

UNIVERSITY OF NAIROBI

This research thesis is submitted in partial fulfilment of the requirements
for the award of the degree of Doctor of Philosophy in Computer

Science of the University of Nairobi

SCHOOL OF COMPUTING AND INFORMATICS

Dynamic Subset Difference Revocation

using

One Binary Tree

AUTHOR
Austin Owino Wetoyi

P80/85241/12

SUPERVISOR
Prof William Okelo-Odongo

December 2014

- i-

Declaration

I Austin Owino Wetoyi, whose student registration number is P80/85241/12, hereby declare

that this PhD Thesis entitled Dynamic Subset Difference Revocation using One Binary Tree

my own work and that, to the best of my knowledge and belief, it contains no material

previously published or written by another person nor material which to a substantial extent

has been accepted for the award of any other degree or diploma of the university or other

institute of higher learning. Any uses made within it of the works of other authors in any form

are properly acknowledged at the point of their use and a full list of the references employed

has been included at the last page.

No part of this dissertation may be reproduced without my (the author) prior permission or

the University of Nairobi

Signature:

Date:

This thesis has been submitted for examination with my approval as the supervisor.

Signature:

Name: Prof. William Okelo-Odongo

(School of Computing and Informatics, UoN)

Date:

- ii-

Dedication

to

ochocho, chichicha and buranko,

 who are yet to know what and why daddy is reading

most of, if not all, the time.

hope you all grow up to understand the content of this thesis and much more.

- iii-

Acknowledgments

When I floated my title to the staff at the then Institute of Computer

Science, only one person was comfortable with it and he therefore naturally

ended up being my supervisor. Thanks you so much William Okelo-Odongo (woo).

From our discussions, I learnt so many things that I cannot all list here but high

up there is simulations/modeling.

Thanks to many people at the now School of Computing for simply recognizing

me whenever I visit and finding out how I am progressing; Wagacha, Moturi,

Ronge, Opiyo, Omwenga, Waema, Oboko to name just a few. That seemingly non

consequential little conversation along the corridor that always ended with you

wishing me well with my progress did much more than you would ever imagine.

Then there are my former colleagues at the then Institute of Computer

Science, University of Nairobi when we were pursuing MSc, and former staff

mates at Maseno University and Masinde Muliro University of Science and

Technology some who have finished their PhDs and some still pursuing. That

occasional call you make to find out how the going is does magic. Sometime it is

the one that made me resume the research!

I can’t fail to mention, my current staff mates at the School of Information

Sciences, Moi University. Each of you believed that I can make it, I can do it.

Most conversation with each of you would be littered with a question of the

form “when are completing your studies?” Thank you so much for that belief.

Last but not least are my family members. You are virtually a whole clan and

cannot mention each of you here. The environment I operated in was made

suitable and of course sometimes unsuitable by you. Thank you so so much.

- iv-

Abstract

Broadcast Encryption (BE) means transmitting information that
anyone listening can access but only those selected by the
transmitter, using a suitable criteria, can understand. An example is
the pay TV system. An existing solution known as the Subset
Difference Revocation (SDR) performs this in a stateless manner i.e.
once the system is set up, new receivers are not allowed to join
though existing receivers can each be revoked and restored as
necessary.

This statelessness can lead to unnecessary high key storage for a
receiver and messaging overhead due to potentially poor adjacency of
receivers to each other on the binary key tree when the number of
receivers is much smaller than the number of potential receivers.

This thesis is about a scheme that converts this static SDR into a
dynamic SDR scheme. Rather than use multi-tree solution which
employs multiple equally sized binary trees known as allocation
units that are added and discarded on demand, it uses a single
binary tree that shrinks and grows on demand.

When the positions to be assigned to active members all get filled,
the tree grows by one level rather than in breadth. Similarly when
the number of members is not more than half the tree capacity, the
tree shrinks by one level. Therefore, there is no need to know the
maximum number of potential receivers in advance, a value that
can be difficult to estimate in practice.

In this thesis, we investigated how this solution compares in
efficiency to the multi-tree solution that uses allocation units in
terms of key storage at the receiver, the multicast cost and the
inevitable unicast cost. The methodology used is simulation.

The results obtained show that the single-tree solution in typical
usage performs, at worst, like the multi-tree solution and this is the
major contribution.

Keywords: dynamic scheme, broadcast encryption, stateless scheme, binary tree,
key tree.

- v-

List of Abbreviations and Acronyms

BE Broadcast Encryption

CAS Conditional Access System

CS Computer Science

CSM Complete Subtree Method

CW Control Word

DOE Design of Experiment

DRM Digital Rights Management

DVB Digital Video Broadcasting

ECM Entitlement Control Message

EMM Entitlement Management Message

KEK Key Encryption Key

LKH Logical Key Hierarchy

PDK Personal Distribution Key

SDS Subset Difference Scheme

SK Service Key

TEK Traffic Encryption Key

TSC Theoretical Computer Science

- vi-

Contents

Declaration .. i

Dedication ... ii

Acknowledgments ... iii

Abstract ... iv

List of Abbreviations and Acronyms ... v

Contents ... vi

List of Tables .. viii

List of Figures .. ix

Chapter 1: Introduction ... 10

1.1 Background ... 10

1.2 The Broadcast Encryption Problem .. 12

1.3 How Broadcast Encryption Schemes Work .. 13

1.4 Importance of Broadcast Encryption .. 18

1.5 Evaluation parameters of Broadcast Encryption schemes ... 19

1.6 Statement of the problem .. 22

1.7 The proposed single-tree solution.. 24

1.8 The Research Question ... 25

1.9 Research Objectives ... 25

1.10 Significance of the study ... 26

1.11 Convention, Terminology and Notation ... 29

Chapter 2: Literature Review .. 32

2.1 Broadcast Encryption Schemes .. 32

2.2 Logical Key Hierarchy – A Stateful Scheme .. 34

2.3 Subset cover schemes .. 38

2.4 The Complete Subtree Method .. 40

2.5 The Subset Difference Scheme ... 43

2.6 A Multi Tree solution .. 52

2.7 The Single Tree Solution ... 56

Chapter 3: Methodology ... 64

3.1 Research Philosophy ... 64

3.2 The Research Process ... 64

3.3 Simulation Methodologies ... 68

3.4 The Model: A Discrete-Event Model .. 69

3.5 Validation and Verification ... 73

3.6 Design of Experiment ... 74

3.7 How the simulator is run .. 83

3.8 Note on the experiment ... 86

Chapter 4: Results and Discussion ... 88

4.1 The cliff condition ... 88

4.2 Message Expansion .. 90

4.3 Storage Size at the Receiver ... 91

4.4 Unicast Count ... 92

4.5 Typical Usage Results ... 93

4.6 Discussion ... 94

Chapter 5: Conclusions and Recommendations .. 96

5.1 Trade-off between unicast cost and multicast cost ... 96

5.2 Spreading the storage burden .. 96

5.3 Contribution ... 97

5.4 Suggestions for Future Work .. 99

- vii-

References ... 100

Appendix 1 (Actual Sample Output with WCWC stream) 102

Appendix 2 (Sample Side-by-Side Output with WCWC stream) 110

Appendix 3 (All Output with WCWC stream) .. 115

- viii-

List of Tables

Table 1: Some tree terminology ... 30

Table 2: the complexity of the LKH scheme .. 38

Table 3: the "01" subsequences ... 61

Table 4: the "10" subsequences ... 61

Table 5: The streams used with worst initial user input ... 81

Table 6: The streams used with best initial user input ... 82

Table 7 Cliff Condition mean results ... 90

Table 8: Typical mean results .. 94

- ix-

List of Figures

Figure 1: The Rekeying Process ... 18

Figure 2: An example of a key tree showing users and the keys. ... 33

Figure 3: How a user is added to LKH key tree. .. 35

Figure 4: The keys given to a user ... 41

Figure 5: A Cover for the CS method generated from a Steiner tree. .. 42

Figure 6: A Cover for the SDS generated from a Steiner tree. .. 44

Figure 7: The SDS cover sets ... 46

Figure 8: Maximal chains in a Steiner tree .. 47

Figure 9: An illustration of how labels are generated in the SD scheme. ... 50

Figure 10: Constructing dynamic SDR key tree using sub-trees as allocation units 53

Figure 11: The Shifting operation ... 56

Figure 12: Adding a user to a keytree that is already full of members ... 58

Figure 13: The Conceptual Diagram .. 63

Figure 14: The single-tree solution ... 78

Figure 15: The Multi-tree solution .. 78

Figure 16: The simulator running with mini-trees height of 11 for the multi tree thread. 84

Figure 17: The simulator waiting for user choice for test run. ... 85

Figure 18: How the user interacts with the simulator .. 86

Page 10 of 121

Chapter 1: Introduction

1.1 Background

Broadcasting means transmitting information through a medium or channel
that is accessible to more than one receiver. Radio transmission for
example uses air as a medium and anyone who has a radio receiver is able
to listen to the broadcast. Most of the time, broadcast communication is
one-way1.

There are many situations where one or more senders want to transmit a
message to only a selected subset of receivers, using a one-way broadcast
channel - where not everyone that has access to the channel should have
access to the content passing through the channel. These are membership-
based applications, such as pay-per-view and specialized information
services (e.g., stock price, live news) that require that information content
be delivered to, and only to, subscribed members or authorized receivers.

This should be achievable using encryption - since the message must be
protected from other receivers than the ones that have been selected to
receive it, for example by paying for it, it can be encrypted before it is sent.
This is what is called broadcast encryption. Broadcast encryption is a problem
because partly, in practice, receivers of the message to be sent do not all
share the same decryption key, therefore multiple copies of the message must
first be encrypted separately for these users before sending each encrypted
copy of the message. Some equivalent definitions from literature of the
term broadcast encryption are:
� The cryptographic method for a centre to efficiently broadcast

encrypted digital content to a system of users so that only an intended

subset can correctly decrypt it (Bhattacherjee & Sarkar, June, 2012).

� Broadcast encryption is an application of cryptography which allows

one to broadcast a secret to a changing group of intended recipients in

such a way that no one outside this group can view the secret (Obied,

April 2005)

� A method to efficiently broadcast information to a dynamically

changing group of users who are allowed to receive the data (Naor,

Naor, & Jeff, 2001).

� Broadcast encryption is a way to broadcast information securely, that is

to say, broadcasting a secret to a dynamically changing set of intended

1
 receivers cannot send anything back to the broadcaster.

Page 11 of 121

recipients in such a way that no one outside this set can recover the

secret (Obied, April 2005).

� Broadcasting a message (e.g. a key to decipher a video clip) to a

dynamically changing privileged subset of users in such a way that

non-members of the privileged class cannot learn the message. (Fiat &

Naor, 1994).

� Broadcasting the same message to all users, and those users in the

privileged group recover the message while all others derive

nonsense or nothing at all (Lassalle, January 2005).

� Broadcast encryption is the cryptographic problem of encrypting broadcast

content (e.g. TV programs) in such a way that only qualified users

(e.g. subscribers who've paid their fees) can decrypt the content.

(Wikipedia, 2014).

Like general broadcast, in broadcast Encryption, two-way communication
is not allowed on the channel and other channels may not be used except
when setting up the system and distributing initial secret decryption keys
(or key material) to possible receivers.

As we see in the following sections, broadcast encryption is a problem and a
solution to the problem is called a broadcast encryption scheme. In membership-
based applications, it is also desirable to be able to revoke users who have
become untrusted without effecting the remaining members. A Broadcast
encryption scheme implements this by revoking the decryption keys of such
users, thus, broadcast encryption scheme are also known as key revocation schemes.
So an efficient broadcast encryption solution, or scheme as they are more
popularly known, would make it possible to revoke departing users and
send further communication only to the remaining users. Similarly the
scheme would make it possible to add new members into the set of
privileged users. Naturally, the non-members are curious about the contents
of the message that is being broadcast, and may try to learn it. The
schemes should be resilient to any subset of revoked users that collude as
well as any disjoint subsets (of any size) of privileged users. The scheme is
considered broken if a user that does not belong to the privileged set can
read the transmission.

There are different opinions about when the idea of broadcast encryption
was introduced. For a little detail on this, see (Anderson, 2005)..

Page 12 of 121

1.2 The Broadcast Encryption Problem

In traditional cryptography, the focus is to enable secure communication
over an insecure medium. This is accomplished by symmetric key (also
known as secret key) cryptography. In symmetric key cryptography, the key used
for encryption is the same key used for decryption, thus anyone having the
key can both encrypt and decrypt messages. Normally, the scenario where
only two parties are communicating (and thus share the key) is considered.
Symmetric key cryptography works well for a group communication too
and is also the one used by Broadcast Encryption schemes.

However this works correctly only as long as the group is static (i.e. no one
leaves or joins). Should someone leave, they must be prevented from being
able to decrypt further group communication. However, the only means
the group has of communicating securely is by using the shared group key,
which the party now excluded also knows! The challenge arises from the
requirement that un-subscription of some users should not affect the
remaining users. This is the Broadcast Encryption Problem. The solution to the
problem, as already pointed out, is known as Broadcast Encryption Scheme or
Key Revocation Scheme.

The Broadcast Encryption Problem consists of two parts (Anderson, 2005)..
� Deciding that a particular user should have particular decryption

key(s).

� Selecting the encryption keys to use when sending a message to specific

subset(s) of users.

In a fully resilient scheme, even if an adversary has the decryption keys of
all the remaining non-privileged users in the system (the revoked users), the
adversary will not be able to correctly decrypt the content. A crucial
requirement for a Broadcast Encryption scheme is that it should facilitate
dynamic revocation of decryption privilege from any subset of users at any
point in time (based on their subscription or privilege status).

Page 13 of 121

Typically broadcast encryption scheme allows licensors to "revoke"

individual users, or more specifically, the decryption keys associated

with the users. Thus, if a given user’s keys are compromised and

published, the licensors can simply revoke those keys in future content,

making the keys useless for decrypting new broadcasts.

The problem of rogue users sharing their decryption keys with unqualified
users is mathematically insoluble. There are algorithms known as traitor tracing
algorithms that aim to minimize the damage by retroactively identifying the
user or users who leaked their keys, so that punitive measures, legal or
otherwise, may be undertaken. In practice, pay TV systems often employ
set-top boxes with tamper-resistant smart cards that impose physical restraints on
a user learning their own decryption keys.

1.3 How Broadcast Encryption Schemes Work

In all Broadcast encryption Schemes there is a pre-processing phase in which the
centre distributes a number of decryption keys to the users. It is these keys
that the centre later uses to encrypt the messages to be sent to users. The
obvious and simple solution is to distribute one unique symmetric key to each

user, for a total of keys. The broadcast centre then encrypts the message
once for each privileged user with the key of the user and finally broadcasts
all these encrypted messages over the broadcast channel. This makes the

space requirements for the users be 2, but the transmission length is
3 where is the number of receivers! This means that the message

expansion, the number of transmissions per message, is equal to the number
of privileged users. Clearly, this scheme is only useful if the number of
privileged users is small.

2
 Each user only needs to store one key so it is very efficient in terms of storage at users.

3
 This requires a very long transmission (the number of members the length of the

message)

Page 14 of 121

To reduce the message expansion, broadcast encryption schemes group users
into sets and distribute keys giving all users in the same set a common
decryption key. This way, the number of broadcast transmission reduces to

the number of sets whose members are in the privileged set . But more
often than not, a message to be broadcasted is meant for users in more
than one set and therefore still requires transmission by broadcast encryption
i.e. the message is encrypted multiple times separately with the key of each
set so that the message is decryptable by those users in the set. So it is
practically impossible to reduce the message expansion to 1.

1.3.1 Traffic Encryption Keys and Key Encryption Keys

Unless the broadcaster is sending the message to all the users – using one
key that they all share - it would clearly be a bad solution to transmit the
actual message using broadcast encryption as the message may be for example
a video stream of a movie which will be quite long.

Think of this; to send an encrypted message such as a video stream to k

subsets of users, a broadcaster would first have to encrypt the video

with the enciphering key assigned to each subset and transmit the k

versions of the video. A cable operator would typically be providing

services to a million users!

Instead the actual message is encrypted just once using one common key,
known as Traffic Encryption Key (TEK)4 and broadcasted. Obviously for the
legitimate users to recover the message, they must have this key. It is this
TEK that is transmitted to them using broadcast encryption. How? There
is a preprocessing phase in which the center, not knowing the privileged set
of users nor the common key (TEK), distributes a number of keys to the
users. It is these keys that the centre uses to encrypt the TEK. For every set
of users who should receive the TEK, the centre encrypts the TEK with
the key assigned to that set. These keys assigned to the user sets are thus a
kind of Key Encryption Keys (KEKs). There are two approaches to how to
deliver these multiple encryptions of the TEK.

4
 Also known as Group Key or Media Key or Session Key or Common Group Key. The most

popular in literature of these seem to be “session key”.

Page 15 of 121

In the schemes based on Key Management Block, the broadcaster composes a
message with two parts - the message body that contains the protected actual
secret message and the message header that consists of the multiple
encryptions of the TEK. Once a legitimate receiver has recovered the
TEK, they go ahead to use it to recover the secret from the message body.
A key management block is a block of data located at the beginning of a
broadcast or pre-recorded onto some type of blank media, most often a
smart card. From this key management block, each recipient can derive the
management key (KEK). A device not in the privileged group of devices even
with access to the encoded data will derive the wrong answer from the key
management block. Restricted devices can attempt to process the key
management block but they will not yield the correct key. (Lassalle, January
2005)..

In the Key Pre-distribution based schemes, the broadcaster broadcasts each
encryption of the TEK. But this really is a multicast of each encryption by

 because only intended receivers will be able to decrypt their copy.
could as well package all the encryptions into one message. Once the centre
has transmitted the TEK, it can start broadcasting the messages encrypted
using the session key (TEK).

The message header in the Key Management Block scheme must be in a

suitable representation such that members can compute what part of

the message to decrypt using one of the keys they are assigned at

initialization. This is also true for Key Pre-distribution if all the

encryptions of TEK are packaged into one message.

Thus, the TEK is encrypted using Key Encryption Keys (KEKs) and then
multicast by the key server. This TEK is shared by all privileged users5 no
matter which subset they belong to. When a member joins the group, the
TEK must be changed to ensure that the newly joining member cannot
decrypt previous communications (a requirement known as “backward
confidentiality”). Similarly, the TEK must be changed when a member leaves
the group to ensure that future messages cannot be decrypted by the
departing member (a requirement known as “forward confidentiality”). In
addition, the TEK could also be updated at timed intervals.

5
Also known simply as members. Other terms one may come across are intended recipients,

active users and receivers among others.

