EFFICIENCY OF FOREIGN EXCHANGE MARKET IN KENYA:

 THE RATIONAL EXPECTATIONS APPROACH "
BY

 KIMANI SARAH W REG NO: D61/P/8250/03A RESEARCH PROJECT REPORT SUBMITTED TO SCHOOL OF BUSINESS IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE OF MASTER OF BUSINESS ADMINISTRATION

UNIVERSITY OF NAIROBI

03064482

Declaration

This research project report is my original work and has never been presented for a degree in any other university.

This research project report has been submitted for examination with my approval as the University Supervisor.

LECTURER

DEPARTMENT OF FINANCE AND ACCOUNTING

SCHOOL OF BUSINESS

UNIVERSITY OF NAIROBI

Dedication

I dedicate this research report to my dear husband, loving daughters, my dad and my siblings for being supportive during the time of my studies.

Acknowledgement

I would like to acknowledge the support, advice and tireless efforts of my supervisor Mr. Kisaka Sifunjo in the supervision during my research work and in writing of this research project report.

I would also like to acknowledge the assistance provided by the Head of Research Department at the Central Bank of Kenya in securing the time-series data on exchange rates and Treasury Bill rates over the sample period.

I also thank the Librarians at the University of Nairobi for allowing me the use of the library facilities.

Finally, I would like to acknowledge the assistance given by the staff at the School of Business, University of Nairobi.

Abstract

The aim of this study was to establish the efficiency of foreign exchange markets in Kenya using the rational expectations approach. The study was based on the null hypothesis that the economic agents are rational. Assuming that market participants are rational, the expected change in the exchange rate should differ from the actual change only by a rational expectations forecast error. Historical data for the monthly (average) spot exchange rate and the three-month forward premiums for the Euro, the Sterling Pound, the US Dollar, and the two East African currencies were obtained from the Central Bank of Kenya based on all banking institutions that actively engage in foreign exchange business. The sample period was from November 1993 to June 2006. All the exchange rates were expressed in Kenya Shillings (Kshs) per unit of foreign currency. The US monthly averages for the 91-Day T-BILL rates were used in computing the forward rates for each of the currencies.

The key findings revealed that the forward rates are not unbiased predictors of the future spot rates for the Euro, the Sterling Pound, the US Dollar, the Uganda Shilling, and the Tanzanian Shilling. Secondly, the findings established that the participants in the foreign currency markets in Kenya are not risk-neutral and are not rational; a phenomenon that was reinforced by the presence of auto-correlations. The results of the study were consistent with the hypothesis that the forward exchange rates are not unbiased predictors of the future spot rates. This agreed with previous empirical works (Frankel, 1980; Fama 1984; Bekaert and Hodrick, 1993) which rejected the
efficient markets hypothesis under risk-neutrality on the basis of regressing the applicable model for various currencies.

Under the presence of efficiency in the foreign exchange market, the forward exchange rate should be an unbiased predictor for the future spot rate. The rejection of the efficiency hypothesis implies the presence of unexploited profit opportunities for those who participate in exchange rate transactions in the Kenyan FOREX markets. In other words, the general conclusion emerging from the extensive empirical analysis is that the forward exchange rate is not an unbiased predictor of the future spot and the presence of a risk premium is apparent. The failure of the currency markets to be 'weak form' efficient also indicates that not all price information is fully reflected in currency prices, thus implying that the current price changes cannot be predicted from past prices. As a result, the participants in the FOREX markets in Kenya conduct their transactions on the basis of speculation rather than on prediction of future market behaviour based on the past or current performance of respective currency markets.

Table of Contents

Title i
Declaration ii
Dedication iii
Acknowledgement. iv
Abstract V
Table of Contents vii
List of Tables ix
List of Abbreviations and Acronyms x
1.0 CHAPTER ONE: INTRODUCTION 1
1.1. Background to the study 1
1.1.1. Efficient market hypothesis 1
1.1.2. Rational Expectations 3
1.1.3. Foreign exchange markets in Kenya 4
1.2. Problem Statement 5
1.3 Objective of the Study 8
1.4 Importance of the Study 8
2.0 CHAPTER TWO: LITERATURE REVIEW 10
2.1. Introduction 10
2.2. Efficient Market Hypothesis (EMH) 11
2.2.1 Weak form Efficiency 11
2.2.2 Semi- Strong Form Efficiency 12
2.2.3 Strong Form Efficiency 12
2.3. Foreign Exchange Market Efficiency 13
2.4. Rational Expectations and Efficient Markets 14
2.4.1. Unbiasedness 16
2.4.2. Orthogonality 18
2.5. Testing of foreign exchange market efficiency 18
2.6. Empirical Evidence on FOREX Market Efficiency 20
2.7. Empirical Evidence on FOREX Market Efficiency in Kenya 23
2.8. Chapter Summary 25
3.0 CHAPTER THREE: RESEARCH METHODOLOGY 27
3.1. Data and Sample 27
3.2. Research Model 28
3.2.1. Analytical Model. 28
3.3. Statistical Tests 29
3.3.1. T-test 29
3.3.2. Non-Stationarity Tests 29
3.3.3. Correlation Tests 30
4.0 CHAPTER FOUR: DATA ANALYSIS, DISCUSSION AND CONCLUSION31
4.1. Introduction 31
4.2. Unit Roots Tests for Time series Properties 31
4.3. Efficiency of FOREX markets and Tests for Rationality 32
4.3.1. Test for 'unbiasedness' hypothesis 32
4.3.2. Tests for Orthogonality 34
4.4. Diagnostic Tests Results 35
4.4.1. Assumptions of Normality of Error Terms 35
4.4.2. Auto-correlation Tests 36
4.5. Discussion of Findings 40
5.0 CHAPTER FIVE: SUMMARY AND CONCLUSIONS 43
5.1. Introduction 43
5.2. Summary 43
5.3. Conclusions 44
5.4. Limitations of the Study. 44
5.5. Recommendations. 45
REFERENCES 46
Appendix I: List of Commercial Banks in Kenya 52
Appendix II: Exchange Rate Data 53

List of Tables

Table 4.1: Unit Root Test for the spot rates series 32
Table 4.2: Testing Market Efficiency Using Forward Rates 33
Table 4.3: Tests for Rational Expectations 34
Table 4.4: One-Sample Kolmogorov-Smirnov test for normality of error terms 35
Table 4.5: The results for Auto-correlation Tests 36

List of Abbreviations and Acronyms

ADF	$:$	Augmented Dickey-Fuller
CMA	$:$	Capital Markets Authority
EMH	$:$	Efficient Market Hypothesis
JCIF	$:$	Japan Center for International Finance
FOREX	$:$	Foreign Exchange
K-S	$:$	Kolmogorov-Smirnov
MMS	$:$	Soney Market Services
NSE	$:$	Uncovered Interest Rate Parity
SSA	$:$	University of Nairobi
UIRP	Vector Auto Regression	

CHAPTER ONE

1.0 INTRODUCTION

1.1. Background to the study

1.1.1. Efficient market hypothesis

Using a very broad definition, a market is considered to be efficient if absolute price movements do not alter relative ones and if all markets are in equilibrium at current values. In other words, under efficiency conditions, monetary variables do not affect real ones and the economic system is dichotomous (Canale and Napolitano, 2001). The classic definition of an efficient market is due to Fama (1970), and is a market where prices fully reflect the information available, such that an unusual profit cannot be earned through exploiting this information set. In this case, decisions taken on the basis of these prices will promote the efficient allocation of resources (Levich, 1985).

Fama deduced three forms of market efficiency depending on how much information is used in forming expectations about the future price. They include 'weak form' efficiency; the 'semi-strong form' efficiency; and the 'strong form' efficiency. The 'weak form' efficiency of the EMH asserts that all price information is fully reflected in asset prices, in the sense that current price changes cannot be predicted from past prices (Fama, 1970). Security prices therefore fully reflect the information contained in past price movements hence they do not follow patterns which repeat and it is not possible to trade profitably purely on the basis of historical price information. The semi-strong form efficiency asserts that a market is efficient in the semi-strong form if security prices fully reflect all publicly available information. No investor can earn
excess returns from trading rules based on publicly available information. The strong form efficiency asserts that a market is efficient in the strong form if security prices fully reflect all relevant information whether it is publicly available or not. In such case, no investor can earn excess returns using any information (not even using insider information) [Fama, 1970].

If foreign exchange markets are efficient, the spot or forward exchange rates should embody all relevant information, and they should not be able to forecast the spot or forward exchange rate as a function of another. Also the forward rate should be an unbiased predictor of the future spot rate assuming risk neutrality and a covariance stationary risk premium.

The traditional tests of the foreign exchange market efficiency hypothesis, EMH, are therefore based on a linear projection of the forward rate on the future spot exchange rate. To circumvent the non-stationarity problem in this estimation procedure, Froot and Frankel (1989) use the forward premium as the regressor and the exchange rate differential as the regressand. As shown in Liu and Maddala (1992a), this adjustment can lead to inconsistent estimate of the slope coefficient because the forward rate is correlated with the risk premium. Liu and Maddala suggest therefore regressing the forward premium on the exchange rate differential when both series are stationary. However, this approach can exhibit finite sample bias due to the presence of an endogenous regressor. Whether the small sample bias is large enough to result in rejection of the EMH even when it is true remains to our knowledge an open empirical question.

In its simplest form, market efficiency in foreign exchange markets can be presented as a joint hypothesis that participants in the foreign exchange market are (1) rational and (2) risk-neutral. Empirical studies of the efficiency of the foreign exchange worldwide shows that it is not efficient (Canale and Napolitano, 2001; Atingi and Kaggwa, 2003). No consensus exists at the moment concerning the actual behaviour of the exchange rate markets. For instance, different markets may be characterized by different statistical distributions. Several reasons have been advanced to explain the failure of the EMH but none has passed the empirical tests (Fama, 1991), including the studies conducted about the efficiency of the foreign exchange market in Kenya. This study used the rational expectations approach to test the efficiency of foreign exchange markets hypothesis in Kenya.

1.1.2. Rational Expectations

The rational expectation assumption, based on Muth (1961), argues that economic agents form expectations about future events. These expectations are rational in the sense that they combine all the available information and therefore do not lead to systematic forecasting errors. The implication of the rational expectations hypothesis is that policies will only be effective when they produce surprises. By definition, this is not possible in the long run since rational economic agents will detect any policy rule and will therefore no longer be surprised. This is also known as the 'irrelevance hypothesis'. This view has been applied to several policy instruments, most of the time - monetary policy; the core arguments are, however, also relevant to fiscal policy and taxation. Normally, rationality is defined in terms of two criteria: (1) whether the expected exchange rate is an unbiased predictor of the future spot exchange rate (unbiasedness); and (2) whether the expected exchange rate fully incorporates all
available information (orthogonality). The tests of rational expectations reported in the literature are also based on these two criteria.

1.1.3. Foreign exchange markets in Kenya

Since the 1970s after the breakdown of the Fixed Exchange Rate Bretton Woods System, the major currencies (the US Dollar, EURO and others) float freely. Encouraged by the Bretton Woods institutions, many countries (Kenya included) adopted transitional systems toward unified, market determined and convertible exchange rates.

Following the repeal of the Exchange Control Act in 1995 and the licensing of foreign exchange bureaus, there has been witnessed some vibrancy in Kenya's foreign exchange market (Kurgat, 1998). In the period prior to 1995, Kenya maintained restrictions on foreign exchange currency transactions. However, Kenya currently pursues a floating exchange rate regime, in which market forces of demand and supply interplay to determine the exchange value of currencies. Indeed, as proposed by Friedman (1953), because speculators buy low and sell high, their activities ensure that exchange rates reflect the fundamental determinants of currency values. The major participants in the foreign exchange market in Kenya are commercial banks and foreign exchange bureaus. Other participants such as corporations, institutional investors, and seldom also individual persons usually have to contact their bank or broker in order to obtain foreign currencies. Efficiency of foreign exchange market in Kenya has not been widely tested. Few studies have been carried out on the efficiency of foreign exchange market in Kenya. The findings have favored the conclusion that the foreign exchange market in Kenya is inefficient due to existence of arbitrage opportunities.

1.2. Problem Statement

The market efficiency hypothesis formulation has two major problems: i) the interpretation associated with the rejection of market efficiency and ii) the ambiguity in constructing alternatives to the null hypothesis of efficiency. These problems arise since failure to find evidence in favour of the null hypothesis may imply either a rejection of the information set (probably on the assumption that agents are rational but have the wrong model) or that the information set has all the relevant information but agents are not using the available information and hence irrational (Atingi and Kaggwa, 2003).

Local studies carried out on efficiency of foreign exchange market in Kenya i.e. Ndunda (2002), Kurgat (1998) and Muhoro (2005) have looked at efficiency from the basis of profitability of simple trading rules. Ndunda (2002) tested whether forward exchange rates are predictors of future spot rates in Kenya. In her study, Ndunda focused on the foreign exchange market under floating exchange rate for the period between October 1993 and December 2002. The data involved comprised of weekly spot exchange rate and the three-month forward exchange premium for the US dollar, the UK sterling pound, the Swiss Franc, the Euro, and the Japanese Yen. Her study was based on the model by Hansen \& Hodrick (1980). The hypothesis that the forecast error is uncorrelated with information available at a certain time was tested using ordinary least squares regression. She established that the forward rate is not a good predictor of the future spot rate, which led to the conclusion that the foreign exchange market in Kenya is inefficient as the rate of return to speculation is not equal to zero.

Kurgat (1998) carried out an empirical study of the spot markets' efficiency on foreign exchange bureaus in Kenya where he pointed out the inefficiency of the Kenyan foreign exchange market due to the existence of arbitrage opportunities. He showed that there was an opportunity to make instantaneous risk free profits through locational arbitrage. The study established that the foreign exchange markets in Kenya are not efficient.

Seven years later Muhoro (2005) carried out a similar study using locational and triangular arbitrage models. The study involved secondary data in the form of daily closing counter foreign exchange rates of the Kenya shilling against two currencies; the Euro and US dollar for six banks and fifty-seven bureaus for the year 2003. The researcher used the Chi-square as a test of goodness of fit and descriptive statistics in her data analysis. The study established that the FOREX market was inefficient due to many cases that arbitrage opportunities occur in the market. According to Muhoro (2005), higher profits could be made by carrying out a triangular arbitrage transaction rather than carrying out a locational arbitrage transaction in both banks and bureaus. It therefore appeared that currencies are not efficiently priced against one another.

The above local studies considered efficiency of foreign exchange market in Kenya from the arbitrage perspective i.e. profitability of simple trading rules. This is just one of the ways through which efficiency of foreign exchange market can be tested. Presence of risk premium, rationality of participants' behavior, presence of over/under reaction in the market, inefficient information processing can also be used to test EMH. This study will look at efficiency of foreign exchange market in Kenya from the rational expectations approach.

The local studies carried out were limited in the sense that the assumptions of normality, stationarity of data, and constant variance were not accounted for in the research models used. These assumptions need to be satisfied so that the estimated value of regression constants can be shown to be accurate. Prior research on efficiency of foreign exchange markets provide evidence that spot rates and forward rates are non-stationary and follow unit root processes. Failure to account for these assumptions may therefore put in doubt the studies' results and hence the conclusions arrived at by the researchers. This study will therefore go further to fill these gaps by testing for constant variance, normality distribution of error terms, as well as the stationarity of the time series data to be used.

The choice of rational expectations approach has also been motivated by the implication irrational participants in foreign exchange markets has on modern businesses. If participants are not rational, the error term will not be equal to zero. This may lead to wrong pricing of derivative products in the market which will in turn affect the cost of hedging and hence cost of doing business will be affected. The study was based on the null hypothesis that the economic agents are rational. Assuming that market participants are rational, the expected change in the exchange rate should differ from the actual change only by a rational expectations forecast error. The following research questions guided the study:

1. Is the current expected forward rate an unbiased predictor of the future spot exchange rate?
2. Does the expected exchange rate fully incorporate all available information?

1.3 Objectives of the Study

The aim of this study was to establish:

1. Whether the current expected forward rate is an unbiased predictor of the future spot exchange rate and;
2. Whether the participants in the foreign currency market in Kenya are rational and hence expected exchange rate fully incorporates all available information.

1.4 Importance of the Study

Since the collapse of the Breton Wood systems, most of the major exchange rates have been allowed to float freely for the longest period of time in recent economic history. Many smaller banks have as a result adopted policies of pegging their exchange rates to major foreign currencies. The findings of the study therefore provide a rationale for examining the exchange rate management systems in Kenya. In particular, the study will benefit the following:
(i) Investors: The study seeks to inform investors on the rationality of transacting businesses in foreign currency, as opposed to local currencies and further advice on the risks related to either of the approaches.
(ii) Financial institutions: This study will seek to inform financial institutions in developing of policies to advise their clients against the effects of unstable exchange rates especially in cases where business transactions are conducted in major foreign currencies.
(iii) The government, through the Central Bank of Kenya in formulating of guidelines towards the management of foreign exchange rate market and associated currency risks.
(iv) Researchers and Academicians: The study forms a basis for future researchers and academicians who may be conducting research on efficiency of financial markets and in the development of Efficiency Markets Hypothesis (EMH) considering it has gone through a paradigm shift over the years.

CHAPTER TWO

2.0 LITERATURE REVIEW

2.1. Introduction

This chapter reviews the literature on rational expectations in the foreign exchange markets. Empirical tests from the literature are generally unfavourable to the hypothesis that exchange rate expectations are rational in terms of both unbiasedness and orthogonality. Except for certain time periods and horizons, survey expectations are shown to be biased predictors of future exchange rates, and the forecast errors are correlated with some variables that are known to be in the set of information available when the expectations are formed. Given the extraordinary nature of some sample periods, however, the rejection of the rationality hypothesis may be saying more about the peculiarity of actual exchange rate movements than the nature of exchange rate expectations.

The chapter is organized as follows: section 2.1 is the introduction; section 2.2 covers the efficient market hypothesis; section 2.3 is a review on efficiency of foreign exchange markets; section 2.4 covers the relationship between rational expectations and efficient markets; section 2.5 reviews the testing of foreign exchange markets' efficiency; section 2.6 reviews empirical evidence on FOREX market efficiency; section 2.7 reviews empirical evidence on FOREX market efficiency in Kenya; and finally section 2.8 gives the chapter summary.

2.2. Efficient Market Hypothesis (EMH)

Fama (1970) deduced different forms of efficiency of a market (i.e. weak form, semistrong form and strong form efficiency) depending on how much information is used in forming expectations about the future price. The various forms of efficiency are tested using the methodology outlined below.

2.2.1 Weak form Efficiency

Tests for 'weak form' market efficiency have normally been based on the predictive power of the forward rate for the future spot rate (Swarna, 1994). The test is to determine whether the forward rate is an unbiased predictor of the future spot rate in a foreign exchange market. The procedure is specified as follows:
$\operatorname{Ln} S_{t+1}=\alpha+\beta \operatorname{Ln} F_{t+1}+\mu_{t}$
Where:
S_{t+1} is the three-month future spot rate
F_{t+1} is the calculated forward rate at time t for delivery at time $(\mathrm{t}+1)$
β is the relationship between S_{t+1} and F_{t+1}
The test for efficiency in Equation 1 relates to testing the null hypothesis $\alpha=0$ and β $=1$

In the cases where the forward market is not very active in the foreign exchange market, the few agents that undertake these transactions base them on the interest rate differentials between the local and foreign interest rates. The forward rate F_{1} is therefore computed as follows:

$$
\begin{equation*}
F_{t}=S_{t} * \frac{1+i_{h}}{1+i_{0}} \tag{2}
\end{equation*}
$$

Where:
$i_{h} \quad$ is the local interest rate
$i_{0} \quad$ is the foreign interest rate
$S_{1} \quad$ is the spot rate at time t

2.2.2 Semi- Strong Form Efficiency

The "Semi-strong" form of EMH requires that current price incorporates all publicly available information, including its own past prices (Fama, 1970). Semi-strong form efficiency is perhaps the version of efficiency closest to the rational expectations hypothesis since it is assumed that economic agents know the true model of the economy and use all publicly available information in forming expectations. Geweke and Feige (1979) distinguished two categories within the semi-strong form of market efficiency: (a) single-market efficiency where all publicly available information concerning a single exchange rate is contained in the information set; and (b) multimarket efficiency where information on all other exchange rates and all available economic information is included in the information set.

2.2.3 Strong Form Efficiency

For the 'strong' form of the EMH, the literature suggests that there should be cointegration between future spot and forward rate series. The Engle-Granger (1987) bivariate two-step co-integration regression procedure is applied. The reverse regression from Equation 1 above is specified as in equation (3) below:
$\operatorname{Ln} F_{t+1}=\alpha+\beta \operatorname{Ln} S_{t+1}+\mu_{1 i}$
The direct regression specified in Equation 1 and the reverse regression in Equation 3 are conducted to determine whether the foreign exchange market is characterized by strong form efficiency. Co-integration tests involve establishing whether the stochastic trends in future spot and forward rate series have long-run relationship.

This is accomplished by testing whether the residuals of co-integration regressions are stationary by applying the Augmented Dickey-Fuller (ADF) unit root tests (Dickey and Fuller, 1979). The co-integration equations are of the form shown in equations (1) and (3). μ_{1} and μ_{11} are the residuals to be tested for stationarity. If the computed ADF are found to be greater than the critical values (5% and/or 1%), the null hypothesis of existence of co-integration between the future spot and forward rate series will be rejected, and accepted otherwise.

2.3. Foreign Exchange Market Efficiency

The classic definition of an efficient market is due to Fama (1970), and is a market where prices fully reflect the information available, such that an unusual profit cannot be earned through exploiting this information set. In this case, decisions taken on the basis of these prices will promote the efficient allocation of resources (Levich, 1985).

