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ABSTRACT: Despite earlier studies over various parts of the world including equatorial Eastern Africa (EEA) showing
that intraseasonal statistics of wet and dry spells have spatially coherent signals and thus greater predictability potential,
no attempts have been made to identify the predictors for these intraseasonal statistics. This study therefore attempts to
identify the predictors (with a 1-month lead time) for some of the subregional intraseasonal statistics of wet and dry spells
(SRISS) which showed the greatest predictability potential during the short rainfall season over EEA. Correlation analysis
between the SRISS and seasonal rainfall totals on one hand and the predefined predictors on the other hand were initially
computed and those that were significant at 95% confidence levels retained. To identify additional potential predictors, partial
correlation analyses were undertaken between SRISS and large-scale oceanic and atmospheric fields while controlling the
effects of the predefined predictors retained earlier. Cross-validated multivariate linear regression (MLR) models were finally
developed and their residuals assessed for independence and for normal distribution. Four large-scale oceanic and atmospheric
predictors with robust physical/dynamical linkages with SRISS were identified for the first time. The cross-validated MLR
models for the SRISS of wet spells and seasonal rainfall totals mainly picked two of these predictors around the Bay of
Bengal. The two predictors combined accounted for 39.5% of the magnitude of the SST changes between the July–August
and October–November–December periods over the Western Pole of the Indian Ocean Dipole, subsequently impacting EEA
rainfall. MLR models were defined yielding cross-validated correlations between observed and predicted values of seasonal
totals and number of wet days ranging from 0.60 to 0.75, depending on the subregion. MLR models could not be developed
over a few of the subregions suggesting that the local factors could have masked the global and regional signals encompassed
in the additional potential predictors.
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1. Introduction

Precipitation remains the most difficult climate component
for models to forecast, because it is closely related not only
to the large-scale atmospheric dynamics but also to the
small-scale weather systems, and is influenced by multiple
atmospheric variables and local topography.

The annual cycle of equatorial Eastern African (EEA)
rainfall is mostly bimodal in nature. The two wet sea-
sons are locally referred to as the long and short rain-
fall seasons. The long rainfall period occurs within the
March–April–May period and contributes much of the
annual rainfall while the short rainfall season occurs from
October to December. The two rainfall seasons that coin-
cide with the transitions between the winter and summer
monsoons are a result of the migration of the Intertropical
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Convergence Zone (ITCZ). The northward migration of
the zonal arm of the ITCZ results in long rainfall sea-
son. The southward migration of the ITCZ zonal arm that
results in the short rainfall season is more rapid than the
northward migration, and thus the period of heavy rain-
fall is generally shorter and the average daily rainfall is
lower. However, much of the interannual rainfall variabil-
ity comes from the short rainfall season with the coefficient
of variability of about 74% compared to 35% for the long
rainfall season (Downing et al., 2008). The recent droughts
(1999–2001 and 2005–2006) and excessive rainfall lead-
ing to extensive flooding (1997) occurred in the short rain-
fall season. This calls for a thorough understanding of the
climatic drivers of the short rainfall season, as well as an
accurate and timely prediction of the anomalous rainfall
conditions during this season.

National Research Council (2010) has highlighted
three interrelated categories of predictability sources that
exist within the climate system. The first one relates to
particular variables that exhibit inertia or memory, such
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as ocean heat content, in which anomalous conditions
can take relatively long periods of time to decay. The
second type of predictability source relates to patterns
of variability or feedbacks. Coupling among processes
in the climate system usually gives rise to characteristic
patterns that explain some portion of the spatial and tem-
poral variance exhibited by key climate variables such as
temperature or precipitation. One such example is the El
Niño-Southern Oscillation (ENSO) in which anomalous
conditions in the tropical Pacific Ocean influence seasonal
climate in the tropics around the globe. The final source of
predictability is due to external forcing such as volcanic
eruptions, changes in solar activity and the accumulation
of greenhouse gases in the atmosphere among others.

Sea surface temperatures (SSTs) play an important role
in modulating rainfall variability. Idealized SST anoma-
lies have been used to force global and regional circula-
tion models to simulate rainfall variability and study the
physical mechanisms behind the variability over various
regions (Reason, 2002; Li et al., 2003; Misra, 2003; Moron
et al., 2003; Paeth and Friederichs, 2004). These studies
and others based on observations (Janowiak, 1988; Walker,
1990; Jury and Pathack, 1993; Jury et al., 1993; Mason,
1995; Shinoda and Kawamura, 1996; Reason and Lutje-
harms, 1998; Biasutti et al., 2004; Nicholson and Dezfuli,
2013) have suggested that the role played by SST in mod-
ulating rainfall variability is either quite direct, through
enhanced convection over warm waters for instance, or
indirect, through an alteration in the position of the ITCZ.
Previous studies over East Africa have documented strong
relationships between the interannual rainfall variabil-
ity during the short rainfall season and SST over the
global oceans. Ogallo (1988), Ogallo et al. (1988), God-
dard and Graham (1999) and Indeje et al. (2000) among
others have shown that the tropical part of the Pacific
Ocean influence the EEA through ENSO teleconnections.
ENSO remains the largest coupled ocean–atmosphere
phenomenon resulting in climatic variability on interan-
nual time scales (Godínez-Domínguez et al., 2000).

The influence of the Indian Ocean on the interannual
variability of East Africa rainfall is now better understood,
with a strong relationship being found between the short
rains and eastwest pressure and SST gradients across the
equatorial Indian Ocean (Goddard and Graham, 1999; Saji
et al., 1999; Reason, 2001; Black et al., 2003; Clark et al.,
2003; Hastenrath, 2007; Owiti et al., 2008). These gradi-
ents reflect a coupled mode of variability which develops
in boreal autumn, known as the Indian Ocean Zonal Mode
or simply Indian Ocean Dipole (IOD). The difference
between mean SST anomalies observed in tropical west-
ern Indian Ocean (50∘E–70∘E, 10∘S–10∘N) and tropical
southeastern Indian Ocean (90∘E–110∘E, 10∘S–Equator)
has been used to quantify the zonal temperature gradient
representative of the IOD (Saji et al., 1999).

Nyakwada (2009) undertook principal component anal-
ysis (PCA) of the SST for each ocean basin separately and
for Atlantic–Indian Oceans combined. The modes of vari-
ability that were highly correlated with the seasonal rain-
fall totals over Eastern Africa were identified and used as

centre of action of the SST gradients. Although the rela-
tionship between the Atlantic Ocean and Eastern Africa
rainfall remained not well understood, Nyakwada et al.
(2009) have recently documented Atlantic–Indian Ocean
Dipole index that suggests useful linkage with seasonal
rainfall totals over the Eastern Africa region.

Building on earlier results by Mutai et al. (1998) which
identified SST predictors for the East Africa short rain-
fall season, Philippon et al. (2002) developed a predic-
tion model for the seasonal rainfall totals during this
season. However, the prediction model did not have a
sufficient lead time that could enable the predictors to
be updated before the start of the rainfall season. Jury
et al. (2009) found that the East African rainfall and
zonal winds over the equatorial east Atlantic and West
Indian Ocean had an in-phase relationship. A model for
October–November–December (OND) seasonal rainfall
developed using the central Indian Ocean zonal winds
averaged over 3 months (JAS) was found to adequately hit
60% of the target categories but underpredicts the intensity
of big events.

However, conspicuously missing are attempts to pre-
dict general features of rainfall distribution during the
rainy season (e.g., number of wet/dry days, average length
of wet/dry spells, frequency of prolonged wet/dry spells,
etc.), which will hereafter be referred to intraseasonal
statistics of wet and dry spells. Usman and Reason (2004)
have already indicated that a season with above average
rainfall may not be better than a below average season over
an agricultural region if the rainfall are not well distributed
in space and time. Crops perform better with evenly dis-
tributed ‘light’ rains than a few isolated ‘heavy’ rainfall
interrupted by prolonged dry periods since consistency of
minimum required rainfall as supplied by alternating wet
and dry spells is more important than the total rainfall.