Page 16 of 121

1.3.2 Rekeying

The procedure of delivering a new TEK to members is known as rekeying -
basically a multicast by the key server. During rekeying, a user receives this
key only if the user belongs to one of the sets the key server is sending it to.
In other words the user recovers the TEK if, in the user’s set of keys, the
user has one that can decrypt the message containing the TEK. Even if
they know all the broadcast messages of the other users, a coalition of non-
privileged users cannot recover any information regarding the common
key.

Whichever of the two approaches is used to deliver the TEK, the rekeying
message is known as the message header. The transmission overhead of a
scheme is determined by the header length (the number of encryptions of
the session key). The header in a broadcast message is the most important
part when one analyses any broadcast encryption scheme.

To summarize, a basic broadcast encryption scheme consists of four
algorithms which can be performed in polynomial time6 as illustrated in
Figure 1. These algorithms are as follows:
� Initialization:

This is the preprocessing/initialization phase in which the key

distribution centre, not knowing the members of nor the common

key (TEK), generates7 the decryption keys and selects sets of users and

distribute the keys giving all users in the same set a common

decryption key. Thus a user gets a set of keys one for each of the sets

they are a member of.

� Registration

The broadcaster, identifies the sets of users who should receive the

message. This algorithm is used to register new users that can view

some secret message . In particular, whenever a new user

wants to join , then the key server, removes from and adds it

to . If a user wants to leave , then removes from and

adds it to .

� Broadcast Encryption Phase

For every set registered by the previous algorithm, the broadcaster ,

encrypts the message once with the key assigned to such a set for

transmission.

6
 The time taken or number of operations performed is a polynomial function of n, the size

of the problem/input i.e. for some constant .

7
 This can also be done by a trusted authority

Page 17 of 121

� Decryption:

This is done by the users. Each user tries to decrypt each message

using each of the keys in their key ring.

Page 18 of 121

Figure 1: The Rekeying Process

1.4 Importance of Broadcast Encryption

Broadcast encryption schemes provide many benefits over other
technologies especially when used in the realm of content protection.
Copyright protection using Digital Rights Management [DRM] techniques is
an important application of Broadcast Encryption. Out of the different
facets of copyright protection, Broadcast Encryption handles the content
protection part. The application of Broadcast Encryption systems is pretty
wide in the implementation of DRM for content protection in digital data
distribution technologies such as pay-TV, Internet or mobile video
broadcast, optical discs, etc. It can be useful in pay-TV system distributing
copyrighted information of CD and DVD disks, and multicasting music
and video on the internet. An alternative possible solution is public-key
cryptography. The advantages of Broadcast Encryption over public-key
cryptography (Lotspiech, Nusser, & Pestoni, August 2002) stem from the
following:
� Its low overhead

Broadcast encryption is fast. All its calculations are done using simple

Page 19 of 121

symmetric encryptions. In contrast, actual public key calculations

require exponentiation operations over a finite field. The processor

load to calculate a management key in a broadcast encryption scheme

literally requires less than 1,000 times the load required to perform a

public key signature calculation.

� Its Revocability

The ability to remove compromised keys from the system is a major

advantage to provide longer life and durability to the system. Without

a means to revoke compromised individual keys, a public key system

degenerates into a global/shared secret scheme: The first break (one

key is discovered by an unauthorized party) defeats the entire system.

If a proposed public key system contains a flaw—and, sadly, many do

these days—it is almost axiomatic that the revocation information fails

to travel through the system.

� Its resistance to reverse engineering

Public-key systems perform a handshake at the link-level requiring

keys to be placed in the link-level code where they might be easier to

find by malicious users. On the other hand, since their systems are

one-way, broadcast encryption schemes have the advantage that they

can hide their keys much deeper in the software making the keys

more difficult for malicious users to discover.

These three advantages of Broadcast Encryption are of utmost importance
in consumer electronics. Advanced Access Content System (AACS),
Blu-ray and HD DVD use broadcast encryption schemes.

1.5 Evaluation parameters of Broadcast Encryption schemes

The simple broadcast scheme described at the start of section makes

transmissions to send one secret message when sending the message to
users because it has to encrypt each transmission with each user’s unique
key. This results in minimal storage on the user’s side since each user only
needs to store one key. But it also results in the longest possible
transmission since the message must be sent to each member encrypted
separately with that user’s key.

Page 20 of 121

The other extreme is instead to distribute one key to each possible subset

of users, yielding a total of keys. That is, one key for each subset
except when no users are in the privileged set and therefore there is no
need to transmit at all. This means every user receives the keys
corresponding to the subsets they belong to thus each user then needs to

store one key for each subset he belongs to, in total keys per user!
This scheme yields no message expansion because whichever subset is the
privileged one, there is always one key corresponding to that particular
subset.

These two schemes might be appropriate in certain specific scenarios with
few users and where one condition is extremely important while the other
is totally irrelevant. It is, however, highly likely that these scenarios are not
very common and instead there are different conditions of varying
importance but none can be completely ignored.

Generally, efficient broadcast encryption schemes must be efficient in both
measures, i.e. transmission length and storage at the user’s end. In practice, several
solutions exist offering various tradeoffs between the increase in the size of
the broadcast, the number of keys that each user needs to store, and the
feasibility of an unqualified user or a collusion of unqualified users being
able to decrypt the content. They take into consideration many other
factors some of which are described ahead in within this section. The list is
not exhaustive and it deals almost exclusively with performance, not so
much with security. The reason for this is an assumption that the
encryption algorithms are strong enough for the purposes they are used for
(Anderson, 2005). Some of these parameters are used to evaluate the
single-tree solution proposed in this thesis.

1.5.1 Collusion resistance

The collusion resistance is a measure of the security of a scheme, how well
it resists attacks from cooperating non-privileged users. If a scheme with
perfect collusion resistance is used then even if all non-privileged users
cooperate they will not be able to decrypt the message.

Page 21 of 121

1.5.2 Backward secrecy/confidentiality

Backward secrecy is the property that any newly authorized users should
not be able to decrypt messages that were sent before they were privileged
users. In other words backward secrecy means that a privileged receiver
cannot use the information it has to recover material that was broadcast

before it was added. Imagine a situation when the broadcaster, wants to

broadcast secrets where such secrets messages are related, that is,

one can think of it as a TV show which has minutes and each

corresponds to 1 minute in the show. If a revoked receiver

eavesdrops and records secrets and right before is

broadcast registers, that is, gets removed from and added to . If

now broadcasts the ciphertext of , and uses his knowledge of

recovering to recover and fails then backward secrecy is
maintained.

1.5.3 Forward secrecy/confidentiality

Forward secrecy means that a revoked user should not be able to decrypt
any future messages sent to the privileged set. In other words, forward

secrecy means that when a privileged receiver is removed from then it
must not be able to continue viewing protected content of the broadcast.
Imagine a situation similar to the one described above, that is, a

broadcaster wants to broadcast secrets messages

where such secrets are related. If a privileged receiver receives

 and right before is broadcast leaves , that is, gets

removed from and added to . If now broadcasts the ciphertext of ,

and uses his knowledge of recovering to recover and
fails then forward secrecy is maintained.

1.5.4 Amount of keys to store at receiver

The receivers can be small devices with a limited possibility for storage,
especially secure storage, and thus the amount of keys that each receiver is
required to store is an important parameter in many applications.

1.5.5 Amount of keys to store at sender

Although the sender usually is considered to have far more storage
available than the receivers, there is of course some limit even on the
amount of keys that the sender can store.

Page 22 of 121

1.5.6 Amount of heavy computations required of receivers

As an alternative to storing a large amount of keys some schemes require
users to store only a little key material but instead perform many
computationally heavy operations on this material. Depending on the
scenario, this can be a good solution or not. If the receivers have very
limited computational power then it is important that they are not required
to perform many demanding operations. In general there are no such
restrictions on the sender which is assumed to be quite powerful, although
of course extreme cases can occur where a scheme involves computations
that are too heavy for the sender.

1.5.7 Number of broadcast transmissions per message

An important parameter is the number of broadcast transmissions of the
same message, each encrypted with a different key, that have to be made
for each message. This is also known as message expansion.

1.6 Statement of the problem

In stateless schemes, several secret decryption keys are distributed to the
users when they join the system and these keys are never updated by the
scheme. This implies that there is never any updating of secret keys, the
keys given to the users at setup are the keys that are used throughout the
lifetime of the system. We term such users stateless and the scheme a
stateless scheme. It is the disadvantages that trace their root to the stateless
of the Subset Difference Revocation Scheme that this thesis addresses - by
converting the stateless Subset Difference Revocation Scheme to a stateful. Because
the solution allows new users to be admitted, the solution can also be called
Dynamic Subset Difference Revocation Scheme (see the title of this thesis). Note
that stateless Subset Difference Revocation Scheme is also known as a Static Subset
Difference Revocation Scheme.

The following are the shortcomings of stateless schemes in general. The
cause of these shortcomings is easily visible as the statelessness of the
schemes.

Page 23 of 121

1.6.1 Static

The key server initially generates a key tree large enough to accommodate
the currently active members and no more members are allowed once the
initial set up has been done. The keys used to encrypt the session key are

never changed neither is the secret information, given to each member
as part of the initialization. Why not just generate new secret information
and hand to a new user? This is not possible by design. The secret
information is determined by the position of the member on the key tree.
As a consequence, once a leaf position in the key tree is assigned to a

member , that position cannot be assigned to any other member even

when is currently not in the group. Typically, in static SDR, a returned
member (a member joining the group again after leaving) is assigned to the
position that the member was assigned last time.

1.6.2 Large Key Tree

The key server in static SDR needs to maintain a key tree large enough for
all the potential members, N. This is a consequence of the previous
property. When users are revoked, the leaves they were assigned to
(positions they occupied) on the key tree cannot be assigned to anybody
else. So what happens to the size of the Key Tree as active users reduce?
Nothing!

1.6.3 Message Expansion

When the session key (one message) is to be sent to subsets of users, the

number of broadcast transmissions is also , each encrypted with a
different key, that have to be made for each message. This can also be
referred to as message overhead, message expansion or even time per message as the
number of broadcasts that have to be made in order to send one message
will affect the total time to send the message. In some cases this parameter
can be referred to as cover size.

Page 24 of 121

This number of the resultant subsets is determined by the adjacency (or

positions) of members of in the key tree of size . Generally speaking,
under the assumption that member activity is independent of position in

the key tree, the larger the difference between and , the more likely that
active members are sparsely distributed in the key tree, resulting in

disjoint subsets. On the other hand, the smaller the difference

between and , the more adjacent the positions of active members in
the key tree.

1.7 The proposed single-tree solution

As stated in , all broadcast encryption schemes consists of a pre-
processing phase in which the centre distributes a number of decryption keys
to the users that the centre uses later to encrypt the messages to be sent to
users. In stateless schemes these keys don’t change throughout the lifetime of
the system. Some of the disadvantages are that the centre must know in
advance the number of users, and more users cannot be admitted once the
system is up and running.

This thesis is about converting the well-known stateless Subset Difference
Scheme into a statefull scheme. This involves the users being given one special
lifetime secret key that the centre uses to transmit new broadcast encryption
keys to each new user or a returning user who was previously revoked but
whose keys must be changed – a unicast.

In literature, there seem to be only one attempt to do this (Chen, Ge,
Zhang, Kurose, & Towsley, 2004). The solution proposes using fixed-
equally-sized binary trees that are added and removed on demand. All the
trees share a virtual root, therefore the tree as a whole increases in breadth
only.

The solution in this thesis proposes uses a single binary tree that increases
or reduces in size on demand. This is because the goal is to improve the
stateless SDS which uses a key tree. More details on this are presented in
section 2.1. Because the tree is both complete and full – a perfect binary
tree (Black, 2014)- it increases in height, and also breadth to accommodate
more users and similarly decreases in both height and breadth when users
reduce in number.

Page 25 of 121

This implementation addresses each of the three shortcomings of the

stateless schemes discussed in :
� Static Nature

Each user (in this proposal) is given a special secret key that is used to

transmit the secret information . Each time a new user is admitted,

they are sent encrypted with this special key. Also when a user who

was previously revoked is reinstated, the user must be unicast their

if the tree they are returning to is not the one they were in when they

were revoked – like the user trying to occupy a different location on

the key tree, therefore their is different.

� Large Key Tree

The tree is always only big enough to accommodate the number of

privileged users – members.

� Message Expansion

The users are always packed as close as possible to each other,

therefor they have common ancestors in the key tree. A node

corresponds to the encryption key to use when encrypting a message

for users who are leaves in the subtree whose root this node is. So

when users are packed close together, chances that they share a

common key are high and therefore message expansion is low.

1.8 The Research Question

The broadcast encryption problem is a big problem which has been studied
by many authors. The scope of this thesis is only a small aspect of this
problem. The specific problem this thesis addresses is the static nature of
Subset Difference Schemes.

Thus the research question for this thesis is:

In a situation where users can change their state, can a single tree that
grows and shrinks, according to the population size of members, efficiently
implement a stateful revocation scheme in terms of the following
parameters, in comparison to the multi-tree solution proposed in (Chen,
Ge, Zhang, Kurose, & Towsley, 2004)?
� The key storage cost at the member side,

� The multicast cost and

� The unicast cost.

1.9 Research Objectives

The parameters outlined in the research question are measurable quantities.
The research objectives pursued in order to answer the research questions
are:

Page 26 of 121

� To determines the factors that influence these BE evaluation

parameters specified in the research question

� To develop a simulator program for each of the two solution whose

output variables are each of a value of the evaluation parameters

specified in the research question.

� To use the simulator to investigate the performance of the single-tree

solution and the multi-tree solution in terms of the key storage cost at

the member side, the multicast cost and the unicast cost under various

conditions.

1.10 Significance of the study

Conditional Access System (CAS) is used for securing the digital TV
content. It's one of the most important part of Pay-TV system. There are
several practical CAS systems now. In Digital Video Broadcasting (DVB)
system, for instance, a typical CAS system usually include a three-level
encryption scheme.
� The raw content is scrambled or encrypted by control word (CW). The

CW corresponds to the Session Key in Broadcast Encryption Schemes.

� The CW is encrypted by the Service Key (SK) and embedded into

Entitlement Control Message (ECM). The Service Key corresponds to the

broadcast encryption key in Broadcast Encryption Schemes. In Broadcast

Encryption Schemes it is a referred to as key encryption key (KEK) and

Entitlement Control Message correspond to the message header.

� The SK is encrypted by Personal Distribution Key (PDK) of authorized

users and embedded into Entitlement Management Message (EMM).

The PDK correspond to the special secret key referred to in Section

1.6. In stateless schemes the KEK are permanent but in the solution

proposed in this thesis each user has state and therefore must receive

a new set of KEKs for each subset they belong to. This message that

contains the KEKs is a unicast message to the individual. In DVB

system, this message is known as EMM and the secret key used to

encrypt it is the PDK. PDK is a fixed information only known to the

service provider, and is embedded into the user’s secure module

(smart card)

Page 27 of 121

Scrambled content, ECM and EMM are broadcasted to public. The refresh
frequency of CW is about several seconds or several minutes, and renew
interval of SK is usually from several hours to several days. The refresh
rate of CW and SK depends on several conditions such as system capacity,
system security evaluation, network performance and so on. PDK is a fixed
information only known to service provider, and is embedded into user's
secure module (smart card). At user side, each receiver first filters the
corresponding EMM messages and decrypts the SK, and then decrypts
ECM using SK. After authorized user gets CW from ECM, he could
descramble the content.

However, this hierarchical encryption scheme is not efficient for frequent

key refreshment. If there is a CAS serving subscribers and channels,

then key distribution scheme needs to generate ECM messages for

channel's CW refreshment, and EMM messages for service key
refreshment. (Zhang, Yang, Liu, & Tian, May 22-24, 2009).

There is a case to show how the traditional CAS system suffers from key
refreshment. Suppose a CAS system contains one million subscribers and
30 channels. The control word for scrambling is refreshed every ten
seconds. The service key for ECM generation and CW encryption is
changed every day. The minimum bit-length of ECM message is about 168
bits. The bit-length of EMM message is at least about 488 bits. Then the
minimum bandwidth for ECM transmission is:

In order to improve subscribers' user experience, the CA system has to
broadcast EMM repeatedly. Suppose the CAS system needs to ensure every
subscriber is receiving renewed EMM every hour, then the required
bandwidth for EMM broadcast is:

From the case study above, we could find that EMM message broadcast
needs too much bandwidth for service running, and key refresh problem
limits the CAS system for mass-scale environment such as Direct-to-Home
Broadcasting (DTH).

In order to overcome the EMM refreshment problem, the authors of
(Zhang, Yang, Liu, & Tian, May 22-24, 2009) shows how we can introduce
the broadcast encryption scheme into CAS system and give an analysis of
its advantages and challenges.

Page 28 of 121

But their proposed solution is still based on a stateless scheme. The
broadcast centre decides the CAS system's capacity, and then make a
broadcast encryption system according to capacity and security parameters.
In order to finish the setup phase, the centre has to pre-assign the subset
keys for every user ID in the broadcast encryption scheme and embeds
them into the smart-cards in manufacture or burn-in phase. And the
mechanism for informing which subsets the smart-card belongs to is also
required.

With their solution therefore, we could still end up in a situation where
rekeying cost is unnecessarily high because users are scattered at the base
of the key tree but one cannot shift them to reduce this cost. Also the
solution breaks down if the system’s capacity is to be exceeded.

The single-tree solution has all the advantages discussed in (Zhang, Yang,
Liu, & Tian, May 22-24, 2009) plus the advantages of being able to change
the state of a user i.e. assign them fresh KEKs instead of permanent pre-
assigned keys. There is no possibility of exhausting the system capacity and
the rekeying cost is guaranteed to be lower. The price to pay for this, as we
later, is the occasional unicast to each member when the new set of KEKs
has to be sent to each member.

Page 29 of 121

1.11 Convention, Terminology and Notation

Broadcast encryption involves a network denoted as made up of

nodes; a set of users (receivers) and two other nodes the

broadcaster or broadcast centre denoted as (a.k.a the transmitter), and the key

server or simply the server denoted as . The broadcaster has a set of

secrets which can only be viewed by a set of privileged users 8

where and the key server has a set of symmetric keys.

Any key can be used to encrypt a secret using an encryption

function and decrypt using a decryption function . is
responsible for both generating the symmetric keys and associating them with

the users in . The set of non-privileged9 users (users who will not be able to

decrypt the message) will be denoted as where and

along with must both be true. Any user is said to be a

privileged user and any user is said to be a revoked user. If a user

and then is considered an eavesdropper and it is computationally

infeasible for to recover .

