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Abstract-This paper proposes to determine the feasible 

optimal solution of the economic load dispatch power systems 
problem using Particle Swarm Optimization (PSO) considering 

various generator constraints. The objective of the proposed 
method is to determine the steady-state operating point which 
minimizes the fuel cost, while maintaining an acceptable system 

performance in terms of limits on generator power, line flow, 
prohibited operating zone and non linear cost function. Three 
diff erent inertia weights; a constant inertia weight CIW, a time-

varying inertia weight TVIW, and global-local best inertia 
weight GLbestIW, are considered with the (PSO) algorithm to 
analyze the impact of inertia weight on the performance of PSO 

algorithm. The PSO algorithm is simulated for each of the 
method individually. It is observed that the PSO algorithm with 
the proposed inertia weight (GLbestIW) yields better results, 

both in terms of optimal solution and faster convergence. 

Keywords: Classical particle swarm optimization 

(CPSO), Economic load dispatch. 

I. INTRODUCTION 

Economic load dispatch (ELD) is a non - linear constraint 

based optimization problem in power systems that have the 

objective of dividing the total power unit demand among the 

online participating generators economically while satisfying 

the essential constraints [1]. The goal is to optimize a selected 

objective function such as fuel cost via optimal adjustment of 

the power system control variables, while at the same time 

satisfying various inequality and equality constraints. 

Equality constraints are power flow equations, inequality 

constraints set limits on the control variables and the 

operating limits of the power system dependant variables. 

The goal is to find values of the variables that minimize or 

maximize the objective function while satisfying the 

constraints. PSO is a population based optimization strategy, 

particularly well suited for stochastically finding extrema in 

continuous non- linear functions [2]. The approach is derived 

in part from the way flocks of birds and swarms in nature 

search for food. A “swarm” is an apparently disorganized 

collection (population) of moving individuals that tend to 

cluster together while each individual seems to be moving in 

a random direction [3 - 4]. In PSO, a set of particles sample a 

search space and then adjust their search directions to sample 

near to their fitter neighbours. The set of neighbour 

connections between all of the particles forms the swarms 

topology or sociometry [3 - 5] and affects the swarm’s 

exploitation and exploration behaviour [3]. There have been 

two basic topologies used in the literature Ring Topology 

(neighbourhood of 3) and Star Topology (global 

neighbourhood). Practically, the real world input-output 

characteristics of the generating units are highly nonlinear, 

non-smooth and discrete in nature owing to prohibited 

operating zones, ramp rate limits and multi-fuel effects. 

Particle swarm optimization (PSO) algorithm is proposed to 

solve the various types of economic load dispatch problems 

in power systems. The feasibility of the proposed method is 

demonstrated on six different systems and the numerical 

results were compared with other evolutionary computing 

techniques [6 - 26]. 

II. PROBLEM FORMULATION 

The objective of the economic load dispatch problem is to 

initialize the total fuel cost 

Min FT =     or         (i) 

 Subject to constraints: PD + PL =           (ii) 

Where FT total production cost (KShs/hr); Fi(Pi), is 

incremental fuel cost function (KShs/hr); N is number of 

generating units; 

PD: Total real power unit demand (MW)  

PL: Total power losses (MW)  

OPERATING COST OF A THERMAL POWER PLANT:  

The factors influencing power generation are operating 

efficiencies of generators, fuel cost and transmission losses. 

The total cost of generation is a function of the individual 

generation of the sources which can take values within certain 

constraints. The problem is to determine the generation of 

different plants such that total operating cost is minimum. 

The input to the thermal plant is generally measured in Btu/hr 

and the output power is the active power in MW. A simplified 

input-output curve of a thermal unit known as heat-rate curve: 

 



 

The fuel cost functions of the generating units are generally 

characterized by second-order polynomials as: 

 
Pi :  real output power generation of ith unit  

ai, bi, ci: Fuel cost coefficients of ith unit  

Steam input-output equation + Ripple-like heat rate curve 

 

   ( iii) 

The incremental fuel-cost curve is a measure of how costly it 

will be to produce the next increment of power.  

dCi/dPi =2ci*Pi+bi  

Calculation of Input-Output characteristic parameters:  

The parameters of the input-output characteristic of any 

generating unit can be determined by the following 

approaches 

 1. Based on the experiments of the generating unit efficiency.  

2. Based on the historic records of the generating unit 

operation.  

3. Based on the design data of the generating unit provided by 

manufacturer.  