More formally, expressing market equilibrium in terms of equilibrium returns, consider the following definition of the excess return $\mathrm{Z}_{\mathrm{t}+1}$ in the context of foreign exchange markets:

$$
\begin{equation*}
Z_{t+1}=\Delta S_{t+1}-\mathrm{E}\left(\Delta S_{t+1} / \Psi_{\mathbf{t}}\right) \tag{4}
\end{equation*}
$$

Where ΔS_{t+1}, is the actual one-period percentage change in the spot exchange rate (or more precisely, the change in the log of the exchange rate); and the second term E ($\Delta S_{t+1} / \Psi_{t}$) is the expectation at time t, given the market information set Ψ_{t}, of the equilibrium percentage change in the spot exchange rate. A currency market is said to be efficient, given the information set, when the difference between these two terms in equation (1), or the excess returns series Z_{t+1}, is a "fair game" (or martingale
difference-LeRoy, 1989). This implies the series Z_{1+1} has an expected value of zero and is unforecastable given Ψ_{t} (i.e. the excess returns are independent of any information dated t or earlier in Ψ_{t}, especially St-i, for $i \geq 0$). Clearly there will be no systematic large profits or losses in such a market. Note that where there are positive information and trading costs, the definition implies that deviations from a fair game in equation (4) will be within transactions and trading costs (Fama, 1991).

2.4. Rational Expectations and Efficient Markets

The crux of the argument in analysis of efficiency of financial markets changed with the incorporation of the theories of rational expectations put forward by Muth (1961) and efficient markets developed by Fama (1970) in the Fisher hypothesis. While Fisher argued that past changes in the price level became embodied in the current rate of interest, Fama (1975) argued that future price changes were reflected in the current rate of interest. This was interpreted by Fama as evidence of an efficient market. This approach rejected Fisher's conclusions of a distributed lag structure in the formation of expectations. Instead, it assumed that rational forecasters would use all available information in forming price expectations.

Using data for one-month Treasury bills to approximate interest rates and the rate of change in the consumer price index to approximate price changes, Fama(1975) tested the joint hypothesis that the U.S Government Treasury bill market was efficient and that the real return on one-to-six month Treasury bill was constant within a rational expectations framework. Fama computed sample autocorrelations of the expected change in purchasing power and real return for lags from 1-12 for the period January 1953 to July 1971. The estimated sample autocorrelations of the real return were
large, indicating that past rates of change in the real return contained information about expected future rates of change. The sample autocorrelations of the real return were insignificantly different from zero, consistent with the hypothesis of a constant real return. Tests were also carried out for longer-term maturities for up to six months. Results for all maturities indicated that the market used all the available information about the rate of inflation in setting nominal rates of interest, thus supporting the efficient market hypothesis.

Fama's findings were subsequently challenged by Hess and Bicksler (1975), Carlson (1977), Joines (1977), and Nelson and Schwert (1977). Carlson (1977), using Livingston data on the CPI for the period 1953-1971, rejected Fama's findings that short-term interest rates were efficient predictors of subsequent rates of inflation. Carlson introduced a business cycle variable to Fama's regression equation, which was represented by the ratio of employment to population, lagged by six months. With the incorporation of this variable, the coefficient on the interest rate in Fama's model was found to deviate significantly, which led Carlson to conclude that information about inflation that was not fully incorporated in interest rates was reflected in this ratio.

Joines (1977) observed a seasonal pattern in the forecast errors of the rate of price inflation used by Fama, which he pointed out, was inconsistent with the concept of market efficiency leading him to question the accuracy of the price data used by Fama. Nelson and Schwert (1977) and Hess and Bicksler (1975) employed a BoxJenkins approach to construct a time series predictor of inflation, based on past rates of inflation. The regression of the rate of inflation on the rate of interest and the
estimated rate of inflation yielded a non-zero coefficient for estimated inflation, indicating that the forecast contained information about the rate of inflation not embodied in the rate of interest.

With the incorporation of rational expectations and efficient markets in the Fisher hypothesis, it was believed that the time series in question should approximate a random walk in an efficient market (Arusha, 2002). The random-walk model requires that changes in past rates of inflation and interest rates be uncorrelated with all prior information. This was is in sharp contrast to the distributed lag effect in expectations formation, which implied that inflation rates were highly and positively correlated. Although the studies of Hess and Bicksler (1975), Carlson (1977), Fama and Gibbons (1984) suggested that when expected real returns were assumed to display a unit root, Treasury bill rates were good predictors of inflation, no explicit tests for unit roots were carried out by them.

Normally, rationality is defined in terms of two criteria: (1) whether the expected exchange rate is an unbiased predictor of the future spot exchange rate (unbiasedness); and (2) whether the expected exchange rate fully incorporates all available information (orthogonality). The tests of rational expectations reported in the literature also correspond to these two types.

2.4.1. Unbiasedness

According to Shinji (1991), unbiasedness is an important aspect of the rationality of exchange rate expectations. The use of survey data allows direct testing of the hypothesis that the expected spot exchange rate for period $t+j$ (formed in period $t)$ is an unbiased predictor of the future spot rate (in period $t+j$)

$$
\begin{equation*}
S_{t+j}=\alpha+\beta E_{t} S_{t+j}+\mu_{t} \tag{5}
\end{equation*}
$$

Where the survey expectation $E_{l} S_{l+J}$ is free from the presence of a risk premium, and μ is a random error term. Tests of the unbiasedness of exchange rate expectations would involve tests of the hypothesis of $\alpha=0$ and $\beta=1$, when equation (5) is estimated, usually in first-difference form.

Dominguez (1986) and Ito (1990) regressed actual depreciation on expected depreciation using Money Market Services and Japan Center for International Finance, respectively, for different time horizons and for different dollar exchange rates. For the earlier period (1983-85), Dominguez almost unanimously rejected the joint hypothesis of $\alpha=0$ and $\beta=1$ for one-week, one- month, and three-month expectations for all currencies. The negative estimates of b_{2} for some exchange rates from Dominguez's findings suggested that the forecasts missed the direction of exchange rate movements. Moreover, the estimate of b_{2} was below unity in many cases, implying the tendency of forecasters to over predict the size of future dollar depreciations. For the later period (1985-87), however, Ito (1990) could not reject the joint hypothesis except for the six-month expectation. The difference between the two studies may reflect the extraordinary nature of the effects of the sample period used. The period studied by Dominguez was one in which the U.S. dollar continued to appreciate on a sustained basis despite expectations to the contrary. Given the extremely low values of R^{2} in all of these studies, only a small portion of actual exchange rate changes was predicted in practice. The exact outcome of empirical tests of the unbiasedness hypothesis is thus likely to depend on the sample used.

2.4.2. Orthogonality

Orthogonality is another important aspect of the rationality of exchange rate expectations (Shinji, 1991). If expectations are to be efficient (in the sense that they incorporate all available information), their predictable power cannot be improved by inclusion of any variable that is already in the set of information available at the time when the expectations are formed. That is to say, prediction errors must be uncorrelated with any variable in the set of known information. Running the following regression can formally test this orthogonality condition:

$$
\begin{equation*}
E_{t} S_{t+j}-S_{t+j}=\alpha+\beta X_{t}+v_{t} \tag{6}
\end{equation*}
$$

Where the left-hand-side variable is a prediction error, X_{t} is a set of information known in period t , and v is a random error term; popular candidate variables for X_{1}, have included forward discounts (or nominal interest rate differentials) and lagged exchange rates. The orthogonality hypothesis is that $\alpha=\beta=0$.

2.5. Testing of foreign exchange market efficiency

Early efficiency studies of the EMH tested for the randomness of exchange rate changes (Sarno and Taylor, 2004). It was established that there exists significant first order serial correlation for many of the exchange rates examined during the 1920 s (Poole, 1967). Poole also provided evidence that simple trading rules could potentially yield large profits. If the risk neutral efficient markets hypothesis is true, then the expected foreign exchange gain from holding one currency rather than another must be equal to the interest rate differential between the home and foreign country. This condition is known as the Uncovered Interest Rate Parity (UIRP) condition. It constitutes the basic parity condition for testing the efficiency of the foreign exchange market (Taylor, 1987).

The second method for testing market efficiency is to test for the profitability of simple filter rules. A simple n-percent filter rule involves buying a currency whenever it raises n-percent above its most recent trough and selling the currency whenever it falls n - percent below its most recent peak. If the market is efficient and UIRP holds, the interest rate costs of such as strategy should on average eliminate any profit. A number of studies do indicate the profitability of simple filter rules (Dooley and Shafer, 1984; Levich and Thomas, 1993) although it is usually not clear that the optimal filter rule size could have been chosen ex ante. There are significant risks involved since substantial sub-period losses are often generated. Engel and Hamilton (1990) demonstrated that the dollar, from the early 1970s to the late 1980s, displayed largely uninterrupted trends, which were susceptible to trend following trading rules.

The third method of testing market efficiency is through the rational expectations approach. Assuming that market participants are rational, the expected change in the exchange rate should differ from the actual change only by a rational expectations forecast error. Hence assuming covered interest rate parity the uncovered interest rate parity condition can be tested by estimating the regression parameters of equation (7) below (Taylor, 1987).
$\Delta_{k} S_{t+k}=\alpha+\beta\left(f_{1}^{(k)}-S_{t}\right)+\eta_{t+k}$
Where:
S_{t}, denotes the logarithm of the spot exchange rate at time t ,
$\Delta_{k} S_{t+k}=S_{t+k}-S_{t}$
α, β are regression constants
η_{1+k} is an error term

If market participants are risk-neutral and have rational expectations we should expect β to be equal to unity and η_{t+k} to be uncorrelated with information available at time t .

Empirical work based on the estimation of equation (7) rejects the efficient markets hypothesis under risk-neutrality (Fama, 1984; and Bekaert and Hodrick, 1993). Indeed it is a stylized fact that estimates of β using exchange rates against the dollar, are generally closer to minus unity than plus unity (Froot and Thaler, 1990). Initial studies based on the regression model that test the weak form of the foreign exchange market efficiency usually found an estimated slope coefficient close to unity. It was subsequently realized, however that standard regression analysis was invalid because of the non-stationary data used (Engle and Granger, 1987). Dornbush (1980 and 1988) and Frenkel (1980 and1981) concluded that the best way to estimate the exchange rate market efficiency is to presume that the behaviour is due to interest rate differentials and any difference between forward and spot exchange rates at time $t+1$ results from the arrival of new information which agents have not predicted.

2.6. Empirical Evidence on FOREX Market Efficiency

Fama (1965) described an efficient market as consisting of a large number of competitive profit maximizers interacting in a market and utilizing all available information in a rational manner. In an efficient market, prices should fully reflect all the relevant and available information; hence, no profit opportunities are left unexploited. If currency markets are efficient, the spot or forward exchange rates should embody all relevant information, and they should not be able to forecast the spot or forward exchange rate as a function of another. Also, the current forward rate should be an unbiased predictor of the future spot rate if we assume risk neutrality and
a covariance stationary risk premium (i.e. the current forward exchange rate should forecast the future spot rate if the markets are efficient).

This is a long-standing issue in the literature on foreign exchange markets. As Hodrick (1987) argues, '...there is very strong evidence against the hypothesis that forward exchange rates of any maturity from one day, to one week to one or three months are unbiased predictors of future spot rates.' p .17 . When the unbiasedness hypothesis does not hold, there is evidence of a risk premium, market inefficiency or both.

While Baillie and Bollerslev(1989), MacDonald and Taylor (1989), and Diebold et al (1994) argued that co-integration among exchange rates in different currencies implies failure of market efficiency, Dwyer and Wallace(1992) and Engel (1996) have demonstrated that there is no connection between co-integration of spot rates and market inefficiency. Levin and Lin (1992), Im et al. (1995) and Wu and Chen(1998) showed that the improved statistical power of unit root tests derived from using grouped or pooled cross-sectional data other than individual series strongly supports the hypothesis of market efficiency. Alexakis and Apergis (1996) also prove the presence of the efficient foreign exchange market hypothesis by modeling conditional heteroskedasticity through ARCH models.

As is depicted by the survey by Froot and Thaler (1990), the conventional test for efficiency assumes that the forward exchange rate is an unbiased estimate of the ex post spot rate. A broad range of literature has also proposed the use of expectations survey data to improve further the efficiency test, just in case there are any biases that
can be observed in this efficiency tests. Consequently, Elliot and Ito (1995) use micro survey data to examine the efficiency of the forward yen/dollar market and find that the survey data is an important source of supplementary information on the behavior of the markets.

Various researchers have used the martingale model to test efficiency of foreign exchange market from rational expectations approach.
$E[Z(T+1) ; Z(t), Z(t-1), \ldots, Z(0)]=Z(t)$
This means that all information concerning the past history of prices which affect $Z(t+1)$ is fully reflected in the current price $Z(t)$. The best predictor of $Z_{(t+1)}$ is $Z(t)$.

To test the martingale hypothesis the researchers have examined whether disturbance term $u(t+1) \mathrm{n}$ the following equation is a serially uncorrelated term with zero expectation; $\mathrm{P}(\mathrm{t})$ is the spot price, $\mathrm{Q}_{\mathrm{T}}(\mathrm{t})$ is the forward price at time t for delivery at date T .
$P(t+1)-P(t)=u(t+1)$
$P(t+1)-Q t+1(t)=u(t+1)$

Dooley and Shafer (1976) examined change in the dollar spot rates during the period March 13, 1973 to September 5, 1975 using the martingale model for Belgium, Canada, France, Germany, Italy, Japan, the Netherlands, Switzerland and the United States. The results led to rejection of the martingale model for spot exchange rates for four out of the nine countries at the ninety five percent confidence level implying that exchange markets for many currencies may not have been efficient in the use of price information.

Cummins et al. (1976) examined the Canadian-U.S. exchange rate using the martingale model in the 1970-74 period. They concluded that the spot market seems to behave efficiently and hence it does a random walk. However, their test indicated that the forward rate on the Canadian dollar does not do a random walk hence the respective forward market did not pass the usual weak form test of efficiency.

Levich (1978) examined equation (9) for nine countries during the period 1967-75. For the three-month horizon, the error $u(t+1)$ was not significantly different from zero in France and Italy; but the errors seemed to be significantly different from zero in Canada, the United Kingdom, Belgium, Germany, the Netherlands, Switzerland and Japan. Only in two out of nine countries was the martingale hypothesis consistent with the data.

Kaserman (1973) examined the U.S.-Canadian dollar during the period July 1955 to March 1961 for the relation between the subsequent spot price $\mathrm{P}(\mathrm{t}+1)$, where the unit of time is one quarter, and the forward price $\mathrm{Q}_{\mathrm{t}+1}(\mathrm{t})$ at time t . He studied equation (10) and concluded that the forward rate under-predicted the spot rate in periods when the spot rate was rising and over-predicted it when the spot rate was falling.

2.7. Empirical Evidence on FOREX Market Efficiency in Kenya

Ndunda (2002) tested whether forward exchange rates are predictors of future spot rates in Kenya using the Hansen \& Hodrick (1980) model. In her study, Ndunda focused on the foreign exchange market under floating exchange rate for the period between October 1993 and December 2002. The data involved comprised of weekly spot exchange rate and the three-month forward exchange premium for the US dollar,
the UK sterling pound, the Swiss Franc, the Euro, and the Japanese Yen. The regression of the forecast errors of the own exchange rate was estimated on a constant two lagged errors using weekly data and a three-month or a 13 -week forward rate. The tests of the regression model used were based on the joint hypothesis that all the coefficients in the regression are equal to zero. The findings of the study established strong evidence to support simple efficiency hypothesis for at least four of the five currencies. She established that in the Kenyan market the interest rates have been relatively high while the change in the foreign exchange rates has not been at the same rate. Hence the forward rates quoted had been higher than the future spot rates; an indication that the forward rate is not a good predictor of the future spot rate. She therefore concluded that the foreign exchange market in Kenya is inefficient as the rate of return to speculation is not equal to zero. The study however was limited in the sense that the assumptions of normality and constant variance were not accounted for in the research model used by Ndunda (2002). Available evidence shows that exchange rates are better characterized by ARCH models (Engle,1982; Hsieh, 1989). Besides using the rational expectations approach, this study will also go further to fill this gap by testing for constant variance, normality distribution of error terms, as well as the stationarity of the time series data to be used.

In the period prior to 1995, Kenya maintained restrictions on foreign exchange currency transactions. However, according to Kurgat (1998) Kenya's foreign exchange market became vibrant after the repeal of the Exchange Control Act in 1995 and the licensing of foreign exchange bureaus. The introduction of foreign exchange bureaus in the country improved the convertibility of the Kenya shilling in relation to other currencies (Kurgat, 1998). Kurgat carried out an empirical study of the spot
markets' efficiency of foreign exchange bureaus in Kenya where he pointed out the inefficiency of the Kenyan foreign exchange market due to the existence of arbitrage opportunities. He showed that there was an opportunity to make instantaneous risk free profits through locational arbitrage. The study established that the foreign exchange markets in Kenya are not efficient.

Seven years later Muhoro (2005) carried out a similar study using locational and triangular arbitrage models. The study involved secondary data in the form of daily closing counter foreign exchange rates for six banks and fifty-seven bureaus for the year 2003. The data was analyzed though chi-square and line graphs. The aim of the study was to find out whether it was possible for an arbitrageur to make profits through locational and triangular arbitrage. The findings established that the FOREX market was inefficient due to many cases that arbitrage opportunities occur in the market. According to Muhoro (2005), higher profits could be made by carrying out a triangular arbitrage transaction rather than carrying out a locational arbitrage transaction in both banks and bureaus. It therefore appeared that currencies are not efficiently priced against one another.

2.8. Chapter Summary

Local studies carried out on efficiency of foreign exchange market in Kenya i.e. Ndunda (2002), Kurgat (1998) and Muhoro (2005) looked at efficiency from the basis of profitability of simple trading rules (arbitrage). This study will instead look at efficiency of the foreign exchange market in Kenya from the rational expectations approach. The results of the above local studies could also be questionable since in all the studies, the assumptions of regression models such as normally distributed errors terms, constant variance, and stationarity of time series data were not tested. Also
prior research on the efficiency of the foreign exchange markets provides evidence that spot rates and forward rates are non-stationary and follow unit root processes (Meese and Singleton, 1982; Baillie and Bollerslev, 1989; Hakkio and Rush, 1989; Barnhart and Szakmary, 1991; Liu and Maddala, 1992; Naka and Whitney, 1995; Lin and Chen, 1998; and Lin et al., 2002). This study sought to fill this gap by testing for rational expectations, constant variance, normality distribution of error terms, as well as the stationarity of the time series data to be used.

CHAPTER THREE

3.0 RESEARCH METHODOLOGY

3.1. Data and Sample

There were 43 commercial banks as at November 2006 (Appendix I). The data sources were limited to observations from all commercial banks that have relatively active business operations in foreign exchange markets. The research focused on the foreign exchange markets under floating exchange rates beginning November 1993 to June 2006. The start date in this case was dictated by the time when the government shifted its foreign exchange policy from fixed exchange rates to independently floating exchange rates.

The study involved the collection of secondary data. Historical data for the monthly (average) spot exchange rate and the three-month forward premiums for the Euro, the Sterling Pound, the US Dollar, and the two East African currencies were obtained from the Central Bank of Kenya. The premium was added to the spot exchange rates to obtain the three-month or 13-week forward exchange rate. Due to lack of documented weekly data on T-BILL rates, the sample was based on the monthly averages for both the T-BILL and spot rates. The spot rates were therefore the monthly averages, derived from taking the average of the daily rates for each month. All the exchange rates were expressed in Kenya Shillings (Kshs) per unit of foreign currency. The US monthly averages for the 91-Day T-BILL rates were obtained through a search query at the website link to the US treasury department. This assisted
in computing the forward rate as outlined in equation (2) and explained in section 3.2.1 below.

3.2. Research Model

3.2.1. Analytical Model

The analytical model for testing FOREX market efficiency was based on regressing equation (7) below.

$$
\begin{equation*}
\Delta_{t} S_{t+k}=a+\beta\left(f_{t}^{(k)}-S_{t}\right)+\eta_{t+k} \tag{7}
\end{equation*}
$$

Where:
S_{t}, denotes the logarithm of the spot exchange rate at time t ,
$\Delta_{k} S_{t+k}=S_{l+k}-S_{t}$
$f_{t}^{(k)}=$ Level of k -period forward exchange rate determined at time t
α, β are regression constants
η_{t+k} is an error term with $E_{t}\left(\eta_{t+k}\right)=0$
If market participants are risk-neutral and have rational expectations it is expected that β to be equal to unity and η_{t+k} to be uncorrelated with information available at time t. The forward rates were computed by applying equation (2). The monthly averages for the US 91-Day T-BILL rates for November 1993 to June 2006 were applied in equation (2) as the proxy for foreign interest rates.

3.3. Statistical Tests

3.3.1. T-test

The t-test was used to test the hypothesis that the regression coefficients α, and β are equal to 0 and 1 , respectively. Equation (7) was estimated for each of the five currencies over the entire study period at both 1% and 5% levels of significance.

3.3.2. Non-Stationarity Tests

To examine the issue surrounding non-stationarity and unit roots associated with spot and forward rates, the study used an Augmented Dickey-Fuller (ADF) test, which allows for serial correlation in the error term η_{t+k}. This was important since unit root tests of spot and forward rates series should take into account any seasonality in the generation of time-series data. The equation used for conducting ADF test has the general structure of equations (11)
$\Delta S_{t}=\alpha_{0}+\beta_{1} t+\rho_{1} S_{t-1}+\sum_{k=1}^{n} \delta_{k} \Delta S_{t-k}+\varepsilon_{\mathrm{t}}$

Where:
$\Delta \quad=\quad$ First Difference Operator
$\Delta \mathrm{S}_{\mathrm{t}}=\mathrm{S}_{\mathrm{t}}-\mathrm{S}_{\mathrm{t}-1}$
$\delta_{\mathrm{k}} \quad=$ Coefficients of the lagged differences of the spot rates.
$\beta_{1} \quad=\quad$ Coefficients of the time trend for S_{t} rates
$\rho_{1}=$ Coefficients of the lagged $1^{\text {st }}$ difference of S_{t}
$\mathrm{t}=$ Time trend
$\varepsilon_{\mathrm{t}} \quad=\quad$ White noise error terms
In equation (11), if
(i) $\quad \beta_{1}=0$ and $\left|\rho_{1}\right|<1$, the series S_{1} is stationary;
(ii) $\quad \beta_{1}=0$ and $\rho_{1}=1$ then the series is non-stationary
(iii) $\quad \beta_{1} \neq 0$ and $\left|\rho_{1}\right|<1$ then the series is trend-stationary (i.e. stationary around a deterministic linear time trend).