Recent studies have shown that some of these intrasea-
sonal statistics of wet and dry spells, especially the number
of rain days, are spatially more coherent and possibly more
predictable than seasonal rainfall totals/anomalies in vari-
ous parts of the world (Moron et al., 2006, 2007; Robert-
son et al., 2009; Gitau et al., 2013). For the EEA short
rains however, cross-validated simple regression mod-
els developed preliminary using Niño and IOD indices
showed quite a modest performance (Gitau et al., 2013).
This necessitates the searching of additional potential pre-
dictors for the various intraseasonal statistics of wet and
dry spells.

This article therefore seeks to improve on the existing
knowledge of climate prediction over EEA by consider-
ing two main aspects. The first aspect is the increment of
the lead time between the time the predictions are made
and the start of the short rainfall season. This will enable
the users of the climate predictions to consider the options
available before the start of the rainfall season depending
on the predictions made. The second aspect is the pre-
diction of subregional intraseasonal statistics of the wet
and dry spells in addition to the routine prediction of sea-
sonal rainfall totals or anomalies. Although the aim is not
to predict individual wet and dry spells, which refers to
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Figure 1. (a) Network of the East African rainfall stations used and (b) the near-homogeneous subregions based on the daily rainfall for the short
rainfall season (Source: Gitau et al., 2013.)

time-scales not addressed in this study, information on
the likely performance of the rainfall within the season
may help the users of climate predictions to make more
informed decisions.

Section 2 describes the data used for the study (Section
2.1), the methods of determination of linkages between
large-scale climate fields and intraseasonal statistics of
wet and dry spells at subregional level (Section 2.2), and
finally the development of linear regression models with
sufficient lead time for prediction purposes (Section 2.3).
Such models can be incorporated into the early warning
systems. The results obtained from the various analyses
are presented together with the discussions in Section 3.
The final section highlights the major conclusions from the
study and makes recommendations.

2. Data and methods

2.1. Datasets used

Quality-controlled daily rainfall data from 36 stations
spanning for a period of 39 years (1962–2000) over EEA
was used. This dataset was obtained from the archives
of the Kenya Meteorological Department, IGAD Cli-
mate Prediction and Application Centre and Centre de
Recherches de Climatologie. Figure 1(a) shows the spa-
tial distribution of the EEA stations used in the study. The
southern part of Tanzania (south of 7∘S) was excluded
from this study since it exhibits rainfall variations that
are quite dissimilar to those of the other parts of East
Africa (Camberlin and Philippon, 2002). The two rain-
fall seasons tend to merge together into a single season
(unimodal regime) that spans from November to April.
A study by Indeje et al. (2000) has further showed that
central and southern parts of Tanzania have an opposite
signal to the rest of East Africa with respect to the rain-
fall response to the ENSO phenomenon. In this study,
only the period of the short rains (October–December) is
considered.

Owing to the high skewness of the daily rainfall totals,
the data were initially square-root transformed (Bärring,
1988; Stephenson et al., 1999; Camberlin and Okoola,
2003; Gitau et al., 2013) to stabilizing the variance of the
sporadic rainfall series resulting in a better fit with a normal
distribution. Monte Carlo simulation method was used to
determine the number of the principal components (PCs)
to be retained and rotated, with 500 simulations done. All
the eigenvalues were ranked and the 95th percentile con-
sidered as the 95% confidence threshold, to which the
actual eigenvalues of the observed dataset were compared.
Only six eigenvalues were higher than this threshold (Gitau
et al., 2013). Delineation of a near-homogeneous subre-
gion was accomplished by identifying the stations with
the largest correlation with the rotated PC time series
associated with the given eigenvector of the daily rain-
fall in a season (Ogallo, 1980; Indeje et al., 2000). The
boundaries between the subregions are just indicative but
take into account the main topographical features. The
six near-homogeneous subregions delineated during the
short rainfall season as shown in Figure 1(b) were adopted
(Gitau et al., 2013).

The intraseasonal statistics of wet and dry spells indi-
cated in Table 1 were initially computed at local/station
level. The values so obtained were then averaged for all
those stations constituting a given near-homogeneous sub-
region to obtain the subregional intraseasonal statistics of
wet and dry spells (SRISS). The threshold of defining a
wet day, the definition of a wet/dry spell and other details
of this procedure together with its merits over the use of
PCA scores can be obtained from Gitau et al. (2013). The
dry periods before the first and after the last rainfall/wet
spells were excluded in the computation of the intrasea-
sonal statistics of dry spells. This was in order to avoid the
long dry spells that occur at the beginning and at the end
of the rainfall period, and which belong to the preceding
and following dry seasons, respectively.

On the basis of the literature, a list of predefined predic-
tors of EEA rainfall were defined, and the corresponding
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Table 1. List of the seasonal and intraseasonal rainfall variables used in the study.

Statistic Descriptive name Definition Units

SR Seasonal rainfall Total amount of rainfall received in a season mm
NW Wet days number of wet days in a season days
ND Dry days number of dry days in a season days
MW Mean length of wet spell average duration of consecutive wet days days
MD Mean length of dry spell average duration of consecutive dry days days
3W Three or more wet days Frequency of wet spells of 3 days or more

indices were extracted which depict El-Niño, IOD and dif-
ferent SST gradients in the tropics. These datasets were all
at a monthly temporal resolution, and covered a period of
39 years (1962–2000).

The Niño indices (Niño 1+2, Niño 3, Niño 4 and Niño
3.4) are measures of the oceanic component of ENSO,
which indicates the anomalous and sustained SST warm-
ing (or cooling) across the central and eastern tropical
Pacific Ocean. The Niño indices were downloaded from
the Climate Prediction Centre (CPC) of National Oceanic
and Atmospheric Administration (NOAA) in the United
States.

The Indian Ocean Dipole (IOD) refers to the occasional
occurrences of see-saw SST anomalies over the southeast-
ern and western parts of equatorial Indian Ocean. Anal-
ysis on the evolutional phases of IOD index by Owiti
et al. (2008) indicated that the significant SST anoma-
lies begin to appear around April, attain maximum peak
around October/November and start decaying in January.
Most cycles do not extend beyond 1 year. As such, the sig-
nificant association between the IOD and Eastern Africa
rainfall is strongest during the short (OND) rainfall season
while the correlation values are generally not significant
during the long (MAM) rainfall season. Comprehensive
details of the IOD and its impact on rainfall in the Indian
Ocean rim countries including Eastern Africa can be found
in Saji et al. (1999), Webster et al. (1999), Ashok et al.
(2003), Black et al. (2003), Clark et al. (2003), Behera
et al. (2005), Black (2005), Behera et al. (2006), Owiti
and Ogallo (2007), D’Arrigo and Smerdon (2008), Owiti
et al. (2008) and Ummenhofer et al. (2009) among oth-
ers. The data for the IOD were downloaded from the
Japan Agency for Marine-Earth Science and Technology
(JAMSTEC) Website.

Two of the SST gradients defined in Nyakwada (2009)
were also used in this study, ZIND and ZPAC. The choice
of these two SST gradients only among the many others
is discussed later in Section 3.1 ZIND refers to the zonal
SST gradient over the Indian Ocean related to the IOD but
centred along the equator and which has been shown to
have stronger relationships with September to December
(SOND) rainfall over East Africa than the classical IOD
(Nyakwada, 2009). The difference in the SST anomalies
between the Western Pole located at 40∘–60∘E, 5∘N–5∘S
and the Eastern Pole located at 80∘–100∘E, 5∘N–5∘S
defines the ZIND SST gradient. ZPAC refers to zonal SST
gradient across the equatorial Pacific Ocean, and is defined
as the difference in the SST anomalies between the Eastern

Pole located at 150∘–180∘E, 5∘N–5∘S and the Western
Pole located at 120∘–90∘W, 5∘N–5∘S. These indices were
obtained from the archives of the IGAD Climate Prediction
and Application Centre in Kenya.

The Hadley centre Sea Surface Temperatures (HadSSTs)
and European Centre for Medium-range Weather Fore-
cast (ECMWF) re-analysis for 40 years (ERA 40) provided
the oceanic and atmospheric variables respectively, from
which the additional potential predictors were sourced.
The HadSSTs used in this study are gridded to a horizontal
spatial resolution of 1∘ latitude by 1∘ longitude, and cov-
ered the region between 45∘N and 45∘S, but spanned all
longitudes (Rayner et al., 2003). Over the Eastern Africa
region, SSTs and SST-derived indices have regularly been
used for various studies including the seasonal rainfall pre-
diction (Ogallo et al., 1988; Nicholson and Kim, 1997;
Mutai et al., 1998; Latif et al., 1999; Indeje et al., 2000;
Black et al., 2003; Nyakwada et al., 2009; Diro et al.,
2011). This dataset was downloaded from UK Met Office
Website.