In symmetric encryption techniques, the key used by to encrypt the secret

is also the key used by to recover . The key is known as a shared key
since the sender and the recipient must both use it. The key must be known
only to members of the group using the key and therefore this key is also
known as the secret key and the technique as secret key cryptography. Broadcast
encryption schemes use symmetric encryption techniques.

8
 Some authors use the symbol for “members” instead of but is the standard

notation. These are the users who will be able to decrypt the message.

9
 While the term privileged set is a common one in the broadcast encryption literature the

name for the non-privileged set varies between different authors. Many use the term

revoked set, thus the notation , but someone may feel that this term is not quite suitable

because in order to be revoked, a user must first have some right, be authorized to

something, but a non-privileged user may very well never have been a privileged user and

thus has never been revoked. The notation for the non-privileged set, however, can be

considered a standard notation.

Page 30 of 121

It is assumed in this model that there is a “secure” key server which uses a
protocol to authenticate the broadcaster, and the users (e.g. has a list of
privileged and revoked users). Furthermore, it is assumed that a

communication medium exists between the nodes in and there is a

secure channel between and .

The broadcast encryption scheme proposed in thesis and the others it is
based on and discussed in Chapter 2, Literature Review, use a binary tree to
organize users and keys. In Table 1 are some of the terms and definitions
about binary trees that the reader should be familiar with to be able to
understand most of the rest of the thesis. Each of these definition are
from (Black, 2014) with slight modifications where necessary for clarity for
the purpose of the reader of this thesis.

Table 1: Some tree terminology

Term Means...

Node A unit of reference in a data structure. Also called

a vertex in graphs and trees.

Root node The distinguished initial or fundamental node of a tree.

Parent of a node

The node conceptually above or closer to the root than the node

and which has a link to the node. The root is the only node with no

parent.

Child of a node Any node it has a link to and is one level further from the root.

Every node, except the root, is the child of some other node.

Binary tree

An empty structure or a node known as the root node which has,

as its children, the roots of two disjointed binary trees, known

respectively its left subtree and its right subtree. (A tree with at

most two children for each node.)

Size of a tree The number of nodes of the tree

Edge

A connection between two vertices (nodes) of a graph. In a

directed graph (rooted tree), an edge goes from one vertex, the

source, to another, the target, and hence makes connection in

only one direction. Also known as arc.

Page 31 of 121

Term Means...

Path (between two

nodes)

A sequence/list of nodes where each node has an edge from it to

the next node in which the two nodes are the terminal nodes of

the sequence.

Path length

The number of edges in the path, equivalently, one less the path. A

path with one node does not contain an edge, therefore its length

is 0.

Depth of a node The path length of the path from the node to the root.

Leaf A node in a tree without any children. Also known as external

node or terminal node.

Height of a tree

The maximum depth of any leaf from the root. If a tree has only

one node (the root), the height is zero. The height of an empty

tree is not defined. The height of a tree is also known as the order.

Level Any depth in a tree that is not empty ie that contains one or more

nodes.

Subtree of a node A tree whose root is a child of the node.

ancestor of a node

All the nodes on the path between the root and the node

excluding the node itself. The root is the only node which has no

parent and therefore ancestor.

Descendant of a node Each node that lies on the path from the node to a leaf. The leaf is

the only item which has no child and therefore descendant.

Internal node
A node of a tree that has one or more child nodes, equivalently,

one that is not a leaf. Also known as nonterminal node.

Siblings Nodes that have the same parent.

Degree (of a node) The number of child nodes the node has.

Page 32 of 121

Chapter 2: Literature Review

2.1 Broadcast Encryption Schemes

A broadcasting scheme involves encrypting a message so that more than
one privileged receiver can decrypt it. To achieve this, privileged receivers
are grouped together either dynamically or statically according to the
scheme being used.

The performance of any broadcast encryption scheme depends on how the
privileged receivers are grouped. All modern Broadcast Encryption
schemes use a graph to organize keys and users. The graph is called a key
graph and can have varying properties but the most common type of graph
discussed in the literature seems to be a directed acyclic graph which forms a

rooted tree with some maximum degree , a key tree, and that is the only type
considered in this thesis. It is, however, worth noting that a key graph in
general can be any directed acyclic graph (Anderson, 2005)..

In particular, the tree considered in this thesis is a perfect binary tree – a

full and complete tree (Black, 2014) of degree . All the nodes of the tree

(see Figure 2) are -nodes to signify that they store or correspond to keys.

Each of the leaves of the key tree is associated with a -node which is a

node that stores or corresponds to a user. In a diagram, the -nodes have

no incoming edges. See Figure 2. A directed path in the graph from a -

node to a -node represents the fact that user has key .

In a key tree, the users are organized in a hierarchical fashion (see Figure 2)
so that all users with a common ancestor also have a common key. Thus
these related users can form their own group and broadcast to all users in a
group is done using their common key – the key stored in their common
ancestor.

Page 33 of 121

Figure 2: An example of a key tree showing users and the keys.

In Figure 2, all users have their own key . Users have the

common key and user and have the common key . All users

have the common key .

At initialization phase, the key server generates random keys and assigns
them to each node in the tree.

As already pointed out, Broadcast Encryption scheme begins with an
initialization phase where every user is given a set of secrets decryption
keys. The sender (or a trusted authority) initially generates several secret
decryption keys, selecting subsets of users and distribute the keys giving all
users in the same subset a common decryption key. Thus a user gets a set of
keys one for each of the subsets they are a member of.

Page 34 of 121

In actual practice, the set of keys a user receives from the sender is really

some key information from which keys can be derived i.e. what the user

is given is not a set of keys as implied above but some key information
from which the user can derive each key associated with all possible subsets

to which they may belong. The size of is called the user storage. Schemes

where (and the keys it is used to derive) is never updated are called
stateless, whereas those where it is updated are called stateful.

A stateful broadcast encryption scheme requires that all the receivers have
to be able to update the stored keys, usually when receivers are added or

removed from the privileged receiver set . This implies that any receiver

 must be connected all the time to the broadcast network in order
not to lose any key update message that might be sent.

2.2 Logical Key Hierarchy – A Stateful Scheme

The Logical Key Hierarchy (LKH)10scheme is an example of a stateful
broadcast scheme. All users in the key graph of LKH scheme are privileged

users (in) and the non-privileged users (in) are not in the key graph.

This means that when broadcasting to the root key can be used as all
privileged users have this key and no other user has it. Every user on the
tree must know its own key and the keys in the path from its key node up
to and including the root node.

At first the set starts out as empty and the graph only contains one node
which is the root node. Nodes are added to the graph whenever a revoked
receiver joins and nodes are removed from the graph whenever a privileged
receiver revokes.

10
 For the origin of LKH see [And05 pg 12] or [OA05 pg 5]

Page 35 of 121

If possible, the joining user , with his individual key , is just attached to

one of the existing -nodes at the second to lowest -node depth in the key

tree. However, if all -nodes at that depth are full, i.e. already have

children, a new depth in the key tree must be created. See the Figure 3 for
an example. As the new user is added as a leaf to the key tree, all keys on
the path from the new user to the root are affected and must be updated.

Figure 3: How a user is added to LKH key tree.

In Figure 3, (a) is an example of a key tree with degree of 3, therefore the

tree is complete (considering the k-nodes only). When a user joins the

privileged set, another -node must be created as illustrated in (b) the
dashed lines indicate new nodes and edges in the key tree.

Page 36 of 121

When a user leaves the privileged set, his -node and his individual -node
are removed from the key tree. In order to ensure that the leaving user
cannot decrypt any future messages, all keys on the path between this

departing user’s -node and the root must be changed and updates sent to
all remaining users. This enforces forward secrecy.

When a user joins the privileged set he must of course receive the
appropriate keys in order to be able to decrypt future transmissions.
However, LKH is also concerned with backward secrecy and therefore
several of the previously used keys need to be updated as well.

Because keys are updated every time a user joins or leaves, LKH is resilient
to any number of attackers from the non-privileged set.

Whenever a receiver joins or leaves , the keys in the graph are

updated to maintain both forward and backward secrecy.

2.2.1 Adding a revoked receiver to R

When a revoked receiver wants to leave and join , then the
following is done:

a) authenticates via some authentication protocol and ensures

that is allowed to join.

b) removes from and adds it to .

c) generates a new leaf key node and assign it to r along with the

keys from the path where ’s key node is located and up to and

including the root node.

d) To maintain backward secrecy and prevent from decrypting

previous broadcast, all the key nodes from ’s key node location

and up to and including the root node are regenerated and sent via

a rekeying message to the current privileged receivers.

2.2.2 Removing a privileged receiver from P

When a privileged receiver wants to leave and join , then the
following is done:

a) removes from and adds it to .

b) removes the leaf key node from the key tree.

c) To maintain forward secrecy and prevent from decrypting future

broadcast, all the key nodes from ’s old key node location and up

Page 37 of 121

to the root and including the root node are regenerated and sent

via a rekeying message to the current privileged receivers.

2.2.3 Rekeying

Whenever a receiver joins or leaves the set of privileged receiver , some
keys are regenerated to maintain backward and forward secrecy. The

process of sending new keys to some privileged receiver is known as
“rekeying”. For more on the three different strategies on how to construct
and send the rekey message, see (Obied, April 2005).

2.2.4 Encryption

Any broadcast secret is encrypted with the key of the root node. If

the key of the root node is and the broadcaster wants to broadcast a

secret then broadcasts

2.2.5 Decryption

Any broadcast secret is decrypted with the key of the root node. If

the key of the root node is and the broadcast message was

then a privileged receiver can recover s by applying

2.2.6 Broadcast message

It was mentioned before that any broadcast message has a header and a
message body. In the LKH scheme, a broadcast message looks as follows:

The header in this scheme contains no information and the body contains
the cipher text of the broadcast message.

2.2.7 Analysis and Complexity

One might wonder what is the point of keeping all the other keys if
everything is encrypted with the root node key. Basically the other keys are
used in the rekeying procedure to protect the key of the root node
whenever it is regenerated and redistributed. Since all the privileged
receivers know the key of the root node then it is quite efficient in terms of
encryption and decryption. Table 2 shows the complexity of the LKH
scheme in terms of big-O notation:

Page 38 of 121

Table 2: the complexity of the LKH scheme

2.2.8 The trouble with LKH

The LKH has two drawbacks:
� The key tree can become rather unbalanced, after several joins and

leaves have occurred, thus affecting the efficiency of the scheme. This

will require balancing the key tree. For methods of balancing the key

tree, see (Anderson, 2005).

� The other drawback in terms of performance issues of this scheme is

the storage space of the keys. If the height of the key graph is then a

receiver must know all the keys from its assigned key node up to and

including the root node.

2.3 Subset cover schemes

Subset cover schemes are a general class of stateless schemes. To learn
where they were first introduced see (Johansson, Kreitz, & Lindholm,
2006). A subset cover algorithm predefines a family of subsets of users

 , . Each subset is assigned a long-lived key such

that each can compute from its secret information but any

user cannot compute . Because subset cover schemes are stateless,

the sets and the keys associated with its subsets are fixed.

Of these subsets, the ones that contain members are together known as the
cover or the subset cover and the number of these subsets called the cover size.
To distribute a new group key, the key server calculates an exact cover

 and i.e. a user is a member if and only

if the user is in and (null).

The Broadcast algorithm at the Broadcast Center does the following:

� Choose a session encryption key .

� Encrypt separately times with keys and sends the

ciphertext

The portion in square brackets preceding is called the header and

 is called the body. and are the encryption algorithms with

their first parameter the encryption key

Page 39 of 121

The Decryption algorithm at the receiver, upon receiving the broadcast
message

does the following:

� Find such that (in case , the result is null).

� Extract the corresponding key from .

� Compute to obtain .

� Compute to obtain and output .

The following section is a discussion on two related implementations of
the subset cover scheme. In both schemes the subsets and the partitions
are obtained by imagining the receivers as the leaves in a rooted full and

complete binary tree11 with leaves (is a power of 2). Such a tree contains

 nodes (i.e. leaves plus internal nodes) and for any

we assume that is a node in the tree. The systems differ

in the collections of subsets they consider. Like the LKH, the receivers
are each associated by a leaf in the key tree12 - the key server maintains a
perfect binary (key) tree and assigns a fixed position (a leaf in the key tree)
to each distinct member.

11
 A perfect binary tree. Some people “wrongly” call this a complete tree while others call it

a full tree. If it is not the case that for some integer k then any complete binary tree

with at least n leaves can be used. The extra leaves are then considered either as

representing privileged users or as non-privileged users, whichever is the most favourable

in the particular scenario. If backward secrecy is an issue and the extra leaves will be

assigned to new users in the future then these leaves must be considered to represent non-

privileged users.

12
 In this thesis, a leaf node in the key tree and a member assigned to that node are treated

indistinguishable when there is no risk of ambiguity.

Page 40 of 121

2.4 The Complete Subtree Method

The collections of subsets into which users belong corresponds

to subtrees in the perfect binary tree. For any node in the tree (either an

internal node or a leaf, altogether), is therefore an ancestor of

each user in the subtree rooted at . Let the subset be the collection of

receivers that correspond to the leaves of the subtree rooted at node . In

other words, iff is an ancestor of .

The key assignment method is simple: assign an independent and random
key to every node in the complete tree and provide every receiver with the

 keys associated with the nodes along the path from the root to

leaf ; a user is given the key in the leaf node it is associated with and all

the keys in nodes that are ancestor of . See the . This ensures
that all users whose corresponding leaves have a common ancestor also
have a common key. In other words, the users whose leaves are in the

subtree rooted at node have a common key and they are said to belong

to subset . Thus all users belong to several subsets .

Page 41 of 121

Figure 4: The keys given to a user

In the CS scheme (Figure 4), user corresponds to a leaf is given the

keys from the root to the leaf , the ones corresponding to the black
leaves in the figure.

The method to partitions the into disjoint subsets is as follows. For a

given set of revoked receivers, let be the leaves corresponding

to the elements in . A (directed) Steiner tree induced by a set , is

the minimal subtree of the perfect binary tree that connects all leaves in
and the root. See figure 5.

Page 42 of 121

Figure 5: A Cover for the CS method generated from a Steiner tree.

In Figure 5, (a) is an example of a user configuration in the CS scheme,
black leaves represent users in R and white leaves represent uses in P. The
black nodes in (b) make up the Steiner tree generated from the user
configuration in while white nodes are the ones hanging just off the Steiner
tree. When using the CS scheme to send a secret to the user configuration
in (a), it is thus the keys associated with the subtrees rooted at the white
nodes in (b) that are used.

Page 43 of 121

When this Steiner tree has been generated, the subsets needed to cover

the privileged set can be found as follows; the subtrees hanging just off

the Steiner tree are the subtrees whose roots are

adjacent to nodes of outdegree 1 in but are not in . These
subtrees include all leaves corresponding to privileged users and only these
users. For a proof of this, see (Naor, Naor, & Jeff, 2001). Therefore the
keys to use are the ones associated with these subtrees.

The Decryption process proceeds as follows. Given a message

a receiver needs to find whether any of its ancestors is among

; note that there can be only one such ancestor, so may

belong to at most one subset. The user then extracts the corresponding

from their and use it to extract which they then use to extract .

2.5 The Subset Difference Scheme

The collection of subsets defined by this scheme corresponds

to subsets of the form “a group of receivers minus another group ”,

where . The two groups and correspond to leaves in two

perfect binary subtrees this way; a valid subset is represented by two

nodes in the tree and such that is an ancestor of and we denote

such subset as and defined as \ and referred to as subset difference

set. A leaf iff it is in the subtree rooted at but not in the subtree

rooted at , or in other words iff is an ancestor of but is

not i.e. is the set of all leaves in the subtree rooted at , except for

those in the subtree rooted at . Thus in the SD scheme, a subset of users
that have a common key is a set difference between two sets hence the term

set difference. Figure 6 depicts the SD .

Page 44 of 121

Figure 6: A Cover for the SDS generated from a Steiner tree.

An illustration of the SD is shown in Figure 6. Note that in CS, the

cover size would have been 2 i.e. . and . Clearly, the subset difference
scheme generates a smaller cover compared to complete subtree.

The goal of Subset Difference Scheme is to partition the into fewer
subsets than the CS scheme while still retaining the collusion resistance.
However the way it achieves this, as we see in the next section, results in
the number of keys stored by each receiver being greater.

Note that all subsets from the Complete Subtree Method are also subsets
of the Subset Difference Method because they, too, can be expressed as a
complete subtree minus another complete subtree; specifically, a subtree
appears here as the difference between its parent and a sibling of the
parent. The only exception is the full tree itself which has a special subset.

Each subset has an associated key and for how this is obtained, see
next section.

Page 45 of 121

2.5.1 The Cover

For a given set of revoked receivers, let be the leaves

corresponding to the elements in . The cover is a collection of disjoint

subsets which partitions . There are two algorithms
presented in (Naor, Naor, & Jeff, 2001) for finding the cover. The one that
the simulator (see section 2.7, The single Tree solution”), in this thesis
implements is the second one of the two which uses maximal chains in the
Steiner tree induced by the non-privileged leaves.

A chain in a Steiner tree is a set of nodes along a path where each node
except the lowest one (the one with the largest depth) has exactly one child.
A maximal chain is a chain that is not part of a longer chain. (Anderson,
2005) The start of a maximal chain is therefore the root or a node that has
a sibling and the end is either a leaf (no child) or a node with two children.
Also note that the shortest maximal chain consists of two nodes.

It finds a cover as follows:
� Generate the ST(R)

� For each maximal chain in the ST(R), add a subset where the top node

in the chain is and the bottom node is .

A maximal chain is obtained as follows:

a maximal chain is a chain of nodes with outdegree 1 in ST (R) of the

form

- all of have outdegree 1 in ST (R)

- is either a leaf or a node with outdegree 2

- is either the root or the child of a node of outdegree 2.

For each such chain where , known as a nonempty chain, add a

subset to the cover. Note that all nodes of outdegree 1 in ST

(R) are members of precisely one such chain.

Page 46 of 121

Figure 7: The SDS cover sets

Figure 7 illustrates a key tree with two SD sets of members. The active
users are white leaves for (the privileged users) and black leaves are the
revokes users.

It should be clear that a user in the SD scheme belongs to several SD
subsets. In Figure 7 for example, the user associated with k-node 13 would

belong to the SD subsets . The figure 7
shows the Steiner tree corresponding to the privileged set in Figure 6. We
can see in the diagram (Figure 7) that there is a maximal chain between

nodes and and another between nodes and , each corresponding
to an SD subset.