3.3.3. Correlation Tests

Auto-correlation test is a reliable measure for testing of either dependence or independence of random variables in a series. The serial correlation coefficient measures the relationship between the values of a random variable at time t and its value in the previous period. Auto correlation test provides evidence whether the correlation coefficients for residuals are significantly different from zero. A way to test for the presence of autocorrelation is to regress equation (12) and check whether the $\gamma_{i}{ }^{6} \mathrm{~s} \mathrm{i}=1,2,3, \ldots . . \mathrm{n}$ have values between $[-1,1]$. Values of zero for $\gamma_{\mathrm{i}^{\text {s }}} \mathrm{i}=1,2$, 3...n suggests no autocorrelation.
$\Delta \mathrm{E}_{\mathrm{t}}=\mathrm{E}_{\mathrm{t}-1}+\gamma_{1} \Delta \mathrm{E}_{\mathrm{t}-1}+\gamma_{2} \Delta \mathrm{E}_{\mathrm{t}-2}+\gamma_{3} \Delta \mathrm{E}_{\mathrm{t}-3}+\ldots+\gamma_{\mathrm{n}} \Delta \mathrm{E}_{\mathrm{t}-\mathrm{n}}+\varepsilon_{\mathrm{t}}$
Where:

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{t}}=\text { Residual from the regression } \\
& \gamma_{\mathrm{i}}=\text { Coefficient of the lagged residuals } \\
& \Delta \mathrm{E}_{\mathrm{t}}=\mathrm{E}_{\mathrm{t}}-\mathrm{E}_{\mathrm{t}-1}
\end{aligned}
$$

If auto correlation is present, this will imply that participants in the foreign exchange market are not rational. Ljung-Box Q statistics were used to test for autocorrelations. Ljung-Box Q statistic follows the chi-square distribution with m degrees of freedom as shown in equation (13):
$L B=n(n+2) \sum_{k=1}^{m}\left(\hat{p}^{2}{ }_{k} / n-k\right) \cong \chi^{2}$
Where $\hat{p}^{2}{ }_{k}=$ autocorrelation coefficients at lag k ; and $\mathrm{n}=$ Sample size

CHAPTER FOUR

4.0 DATA ANALYSIS, DISCUSSION AND CONCLUSION

4.1. Introduction

This chapter presents the data analysis, interpretation, and discussion of the research findings. The chapter is organized as follows: section 4.2 is on unit roots tests for time series properties; Section 4.3 covers tests on efficiency of FOREX markets and tests for rationality; Section 4.4 outlines the results derived from diagnostic tests; and Section 4.5 provides a discussion of the findings.

4.2. Unit Roots Tests for Time series Properties

The first step involved testing for the time series properties of each of the spot rate series. In particular, it involved examining whether the spot rates series are stationary. The Augmented Dickey-Fuller (ADF) unit root test was used (Dickey and Fuller, 1979) and the results are reported in Table 4.1 below. The ADF test allows for serial correlation in the error term η_{t+k} in equation (7). The null hypothesis, H_{0} was that the spot rates series is stationary (i.e., from equation $11 ; \mathrm{H}_{0}: \rho_{1}=1$) while the alternative hypothesis was that each of the series was non-stationary. The results of Table 4.1 were obtained by differencing each of the spot series twice. The results also indicate that each of the series was non-stationary at level form and at first difference. It was established that each of the spot series was a I (2) process. The decision rule was based on rejecting H 0 : the series is stationary, if the ADF statistics are greater than the critical values (Dickey and Fuller, 1979). Therefore the second differences were used in testing whether the forward rate is an unbiased predictor of the future spot
exchange rate; and whether the exchange rates fully incorporate all available information.

Table 4.1: Unit Root Test for the spot rates series

Spot Rate	ADF	Critical Values (5\%)	Critical Values (1\%)	Decision
US Dollar				
S	12.634	-3.45	-3.99	Reject H_{0}
$1{ }^{\text {st }}$ Difference, $S_{\text {, }}$	-5.234	-3.45	-3.99	Reject H_{0}
$2^{\text {nd }}$ Difference, S_{t}	-3.046	-3.45	-3.99	Accept H_{0}
UK POUND				
S	16.556	-3.45	-3.99	Reject H_{0}
$1^{\text {st }}$ Difference, $S_{\text {, }}$	-6.236	-3.45	-3.99	Reject H_{0}
$2^{\text {nd }}$ Difference, S_{t}	-2.896	-3.45	-3.99	Accept H_{0}
THE EURO				
S_{i}	11.446	-3.45	-3.99	Reject H_{0}
$1^{\text {st }}$ Difference, $S_{\text {t }}$	-4.473	-3.45	-3.99	Reject H_{0}
$2^{\text {nd }}$ Difference, $S_{\text {l }}$	-2.774	-3.45	-3.99	Accept H_{0}
UGANDA SHILLING				
S	8.446	-3.45	-3.99	Reject H_{0}
$1^{\text {st }}$ Difference, $S_{\text {, }}$	-6.341	-3.45	-3.99	Reject H_{0}
$2^{\text {nd }}$ Difference, $S_{\text {t }}$	-2.456	-3.45	-3.99	Accept H_{0}
TANZANIA SHILLING				
S_{1}	12.362	-3.45	-3.99	Reject H_{0}
$1^{\text {st }}$ Difference, S_{t}	-5.220	-3.45	-3.99	Reject H_{0}
$2^{\text {nd }}$ Difference, S_{t}	-3.116	-3.45	-3.99	Accept H_{0}

H_{0} : the series is stationary

4.3. Efficiency of FOREX markets and Tests for Rationality

Tests for unbiasedness and orthogonality were carried out to test the foreign exchange market efficiency from the rational expectations approach.

4.3.1. Test for 'unbiasedness' hypothesis

The test for 'unbiasedness' was performed to determine whether the forward rate is an unbiased predictor of the future spot rate in a foreign exchange market. The findings
are indicated in Table 4.2. The test for 'weak form' efficiency was based on testing the null hypothesis $\alpha=\mathbf{0}$ and $\beta=\mathbf{1}$ for each of the five currencies.

Table 4.2: Testing Market Efficiency Using Forward Rates

Equation (1): $\operatorname{Ln} S_{t+3}=\alpha+\beta \operatorname{Ln} F_{t+3}+\mu_{t}$				
Spot rate	$\alpha=0$	$\beta=0$	T statistic for $H_{0}: \beta=1$	Decision
US Dollar	$\begin{gathered} 0.780 \\ (3.122)^{* *} \end{gathered}$	$\begin{gathered} 0.793 \\ (13.693)^{* *} \\ \hline \end{gathered}$	-15.683**	$\begin{aligned} & \mathrm{H}_{0}: \beta=1: \text { Reject } \mathrm{H}_{0} \\ & \mathrm{H}_{0}: \alpha=0: \text { Reject } \mathrm{H}_{0} \end{aligned}$
UK Pound	$\begin{gathered} 0.373 \\ (1.318) \\ \hline \end{gathered}$	$\begin{gathered} 0.898 \\ (15.195)^{* *} \\ \hline \end{gathered}$	-7.639**	$\begin{aligned} & \mathrm{H}_{0}: \beta=1: \text { Reject } \mathrm{H}_{0} \\ & \mathrm{H}_{0}: \alpha=0: \text { Reject } \mathrm{H}_{0} \end{aligned}$
The Euro	$\begin{gathered} -0.719 \\ (-3.999)^{* *} \end{gathered}$	$\begin{gathered} 1.154 \\ (28.365)^{* *} \\ \hline \end{gathered}$	11.488**	$\begin{aligned} & \mathrm{H}_{0}: \beta=1: \text { Reject } \mathrm{H}_{0} \\ & \mathrm{H}_{0}: \alpha=0: \text { Reject } \mathrm{H}_{0} \end{aligned}$
Uganda Shilling	$\begin{gathered} -0.957 \\ (-3.090)^{* *} \\ \hline \end{gathered}$	$\begin{gathered} 1.282 \\ (13.037)^{* *} \\ \hline \end{gathered}$	45.274**	$\begin{aligned} & \mathrm{H}_{0}: \beta=1: \text { Reject } \mathrm{H}_{0} \\ & \mathrm{H}_{0}: \alpha=0: \text { Reject } \mathrm{H}_{0} \end{aligned}$
Tanzania Shilling	$\begin{gathered} -0.574 \\ (-3.124)^{* *} \\ \hline \end{gathered}$	$\begin{gathered} 1.199 \\ (16.524)^{* *} \\ \hline \end{gathered}$	23.514**	$\begin{aligned} & \mathrm{H}_{0}: \beta=1: \text { Reject } \mathrm{H}_{0} \\ & \mathrm{H}_{0}: \alpha=0: \text { Reject } \mathrm{H}_{0} \end{aligned}$

*Significant at 5\% level (P-values < 0.05); Critical values = 1.96 (at 5\%) and 2.57 (at 1\%)
** Significant at 1% level (P -values <0.01); the t -statistics for the coefficients are in brackets The T statistics for $\beta=1$ were computed as follows:
$\left(\frac{\beta^{\prime}-1}{s / \sqrt{n}}\right)$ Where β^{\prime} is the computed value of β and s is the standard deviation. The decision rule was to reject the null where the computed T statistic for $H_{0}: \beta=1$ was greater than 1.96

As per the results of Table 4.2, the null hypotheses for the forward rates being unbiased predictors of the future spot rates were rejected at both 95% and 99% levels of confidence since $\alpha \neq 0$ and $\beta \neq 1$ for each of the spot rates. The fact that the unbiasedness hypothesis does not hold in the five foreign exchange markets is evident of either existence of a risk premium and/or that the markets are not 'weak form' efficient.

The above findings are in agreement with previous study carried out by Ndunda (2002) which stated that forward exchange rates were biased predictors of future spot rates in Kenya.

4.3.2. Tests for Orthogonality

The orthogonality condition was tested by regression of equation (7). From equation (7), if market participants are risk-neutral and have rational expectations it was expected that β to be equal to unity and η_{t+k} to be uncorrelated with information available at time t. Equation (7) was regressed and the findings are as indicated in Table 4.3. The t-statistics for $H_{0}: \beta=1$ were computed using a similar procedure as specified in section 4.3.1. The decision rule was based on rejecting H_{0} if the obtained values of t-statistics were greater than 1.96, when the tests are performed at 95% level of confidence.

Table 4.3: Tests for Rational Expectations

Equation (7): $\Delta S_{t+3}=\alpha+\beta\left(f_{t}^{(3)}-S_{t}\right)+\eta_{t+3}$				
Spot rate	$\alpha=0$	$\beta=0$	T statistic for $H_{0}: \beta=1$	Decision
US Dollar	$\begin{gathered} 0.015 \\ (1.374) \\ \hline \end{gathered}$	$\begin{gathered} -0.006 \\ (-0.092) \\ \hline \end{gathered}$	-105.464**	$\mathrm{H}_{0}: \beta=1:$ Reject H_{0}
UK Pound	$\begin{gathered} 0.024 \\ (2.255)^{*} \end{gathered}$	$\begin{gathered} -0.047 \\ (-0.709) \\ \hline \end{gathered}$	-109.774**	$\mathrm{H}_{0}: \beta=1:$ Reject H_{0}
The Euro	$\begin{gathered} 0.0323 \\ (4.564)^{* *} \end{gathered}$	$\begin{gathered} -0.490 \\ (-4.014)^{* *} \end{gathered}$	-293.578**	$\mathrm{H}_{0}: \beta=1:$ Reject H_{0}
Uganda Shilling	$\begin{gathered} -0.010 \\ (-1.313) \end{gathered}$	$\begin{gathered} 0.221 \\ (2.875)^{* *} \end{gathered}$	-118.781**	$\mathrm{H}_{0}: \beta=1:$ Reject H_{0}
Tanzania Shilling	$\begin{gathered} 0.005 \\ (0.609) \end{gathered}$	$\begin{gathered} 0.069 \\ (0.875) \end{gathered}$	-142.099**	$\mathrm{H}_{0}: \beta=1:$ Reject H_{0}

*Significant at 5% level (P-values < 0.05); Critical values = 1.96 (at 5%)
** Significant at 1% level (P-values < 0.01); Critical values $=2.57$ (at 1%)

The findings of Table 4.3 indicate that the null hypothesis $\mathrm{H}_{0}: \beta=1$ was rejected for all the five currency markets at both 95% and 99% levels of confidence which indicates that the participants in the currency markets are not risk-neutral and lack rational expectations.

4.4. Diagnostic Tests Results

4.4.1. Assumptions of Normality of Error Terms

A one-sample Kolmogorov-Smirnov (K-S) test was applied in establishing whether the error terms fitted a normal distribution. The One-Sample Kolmogorov-Smirnov Test procedure is a non-parametric test procedure that compares the observed cumulative distribution function for a variable with a specified theoretical distribution, which may be normal, uniform, Poisson, or exponential. The Kolmogorov-Smirnov Z is computed from the largest difference (in absolute value) between the observed and theoretical cumulative distribution functions. This goodness-of-fit test tests whether the observations could reasonably have come from the specified distribution, in this case a normal distribution. Table 4.4 indicates the tests for normality of error terms arising from the regression of equation (7). The null hypothesis for the test was that error terms do not assume a normal distribution. The decision rule was to reject the null hypothesis if the computed K-S Z-statistics are greater than the critical values at 95% level of confidence. The findings indicate that the null hypothesis was rejected for all the five currencies thus indication that the error terms were \log normally distributed. Based on the properties of a normal distribution, the findings also imply that the respective residual terms were characterized by constant variances.

Table 4.4: One-Sample Kolmogorov-Smirnov test for normality of error terms

Spot rate	Kolmogorov- Smirnov Z statistics	Critical Values (5\%)	Critical Values (1\%)	Decision
US Dollar	2.493	0.113	0.135	Reject H_{0}
UK Pound	2.350	0.113	0.135	Reject H_{0}
The Euro	0.455	0.158	0.189	Reject H_{0}
Uganda Shilling	0.873	0.133	0.159	Reject H_{0}
Tanzania Shilling	0.779	0.133	0.159	Reject H_{0}

H_{0} : The error terms do not assume a normal distribution

4.4.2. Auto-correlation Tests

Auto correlation test provided evidence on whether or not the correlation coefficients for residuals were significantly different from zero. The presence of autocorrelation was checked by regressing equation (12) and checking whether or not the $\boldsymbol{\gamma}_{i}{ }^{\text {'s }} \mathrm{i}=1,2$, $3, \ldots .$. n have values between $[-1,1]$. Values of zero for $\gamma_{\text {i's }} i=1,2,3 \ldots n$ suggests no autocorrelation. Ljung-Box Q statistics were used to test for autocorrelations. LjungBox Q statistic follows the chi-square distribution with m degrees of freedom as shown in equation (13). The null hypothesis for the tests was that there was absence of auto-correlations in the residual terms. The findings presented in Table 4.5 indicate Ljung-Box Q statistics obtained up to the fifth order. The auto-correlation functions for each currency residuals are presented in figures 1, 2, 3, 4, and 5 in Appendix II.

Table 4.5: The results for Auto-correlation Tests

Spot rate residuals	Ljung-Box Q statistics obtained	P-values	Decision
US Dollar	$\begin{gathered} 1^{\text {st }} \text { Order }=91.352 \\ 2^{\text {nd }} \text { Order }=120.492 \\ 3^{\text {rd }} \text { Order }=125.581 \\ 4^{\text {th }} \text { Order }=127.990 \\ 5^{\text {th }} \text { Order }=129.684 \\ 6^{\text {th }} \text { Order }=129.854 \\ 7^{\text {th }} \text { Order }=130.596 \\ 8^{\text {th }} \text { Order }=132.900 \\ 9^{\text {th }} \text { Order }=135.964 \\ 10^{\text {th }} \text { Order }=140.633 \end{gathered}$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Reject H_{0} Reject H_{0}
UK Pound	$\begin{gathered} 1^{\text {st }} \text { Order }=86.962 \\ 2^{\text {nd }} \text { Order }=110.717 \\ 3^{\text {rd }} \text { Order }=113.563 \\ 4^{\text {th }} \text { Order }=115.036 \\ 5^{\text {th }} \text { Order }=115.850 \\ 6^{\text {th }} \text { Order }=115.855 \\ 7^{\text {th }} \text { Order }=116.806 \\ 8^{\text {th }} \text { Order }=118.416 \\ 9^{\text {th }} \text { Order }=120.111 \\ 10^{\text {th }} \text { Order }=122.815 \end{gathered}$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Reject H_{0} Reject H_{0}

The Euro	$\begin{gathered} 1^{\text {st }} \text { Order }=32.633 \\ 2^{\text {nd }} \text { Order }=34.868 \\ 3^{\text {rd }} \text { Order }=38.846 \\ 4^{\text {th }} \text { Order }=44.327 \\ 5^{\text {th }} \text { Order }=48.475 \\ 6^{\text {th }} \text { Order }=49.132 \\ 7^{\text {th }} \text { Order }=49.694 \\ 8^{\text {th }} \text { Order }=54.739 \\ 9^{\text {th }} \text { Order }=62.373 \\ 10^{\text {th }} \text { Order }=65.352 \end{gathered}$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Reject H_{0} Reject H_{0}
Uganda Shilling	$\begin{gathered} 1^{\text {st }} \text { Order }=49.139 \\ 2^{\text {nd }} \text { Order }=59.094 \\ 3^{\text {rd }} \text { Order }=59.131 \\ 4^{\text {th }} \text { Order }=59.297 \\ 5^{\text {th }} \text { Order }=59.712 \\ 6^{\text {th }} \text { Order }=60.274 \\ 7^{\text {th }} \text { Order }=60.406 \\ 8^{\text {th }} \text { Order }=60.415 \\ 9^{\text {th }} \text { Order }=60.495 \\ 10^{\text {th }} \text { Order }=61.941 \end{gathered}$	$\begin{aligned} & 0.000 \\ & 0.000 \\ & 0.000 \\ & 0.000 \\ & 0.000 \\ & 0.000 \\ & 0.000 \\ & 0.000 \\ & 0.000 \\ & 0.000 \end{aligned}$	Reject H_{0} Reject H_{0}
Tanzania Shilling	$\begin{gathered} 1^{\text {st }} \text { Order }=51.931 \\ 2^{\text {nd }} \text { Order }=60.094 \\ 3^{\text {rd }} \text { Order }=60.764 \\ 4^{\text {th }} \text { Order }=63.245 \\ 5^{\text {th }} \text { Order }=69.257 \\ 6^{\text {th }} \text { Order }=79.406 \\ 7^{\text {th }} \text { Order }=88.456 \\ 8^{\text {th }} \text { Order }=91.088 \\ 9^{\text {th }} \text { Order }=91.119 \\ 10^{\text {th }} \text { Order }=91.196 \end{gathered}$	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	Reject H_{0} Reject H_{0}

H_{0} : There is no auto-correlation (up to the $10^{\text {if }} \mathrm{Lag}$)

Auto-Correlation Functions

Figure 1: Auto-correlation function for the dollar rates residuals

Figure 2: Auto-correlation function for the Pound rates residuals

Figure 3: Auto-correlation function for the Euro rates residuals

Figure 4: Auto-correlation function for the Uganda Shilling residuals

Figure 5: Auto-correlation function for the Tanzanian Shilling residuals

The results from the Table 4.5 and the above graphs confirmed that there is significant autocorrelation in each of the residual terms for the entire sample period. The order of auto-correlation was found to increase with the increase in the number of lags. The nonzero auto-correlation of the series associated with Ljung -Box Q statistics, which are jointly significant at 1% level, suggested that all the spot rate series do not follow random walk model behaviour. The presence of auto-correlations further reinforced the findings of Table 4.3 that the participants in the foreign exchange markets are not rational.

4.5. Discussion of Findings

The study was based on the null hypothesis that the economic agents are rational. Assuming that market participants are rational, the expected change in the exchange rate should differ from the actual change only by a rational expectations forecast error. The findings of the study established that the null hypotheses for the forward
rates being unbiased predictors of the future spot rates were rejected at 95 percent level of confidence for each of the five currencies. This indicated existence of a risk premium and that the respective currency markets are not 'weak form' efficient. Secondly, the failure of the currency markets to be 'weak form' efficient also indicated that not all price information is fully reflected in currency prices, thus implying that the current price changes cannot be predicted from past prices. The findings also established that the participants in the foreign currency markets are not risk-neutral and are not rational. This was further reinforced by the presence of autocorrelations.

The findings further revealed that the residual series derived from each of the currency spot rates assumed a normal distribution with constant variance. Augmented Dickey-Fuller (ADF) unit root tests also revealed that the spot rate series were stationary at the second lag difference. Auto-correlation tests confirmed that there was significant autocorrelation in each of the residual terms for the entire sample period. The order of auto-correlation was found to increase with the increase in the number of lags. The nonzero auto-correlation of the series associated with Ljung -Box Q statistics, which are jointly significant at 1% level, suggested that all the spot rate series do not follow random walk model behaviour.

The findings of the study are in agreement with previous empirical works (Frankel, 1980; Fama 1984; Bekaert and Hodrick, 1993) which rejected the efficient markets hypothesis under risk-neutrality on the basis of estimating equation (7) for various currencies. Initial studies based on the regression model that test the weak form of the foreign exchange market efficiency usually found an estimated slope coefficient close
to unity. It was subsequently realized, however that standard regression analysis was invalid because of the non-stationary data used (Engle and Granger, 1987). Since the previous works confounded the regressions of equation (7) by the non-stationary behaviour of spot exchange rates, the rationality tests and unit root tests performed in this study helped to address this phenomenon.

CHAPTER FIVE

5.0 SUMMARY AND CONCLUSIONS

5.1. Introduction

This chapter presents the summary, conclusions and recommendations derived from the findings of the study. The chapter also presents the limitations that were encountered in the process of gathering findings.

5.2. Summary

The aim of this study was to establish the efficiency of foreign exchange markets in Kenya using the rational expectations approach. The following research questions guided the study: Is the current expected forward rate an unbiased predictor of the future spot exchange rate? Does the expected exchange rate fully incorporate all available information? In answering these two questions, the study applied historical data for the monthly (average) spot exchange rate and the three-month forward premiums for the Euro, the Sterling Pound, the US Dollar, and the two East African currencies (Uganda shilling and Tanzanian shilling) which were obtained from the Central Bank of Kenya.

The key findings revealed that the forward rates are not unbiased predictors of the future spot rates for the Euro, the Sterling Pound, the US Dollar, the Uganda Shilling, and the Tanzanian Shilling. Secondly, the findings established that the participants in
the foreign currency markets in Kenya are not risk-neutral and are not rational; a phenomenon that was reinforced by the presence of auto-correlations.