ERA 40 dataset is gridded at a horizontal spatial resolu-
tion of 2.5∘ latitude by 2.5∘ longitude (Uppala et al., 2005).
Preliminary comparison of NCEP/NCAR and ERA40
re-analyses have shown that the ERA40 accounts for
slightly higher variance of the radiosonde data obser-
vations for individual stations in equatorial Africa at
most standard pressure levels compared to NCEP/NCAR
re-analysis (Gitau, 2011). These results are consistent
with those obtained in Stendel and Arpe (1997), Engelen
et al. (1998); Annamalai et al. (1999) and Newman et al.
(2000). From ERA 40, the zonal (u) component of wind
vector and the specific humidity (q) were extracted. Zonal
wind component was extracted at 925 mb, 700 mb and
200 mb levels representing the lower, middle and upper
atmospheric levels while the specific humidity was con-
fined in the former two levels. The ERA 40 dataset had
been used over Eastern Africa with satisfactory results in
Mukabana and Pielke (1996), and Okoola (1999a, 1999b)
among others. The long lead predictions using atmospheric
indices pose the question of the physical basis of the rela-
tionships. However, it should be recalled that atmospheric
variability may reflect land and/or ocean surfaces, both
having a relatively longer ‘memory.’ In such case, the
atmospheric predictor can be viewed as a proxy of climate
memory associated with these surface conditions (espe-
cially land) which cannot always be captured directly by
available datasets. Previous studies have demonstrated the
utility of these predictors, which also have the potential
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to be simulated by General Circulation Models (GCMs).
The ERA 40 dataset was downloaded from the ECMWF
Website.

2.2. Linkages with large-scale climate fields

The identification and selection of suitable predictors
(from July to August period) for each predictand (i.e. each
of the intraseasonal statistics) was carried out in three suc-
cessive steps:

(i) Identification of independent potential predictors
within previously defined indices known to affect
East African climate that is the SST gradients, Niño
and IOD indices;

(ii) Identification of additional potential predictor indices
based on total and partial correlations between
large-scale oceanic and atmospheric fields and the
predictands, and plausible physical/dynamic inter-
pretation between the predictor and predictand in
question; and

(iii) Actual predictor indices selection within the pool of
potential predictor indices and final prediction model
set up based on stepwise linear regression. This is
discussed further in the next section.

The indices of Niño, IOD and SST gradients consti-
tute the lists of the predefined predictors. Previous stud-
ies have shown significant association of these indices
with seasonal rainfall totals during the short rainfall sea-
son (Ogallo, 1988; Black et al., 2003; Black, 2005; Owiti
and Ogallo, 2007; Owiti et al., 2008, Nyakwada et al.,
2009). It has been proposed here that these predefined
predictor indices may also have some predictive poten-
tial for the subregional intraseasonal statistics of wet and
dry spells (Gitau et al., 2013). To verify this, concurrent
and lagged simple correlation analysis between the subre-
gional intraseasonal statistics of wet/dry spells and these
predefined predictor indices were first determined and the
predictor index retained if the coefficient was significant at
95% confidence level.

Additional potential predictors were searched from the
oceanic and atmospheric fields. HadSST constitutes the
oceanic field while the atmospheric variables considered
were the zonal wind component and specific humidity
from the ERA 40. A preliminary study showed that the
meridional component of wind vector was not associ-
ated with any of the subregional intraseasonal statistics of
wet/dry spells and seasonal rainfall totals hence not used.
Two approaches can be used to search and identify pre-
dictor (both oceanic and atmospheric) indices. The first
approach involves plotting correlation maps with the pre-
dictand and extracting an index over a region showing high
correlations. This uses the full resolution of the predictor
field. The second approach uses pre-defined possible pre-
dictors either as regional indices computed from gridded
data, or derived from a PCA. A stepwise procedure is then
used to select indices which relate to the predictand. In this
study, a modified version of the first approach was used.
The oceanic field was initially nested as follows. Grids at

3∘ by 3∘, covering the region (50∘W–120∘E, 30∘S–30∘N)
were used for the oceans adjacent to Africa while coarser
grids at 9∘ by 9∘ covered the region (180∘W–180∘E,
45∘S–45∘N), excluding the inner region. The rationale
behind the nesting was that SST anomalies with large spa-
tial extent at far distance may be expected to influence the
East Africa climate just like SST anomalies with small
spatial extent at close distance.

The two atmospheric variables were not nested as such.
However, the predictor search was confined to region
(50∘W–120∘E, 45∘S–45∘N). The choice of this region
was based on the fact that it includes the subtropical
anticyclones which control moisture fluxes towards East
Africa. It also enabled the depiction of the wind features
which directly affect East African climate such as the
Indian Ocean monsoon, the Indian and Atlantic Ocean
Walker-type circulation cells, the Tropical Easterly Jet, the
Subtropical Westerly Jets among others. It is worthy to
mention that there was an assumption that higher latitude
(beyond 45∘N/S) oceanic and atmospheric systems, at
seasonal scale do not significantly influence the rainfall
characteristics over the EEA.

The partial correlation between the predictands (OND
seasonal rainfall totals as well as subregional intraseasonal
statistics of wet/dry spells) and the July–August HadSST,
atmospheric variables of zonal wind and specific humidity
were then computed while controlling the influence of the
predefined predictor indices that were significant at 95%
confidence level. The rationale behind the use of partial
correlation analysis was that, many large-scale climate
fields are influenced by major modes of variability such
as ENSO hence full correlation with East Africa rainfall
may at times only reflect co-variations induced by the
common forcing rather than a physical relationship. The
partial correlation approach has been successfully used
by Behera et al. (2005) in determining the effect of IOD
(ENSO) on seasonal rainfall during short rainfall season
over Eastern Africa while the effect of ENSO (IOD) is
removed.

Partial correlation maps were then produced. It was from
these maps that the highly correlated regions were identi-
fied and used to compute the new indices. The correlation
boxes identified were at least 5∘ by 5∘. This was to ensure
that the predictor indices were less noisy, remained stable
and under the assumption of memory effects do not vary
too fast from the time the forecast is made until the target
forecasting period. Mutai et al. (1998) have combined the
UK Met. Office SST version 4 (MOHSST4) which are ini-
tially at 1∘ by 1∘ to form a 10∘ by 10∘ grid boxes to improve
data coverage and reduce noise. Gong et al. (2003) have
further demonstrated that spatial aggregation increases the
skill of seasonal total precipitation forecasts.

The foregoing procedure yielded quite a large number
of oceanic and atmospheric predictors. In this study, apart
from the use of standard statistical methods, the selection
of the additional potential predictors was also based on
the physical/dynamical interpretation of the relationship
with East Africa rainfall. Only those potential predictors
with a plausible physical/dynamical relationship with the
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predictands were retained and later used to generate the
regression model.

2.3. Development of linear regression models

The MLR approach is a common method in seasonal cli-
mate prediction over East Africa region and has provided
seasonal forecasts with useful skills (Mutai et al., 1998;
Camberlin and Philippon, 2002; Korecha and Barnston,
2007; Nyakwada, 2009). In the forward stepwise MLR
approach, each predictor variable was entered into the
regression model in an order determined by the strength of
their association with the predictand. The effect of adding
each predictor was assessed and the predictor retained if it
contributed significantly to the variance explained by the
model.

Significant intercorrelation between the predictors leads
to multi-collinearity which means that the predictors are
non-orthogonal. This results into lack of the model’s
accuracy and may lead to unclear interpretation of the
regression coefficients as measures of original effects
(Mc Cuen, 1985). It further imposes the problem of
redundancy and unnecessary loss of degrees of freedom
especially when large numbers of correlated predictors
are used (Krishna Kumar et al., 1995). In this study,
cross-correlations between potential predictors were care-
fully checked and only independent variables were used to
generate the regression model.