Page 47 of 121

Figure 8: Maximal chains in a Steiner tree

The privileged users represented by the leftmost white leaves if Figure 8

can be reached by a transmission to and these leaves are

descendants of but not of . The privileged users represented by the
rightmost white leaves can similarly be reached by a transmission to

.

2.5.2 Key Assignment to subsets

The generation of these keys is done this way:

For each corresponding to an internal node in the perfect binary

tree, we choose a random and independent value . i.e. the random label

for node is denoted The initial labels are used as the first input to a

(cryptographic) pseudo-random sequence generator (one-way function) 13
that triples the input, i.e. whose output length is three times the length of
the input, that is

13
 We say that is a pseudo-random sequence generator if no

polynomial-time adversary can distinguish the output of a randomly chosen seed from a

truly random string of similar length.

Page 48 of 121

Of these three outputs, two are used as labels for the children of node ,

left third of the output, becomes the label of the left child and the

right third, becomes the label of right child. The middle third of

the output, , is used as a key corresponding to node . From such
a recursive top-down labelling process, given the label of a node, it is
possible to compute the labels (and keys) of all its descendants i.e. each

node is associated with several labels each derived from the initial

label of each of its ancestors . Figure 9 shows in a small example which
nodes have what labels associated with them.

Consider the subtree (rooted at) with the root assigned a label . If

 is a node in the subtree , then is label of node derived in

the subtree i.e. from the random label of node (by applying the

function one or more times), the key assigned to set SD set is

.

Page 49 of 121

Page 50 of 121

Figure 9: An illustration of how labels are generated in the SD scheme.

This top-down labelling process is continued so that for each child of

node the new label is used as input to and labels and keys are

created for all nodes in the subtree rooted at . The result is that each

node will be associated with several labels because the node is a part of

several subtrees, except the root node which will only have one label.

The labels with one index, , are the initial random labels assigned to

each internal node . The labels with two indices are derived from the

initial labels such that label is the label at node derived from label

. For example, . The tree has been

rotated in order to avoid too much clutter with all the labels.

Page 51 of 121

What is the information that each receiver gets in order to derive the key

assignment described above? For each subtree such that is a leaf of ,

the receiver should be able to compute iff is not an ancestor of .

Consider the path from to and let be the nodes just

“hanging off ” the path, i.e. are adjacent to the path but not ancestors of

(one step sidewise from the path). Each node in that is not an

ancestor of is a descendant of one of these nodes. Therefore if

receives all the labels (derived, not the initial ones) of , as

part of , then invoking (which is assumed to be known to) at most

 times suffices to compute for any that is not an

ancestor of i.e. once a user has a label, the user can derive all the other
labels down the tree.

How many labels in total are these per user? In each subtree that contains

, each of the nodes one step sidewise from the path between and the

root of the subtree contribute the labels it acquires from its ancestors

where is the depth of the node. Onto this we add one label for the case
where there are no revocations for a total of:

labels (Naor, Naor, & Jeff, 2001)..

Note: For a perfect tree the height, of the tree and the number of nodes,

 have the relationship:

Page 52 of 121

2.6 A Multi Tree solution

The only work on dynamic subset difference Revocation in literature seem
to be (Chen, Ge, Zhang, Kurose, & Towsley, 2004). The authors observe
that:
� Static SDR generally requires a very large key tree, which must

accommodate all unique members and as a consequence,

� currently active members, usually a small fraction of all of the unique

members, are likely to be widely dispersed in the key tree space.

Both of these factors decrease the performance of SDR. It is these two
inefficiencies that their proposed approach which they call dynamic SDR
addresses.

They argue that, in the binary key tree of SDR, the probability of holes
(positions with departed members) being somewhat distributed fairly
evenly among members is high and therefore the cover size at most times
will be made up of shorter subtrees rather than tall subtrees. The key
server only needs to maintain a set of smaller subtrees with an appropriate

height . Their idea of dynamic SDR is to dynamically maintain such set
of subtrees.

If each tree has a height of , each user key storage will be because a
user only need to store the key in it user key node because it has only one
descendant. However, the message expansion will be maximum i.e. as many
as the users because the broadcaster has to send the message to each user
encrypted with the user’s key stored in the user’s key node.

The ideal case is when all the users are on one tree. Assuming that the users

, are a power of and all of them are in privileged, if they all fit on one

tree then the message expansion would be one because they are all
descendants of the root node and the key size at the users would be

maximum because key size is and the height is the maximum possible
when the number of leaves are at a maximum.

Page 53 of 121

To achieve this ideal case, requires that the number of users who will be
active, be known in advance, something not possible. The authors have
explained how to determining an appropriate height for each tree. It is a
design trade off. (Chen, Ge, Zhang, Kurose, & Towsley, 2004).

2.6.1 Scheme of dynamic SDR

In dynamic SDR, the positions of members are not pre-assigned. Instead,
the spaces in the key tree are dynamically allocated and reclaimed, adapting
to the current set of active members. More specifically, the key server
dynamically creates leaves when new member joins, or discards a subtree
when all positions of the subtree are inactive. By doing this, the key server
maintains active members in a dynamic key tree, rather than a large key tree
constructed in advance.

The scheme is fairly simple. The small equally sized disjointed trees are
atomic allocation units. One can view them as subtrees connected to a
virtual root r (see Figure 10).

Figure 10: Constructing dynamic SDR key tree using sub-trees as

allocation units

Initially, the key server has a single subtree connected to the virtual root

.

Page 54 of 121

When a member joins the group, regardless of being a new member or a
returned member, the member is assigned to the next available position in
the key tree (from left to right) and is unicast the secret information
associated with the new position. The key server thereafter encrypts and
multicasts the updated TEK to the current members in exactly the same
way as in static SDR. If new positions are required the key server creates a

new subtree . When a member, , leaves the group, the position

becomes empty and will never be used by any member (even itself) and
a new TEK is multicast to the members that remain in the group. If all
positions of the leftmost subtree become empty, the key server discards
that subtree.

2.6.2 The benefits

The advantages of maintaining such a dynamic-membership key tree are
two-fold.

First, instead of maintaining a key tree that is sufficiently large to hold all
potential members, dynamic SDR may require a much smaller key tree of a
size sufficient to accommodate the maximum number of concurrently
active members. This helps reduce key storage cost, both at the members
and at the key server. Second, dynamic SDR is able to utilize the temporal
locality of the members’ joining and leaving activity. By assigning members
that arrive close in time to positions that are close in the key tree, the key
server is likely to find a subset that can cover many adjacent members. As a
result, a small number of subsets will typically be needed to cover the
active members when a new TEK is disseminated. This implies that the
messaging overhead associated with rekeying is also reduced.

Since the key tree of dynamic SDR can be extended arbitrarily, dynamic
SDR does not require a priori knowledge of the size of total member

population, . This avoids the problem, which exists in static SDR, of

estimating . Overestimating makes the static SDR key tree
unnecessarily large, increasing both rekey communication cost and key

storage cost, whereas, underestimating may introduce the problem of
having to reject members when all positions have been assigned.

Page 55 of 121

2.6.3 Key Storage

In dynamic SDR, the size of secret information, , is reduced from

 to where is the
maximum number of users per subtree that corresponds to an allocation

unit. Although the key storage size required by a member is fixed when is

chosen, this is not the case for the broadcaster , whose key storage is

related to the number of subtrees. i.e. the number of leaves in a

tree whose height is is .

2.6.4 Reducing S by shifting

Assuming that the key server sequentially assigns the available positions of

the key tree from the left to the right to the joining members, is the
distance from the leftmost position occupied by an active member to the

first available position at the right side. These positions, referred to as the
concurrent spaces, determine the key storage at the key server.

A large value results in an increased key storage at the side. Also,

currently active members disperse in the key tree as increases, incurring
more resultant subsets and thus more rekeying messages. As a result, it is

desirable to keep small.

A simple operation, namely shifting, that can be used to reduce S. This
defined as the operation of detaching the leftmost active member in the
key tree and reattaching the member to the next available position (for new
arrivals) in the key tree. This is based on the consideration that in a
dynamic SDR subtree, a leaf position assigned to a member cannot be
assigned again. See Figure 11.

Page 56 of 121

Figure 11: The Shifting operation

When some holes (i.e. positions with departed members) are generated in
the key tree, shifting the leftmost active member may reduce the

concurrent spaces, , and make active members more adjacent. Here we see

shifting the leftmost member from left to right reduces by .

When active members are shifted, they are delivered new secret
information associated with the new positions by unicast. From the
collusion-proof property of static SDR, shifting does not jeopardize the
confidentiality of the group communication.

2.7 The Single Tree Solution

The solution proposed in this thesis uses a single tree that grows and
shrinks as users come and go respectively. The solution proposed in in
(Chen, Ge, Zhang, Kurose, & Towsley, 2004) uses a set of sub-trees
instead. Like in (Chen, Ge, Zhang, Kurose, & Towsley, 2004), when a new
member joins the group, the member is assigned to the next available
position in the key tree (from left to right) and is unicast the secret

information, associated with the new position. But unlike unlike (Chen,
Ge, Zhang, Kurose, & Towsley, 2004) where a returned member, is also
assigned to the next available position in the key tree, the single tree returns
the user to their former position - a member reoccupying their former
position does not compromise the security of the scheme so long as
rekeying is done. The rekeying is necessary because the return of a member
to the same position they were in changes the cover.

All the time, the users are accommodated on a single key tree whose size is
the smallest possible that can sufficiently accommodate them. This
achieved as follows:
� When a user leaves, the systems checks if the remaining members are

equal to or less than half the base of the tree. If so, this means they can

be accommodated on a smaller tree and the system destroys the

current tree and creates a new smaller tree sufficient to accommodate

them.

� When a new user or a previously revoked user comes, and there is no

slot to place them, the system creates a new tree that is sufficient to

accommodate the current members. The resulting tree will not

Page 57 of 121

necessarily be bigger because lack of a new slot does not necessarily

mean the tree is full; some users may have left and a user slot can only

be occupied by the user who is initially allocated the slot. Note that

previously revoked user may lack a slot in the tree because the tree

from which they were revoked has since been destroyed and this is an

entirely different tree.

Keeping users on the smallest possible tree ensures that the key storage

cost at both and at the members is always the lowest possible. The
downside of the solution is that a unicast is made to each member
whenever the tree is recreated; a high communication cost. Indeed, the
performance of this solution depends on how infrequently these two
situations occur.

Page 58 of 121

Figure 12: Adding a user to a keytree that is already full of members

In Figure 12, the tree in (a) is full of members (members) while the tree

in (b) is the resulting tree when a new member joins. Note that if one
member leaves the tree in (b), the system creates a new tree of the same

size as the one in (a). Also note that a key in a newly created key tree is

not related to the key in the previous tree. This is why the must be
unicast to each user each time the key tree is created.

Page 59 of 121

To keep the broadcast message expansion low, the tree should be re-created

whenever the number of user clusters is “too high”. Consider the leaves of

the key tree as a sequence of users that can be

thought of as a bitmap where a at position means that the

corresponding user, , is in the non-privileged set and means that is

in the privileged set. The sequence is called a user profile. A cluster is an

unbroken sequence of members (1s) in . The number of clusters of
members determine the cover size – the number of transmissions or the
cover size.

2.7.1 Clusters and transitions

The maximum number of clusters is reached when the user profile,

 contains the most number of or subsequences which is clearly
half the base of the tree (the maximum possible number of users on the

tree). This is denoted as where stands for transition from the

interpretation of or as a transition in the user profile from a non-
privileged user to a privileged user or from a privileged user to a non-

privileged user respectively. and are the same – they are both

equal in value to half the number of maximum users possible. When

has been reached, then we have but we can have when the

transitions are not yet . and coincide only when each

member (a in) has exactly one non-member neighbour (a in) and

vice versa if the first and last bits in are opposite bits; if both the last and

the first members of are 1s, then is reachable when one and only

one of the has a as a neighbour or one and only one of the has a

as a neighbour and therefore the transitions are less than . Note that

 is not reachable if both the last and the first are (non-members).

Page 60 of 121

Because the system intervenes whenever the current members become half

the maximum possible, we can never reach but the explanation in the

last paragraph shows it is possible to reach before the system

intervenes. Chances that is reachable are very slim indeed – only
when the last and the first user in the user profile are members and every 1
has a 0 as a neighbour in the profile except one and only one member is
having a member as a neighbour therefore resulting in members being one

more than half the maximum possible. Any other way of reaching
requires that the members reduce to half the maximum possible and as we
have seen, whenever this would be the situation, the system intervenes and
creates a smaller tree with one cluster of users.

Nevertheless, operating at should be considered unacceptable and
therefore, when this would be the situation, the system should intervene
and re-create a smaller tree with one cluster of users. The relationship
between the cover size and the number of user clusters is not one-to-one.
If left to the system to intervene only when the members is half the

maximum possible, will be reachable as the Table 3 shows; it is a
table of the values of user clusters and cover size for a key tree whose base

is users. The base of the tree is assumed here to be a zero-based array

of size (The indices are from to). The last column of Table 3 and
Table 4 shows the situation when the system has intervened. Table 3 is one

in which revocations produce the subsequences while Table 4 is the one

in which revocations produce the subsequences.

Page 61 of 121

Table 3: the "01" subsequences

revoked(index) 0 2 4 6 8 10 12 14
cover size 1 3 4 5 5 7 7 1

member clusters 1 2 3 4 5 6 7 1
members 15 14 13 12 11 10 9 8

Table 4: the "10" subsequences

revoked(index) 1 3 5 7 9 11 13 15
cover size 1 3 4 5 5 7 7 1

member clusters 2 3 4 5 6 7 8 1
members 15 14 13 12 11 10 9 8

From the tables, one can see a possibility of reaching before the
system intervenes (see table two); the user clusters has reached the

maximum of while the users have not reduced to . As pointed out
already, high user clusters means the system is performing badly in terms
of message expansion.

As already pointed out, the performance of the single tree solution
depends on how infrequently the tree creation operation takes place

because among other things, it involves unicasting the to each member
which is a high cost in communication terms. The tree creation operation
takes place when the following situations show up:
� admitting a member is going to result in all the users (revoked and

members) being more than a power of two; the base of the key tree is

full.

� revoking a member (privileged user) is going to result in members being

half the maximum possible; half the key tree base.

� revoking or admitting a member is going to result in user clusters being

the maximum possible (half the tree base)

With these constraints, we have a guarantee that the maximum message
expansion (broadcast transmissions per message) can never reach the
maximum possible i.e. half the base of the key tree. The downside is that
whenever these situations show up, the key server is ‘frozen’ i.e. not
available to be queried for broadcast key(s). It is therefore how frequent
these situations can occur during operation that determines the efficiency
of the scheme.

Page 62 of 121

During certain intervals perhaps when there are no essential activities and
the performance is not so good due to user fragmentation; the tree could
be optimised by moving the members to a new tree in the process
consolidating them into one cluster to reduce the cover size. Indeed
whenever the key tree is created all the users are arranged in one cluster to
the left as possible. This keeping of broadcast transmissions per message

below a certain level and ensuring that the key storage at the broadcaster,
and at the users are at their minimal level are the key design strategies of
the single tree solution of the Dynamic Revocation Problem.

2.7.2 Summary

The design goals of the scheme are ensuring that message expansion is
always less than the maximum possible, and the key storage at the

broadcaster, and the users are always at their minimal possible level. As
pointed out, this comes at a cost of the inevitable maintenance
communication cost – unicasts of to members. Whenever these
maintenance activities are taking place, the key server is ‘frozen’ i.e. not
available to be queried for broadcast key(s) by the broadcaster.

The maintenance activities are mainly reconstruction of the key tree which

then requires among other things, a unicast of to each member. The tree
creation operation takes place when the following situations show up:
� admitting a member is going to result in all the users (revoked and

members) being more than a power of two; the base of the key tree is

full.

� revoking a member (privileged user) or deleting a member is going to

result in members being half the maximum possible; half the key tree

base.

� revoking/deleting or admitting a member is going to result in user

clusters being the maximum possible (half the tree base)

The conceptual diagram is shown in Figure 13.

Page 63 of 121

Figure 13: The Conceptual Diagram

Page 64 of 121

Chapter 3: Methodology

Methodology is the path to finding answers to the research questions
constitutes. The methodology used in this thesis is simulation. It is described
in detail in Section 3.4 but before that, some background information is
discussed that illustrate that simulation is a combination of actually two
methodologies – experiment and model.

3.1 Research Philosophy

In an academic context, research is used to refer to the activity of a diligent
and systematic inquiry or investigation in an area, with the objective of
discovering or revising facts, theories, applications etc. Research is
undertaken within most professions. More than a set of skills, it is a way of
thinking: examining critically the various aspects of one’s professional
work. It is a habit of questioning what one does, and a systematic
examination of the observed information to find answers with a view to
instituting appropriate changes for a more effective professional service.
The goal is to discover and disseminate new knowledge.

Research is a process of collecting, analyzing and interpreting information
to answer questions. But to qualify as research, the process must have
certain characteristics: it must, as far as possible, be controlled, rigorous,
systematic, valid and verifiable, empirical and critical.

3.2 The Research Process

The research process is similar to undertaking a journey. For a research
journey there are two important decisions to make
� What one wants to find out about or what research questions

(problems) one wants to find answers to and

� How to go about finding these answers.

There are practical steps through which a researcher must pass in their
research journey in order to find answers to their research questions. The
path to finding answers to the research questions constitutes research
methodology. At each operational step in the research process the researcher
is required to choose from a multiplicity of methods, procedures and
models of research methodology which will help the researcher to best
achieve their objectives.

There are several methods that can be used in Computer Science and
Information Systems. Tasks performed by a single researcher fall within

different methodologies. Even the activities required to tackle a single
research question may include several of these methodologies. [Ama]

Page 65 of 121

The remainder of this section is a discussion of these methodologies.

3.2.1 Theoretical/Formal Methodology

The theoretical approaches to Computer Science are based on the classical
methodology since they are related to logic and mathematics (Ayash, 2014).
In Computing Science, formal methodologies are mostly used to prove
facts about algorithms and system. Researchers may be interested on the
formal specification of a software component in order to allow the
automatic verification of an implementation of that component.
Alternatively, researchers may be interested on the time or space
complexity of an algorithm, or on the correctness or the quality of the
solutions generated by the algorithm.

