385 257 17 5 2 2 

...Users After(users) 524288 524288 524288 524288 524288 524288 524288 524288 

...Users Storage(keys) 191 1 16 67 121 154 191 211 

...Unicast(messages) 524288 0 0 0 0 0 0 0 

..Took(clock ticks) 2976 5 1 1 1 1 2 1 

Reinstatement of abuyeka                 

...Key Tree size after (nodes) 2097151 524289 1032255 1052415 1114095 1310715 2097150 2097151 

...User space after(slots) 1048576 524289 524320 526336 557056 655360 1048576 1048576 

...Message Expansion(messages) 2 524289 16385 257 17 5 2 2 

...Users After(users) 524289 524289 524289 524289 524289 524289 524289 524289 

...Users Storage(keys) 211 1 16 67 121 154 191 211 

...Unicast(messages) 524289 1 0 0 0 0 0 0 



 

 Page 121 of 121 

..Took(clock ticks) 3421 0 0 0 0 0 0 0 

Summary (means values)                 

   ... key tree size(nodes) 1572863 524289 1032255 1052415 1114095 1310715 2097150 2097151 

   ... user storage(keys) 201 1 16 67 121 154 191 211 

   ... msg expansion(messages) 1 524288 16385 257 17 5 2 2 

   ... unicast messages(messages) 524288 0 0 0 0 0 0 0 

   ...Time taken(clock ticks) 38574 8 3 3 3 3 4 4 

 