A popular measure of the strength of association in linear
regression between the observation and the model output
is the coefficient of determination R2, defined as the pro-
portion of variability in the outcome variable explained
by the model. However, a serious problem with this mea-
sure is that it can substantially overestimate the strength of
association when the number of predictors p, is not small
relative to the number of observations n. The adjusted
coefficient of determination overcomes this problem (Liao
and McGee, 2003). The adjusted coefficient of determi-
nation, in the forward stepwise MLR analysis, discour-
ages incorporating additional predictors that will make
little marginal changes in the unexplained variance. The
adjusted R2 accounts for the number of the predictors in the
model and only increased if the new predictor improves the
model more than would be expected by chance. The num-
ber of predictors to be retained in the final MLR model was
thus determined from the adjusted R2 of the model. Delsole
and Shukla (2002) and Nyakwada (2009) have observed
that fewer predictors tend to produce better models than
those developed using large numbers of predictors. Details
of regression principles can be obtained from Kendall and
Stuart (1961), Kendall (1976) and Wilks (2006) among
other authors.

The cross-validation method was used to test the per-
formance of the developed MLR models. This method
involved temporarily discarding observations from the
dataset and then estimating the discarded observations.
The estimated values are then compared with the discarded
value (Isaaks and Srivastaka, 1989; Barnston et al., 1996;
Wilks, 2006; Camberlin et al., 2014). To undertake cross

validation, the time series of the training and validation
samples are initially standardized separately, for each pre-
dictor and for the predictand. The regression model is then
built using these anomaly time series by estimating the
regression coefficients. The predicted values are finally
multiplied by the standard deviation and added to the mean
of the predictand time series. In each time, three observa-
tions were discarded and then estimated from the devel-
oped models. The discarding of one observation at a time
was found to be sensitive to the outliers.

The linear error in probability space (LEPS) score devel-
oped by Ward and Folland (1991) and later refined by Potts
et al. (1996) was used to assess the skill of the regression
models developed (Jolliffe and Stephenson, 2003; Zhang
and Casey, 2000).

A good MLR model requires that the residuals (the
difference between the actual observations and the fore-
casted values) are independent and have a normal distribu-
tion (Nayagam et al., 2008). The Durbin–Watson (DW)
statistic which checks the significance of the assumption
that the residuals for successive observations are uncor-
related/independent was used to determine whether the
residuals were independent (Makridakis et al., 1998). One
sample Kolmogorov–Smirnov test was used to ascertain
that the residuals were normally distributed.

3. Results and discussions

3.1. Linkages with predefined SST predictors

The relationship between the predefined SST predictors
averaged for July–August period and the OND seasonal
rainfall totals and subregional intraseasonal statis-
tics of wet and dry spells (SRISS) are illustrated by
Figure 2(a)–(f). The seasonal rainfall totals (Figure 2(a))
and SRISS of wet spells (Figure 2(b)–(d)) have a pos-
itive lagged association with the Niño indices. In terms
of the Niño indices, the highest correlations are found
with Niño 3.4 and the lowest ones for Niño 1+2. Other
significant relationships are generally obtained with SST
gradients across the equatorial Indian Ocean (IOD and
ZIND), though the correlations are often higher for IOD
(Figure 2(a)–(d)). The zonal SST gradient across the
equatorial Pacific Ocean (ZPAC) has significant correla-
tion with seasonal rainfall totals and other SRISS, though
slightly lower than that of Niño indices (not shown).
However, multi-collinearity assessment shows that ZPAC
has a highly significant (at 99% confidence levels) neg-
ative association (|r|> 0.7) with the Niño 1+2, Niño 3
and Niño 3.4 indices hence is not discussed here. Other
SST gradients derived by Nyakwada (2009) do not have
significant associations with the subregional intraseasonal
statistics of wet and dry spells during the short rainfall
season and are therefore not included in this study.

The anomalous warm conditions during the boreal
autumn over the Niño regions induce variations in the
Walker circulation, with anomalous ascending motion
over EEA and anomalous descending motion over the
Maritime Continent and Southern Africa. The anomalous
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Figure 2. Correlation coefficient between predefined predictors averaged for July–August (x-axis) and areal-averaged October–
November–December (a) seasonal rainfall totals, (b) number of wet days, (c) mean length of wet spells, (d) frequency of three wet days or
more, (e) number of dry days, and (f) mean length of dry spells, over the six rainfall subregions. The correlation coefficient in (e) and (f) has been

multiplied by −1 for consistence and ease in comparison. CL shows the 95% confidence level threshold.

ascending (descending) motions tend to bring wet (dry)
conditions over EEA (Maritime continent and southern
Africa). Variations of the zonal SST gradients across
the Indian Ocean (IOD and ZIND) also affect Walker
circulation and the associated vertical motion over East
Africa. However, their relationship with the SRISS is
generally weaker compared to the Niño indices.

The number of wet (NW) days in a season and the sea-
sonal rainfall (SR) totals showed the strongest association
with the predefined predictors while the number of dry
days (ND) in a season and the mean duration (MD) of the
dry spells had the least association (Figure 2). These results
are consistent with the spatial coherence and potential pre-
dictability assessment which showed the former two to be
spatially more coherent and thereby more potentially pre-
dictable than the later two (Gitau et al., 2013). It is shown
that the greater spatial coherence is a result of a more or
less uniform response to the global ENSO signals.

Subregion 2 (Figure 1(b)) which covers western Kenya
and most parts of Uganda (as represented by Kakamega,
Kisumu and Lodwar; Arua, Kitgum, Masindi, Namu-
longe and Soroti stations, respectively, and abbreviated by
WKU), displays the strongest and statistically significant
(at 95% confidence levels) lagged correlation coefficients

between the subregional seasonal rainfall totals and the
intraseasonal statistics of wet spells on one hand and the
Niño indices on the other hand (Figure 2(a)–(d)). This is
consistent with Ntale and Gan (2004) who have shown
that despite southern Uganda and the Lake Victoria Basin
receiving rainfall almost throughout the year due to the
influence of Lake Victoria (LV), the area has reasonable
El Niño influence.

Over the highland areas such as subregion 1 in central
Kenya (CK); parts of the subregion 5 in northern and
central Tanzania (CT); and parts of subregion 6 (LV area)
over southwestern Uganda, there seems to be a weaker
response to the ENSO phenomenon since these areas are
subjected to stronger local orographic influence which
tends to curtail the ENSO signal (Ntale and Gan, 2004).

The association of the subregional intraseasonal statis-
tics of dry spells with the predefined predictors is rather
diverse (Figure 2(e) and (f)). In many cases, the correla-
tions are low and insignificant, but there are exceptions.
Subregion 6 in southern Uganda and western Tanzania
(as represented by Bushenyi, Entebbe, Kabale, Kasese
and Mbarara; and Bukoba and Kigoma stations, respec-
tively) has strong lagged correlation coefficients between
the SRISS of dry spells and the predefined SST predictors.
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Table 2. Brief description of the additional potential predictors for the short rainfall (OND) season and their location details.

Index name Description Location details (∘)
Longitude Latitude

BoBEN SST index over Bay of Bengal extending to west coast of
Malaysia and Indonesia

83–90 E 12–17 N

SEHAW SST index on the southeast of Hawaii in the Pacific Ocean 140–120 W 10–25 N
SWAFRC Specific humidity index at 700 mb level located at Angola

coast on south-western Africa and extending to Atlantic
Ocean on the west and Zambia to the east

5–15 E 25–15 S

SINDS Zonal wind index at 925 mb level to the south of the Bay
of Bengal near the southern tip of India subcontinent

70–90 E 5–10 N

For instance, a correlation of −0.6 is found between the
Niño 3.4 index on one hand and the number of dry days and
the mean length of the dry spells in a season on the other
hand, suggesting the increase in the number and length of
the dry spells during La Niña years (Figure 2(e) and (f)).

From the strong significant correlations with the pre-
defined predictors, two independent indices with strong
significant lagged correlations with the seasonal rainfall
totals and SRISS are chosen. These are the Niño 3.4 and
ZIND indices whose average values for July–August are
not related (r = 0.16), yet they are associated with seasonal
rainfall totals and most of the SRISS (Figure 2(a)–(f)).
They can be thought of as representing the pre-season
(July–August) SST conditions associated with the ENSO
and IOD climate signals.