A formal methodology is most frequently used in theoretical Computing
Science. Theoretical Computer Science (TCS) is formal and mathematical and it
is mostly concerned with modelling and abstraction. The idea is to abstract
away less important details and obtain a model that captures the essence of
the problem under study. This approach allows for general results that are
adaptable as underlying technologies and application changes, and that also
provides unification and linkage between seemingly disparate areas and
disciplines. TCS concerns itself with possibilities and fundamental
limitations. Researchers in TCS develop mathematical techniques to address
questions such as the following. Given a problem, how hard is it to solve?
Given a computational model, what are its limitations? Given a formalism,
what can it express? (Amaral, 2014)

3.2.2 Build Methodology

A “build” research methodology consists of building an artifact — either a
physical artifact or a software system — to demonstrate that it is possible.
To be considered research, the construction of the artifact must be new or
it must include new features that have not been demonstrated before in
other artifacts. (Amaral, 2014)

3.2.3 Process Methodology

A process methodology is used to understand the processes used to
accomplish tasks in Computing Science. This methodology is mostly used
in the areas of Software Engineering and Man-Machine Interface which
deal with the way humans build and use computer systems. The study of
processes may also be used to understand cognition in the field of Artificial
Intelligence. (Amaral, 2014).

Page 66 of 121

Process methodologies are most useful in the study of activities that
involve humans. Examples of such activities in Computing Science include
the design and construction of software systems — large or small, the
design and evaluation of human-computer interactions, and the
understanding of cognitive processes. More recently the creation of
interactive games has been studied extensively. This activities often involve
studies with human subjects.

3.2.4 Experimental Methodology

Experiments can test the veracity of theories. This method within CS is
used in several different fields like artificial neural networks, automating
theorem proving, natural languages, analysing performances and
behaviours, etc. Experimental methodologies are broadly used in CS to
evaluate new solutions for problems. Experimental evaluation is often
divided into two phases. In an exploratory phase the researcher is taking
measurements that will help identify what are the questions that should be
asked about the system under evaluation. Then an evaluation phase will
attempt to answer these questions. A well-designed experiment will start
with a list of the questions that the experiment is expected to answer.

It is important to emphasize that all the experiments and results should be
reproducible. Conducting experiments in a careless fashion can lead to a
situation where the authors themselves cannot reproduce the experiments.
The following is some general advise to help preventing one from
producing worthless experimental papers. (Ayash, 2014).

3.2.5 Model Methodology

The real world can be viewed as being composed of systems. A system is a
set of related components or entities that interact with each other based on
the rules or operating policies of the system.

Oftentimes, there arises a need to predict some aspect of the performance
of a system before it is actually built. Since the real machine does not yet
exist, one cannot measure its performance directly (Lilja, 2000). Instead,
the best one can do is to model the system. A model is a representation of
the system. Modeling may be necessary because a system does not
physically exist or building a system is expensive or measuring (analysing) a
system is time-consuming requiring vast computing resources.

Models enable seeing how a real-world activity will perform under different
conditions and test various hypotheses at a fraction of the cost of
performing the actual activity. Modeling may also be appropriate when one
wants to investigate some aspect of a system’s performance that one
cannot easily measure directly or indirectly.

Page 67 of 121

Modeling is the purposeful abstraction of a real or a planned system with
the objective of reducing it to a limited, but representative, set of
components and interactions that allow the qualitative and quantitative
description of its properties. Scientists build models that capture important
aspects of a system and gloss over — either completely ignore or just
approximate — the aspects that have lesser (or no) impact to their intended
study. A model is an abstracted and simplified representation of a system at
one point in time. Models are an abstraction because they attempt to
capture the realism of the system. They are a simplification because, for
efficiency, reliability, and ease of analysis, a model should capture only the
most important aspects of the real system.

The decision of which aspects are important and which ones have lesser
impact is itself part of the modeling strategy. Misleading outcomes are
produced by models that eliminate what is important or that over-
emphasize what is of lesser impact. (Amaral, 2014). The finer the level of
granularity at which the model can simulate the system depends on the
level of details necessary in order to make the desired decision and the
consequences of being wrong; deciding the level of detail necessary is
more art than science (Lilja, 2000). If the model is valid, the outputs of the
simulation will be reflective of the performance or behaviour of the real
system.

Because a model is much less complex than the system that it models, it
allows the researcher to better understand the system and to use the model
to perform experiments that could not be performed in the system itself
because of cost or accessibility. Strictly speaking, modeling is a
methodological aspect of science. Modeling is not the object of the
research, it is part of an arsenal of instruments used by researchers to
study and understand the research’s object. (Amaral, 2014). The model is
studied as a surrogate for the actual system.

One of the principal benefits of a model is that one can begin with a
simple approximation of a process and gradually refine the model as their
understanding of the process improves. This “step- wise refinement”
enables one to achieve good approximations of very complex problems
surprisingly quickly. As one adds refinements, the model more closely
imitates the real-life process.

The model methodology is often used in combination with the other four
methodologies. Experiments based on a model are called simulations
(Amaral, 2014). From the simulations information, one can extrapolate
how the system will behave once it is actually built (Lilja, 2000).

Page 68 of 121

Model methodology is used especially in Computer Science not only
because it offers the possibility to investigate the systems that is under
invention or construction but also systems or regimes that are outside of
the experimental domain. Normally complex phenomena that cannot be
implemented in laboratories for example evolution of the universe. Some
domains that adopt computer simulation methodologies are sciences such
as astronomy, physics or economics; other areas more specialized such as
the study of non-linear systems, virtual reality or artificial life also exploit
these methodologies. A lot of projects can use the simulation methods, like
the study of a new developed network protocol. To test this protocol one
has to build a huge network with a lot of expensive network tools, but this
network can't be easily achieved. For this reason we can use the simulation
method.

Simulation often lacks the power to make definite statements about
properties of the system. For instance, the results of simulations may not
be used to prove that a deadlock never develops in a concurrent system.

3.3 Simulation Methodologies

The formalism used to specify a system is termed a modeling methodology.
The three main modeling methodologies are continuous, discrete event, and
discrete rate.
� Continuous modeling (sometimes known as process modeling) is used

to describe a flow of values.

� Discrete event models track unique entities.

� Discrete rate models share some aspects of both continuous and

discrete event modeling.

In all three types of simulations, what is of concern is the granularity of
what is being modeled and what causes the state of the model to change.

3.3.1 Continuous

The time step is fixed at the beginning of the simulation, time advances in
equal increments, and values change based directly on changes in time. In
this type of model, values reflect the state of the modeled system at any
particular time, and simulated time advances evenly from one time step to
the next. For example, an airplane flying on autopilot represents a
continuous system since its state (such as position or velocity) changes
continuously with respect to time. Continuous simulations are analogous to
a constant stream of fluid passing through a pipe. The volume may increase
or decrease at each time step, but the flow is continuous.

Page 69 of 121

3.3.2 Discrete Event

The system changes state as events occur and only when those events
occur; the mere passing of time has no direct effect on the model. Unlike a
continuous model, simulated time advances from one event to the next and
it is unlikely that the time between events will be equal. A factory that
assembles parts is a good example of a discrete event system. The
individual entities (parts) are assembled based on events (receipt or
anticipation of orders). Using the pipe analogy for discrete event
simulations, the pipe could be empty or have any number of separate
buckets of water traveling through it. Rather than a continuous flow,
buckets of water would come out of the pipe at random intervals.

3.3.3 Discrete rate

Discrete rate simulations are a hybrid type, combining aspects of
continuous and discrete event modeling. Like continuous models they
simulate the flow of “fluid” rather than items; like discrete event models
they recalculate rates and values whenever events occur. Using the pipe
analogy for a discrete rate simulation, there is a constant stream of fluid
passing through the pipe. But the rates of flow and the routing can change
when an event occurs.

3.4 The Model: A Discrete-Event Model

The simulator implemented for this thesis is a Discrete-Event Model. Discrete-
Event Simulation relies on a transaction-flow approach to modeling systems.
A system is a collection of entities (Law, January 2014) that act and interact
together toward the accomplishment of some logical end. A DES is used to
model a system whose global state changes as a function of time. The basic
idea is that the global state is appropriately updated every time some event
occurs.
� Discrete System

In a discrete system, state variables change instantaneously at

separated point in time, e.g., a bank, since state variables (number of

customers), change only when a customer arrives or when a customer

finishes being served and departs.

� Continuous System

In a continuous system, state variable change continuously with

respect to time, e.g., airplane moving through the air, since state

variables - position and velocity change continuously with respect to

time

Page 70 of 121

As already explained above and in Section 3.4, discrete-event simulation (DES)
models the operation of a system as a discrete sequence of events in time
i.e. a system whose state may change only at discrete point in time. Each
event occurs at a particular instant in time and marks a change of state in
the system. Between consecutive events, no change in the system is
assumed to occur; thus the simulation can directly jump in time from one
event to the next. The events may be generated may be generated externally
to the model as well as spawned within the simulator by the processing of
other events.

Discrete simulators are generally designed for simulating processes such as
call centers, factory operations, and shipping facilities in which the material
or information that is being simulated can be described as moving in
discrete steps or packets. They are not meant to model the movement of
continuous material (e.g., water) or represent continuous systems that are
represented by differential equations.

In the simulator implemented for this thesis, an event is the successful
execution of an operation from the operation queue. While the specific
details of every model will be unique, DESs all share a similar overall
structure. In addition to the logic of what happens when system events
occur, each DES will require at least some of the following components.
(Lilja, 2000). This section describes the simulator, showing that it has all the
characteristics of a generic Discrete-Event Simulator.

3.4.1 State

A system state is a set of variables that captures the salient properties of the
system to be studied. The state trajectory overtime S(t) can mathematically
represented by a step function whose values change in correspondence of
discrete events. These are the dependent variables as explained in the,
Section 3.6, Design of Experiment. The ones of interest in this thesis are
three
� Unicast cost

� Multicast cost and

� User storage

But the simulator actually implemented for this thesis also records the
extraneous value of event duration in clock ticks. See a sample of the detailed
output in Appendix 2.

Page 71 of 121

3.4.2 An Events Scheduler

The event scheduler maintains a list of all pending simulation events in
their global time order. This list is sometimes called the pending event set
because it lists events that are pending as a result of previously simulated
event but have yet to be simulated themselves. It is the responsibility of the
scheduler to process the next event on the list by removing it from the list
and dispatching the event to the appropriate event-processing routine. It
also inserts new events into the appropriate point in the list on the basis of
the time of the time at which the event is supposed to be executed.
Updates to the global time variable also are coordinated by the scheduler.

In this case, the list is a list of operations from a text file. As part of the
construction of the class, StringReader, whose object tracks this pending
list, the file’s content is read.

3.4.3 Clock: The global time variable

The global time variable records the current simulation time. The
simulation must keep track of the current simulation time, in whatever
measurement units are suitable for the system being modeled. In discrete-
event simulations, as opposed to real-time simulations, time ‘hops’ because
events are instantaneous – the clock skips to the next event start time as
the simulation proceeds. It can be updated by the scheduler.

In this case, this is the serial number of the operation with the first number
given the serial 1. The way the experiment is designed is such that it reads
12 operations. See Section 3.6, Design of Experiment. So the reading
routine apart from recording the serial number (clock) also ensures that it
does not overstep.

3.4.4 Event processing

Each kind of event in the system will typically have its own event-
processing routine to simulate what happens when that event occurs in a
real system. These routines may update the global state and they may
generate additional events that must be inserted into the pending-event list
by the scheduler. The processing of each event depends entirely on the
system being simulated though.

In this case, each solution has its own way of processing an event. For the
single-tree solution, every event processing involves testing if the key-tree
has tipped over the cliff. If so, a new tree is created as part of the event
processing. See Section 3.6, Design of Experiment.

Page 72 of 121

3.4.5 Event generation

Discrete event simulators are often classified according to the technique
used to generate events. Commonly used classifications are execution
driven, trace driven, and distribution driven.

The simulator for this thesis obtains the events from a prepared text file.
There are twelve of them as explained in Section 3.6, Design of
Experiment.

3.4.6 Statistics: Recording and summarisation of data

In addition to maintaining the state variables necessary for simulating the
system, the model must also maintain appropriate event counts and time
measurements. These values are used at the end of the simulation to
calculate appropriate statistics to summarize the simulation results.

In this case, the statistics are simply the average of each variable values as
recorded after each clock step (event). The summing is also done after each
event. These averages appear at the end of the output. See a sample in
Appendix 2.

3.4.7 Ending condition

Because events are bootstrapped14, theoretically a discrete-event simulation
could run forever. So the simulation designer must decide when the
simulation will end. Typical choices are “at time t” or “after processing n
number of events” or, more generally, “when statistical measure X reaches
the value x”

In this case the operations to read have been set at 12 therefore after
“time” 12 it stops.

3.4.8 Simulation Algorithm or Engine Logic

The overall processing done by a DES can be summarised in the steps:
Start

Initialize the following

 - number of operations to process (Ending Condition).

 - the dependent variables(the system state variables).

 - operation serial number (Clock – to zero).

14
 Bootstrapping usually refers to the starting of a self-sustaining process that is supposed to

proceed without external input. In computer technology the term (usually shortened to booting)

usually refers to the process of loading the basic software into the memory of a computer after

power-on or general reset, especially the operating system which will then take care of loading

other software as needed.

Page 73 of 121

 - the cumulative statistical variables (to zero)

while operation serial < number of operations to process

 Pick operation from list (remove next event from pending list)

 dispatch the operation to appropriate routine

 increase each cumulative statistical variables

 by corresponding updated state variables value.

 increment operation serial by one (i.e. update global time)

Compute the averages (Generate statistical report).

3.5 Validation and Verification

The quality of the results obtained from any simulation of a system is
fundamentally limited by the quality of the assumptions made in
developing the simulation model (Lilja, 2000). Verification and validation
are independent procedures that are used together for checking that a
product, service, or system meets requirements and specifications and that
it fulfils its intended purpose. The words "verification" and "validation" are
sometimes preceded with "Independent" (or IV&V), indicating that the
verification and validation is to be performed by a disinterested third party.

3.5.1 Validation of the simulator

Validation is the process of determining the degree to which a model,
simulation, or federation of models and simulations, and their associated
data are accurate representations of the real world from the perspective of
the intended use(s). The validation process attempts to ensure that the
simulator accurately models the desired system. In other words, validation
attempts to determine how close the results of the simulation are to what
would be produced by an actual system (Lilja, 2000).

The simulator when run has an execution path for validating it known as
the “Work Bench”. When the user gets into this branch of execution, the
outputs are displayed on the screen for inspection. The user can perform
all the operations and watch their output; the operation menu is at the
bottom and the output of pervious operation at the top. It is interactive;
the user chooses an operation and sees the outcome. See Section 3.7.

3.5.2 Verification of the simulator

Verification is the process of determining that a computer model,
simulation, or federation of models and simulations implementations and
their associated data accurately represent the developer's conceptual
description and specifications. Verification is the process of determining
that a model is implemented correctly (Lilja, 2000).

Page 74 of 121

The adherence of the simulator to the structure of a discrete event
simulator is explained in Section 3.4.

3.6 Design of Experiment

In general usage, design of experiments (DOE) is the design of any
information-gathering exercises where variation is present, whether under
the full control of the experimenter or not. The primary goal of design of
experiment is to determine the maximum amount of information about a
system with the minimum cost. The cost includes the time and effort
required to gather the necessary data, plus the time and effort needed to
analyse these data to draw some appropriate conclusions. Consequently, it
is important to minimise the number of experiments that must be
performed while maximising the information obtained. (Lilja, 2000).

From the resulting measurements obtained, from the carefully selected
experiments, the experimenter can determine the effects on performance
of each individual input factor and the effects of their interactions.

The simplest design for an experiment varies one input (factor) while
holding all other inputs constant. The experiments carried out for this
thesis are all of this kind. One factor, initial number of users, is chosen and
the other, operation stream sequences, is varied. The opposite extreme is a
full factorial design with replication in which the system’s response is measured
for all possible input combinations. With this type of data, it is possible to
determine the effects of all input variables and all of their interactions,
along with an indication of the magnitude of an error. However, full
factorial design can require a very large number of experiments. A system

with factors each of which has possible levels requires separate
experiments. To reduce the total number of experiments that must be
performed, the experimenter can reduce either the number of levels used
for each input variable, or the total number of inputs.

3.6.1 Terminology

Researchers who focus on causal relations usually begin with an effect, and
then search for its causes. The input variables or cause variable, or the one
that identifies forces or conditions that act on something else, are called
factors. In some disciplines the popular term is independent variable. These are
the variables the experimenter can control or change.

Page 75 of 121

The factors for the experiment conducted for this thesis are the initial
number of users, operation stream and, in addition, for the multi-tree solution,
the height for the mini-trees. The specific values to which a factor may be set is
known as levels of the factor. For the experiment conducted for this thesis,
the levels for the initial number of users is three, for operation stream, it is
four and for the mini-tree height, it is seven.

The response variable is the output value that is measured as the input values
are changed. It is the effect or the result or outcome of another variable
and is commonly referred to in some disciplines as the dependent variable.
Other terms used for it are outcome variable and effect variable.

This goal of this thesis is finding out how a broadcast encryption scheme
implemented using a single binary tree, that shrinks and expands by level is
response to population of users, compares in efficiency with the multi-tree
solution proposed in (Chen, Ge, Zhang, Kurose, & Towsley, 2004) in
terms of the following parameters:
� The key storage cost at the member side,

� The multicast cost and

� The unicast cost

Therefore these three are the response variables of the experiment.

Replication means completely rerunning the experiment with all of the same
input levels. This is useful in situations where measurement of the response
variable is subject to random variations so that replications of an
experiment determine the impact of measurement error on the response
variable. The experiment for this thesis deals purely with nonnegative15
integers and therefore and therefore replication, whatever number of times
is carried out, will give the same result. Indeed, the experiments are in a
way just confirmatory tests that the model is working correctly.

An interaction between factors occurs when the effect of one factor depends
on the level of another factor. In some disciplines, the variable whose level
alters the impact of another is called a moderating variable. A moderating
variable represents a process or a factor that alters the impact of an
independent variable X on a dependent variable Y. It influences, or
moderates, the relation between two other variables and thus produces an
interaction effect. In other words, it has a strong contingent effect on the
independent variable-dependent variable relationship.

15
 A nonnegative integer r, means that r ≥ 0. Positive integer n, means that n > 0.

Page 76 of 121

The following sections describe all the variables that were used in the
experiments.

3.6.2 The response variables

As noted in previous section, the response variables are the performance
metrics set out in the research question, namely message expansion, user storage
and unicast i.e. outputs from the experiments are the performance metrics.
The following sections are brief descriptions for each:

Multicast Cost or Message Length or Message Expansion

This is the length of the header that is attached to , which is

proportional to , the number of sets in the partition covering .
The multicast cost is equal to the minimum number of subsets used to
cover the active members in the key tree. This is the same as the number of
maximal chains in the Steiner tree created by the key server. This is
computed as explained at Section 2.5.1. This is also the same as the
message header or message expansion and is a measure of the rekeying
cost.