5.3. Conclusions

The results of the study were consistent with the hypothesis that the forward exchange rates are not unbiased predictors of the future spot rates. Under the presence of efficiency in the foreign exchange market, the forward exchange rate should be an unbiased predictor for the future spot rate. The rejection of the efficiency hypothesis implies the presence of unexploited profit opportunities for those who participate in exchange rate transactions in the Kenyan FOREX markets. The failure of the currency markets to be 'weak form' efficient also indicates that not all price information is fully reflected in currency prices, thus implying that the current price changes cannot be predicted from past prices. In other words, the general conclusion emerging from the extensive empirical analysis is that the forward exchange rate is a biased predictor of the future spot and the presence of a risk premium is apparent. As a result, the participants in the FOREX markets in Kenya conduct their transactions on the basis of speculation rather than on prediction of future market behaviour based on the past or current performance of respective currency markets.

Based on the rational expectations approach, the Foreign Exchange Market in Kenya is therefore inefficient.

5.4. Limitations of the Study

The study applied monthly observations, as opposed to daily or weekly observations. This was occasioned by lack of documented time series data on the weekly closing
values of the T-BILL rates from the Central Bank of Kenya. These were relatively few especially considering that finer results could be obtained by using weekly rates. In addition, the forward rates were computed on the basis of the US 91-day T-BILL rate as a proxy for the foreign interest rates (equation 2). This was attributed to failure to obtain the 91-day T-BILL rate for each of the country whose currency was under study.

5.5. Recommendations

In the research, the monthly observations of foreign exchange rates to the Kenyan Shilling between November 1993 and June 2006 were used. To examine further the significance of the results achieved, empirical investigation on the efficiency of foreign exchange markets can be done by applying weekly data. The use of more frequent observations may better capture the dynamics of currency markets. In addition, the forward rate was computed on the basis of the US 91-day T-BILL rate as a proxy for the foreign interest rates (equation 2). Therefore, further research can be performed with the US 91 -day T-BILL rate replaced by the respective currency country's local interest rates.

REFERENCES

Alexakis, P. and Apergis N,(1996): "ARCH effects and Co-integration: Is the Foreign Exchange Market Efficient?" Journal of Banking and Finance Vol. 20(4).pp 687697.

Arusha Cooray (2002), The Fisher Effect: A Review of the Literature; JEL Classification: E40, E51

Atingi Micheal Ego and Kaggwa Rachel Sebudde (2003) Measuring Efficiency of a Market in Transition: The Ugandan Foreign Exchange Market. Kampala: Bank of Uganda Research Department.

Ayogu M (1995): Empirical Studies of Nigeria's Foreign Exchange Parallel Market I: Price Behavior and Rate Determination, Research Paper 41, African Economic Research Consortium,

Ayogu M (1997): Empirical Studies of Nigeria's Foreign Exchange Parallel Market II: Speculative Efficiency and Noisy Trading, Research Paper 69, African Economic Research Consortium,

Baillie, R. T. and Bollerslev, T. (1989) Common stochastic trends in a system of exchange rates, Journal of Finance, 44, 167-81.

Ball R. P. Brown (1968) "An Empirical evaluation of accounting income numbers" Founder of accounting research.

Barnhart, S. and Szakmary, A.C. (1991), "Testing the Unbiased Forward Rate Hypothesis: Evidence on Unit Roots, Co-Integration, and Stochastic Coefficients," Journal of Financial and Quantitative Analysis, 26, 245 - 267.

Bekaert, G. and Hodrick, R.J. (1993) "On biases in measurement of foreign exchange risk premiums" Journal of International Money and Finance 12: 115-38

Canale R.R. and Napolitano O. (2001) Efficiency and news in exchange rate market: the Euro/Dollar case Department of Economics and Social Sciences, and Department of Finance: Brunel University, Uxbridge, Middlesex, UB8 3PH, UK.

Carlson, J. A. (1977), "Short Term Interest Rates as Predictors of Inflation: Comment", American Economic Review 67, 469-475

Cheung, Y.W. and M.D. Chiinn, (1999) Macroeconomic Implications of the Beliefs and Behavior of Foreign Exchange Traders, Working Paper 7417.

Cummins P. et al., (1976) Aspects of Efficiency in the U.S./Canadian Foreign Exchange Market, U.S. Treasury Conference, Washington.

Dickey, D. A. and W. A. Fuller, (1979), "Distribution of the Estimators for Autoregressive Time Series with a Unit Root," Journal of the American Statistical Association 84, 427-31

Diebold, F.X. , Gardeazabal, J. Yilmaz, K (1994): "On co-integration and Exchange rate Dynamics", Journal of Finance 49; pp 727-735.

Dixit, A. and Pindyck, R. (1994) Investment under Uncertainty. Princeton, New Jersey: Princeton University Press.

Dockery E, and Taylor, K, (1998): "Some Tests on the long run Dynamics of Black and Official Exchange Rates: Evidence for Four East European Countries". Journal of Multinational Financial Management Vol. 7(4); pp 317-322.

Dominguez, Kathryn M., (1986) "Are Foreign Exchange Forecasts Rational? New Evidence from the Survey Data" Economic Letters Vol. 21 No. 3 pp 277-81

Dooley, M. P. and Shafer, J. (1984) "Analysis of Short-run Exchange Rate Behaviour. March 1973-November $1981 "$, in Exchange Rate and Trade Instability, D. Bigman and T. Taya eds. Cambridge MA: Ballinger.

Dooley, M. and Shafer, J. (1976) "Analysis of Short-run Exchange Rate Behaviour, U.S. Treasury Conference, Washington.

Dornbush, R. (1980) Exchange rate economics: where do we stand?, Brooking papers on Economic Activity, vol. 1, 143-85.

Dornbush, R. (1988), Exchange rate and inflation, The MIT press, 1988.
Dwyer, G.P. and Wallace, M. S, (1992): Co-integration and Market Efficiency, Journal of International Money Finance 11; pp 318-327.

Elliott, G, and Ito T, (1995): Heterogeneous Expectations and Tests of Efficiency in the Yen/Dollar Forward Foreign Exchange Rate Market. NBER Working Paper Series 5376.

Engle, C. and J. Hamilton. (1990). "Long Swings in the Dollar: Are They in the Data and Do Markets Know it?" American Economic Review, 80: 689-713.

Engle, C. and Granger, C.W.J. (1987). "Co-integration and Error Correction: Representation, Estimation and Testing", Econometrica, 55: 251-76.

Engel, C, (1996): "A Note on Co-integration and International Capital Market efficiency". Journal of International Money Finance 15; pp 557-560.

Engle, R.F. (1982): "Autoregressive Conditional Heteroskedasticity eith Estimates of the Variance of U.K. Inflation." Econometrica, 50, 987-1008.

Fabozzi, Frank J., Modigliani, Franco, and Ferri, Michael G. (1994) Foundations of Financial Markets and Institutions, London: Prentice-Hall International.

Fama, E. (1965), "The behavior of Stock Market Prices", Journal of Business, vol. 38, p.34-105.

Fama, E. F. (1975), 'Short Term Interest Rates as Predictors of Inflation', American Economic Review 65, 269-282

Fama, E. (1970)"Efficient Capital Markets: A Review of Theory and Empirical Work." Journal of Finance 25: 383-417.

Fama, E. (1991) "Efficient Capital Markets: II." The Journal of Finance XLVI (5): 1575-1617.

Fama, E. F. and Gibbons, M.R. (1984), 'A Comparison of Inflation Forecasts', Journal of Monetary Economics 13, 327-348

Frankel, Jefrey A., and Kenneth A. Froot, (1989), "Forward discount bias: is it an exchange risk premium?" Quarterly Journal of Economics 104, 139-161.

Frenkel, J. A. (1980) "Exchange rates, prices and money: lessons from the 1920s" American Economic Review, 70, 235-42.

Frenkel, J. A. (1981) "Flexible exchange rates, prices, and the role of 'news': lessons from the 1970s", Journal of Political Economy, 89, 665-705.

Friedman, M. (1953). "The Case for Flexible Exchange Rates", in his Essays in Positive Economics. Chicago: University of Chicago Press, 157-203.

Froot, K. and Thaler, R. (1990). "Anomalies: Foreign Exchange." Journal of Economic Perspectives 4 (3): 179-192.

Froot, K. and Thaler, R. (1990) "Anomalies: Foreign Exchange." Journal of Economic Perspectives 4 (3): 179-192.

Geweke, J. and Feige, E. (1979), "Some Joint Tests of the Efficiency of Markets for Forward Foreign Exchange," Review of Economics and Statistics, 61, 334- 341.

Hakkio, C.S. and Rush, M. (1989), "Market Efficiency and Co-integration: an Application to the Sterling and Deutschemark Exchange Markets," Journal of International Money and Finance, 8, 75-88.

Hamilton, J. G, (1989): New Approach to the Economic Analysis of Non-Stationary Time Series and the Business Cycle. Econometrica 57: pp. 357-384.

Hess, P. J. and Bicksler, J. L. (1975), "Capital Asset Prices Versus Time Series Models as Predictors of Inflation: The Expected Real Rate of Interest and Market Efficiency", Journal of Financial Economics 2, 341-360

Hodrick, R. (1987) The Empirical Evidence on the Efficiency of Forward and Futures Foreign Exchange Markets, New York: Harwood Academic Publishers.

Hsieh, D.A. (1989): Modelling Heteroskedasticity in Daily Foreign Exchange Rates, "Journal of Business and Economics Statistics, 7, 307-317.

Im, K. S, Pesaran, M.H, Shin, Y (1995): Testing for Unit Roots in Heterogeneous Panels. Working Paper. University of Cambridge.

Ito, Takatoshi (1990) "Foreign Exchange Rate Expectations: Micro Survey Data" American Economic Review Vol. 80 pp 434-49

Joines, D. (1977), 'Short Term Interest Rates as Predictors of Inflation: Comment', American Economic Review 67, 469-475

Kaserman, D. L. (1973) "The Forward Rate: Its Determination and Behaviour as a predictor of the Spot Rate," Amer. Statist. Assn,. Bus. Econ. Statist. Sec. 1973.

Kiguel, M., J. Saul Lizondo and Stephen O'Connell (eds.) (1997). Parallel Exchange Rates in Developing Countries. London: Macmillan and New York: St. Martin's.

Krugman, P. (1989). Exchange Rate Instability. Cambridge: MIT Press.
Kurgat, P.(1998) "An Empirical Study of Spot Market Efficiency on Kenya’s Foreign Exchange Bureaus." UON - MBA project Nairobi: Faculty of Commerce.

LeRoy, S. (1989) "Efficient Capital Markets and Martingales." Journal of Economic Literature XXVII: 1583-1621.

Levich R. H. (1978) "Tests of Forecasting Models and Market Efficiency in the International Money Market," in Jacob A. Frenkel and Harry G. Johnson, eds., The Economics of Exchange Rates: Selected Studies, Reading 1978.

Levich, R. (1985) "Empirical Studies of Exchange Rates: Price Behaviour, Rate Determination and Market Efficiency", in Jones, R. and Kenen P., Eds, Handbook of International Economics, Volume 2, Amsterdam, North Holland, 1985.

Levich, R. and Thomas R. L. (1993) "The Significance of Technical Trading-Rules Profits in the Foreign Exchange Market: A Bootstrap Approach," Journal of International Money and Finance 12: 451-474.

Levin, A. and Lin, C.F,(1992) : Unit Roots Tests in Panel Data : Asymptotic and Finite Sample Properties. Discussion Paper. University of California, San Diego.

Lin W.T. and Chen, Y.H. (1998), "Forecasting Foreign Exchange Rates with an Intrinsically Nonlinear Dynamic Speed of Adjustment Model," Applied Economics, 30, 295-312.

Lin, W. T., Lin, H.J., and Chen, Y.H. (2002), "The Dynamics and Stochastics of Currency Betas Based on the Unbiasedness Hypothesis in Foreign Exchange Markets," Multinational Finance Journal, 6 176-195.

Liu, P.C. and Maddala, G.S. (1992), "Rationality of Survey Data and Tests for Market Efficiency in the Foreign Exchange Markets," Journal of International Money and Finance, 11, 366-381.

MacDonald, R and Taylor, M.P. (1989) "Foreign Exchange Market Efficiency and Co-integration: Some Evidence from the Recent Float". Economic Letters 29; pp. 6368.

Mckinnon, R.I., (1976) Floating Exchange Rates 1973-1974: The Emperor's New Clothes, Carnegie-Rochester Conference Series on Public Policy 3: 79-114.

Meese, R. A. and Singleton, K. J. (1982), "On the Unit Roots and the Empirical Modeling of Exchange Rates," Journal of Finance, 37, 1029-1035.

Muhoro, J (2005): "Determining the Efficiency of the Foreign Exchange Market in Kenya." UON - MBA project Nairobi: Faculty of Commerce.

Muth, J. F. (1961) "Rational Expectations and the Theory of Price Movements", Econometrica 29, 315-335

Naka, A. and Whitney G. (1995), "A Re-Examination of the Unbiased Forward Rate Hypothesis," Journal of International Money and Finance, 14, 857-867.

Ndunda, F (2002): "Testing whether Forward Exchange Rates are predictors of Future Spot Rates in Kenya." UON - MBA project Nairobi: Faculty of Commerce.

Nelson, C. and Schwert, G. W. (1977), "Short-Term Interest Rates as Predictors of Inflation: On Testing the Hypothesis that the Real Rate of Interest is Constant", American Economic Review 67, 478-486

Nepal Rastra Bank (2002) Money and Price Relationship in Nepal: A Revisit; Monetary Division, Research Department, Nepal Rastra Bank

Ogiogio, G,(1994) : A Statistical Analysis of Foreign Exchange Rate Behavior in Nigeria's Auction. AERC Research Paper No. 49, African Economic Research Consortium.

Ondigo H.O (1995) "The information content of the annual reports \& account" UON - MBA project Nairobi: Faculty of Commerce

Poole, W (1967) "Speculative Prices as Random Walks: An Analysis of Ten Time Series of Flexible Exchange Rates", Southern Economic Journal, 33: 468-78.

Sarno Lucio and Taylor Mark P., (2004). The Economics of Exchange Rates; Cambridge: Cambridge University Press

Sarwar, G,(1998) : "Efficiency of Black Markets in Foreign Currencies in Southern Asia". Journal of Multinational Financial Management Vol. 7(4); pp 333-344.

Shinji, T (1991): "Exchange rate expectations: A survey of survey of studies" IMF staff papers, 38, 156-183.

Stein, J.L (1980) "The Dynamics of Spot and Forward Prices in an Efficient Foreign Exchange Market with Rational Expectations," The American Economic Review Vol. 70(4) pp 565-583

Taylor, M. P. (1987). "Covered Interest Parity: A High Frequency, High Quality Data Study". Economica, 51: 129-38.

Wu, J.L. and Chen S.L,(1998): "Foreign Exchange market Efficiency Revisited". Journal of International Money and Finance 17(1998); pp 831-838.

Appendix I: List of Commercial Banks in Kenya

1. African Banking Corporation
2. African Development Bank
3. Akiba Bank
4. Bank of Baroda
5. Bank of India
6. Bank of Africa
7. Barclays Bank of Kenya
8. Biashara Bank of Kenya
9. Charterhouse Bank
10. Consolidated Bank of Kenya
11. Credit Bank Ltd
12. CFC Bank
13. Citibank N.A. Kenya
14. City Finance Bank
15. Commercial Bank of Africa
16. Cooperative Bank of Kenya
17. Development Bank of Kenya
18. Diamond Trust Bank
19. East African Development Bank
20. Fidelity Commercial Bank
21. Fina Bank K. Ltd
22. Giro Commercial Bank Ltd
23. Guardian Bank Ltd
24. Habib Bank
25. Habib Bank A.G. Zurich
26. Housing Finance Ltd
27. Industrial Development Bank
28. Imperial Bank Ltd
29. Kenya Commercial Bank, Nairobi
30. K-Rep Bank(Microfinance)
31. Middle East Bank
32. National Bank of Kenya
33. National Industrial Credit Bank
34. Oriental Commercial Bank Ltd
35. Prudential Bank
36. Paramount Universal Bank Ltd
37. Stanbic Bank
38. Standard Chartered Bank
39. Southern Credit Banking Corp. Ltd
40. Prime Bank
41. Equity Bank
42. Victoria Commercial Bank
43. Transnational Bank of Kenya

					APPENDIX II						
US DOLLARS DATA											
S_t	Ln_St	S_t+3	D_S_t+3	KE TBILL	1+KETBILL	US_TBILL	1+USTBILL	F/H	F/H)	Ln Ft	LNFt - Ln St
36.2298	3.589882951	3.94892305	0.35904	KE-17.870	1.179	4.85	1.0485	1.124177	40.73	3.706935	0.117051565
36.5566	3.598862155	4.12972082	0.530859	17.860	1.179	4.63	1.0463	1.126446	41.18	3.717929	0.119067162
43.1207	3.764002317	4.16126447	0.397262	25.070	1.251	4.875	1.04875	1.192563	51.42	3.940107	0.176104416
51.8795	3.948923047	4.17950207	0230579	45.790	1.458	4.81	1.0481	1.390993	72.18	4.278941	0.330018043
62.1606	4.129720822	4.18084977	0.051129	68.040	1.680	4.86	1.0486	1.602518	9961	4601297	0.471575919
64.1528	4.161264472	4.18656291	0.025298	84.290	1.843	4.71	1.0471	1.760004	112.91	4.72658	056531598
65.3333	4.179502069	421911901	0.039617	84.670	1.847	4.78	1.0478	1.782455	115.15	4.74621	0.566707534
65.4214	4.180849769	4.23383941	0.05299	79.510	1.795	4.74	1.0474	1.713863	112.12	4.7196	0.538749828
65.7963	4.186562915	4.2255614	0.038998	75.690	1.757	4.85	1.0485	1.675632	110.25	4.702753	0.516190321
67.9736	4.219119007	4.21844117	-0.000678	70.880	1.709	4.72	1.0472	1.63178	110.92	4.70879	0.489671434
68.9816	4.233839407	42107258	-0 023114	55260	1.553	4.83	1.0483	1.481065	102.17	4.626601	0.392761141
684129	4.225561403	4.1903993	-0.035162	43.520	1.435	4.86	1.0486	1.368682	93.64	4.53941	0.313848271
67.9275	4.21844117	4.13959514	-0.078846	33.550	1.336	5.18	1.0518	1.269728	86.25	4.457244	0.238802771
67.4054	4.210725801	406122743	-0.149498	23.870	1.239	5.21	1.0521	1.17736	79.36	4.374	0.163274276
66.0492	4.190399299	4.02846173	-0.161938	27.620	1.276	5.16	1.0516	1.213579	80.16	4.383973	0.193574099
62.7774	4.139595136	4.02479303	-0.114802	30.850	1.309	4.895	1.04895	1.247438	78.31	4.380887	0.221091779
58.0455	4.061227432	4.01695787	-0.04427	31.240	1.312	4.925	1.04925	1.250798	72.60	4.285009	0.223781899
56.1744	402846173	394470587	-0.083756	32.380	1.324	5.145	1.05145	1.259023	70.72	4.258798	0.230336225
55.9687	4024793031	374673132	-0.278062	29.740	1.297	4.93	1.0493	1.236443	69.20	4.237032	0.212238987
55.5319	4.016957865	3.77273805	-0.24422	24.130	1.241	4.93	10493	1.182979	65.69	4.184994	0.168035942
51.6611	3.944705872	3.81075318	-0.133953	17.390	1.174	4.945	1.04945	1.118586	57.79	4.056771	0.112065321
423823	3.746731319	3.79499854	0.048267	16.950	1.170	5.135	1.05135	1.112379	47.15	3.853233	0.106501254
43.4990	3.772738054	3.79488411	0.022146	17.220	1.172	4.945	1.04945	1.116966	48.59	3.883354	0.110616108
45.1845	3.810753176	3.78732907	-0.023424	17.490	1.175	5.17	1.0517	1.117144	50.48	3.921528	0.110775135
44.4782	3.794998539	3.78386294	-0.011136	16.740	1.167	5.155	1.05155	1.110171	49.38	3.899512	0.104513788
44.4731	3.794884107	3.94906337	0.154179	17.630	1.176	4.94	1.0494	1.120926	49.85	3.909039	0.114155347
44.1384	3.787329068	3.98193608	0.194607	16.840	1.168	4.96	1.0496	1.113186	49.13	3.894555	0.107226152
43.9856	3.783862939	4.03586065	0.251998	15.160	1.152	5.095	1.05095	1.09577	48.20	3875321	0.091457763
51.8867	3.949063371	4.01996937	0.070906	15.090	1.151	4.97	1.0497	1.096408	56.89	4.041103	0.092039836
53.6207	3.981936076	4.01516589	0.03323	16.390	1.164	5.07	1.0507	1.107738	59.40	4.084256	0.102319826
56.5916	4.035860648	4.0166483	-0.019212	18.480	1.185	4.94	1.0494	1.129026	63.89	4.157216	0.121355412
55.6994	4.019969375	4.01703211	-0.002937	19.650	1.197	4.97	1.0497	1.139849	63.49	4.150866	0.130896219
55.4325	4015165893	4.02179308	0.006627	21.160	1.212	5.035	1.05035	1.15352	63.94	4.157984	0.142818358
55.5147	4.016648301	4.03802975	0.021381	24.070	1.241	4.955	1.04955	1.182126	65.63	4.183963	0.167314236
55.5360	4.017032114	4.06550758	0.048475	24.870	1.249	4.92	1.0492	1.190145	66.10	4.191107	0.174075041
55.8011	4.021793085	4.06752926	0.045736	21.670	1.217	4.925	1.04925	1.15959	64.71	4.16986	0.148066653
56.7145	4.03802975	4.06686956	0.02884	21.250	1.213	4.94	1.0494	1.155422	65.53	4.182496	0.144465772
58.2945	4.065507578	4.06451449	-0.000993	25.960	1.260	4.87	1.0487	1.201106	70.02	4.24875	0.183242908
58.4125	4.067529256	4.06020324	-0.007326	26.680	1.267	4.755	1.04755	1.209298	70.64	4.257569	0.190039931
58.3739	4.066869557	4.04850206	-0.018367	24.160	1.242	4.83	1.0483	1184394	69.14	4.236101	0.169231066
58.2366	4.064514491	4.0429058	-0.021609	21.960	1.220	4.585	1.04585	1.166133	67.91	4.218207	0.153692984
57.9861	4.06020324	4.03295857	-0.027245	21.850	1.219	4.81	1.0481	1.16258	67.41	4.210845	0.150641593
57.3115	4.04850206	402277536	-0.025727	21.760	1.218	4.75	1.0475	1.162387	66.62	4.198977	0.150475335
56.9917	4.042905803	4.01860894	-0.024297	21.630	1.216	4.795	1.04795	1.160647	66.15	4.191883	0.148977589
56.4276	4.032958569	4.01008213	-0.022876	23.100	1.231	4.75	1.0475	1.175179	66.31	4.194379	0.161420474
55.8559	4.022775356	4.00256165	-0.020214	24.080	1.241	4.54	1.0454	1.186914	66.30	4.194132	0.171356746
55.6237 55.1514	4.018608941	4.00606089	-0.012548	22.090	1.221	4.63	1.0463	1.166874	64.91	4.172937	0.15432816
55.1514 54.7382	4.010082131	4.00532428	-0.004758	21.530	1.215	4.905	1.04905	1.158477	63.89	4.157188	0.147105967
54.7382 54.9301	4.002561654 4.006060893	399594904	-0.006613 -0.02173	21.610	1.216	4.79	1.0479	1.160511	63.52	4.151423	0.148860856
54.9301 54.8896	4.006060893	3.98433126	-0.02173	$\frac{21.440}{21.420}$	1.214	5.175	1.05175	1.154647	63.42	4.149856	0.143794684
54.3774	3.995949044	3.99332996 4.04933878	-0.011994 0.05339	21.420	1.214 1.210	4.805 4.665	1.04805	1.158533	63.59	4.152478	0.147154129
53.7493	3.984331264	4.20647582	0.222145	20.350	1.2104	4.665	1.04665	1.15626	62.87	4.14114	0.145191048
54.2352	3.99332996	4.15522306	0.161893	19.440	1.194	4.15	1.049515	1.147119	61.61	4.121585	0.137253666
57.3595	4.049338783	4.13732598	0.087987	18.450	1.185	4.77	1.0477	1.130572	64.85	4.172062	0.122723459
67.1196	4.206475819	4.15780039	-0.048675	19.690	1.197	4.84	1.0484	1.141644	76.63	4.338946	0.122723459
63.7662	4.155223056	4.14394674	-0.011276	26.200	1.262	4.905	1.04905	1.202993	76.71	4.340036	0.184812771
62.6351	4.137325976	4.11356238	-0.023764	27.150	1.272	5.16	1.0516	1.20911	75.73	4.32721	0.189884492
63.9307 63.0512	4.157800388	4.1029282	-0.054872	26.780	1.268	5.09	1.0509	1.206395	77.13	4.345437	0.187636175
63.0512 61.1642	4.143946742	4.09642777	-0.047519	26.360	1.264	4.955	1.04955	1.203945	75.91	4.32955	0.185603289
61.1642 60.5172	4.113562378	4.08785136	-0.025711 0.033892	26.282	1.263	4.945	1.04945	1.203318	73.60	4.298645	0.185083078
60.1251	4.09642777	$\frac{4.13682063}{4.10296232}$	0.033892	26.326	1.263	4.965	1.04965	1.203508	72.83	4288169	0.185240885
59.6117	4.08785136	4.08322668	-0.004625	$\frac{26.781}{}$	1.287	5.065 4.96	1.05065 1.0496	1.206261	72.53	4.283953	0.187525398
62.6035	4.136820628	4.08385608	-0.052965	26.381	1.264	4.975	1.04975	1.209804	72.12 75.37	4.27831	0.190458144
60.5193	4.102962322	4.09448486	-0.008477	25.475	1.255	4.965 5.065	1.04975 1.05065	1.203915	75.37	4.3224 4.280491	0.185578927
59.3366	4.083226683	4.09218954	0.008963	24.672	1.247	5.015	1.05015	$\underline{1.187183}{ }^{1.178263}$.	$\frac{72.28}{70.44}$	4.280491 4.25481	0.177528923 0.171583091
59.3740	4.083856083	4.08815217	0004296	23.741	1.237	4.975	1.04975	1.178763	69.99	4.248321	0.164465212
60.0084 59.8708	4.094484855	4.12416819	0.029683	22.474	1.225	5.12	1.0512	1.165088	69.92	4.247281	0.152796208
- 59.8708	4.092189543	4.12393981	0	20.587 17.862	$\frac{1.206}{1.177}$	4.97 4.965	1.0497	1.148771	68.78	4.230882	0.138692743
61.8164	4.124168187	4.15905983	0.034892	17.662	177	4.965	1.04965	1.120968	66.84	4.202345	0.114192546
61.8023	4.123939814	4.18434933	0.06041	10.703	107	4.965 5.1	1.04965	$\underline{1.0724}$	66.29	4.194068	0.069899429
62.4960	4.135103035	4.23148236	0.096379	8.950	1.090	89	1.051	1.053311	65.10	4.175878	0051938662
64.0113	4.159059834	4.29870798	0.139648	8.845	1.088	4.89	1.0489	1.038707	64.92	4.17308	0037976879
						4.95	1.0495	1.037111	66.39	4.195499	0.036438968