3.2. Linkages with additional potential predictors

Concurrent and lagged partial correlation analysis between
the seasonal rainfall totals and SRISS on one hand and
the oceanic and atmospheric variables on the other hand
while controlling the effects of significantly correlated
predefined indices (Niño 3.4 and ZIND) identified sev-
eral common potential predictors. Only four potential
predictors have a plausible physical/dynamical relation-
ship with the predictands and are briefly described in
Table 2.

The association of the four additional (oceanic and atmo-
spheric) predictors with the seasonal rainfall totals and
SRISS during the short rainfall season are summarized
by Figure 3(a)–(f). Consistent with the predefined pre-
dictors, the seasonal rainfall totals and the SRISS of wet
spells are more coherent in their responses to these pre-
dictors (Figure 3(a)–(d)). All the SRISS of the wet spells
respond more or less uniformly to any predictor identified
for all the subregions. The insignificant relationship found
for some of the coefficients is attributed to the fact that
for the sake of simplicity, total correlations are shown in
Figure 3(a)–(f), while the identification and selection of
the additional potential predictors is based on partial cor-
relation analysis, after the effect of significantly correlated
predefined predictors have been removed.

The SRISS of dry spells are somehow diverged in their
responses to the additional potential predictors identified
and often have insignificant association (at 95% con-
fidence level) as shown in Figure 3(e)–(f). However,

there are several exceptions. One such example is the
atmospheric predictor SINDS that has a generally
consistent response with the SRISS of dry spells
(Figure 3(e)–(f)). These show that the response of the
intraseasonal statistics of dry spells may not be uniform
for any given oceanic or atmospheric signals.

In the subsequent paragraphs, these four additional
potential predictors are described in details and a physical
interpretation on how the predictor influenced the SRISS
for which it is significantly correlated provided.

BoBEN, the first additional potential predictor, is an SST
index averaged over July–August period over the Bay of
Bengal extending to west coast of Malaysia and Indonesia
(Table 2). The area coverage with significant correlation
coefficient reduces as the OND season approaches and
is confined to the eastern Indian Ocean during the OND
period. Correlation analysis with the global SST shows
that this index has no signal over the tropical Pacific
Ocean, which is further confirmed by the insignificant
correlation coefficients between the Niño indices and this
index (Table 3).

The computation of the correlation coefficients between
the changes in the magnitude of the Western and the
Eastern Poles of the IOD from July to August and OND
periods on one side and the BoBEN index on the other
side shows that, while there is no significant correlation
with the Eastern Pole, the BoBEN index accounts for 28%
of the changes in the magnitude between the July–August
and OND periods over the Western Pole of the IOD.
Thus warm conditions in the northeastern Indian Ocean,
as portrayed by BoBEN index are expected to result in
the strengthening of the Indian Ocean Walker circulation
cell in boreal autumn, with anomalous ascending motion
in the east and descending motion in the west. A SST
warming over the index location is likely to reinforce the
circulation anomalies associated with the negative phase
of the IOD/ZIND that is characterized by warm (cold)
conditions in the eastern (western) Indian Ocean. BoBEN
index is located slightly to the north of the Eastern Pole
of the IOD/ZIND, and it actually displays a significant
correlation (though weakly) with the ZIND index (Table 3)
during the OND period. The justification for retaining
this and other additional potential predictors that have
significant relationship with the predefined indices shall be
discussed towards the end of this section.
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Figure 3. Correlation coefficient between additional potential predictors averaged for July–August (x-axis) and areal-averaged October–
November–December (a) seasonal rainfall totals, (b) number of wet days, (c) mean length of wet spells, (d) frequency of three wet days
or more, (e) number of dry days, and (f) mean length of dry spells, over the six rainfall subregions. CL shows the 95% confidence level

threshold.

Table 3. Correlation coefficients between the four additional potential predictors averaged over July–August (Jul–Aug) and
October–December (OND) period and some predefined predictors averaged over the OND period.

Niño 1+2 Niño 3 Niño 4 Niño 3.4 IOD ZIND

BoBEN Jul–Aug 0.28 −0.02 0.02 −0.16 −0.12 −0.27
OND 0.03 −0.15 −0.18 −0.23 −0.21 −0.39

SEHAW Jul–Aug 0.14 0.09 0.62 0.28 0.05 −0.10
OND 0.36 0.24 0.49 0.28 0.19 −0.03

SWAFRC Jul–Aug 0.06 0.07 0.07 0.08 0.24 0.23
OND 0.20 0.22 0.01 0.14 0.35 0.36

SINDS Jul–Aug −0.57 −0.66 −0.61 −0.70 −0.45 −0.07
OND −0.72 −0.69 −0.60 −0.69 −0.61 −0.32

The numbers in bold italics indicate that the correlation coefficients are significant at 95% confidence levels.

BoBEN has significant negative association over most
of the subregions with the seasonal rainfall totals and all
SRISS of the wet spells (Figure 3(a)–(d)). Over southern
Uganda, northwestern and western Tanzania (LV, subre-
gion 6), it has significant positive association with all the
SRISS of the dry spells. It also has significant positive
relationship with the mean duration of dry spells over the
western parts of the study domain (WKU and LV), CK
and southeastern lowlands as well as the coastal strip (CS)
of Eastern Africa, as shown in Figure 3. The strengthen-
ing of the Indian Ocean Walker circulation cell results in
the reduction of seasonal rainfall totals, NW days and the
mean frequency of the wet spells of 3 days or more over
Eastern Africa. The mean duration of the dry (wet) spells
is also increased (decreased).

The independence of BoBEN from ENSO, coupled with
the fact that it shows significant relationship with different
atmospheric variables (zonal wind component and specific
humidity) over East Africa during the OND season (not
shown), justified its retention as a potential predictor.

SEHAW, the next additional potential predictor is an
SST index averaged over July–August period and located
southeast of Hawaii in the Pacific Ocean (Table 2).
It is clearly distinct from the core ENSO region and
has strong persistence from July–August through to
October–December. This index has a significant positive
signal with SST over the central equatorial Indian Ocean
during the OND period and with zonal winds at 925 mb
level over the Indian Ocean closer to the East Africa coast
that appeared in July–August, and grew in September
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through to December (not shown). This index may be
related to the fifth rotated empirical orthogonal factor
(REOF5) earlier identified by Mutai et al. (1998). This
REOF had strong weights in Pacific and Indian Oceans,
but was independent of the SOI. A large-scale signal in
Africa rainfall and near-surface marine divergence over
the Indian Ocean was related to this REOF. It therefore
suggests that some of the East Africa rainfall variability
that is independent of the SOI could not also be attributed
to local-scale chaotic features (Mutai et al., 1998).

Over the CS of Kenya and Tanzania and northeastern
Kenya (NEK), SEHAW has significant positive association
with seasonal rainfall totals and all the SRISS of wet spells.
The seasonal rainfall totals, NW days and mean frequency
of wet spells of 3 days or more over CK and southeastern
lowlands of Kenya also have significant positive associa-
tion with SEHAW. Significant negative associations were
observed for number of dry days over southern Uganda,
northwest and western Tanzania (LV); and the mean dura-
tion of the dry spells over CK and southeastern lowlands of
Kenya and CS of Kenya and Tanzania as shown in Figure 3.

Results of correlation analysis with the predefined
predictor indices showed that SEHAW is signifi-
cantly correlated with Niño 4 from July–August to
October–December and with Niño 1.2 during the OND
season only (Table 3). It is thus expected that this index
depicts SST conditions which are associated with some
ENSO events, and which results into a subsequent warm-
ing of the Indian Ocean in the northern autumn (Cadet,
1985). Its independence from the Indian Ocean zonal SST
gradient indices (Table 3) and significant relationship with
several atmospheric variables around East Africa during
the OND season justifies the retention of SEHAW index
as an additional potential predictor.

SWAFRC, the third additional potential predictor is a
specific humidity index at 700 mb level over the Angola
coast on southwestern Africa and extending to Atlantic
Ocean on the west (at 5∘E) and Zambia to the east (Table 2)
averaged over July–August period. SWAFRC has a sig-
nificant positive relationship with the specific humidity at
700 mb level over Arabian Sea, Red sea, most parts of
northern Africa, equatorial Atlantic Ocean and southern
Indian Ocean around latitude 30∘S during July–August
period. In September, the signal weakens and seems a bit
noisier. During the OND period, the index has well-defined
signal over central and Eastern Africa and equatorial
Indian Ocean extending to southern Indian Ocean. Mutai
et al. (1998) identified a weak positive (though not sta-
tistically significant) relationship between southeastern
Atlantic SST anomalies and East African short rains. The
modest effect of the southeastern Atlantic on East Africa
rainfall was through influencing the strength and moisture
content of the airmass that flows into Equatorial Africa
from the Atlantic Ocean (Mutai et al., 1998).