In the Practical power systems, we can easily obtain the fuel 

statistic data and power output statistics data. Through 

analyzing and computing data set (Fk, Pk), we can determine 

the shape of the input-output characteristic and the 

corresponding parameters.  

2.4 SYSTEM CONSTRAINTS:  

Generally there are two types of constraints [30]  

i) Equality constraints  

ii) Inequality constraints 

The cost is optimized with the following power system 

equality constraints:  

                                      (iv) 

a) real power balance  

                                          (v) 

Power loss 

             (vi) where  

and PN are the real power injections at mth and nth buses and 

Bmn are the B-coefficients of transmission loss formula.               

b) real power generation limit:        

For i = 1… N                                                        (vii) 
c) reactive power generation limit:   

                                           (viii)   

Bmn is transmission loss coefficients; 

P min is minimum limit of the real power of the ith unit (MW); 

Pi max is maximum limit of the real power of the ith unit 

(MW). 

INEQUALITY CONSTRAINTS:  

i) Generator Constraints: The KVA loading of a generator can 

be represented as   . The KVA loading should not 

exceed a pre-specified value to limit the temperature rise.  

The swarm can be represented by a D-dimensional vector,   

Xi = (xi1, xi2 . . . xiD).                                         (ix) 

The velocity (position change) of this particle, can be 

represented by another D-dimensional vector                        

Vi = (vi1, vi2.  . . viD).                                        (x) 

The best previously visited position of the i-th particle is 

denoted as Pi = (pi1, pi2. . . piD). Defining g as the index of 

the best particle in the swarm (i.e., the g-th particle is the 

best), and let the superscripts denote the iteration number, 

then the swarm is manipulated according to the following two 

equations (Eberhart et al., 1996) [1 - 3]: 

Initial version of PSO – no actual mechanism for 

controlling the velocity of a particle, maximum value Vmax 

was imposed on it:  
v
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III. VELOCITY (VMAX) 

 An important parameter in PSO; typically the only one 

adjusted. 

 Clamps particles velocities on each dimension. 

 Determines ‘fineness’ with which regions are searched. 

 Large values of  Vmax could result in particles moving 

past optimal solutions, 

 Small values could result in insufficient exploration of 

the search space. 

This lack of a control mechanism for the velocity resulted in 

low efficiency for PSO, compared to EC techniques 

(Angeline, 1998) [9 - 10]. Specifically, PSO located the area 

of the optimum faster than EC techniques, but once in the 

region of the optimum, it could not adjust its velocity stepsize 

to continue the search at a finer grain. 

The aforementioned problem was addressed by 

incorporating a weight for the previous velocity of the 

particle. Thus in the largest versions of PSO, equations (xi) 

and (xii) are changed to the following ones: 
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w = inertia weight  

c1, c2 = two positive constants; cognitive and social parameter 

respectively; 

K = constriction factor which is used, alternatively to w to 

limit velocity. 

(Eberhart and Shi, 1998;Shi and Eberhart, 1998a, Shi and 

Eberhart, 1998b) [1 - 3] 

IV. PSO PARAMETERS  

The role of inertia weight, (w=1.2) - PSO convergence 

behavior. It controls the impact of the previous history of 

velocities on the current one.  

 c1, c2 -   proper fine tuning may result in faster 

convergence and alleviation of the local minima (c1 + c2 ≤ 4).  

  r1, r2 - used to maintain the diversity of the population, 

and they are uniformly distributed in the range [0, 1].  



 K – Constriction factor controls the magnitude of the 

velocities in a way similar to Vmax parameter, resulting in a 

variant of PSO, different with the one for inertia weight.  

Suitable selection of inertia weight provides a balance 

between global and local explorations, thus requiring less 

iteration on an average to find a sufficiently optimal solution. 

Since W decreases linearly from about 0.9 to 0.4 quite often 

during a run, the following weighing function [27 - 29] is 

used in equation (xiii) 

 

              (xv) 

Where, Wmax is the initial weight, 

Wmin is the final weight, 

itermax is the maximum iteration number, 

iter is the current iteration number. 

The equation (xiii) is used to calculate the particle's new 

velocity according to its previous velocity and the distances 

of its current position from its own best experience (position) 

and the group's best experience. Then the particle flies 

towards a new position according to equation (xiv). The 

performance of each particle is measured according to a 

predefined fitness function, which is related to the problem to 

be solved. 