65.6508	4.18434933	4.29180735	0.107458	9028	1090	5.05	1.0505	1.03787	68.14	4.22152	0.037170596
68.8192	4.231482361	4.30964593	0.078164	9.626	1.096	4.955	1.04955	1.044507	71.88	4.275027	0.04354471
73.6046	4.298707977	4.32652251	0.027815	11.442	1.114	5.075	1.05075	1.060597	78.06	4.35754	0.058832139
73.0985	4.291807349	4.32507512	0.033268	14.472	1.145	4.835	1.04835	1.091923	79.82	4.379748	0.087940382
74.4141	4.309645929	4.31466443	0.005019	14.842	1.148	4.91	1.0491	1.094675	81.46	4.400104	0.090457914
75.6807	4.326522514	4.30329933	-0.023223	15.778	1.158	4.79	1.0479	1.104853	83.62	4.426234	0.099711898
75.5712	4.325075119	425817136	-0.066904	17.628	1.176	5.1	1.051	1.119196	84.58	4.437686	0.112610574
74.7885	4.314664434	4.29345872	-0,021206	18.135	1.181	4.94	1.0494	1.125742	84.19	4.433107	0.118442666
73.9434	4.303299327	4.30986721	0.006568	19.975	1.200	5.075	1.05075	1.141799	84.43	4.435904	0.132604839
70.6806	4.25817136	4.30896217	0.050791	20.295	1.203	4.7	1.047	1.148949	81.21	4.397019	0.138847941
73.2193	4.293458722	4.33033685	0.036878	14.844	1.148	4.89	1.0489	1.094899	80.17	4.384121	0.090662504
74.4306	4.309867206	4.35086376	0.040997	11.278	1.113	5.09	1.0509	1.058885	78.81	4.367084	0.057216696
74.3633	4.308962167	4.33606328	0.027101	12.442	1.124	4.765	1.04765	1.073281	79.81	4.379682	0.07072001
75.9699	4.33033685	4.33660912	0.006272	11.222	1.112	5.03	1.0503	1.058956	80.45	4.387621	0.057283979
77.5454	4350863756	4.35922519	0.008361	10.474	1.105	4.82	1.0482	1.05394	81.73	4.403399	0.052535606
76.4062	4.336063284	4.37269019	0.036627	9.904	1.099	4.585	1.04585	1.050862	80.29	4.385674	0.049610759
76.4479	4.336609122	4.36763574	0.031027	9.245	1.092	4.63	1.0463	1.04411	79.82	4.379774	0.043165037
78.1965	4.359225194	4.366065	0.00684	10.360	1.104	4.905	1.04905	1.052002	82.26	4.40992	0.050694836
79.2566	4.372690185	4.36444242	-0.008248	10.654	1.107	4.78	1.0478	1.056056	83.70	4.427232	0.054541687
78.8570	4.36763574	4.35991317	-0.007723	11.167	1.112	4.8	1.048	1.060756	83.65	4.426618	0.058982052
78.7332	4.366064996	4.3535307	-0.012534	12.901	1.129	4.675	1.04675	1.078586	84.92	4.441716	0.075651017
78.6056	4364442423	4.35027108	-0.014171	14.756	1.148	4.7	1.047	1.096042	86.15	4.456148	0.091705532
78.2503	4.359913174	4.36360487	0.003692	15.297	1.153	4.86	1.0486	1.099535	86.04	4.454801	0.094887449
77.7525	4.353530705	4.36462682	0.011096	14.972	1.150	4.845	1.04845	1.096588	85.26	4445734	0.092203377
77.4995	4.350271077	4.36968079	0.01941	12.899	1.129	4.62	1.0462	1.079136	83.63	4.426432	0.076160647
78.5398	4.363604866	4.36835694	0.004752	10.517	1.105	4.82	1.0482	1.054348	82.81	4.416527	0.0529225
78.6201	4.36462682	4.36876344	0.004137	12.070	1.121	4.715	1.04715	1.070233	84.14	4.432504	0.06787684
79.0184	4.369680794	4.369024	-0.000657	12.873	1.129	4.635	1.04635	1.078733	85.24	4.445468	0.075786961
78.9139	4.368356944	4.36893259	0.000576	12.839	1.128	4.695	1.04695	1.077785	85.05	4.443265	0.074908447
78.9460	4.368763441	4.36547152	-0.003292	12.393	1.124	4.8	1.048	1.072455	84.67	4.438714	0.06995011
78.9665	4.369024	4.36433249	-0.004692	11.629	1.116	4.725	1.04725	1.065921	84.17	4.432863	0.063839423
78.9593	4.368932587	4.3599126	-0.00902	11.498	1.115	4.805	1.04805	1.063857	84.00	4.430833	0.061900688
78.6865	4.365471524	4.35744541	-0.008026	11.012	1.110	4.65	1.0465	1.060797	8347	4.424492	0.059020458
78.596918	4.36433249	4.36021403	-0.004118	10.855	1.109	4.72	1.0472	1.058582	83.20	4.421263	0.056930664
78.250295	4359912599	4.36073631	0.000824	10.611	1.106	4.61	1.0461	1.057365	82.74	4.415693	0.055780392
78.057475	4.357445414	4.36517202	0.007727	10.144	1.101	4.81	1.0481	1.050892	82.03	4.407085	0.049639413
78.273886	4360214032	4.36687708	0.006663	10.010	1.100	4.57	1.0457	1.052023	82.35	4.410929	0.050714567
78.314777	4.360736312	4.36403513	0.003299	9.040	1.090	4.67	1.0467	1.041748	81.58	4.401636	0.040899951
78.66293	4.365172015	4.36700322	0.001831	7.338	1.073	4.76	1.0476	1.024609	80.60	4.389483	0.024310715
78.79717	4.366877077	4.37354109	0.006664	8.634	1.086	4.63	1.0463	1.038264	81.81	4.404428	0.037550435
78.57355	4.364035129	4.37658046	0.012545	8.340	1.083	4.725	4.04725	1.034514	81.29	4.397967	0.033931948
78.80711	4.367003215	4.37618357	0.00918	7.601	1.076	4.53	1.0453	1.029377	81.12	4.395957	0.028953971
79.324029	4.373541091	4.35308078	-0.02046	8.065	1.081	4.445	1.04445	1.034662	82.07	4.407616	0.034074594
79.56549	4.376580462	4.34173783	-0.034843	8.299	1.083	4.73	1.0473	1.034073	82.28	4.410086	0.033505694
79.533918	4.376183568	4.33837033	-0.037813	8.378	1.084	4.585	1.04585	1.036263	82.42	4.411805	0.035621288
77.717525	4.353080776	4.32620197	-0.026879	8.384	1.084	4.7	1.047	1.035186	80.45	4.387662	0.034581359
76.84096	4.341737831	4.27119809	-0.07054	7.774	1.078	4.555	1.04555	1.030785	79.21	4.372059	0.030320874
76.582633	4.338370332	4.30030479	-0.038066	6.239	1.062	4.68	1.0468	1.014897	77.72	4.353157	0.01478696
75.656395	4.326201971	4.31411268	-0.012089	6.254	1.063	4.525	1.04525	1.016539	76.91	4.342606	0.016403824
71.607376	4.271198088	4.33020889	0.059011	5.843	1.058	4.675	1.04675	1.011161	72.41	4.282297	0.011098914
73.72226	4.300304789	4.35547946	0.055175	2.998	1.030	4.67	1.0467	0.984028	72.54	4.284204	-0.016101032
74.74727 75960152	4.314112684	4.35369244	0.03958	1.537	1.015	4.65	1.0465	0.970253	72.52	4.283914	-0.030198185
$\frac{75.960152}{77.904168}$	$\frac{4.330208892}{4.355479458}$	4.34039106 4.33098877	-0.010182	1.181	1.012	4.545	1.04545	0.96782	73.52	4.2975	-0.032709079
77.904168 77.765076	4.355479458 4.353692438	4.33098877	-0.024491 -0.019091	0.830 1.003	1.008	4.51	1.0454	0.964784	75.16	4.319629	-0.035850797
76.737542	4.353692438 4.340391055	4.33460141	-0.019091	1.003 1.280	1.010 1.013	-4.67	1.0467	0.964961	75.04	4.318025	-0.035667275
76.019415	4.330988768	4.34720117	-0.004543 0.016212	1.280 1.458	1.013 1.015	4.615 4.585	1.04615 1.04585	0.968121	74.29	4.307993	-0.032397986
76.294543	4.334601414	4.35555277	0.020951	1.580	1.016	-4.585	$\frac{1.04585}{1.0448}$	0.970103	73.75 74.18	4.300636	-0.030353247
76.38972	4.335848132	4.37251319	0.036665	1.571	1.016	4.53	1.0453	0.971695	74.18 74.23	4.306452	- $\begin{array}{r}-0.028149 \\ -0.028713589\end{array}$
77.261917	4.347201174	4.37286407	0.025663	1.592	1.016	4.6	1.046	0.971239	75.04	4.318018	-0.029182697
77.90988	4.355552774	4.38190833	0.026356	2.110	1.021	4.57	1.0457	0.976475	76.08	4.331747	-0.029182697
79.242533	4.372513192	4.39229532	0.019782	2.870	1.029	4.63	1.0463	0.983181	77.91	4.355551	-0.016962318
79.270343	4.372864072	4.39099263	0.018129	2.015	1.020	4.5	1.045	0.976218	77.39	4.348794	-0.024069661
79.990536	4.381908332	4.39693502	0.015027	1.707	1.017	4.38	1.0438	0.974387	77.94	4.355961	-0.025946872
$\frac{80.825727}{80.720505}$	4.392295322	439696996	0.004675	2.267	1.023	4.38	1.0438	0.979759	79.19	4.371846	-0.02044909
$\frac{80.720505}{81.201605}$	4.390992627	4.37920313	-0.011789	2.749	1.027	4.49	1.0449	0.983333	79.38	4.374186	-0.016807118
$\frac{81.201605}{81.204443}$	4.396935016 4.396969961	4.35580964	-0.041125 -0.053969	3.950	1.040 1.051	4.59 4.36	1.0459	0.993881	80.70	4.390797	-0.00613793
79.774438	4.379203129	4.31485544	-0.053969	$\frac{5.061}{} 8$	1.051 1.080	4.36 4.37	1.0436	1.006721	81.75	4.403668	0.006698481
77.929895	4.355809644	4.33265812	-0.023152	8.259	1.083	4.37	1.0437 1.0443	1.035195	82.58	4.413793	0.034590103
76.938105	4.343001267	4.33593844	-0.007063	8.587	1.086	4.38	1.0438	1.036666	80.79	4.391819	0.036009514
74.80281	4.314855445			8.630	1.086	4.49	1.0449	1.039621	77.77	4.353712	
76.146424	4.332658116			8.681	1.087	4565	1.04565	1.039358	79.14		$\frac{0.038856239}{0.038603498}$
76.396619	4.335938442			8.660	1.087	4.435	1.04435	1.040454	79.49	4.371262	$\frac{0.038603498}{0.039657032}$

UK POUNDS DATA											
St	Ln_St	5 tt3	D_S_t+3	KE TBILL	1+KETBILL	US TBILL	1+USTBILL	F/H			
55.6225	4.018588425	4.38621884	0.36763041	KE-TBILL 17.87	1+KETBILL	4.85	1.0485	1.124177	S (F/H) 62.53	$\underline{\text { Ln }} \mathrm{Ft}$	81
52.675085	3964142573	456826249	0.60411982	17.880	1.1786	4.63	1.0483	1.128446	59.34	408321	0.11906716
62.918641	4.141842478	4.57436418	0.43252171	25.070	1.2507	4.875	1.04875	1.192563	75.03	4.317947	0.17610442
80.33608	4386218835	4.58434553	0.1981267	45.790	1.4579	4.81	1.0481	1.390983	111.75	4716237	0.33001804
96377	4568282495	4.58227676	0.01401426	68.040	1.6804	486	1.0486	1.602518	154.45	5.039838	0.47157592
96.986	4574384183	460839738	0.0340332	84280	18429	4.71	1.0471	1.760004	170.66	5.13968	0.56531598
97.939068	4584345532	462615792	0.04181238	84.670	1.8467	4.78	1.0478	1.762455	172.61	5.151053	0.56870753
97.736664	4582276756	4.6285241	0.04424735	79.510	1.7951	4.74	1.0474	1.713863	167.51	5.121027	0.53874983
100.32324	4 608397382	462436063	0.01598325	75.680	1.7569	4.85	1.0485	1.675632	168.10	5.124588	0.51819032
102.12095	4626157921	481836043	-0,0077975	70.880	1.7088	4.72	1.0472	1.83178	168.64	5.115828	0.48967143
102.15835	4828524105	4.60288746	-0.0238366	55.280	1.5526	4.83	1.0483	1.481085	151.30	5.019285	0.38276114
101.93758	4624360628	459083623	-0.0335244	43.520	1.4352	4.86	1.0486	1.368682	139.52	4.838209	0.31384827
101.3278	461836043	4.53335048	-0.0850099	33.55	1.3355	5.18	1.0518	1.269728	128.66	4857163	0.23880277
99.752035	4802687457	4.46949869	-0.1331808	23.870	1.2387	5.21	1.0521	1.17738	117.44	4.785982	0.16327428
98.578829	4590836232	4.45044712	-0.1403891	27.620	1.2762	5.16	1.0516	1.213579	119.63	4.78441	0.1935741
93.069868	4.533350484	4.46011755	-0.0732329	30.850	1.3085	4.885	1.04895	1.247438	116.10	4.754442	022108178
87313	4.469496691	445084922	-0.0186475	31.240	1.3124	4.925	1.04925	1.250798	109.21	4.693279	0.2237819
85.665	4.45044712	4.38944068	-0.0810064	32.380	1.3238	5.145	1.05145	1.259023	107.85	4.680783	023033622
86.497676	4.460117549	421937372	-0.2407438	29.740	1.2974	4.93	1.0493	1.236443	108.85	4.672357	0.21223899
85.699691	4.450849224	4.23351839	-0.2173308	24.130	1.2413	4.93	1.0493	1.182979	101.38	4.618885	0.16803594
80.595328	4389440685	4.25546966	-0.133971	17.380	1.1739	4.945	1.04945	1.118588	90.15	4.501506	0.11208532
67.990889	4219373718	4.24896887	0.02958515	16.950	1.1695	5.135	1.05135	1.112379	75.63	4.325875	0.10650125
68.959432	4233518387	4.24765603	0.01413765	17.220	1.1722	4.945	1.04945	1.116966	77.03	4.344134	0.11061611
70.489916	4.255469661	4.25729621	0.00182655	17.490	1.1748	5.17	1.0517	1.117144	78.75	4.386245	0.11077514
70.0332	4248968871	4.25977088	0.01080201	16.74	1.1874	5.155	1.05155	1.110171	77.75	4.353483	0.10451378
69.94128	4.247658033	4.40922824	0.1615722	17.630	1.1763	4.94	1.0494	1.120926	78.40	4.361811	0.11415535
70.618787	4257296213	4.44911703	0.19182082	16.840	1.1684	4.96	1.0496	1.113186	78.61	4.364522	0.10722615
70.793761	4259770877	4.50257911	0.24280824	15.180	1.1516	5.095	1.05095	1.09577	77.57	4.351229	0.09145778
82206	4409228237	447078909	0.06156085	15.090	1.1509	4.97	1.0497	1.096408	90.13	4.501268	0.09203984
85.551	4.449117031	445844013	0.0093231	18.390	1.1639	5.07	1.0507	1.107738	94.77	4.551437	0.10231983
90.249595	4502579112	4.4735768	-0.0290023	18.480	1.1848	4.94	1.0494	1.129026	101.88	4.823935	0.12135541
87.425683	4.470789091	4.46475353	-0.0060356	19.650	1.1965	4.97	1.0497	1.139849	99.65	4.601685	0.13089622
86.352705	4.458440127	4.45395465	-0.0044855	21.160	1.2116	5.035	1.05035	1.15352	99.61	4.601258	0.14281838
87.86974	44735768	4.46350387	-0.0100729	24.070	1.2407	4.955	1.04955	1.182126	103.64	4.840891	0.16731424
86.899609	4464753534	4.49498645	0.03023291	24.870	1.2487	4.92	1.0482	1.190145	103.42	4.638829	0.17407504
85.966239	4453954648	4.49149018	0.03753554	21.670	1.2167	4.925	1.04925	1.15959	99.69	4.602021	0.14808665
88.7911	4.463503872	448288356	0.01937989	21.25	1.2125	4.94	1.0494	1.155422	100.28	4.60797	0.14446577
89.566955	4.494986446	4.47938595	-0.0158005	25.980	1.2596	4.87	1.0487	1.201106	107.58	4.678229	0.18324281
89. 254352	4.491490186	4.49338105	0.00189087	26.680	1.2668	4.755	1.04755	1.209298	107.94	4.68153	0.19003993
$\begin{array}{r}88.48947 \\ \hline 8.181\end{array}$	4482883562	4.48953333	0.00664977	24.160	1.2418	4.83	1.0483	1.184394	104.81	4.652115	0.16923107
88.181 89.423	4479385953	4.48141675	0.0020308	21.960	1.2196	4.585	1.04585	1.166133	102.83	4.633079	0.15369298
89.079865	4.489533329	48350659	-0.0158249	21.850	1.2185	4.81	1.0481	1.16258	103.96	4.644023	0.15064159
88.359768	4.481416755	4.52680465	0.0451879	21.630	1.2176	4.75		1.162387	03.55	4.640009	0.15047534
88.019305	4.477556163	4.51987233	0.04231616	23.100	1.23					4.630394	9
88.544619	4.483506595	4.51180881	0.02830221	24.080	1.2408	4.54	1.0475	1.175179	103.44	4.638977	0.16142047
92.444148	4526604653	4.49214511	-0.0344595	22.090	1.2209	4.63	1.0463	1.186814	105.08	4.654863	0.17135675
91.823874	4.519872328	4.47993803	-0.0399343	21.530	1.2153	4.905	1.04905	1.158477	106.38	4.666978	0.14710597
81.0884	4.511808806	4.48505283	-0.0267562	21.61	1.2161	4.79	1.0479	1.160511	105.71	4.68067	0.14710597
89.312826	4.492145108	4.47493295	-0.0172122	21.440	1.2144	5.175	1.05175	1.154847	103.12	4.63504	0.14379468
88.229205	4479938034	4.49107071	001113267	21.420	1.2142	4.805	1.04805	1.158533	102.22	4.627092	0.14715413
88.681618	4.485052832	4.56374407	0.07869144	21.020	1.2102	4.665	1.04865	1.15626	102.54	4.630244	0.14519105
$\begin{array}{r}87.789 \\ \hline 8.217\end{array}$	4.474932953	4.67954004	0.20460709	20.350	1.2035	4.915	1.04915	1.147119	100.70	4.612187	0.13725367
95.942022	4.563744069	4.62713085	0.06338678	19.440	1.1944	5.15	1.0515	1.135901	101.34	4.618497	0.12742625
107.72051	4.679540042	4.68106001	0.00151996	19.690	1.1969	4.84	1.0477	$\underline{1.130572}$. 47	4.686468	0.12272346
102.1134	4.626084005	4.65165977	0.02557576	28.200	1.262	4.84 4.905	1.0484	1.141644	122.98	4.81201	0.13246969
102.22036	4.627130847	4.60596007	-0.0211708	27.150	1.2715	4.9.16	$\begin{array}{r}1.04905 \\ \hline 1.0516\end{array}$	1.20911	122.84	4.810897	0.18481277
107.88437	4.681060005	4.59765728	-0.0834027	28.780	1.2678	5.09	1.0509	1.206395	130.15	4.868696	0.18888449
104.75872	4.651659769	4.60377995	-0.0478798	26.360	1.2636	4.955	1.04955	1.203945	128.12	4.837263	0.18763617
100.0790	4.605960074	4.60260375	-0.0033563	26.28225	1.2628225	4.945	1.04945	1.203318	120.43	4.791043	0.18508308
99.251525	4.597657285	4.63010423	0.03244695	26.326	1.2632625	4.965	1.04965	1.203508	119.45	4.782898	0,18524088
-99.861073	4.603779947	4.60318321	-0.0005967	26.736	1.287358	5.065	1.05065	1.208261	120.46	4.791305	0,1875254
\|88.743685	4602603745	4.58138667	-0.0212171	26.981	1.26981	4.96	1.0496	1.209804	120.67	4.793062	0,19045814
$\begin{array}{r}102.525 \\ \hline 99.802\end{array}$	4630104233	4.5749592	-0.01042145	26.381	1.26381	4.975	1.04975	1.203915	123.43	4.815683	0.18557893
97.649709	4.581386674	4.61937862	0.03799195	25.475 24.672	1.254752	5.065	1.05065	1.194283	119.19	4.780712	0.17752892
97.02408	4.574959185	4.59643313	0.02147393	24.6741	1.237406	5.015	1.05015	1.187183	115.93	475297	0.17158308
100.84769	4.613611368	4.63854019	0.02292882	22,474	1.22474	5.12	1.04975	1.178763	114.37	4.739424	0.16446521
101.43099	4.619378624	4.62490387	0.00552525	20.587	1.205865	4.97	1.0497	1.165088	17.50	4766408	0.15279821
-99.1301	4596433129	4.62329715	0.02686402	17.662	1.176624	4.965	1.0497	1.148771	$\frac{118.52}{111.12}$	4.758071	0.13869274
10318672	4.636540189	4.64250379	0.0059636	12.565	1.125845	4.965	1.04965		$\frac{111.12}{110.68}$	4.790626	0.11419255
101.9930	4.624903874	4.68178244	0.03687857	10.703	1.10703	5.1	1.051	1.053311	107.43	4.70644 4.676843	0.06989943