Enhanced low- to mid-tropospheric moisture over these
areas, when advected to East Africa may result in wet con-
ditions. Concurrent and lagged correlation analysis with
the global SSTs did not show any persistent signal over
the three global oceans. This is further confirmed by the

weak correlation coefficients between SWAFRC on one
hand and Nino and Indian Ocean indices (Table 3), which
emphasizes the strength of SWAFRC as an independent
potential predictor of East African rainfall.

Over the eastern sector of the study region (CK, NEK and
CS as shown in Figure 1(b)), SWAFRC has a significant
positive association with seasonal rainfall totals and NW
days (Figure 3(a) and (b)). The mean duration of the
wet spells and mean frequency of wet spells of 3 days
or more over CK and southeastern lowlands of Kenya
(CK) have significant positive association with SWAFRC.
A significant positive correlation with number of dry days
over NEK, an arid and semi-arid area is also noted as
shown in Figure 3(e).

The last additional potential predictor, SINDS wind
index, is identified when the partial correlation analy-
sis is undertaken between the July and August zonal
component of the low level wind field (925 mb level)
and NW days during the OND season while controlling
the effects of July–August predefined predictors (Niño
3.4 and ZIND) and one of the additional SST potential
predictor (SEHAW). Significant negative correlations are
found over the southern tip of Indian subcontinent; on the
border of Europe, northern Africa and northern Atlantic
Ocean; and on southern Atlantic around 20∘S on the South
America coast (Figure 4(a)). It is from the significant
negative correlation area around the southern tip of the
Indian subcontinent that the SINDS index is extracted
(Figure 4(b)).

The July–August values of the 925 mb SINDS zonal
wind index has a significant negative association with
zonal wind at 925 mb over East Africa and extend-
ing into western Africa coast and Gulf of Guinea
from July–August through to October–December
(Figure 5(a)–(c)). Though the local significant correlation
with the zonal wind over northern Indian Ocean seems
to die out after September (Figure 5(b)), Figure 6(a)–(c)
suggests that the enhanced low-level monsoon winds as
portrayed by SINDS index modulates the SST by cooling
around the index location initially in July–August. The
modulation spread to northern, central and western parts of
Indian Ocean closer to the Western Pole of the IOD/ZIND
from September through to December (Figure 6(b) and
(c)). The cooling of the SST around the Western Pole of the
IOD/ZIND is associated with anomalous subsidence and
drier conditions over Eastern Africa. Correlation analysis
with the global SST further shows that this signal is signif-
icantly but negatively correlated with SST over the Niño
regions from July–August through to October–December
(Figure 6(a)–(c)) and over much of the northern and west-
ern Indian Ocean during the October–December period
(Figure 6(c)). This is further confirmed by the strong
negative significant correlation coefficients obtained with
the Niño and Indian Ocean indices (Table 3).

Similar to BoBEN index, further computation of the
correlation coefficients between the changes in the mag-
nitude of the Western and the Eastern Poles of the IOD
from July to August and OND periods on one side and the
SINDS index on the other side shows that, while there is no
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Figure 4. (a) A map of partial correlation coefficients between July and August u-wind at 925 mb and number of wet days during OND over subregion
4 while controlling Niño 3.4, ZIND and SEHAW indices. (b) Location of the significant partial correlation coefficients over the southern tip of the

Indian subcontinent. The rectangle shows the location from which SINDS index was extracted.

Figure 5. Map of significant correlation between southern tip of Indian subcontinent (SINDS) zonal wind index and global U925 for (a) July–August,
(b) September and (c) October–December. The rectangle in (a) shows the approximate location of SINDS zonal wind index computed for

July–August period from 1962 to 2000.

significant correlation with the Eastern Pole, the SINDS
index accounts for 13% of the changes in the magnitude
between the July–August and OND periods over the West-
ern Pole. This is again confirmed by the increase in both the
spatial coverage and the magnitude of the significant corre-
lation areas over western Indian Ocean (Figure 6(a)–(c)).
This simply shows that the SINDS index is a one of the
precursor for the rapid warming/cooling of the Western
Pole of the IOD. Previous studies (Saji et al., 1999; Web-
ster et al., 1999; Black et al., 2003; Clark et al., 2003) have
already indicated that while the Eastern Pole of the IOD

develops quite early in the year, the Western Pole evolves
quite rapidly.

The drier conditions result in the reduction in the magni-
tude of seasonal rainfall totals and SRISS of the wet spells
as well as an increase in the magnitude of the SRISS of
dry spells. SINDS has significant association with the rain-
fall totals and all the SRISS of the wet and dry spells.
With the seasonal rainfall totals and SRISS of wet spells,
the whole study area has significant negative association
with SINDS (Figure 3(a)–(d)). Over the whole study area,
SINDS has significant positive association with number of
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Figure 6. Map of significant correlation between southern tip of Indian subcontinent (SINDS) zonal wind index and global SST for (a) July–August,
(b) September, and (c) October–December.

dry days in a season (Figure 3(e)) except over NEK and CS
of Kenya and Tanzania ; and mean duration of dry spells
in a season (Figure 3(f)) except over western Kenya and
most parts of Uganda (WKU) and Northern and Central
Tanzania (NCT).

In their study on the prediction of the East African
OND rains, Philippon et al. (2002) also found that an
atmospheric index, taken in September and describing the
Indian monsoon intensity had some predictive skill, in
addition to more traditional SST predictors. The present
study further demonstrates a partly independent predic-
tive skill from Asiatic monsoon dynamics as early as in
July–August period.

The justification for the retention of SINDS despite the
strong association with SST over Niño regions and the
other predefined predictors (Table 3) is discussed here.
The total and partial correlation coefficients between the
SINDS wind index and NW days over the six subregions
while controlling the effects of other predictors averaged
for July–August period are shown in Table 4.

First, the NW days have significant negative (positive)
total correlation coefficient with SINDS (Niño 3.4) over
the six subregions and significant positive total correla-
tion coefficient with ZIND (IOD) over two (four) subre-
gions only. Moreover, the magnitudes of the correlation
coefficients with SINDS are higher than those of Niño
3.4, ZIND and IOD in all the six subregions (Table 4).

Secondly, significant negative partial correlation coeffi-
cients between NW days and SINDS while controlling the
effect of ZIND and IOD individually are also obtained
over the entire region (Table 4). Significant negative par-
tial correlation coefficients are also obtained, however for
two subregions only, when Niño 3.4 predictor is controlled.
Controlling the combined effects of Niño 3.4, ZIND and
SEHAW predictors, significant negative partial correlation
coefficients between the NW days and SINDS wind index
are obtained over the same two subregions [namely CK
and the East African coast (CS)]. This therefore means that
despite the strongly significant total correlation coefficient
between SINDS wind index and the predefined predictors
(Table 3), the SINDS wind index provides additional pre-
dictive information on the NW days that could not be cap-
tured by the Niño 3.4, ZIND and SEHAW predictors in
two out of the six subregions (Table 4). The case where
the Niño 3.4, IOD and SEHAW are controlled should
be treated with caution since Niño 3.4 and IOD are not
independent predictor indices. Similar remarks applied to
the other additional potential predictor indices which have
significant correlation with the predefined predictors.

Therefore, the plausible physical explanation on how
SINDS relates to East Africa rainfall and the fact that
it provides additive predictive information despite its
strong association with the Niño and Indian Ocean indices
provides a strong case for the retention of this index as
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Table 4. Total and partial correlation coefficients between areal-averaged number of wet days (NW) in subregional zones 1 to 6 and
southern tip of India subcontinent (SINDS) 925 mb zonal wind index, while controlling predefined predictors and one additional

potential predictor (SEHAW) for July–August period.