Storage size at the receiver

This is the the private information the user needs to know in order to
recover the TEK during rekeying. This has been shown in Section 2.5.2 to
be

where is the height of the key tree at the key server.

 could simply consists of all the keys such that , or if the key
assignment is more sophisticated it should allow the computation of all
such keys.

This could also be interpreted as a measure of the time taken to process a
message at the receiver; i.e. performing decryption and other types of
operations such as a user determining if they are one of the intended
receivers.

Unicast Cost

This is simply the unicast message count - the number of messages
containing the private information (typically, keys) that a new member
must be sent. Note that a new member being admitted or a member being
revoked may cause other users to be sent their private information too.

Page 77 of 121

For the experiment of the thesis, the unicast cost is the number of joining
members and shifted members. The secret information is delivered to a
user when that user joins the group for the first time. Since a member’s
position in the key tree is fixed, no additional unicast costs are incurred
when the member returns to the group. But a returning user who has never
been a leaf of the current key tree is really a shifted member and therefore
also receives a unicast message.

3.6.3 The Factors

A factor is the presumed cause in an experimental study. It is the variable
the experimenter has control over, what they can choose and manipulate
i.e. the values of a factor are under experimenter control. It is usually what
the experimenter thinks will affect the dependent variable. In this
framework, the independent variables are a set of operations and the
number of initial privileged users also referred to as members.

Number of initial Users

As part of the “booting process”, the algorithms that implement the
simulators read the users initially from a text file. The number of initial
users is an input to the algorithm.

Operation streams

An operation stream is simply sequence of operations executed by the
algorithm. A stream can be of any length i.e. any number of operations.
The operations used to generate the results presented in Chapter 5 are the
four operation which each lead to an increase or decrease of number of
users or number of members.

operation does this…

admit introduces a new user as a member

delete removes a user from the system

revoke suspends a member, making the user a non member

restore changes the status of a non-member to a member

An operation stream is a permutation of any number of these four
operations. The single-tree algorithm does not need any other input. See
figure 14.

Page 78 of 121

Figure 14: The single-tree solution

The mini-trees height

In the multi-tree solution, the height of the mini trees affect the user
storage directly since the user storage is a measure of the tree height. This is
because each user corresponds to a leaf in the key tree and the number of
ancestors (which is a measure of the tree height) is a measure of the key
user storage. Therefore the lower in the key tree a user is, the bigger the
user storage. It may also affect the other variables. For example the bigger
the height chosen, the bigger the key tree base and therefore the higher the
chances of a poor user profile resulting in higher message expansion.
Figure15 depicts the multi-tree solution setup.

Figure 15: The Multi-tree solution

The following sections are a discussion on the experiment that produced
the results presented in Chapter 4.

The experiments are carried out at two possible conditions; the typical
condition and the cliff condition. The typical condition is the condition that
the solution is assumed to operate is most of the time as justified in the
explanation. The cliff condition is a condition in which the server may
become unavailable for some time after an operation.

Page 79 of 121

3.6.4 The cliff condition

The simulator uses a key tree. The tree used is a perfect binary tree. This
means that the number of leaves of the tree is a power of two. In a key
tree, a leaf corresponds to a user. The key tree space usage is therefore best

when the number of members is a power of i.e. . It should be clear
that the worst case key tree space usage is when the number of members is

one more than a power of 2 i.e. . These two extremes are referred
to in this thesis as cliff conditions because either adding a member to

members or removing a member from members results in tree
recreation. During tree creation the server cannot process request because
the key tree which is its most important component does not exist.

Worst-Case and Best-Case Efficiency

As explained in Chapter , the tree creation is the costliest operation in the

single tree solution. When it takes place, the key server, is not available to
serve members. The efficiency of the single tree solution depends on how
infrequently this operation takes place. This costly operation takes place
because:
� a user is either being admitted as a member or

� a member is being revoked or

� a user is being deleted from the system or

� a previously revoked member is being readmitted.

Each of these operations is a complimentary operation to one of the other
three operations. They are each applied three times in a complimentary
manner to create an operation stream of 12 operations i.e. if delete is applied

on user , then the complementary admit is also applied on in future.
Each input stream of operations involves six users – three already in the
system as members and three outside the system. The three users in the
system are each revoked and reinstated as members while the users outside
are each admitted as a member and deleted from the system.

The number of ways one can order the 12 operations is high. The orders
that are of interest are only a few. For each of the two extreme possible
space usage of the key tree, the way in which the operations are ordered
(streamed) can results in the maximum possible times the key tree creation
takes place - the worst-case input operation stream for the system. Similarly,
there is the best-case operation input.

Page 80 of 121

Definition: The worst-case efficiency of an algorithm is its efficiency for

the worst-case input of size which is an input (or inputs) of size for

which the algorithm runs the longest among all possible inputs of that

size. (Levitin, October, 2011).

Definition: The best-case efficiency of an algorithm is its efficiency for

the worst-case input of size which is an input (or inputs) of size for

which the algorithm runs the fastest among all possible inputs of that

size. (Levitin, October, 2011).

The worst-case key tree space usage is when the members are more than a

power of two by one i.e. . For this number of users, the worst case
operation input stream can be encoded WCWC where the first two
characters correspond to operation and the last two for user space usage so
that in full it is “worst-case operation stream for the worst-case user input”.
Similarly there is a BCWC (“best-case operation stream for the worst-case

user input”) stream. These two streams are summarized in .

Page 81 of 121

Table 5: The streams used with worst initial user input

The best-case key tree space usage is when the members are a power of

two i.e. . For this number of users, the worst case operation input
stream will be known as BCWC and the best case operation input will be

known as BCBC. These two operation inputs are summarized in .

Less or more than three applications of an operation in a stream could still
work. For example one application of each operation could can work for
the purpose of this experiment. However, the results presented are
statistical – the mean value of the values obtained after each operation has
been executed. In table 5, the expected response in terms key tree creation
is listed for each operation. The worst-case operation input with one
application of each of the four operations would still end up with the key
tree being created two times. This might lead one to conclude that in the
best case scenario, the tree creation (a very undesirable action) occurs two
times within execution of four operations!

More than three applications of each operation lead to a harder means of
determining the best-case sequence. Beyond three, may require an
automated juggling of the operations to determine the best-case input –
pencil and paper method becomes harder to use.

Page 82 of 121

Table 6: The streams used with best initial user input

So there are four streams for the cliff condition
Stream name Means…

WCWC worst-case operation stream input for a worst-

case key tree space usage

BCWC best-case operation stream input for a worst-case

key tree space usage

WCBC worst-case operation stream input for a best-case

key tree space usage

BCBC best-case operation stream input for a best-case

key tree space usage

From the tables above, we can see that the worst-case operation input is
like a successful DoS attack on the key server. The system spends all the
time creating the key tree and doing completely no useful work! But from
the forgoing discussion, probability of this situation to occur is practice is
almost nill. If it occurs at all, it is highly likely that it is an attack on the
system. This could form a basis for an algorithm that detects if the system
is under attack.

3.6.5 Typical Test Case

The four operation streams discussed in the previous section are meant for
testing performance at boundary condition which in the context of this thesis
is called cliff conditions tests. They are performed on a key tree that is either
full completely or one that would be full if one member was not there.
These two conditions are called the cliff conditions because either adding a
member or removing a member results in tree recreation. In typical usage,
the probability of reaching the cliff condition is slim from the following
observation. If the current condition is cliff and members are
� increasing, then the next cliff arrives when members double

Page 83 of 121

� reducing, then the next cliff arrives when members have reduced by

half

Therefore once the key tree crosses a cliff condition, the tree becomes stable
for a “long time”. The only other time that the tree is recreated is when the
holes are “too many” in the user profile. For this to occur, there should be
admissions of new users and revocations of existing users only and these
two be comparable in number. It is very unlikely in typical usage that
revocations are comparable in number with admissions of new members.

Typical test case consists of a key tree with members - this way the
cliff condition is furthest and therefore the number of revocations and
admissions are unlikely to result in key tree recreation. The operation
streams used in the experiment are the same ones used for the cliff
condition test.

3.7 How the simulator is run

The single-tree solution and the multi-tree solutions were simulated by a
computer program written in C++. To ensure fairness for the two
competing solutions, they are implemented using the same libraries and
base classes. These are the steps one goes through when running the
simulator:
� When one runs the simulator from the operating system command line,

one may provide as arguments the source file that contains members’

names and the number of members to read into the system. If one

does not provide these, the simulator reads users from a text file

named “testdataLX.txt” and reads all the user names in the file. This

default text file must reside in the same directory as the simulator

executable file.

� Once the simulator starts running it asks for the height of the tree(s) the

multi-tree solution will be using. This has to be known in advance and

cannot change once the system has read it from the user.

� Then it reads the users into each of the implementations. But just before

reading, it determines, among other things, the new line delimiter

used. This differs between windows, Mac and unix-like systems.

� Once it has read users, it presents a menu of three items “Work Bench”,

“Test Run” and “Exit”. Exit take the user out of the system back to the

operating system. The other two lead to menus. See the Figure 16.

Page 84 of 121

Figure 16: The simulator running with mini-trees height of 11 for the

multi tree thread.

In this example, the users are initially 4; this value, 4 and the input file

for users have been passed at the command line as arguments to the

simulator executable.

If the user takes the “Test Run” branch, they are confronted with a menu
of four choices; each a combination of “Best or Worst-case operation” and
“Best or Worst-case user input”. See the screen shot in figure 17.

Page 85 of 121

Figure 17: The simulator waiting for user choice for test run.

For the cliff condition, the user should have read members totaling a
power of two. Before it starts the test run that should be “Worst-case user
input”, it adds a user whose name is “omaya”. Therefore for this test run to
succeed there should be no user in the system with the name “omaya”. The
operation streams come from text files with the names “inop??user??.txt”
where the “??” could be “bc” for best-case or “wc” for worst-case. Each of
these files contain 12 lines that correspond to applications of the four
operations “add”, “delete”, “revoke” and “restore” each applied three time.
The first character on each line is a code for the operation as follows; 6 is
revoke, 7 is restore, 8 is add and 9 is delete. A line that reads “7mangi”
means restore back the previously revoked user whose user name is
“mangi”. Below is the actual content of “inopbcuserbc.txt” used in the test

========= content of “inopbcuserbc.txt” ==========

6makamba

7makamba

6shikanda

7shikanda

6abuyeka

7abuyeka

8mugabe

8uhuru

8opanga

9opanga

9uhuru

9mugabe

Page 86 of 121

Once the user run one of these test runs, the output goes to a
corresponding file named “outop??user??##.txt” where the “##” stands
for the height that multi-tree uses in the test for the mini-trees. The content
of this file is a detailed output which shows the state of affairs after each
operation. It is quite long. The results that are tabled in, Chapter 4, Results,
are manually gleaned from this output file. An actual output with 524,288
initial users for “outopbcuserbc11.txt” is shown in Appendix 2

The flowchart in Figure 18 shows how the simulator runs and interacts
with the user.

Figure 18: How the user interacts with the simulator

The summary results presented in the next chapter have been manually
extracted from the performance output file generated by the simulator for
presentation. The detailed output of the simulator has these summaries at
the end of the file. As already noted, an actual output with 524,288 initial
users for “outopbcuserbc11.txt” is shown in Appendix 2.

3.8 Note on the experiment

Note that to perform the tests, it is the user to choose the appropriate
initial number of users.

Page 87 of 121

� For the cliff condition test, the number of initial users should be a

power of two i.e. or .

� For the typical condition test, a user must choose number of initial

users that are half power of two plus a power of two i.e.

Page 88 of 121

Chapter 4: Results and Discussion

The results are presented as a comparison of the performance of the multi-
tree solution proposed in (Chen, Ge, Zhang, Kurose, & Towsley, 2004)
and the proposed single-tree solution in this thesis using the metrics stated
in section 1.8. Each of the operation streams described in the Section 3.6,
Design of Experiment, for the single tree implementation is also applied on
the implementation of the multi-tree Dynamic SDR running with
allocations unit whose tree heights are 11, 15, 17, 19, 20, 21 and 22, and the
“outputs” compared.

4.1 The cliff condition

The best case user space usage is attained when members are a power of

– members are equal to (n = 0, 1, 2, …, 6316). In such a case, the user
profile has no holes and the message expansion is 1. On the other hand the
worst case user space usage is when the members more than a power of 2

by one – members are equal to . For each of these two cliff
conditions, there is a worst case operation stream input and a best-case
operation stream input (see Section 3.6, Design of Experiment).

The summary of the cliff condition test results obtained in are shown in Table
7. For the boundary/cliff condition, the members (independent variable) is

set at and . The former is the best case key tree usage and the
latter the worst-case key tree usage. They are called cliff condition because
of the potential “catastrophic” consequence of adding or removing a
member. See the previous chapter for more details on this. A sample of the
detailed results are in the Appendix 2, 3 and 4.

Generally, the taller the key tree, the bigger the storage on the user side.
This is clear from the results of the multi-tree side. This is true also for the
single-tree solution indeed for any solution based on a perfect binary (key)
tree. Another point to note is that the shorter the tree, the lager the
message expansion. The conservation laws roughly apply to these two
metrics “when one increase the other must reduce and vice versa”. This
can be seen as one moves along the rows containing the values for the two
parameters for the multi-tree solution.

16
 The C++ unsigned int data type limit

Page 89 of 121

For the single tree solution, this can also be seen in the details (Appendix 2,
3 and 4) as one moves down the column for the single tree. Whenever the
tree expands or shrinks the storage size decreases or increases respectively.
The last column (result for the multi-tree) defy this trend though. The user
storage goes higher but the message expansion is still stuck at 1. This is
because of the weakness in the solution which is a relic of the static SD
scheme. In static SD scheme, once a tree size has been chosen, it cannot
change. This results in space abuse at the user side and even at the server.
At user side because a user now must store more keys with one completely
useless and at the server because a smaller tree could accommodate those
users but now the tree has to as was chosen at initialization stage. As the
single tree solution shown for the same number of users, they can fit on a
smaller tree and the keys at the user can be less.

In the single-tree solution, the number of users determines the size of the
tree, hence the key storage at the users. The tree size is the smallest
possible, hence user storage is also the lowest possible. Therefore,
whenever the multi-tree solution achieves a smaller key storage at the user
side, it must perform poorer in message expansion.

Let us now look at the performance of the two at each performance
metric. These results obtained confirm all the expectations:

Page 90 of 121

Table 7 Cliff Condition mean results

Single-

Tree

Multi Tree (below is mini-tree height)

 H=11 H=15 H=17 H=19 H=20 H=21 H=22

msg expansion BCBC 1 256 16 4 1 1 1 1

 BCWC 1 257 17 5 2 2 2 2

 WCBC 1 256 16 4 1 1 1 1

 WCWC 1 257 17 5 2 2 2 2

unicast messages BCBC 87381 0 0 0 0 0 0 0

 BCWC 87381 0 0 0 0 0 0 0

 WCBC 524288 0 0 0 0 0 0 0

 WCWC 524288 0 0 0 0 0 0 0

user storage BCBC 199 67 121 154 191 211 232 254

 BCWC 202 67 121 154 191 211 232 254

 WCBC 201 67 121 154 191 211 232 254

 WCWC 201 67 121 154 191 211 232 254

4.2 Message Expansion

This is also known as Multicast Cost or Message Length. Multicast cost
because you send the same message multiple times each encrypted with a
different key and Message Length because from the server point of view, it is
just a bunch of bytes being transmitted.

The high value for the multi-tree solution when the tree height is 0 is
expected. Each user is in their tree alone. Therefore when sending a
message, the message must be separately encrypted using each users key.
The more users are packed in one tree, the smaller this value. This can be
seen as bigger trees are used – as the reader move to the right across the
tables.

Page 91 of 121

The single tree-solution packs members in one tree all the time, and this

tree is full (of users) on average throughout the operations. That is why

this is . If the reader looks at the details in the appendix, they notice that

it becomes at the seventh operation - when the tree expands.

The message expansion of the single tree solution is never higher than the
message expansion of the multi-tree solution whatever the height for the
mini-tree chosen. This is partly because of the design policy of the single
tree solution of ensuring the user fit into the smallest possible tree and
partly because of the design of the multi tree solution of potentially having
members in multiple trees at the same time.

So the single tree solution is at worst as efficient as the multi-tree solution.
This addresses the research question positively – the single tree solution is
efficient in message expansion.

4.3 Storage Size at the Receiver

How much private information (typically, keys) does a receiver need to
store? If the key assignment is more sophisticated the information should

allow the computation of all the keys such that . For the results

listed, is obtained from the formula (see Section)

When the key tree is small, the key storage is small, because the size of the
key is proportional to the height of the key tree. This can be seen as one
moves from the left to the right – the tree that hosts a user becomes bigger
as one moves from left to right.

At tree height of for the multi-tree solution, the tree height is exactly
the same size as the tree of the single tree implementation. That is why
mean user storage are about equal. The small difference is caused by the
fact that in the multi-tree solution, the user storage is constant while this
changes in the single-tree solution.

Looking at the details in the appendix, one should notice that at the

operation, the user storage goes up to from . This is because the
tree becomes bigger at this point.

Page 92 of 121

The single tree solution ensures that user storage is always at its minimal. If
we look at the results, we notice that the mean storage is higher for the
single tree solution, at the boundary condition tests. This is because in
these tests, the tree was created with a bigger height during the processing.
For the multi-tree solution, another tree was created of the same size to
accommodate the new user. So the multi-tree does not increase the user
storage – it keeps it constant throughout – but the price it pays is a bigger
space for the key tree at the server; the resulting two key trees of the multi-
tree solution have more nodes in total than the single tree of the single-tree
solution.

Otherwise, as we see later, during typical usage, the user storage remains
stable for the single tree solution.

Storage size could also be interpreted as a measure of the time taken to
process message at the receiver; i.e. performing decryption and other types
of operations such as a user determining if they are one of the intended
receivers.

Again here, the single tree solution answers the research question positively
– it is efficient in storage at the user side. Indeed this is a positive
consequence of the design goal of the single-tree solution. (See Section 2.5
for details)

4.4 Unicast Count

This is simply the unicast message count, the number of messages
containing the private information (typically, keys) that a new member
must be sent. This message must be sent to a member occupying a new
location on the key tree – this could be because the member is new or they
are shifting to new location from where they are now. Note that for the
single-tree solution, a new member being admitted or a member being
revoked may cause other users to be sent their private information too.

For the multi-tree solution, the unicast message count averages to zero

because it is only the admissions that require unicast. Out of the
operations, only three are admissions.