101.82923	4.623297145	4.7108848	008758765	8.850	1.0895	4.89	1.0488	1.038707	105.77	4.661274	0.03797688
103.80393	4.642503794	4.76860128	0.12408749	8.845	1088448	4.95	1.0495	1.037111	107.68	4878943	0.03643897
105.82454	466178244	4.74566131	0.08387887	9.028	1.0902825	5.05	1.0505	1.03787	109.83	4.698953	0.0371706
111.150	4.710884796	4.78376773	0.07288294	9.626	1096282	4.955	1.04955	1044507	118.10	4.75443	0.04354471
117.519	4.766601279	4.81058716	0.04398588	11.442	1.1144225	5.075	1.05075	1.060597	124.64	4.825433	0.05883214
115.08389	4.745661309	4.83040107	0.08473976	14.472	1.1447175	4.835	1.04835	1.091823	125.86	4.833602	0.08794038
119.55395	4.783767734	4.79929675	001552902	14.842	1.148424	4.91	1.0491	1.094675	130.87	4.874226	0.09045791
122.80125	4.810567158	4.78188877	-0.0288784	15.778	1.157775	4.78	1.0479	1.104853	135.68	4.910278	00997118
125.26119	4.830401073	4.75371691	-0.0766842	17.628	1.176275	5.1	1.051	1.118196	140.19	4.943012	0.11281057
121.425	4.799296751	4.76572619	-0.0335706	18.135	1.181354	4.94	1.0494	1.125742	136.68	4.917739	0.11844267
119.30566	4.781688771	4.76713337	-0.0145554	19.975	1.199745	5.075	1.05075	1.141789	136.22	4.914294	0.13260484
116.0147	4.753716907	4.76918411	0.0154672	20.295	1.20295	4.7	1.047	1.148949	133.30	4.892565	0.13884794
117.41635	4.765726185	4.74232858	-0.0233976	14.844	1.14844	4.89	1.0489	1.094899	128.56	4.858389	0.0906825
117.5817	4.787133374	4.7624983	-0.0046351	11.278	1.1127825	5.09	1.0509	1.058885	124.51	4.82435	0.0572167
117.82307	4.769184111	4.74809594	-0.0210882	12.442	1.1244225	4.765	1.04765	1.073281	126.46	4.839904	0.07072001
114.701	4.742328584	4.73537988	-0.0069487	11.222	1.112222	5.03	1.0503	1.058956	121.46	4.799613	0.05728398
117.038	4.762498302	4.71847723	-0.0440211	10.474	1.10474	482	1.0482	1.05394	123.35	4.815034	0.05253561
115.36441	4.748095938	4.74638108	-0.0017149	9.904	1.099044	4.585	1.04585	1.050862	121.23	4.797707	0.04961076
113.90672	4.735379883	4.72308436	-0.0122955	9.245	1.0924525	4.63	1.0463	1.04411	118.83	4.778545	0.04316504
111.99758	4.71847723	4.74419052	0.02571329	10.380	1.1036025	4.905	1.04905	1.052002	117.82	4.769172	0.05069484
115.16675	4.746381078	4.7557527	0.00937162	10.654	1.106536	4.78	1.0478	1.056058	121.62	4.800823	0.05454169
112.51475	4.723084365	473439248	0.01130811	11.167	1.1116725	4.8	1.048	1.060756	119.35	4.782066	0.05898205
114.91475	4.744190524	4.72229976	-0.0218908	12.901	1.12901	4.675	1.04675	1.078586	123.95	4.819842	0.07585102
116.2511	4.755752702	4.71134998	-0.0444027	14.7556	1.147556	4.7	1.047	1.098042	127.42	4.847458	0.09170553
113.79431	4734392477	4.71890362	-0.0154889	15.297	1.1529725	4.86	1.0486	1.099535	125.12	4.82928	0.09488745
112.42651	4.722299756	4.70313665	-0.0191631	14.972	1.1497175	4.845	1.04845	1.096588	123.29	4.814503	0.09220338
111.20218	4711349976	4.71529179	0.00394181	12.899	1.128992	4.62	1.0462	1.078138	120.00	4.787511	0.07616085
112.045	4.718903619	4.73061907	0.01171545	10.517	1.1051675	4.82	1.0482	1.054348	118.13	4.771826	0.0529225
110.293	4.703136653	4.74901729	0.04588064	12.070	1.120695	4.715	1.04715	1.070233	198.04	4.771013	0.06787884
111.64138	4.715291786	4.74221044	0.02691866	12.873	1.128732	4.635	1.04635	1.078733	120.43	4.791079	0.07578696
113.36572	4.730619068	4.73149875	0.00087968	12.839	1.1283875	4.895	1.04695	1.077785	122.18	4.805528	0.07490845
115.47076	4.749017294	4.72949064	-0.0195267	12.393	1.1239325	4.8	1.048	1.072455	123.84	4.818967	0.06995019
114.68743	4.742210444	4.72532713	-0.0168833	11.629	1.118286	4.725	1.04725	1.065921	122.25	4.80605	0.06383942
113.46549	4.731498746	4.71275262	-0.0187461	11.498	1.114975	4.805	1.04805	1.063857	120.71	4.793399	0.06190069
113.23787	4.729490639	4.71006303	-0.0194276	11.012	1.110124	4.65	1.0465	1.060797	120.12	4.788511	0.05902046
112.76738	4.725327129	4.72655254	0.00122541	10.85475	1.1085475	4.72	1.0472	1.058582	119.37	4.782258	0.05693066
111.35827	4.712752616	4.73939751	0.0266449	10.611	1.10611	4.61	1.0461	1.057365	117.75	4.768533	0.05578039
111.05916	4.710063032	4.75871544	0.04865241	10.144	1.10144	4.81	1.0481	1.050892	116.71	4.759702	0.04963941
112.90565	4.726552535	4.80876923	0.0822167	10.010	1.1001	4.57	1.0457	1.052023	118.78	4.777267	0.05071457
114.365	4.739397513	4.79444054	0.05504302	9.040	1.0903975	4.67	1.0467	1.041748	119.14	4.780297	0.04089995
116.596	4.75871544	4.80849867	0.04978323	7.338	1.07338	4.76	1.0476	1.024609	119.47	4.783026	0.02431071
122.58066	4.808789234	4.81682525	0.00805602	8.634	1.086336	4.63	1.0463	1.038264	127.27	4.84632	0.03755043
120.83876	4.794440536	4.82895761	0.03451707	8.340	1.083395	4.725	1.04725	1.034514	125.01	4.828372	0.03393195
122.5475	4.808498671	4.83689871	0.02840004	7.601	1.076008	4.53	1.0453	1.029377	126.15	4.837453	0.02895397
123.57216	4.818825254	4.83359425	0.01676899	8.065	1.0808525	4.445	1.04445	1.034662	127.86	4.8509	0.03407459
125.08051	4.828957606	4.81895807	-0.0099995	8.299	1.082985	4.73	1.0473	1.034073	129.34	4.862463	0.03350569
126.07774	4.83689871	4.7971839	-0.0397348	8.378	1.083776	4.585	1.04585	1.036263	130.65	4.87252	0.03562129
125.66181	4.833584247	4.78063357	-0.0529607	8.384	1.08384	4.7	1.047	1.035186	130.08	4.868176	0.03458136
123.836	4.818958069	4.7551999	-0.0637582	7.774	1.0777375	4.555	1.04555	1.030785	127.65	4.849279	0.03032087
121.16629	4.797163904	4.80836639	0.01120248	6.239	1.062384	4.68	1.0468	1.014897	122.97	4.811951	0.01478696
119.17984	4.780633571	4.79963947	0.0190059	6.254	1.0625375	4.525	1.04525	1.016539	121.15	4.797037	0.01640382
116.187	4.755199896	4.79676854	004156864	5.843	1.0584325	4.675	1.04675	1.011161	117.48	4.766299	0.01109891
122.531	4.808366385	4.83198535	0.02361897	2.998	1.029982	4.67	1.0467	0.984028	120.57	4.792265	-0.016101
121.46662	4.799639471	4.87070561	0.07106614	1.537	1.01537	4.65	1.0465	0.970253	117.85	4.769441	-0.0301982
121.1184	4.79676854	4.86446225	0.06769371	1.181	1.0118075	4.545	1.04545	0.96782	117.22	4.764059	-0.0327091
125.4598	4.831985352	4.88979649	0.05781114	0.830	1.008296	4.51	1.0451	0.964784	121.04	4.786135	-0.0358508
130.4129	4.870705607	4.93412279	0.06341718	1.003	1.010025	4.67	1.0467	0.984961	125.84	4.835038	-0.0356673
129.60123	4.864462246	4.96004049	0.09557825	1.280	1.0128	4.615	1.04615	0.968121	125.47	4.832064	-0.032398
132.92652	4.889796494	4.95103768	0.06124119	1.458	1.014582	4.585	1.04585	0.970103	128.85	4.859443	-0.0303532
138.8512	4934122792	494538512	0.01126233	1.58	1.0158	4.48	1.0448	0.972243	135.09	4.905974	-0.028149
142.59957	4.960040493	4.95205988	-0.0079806	1.571	1.0157125	4.53	1.0453	0.971695	138.56	4.931327	-0.0287136
141.32153	4.951037683	4.97564145	0.02460377	1.592	1.015916	4.6	1.046	0.971239	137.26	4.921855	-0.0291827
140.52496	4.945385124	4.99324887	0.04786375	2.110	1.0211	4.57	1.0457	0.976475	137.22	4.921579	-0.023806
141.466	4.952059877	4.99153384	0.03947396	2.870	1.028702	4.83	1.0463	0.983181	139.09	4.935098	-0.0169623
144.842	4.975641455	4.97503409	-0.0006074	2.015	1.0201475	4.5	1.045	0.976218	141.40	4.951572	-0.0240697
147.41458	4.993248871	4.98887072	-0.0043782	1.707	1.017065	4.38	1.0438	0.974387	143.64	4.967302	-0.0259469
147.16197	4.991533835	5.01628107	0.02474724	2.267	1.022672	4.38	1.0438	0.979759	144.18	4.971085	-0.0204491
144.75376	4.975034086	5.03653709	0.061503	2.749	1.027485	4.49	1.0449	0.983333	142.34	4.958227	-0.0168071
148.77058	4.988870716	4.98710064	-0.0017704	3.950	1.0395	4.59	1.0458	0.993881	145.87	4.982733	-0.0061379
150.84926	5.016281073	4.97770179	-0.0385793	5.081	1.050614	4.36	1.0436	1.008721	151.86	5.02298	0.00669848
153.93602	5.036537086	4.96079164	-0.0757454	8.043	1.08043333	4.37	1.0437	1.035195	159.35	5.071127	0.0345801
146.51102	4.987100641	4.97189582	-0.0152048	8.259	1.08259	4.43	1.0443	1.036866	151.88	5.02311	0.03600951
145.14044	4.977701791	4.95374958	-0.0239522	8587	1.08587	4.38	1.0438	1.040305	150.99	5.017215	0.03951361
142.70672	4.960791642			8.630	1.0863	4.49	1.0449	1.039621	148.36	4.999648	0.03885624
144.3002	4.971895819			8.681	1.086805	4.565	1.04565	1.039358	149.98	5.010489	0.0386035
141.705	4.953749583			8.660	1.086598	4.435	1.04435	1.040454	147.44	4.993407	0.03965703

EURO DATA											
5 t	Ln St 5	St+3 D	D S t+3	\|KE TBILL 1	1+KETBILL	US TBILL	1+USTBILL	F/H	3 $\mathbf{~ (~}(\mathrm{F} / \mathrm{H})$	Ln Ft	LNFt - Ln_St
				17.870	1.179	4.85	1.049	1.124177			
				17.880	1.179	4.63	1.046	1.128446			
				25.070	1.251	4.875	1.048	1.192563			
				45.790	1.458	4.81	1.048	1.390993			
				88.040	1880	4.86	1.049	1.802518			
				84.290	1.843	4.71	1.047	1.780004			
				84.870	1.847	4.78	1.048	1.762455			
				79.510	1.795	4.74	1.047	1.713883			
				75.690	1.757	4.85	1.049	1875832			
				70.880	1.708	4.72	1.047	1.63178			
				55.260	1.553	4.83	1.048	1.481005			
				43.520	1.435	4.86	1.048	1.368682			
				33550	1.336	5.18	1.052	1.269728			
				23.870	1.238	5.21	1.052	1.17736			
				27.620	1.276	5.16	1.052	1.213578			
				30.850	1.308	4.895	1.049	1.247438			
				31.240	1.312	4.925	1049	1.250798			
				32,380	1.324	5.145	1.051	1.259023			
				29.740	1.297	4.93	1.049	1236443			
				24.130	1.241	4.93	1.049	1.182979			
				17.390	1.174	4.945	1.049	1.118586			
				16.950	1.170	5.135	1.051	1.112378			
				17.220	1.172	4.945	1.049	1.116966			
				17.490	1.175	5.17	1.052	1.117144			
				16.740	1.167	5.155	1.052	1.110171			
				17.630	1.178	4.94	1.049	1.120926			
				16.840	1.168	4.96	1.050	1.113186			
				15.160	1.152	5.095	1.051	1.09577			
				15.090	1.151	4.97	1.050	1.096408			
				16.390	1.164	5.07	1.051	1.107738			
				18.480	1.185	4.84	1.049	1.129028			
				19.650	1.197	4.97	1.050	1.139849			
				21.160	1.212	5.035	1.050	1.15352			
				24.070	1.241	4.955	1.050	1.182126			
				24.870	1.249	4.92	1.049	1.190145			
				21.670	1.217	4.925	1.049	1.15958			
				21.250	1.213	4.94	1.049	1.155422			
				25.960	1.280	4.87	1.049	1.201108			
				26.680	1.267	4.755	1.048	1.209298			
				24.160	1.242	4.83	1.048	1.184394			
				21.960	1.220	4.585	1.046	1.166133			
				21.850	1.218	4.81	1.048	1.16258			
				21.760	1.218	4.75	1.048	1.162387			
				21.630	1.216	4.795	1.048	1.160847			
				23.100	1.231	4.75	1.048	1.175178			
				24.080	1.241	4.54	1.045	1.186914			
				22.090	1.221	4.63	1.046	1.166874			
				21.530	1.215	4.905	1.049	1.158477			
				21.610	- 1.216	4.70	1.048	1.160511			
				21.440	- 1.214	5.175	1.052	1.154647			
				21.420	- 1.214	4.805	1.048	1.158533			
				21.020	- 1.210	4.865	1.047	1.15626			
				20.350	1-1.204	4.915	1.048	1.147118			
				19.440	- 1.194	5.15	1.052	1.135901			
				18.450) 1.185	- 4.77	1.048	1.130572			
				19.690	- 1.197	4.84	- 1.048	- 1.141644			
				26.200	- 1.262	4.905	-1.049	1.202993			
				27.150	- 1.272	[5.16	[1.052	2 1.20911			
				26.780	- 1.268	5.09	. 1.051	1.208395			
				26.360	. 1.264	4.955	1.050	1.203945			
				26.282	21.263	. 4.845	1 1.048	1.203318			
				26.326	6 1.263	- 4.965	[1.050	1.203508			
				26.736	6 1.267	- 5.065	5 1.051	1.206261			
				28981	1 1.270	- 4.96	- 1.050	1.209804			
				26.381	1.1 .264	4.975	1.050	- 1.203915			
				25.475	1.255	5 5.085	- 1.051	11.194263			
				24.672	2 1.247	- 5.015	1.050	1.187183			
				23.741	1-1.237	- 4.975	- 1.050	1.178763			
				22.474	4 1.225	5 5.12	[1.051	1.165088			
				20.587	7 1.206	- 4.97	7 1.050	1.148771			
				17.662	2 1.17i	7 4.965	1.050	1.120968			
				12.565	51.126	- 4.965	5 1.050	01.0724			
71.752111	$1)^{4.27321726 ¢ 1}$	Sी 4.2524413	- -0.020776	6 10.703	3 1.107	7 5.1	11.051	11.053311	75.577297	7 4.325156	$6{ }^{0.05183868}$