Total correlation with NW Partial correlation between NW & SINDS
while controlling

SINDS Niño 3.4 ZIND IOD Niño 3.4 ZIND IOD Niño 3.4, SEHAW &

ZIND IOD

CK −0.53 0.41 0.20 0.29 −0.37 −0.52 −0.46 −0.32 −0.29
WKU −0.59 0.59 0.24 0.39 −0.30 −0.59 −0.50 −0.31 −0.29
NEK −0.54 0.52 0.20 0.30 −0.29 −0.54 −0.48 −0.21 −0.19
CS −0.62 0.48 0.22 0.38 −0.45 −0.62 −0.54 −0.38 −0.34
NCT −0.47 0.42 0.32 0.40 −0.27 −0.47 −0.35 −0.31 −0.26
LV −0.49 0.45 0.34 0.44 −0.27 −0.49 −0.36 −0.25 −0.19

Bold numbers indicate that the coefficient is significant at 95% confidence level.

an additional potential predictor during the short rainfall
season.

Though BoBEN and SINDS indices appear to be located
closer to each other, the two indices are independent since
correlation coefficient between them was found to be 0.05
which is insignificant at 95% confidence level. This means
that the two indices provide independent predictive infor-
mation. These two additional predictor indices could be
associated with the Asian monsoon. The Asian monsoon
is connected to East Africa via the Somali Jet. Weaker
winds may result in warmer SST in the Western Indian
Ocean at the end of the monsoon season, which subse-
quently increases convection and affect the Indian Ocean
Walker circulation. Interestingly, the two predictor indices
combined accounts for 39.5% of the SST changes in the
magnitudes between the July–August and OND periods
over the Western Pole of the Indian Ocean Dipole (IOD).

3.3. Regression models for subregional intraseasonal
statistics of wet and dry spells

The methodology used to develop the MLR models at
subregional level and assess the performance of these
models was discussed in Section 2.3.

3.3.1. Seasonal rainfall totals

Table 5 illustrates on how the final number of predic-
tors to be retained is determined for the seasonal rain-
fall totals over subregion 1 (CK and southeastern low-
lands of Kenya) based on the R-adjusted consideration
with the forward stepwise regression technique. The pre-
dictor that is most strongly associated with seasonal rain-
fall totals over subregion 1 is SINDS with a correlation
coefficient of 0.54 and adjusted correlation coefficient of
0.53. In the cross-validated mode, this predictor has a cor-
relation coefficient of 0.47. In the second step, predictor
BoBEN is picked. The two predictors have a multiple cor-
relation coefficient of 0.74 with seasonal rainfall totals
while the adjusted correlation coefficient was 0.73. In the
cross-validated mode, the two predictors have a multiple
correlation coefficient of 0.69 with seasonal rainfall totals.
In the third step SWAFRC is picked, the fourth step gives
SEHAW.

Table 5. Forward stepwise fitting of the multivariate regression
model for OND areal-averaged seasonal rainfall totals over

subregion 1 (CK).

Step Predictor included Multiple correlation
coefficient

R Adjusted R Rcv

1 SINDS 0.54 0.53 0.47
2 BoBEN 0.74 0.73 0.69
3 SWAFRC 0.79 0.77 0.73
4 SEHAW 0.81 0.78 0.75

A close look at this table shows that the multiple cor-
relation coefficient for the developed MLR model and
its adjusted correlation coefficient as well as multiple
correlation coefficient for the cross-validated model has
been increasing at each step. The four additional poten-
tial predictors can thus be used to develop the MLR model
for seasonal rainfall totals over this particular subregion.
However, multi-collinearity assessment further shows that
SINDS and SEHAW are significantly inverse correlated
(r =−0.41) at 95% confidence level. Thus, only one out of
these two predictors should be used to avoid the inflation
of the variance and loss of degrees of freedom (Krishna
Kumar et al., 1995). Hence the regression model devel-
oped for the seasonal rainfall totals over subregion 1 is
based on the first three predictors shown in Table 5. The
predictors to be retained for other subregions and the
SRISS are similarly obtained.

Table 6 summarizes the predictors used in the developed
and cross-validated MLR models and the skill score of
the models for the seasonal rainfall totals. The developed
models capture the direction of the observation quite well
though at times the magnitudes are not attained. From a list
of four additional potential predictors and two predefined
predictors, two sets of predictors’ combinations are ade-
quate to describe the interannual variability of the seasonal
rainfall totals over the six subregions (Table 6). The atmo-
spheric predictor SINDS and oceanic predictor BoBEN are
common to all the MLR models. It should be observed
from Table 6 that none of the models picks the Niño 3.4
index as a predictor while ZIND index is only picked once.
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Table 6. The list of predictors’ combination and skill of regression models for areal-averaged seasonal rainfall totals during the short
rainfall season.

Subregion Predictors Multiple correlation coefficient
between observed and predicted

LEPS score (%) Durbin–Watson statistic

R Rcv

CK BoBEN, SWAFRC, SINDS 0.79 0.73 43 1.40
WKU BoBEN, SWAFRC, SINDS 0.80 0.75 42 2.11
NEK BoBEN, SWAFRC, SINDS 0.79 0.63 40 1.89
CS BoBEN, SWAFRC, SINDS 0.82 0.70 45 1.65
NCT BoBEN, SINDS, ZIND 0.69 0.62 32 2.40
LV BoBEN, SWAFRC, SINDS 0.78 0.68 44 1.26
Mean value 0.78 0.69 41

Table 7. The list of predictors’ combination and skill of regression models for areal-averaged number of wet days during the short
rainfall season

Subregion Predictors Multiple correlation coefficient
between observed and predicted

LEPS score (%) Durbin–Watson statistic

R Rcv

CK BoBEN, SWAFRC, SINDS 0.77 0.70 42 1.43
WKU BoBEN, SINDS 0.69 0.63 33 1.86
NEK BoBEN, SWAFRC, SINDS 0.75 0.65 34 1.50
CS BoBEN, SWAFRC, SINDS 0.79 0.70 43 1.55
NCT BoBEN, SWAFRC, SINDS 0.69 0.63 35 1.84
LV BoBEN, SINDS 0.69 0.60 35 2.04
Mean value 0.73 0.65 37

This does not mean that Niño 3.4 index (a representative
of the ENSO indices) is not related to Equatorial Eastern
Africa seasonal rainfall totals, but rather the predictive sig-
nal in ENSO is contained in the other predictors from the
Indian Ocean region.

On average, the Linear Error in Probability Space
(LEPS) skill score of 41% is attained for the six models
(Table 6). Since the LEPS skill score value for all the
regression models are positive, it means that the models
output (forecast) are much better than climatology. Results
further show that the residuals from all the models are
normally distributed. Over western Kenya and most parts
of Uganda (WKU) and NCT, the model residuals have
negative autocorrelation (the value was greater than 2)
while the rest of the study area has positive autocor-
relation (the value was less than 2). Over the northern
sector of the study, the model residuals are indepen-
dent of each other (Farebrother, 1980). Over the rest of
Kenya, northern, eastern and central Tanzania (CK, CS
and NCT), the test is inconclusive while the residuals
over the southern Uganda and western Tanzania (LV) has
positive first-order autocorrelation. This means that the
regression models can be improved further by adding an
autoregressive term.

In the subsequent sections, only those subregions for
which the multiple correlation coefficient between the
time series of observed and cross-validated MLR model
output is equal or greater than 0.5 are discussed since only
such models can be incorporated in operational forecasting
(Philippon et al., 2009).

3.3.2. Number of wet and dry days in the season

From a list of three predictors, two combinations of pre-
dictors are adequate to describe the interannual variabil-
ity of the NW days over the six subregions (Table 7).
Figure 7(a)–(f) show the time series plots for the devel-
oped and cross-validated MLR models and the actual
observations for the NW days in a season. The figures show
that the models developed capture the peaks quite well but
not so well for the lows. Several peaks associated with the
El Niño events are well captured by the models over all
the subregions. These include the El Niño events of 1968,
1972, 1982, 1994 and that of 1997. Equally, the low sea-
sons associated with the La Niña events of 1970 and 1998
are also well captured by most of the developed models.