V. A BASIC PSO ALGORITHM 

The step by step procedure of PSO algorithm is given as 

follows: 

 Initialize a population of particles as 

 Pi = (Pi1, Pi2, Pi3…. Pi N)                    (xvi) 

‘N’ is number of generating units. Population is initialized 

with random values and velocities within the d-dimensional 

search space. 

 Initialize the maximum allowable velocity magnitude of 

any particle Vmax.  

 Evaluate the fitness of each particle and assign the 

particle's position to P-best position and fitness to P-best 

fitness. Identify the best among the P-best as G-best and store 

the fitness value of G-best. 

 Change the velocity and position of the particle 

according to equations (xiii) and (xiv), respectively. 

 For each particle, evaluate the fitness, if all decisions 

variable are within the search ranges. 

 Compare the particle's fitness evaluation with its 

previous P-best. If the current value is better than the 

previous P-best, then set the P-best value equal to the current 

value and the P-best location equal to the current location in 

the d-dimensional search space. 

 Compare the best current fitness evaluation with the 

population G-best. If the current value is better than the 

population G-best, then reset the G-best to the current best 

position and the fitness value to current fitness value. 

 Repeat steps 2-5 until a stopping criterion, such as 

sufficiently good G-best fitness or a maximum number of 

iterations/function evaluations is met. 

 

The general flowchart of Classical PSO is illustrated as 

follows: 

 
Figure 2: Flow Chart of Classical PSO algorithm  

 

VI. IMPLEMENTATION OF CLASSICAL PSO FOR ELD 

SOLUTION 

The main objective of ELD is to obtain the amount of real 

power to be generated by each committed generator, while 

achieving a minimum generation cost within the constraints. 

The details of the implementation of PSO components are 

summarized in the following subsections. 

The search procedure for calculating the optimal 

generation quantity of each unit is summarized as follows: 

 Initialization of the swarm: For a population size P, the    

 particles are randomly generated in the range 0-1 and  

 located between the maximum and the minimum  

 operating limits of the generators. If there are N     

 generating units, the ith particle is represented as  

 Pi = (Pi1, Pi2, Pi3... PiN).                      (xvii) 

 The jth dimension of the ith particle is allocated a value of     

 Pij as given below to satisfy the constraints: 

 Pij = Pjmin + r (Pjmax - Pjmin )            (xviii) 

 Here r [0, 1] 

   Defining the evaluation function: The merit of each 

individual particle in the swarm is found using a fitness 

function called evaluation function. The popular penalty 

function method employs functions to reduce the fitness of 

the particle in proportion to the magnitude of the equality 

constraint violation (xii). 

The evaluation function is defined to minimize the non-

smooth cost function given by equation (ii).The evaluation 

function is given as Minf(x)=f(x)+ 

 Initialization of P-best and G-best: The fitness values 

obtained above for the initial particles of the swarm are set as 

the initial Pbest values of the particle. 

The best value among all the Pbest values is identified as G-

Best. 

 Evaluation of velocity: The update in velocity is done by   

equation (xiii). 

Check the velocity constraints of the members of each      

 individual from the following conditions [26 - 29]: If,           

 Vid(k+1) > Vdmax, then Vid(k+1) = vdmax, 

 Vid(k+1) < Vdmin then,  

 Vid(k+1) = vdmin                                   (xix) 

Where, Vdmin = -0.5 Pgmin,     Vdmax = +0.5 Pgmax 



  Modify the member position of each individual  

  Pg [ 27 - 30] according to the equation  

Pgid(k+1) =   Pgid(i) + Vid(k+1)            (xx) 

Pgid(k+1) must satisfy the constraints, namely the generating 

limits. If Pgid(k+1) violates the constraints, then Pgid(k+1) 

must be modified towards the nearest margin of the feasible 

solution. 

 If the evaluation value of each individual is better than 

previous P-best, the current value is set to be P-best. If the 

best P-best is better than G-best, the best P-best is set to be G-

best. The corresponding value of fitness function is saved. 

 If the number of iterations reaches the maximum, then go 

to step 10. Otherwise, go to step-2. 

 The individual that generates the latest G-best is the 

optimal generation power of each optimal generation power 

of each unit with the minimum total generation cost. 

The flowchart of implementation of PSO for ELD: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The flowchart of implementation of PSO 

 

  
Figure 3: Ring and star topologies 

 

VII. EXPERIMENT 

Determination of whether neighborhood topology could 

affect the convergence. The ring topology is also known as 

the lbest version in PSO where fitness dilutes proportionally 

with respect to the distance of its k immediate neighbors of 

the population.  