Page 93 of 121

The unicast count at the boundary condition tests is higher for the single
tree solution. This is expected because in each of the tests, key tree creation
takes place in the course of executing the operations – two times for the
BCWC and BCBC operation streams and 12 times for the WCBC and
WCWC i.e. each time an operation is executed! When the key tree is
created, a unicast must be sent to each user who will be hosted on it – all
the current members. For the single tree solution, this means all members!
As explained in section 3.6.4, the worst case operation input for either case
results in the single tree system spending all its time creating the key tree. It
is explained there that this is may indicate that the system is under a DoS
attack since the sequence operation stream that should lead to the situation
is “not natural”.

For the multi-tree solution, an extra-tree is created and only users shifting
to this newly created tree are sent a unicast. So in this metric, the single tree
is potentially inefficient – in case a tree creation takes place.

4.5 Typical Usage Results

For typical usage, the value of used is taken to be

This is a situation where the cliff condition is far – to reach a cliff, one
third of the members need be removed or added. Therefore tree creation is
unlikely and this is a typical situation in real practice. The same operation
streams used for the boundary conditions are the same ones used with the
hope that this can more or less depict typical usage.

The results shown next are the ones for a typical situation – far away from
the boundary conditions.

Page 94 of 121

Table 8: Typical mean results

Single-

Tree

Multi Tree

 11 15 17 19 20 21 22

msg expansion BCBC 1 192 12 3 1 1 1 1

 BCWC 2 193 13 4 2 2 2 2

 WCBC 2 192 12 3 2 2 2 2

 WCWC 2 193 13 4 2 2 2 2

unicast messages BCBC 0 0 0 0 0 0 0 0

 BCWC 0 0 0 0 0 0 0 0

 WCBC 0 0 0 0 0 0 0 0

 WCWC 0 0 0 0 0 0 0 0

user storage BCBC 191 67 121 154 191 211 232 254

 BCWC 191 67 121 154 191 211 232 254

 WCBC 191 67 121 154 191 211 232 254

 WCWC 191 67 121 154 191 211 232 254

In typical usage, the single-tree implementation is quiet stable;
� the message expansion is low and remains so

� the user storage is at its lowest possible and remains so

� the unicast cost is incurred only when a new user is admitted

4.6 Discussion

The design goal of the single key tree solution ensures that the user storage
and message expansion are all the time at their possible lowest. At the
boundary conditions, we see that this turns out to be catastrophic for the
two worst-case operation inputs – the system spends all it time creating the
key tree. In typical usage however, there is no chance that the tree creation
takes place - these values remain at their lowest possible.

Page 95 of 121

In typical usage, the two solutions tie on each metric when the multi-tree

solution uses key tree whose height is . This is because the single-tree
solution is also using a tree of same height. From the operations being
used in the test, the tree does not get full for both or for the single-tree
solution the members do not reduce by one third. When the tree is full, any
addition of a member requires that the single-tree solution creates a new
tree to accommodate them and for the multi-tree solution, it creates
another tree of same size as the existing one to accommodate new
members.

In typical usage, we see that in all the other columns where the multi-tree

solution is not using a key trees with height of , it performs better on
one metric but very poorly on another metric. When the height is less than

, the message expansion is worse than the single tree’s although the user
storage is lower (therefore better). However remember that the header in a
broadcast message (which is really message expansion) is the most
important part when one analyses any broadcast encryption scheme. So
really the single-tree is performing better on this metric.

At height of , they tie as pointed out but beyond height , they still tie
but the user storage is higher for the multi-tree solution. So although they
tie on the more important metric, the multi-tree solution does poorer on
the user storage metric – and would do even worse with bigger heights
because the bigger the key tree height, the higher the user storage.

Page 96 of 121

Chapter 5: Conclusions and

Recommendations

5.1 Trade-off between unicast cost and multicast cost

Dynamic SDR reduces multicast costs by inevitably introducing additional
unicast, by which the secret information is delivered to shifted members or
new members. In the single tree solution, emphasis is on holding users in
the smallest key tree possible. A positive consequence is that the message
expansion will always be low. This inevitably comes at a cost. The cost is an
additional unicast over and above the multi-tree solution at the boundary
conditions – when tree must be recreated because the current members are
more than the existing tree can hold or they are few enough to be held on a
smaller tree than the existing tree. As explained in Section 3.6.4, the
probability of this occurring is very low.

5.2 Spreading the storage burden

The single tree solution is a more pure implementation of SD dynamic
Revocation. The multi-tree solution still carries some of the baggage of the
Static SD. In particular, once a tree size has been chosen, it remains so
forever. To ensure that new users can be added, the multi-tree solution
creates more trees of same height. This way, the burden on the user
remains the constant throughout the operation of the system.

The single tree solution is more dynamic in the sense that even users take
part in the implementation of the dynamism. When the single tree at the
key server increases or reduces in size, each member feels the shock in the
form of an increase or decrease respectively, in size of their key ring. This
somewhat ensures the server and the members share the burden of space
usage. For the same number of members, if they are hosted on multiple
mini trees in the multi-tree solution, the total size of the key tree is larger
than the single tree hosting the same number in the single tree solution.

There is only one disadvantage of the single tree solution over the multi-
tree solution; the potential unicast to all members. This is very costly.
However, as explained, this is an extremely rare event during typical usage
service. Chances of this occurring are only real at the cliff condition –
when the users are the tree is full (a power of 2) or a power of two plus 1.

This disadvantage is more than offset by the difficulty of making the right

choice of the height, for each tree in the multi-tree solution. The
following is a quote from the Authors

Page 97 of 121

“The choosing of () is a design tradeoff. Based on Proposition

1, one subset covers at most members. Therefore, when is small,

more resultant subsets are required to cover . Consequently, the

multicast cost increases. When is large, we may still encounter the

space inefficiency of static SDR that active members disperse in the

subtree. We thus choose as a reasonable value of , where

 is the expected value of the number of concurrent members.

Ideally, we want to put the concurrent members in one subtree.” (Chen,

Ge, Zhang, Kurose, & Towsley, 2004).

The last sentence in the quote is indeed true. When all the users are
accommodated on a single tree (i.e. the two solutions use a tree of the
same the same height), the multi-tree implementation beats the single tree
solution in time usage and tie in all the other metrics. But knowing the
maximum number of members in advance is difficult, a fact that the
authors acknowledge in their abstract. The consequences of choosing the
non-ideal height are clearly stated in the quote and is also explained in
Section 4.3.

Another trouble with the multi-tree solution is the proposition that to
improve the performance of the solution, the users on a mini-tree that
have an ill formed user profile be migrated to the left-most tree and if this
tree is full, a new tree created for them. This is a very costly event that
involves among other things, a unicast to each migrating user.

5.3 Contribution

The three parameters set forth in the research question on which the
solutions are compared are User storage, message expansion and unicast
cost. Of these the most important is message expansion.

Page 98 of 121

5.3.1 Typical usage

Message expansion

Message expansion is the number of times a message is encrypted and then
broadcasted. In typical usage, the single tree solution’s worst performance
on message expansion is like the multi-tree’s best. This is because the only
time the multi-tree solution could match the single-solution is when all the
users on the multi-tree are on one tree. More than one tree implies that the
message expansion is at least two (one for each tree) while it may be one on
the single-tree solution.

Unicast cost

The unicast cost is the number of messages to individual members. This is

the message that conveys the new (the new keyring) to a user when the
user becomes a member. In typical usage, the unicast cost is like the multi-
tree’s. This is because in the single-tree solution, the tree is not recreated. A
typical case is where the number of revocations and admissions of users is
unlikely to reach the “cliff condition”.

User Storage

The user storage may be equal or higher or lower than the multi-tree’s.
� When it is higher, it means the multi-tree is more trees which are each

shorter than the single tree being used by the single-tree solution. This

translates to higher message expansion on the part of the multi-tree

solution.

� When it is lower, it means the multi-tree is using one or more tree

which are each taller than the single tree used by the single-tree

solution. This also means that the multi-tree is using more space to

store the key tree.

5.3.2 Cliff condition usage

Message expansion

Message expansion in cliff condition still remains minimal and the multi-
tree can never do better than the single-tree solution. This is because all the
time, the single-tree keeps users on the smallest possible tree that can
accommodate them.

Unicast cost

This is the nightmare situation in the single-tree solution. Depending on
the way the operations are arranged, it can result into the key server
spending all its time recreating the key tree. As explained, this is a rare ly
expected occurrence in practice. If it happens, the unicast cost is extremely
high – whenever a tree is (re)created, a unicast message is sent to each
member.

Page 99 of 121

User storage

User storage is just like in the typical case and for exactly the same reasons

5.4 Suggestions for Future Work

5.4.1 The cliff condition nightmare

Some other algorithm can came into effect at the boundary condition that
overrides the FIFO operation execution. Such an algorithm is worth
designing. It may require one algorithm that detects when there is
“progress towards a cliff” and another when there is “recession backwards
to a cliff” and wakes up another to deal with the situation.

5.4.2 Assertions in this thesis

Another work that would be worth pursuing is a mathematical proof of
each of the assertions in this thesis. Here are the assertions:
� A previously revoked member reoccupying their position in the binary

tree on returning does not compromise forward secrecy. This

contradicts (Chen, Ge, Zhang, Kurose, & Towsley, 2004) where they

say “When a member, m, leaves the group, the position becomes

empty and will never be used by any member (even m itself). And a

new TEK is multicast to the members that remain in the group.”

� The number of user cluster in the user profile directly affected the most

important measure of performance of a BE, message expansion. This

thesis attempts to show that the maximum number of clusters

depends not only on the number of transitions (i.e. or

subsequences in the user profile). A more rigorous mathematical

proof is worth developing.

5.4.3 The computational time

This is caused by the fact that by design, any time a user leaves or is
admitted, the single-tree implementation must determine if the users as
they are after the operation (admission or revocation) need to be
accommodated on a new tree to keep the storage cost at the user and
message expansion at their lowest possible.

The computational class this algorithm belongs to could be worth studying.

Page 100 of 121

References

Amaral, J. N. (2014, November 28). Retrieved November 28, 2014, from José Nelson

Amaral's Publications: http://webdocs.cs.ualberta.ca/~c603/readings/research-

methods.pdf

Anderson, K. (2005). Tree Structures in Broadcast Encryption. Linköpings universitet, SE-581

83 Linköping, Sweden, LIU-TEK-LIC-2005:70; Department of Electrical Engineering.

Sweden: Linkoping Studies in Science and Technology, Thesis No. 1215.

Ayash, M. M. (2014, November 28). Research Methodologies in Computer Science and

Information Systems. Retrieved November 28, 2014, from

http://www.ptcdb.edu.ps/ar/sites/default/files/%D9%88%D8%B1%D9%82%D8%A9

%20%D9%85%D9%87%D9%86%D8%AF%20%D8%B9%D9%8A%D8%A7%D8%B4.pdf

Bhattacherjee, S., & Sarkar, P. (June, 2012). Complete Tree Subset Difference Broadcast

Encryption Scheme. Designs, Codes and Cryptography. January 2013, Volume 66,

Issue 1-3., 335-362.

Black, P. (Ed.). (2014, November 28). Retrieved November 28, 2014, from Dictionary of

Algorithms and Data Structures: http://xlinux.nist.gov/dads/

Chen, W., & Dondeti, L. (October, 2002). Performance Comparison of Stateful and Stateless

Gruop Rekeying Algorithms. Fourth International Workshop on Networked Group

Communication (NGC'02). Boston, MA.

Chen, W., Ge, Z., Zhang, C., Kurose, J., & Towsley, D. (2004). On Dynamic Subset Difference

Revocation Scheme.

Fiat, A., & Naor, M. (1994). Broadcast encryption. CRYPTO '93 Proceedings of the 13th

annual international cryptology conference on Advances in cryptology, ISBN:0-387-

57766-1, 480–491.

Johansson, M., Kreitz, G., & Lindholm, F. (2006). Stateful Subset Cover. Applied

Cryptography and Network Security Lecture, Notes in Computer Science, 3989, 178-

193.

Lassalle, D. (January 2005). Broadcast Encryption. GIAC directory of certified professionals.

Law, A. M. (January 2014). Simulation Modeling and Analysis (5th ed., Vols. ISBN-13: 978-

0073401324). McGraw-Hill Series in Industrial Engineering and Management.

Levitin, A. V. (October, 2011). Introduction to the Design & Analysis of Algorithms (3rd ed.,

Vols. ISBN-13: 978-0132316811 ISBN-10: 0132316811).

Lilja, D. J. (2000). Measuring Computer Performance, A Practitioner's Guide (Vols. ISBN 0-

521-64105-5). New York, NY: Cambridge University Press .

Page 101 of 121

Lotspiech, J., Nusser, S., & Pestoni, F. (August 2002). Broadcast Encryption's Bright Future.

Computer, 35(8), 57-63.

Naor, D., Naor, M., & Jeff, L. (July 2002). Revocation and Tracing Chemes for Stateless

Receivers.

Obied, A. (April 2005). Broadcast Encryption. Calgary: Department of Computer Science,

University of Calgary.

Wikipedia. (2014, November 28). Broadcast encryption. Retrieved November 28, 2014,

from Wikipedia: http://en.wikipedia.org/wiki/Broadcast_encryption

Zhang, Y.-C., Yang, C., Liu, J.-B., & Tian, J.-Y. (May 22-24, 2009). Broadcast Encryption

Scheme and Its Implementation on Conditional Access System. Proceedings of the

2009 International Symposium on Web Information Systems and Applications

(WISA’09), ISBN 978-952-5726-00-8 (Print), 978-952-5726-01-5 (CD-ROM), pp. 379-

382. Nanchang, P. R. China.

.

 Page 102 of 121

Appendix 1 (Actual Sample Output with WCWC

stream)

The following is an actual output obtained for the cliff condition of 524,288 initial
users and multi-tree implementation running with mini-tree of height 11. The
operation stream is WCWC stream.

The <P8BESingle> starting...

Init time = <9221> clock ticks

OPERATION: <Revocation of makamba>

...Key Tree size after = <1048575> = nodes

...User space after = <524288> = slots

...Message Expansion = <1> = messages

...Users After = <524288> = users

...Users Storage = <191> = keys

...Unicast = <524288> = messages

..Took = <3081> = clock ticks

OPERATION: <Reinstatement of makamba>

...Key Tree size after = <2097151> = nodes

...User space after = <1048576> = slots

...Message Expansion = <2> = messages

...Users After = <524289> = users

...Users Storage = <211> = keys

...Unicast = <524289> = messages

..Took = <3419> = clock ticks

OPERATION: <Revocation of shikanda>

...Key Tree size after = <1048575> = nodes

...User space after = <524288> = slots

...Message Expansion = <1> = messages

...Users After = <524288> = users

...Users Storage = <191> = keys

 Page 103 of 121

...Unicast = <524288> = messages

..Took = <3019> = clock ticks

OPERATION: <Reinstatement of shikanda>

...Key Tree size after = <2097151> = nodes

...User space after = <1048576> = slots

...Message Expansion = <2> = messages

...Users After = <524289> = users

...Users Storage = <211> = keys

...Unicast = <524289> = messages

..Took = <3419> = clock ticks

OPERATION: <Revocation of abuyeka>

...Key Tree size after = <1048575> = nodes

...User space after = <524288> = slots

...Message Expansion = <1> = messages

...Users After = <524288> = users

...Users Storage = <191> = keys

...Unicast = <524288> = messages

..Took = <2971> = clock ticks

OPERATION: <Admission of mugabe>

...Key Tree size after = <2097151> = nodes

...User space after = <1048576> = slots

...Message Expansion = <2> = messages

...Users After = <524289> = users

...Users Storage = <211> = keys

...Unicast = <524289> = messages

..Took = <3421> = clock ticks

OPERATION: <Deletion of mugabe>

...Key Tree size after = <1048575> = nodes

...User space after = <524288> = slots

...Message Expansion = <1> = messages

 Page 104 of 121

...Users After = <524288> = users

...Users Storage = <191> = keys

...Unicast = <524288> = messages

..Took = <3008> = clock ticks

OPERATION: <Admission of uhuru>

...Key Tree size after = <2097151> = nodes

...User space after = <1048576> = slots

...Message Expansion = <2> = messages

...Users After = <524289> = users

...Users Storage = <211> = keys

...Unicast = <524289> = messages

..Took = <3420> = clock ticks

OPERATION: <Deletion of uhuru>

...Key Tree size after = <1048575> = nodes

...User space after = <524288> = slots

...Message Expansion = <1> = messages

...Users After = <524288> = users

...Users Storage = <191> = keys

...Unicast = <524288> = messages

..Took = <2981> = clock ticks

OPERATION: <Admission of opanga>

...Key Tree size after = <2097151> = nodes

...User space after = <1048576> = slots

...Message Expansion = <2> = messages

...Users After = <524289> = users

...Users Storage = <211> = keys

...Unicast = <524289> = messages

..Took = <3438> = clock ticks

OPERATION: <Deletion of opanga>

...Key Tree size after = <1048575> = nodes

 Page 105 of 121

...User space after = <524288> = slots

...Message Expansion = <1> = messages

...Users After = <524288> = users

...Users Storage = <191> = keys

...Unicast = <524288> = messages

..Took = <2976> = clock ticks

OPERATION: <Reinstatement of abuyeka>

...Key Tree size after = <2097151> = nodes

...User space after = <1048576> = slots

...Message Expansion = <2> = messages

...Users After = <524289> = users

...Users Storage = <211> = keys

...Unicast = <524289> = messages

..Took = <3421> = clock ticks

... <P8BESingle> finished...

 ...mean key tree size = <1572863> = nodes

 ...mean user storage = <201> = keys

 ...mean msg expansion = <1> = messages

 ...mean unicast messages = <524288> = messages

 ...Time taken = <38574> = clock ticks

The <11P7BEMulti> starting...