The multiple correlation coefficient between the
cross-validated MLR model outputs and the actual
observations of the NW days in a season for the six sub-
regions range from 0.60 to 0.70, with an average of 0.65
(Table 7). According to the LEPS skill score, an average
value of 37% is obtained for the six cross-validated MLR
models. It should be observed that the skill of the multiple
correlation coefficient and the LEPS skill score for the
cross-validated MLR models for the NW days are com-
parable to those obtained for the seasonal rainfall totals
(Table 6) though slightly lower. This is consistent with the
spatial coherence results which showed that the two were
almost equally potentially predictable (Gitau et al., 2013).

The residuals from the six cross-validated MLR models
are normally distributed. Compared to the tabulated critical
values, the model residuals over western block of the
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Figure 7. Time series plot of the observed (obs) and cross-validated model (cv) estimates for October–November–December areal-averaged number
of wet days (NW) over (a) Central highlands and southeastern lowlands of Kenya – CK, (b) Western Kenya and most parts of Uganda – WKU, (c)
northeastern Kenya – NEK, (d) Coastal strip of Kenya and Tanzania – CS, (e) Northern and Central Tanzania – NCT, and (f) Western of Lake

Victoria and western Tanzania – LV. Rcv shows the multiple correlation coefficient for cross-validated model.

Table 8. The list of predictors’ combination and skill of regression models for areal-averaged number of dry days during the short
rainfall season

Subregion Predictors Multiple correlation coefficient
between observed and predicted

LEPS score (%) Durbin–Watson statistic

R Rcv

NCT SWAFRC, SINDS 0.74 0.69 30 1.79
LV BoBEN, SEHAW, Niño 3.4 0.75 0.68 40 2.17

study area (WKU, NCT and LV) are not significantly
autocorrelated. For the eastern block of the study area (CK,
NEK and CS), the test for significant autocorrelation is
inconclusive.

In the case of number of dry days in a season, only two
subregions [inland Tanzania and southern Uganda (NCT
and LV)] are shown since the rest had a multiple correlation
coefficient of less than 0.5 between the observations and
the model outputs from the cross-validated MLR model
(Table 8). We observe that much lower prediction skills
is found for the number of dry days compared to that
obtained for the NW days. This is due to the fact both
variables depend not only the intraseasonal distribution
of the rainfall but also on the length of the rainy season.
A longer rainy season generally experiences both a greater
absolute and relative frequency of wet days. By contrast
a longer rainy season tends to be associated with a lesser
relative frequency of dry days; hence an increase in the

length of the season has an inverse (mechanical) effect to
potentially increase the absolute number of dry days.

The good skill of the models for the number of dry days
over NCT and LV (Table 8) indicate that they can com-
plement the models for the NW days (Table 7) that have
the lowest values over the same subregions, especially if
the onset and cessation days have been determined earlier.
An assessment of the cross-validated MLR models and the
residual analysis clearly indicate that the models over these
two subregions are quite robust and can be incorporated for
operational uses.

3.3.3. Mean duration of wet and dry spells for the
season

The multiple correlation coefficient for the cross-validated
models for the mean duration of wet spells are high
(Table 9), though slightly lower than those of the seasonal
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Table 9. The list of predictors’ combination and skill of regression models for areal-averaged duration of wet spells during the short
rainfall season

Predictors Multiple correlation coefficient
between observed and predicted

LEPS score (%) Durbin–Watson statistic

R Rcv

CK BoBEN, SWAFRC, SINDS, 0.72 0.67 34 1.75
WKU BoBEN, SINDS 0.63 0.57 30 1.93
CS BoBEN, SINDS 0.70 0.59 35 1.42
NCT BoBEN, SINDS, ZIND 0.78 0.71 51 2.25
LV BoBEN, SINDS 0.66 0.58 32 1.87

rainfall totals (Table 6) and ranges between 0.57 and 0.71.
Most of the additional potential predictors picked by these
models are similar to the ones retained for seasonal rain-
fall totals (Table 6) and NW days in a season (Table 7).
The LEPS skill score ranges from 30% to 51% for the
five MLR models. The lowest multiple correlation coef-
ficients and the lowest LEPS skill scores are obtained over
the western sector of the study area (WKU and LV), which
is closely followed by the CS of Kenya and Tanzania. The
model residuals from the five subregions were normally
distributed. In four of these models, the residuals were
independent of each other while over the CS of Kenya and
Tanzania, the test was inconclusive.

Only three subregions have their cross-validated MLR
models achieve multiple correlation coefficients of equal
or more than 0.5 between the time series of cross-validated
model and the actual observations of mean duration of
dry spells. The lowest correlation (0.54) is over southern
Uganda and western Tanzania (LV), followed by CK and
southeastern lowlands with 0.60, while the highest corre-
lation (0.67) obtained over the CS of Kenya and Tanzania.
Niño 3.4 index alone is adequate to describe the interan-
nual variability of the average duration of dry spells during
the short rainfall season over southern Uganda and west-
ern Tanzania (LV). A further assessment showed that the
model residuals over the three subregions were normal dis-
tributed and independent of each other.

3.3.4. Frequency of wet spells of 3 days or more

The multiple correlation coefficient for the cross-validated
models over the five subregions ranges between 0.53
and 0.69. The lowest multiple correlation coefficients are
observed over western Kenya and most parts of Uganda
(WKU) as well as the CS of Kenya and Tanzania. The
LEPS skill score ranges between 25 % and 41% for the five
MLR cross-validated models, with the lowest value again
observed over western Kenya and most parts of Uganda
(WKU). The residuals from these cross-validated MLR
models are normally distributed.

4. Conclusions and recommendations

In summary, this study explores additional potential pre-
dictors from the large-scale (oceanic and atmospheric)
climatic fields which have plausible physical/dynamical

relationship with the seasonal rainfall totals and intrasea-
sonal statistics of wet and dry spells during the short
rainfall season at subregional levels over Equatorial East
Africa region. Four such potential predictors are identified.

The fitting of the cross-validated multiple linear regres-
sion (MLR) models for the seasonal rainfall and intrasea-
sonal statistics of wet spells mainly picked the two of
the additional potential predictors around Bay of Ben-
gal mostly. These predictors are BoBEN (SST index over
the Bay of Bengal extending to west coast of Malaysia
and Indonesia and averaged over July–August period) and
SINDS (a zonal wind component index at 925 mb to the
south of the Bay of Bengal and near the southern tip
of Indian subcontinent averaged over the same period).
Though BoBEN and SINDS indices appear to be located
closer to each other, the two indices are statistically inde-
pendent. The two predictor indices combined accounted
for 40% of the magnitude of the SST changes between the
July–August and OND periods over the Western Pole of
the Indian Ocean Dipole (IOD). Thus they are among the
precursor indicators for the formation of the IOD/ZIND
index especially the Western Pole that usually evolves very
fast in time and closer to the OND season over Equatorial
Eastern Africa.

Consistent with earlier studies, most of the cross-
validated MLR models are developed using two or three
predictors, and occasionally one predictor. Fewer predic-
tors tend to produce better models than those developed
using large numbers of predictors. An assessment of
the models developed showed that the LEPS skill score
is positive for all the models, which indicates that they
performed much better than the climatology and are very
robust. The residuals from the models are confirmed to
be independent and having a normal distribution. Occa-
sionally, the test for independence is inconclusive. This
occurs when the calculated value lies between the lower
and upper boundary of the critical values. The skills of
the models at some subregions for the some intraseasonal
statistics are not high enough to justify their discussion
and future incorporation in operational uses.

For the first time, this study has produced cross-validated
MLR models for various intraseasonal statistics of wet
and dry spells in additional to the routine seasonal rain-
fall models developed by the IGAD Climate Prediction and
Applications Centre (ICPAC) and National Meteorologi-
cal and Hydrological Services (NMHS). Consistent with
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earlier studies which have shown the spatial coherence of
the seasonal rainfall and NW days to be almost equal, the
skills of the models developed for these two variables are
similar thus confirming the spatial coherence tests.

This study has relied mostly on linear statistical meth-
ods that provide important tools for comparing model
predictions and observations and subsequently identifying
model deficiencies. Recent research has however demon-
strated that non-linear methods can yield statistically sig-
nificant increases in prediction skill when compared to
traditional linear techniques. The study therefore recom-
mended non-linear alternatives should be explored to aug-
ment the prediction skills of the models discussed here.
This study also recommends the use of other climatic
fields such as the sub-surface heat content in the search of
additional potential predictors.
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