Experimental Parameters 

 Initial Population 

The initial populations are generated randomly, and it is a set 

of n particles at time t.  

 Swarm 

It is an apparently disorganized population of moving 

particles that tend to cluster together while each particle 

seems to be moving in a random direction. 

 Population Size 

From the earlier research performed by Eberhart and Shi, it is 

proved that the performance of the standard algorithm is not 

sensitive to the population size but to the convergence rate.      

 Search Space 
The range in which the algorithm computes the optimal 

control variables is called search space. The algorithm will 

search for the optimal solution in the search space between 0 

and 1. When any of the optimal control values of any particle 

exceed the searching space, the value will be reinitialized. In 

this paper, the lower and upper boundaries are set to 0 and 1.   

 Time-Varying Inertia Weight (TVIW) 

In order to improve the performance of the PSO, the time-

varying inertia weight was proposed in [7]. This inertia 

weight linearly decreases with respect to time. Generally for 

initial stages of the search process, large inertia weight to 

enhance the global exploration (searching new area) is 

recommended while, for last stages, the inertia weight is 

reduced for local exploration (fine tuning the current search 

area). The mathematical expression for TVIW: 

 

where  is initial value of the inertia weight, final value 

of the inertia weight,  current iteration,  

maximum number of allowable iterations. 

 Inertia Weight Used in the Present Work (GLbestIW) 

The GLbestIW method is proposed in [28] in which, the 

inertia weight is neither set to a constant value nor set as 

linearly decreasing time-varying function. The inertia weight 

is defined as a function of local best (pbest) and global best 

(gbest) values of the particles in each generation. The GLbest 

inertia weight is given by the following equation  

 

VIII. RESULTS 

Case-1 3-unit system [29] 

The system contains 3 thermal units, Data as follows: 

F1 = 0.00524P1
2
 + 8.66 P1 + 224.489 KES/Hr 

F2 = 0.00608P2
2
 + 10.05 P2 + 93.676 KES/Hr  

F3 = 0.00592P3
2
 + 9.75 P3 + 40.469 KES/Hr 

240 MW ≤ P1 ≤ 90 MW 

238 MW ≤ P2 ≤ 85 MW 

100 MW ≤ P3 ≤ 20 MW 

B = Coefficient Matrix: 

B = [0.000134 0.0000176 0.000183 

        0.0000176 0.000153 0.000282 

        0.000183 0.000282 0.00162] 

Input

No. of Particle

No. of iteration count

Error = 0.05

Initialize Randomly

1. Position of the particle

2. Velocity of the Particle

For each Particle

Simulate Model Parameters

Y11,Y12,Y21,Y22

Evaluate Fitness Function

Is

fitness(Current Pos.)

>

fitness(gbest)

?

Measurement 

Data

Update

gbest = current pos.

Yes

No

Is

fitness(Current Pos)

>

fitness(lbest)

?
Update

lbest = current pos.

Yes

No

Is

particle > Max. no.

?

No

go for next 

particle

Evaluate Fitness Function E

based on gbest

Is

fitness error < defined error

Extracted 

Parameter

Yes

Is

iteration count > Max. count

?

No

Yes

No

Update 

vlocity 
Limit velocity

[Vmin, Vmax]

Update 

position
Limit position

[Pmin, Pmax]

Next Iteration

http://www.hindawi.com/journals/ddns/2010/462145/#B28


The corresponding loads are given as 300MW and 450 MW 

respectively.  

 Table-1 Three Generator system with optimal scheduling 

without losses by PSO 

 

Load 

Demand 

Pg1 

(MW) 

Pg2 

(MW) 

Pg3 

(MW) 

Fuel cost 

(KES/hr) 

300 MW 161.076541 317.49659 155.573291 4049.022 

450 MW 152.768436 182.873239 39.238932 6439.167 

 

(i) Simulation Results of 3 Unit without Loss with 450 MW 

Load 

 

 
Figure 3-Graph between G-best solutions and Cost in KES/hr 

for a load of 450 mw 

 

Evaluated results obtained from PSO method with 

conventional method and their comparison is shown in the 

tables below: 

 Table- 2 Comparison of different methods without 

losses of 3-unit system 

Power 

Demand (MW) 

Fuel Cost(KES/hr) 

Conventional 

Method 

PSO Method  

300 4049.05 4049.02 

450 6439.20 6439.17 

Above table shows that PSO method provides better results. 