70.071535	4249516649	4.29289756	0.043381	8.950	1.090	4.89	1.049	1.038707	72.783809	4.287494	0.037976879
69.722983	4.24453	4.3361248	0.091595	8845	1.088	4.85	1.050	1.037111	72.310473	4.280969	0.036438968
70.27677	4.252441303	432644371	0.074002	9028	1.080	5.05	1.051	1.03787	72.838156	4.289612	0.037170586
73.1782	4.292897562	4.36877104	0.075873	9.628	1.096	4.955	1.050	1.044507	78.43512	4.336442	0.04354471
78.410857	4.336124795	4.37545103	0.039326	11.442	1.114	5.075	1.051	1.060597	81.041144	4.394857	0.058832139
75.674686	4.32644371	4.39420091	0.067757	14.472	1.145	4.835	1.048	1.091923	82.630932	4.414384	0.087940382
7894655	4.368771041	434844099	-0.01933	14842	1.148	4.91	1.049	1.094675	86420849	4459228	0.090457914
79.475677	4.375451029	4.31559833	-0.059853	15.778	1.158	4.79	1.048	1.104853	87.808906	4.475163	0.089711898
80.979895	4.394200911	4.27427071	-0.11993	17.828	1.178	5.1	1.051	1.118196	90632375	4.508811	0.112610574
77.435184	4.349440988	4.27710293	-0.072338	18.135	1.181	4.94	1.049	1.125742	87.172041	4.467884	0.118442868
74.8584	4.315598329	4.27435342	-0.041245	19.975	1.200	5.075	1.051	1.141799	85.473225	4.448203	0.132604839
71.827737	4.274270708	4.25619733	-0.018073	20.295	1.203	4.7	1.047	1.148949	82.528434	4.413119	0.138847841
72.031457	4.277102928	4.23290816	-0.044195	14.844	1.148	4.89	1.049	1.094899	78.867201	4.367765	0.080682504
71.833678	4.274353423	4.29963632	0.025283	11.278	1.113	5.09	1.051	1.058885	76.063622	4.33157	0.057216896
70.541228	$4.2561973 \overline{3}$	4.27537613	0.019179	12.442	1.124	4.785	1.048	1.073281	75.710537	4.326917	0.07072001
68.917364	4.232908158	4.2378676	0.004959	11.222	1.112	5.03	1.050	1.058956	72.980489	4.290192	0.057283979
73.672995	4289636317	4.22084232	-0.078794	10.474	1.105	4.82	1.048	1.05394	77.646923	4.352172	0.052535606
71.907181	4.275376134	4.2163801	-0.058996	9.904	1.099	4.585	1.046	1.050862	75.564522	4.324987	0.049610759
69.260004	4.237867602	4.21142122	-0.026446	9.245	1.092	4.63	1.048	1.04411	72.315077	4.281033	0.043165037
68.090814	4.220842318	4.25496269	0.03412	10.380	1.104	4.905	1.049	1.052002	71.63166	4.271537	0.050694836
87.787655	4.216380099	4.30155383	0.085174	10.654	1.107	4.78	1.048	1.058056	71.587594	4270922	0.054541687
67.452336	4.211421221	4.27889994	0.067479	11.167	1.112	4.8	1.048	1.060756	71.550484	4.270403	0.058982052
70.454188	4.254962686	4.25995472	0.004992	12.901	1.129	4.675	1.047	1.078586	75.990908	4.330614	0.075651017
73.8144	4.301553835	4.23677867	-0.064775	14.756	1.148	4.7	1.047	1.096042	80.903684	4.393259	0.091705532
72.161015	4.278899942	4.23156263	-0.047337	15.297	1.153	4.86	1.049	1.099535	79.343568	4.373787	0094887449
70.806777	4.25995472	4.20695625	-0.052998	14.972	1.150	4.845	1.048	1.096588	77.64585	4.352158	0.092203377
69.184626	4.238778675	4.21698266	-0.019796	12.899	1.129	4.62	1.046	1.079136	74.659615	4.312939	0.076160647
68.824695	4.231562626	4.26328068	0.031718	10.517	1.105	4.82	1.048	1.054348	72.565175	4284485	0.0529225
67.151835	4.206956249	4.2752198	0.068264	12.070	1.121	4.715	1.047	1.070233	71.868143	4.274833	0.08787684
67.828514	4.216982662	4.27085831	0.053876	12.873	1.129	4.635	1.046	1.078733	73.168838	4.29277	0.075786961
7104267	4263280676	4.2504587	-0.012822	12.839	1.128	4.695	1.047	1.077785	76.568757	4.338189	0.074908447
71.89594	4.275219796	4.25188316	-0.023337	12.393	1.124	4.8	1.048	1.072455	77.105137	4.34517	0.06995011
71.58305	4.270858314	4.24189239	-0.028966	11.629	1.116	4.725	1.047	1.065921	76.301892	4.334698	0.063839423
70.137577	4.250458703	4.22060637	-0.029852	11.498	1.115	4.805	1.048	1.063857	74.616331	4.312359	0.081900888
70.237556	4.251883157	422591171	-0.025971	11.012	1.110	4.65	1.047	1.060797	74.507785	4.310904	0.059020458
69.539323	4.241892387	4.23899248	-0.0029	10.855	1.109	4.72	1.047	1.058582	73.613104	4.298823	0.056930684
68.07475	4.220606366	4.27413552	0.053529	10.611	1.106	4.61	1.048	1.057365	71.978889	4.276387	0.055780392
68.43687	4.225911714	4.31880711	0.092895	10.144	1.101	4.81	1.048	1.050892	71.919765	4.275551	0.049639413
69.337957	4.238992478	4.36021349	0.121221	10.010	1.100	4.57	1.046	1.052023	72.945098	4.289707	0.050714567
71.818027	4.274135521	4.34186943	0.067734	9.040	1.090	4.67	1.047	1.041748	74.816277	4.315035	0.040899951
75.09899	4.31880711	4.34732895	0.028522	7.338	1.073	4.76	1.048	1.024609	76.947073	4.343118	0.024310715
78.273843	4.360213492	4.35477246	-0.005441	8.634	1.086	4.63	1.046	1.038264	81.268942	4.397764	0.037550435
76.851073	4.341869429	4.37801186	0.036142	8.340	1.083	4.725	1.047	1.034514	79.503526	4.375801	0.033931948
77.27179	4.347328953	4.39428008	0.046951	7.601	1.076	4.53	1.045	1.029377	79.54182	4.376283	0.028953971
77.84911	4.35477246	4.41404934	0.059277	8.065	1.081	4.445	1.044	1.034662	80.547499	4.388847	0.034074594
79.679462	4.37801186	4.41615423	0.038142	8.299	1.083	4.73	1.047	1.034073	82.394407	4.411518	0.033505694
80.986306	4.394280077	4.41481577	0.020538	8.378	1.084	4.585	1.046	1.036263	83.923139	4.429901	0.035821288
82.603276	4.414049343	4.40893000	-0.005119	8.384	1.084	4.7	1.047	1.035186	85.509775	4.448631	0.034581358
82.77733	4.416154232	4.41663928	0.000485	7.774	1.078	4.555	1.046	1.030785	85.325849	4.446475	0.030320874
82.66661	4.414815766	4.45523307	0.040417	6.239	1.062	4.68	1.047	1.014897	83.89808	4.429603	0.01478696
82.18149	4.408930094	4.44316407	0.034234	6.254	1.063	4.525	1.045	1.016539	83.540698	4.425334	0.016403824
82.81749	4.416639277	4.43912072	0.022481	5.843	1.058	4.675	1.047	1.011161	83.741795	4.427738	0.011098914
86.07621	4.455233067	4.47136062	0.016128	2.998	1.030	4.67	1.047	0.984028	84.701392	4.438132	-0.01610103
85.0436	4.443164066	4.51102851	0.067864	1.537	1.015	4.65	1.047	0.970253	82.513827	4.412866	-0.03019818
84.700433	4.439120718	4.49731298	0.058192	1.181	1.012	4.545	1.045	0.96782	81.97478	4.406412	-0.03270908
87.475664	4.471360625	4.53563569	0.064275	0.830	1.008	4.51	1.045	0.964784	84.395141	4.43551	-0.0358508
91.015381	4.511028514	4.56664238	0.055614	1.003	1.010	4.67	1.047	0.964961	87.828321	4.475361	-0.03566727
89.775579	4.497312989	4.5701303	0.072817	1.280	1.013	4.615	1.046	0.968121	86.913642	4.464915	-0.03239799
93.282795	4.535635686	4.55227735	0.016842	1.458	1.015	4.585	1.046	0.970103	90.493899	4.505282	-0.03035325
96.220495	4.566642383	4.53700167	-0.029641	1.580	1.016	4.48	1.045	0.972243	93.54975	4.538493	-0.028149
96.55669	4.570130297	4.55519692	-0.014933	1.571	1.016	4.53	1.045	0.971695	93.823627	4.541417	-0.02871359
94.848165	4.552277352	4.56628362	0.014006	1.592	1.016	4.6	1.046	0.971239	92.120238	4.523095	-0.0291827
93.410305	4.537001671	4.58687748	0.049876	2.110	1.021	4.57	1.046	0.976475	91.212836	4.513196	-0.02380604
95.125486	4.555196922	4.59001857	0.034822	2.870	1.028	4.63	1.046	0.983181	93.525545	4.538235	-0.01686232
96.185981	4.566283619	4.59119056	0.024907	2.015	1.020	4.5	1.045	0.976218	93.898457	4.542214	-0.02406966
98.187359	4.586877481	4.61937965	0.032502	1.707	1.017	4.38	1.044	0.974387	95.672472	4.560931	-0.02594687
98.496259	4.590018569	4.65741533	0.067397	2.267	1.023	438	1.044	0.979759	96.502554	4.569569	-0.02044909
98.611764	4.591190561	4.67170992	0.080519	2.749	1.027	4.49	1.045	0.983333	96.968234	4.574383	-0.01680712
101.43109	4.619379646	4.62824472	0.008865	3.950	1.040	4.59	1.046	0.983881	100.81042	4.613242	-0.00613793
105.3634	4.657415327	4.60658523	-0.05083	5.061	1.051	4.36	1.044	1.006721	108.07154	4.684114	0.008698481
106.88034	4.671709918	4.59312349	-0.078586	8.043	1.080	4.37	1.044	1.035195	110.64203	4.7003	0.034590103
102.33428	4.828244719	459055935	-0.037685	8.258	1.083	4.43	1.044	1.036686	106.08644	4.664254	0.038009514
100.14161	4606585234	4.57444089	-0.032144	8.587	1.086	4.38	1.044	1.040305	104.17778	4.646099	0.039513609
98.802557	4.593123486			8.630	1.086	4.49	1.045	1.039621	102.71721	4.83198	0.038858239
98.549538	4.590559347			8.881	1.087	4.565	1.048	1.039358	102.42828	4.629163	0.038603498
96.973805	4.574440888			8.660	1.087	4.435	1.044	1.040454	100.89677	4.614098	0.038657032

UGANDA SHILLINGS DATA											
S_t L	Ln_St	5 t+3	D $S^{t}+3$	KE TBILL	1+KETBILL	US_TBILL	1+USTBILL F	F/H	S_t(F/H)	Ln_Ft	LNFt - Ln_St
				17.870	1.179	4.85	1.049	1.124177			
				17.880	1.179	4.63	1.046	1.128446			
				25.070	1.251	4.875	1.049	1.192563			
				45.790	1.458	4.81	1.048	1.390993			
				68.040	1.680	4.86	1.049	1802518			
				84290	1.843	4.71	1.047	1.760004			
				84.870	1.847	4.78	1.048	1.762455			
				79.510	1.785	4.74	1.047	1.713863			
				75.690	1.757	4.85	1.049	1875832			
				70.880	1.709	4.72	1.047	1.63178			
				55.260	1.553	4.83	1.048	1.481085			
				43.520	1.435	4.86	1049	1368682			
				33.550	1.336	5.18	1.052	1.269728			
				23.870	1.239	5.21	1.052	1.17736			
				27.620	1.276	5.16	1.052	1.213579			
				30.850	1.309	4.895	1.049	1.247438			
				31.240	1.312	4.925	1.049	1.250798			
				32.380	1.324	5.145	1.051	1.259023			
				28.740	1.297	4.93	1.049	1.236443			
				24.130	1.241	4.93	1.049	1.182979			
				17.390	1.174	4.945	1.049	1.118588			
				16.950	1.170	5.135	1.051	1.112378			
				17.220	1.172	4.945	1.049	1.116966			
				17.490	1.175	5.17	1.052	1.117144			
				16.740	1.167	5.155	1.052	1.110171			
				17.630	1.176	4.94	1.048	1.120926			
				16.840	1.188	4.96	1.050	1.113186			
				15.160	1.152	5.095	1.051	1.08577			
				15.090	1.151	4.97	1.050	1.096408			
				16.380	1.164	5.07	1.051	1.107738			
				18.480	1.185	4.94	1.049	1.129026			
				19.650	1.197	4.97	1.050	1.139849			
				21.160	1.212	5.035	1.050	1.15352			
				24.070	1.241	4.955	1.050	1.182126			
				24.870	1.249	492	1.049	1.190145			
				24.670	1.217	4.825	1.049	1.15959			
				21.250	1.213	4.94	1.049	1.155422			
				25.960	1.260	4.87	1.049	1.201106			
				26.680	1.267	4.755	1.048	1.209298			
				24.160	1.242	4.83	1.048	1.184394			
				21.980	1.220	4.585	1.046	1.166133			
				21.850	1.219	481	1.048	1.16258			
18.383643	2.811461328	2.98400449	0.072543	21.760	1.218	4.75	1.048	1.162387	21.368901	3.081937	0.15047534
18.710805	2.92910114	2.97420897	0.045108	21.630	1.216	4.795	1.048	1.160647	21.716639	3.078079	0.14897759
19.035438	2.946302405	2.9488376	0.002535	23.100	1.231	4.75	1.048	1.175178	22.370047	3.107723	0.16142047
19.766814	2.984004485	2.94497018	-0.039034	24.080	1.241	4.54	1.045	1.186914	23.461511	3.155361	0.17135875
19.574133	2.974208967	2.93820491	-0.036004	22.090	1.221	4.63	1.046	1.166874	22.840542	3.128537	0.15432816
19.083758	2.948837601	2.93095681	-0.017881	21.530	1.215	4.905	1.049	1.158477	22.108089	3.095944	0.14710587
19.010095	2944970178	2.94830852	0.003338	21.610	1.216	4.79	1.048	1.180511	22.061434	3.093831	0.14886086
18.881921	2.938204906	2.98667543	0.048471	21.440	1.214	5.175	1.052	1.154647	21.801954	3.082	0.14379468
18.745558	2.930956812	2.9797007	0.048744	21.420	1.214	4.805	1.048	1.158533	21.717338	3.078111	0.14715413
19.073664	2.948308516	2.92325648	-0.025052	21.020	1.210	4.665	1.047	1.15626	22.054123	3.0935	0.14519105
19.819881	2.986675432	2.78898043	-0.197695	20.350	1.204	4.915	1.049	1.147119	22.735535	3.123929	0.13725367
18.681925	2.979700702	2.8593347	-0.120366	19.440	1.194	5.15	1.052	1.135901	22.35672	3.107127	0.12742625
18.601765	2.92325648	2.89885496	-0.023402	18.450	1.185	4.77	1.048	1.130572	21.03063	3.04598	0.12272346
16.264429	2.788980427	2.88662642	0.097646	18,690	1.197	4.84	1 1.048	1.141644	18.568194	2.92145	0.13246969
17.449914	2.859334699	2.89807427	0.03874	26.200	1.262	4.905	1.049	1.202993	20.982127	3.044147	0.18481277
18.17151	2.899854957	2.93167577	0.031821	27.150	1.272	5.16	-1.052	1.20911	21.971353	3.089739	0.18988449
17.93271	2.88662642	2.94684057	0.060214	26.780	1.268	5.09	. 1.051	1.206395	21.633923	3.074263	0.18763617
18.139181	2.89807427	2.95294149	0.054867	26.360	1.284	4.955	-1.050	1.203945	21.838588	3.083678	0.18560328
18.75904	2.93167577	296877106	0.037095	26.282	1.263	4.945	-1.049	1.203318	22.573098	3.116758	0.18508308
18.045685	2946840567	2.95997996	0.013139	26.326	1.263	4.985	-1.050	1.203508	22.92164	3.132081	0.18524088
19.162236	2.952941486	3.01202828	0.059087	26.736	1.267	5.065	- 1.051	1.206261	23.114658	3.140467	0.1875254
19.46798	2.968771065	3.03498936	0.066218	26.981	1.270	4.96	6 1.050	1.209804	23.552435	3.159229	0.19045814
18.297585	2.959979959	3.04073432	0.080754	26.381	1.264	4.975	- 1.050	1.203815	23.232656	3.145559	0.18557893
20.32859	3.012028293	3.05673501	0.044707	25.475	1.255	5.065	- 1.051	1.194263	24.277675	3.189557	0.17752892
20.800757	3.034989357	3.08427218	0.049283	24.672	1.247	5.015	51.050	1.187183	24.6943	3.208572	0.17158308
20.9206	3.040734319	3.11793368	0.077199	23.741	1.237	4.975	5 1.050	1.178763	24.68042	3.2052	0.16446521
21.258036	3.056735006	3.09533673	0.038802	22.474	1.225	5.12	21.051	1.165088	24.767473	3.209531	0.15279821
21.851557	3.084272184	3.09528821	0.011016	20.587	1.206	4.97	71.050	1.148771	25.102437	3.222985	0.13868274
22.599633	3.117933682	3.09113018	-0.026804	- 17.662	1.177	4.965	5 1.050	1.120968	25.333464	3.232126	0.11419255
22.094677	3.085336732	3.07124178	-0.024095	-12.565	1.126	4.965	51.050	1.0724	23694338	3.165236	0.06889843
22.093605	3.095288212	2.08638663	-0.008902	10.703	1.107	5.1	11.051	1.053311	23.27144	3.147227	0.05193866

22.00193	3.091130177	3.10127499	0.010142	8.850	1.090	4.89	1.049	1.038707			
21.56867	3.071241779	2.97735734	－0．093884	8.845	1.088	4.95	1.050	1.037111	22.389105	3．1076月1	0．03797688
21.88781	3.086386632	2.99046022	－0．085926	9.028	1.090	5.05	1.051	1.03787	22.727081	3.123557	0．03643897
22.226205	3.101271987	2.97821034	－0．123062	9.826	1.096	4.955	1.050	1.044507	23.21542	3.144817	0．0371706
19.635857	2.877357341	2.97832297	0.000966	11.442	1.114	5.075	1.051	1.080597	20.825735	3.036188	0.058883214
19.894836	2.990460219	2.99533008	0.00487	14.472	1.145	4.835	1.048	1.091923	21.72383	3.078401	0.08794038
19.652814	2.878210339	3.00123664	0.023026	14.842	1.148	4.91	1.049	1.094675	21.513233	3.068668	0.09045781
19.654827	2.978322971	3.01114587	0.032823	15.778	1.158	4.79	1.048	1.104853	21.715686	3.078035	0.0997119
19.891958	2.895330087	3.0588573	0.063527	17.628	1.178	5.1	1.051	1.119196	22.374919	3.107941	011281
20.110391	3.001236642	3.03318976	0.031953	18.135	1.181	4.94	1.049	1.125742	22.639118	3.119679	0.11844267
20.31066	3.011145871	3.01138008	0.000234	19975	1.200	5.075	1.051	1.141789	23.190885	3.143751	0.13280484
21.3032	3.058857296	3.01843402	－0．040423	20.295	1.203	4.7	1.047	1.148949	24.478298	3.197705	0.13884794
20.763357	3.033189757	3.01818976	－0．014	14.844	1.148	4.89	1.049	1.094899	22.733788	3.123852	0.0806625
20.315417	3.011380075	3.01187844	0.000299	11.278	1.113	5.09	1.051	1.058885	21.511696	3.088597	0.0572167
20.459228	3.018434017	3.04587957	0.027448	12.442	1.124	4.785	1.048	1.073281	21.958494	3.089154	0.07072001
20.474695	3.018189756	3.09047095	0.071281	11.222	1.112	5.03	1.050	1.058956	21.681812	3.076474	0.05728398
20.3215	3.011679439	3.12129482	0.109615	10.474	1.105	4.82	1.048	1.05394	21.417643	3.084215	0.05253561
21.028519	3.045879566	3.13931495	0.093435	9.904	1.099	4.585	1.046	1.050862	22.088071	3.09549	0.04961076
21.98743	3.090470946	3.15420425	0.063733	9.245	1.092	4.63	1.046	1.04411	22.8573	3.133636	0.04316504
22.675724	3.121294917	3.11142869	－0．009866	10.360	1.104	4.805	1.049	1.052002	23.854903	3.17189	0.05068484
23.088045	3.139314951	3.14377182	0.004457	10.654	1.107	4.78	1.048	1.056056	24.38228	3.193857	0.05454169
23.434382	3.154204252	3.0971255	－0．057079	11.167	1.112	4.8	1.048	1.060756	24.858166	3.213186	0.05898205
22.4531	3.111428689	3.11218412	0.000755	12.901	1.129	4.675	1.047	1078586	24217602	3.18708	0.07565102
23.191177	3.143771916	312970587	－0．014066	14.756	1.148	4.7	1.047	1096042	25.418505	3.235477	009170553
22.134235	3.097125505	3.12685224	0.029727	15.297	1.153	4.86	1.048	1089535	24.337368	3.192013	0.09488745
22.470088	3.112184121	3.11864237	0006458	14.972	1.150	4.845	1.048	1.096588	24.640403	3.204387	0.09220338
22.867253	3.129705871	3.08786257	－0．042043	12.899	1.129	4.62	1.046	1.079136	24.676874	3.205887	0.07616065
22.802091	3.126852238	3.09883729	－0．028015	10.517	1.105	4.82	1.048	1.054348	24.041337	3.179775	0.0528225
22.615855	3.118642368	3.09972037	－0．018922	12.070	1.121	4.715	1.047	1.070233	24.204031	3.186519	0087876
21.925768	3.087662574	3.0934742	0.005812	12.873	1.129	4.635	1.048	1.078733	23.652044	3.16345	0.07578898
22.172157	3.098837291	3.09110629	－0．007731	12.839	1.128	4.695	1.047	1.077785	23.898828	3.173746	0.07490845
22191745	3.099720373	3.08450093	－0．015219	12.393	1.124	4.8	1.048	1.072455	23.799641	3.16987	0.06995011
22.053564	3.093474205	3.10090502	0.007431	14.629	1.116	4.725	1.047	1.065921	23.507362	3.157314	0.06383942
22.001405	3.091106294	3.10747779	0.016371	11.498	1.115	4.805	1.048	1.063857	23.408341	3.153007	0.06190068
21.856556	3.084500934	3.12307921	0.038578	11.012	1.110	4.85	1.047	1.060797	23.185388	3.143521	0.05902048
22.21805	3.100905022	3.13122944	0.030324	10.855	1.109	4.72	1.047	1.058582	23.519637	3.157836	0.05693086
22.364565	3.107477787	3.13374446	0.026287	10.611	1.108	4.61	1.046	9.057365	23.647518	3.183258	0.05578038
22.71622	3.123079207	3.12935191	0.006273	10.144	1.101	4.81	1.048	1.050892	23.872298	3.172719	0.04963941
22.802118	3.131229441	3.1311128	－0．000117	10.010	1.100	4.57	1.046	1.052023	24.093546	3.181944	0.05071457
22.959791	3.133744465	3.13482462	0.00108	9.040	1.090	4.67	1.047	1.041748	23.818313	3.174644	0.04089995
22.85916	3.129351912	3.13281859	0.003467	7.338	1.073	4.76	1.048	1.024809	23.421693	3.153663	0.02431071
22.899448	3.131112798	3.13722626	0.006113	8.634	1.086	4.63	1.046	1.038264	23.775681	3.188663	0.03755043
22.984605	3.134824624	3.13675657	0.001932	8.340	1.083	4.725	1.047	1.034514	23.7779	3.168757	0.03393195
22.938543	3.13281859	3.14449477	0.011676	7.601	1.076	4.53	1.045	1.029377	23.612413	3.161773	0.02895397
23.039871	3.137226255	3.18135473	0.044128	8.065	1.081	4.445	1.044	1.034662	23.838474	3.171301	0.03407458
23.029052	3.136756566	3.20048719	0.063731	8.299	1.083	4.73	1.047	1.034073	23.813729	3.170262	0.03350569
23.207947	3.144494766	323453262	0.090038	8.378	1.084	4.585	1.046	1.036263	24.049544	3.180116	0.03562129
24.079352	3.181354726	3.26361685	0.082262	8.384	1.084	4.7	1.047	1.035186	24.926614	3.215836	0.03458136
24.544485	3.200487185	3.32999459	0.129507	7.774	1.078	4.555	1.046	1.030785	25.300093	3.230808	0.03032087
25.3945	3.234532615	3.30024362	0.065711	6.238	1.062	4.68	1.047	1.014897	25.772798	3.24932	0.01478686
26.143925	3.26361685	3.28468262	0.021066	6.254	1.063	4.525	1.045	1.016539	26.576322	3.280021	0.01640382
27.93819	3.329994587	3.27046931	－0．059525	5.843	1.058	4.675	1.047	1.011161	28.250001	3.341094	0.01109881
27.118245	3.300243623	3.24204124	－0．058202	2.998	1.030	4.67	1.047	0.984028	28.686094	3.284143	－0．01610103
26.700509	3.284682617	3.24241618	－0 042266	1.537	1.015	4.65	1.047	0.970253	25.906255	3.254484	0．03019818
26.32369	3.270469312	3.24710109	－0．023368	1.181	1.012	4.545	1.045	0.96782	25.476596	3.23776	－0．03270908
25.585895	3.242041241	3.23845451	－0．003587	0.830	1.008	4.51	1.045	0.964784	24.684868	3.20619	－0．0358508
25.59549	3.242416183	3.23435446	－0 008062	1.003	1.010	4.67	1.047	0.964961	24.698658	3.206749	－0．03586727
25.715684	3.247101086	3.1951336	－0 051967	1.280	1.013	4.615	1.046	0.968121	24.895899	3.214703	－0．03239799
2549428	3.238454506	3.2172033	－0．021251	1.458	1.015	4.585	1.046	0.970103	24.732082	3.208101	－0．03035325
25.389976	3.234354458	3.20357192	－0．030783	1.580	1.016	4.48	1.045	0.972243	24.685239	3.206205	－0．028149
24.413435	3.195133596	3.15254247	－0．042591	1.571	1.016	4.53	1.045	0.971695	23.722406	3.16842	－0．02871359
24.958222	3.217203297	3.13434967	－0．082854	1.592	1.016	4.6	1.046	0.971239	24.240398	3.188021	－0．0291827
24.620315	3.203574915	3.08445739	－0．119115	2.110	1.021	457	1.046	0.976475	24.041124	3.179766	－0．02380604
23.395471	3.152542475	3.06306993	－0．089473	2.870	1.029	483	1.046	0.983181	23.001877	3.13558	－0．01696232
22.97369	3.134349689	3.05993231	－0．074417	2.015	1.020	4.5	1.045	0.976218	22.427323	3.11028	－0．02406988
21.855605	3.08445739	3.06174816	－0．022708	1.707	1.017	4.38	1.044	0.974387	21.295814	3.058511	－0．02594687
21.393132	3.063089927	3.05984459	－0．003225	2.267	1.023	4.38	1.044	0.979759	20.960104	3.042621	－0．02044909
21.326114	3.059932314	308145508	0.021523	2.749	1.027	4.49	1.045	0.983333	20.970878	3.043125	－0．01680712
21.364874	3.081748157	3.10066291	0.038915	3.950	1.040	4.58	1.046	0.993881	21.234139	3.05561	－0．00613783
21.324243	3.059844588	3.10308287	0.043218	5.061	1.051	4.36	1.044	1.006721	21.467562	3.066543	0.00689848
21.790086	3.081455083	3.12953738	0.048082	8.043	1.080	4.37	1.044	1.035195	22.556994	3.116045	0.0345901
22.212671.	3.100682911	3.15070468	0.050042	8.259	1.083	4.43	1.044	1.036666	23.027115	3.136872	0.03600951
22.266045	3.103062872	3.14602593	0.042963	8.587	1.086	4.38	1.044	1.040305	23.16347	3.142576	003951381
22.8634	3.129537379			8.630	1.086	4.48	1.045	1.039621	23.789271	3.168394	003885624
23.352514	3.150704657			8.681	1.087	4.565	1.046	1.039358	24.271629	3189308	0.0388035
$\underline{23.24351}$	3.146025933			8.660	1.087	4.435	1.044	1.040454	24.183799	3185683	0.03865703