Init time = <9542> clock ticks

OPERATION: <Revocation of makamba>

...Key Tree size after = <1052415> = nodes

...User space after = <526336> = slots

...Message Expansion = <257> = messages

 Page 106 of 121

...Users After = <524288> = users

...Users Storage = <67> = keys

...Unicast = <0> = messages

..Took = <0> = clock ticks

OPERATION: <Reinstatement of makamba>

...Key Tree size after = <1052415> = nodes

...User space after = <526336> = slots

...Message Expansion = <257> = messages

...Users After = <524289> = users

...Users Storage = <67> = keys

...Unicast = <0> = messages

..Took = <0> = clock ticks

OPERATION: <Revocation of shikanda>

...Key Tree size after = <1052415> = nodes

...User space after = <526336> = slots

...Message Expansion = <257> = messages

...Users After = <524288> = users

...Users Storage = <67> = keys

...Unicast = <0> = messages

..Took = <0> = clock ticks

OPERATION: <Reinstatement of shikanda>

...Key Tree size after = <1052415> = nodes

...User space after = <526336> = slots

...Message Expansion = <257> = messages

...Users After = <524289> = users

...Users Storage = <67> = keys

...Unicast = <0> = messages

..Took = <0> = clock ticks

OPERATION: <Revocation of abuyeka>

...Key Tree size after = <1052415> = nodes

 Page 107 of 121

...User space after = <526336> = slots

...Message Expansion = <257> = messages

...Users After = <524288> = users

...Users Storage = <67> = keys

...Unicast = <0> = messages

..Took = <0> = clock ticks

OPERATION: <Admission of mugabe>

...Key Tree size after = <1052415> = nodes

...User space after = <526336> = slots

...Message Expansion = <257> = messages

...Users After = <524289> = users

...Users Storage = <67> = keys

...Unicast = <1> = messages

..Took = <0> = clock ticks

OPERATION: <Deletion of mugabe>

...Key Tree size after = <1052415> = nodes

...User space after = <526336> = slots

...Message Expansion = <257> = messages

...Users After = <524288> = users

...Users Storage = <67> = keys

...Unicast = <0> = messages

..Took = <1> = clock ticks

OPERATION: <Admission of uhuru>

...Key Tree size after = <1052415> = nodes

...User space after = <526336> = slots

...Message Expansion = <258> = messages

...Users After = <524289> = users

...Users Storage = <67> = keys

...Unicast = <1> = messages

..Took = <0> = clock ticks

 Page 108 of 121

OPERATION: <Deletion of uhuru>

...Key Tree size after = <1052415> = nodes

...User space after = <526336> = slots

...Message Expansion = <257> = messages

...Users After = <524288> = users

...Users Storage = <67> = keys

...Unicast = <0> = messages

..Took = <1> = clock ticks

OPERATION: <Admission of opanga>

...Key Tree size after = <1052415> = nodes

...User space after = <526336> = slots

...Message Expansion = <258> = messages

...Users After = <524289> = users

...Users Storage = <67> = keys

...Unicast = <1> = messages

..Took = <0> = clock ticks

OPERATION: <Deletion of opanga>

...Key Tree size after = <1052415> = nodes

...User space after = <526336> = slots

...Message Expansion = <257> = messages

...Users After = <524288> = users

...Users Storage = <67> = keys

...Unicast = <0> = messages

..Took = <1> = clock ticks

OPERATION: <Reinstatement of abuyeka>

...Key Tree size after = <1052415> = nodes

...User space after = <526336> = slots

...Message Expansion = <257> = messages

...Users After = <524289> = users

...Users Storage = <67> = keys

 Page 109 of 121

...Unicast = <0> = messages

..Took = <0> = clock ticks

... <11P7BEMulti> finished...

 ...mean key tree size = <1052415> = nodes

 ...mean user storage = <67> = keys

 ...mean msg expansion = <257> = messages

 ...mean unicast messages = <0> = messages

 ...Time taken = <3> = clock ticks

 ...a tree hieght = <12> levels

 Page 110 of 121

Appendix 2 (Sample Side-by-Side Output with WCWC

stream)

The is the same output shown in Appendix 2 but here the outputs from the two
solutions are shown side by side.

The <P8BESingle> starting... The <11P7BEMulti> starting...

Init time = <9221> clock ticks Init time = <9542> clock ticks

OPERATION: <Revocation of makamba> OPERATION: <Revocation of makamba>

...Key Tree size after = <1048575> = nodes ...Key Tree size after = <1052415> = nodes

...User space after = <524288> = slots ...User space after = <526336> = slots

...Message Expansion = <1> = messages ...Message Expansion = <257> = messages

...Users After = <524288> = users ...Users After = <524288> = users

...Users Storage = <191> = keys ...Users Storage = <67> = keys

...Unicast = <524288> = messages ...Unicast = <0> = messages

..Took = <3081> = clock ticks ..Took = <0> = clock ticks

OPERATION: <Reinstatement of makamba> OPERATION: <Reinstatement of makamba>

...Key Tree size after = <2097151> = nodes ...Key Tree size after = <1052415> = nodes

...User space after = <1048576> = slots ...User space after = <526336> = slots

...Message Expansion = <2> = messages ...Message Expansion = <257> = messages

...Users After = <524289> = users ...Users After = <524289> = users

...Users Storage = <211> = keys ...Users Storage = <67> = keys

...Unicast = <524289> = messages ...Unicast = <0> = messages

..Took = <3419> = clock ticks ..Took = <0> = clock ticks

OPERATION: <Revocation of shikanda> OPERATION: <Revocation of shikanda>

...Key Tree size after = <1048575> = nodes ...Key Tree size after = <1052415> = nodes

...User space after = <524288> = slots ...User space after = <526336> = slots

...Message Expansion = <1> = messages ...Message Expansion = <257> = messages

 Page 111 of 121

...Users After = <524288> = users ...Users After = <524288> = users

...Users Storage = <191> = keys ...Users Storage = <67> = keys

...Unicast = <524288> = messages ...Unicast = <0> = messages

..Took = <3019> = clock ticks ..Took = <0> = clock ticks

OPERATION: <Reinstatement of shikanda> OPERATION: <Reinstatement of shikanda>

...Key Tree size after = <2097151> = nodes ...Key Tree size after = <1052415> = nodes

...User space after = <1048576> = slots ...User space after = <526336> = slots

...Message Expansion = <2> = messages ...Message Expansion = <257> = messages

...Users After = <524289> = users ...Users After = <524289> = users

...Users Storage = <211> = keys ...Users Storage = <67> = keys

...Unicast = <524289> = messages ...Unicast = <0> = messages

..Took = <3419> = clock ticks ..Took = <0> = clock ticks

OPERATION: <Revocation of abuyeka> OPERATION: <Revocation of abuyeka>

...Key Tree size after = <1048575> = nodes ...Key Tree size after = <1052415> = nodes

...User space after = <524288> = slots ...User space after = <526336> = slots

...Message Expansion = <1> = messages ...Message Expansion = <257> = messages

...Users After = <524288> = users ...Users After = <524288> = users

...Users Storage = <191> = keys ...Users Storage = <67> = keys

...Unicast = <524288> = messages ...Unicast = <0> = messages

..Took = <2971> = clock ticks ..Took = <0> = clock ticks

OPERATION: <Admission of mugabe> OPERATION: <Admission of mugabe>

...Key Tree size after = <2097151> = nodes ...Key Tree size after = <1052415> = nodes

...User space after = <1048576> = slots ...User space after = <526336> = slots

...Message Expansion = <2> = messages ...Message Expansion = <257> = messages

...Users After = <524289> = users ...Users After = <524289> = users

...Users Storage = <211> = keys ...Users Storage = <67> = keys

...Unicast = <524289> = messages ...Unicast = <1> = messages

 Page 112 of 121

..Took = <3421> = clock ticks ..Took = <0> = clock ticks

OPERATION: <Deletion of mugabe> OPERATION: <Deletion of mugabe>

...Key Tree size after = <1048575> = nodes ...Key Tree size after = <1052415> = nodes

...User space after = <524288> = slots ...User space after = <526336> = slots

...Message Expansion = <1> = messages ...Message Expansion = <257> = messages

...Users After = <524288> = users ...Users After = <524288> = users

...Users Storage = <191> = keys ...Users Storage = <67> = keys

...Unicast = <524288> = messages ...Unicast = <0> = messages

..Took = <3008> = clock ticks ..Took = <1> = clock ticks

OPERATION: <Admission of uhuru> OPERATION: <Admission of uhuru>

...Key Tree size after = <2097151> = nodes ...Key Tree size after = <1052415> = nodes

...User space after = <1048576> = slots ...User space after = <526336> = slots

...Message Expansion = <2> = messages ...Message Expansion = <258> = messages

...Users After = <524289> = users ...Users After = <524289> = users

...Users Storage = <211> = keys ...Users Storage = <67> = keys

...Unicast = <524289> = messages ...Unicast = <1> = messages

..Took = <3420> = clock ticks ..Took = <0> = clock ticks

OPERATION: <Deletion of uhuru> OPERATION: <Deletion of uhuru>

...Key Tree size after = <1048575> = nodes ...Key Tree size after = <1052415> = nodes

...User space after = <524288> = slots ...User space after = <526336> = slots

...Message Expansion = <1> = messages ...Message Expansion = <257> = messages

...Users After = <524288> = users ...Users After = <524288> = users

...Users Storage = <191> = keys ...Users Storage = <67> = keys

...Unicast = <524288> = messages ...Unicast = <0> = messages

..Took = <2981> = clock ticks ..Took = <1> = clock ticks

OPERATION: <Admission of opanga> OPERATION: <Admission of opanga>

...Key Tree size after = <2097151> = nodes ...Key Tree size after = <1052415> = nodes

 Page 113 of 121

...User space after = <1048576> = slots ...User space after = <526336> = slots

...Message Expansion = <2> = messages ...Message Expansion = <258> = messages

...Users After = <524289> = users ...Users After = <524289> = users

...Users Storage = <211> = keys ...Users Storage = <67> = keys

...Unicast = <524289> = messages ...Unicast = <1> = messages

..Took = <3438> = clock ticks ..Took = <0> = clock ticks

OPERATION: <Deletion of opanga> OPERATION: <Deletion of opanga>

...Key Tree size after = <1048575> = nodes ...Key Tree size after = <1052415> = nodes

...User space after = <524288> = slots ...User space after = <526336> = slots

...Message Expansion = <1> = messages ...Message Expansion = <257> = messages

...Users After = <524288> = users ...Users After = <524288> = users

...Users Storage = <191> = keys ...Users Storage = <67> = keys

...Unicast = <524288> = messages ...Unicast = <0> = messages

..Took = <2976> = clock ticks ..Took = <1> = clock ticks

OPERATION: <Reinstatement of abuyeka> OPERATION: <Reinstatement of abuyeka>

...Key Tree size after = <2097151> = nodes ...Key Tree size after = <1052415> = nodes

...User space after = <1048576> = slots ...User space after = <526336> = slots

...Message Expansion = <2> = messages ...Message Expansion = <257> = messages

...Users After = <524289> = users ...Users After = <524289> = users

...Users Storage = <211> = keys ...Users Storage = <67> = keys

...Unicast = <524289> = messages ...Unicast = <0> = messages

..Took = <3421> = clock ticks ..Took = <0> = clock ticks

... <P8BESingle> finished... ... <11P7BEMulti> finished...

 ...mean key tree size = <1572863> = nodes ...mean key tree size = <1052415> = nodes

 ...mean user storage = <201> = keys ...mean user storage = <67> = keys

 ...mean msg expansion = <1> = messages ...mean msg expansion = <257> = messages

 ...mean unicast messages = <524288> = messages ...mean unicast messages = <0> = messages

 Page 114 of 121

 ...Time taken = <38574> = clock ticks ...Time taken = <3> = clock ticks

 ...a tree hieght = <12> levels

 Page 115 of 121

Appendix 3 (All Output with WCWC stream)

The following are values harvested from the outputs for the WCWC operation stream.

Single tree

Multi-Tree

 H=00 H=05 H=11 H=15 H=17 H=19 H=20

Init time (clock ticks) 9221 12401 9671 9542 9531 9530 9578 10838

Operations

Revocation of makamba

...Key Tree size after (nodes) 1048575 524289 1032255 1052415 1114095 1310715 2097150 2097151

...User space after(slots) 524288 524289 524320 526336 557056 655360 1048576 1048576

...Message Expansion(messages) 1 524288 16385 257 17 5 2 2

...Users After(users) 524288 524288 524288 524288 524288 524288 524288 524288

...Users Storage(keys) 191 1 16 67 121 154 191 211

...Unicast(messages) 524288 0 0 0 0 0 0 0

..Took(clock ticks) 3081 0 0 0 0 0 0 1

Reinstatement of makamba

...Key Tree size after (nodes) 2097151 524289 1032255 1052415 1114095 1310715 2097150 2097151

 Page 116 of 121

...User space after(slots) 1048576 524289 524320 526336 557056 655360 1048576 1048576

...Message Expansion(messages) 2 524289 16385 257 17 5 2 2

...Users After(users) 524289 524289 524289 524289 524289 524289 524289 524289

...Users Storage(keys) 211 1 16 67 121 154 191 211

...Unicast(messages) 524289 1 0 0 0 0 0 0

..Took(clock ticks) 3419 0 0 0 0 0 0 0

Revocation of shikanda

...Key Tree size after (nodes) 1048575 524289 1032255 1052415 1114095 1310715 2097150 2097151

...User space after(slots) 524288 524289 524320 526336 557056 655360 1048576 1048576

...Message Expansion(messages) 1 524288 16385 257 17 5 2 2

...Users After(users) 524288 524288 524288 524288 524288 524288 524288 524288

...Users Storage(keys) 191 1 16 67 121 154 191 211

...Unicast(messages) 524288 0 0 0 0 0 0 0

..Took(clock ticks) 3019 0 0 0 0 0 0 0

Reinstatement of shikanda

...Key Tree size after (nodes) 2097151 524289 1032255 1052415 1114095 1310715 2097150 2097151

...User space after(slots) 1048576 524289 524320 526336 557056 655360 1048576 1048576

 Page 117 of 121

...Message Expansion(messages) 2 524289 16385 257 17 5 2 2

...Users After(users) 524289 524289 524289 524289 524289 524289 524289 524289

...Users Storage(keys) 211 1 16 67 121 154 191 211

...Unicast(messages) 524289 1 0 0 0 0 0 0

..Took(clock ticks) 3419 0 0 0 0 0 0 0

Revocation of abuyeka

...Key Tree size after (nodes) 1048575 524289 1032255 1052415 1114095 1310715 2097150 2097151

...User space after(slots) 524288 524289 524320 526336 557056 655360 1048576 1048576

...Message Expansion(messages) 1 524288 16385 257 17 5 2 2

...Users After(users) 524288 524288 524288 524288 524288 524288 524288 524288

...Users Storage(keys) 191 1 16 67 121 154 191 211

...Unicast(messages) 524288 0 0 0 0 0 0 0

..Took(clock ticks) 2971 0 0 0 0 0 0 0

Admission of mugabe

...Key Tree size after (nodes) 2097151 524289 1032255 1052415 1114095 1310715 2097150 2097151

...User space after(slots) 1048576 524289 524320 526336 557056 655360 1048576 1048576

...Message Expansion(messages) 2 524289 16385 257 17 5 2 2

 Page 118 of 121

...Users After(users) 524289 524289 524289 524289 524289 524289 524289 524289

...Users Storage(keys) 211 1 16 67 121 154 191 211

...Unicast(messages) 524289 1 1 1 1 1 1 1

..Took(clock ticks) 3421 0 0 0 0 0 0 0

Deletion of mugabe

...Key Tree size after (nodes) 1048575 524289 1032255 1052415 1114095 1310715 2097150 2097151

...User space after(slots) 524288 524289 524320 526336 557056 655360 1048576 1048576

...Message Expansion(messages) 1 524288 16385 257 17 5 2 2

...Users After(users) 524288 524288 524288 524288 524288 524288 524288 524288

...Users Storage(keys) 191 1 16 67 121 154 191 211

...Unicast(messages) 524288 0 0 0 0 0 0 0

..Took(clock ticks) 3008 1 1 1 1 1 1 1

Admission of uhuru

...Key Tree size after (nodes) 2097151 524289 1032255 1052415 1114095 1310715 2097150 2097151

...User space after(slots) 1048576 524289 524320 526336 557056 655360 1048576 1048576

...Message Expansion(messages) 2 524289 16386 258 18 6 3 3

...Users After(users) 524289 524289 524289 524289 524289 524289 524289 524289

 Page 119 of 121

...Users Storage(keys) 211 1 16 67 121 154 191 211

...Unicast(messages) 524289 1 1 1 1 1 1 1

..Took(clock ticks) 3420 0 0 0 0 0 0 0

Deletion of uhuru

...Key Tree size after (nodes) 1048575 524289 1032255 1052415 1114095 1310715 2097150 2097151

...User space after(slots) 524288 524289 524320 526336 557056 655360 1048576 1048576

...Message Expansion(messages) 1 524288 16385 257 17 5 2 2

...Users After(users) 524288 524288 524288 524288 524288 524288 524288 524288

...Users Storage(keys) 191 1 16 67 121 154 191 211

...Unicast(messages) 524288 0 0 0 0 0 0 0

..Took(clock ticks) 2981 2 1 1 1 1 1 1

Admission of opanga

...Key Tree size after (nodes) 2097151 524289 1032255 1052415 1114095 1310715 2097150 2097151

...User space after(slots) 1048576 524289 524320 526336 557056 655360 1048576 1048576

...Message Expansion(messages) 2 524289 16386 258 18 6 3 3

...Users After(users) 524289 524289 524289 524289 524289 524289 524289 524289

...Users Storage(keys) 211 1 16 67 121 154 191 211

 Page 120 of 121

...Unicast(messages) 524289 1 1 1 1 1 1 1

..Took(clock ticks) 3438 0 0 0 0 0 0 0

Deletion of opanga

...Key Tree size after (nodes) 1048575 524289 1032255 1052415 1114095 1310715 2097150 2097151

...User space after(slots) 524288 524289 524320 526336 557056 655360 1048576 1048576

...Message Expansion(messages) 1 524288 16385 257 17 5 2 2

...Users After(users) 524288 524288 524288 524288 524288 524288 524288 524288

...Users Storage(keys) 191 1 16 67 121 154 191 211

...Unicast(messages) 524288 0 0 0 0 0 0 0

..Took(clock ticks) 2976 5 1 1 1 1 2 1

Reinstatement of abuyeka

...Key Tree size after (nodes) 2097151 524289 1032255 1052415 1114095 1310715 2097150 2097151

...User space after(slots) 1048576 524289 524320 526336 557056 655360 1048576 1048576

...Message Expansion(messages) 2 524289 16385 257 17 5 2 2

...Users After(users) 524289 524289 524289 524289 524289 524289 524289 524289

...Users Storage(keys) 211 1 16 67 121 154 191 211

...Unicast(messages) 524289 1 0 0 0 0 0 0

 Page 121 of 121

..Took(clock ticks) 3421 0 0 0 0 0 0 0

Summary (means values)

 ... key tree size(nodes) 1572863 524289 1032255 1052415 1114095 1310715 2097150 2097151

 ... user storage(keys) 201 1 16 67 121 154 191 211

 ... msg expansion(messages) 1 524288 16385 257 17 5 2 2

 ... unicast messages(messages) 524288 0 0 0 0 0 0 0

 ...Time taken(clock ticks) 38574 8 3 3 3 3 4 4