 

Load 

Demand 

(MW) 

Pg1 

(MW) 

Pg2 

(MW) 

Pg3 

(MW) 

Fuel cost 

(KES/hr) 

300 120.458556 87.893538 23.134332 4115.513 

450 161.957099 175.374458 66.783262 6213.839 

 Table-3 Three Generator system with optimal scheduling 

with losses by PSO 

Transmission losses which can be calculated with the help of 

loss matrix Bmn provided in section. 

 (ii) Simulation Results of 3 Unit with Loss with 450 MW 

 
Figure3-Graph between G-best solutions and Cost in KES/hr 

for a load of 450 mw 

 Table- 4 Comparison of different methods including 

losses of 3-unit system 

Power 

Demand 

(MW) 

Fuel Cost(KES/hr) 

Conventional Method PSO Method  

300 4116.86 4115.51 

450 6215.14 6213.84  

 
The new concept of defining the inertia weight in terms 
of the personal and global best values helps the PSO to 
perform better in solving any high-dimensional optimal 
control problem with faster convergence and accuracy.   
The impacts of inertia weight variants are analyzed.  

 Table- 5 Comparison of different PSO methods. 

A new inertia weight is proposed in terms of the global best 

and personal best values of the objective function. 

The results here hence indicate that the improved 

performance of the PSO can be obtained by carefully 

selecting the inertia weight. 

IX.  CONCLUSION 

We can draw important conclusions on the basis of the work 

done. Some important conclusions are given below 

Three Unit Systems: 

In PSO method selection of parameters c1, c2 and W is very 

much important. It is stated in various research papers that the 

good results are obtained when c1 = 2.0 and c2 = 2.0 and W 

value is varied from 0.9 to 0.4 for both cases loss neglected 

and loss included. It is evident that Classical PSO gives better 

result than conventional methods. 

S/no. Number 

of trials 
Method Min. 

cost 
Max. 

cost 
Average 

cost 

1 1 CIW 

TVIW              

GLBestIW 

802.959 

802.741 

801.113 

822.351 

824.391 

816.277 

809.587 

809.741 

807.828 

2 100 CIW 

TVIW 

GLBestIW 

802.843 

802.543 

801.843 

804.921 

802.551 

801.845 

803.881 

802.494 

801.844 

3 200 CIW 

TVIW 

GLBestIW 

802.843 

802.543 

801.843 

804.913 

802.852 

801.845 

802.843 

802.543 

801.843 



In PSO method numbers of iterations are not much affected 

when the transmission line losses are considered. In both 

cases for loss included and loss neglected it is approximately 

50 iterations for Classical PSO method. 

To verify the feasibility of the proposed PSO method, three 

different power systems were tested, under the same 

evaluation function and individual definition. 3 sets of trials 

were performed to observe the evolutionary process and to 

compare their solution quality, convergence characteristic, 

and computation efficiency. From the experiences of many 

experiments the following parameters are selected for the 

particle swarm optimization algorithm to solve the above test 

cases and are tabulated. For implementing the above 

algorithm, the simulation studies were carried out on P-IV, 

2.4 GHz, 512 MBDDR RAM system in MATLAB 

environment. 

Six Unit Systems: 

The selection of parameters is same as c1=2,c2=2,W is 

varying from 0.9 to 0.4.It was evident that Classical PSO 

method gives better result than the  conventional method as 

 the cost is reduced. Table- 5 gives the minimum, maximum, 

and average costs for 1st trial, 100 trials and 200 trials for all 

the three PSO methods under consideration. It can be seen 

that the minimum cost as well as the average cost produced 

by GLBestIW PSO is the least as compared to other methods. 

This emphasizes the better quality solution of the proposed 

method. 

It is shown through different trials that the GLbestIW PSO 

outperforms other methods in terms of high quality solution, 

consistency, faster convergence, and accuracy. 

Overall we can conclude that today when there is competition 

amongst power generating companies, fast emerging 

difference between demand and supply then we need to 

develop a requisite for proper operation policies for power 

generating companies. It can be accomplished only when a 

proper mathematical formulation of ELD problem is there 

and all practical constraints are taken into account.PSO has 

paid a lot of attention for solution of such problems, as it does 

not suffers from sticking into local optimal solution, 

dependability on initial variables and curse of dimensionality.  
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