TANZANIAN SHILLINGS DATA											
S \quad t	Ln St	S t+3	D S t +3	KE $=$ TBILL	1+KETBILL	US TBILL	1+USTBILL	F/H	S_t(F/H)	Ln Ft	LNFt - Ln_St
				17.870	18.870	4.85	5.85	3.225641			
				17.880	18.860	4.83	5.63	3.348911			
				25.070	26.070	4.875	5.875	4.437447			
				45.790	46.790	4.81	5.81	8.053356			
				68.040	69.040	4.86	5.86	11.78157			
				84.290	85.290	4.71	5.71	14.93685			
				84.670	85.670	4.78	5.78	14.8218			
				79.510	80.510	4.74	5.74	14.02613			
				75.690	78.690	4.85	5.85	13.1094			
				70.880	71.880	4.72	5.72	12.56643			
				55.280	56.260	4.83	5.83	9.650086			
				43.520	44.520	4.86	5.86	7.59727			
				33.550	34.550	5.18	6.18	5.590815			
				23.870	24.870	5.21	6.21	4.004831			
				27.620	28.620	5.16	6.16	4.648104			
				30.850	31.850	4.895	5.895	5.402884			
				31.240	32.240	4.925	5.925	5.44135			
				32.380	33.380	5.145	6.145	5.432059			
				29.740	30.740	4.93	5.93	5.183811			
				24.130	25.130	4.93	5.93	4.237774			
				17.390	18.390	4.945	5.945	3.093356			
				16.950	17.950	5.135	6.135	2.925835			
				17.220	18.220	4.945	5.945	3.08476			
				17.490	18.490	5.17	6.17	2.996759			
				16.740	17.740	5.155	6.155	2.88221			
				17.630	18.630	4.94	5.94	3.136364			
				16.840	17.840	4.96	5.96	2.993289			
				15.160	16.160	5.095	8.095	2.651354			
				15.090	16.090	4.97	5.97	2.695142			
				16.390	17.390	5.07	6.07	2.864909			
				18.480	19.480	4.94	5.94	3.279461			
				19.650	20.650	4.97	5.97	3.458961			
				21.160	22.160	5.035	6.035	3.671914			
				24.070	25.070	4.955	5.955	4.209908			
				24.870	25.870	4.92	5.92	4.369932			
				21.670	22.670	4.925	5.925	3.82616			
				21.250	22.250	4.94	5.94	3.745791			
				25.960	26.960	4.87	5.87	4.592845			
				26.680	27.680	4.755	5.755	4.809731			
				24.160	25.160	4.83	5.83	4.315809			
				21.960	22.960	4.585	5.585	4.111012			
				21.850	22.850	4.81	5.81	3.932874			
10.488657	2.350294342	2.35985485	0.009561	21.760	22.760	4.75	5.75	3,958261	41.516838	3.726099	1.375804754
10.3906	2.340901551	237423975	0.033338	21.630	22.630	4.795	5.795	3.905091	40.578234	3.703183	1.362280983
10.468157	2.348337996	2.37942966	0.031092	23.100	24.100	4.75	5.75	4.191304	43875233	3.78135	1.433011986
10.589414	2.35985485	2.38909718	0.029242	24.080	25.080	4.54	5.54	4.527076	47.939081	3.869831	1.510076215
10.742843	2.374239752	2.38865994	0.01442	22.090	23.090	4.63	5.63	4.101243	44059013	3.78553	1.411290181
10.798742	2.378429656	2.39061621	0.011187	21.530	22.530	4.805	5.905	3.815411	41.201636	3.718478	1.338048305
10.903645	2.389097179	2.39967757	0.01058	21.610	22.610	4.79	5.79	3.805009	42.57883	3.751357	1.362259895
10.898879	2.388659935	2.42862348	0.039964	21.440	22.440	5.175	6.175	3.634008	39.606614	3.678996	1.290336198
10.920221	2.390616213	2.44373954	0.053123	21.420	22.420	4.805	5.805	3.862188	42.175944	3.74185	1.351233802
11.019823	2.399677568	2.38903798	-0.01064	21.020	22.020	4.665	5.665	3.887028	42.833556	3.757322	1.357644237
11.343257	2.428623483	2.22658045	-0.202043	20.350	21.350	4.915	5.915	3.609487	40.943117	3.712184	1.283560242
11.516025	2.443739544	2.26967138	-0.174068	19.440	20.440	5.15	6.15	3.323577	38.274399	3.644781	1.201041684
10.903	2.389037981	2.28545589	-0.103582	18.450	19.450	4.77	5.77	3.370884	36.752747	3.604213	1.21517499
9.268119	2.226580452	2.26004652	0.033466	19.690	20.690	4.84	5.84	3.542808	32.835168	3.4915	1.264919695
9.6762205	2.269671376	2.29041523	0.020744	26.200	27.200	4.905	5.905	4.606266	44.571244	3.797089	1.527417524
9.8301667	2.285455889	2.33266415	0.047208	27.150	28.150	5.16	6.16	4.569805	44.921947	3.804926	1.519470577
9.583535	2.260046522	2.36612358	0.106077	26.780	27.780	5.09	6.09	4.581576	43.716027	3.777715	1.517668256
9.8790389	2.290415229	2.41069115	0.120276	26.360	27.360	4.955	5.955	4.594458	45.388834	3.815266	1.52485088
10.30536	2.332664148	2.41083977	0.078176	26.282	27.282	4.945	5.945	4.589108	47.292415	3.85635	1.523685777
10.656005	2.366123583	2.36311089	-0.003013	26.326	27.326	4.965	5.965	4.581098	48.816204	3.888082	1.521938723
11.141659	2.410691154	2.39422361	-0.016468	26.736	27.736	5.065	6.065	4.573092	50.951827	3.930881	1.520189455
11.143315	2.410839767	2.42055864	0.009719	26.981	27.981	4.96	5.96	4.694799	52.31562	3.957295	1.546455227
10.62395	2.363110886	2.42139382	0.058283	28.381	27.381	4.975	5.975	4.582594	48.685251	3.885376	1.522265244
10.959686	2.394223605	2.41171137	0.017488	25.475	26.475	5.065	6.065	4.385243	47.841694	3.867898	1.473873903
11.252143	2.420558642	2.42168127	0.001133	24.672	25.872	5.015	6.015	4.267997	48.024111	3.871703	1.451144554
11.261545	2.421393825	2.4273738	0.00598	23.741	24.741	4.975	5.975	4.140686	46.630524	3.842255	1.420881521
11.153032	2.411711373	2.39579098	-0.01592	22.474	23.474	5.12	6.12	3.835621	42.778802	3.756043	1.344331329
11.264895	2.421691274	2.40055155	-0.02114	20.587	21.587	4.97	5.97	3.615829	40.731937	3.707012	1.285321192
11.32909	2.427373796	2.38263811	-0.044736	17.662	18.662	4.965	5.965	3.12865	35.444784	3.567976	1.140601749
10.976877	2.395790994	2.37994461	-0.015846	12.565	13.585	4.985	5.965	2.274015	24.961585	3.217338	0.82154703
11.029258	2.40055155	2.35668921	-0.043862	10.703	11.703	5.1	6.1	1.918525	21.159902	3.052108	0.651556448
10.833445	2.382638108	2.33310922	-0.049529	8.950	9.950	4.89	5.89	1.689304	18.300981	2.906955	0.524316554

10.804304	2.379944605	2.27528182	-0.104683	8.845	8.845	4.95	5.95	1.654588	17.878075	2.883497	0.503552177
10555945	2.356689208	2.34813973	-0.008549	0.028	10.028	5.05	6.05	1.657562	17.497133	2862037	0.505347838
10.309948	2.333109217	2.38511327	0.032004	9.626	10.826	4.955	5.955	1.784416	18.39724	2.912201	0.579081447
9.7306619	2.275281821	2.35477553	0.079494	11.442	12.442	5.075	6.075	2.048107	19.829437	2.992198	0.71681595
10.486082	2.348139725	2.35655131	0008412	14.472	15.472	4.835	5.835	2.651542	27.75126	3.323281	0.875141515
10.645245	2.365113271	2.38653807	0.001425	14.842	15.842	4.91	5.91	2.880608	28.53574	3.351157	0.986044058
10535784	2.35477553	2.37815813	0.023383	15.778	16.778	4.78	5.79	2.897688	30.529149	3.418682	1.083806411
10.554489	2.356551312	242532751	0.068776	17.628	18828	5.1	6.1	3.053688	32.230123	3.472902	1.116350212
10.660423	2.366538073	2.39178008	0.025252	18.135	18.135	4.94	5.94	3.221448	34.341985	3.536369	1.169830889
10.78502	2.378158134	2.37581899	-0.002339	19.975	20.975	5.075	6.075	3.452593	37.23628	3.617284	1.239125425
11.305932	2.425327506	2.37551745	-0.04981	20.295	21.295	4.7	5.7	3.735965	42.238584	3.743334	1.318006129
10.933048 ,	2391790094	2.3533024	-0.038488	14.844	15.844	4.89	5.89	2.688983	29.409712	3.381325	0988534882
10.759822	2.375818988	2.33325932	-0.04256	11.278	12.278	5.09	6.09	2.016133	21.693232	3.077	0.701181323
10.758578	2.375517454	2.3471819	-0.028336	12.442	13.442	4.765	5.765	2.3317	25.081111	3.222115	0.846597578
10.520255	2.353302403	234719968	-0.006103	11.222	12.222	5.03	6.03	2.028899	21.323492	3.059809	0.70650698
10.311495	2.333259315	2.32624807	-0.00701	10.474	11.474	482	5.82	1.971478	20.328883	3.012043	0.678783344
10.456062	2.347181897	2.31192088	-0.035261	9904	10.904	4.585	5.585	1.952444	20.414876	3.016264	0.689081845
10.456248	2.347199678	2.3185497	-0.02865	9.245	10.245	4.63	563	1.81878	19.027864	2.945904	0.588704741
10.239462	2.32624907	2.32124835	-0.005003	10.360	11.360	4.805	5.905	1.923836	19.699043	2.98057	0.65432007
10.093795	2.311920879	2.32468277	0.012762	10.654	11.654	478	5.78	2.016194	20.351047	3.013132	0.701211462
10.160927	2.318549705	2.34206298	0.023513	11.167	12.167	4.8	5.8	2.097802	21.315611	3.05944	0.740889988
10.188365	2.321246354	2.37031426	0.049068	12.901	13.901	4.675	5.675	2.449515	24.956556	3.217137	0.895890217
10.223436	2.324682767	2.4300164	0.105334	14.756	15.756	4.7	5.7	2.76414	28.259013	3.341412	1.016729683
10.402675	2.342062985	2.42803042	0.085967	15.297	16.287	4.86	5.86	2.781101	28.930887	3.36491	1.022846778
10.700755	2.370314257	2.42758822	0.057274	14.972	15.972	4.845	5.845	2.732549	29.240338	3.375549	1.005234942
11.359088	2.430016405	2.42219595	-0.00782	12.899	13.899	4.62	5.62	2.473167	28.082876	3.335516	0.905498621
11.336532	2.428030415	2.42452258	-0.003508	10.517	11.517	4.82	5.82	1.878823	22.43299	3.110533	0.682502236
11.33152	2.427588223	2.42712525	-0.000463	42.070	13.070	4.715	5.715	2.286877	25.913788	3.254775	0.827186974
11.270582	2.422185952	2.42888733	0.008471	12.873	13.873	4.835	5.635	2.46197	27.747832	3.323158	0.900961774
11.296835	2.424522579	2.44640362	0.021881	12.839	13.839	4.695	5.695	2.429982	27.45111	3.312407	0.887884031
11.328275	2.427125248	2.45524556	0.02812	12.393	13.393	4.8	5.8	2.309181	26.154419	3.284018	0.838892931
11.343755	2.428667332	2.46411433	0.035447	11.628	12.629	4.725	5.725	2.205889	25.022838	3.219789	0.791121534
11.546745	2.446403618	2.49832908	0.051925	11.498	12.498	4.805	5.805	2.152885	24.85882	3.213213	0.768809008
11649294	2.455245556	2.51784324	0.062598	11.012	12.012	4.65	5.65	2.126088	24.767429	3.209529	0.754283904
11.753068	2.464114328	2.52566007	0.061546	10.855	11.855	4.72	5.72	2.072509	24.358337	3.192874	0.728759826
12.162155	2.498329081	2.52828195	0.027953	10.614	11.611	4.61	5.61	2.069697	25.171975	3.225731	0.727402205
12.40182	2.517843236	2.49958301	-0.01826	10.144	11.144	4.81	5.81	1.918072	23.787587	3.169164	0.651320868
12.499143	2.525660071	2.48340226	-0.042258	10.010	11.010	4.57	5.57	1.976661	24.708564	3.207069	0.681408897
12.506918	2.528281946	2.54987668	0.023395	9.040	10.040	4.87	5.67	1.770679	22.145738	3.097845	0.571363086
12.177415	2.499583007	2.51482792	0.015245	7.338	8.338	4.76	5.78	1.447569	17.627654	2.869469	0.368885905
11.981981	2.483402258	2.50982494	0.026423	8.634	9.634	4.63	5.63	1.711119	20.502561	3.02055	0.537147546
12.802964	2.549678678	2.51686587	-0.032811	8.340	9.340	4.725	5.725	1,831354	20.886162	3.039087	0.488410168
12.364481	2.514827923	2.50928931	-0.005539	7.601	8.601	4.53	5.53	1.555298	19.230457	2.956495	0.441667407
12.302776	2.509824943	2.54997182	0.040147	8.065	9.065	4.445	5.445	1.684876	20.482597	3.019576	0.509750666
12.389705	2.516865867	2.58858929	0.069723	8.299	9.299	4.73	5.73	1.622775	20.105702	3.001003	0.484137566
12.296188	2.509289315	2.60832364	0097034	8.378	9.378	4.585	5.585	1.679069	20.646148	3.027529	0.518239434
12.806743	2549971818	2.62001066	0.070039	8.384	9.384	4.7	5.7	1.646316	21.083943	3.048512	0.498539937
13.284385	2.586589285	2.87631969	0.08973	7.774	8.774	4.555	5.555	1.579433	20.981795	3.043655	0.457065886
13.549148	2.606323639	2.645614	0.03929	6.239	7.239	4.68	5.68	1.274542	17.268961	2.848911	0.242587097
13.73587	2.620010659	263435124	0.014341	6.254	7.254	4.525	5.525	1.312896	18.033768	2.892246	0.272235328
14.531514	2.67831969	2.61957177	-0.056748	5.843	6.843	4.675	5.675	1.205859	17.522958	2.883512	0.187192202
14.092095	2.645814002	2.59789166	-0.047722	2.998	3.998	4.87	5.67	0.70515	9.8370395	2.296269	-0.349344858
13.93427	2.634351242	2.59830407	-0.036047	1.537	2.537	4.85	5.65	0.449027	6.256857	1.833678	-0.800673265
13.729843	2.619571774	2.61523407	-0.004338	1.181	2.181	4.545	5.545	0.393282	5.3997033	1.686344	-0.933227766
13.435382	2.597891661	2.63223628	0.034345	0.830	1.830	4.51	5.51	0.332051	4.4612295	1,495424	-1.102467258
13.440924	2.598304069	2.65204272	0.053739	1.003	2.003	4.67	5.67	0.353175	4.7469929	1.557511	-1.040792718
13.670416	2.615234066	2.67402347	0.058789	1.280	2.280	4.615	5.615	0.406055	5.5509435	1.713968	-0.001286145
13.90483	2632236262	2.68321018	0.030974	1.458	2458	4.585	5.585	0.440143	8.1201169	1.811581	-0.820655058
14.182981	2.652042721	2.65763687	0.005594	1.580	2.580	4.48	5.48	0.470803	8.6773888	1.898727	-0.753315702
14.498185	2.674023469	2.64283251	-0.031191	1.571	2.571	4.53	5.53	0.464964	6.7411317	1.908228	-0.765795654
14.342257	2863210181	2.8412841	-0.021926	1.592	2.582	4.8	5.6	0.462786	6.6373914	1.892718	-0.770491152
14262545	2.65763687	262106659	-0.03657	2.110	3.110	4.57	5.57	0.558348	7.8834677	2.074865	-0.582772328
14052952	2642832508	2.59757393	-0045259	2870	3.870	4.63	5.63	0.687425	9.6803439	2.268029	-0.374803257
14.03121	2.6412841	2.58572368	-0.05556	2.015	3.015	4.5	5.5	0.548136	7.6910162	2.040053	-0.601231184
13.750382	2.621066592	2.57013629	-0.05093	1.707	2.707	4.38	5.38	0.503067	6.9173622	1.934035	-0.687032087
13.431114	2.597573929	2.56847713	-0.031097	2.287	3.267	4.38	5.38	0.607286	8.1585306	2.088819	-0.498755025
13.272891	2.585723678	2.5782517	-0.007472	2.749	3.749	4.49	5.49	0.682787	9.0825558	2.204151	-0.381572496
13.067605	2.570136287	2.6349851	0.064849	3.950	4.950	4.59	5.59	0.88551	11.571493	2.448545	-0.121591711
13.019878	2566477128	2.66858839	0.102111	5.081	6.061	4.36	5.36	1.130858	14.723634	2.689454	0.122976821
13.174086	2.578251697	2.6946275	0.116376	8.043	9.043	4.37	5.37	1.684047	22.185782	3.099452	0.521199929
13.943105	2.634885104	2.67394699	0038962	8.259	9.259	4.43	5.43	1.705157	23.775176	3.168642	0.533656918
14.4196	2.668588392	2.68037912	0.011791	8.587	9.587	4.38	5.38	1.78197	25.695298	3.246308	0.57771964
14.800005	2.694627503			8.630	9.630	449	5.49	1.754098	25.960664	3.256582	0.56195497
14497076	2.673946987			8.681	9.681	4.565	5.565	1.739533	25.218139	3.227564	0.553818568
14.590624	2.680379118			8.660	9.660	4.435	5.435	1.777332	25.832384	3.255493	0.575113424

