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Abstract 
Malaria is a leading cause of deaths globally. Rapid and accurate diagnosis of the disease is key to 
its effective treatment and management. Identification of plasmodium parasites life stages and 
species forms part of the diagnosis. In this study, a technique for identifying the parasites life 
stages and species using microscopic images of thin blood smears stained with Giemsa was devel-
oped. The technique entailed designing and training Artificial Neural Network (ANN) classifiers to 
perform the classification of infected erythrocytes into their respective stages and species. The 
outputs of the system were compared to the results of expert microscopists. A total of 205 infected 
erythrocytes images were used to train and test the performance of the system. The system rec-
orded 99.9% in recognizing stages and 96.2% in recognizing plasmodium species. 
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1. Introduction 
Malaria is a global public health threat. It is estimated that about 1 million lives are lost annually due to the dis-
ease, majority of which are children below five years of age [1]. Besides, the scourge poses a serious economic 
burden to the affected families and countries where the disease is endemic [2]. The disease is caused by proto-
zoan parasites of the genus Plasmodium which is transmitted by bites of infected female anopheles mosquito. 
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There are four species of Plasmodium parasites known to cause malaria to humans namely; Plasmodium falci-
parum, Plasmodium vivax, Plasmodium ovale, and Plasmodium malariae. Plasmodium falciparum is the most 
prevalent and is responsible for the most of the deaths. It is common in tropical Africa [3]. The second most 
prevalent Plasmodium species is Plasmodium vivax. It is common in South East Asia [3]. Plasmodium malariae 
and Plasmodium ovale account for a small percentage of the infection [4]. Plasmodium parasites undergo four 
main life stages namely; early trophozoite (or ring stage), mature trophozoite, gametocyte and schizoint stage. 
Gametocyte and schizoint stages are reproductive stages with gametocyte being sexual while schizoint is asex-
ual [5]. 

A key element to successful treatment of malaria is speedy and accurate diagnosis of the disease. Malaria di-
agnosis entails detection of Plasmodium parasites, determination of the parasites life stages and species as well 
as quantification of degree of infection (parasitemia) [6]. A number of diagnostic techniques for the disease exist. 
These include polymerase chain reaction (PCR) based technique which detect the DNA of the micro-organism 
being sought [7]-[9], Rapid Diagnostic Tests (RDT) which detects the antigen generated by the body as a result 
of the parasite attack [7] [10], manual microscopy which entails visual examination of a blood smear sample 
(Thin or thick) to determine the presence of the parasite. Manual microscopy is currently the gold standard me-
thod of malaria diagnosis [7] [11]. The technique is relatively cheap, parasites life stages and species as well as 
parasitemia estimation can be determined by the technique. However, the technique has some challenges which 
including that the process is time consuming with a single test taking up to one hour [12] [13]. The results of the 
tests are difficult to reproduce and unreliable when performed by inexperienced microscopist. Microscopes re-
quire power to operate, a requirement which make them inaccessible in areas where poverty is prevalent. 

The goal of this work is to develop a technique for automating the process of determining Plasmodium para-
site stages and species. These two diagnostic tasks are necessary in administration of correct treatment to a ma-
laria patient [14] [15]. A number of studies have attempted to address this problem [16]-[18]. However, most of 
these studies propose techniques that are not robust enough to be applied for practical purposes. For instance, in 
a stained blood smear image a number of objects are highlighted by the stain. These include: Plasmodium para-
sites, blood bacteria and spores, white blood cells, platelets and crystals of the staining chemical, dust and other 
artifacts [19]. Most studies have not efficiently addressed how to distinguish a valid Plasmodium parasite from 
the rest of the stained objects (artifacts) [19]. Another area that has not been addressed satisfactorily is how to 
deal with variation from blood smear image captured under different conditions [19]. These variations are occa-
sioned by differences in: sample preparation, imaging devices, imaging device settings, imaging conditions such 
as amount and quality of illumination amongst many other factors. Most studies focus attention on analysis of 
morphological and colour features of highlighted objects in images of stained blood smears. However, little ef-
fort is spent in addressing normalization of variations in these features. For example, whereas some erythrocytes 
may be round shaped, others may not due to the fact that they may be overlapping or as a result of cell disorders 
such as anemia [19]. Different Plasmodium parasite species and life stages have features which are interrelated. 
The shapes and pigment of these parasites are not distinct and keep on evolving as the parasite grows. This 
makes automatic machine identification of the parasite species and stages a very difficult task. 

To address the challenges discussed above, a novel technique of determining the species and life stages of 
Plasmodium parasites in infected erythrocytes images is described in this paper. A strategy which mimics hu-
man microscope operator is developed using back propagation artificial neural network (ANN). ANN has got 
many advantages [20] which led to its adoption in this study. These include the fact that it doesn’t require deri-
vation of a mathematical model of the problem to be solved or a priori knowledge of the statistical properties of 
the features to be used for classification. Besides, they have ability to learn and adapt to changes in the environ-
ment without the risk of over-fitting. 

1.1. Artificial Neural Networks (ANN) 
In situations where statistical properties of pattern class are not known, classification of a decision theoretic 
problem is best handled by methods that yield the required decision functions directly via training. Neural net-
work is one such approach. It comprises of inter-connections of nonlinear computing elements organized as 
networks reminiscent of the way neurons are believed to be interconnected in the brain. The basic block of a 
neural network comprises of a computing element where weighted inputs are added followed by a nonlinear ac-
tivation element which receives the sum of the weighted inputs and gives an output value. This basic architec-
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ture of artificial neural network is referred to as the perceptron. They consist of a single layer of neurons. Per-
ceptrons can learn linear decision functions that separate two linearly separable training sets. Figure 1 shows 
schematically the model for two pattern classes. 

The response of the device is based on a weighted sum of its inputs; that is  

( ) 11
n

i i nid x w x w +=
= +∑                              (1) 

This is the linear decision function with respect to the components of the pattern vectors. When ( ) 0d x >  the 
threshold element causes the output of the perceptron to be, 1+ , indicating that the pattern x was recognized as 
belonging to class w1. On the other hand, when ( ) 0d x < , x is classified as belonging to w2. If n such neuron 
models are arranged into a layer, they can be used to classify patterns into 2n pattern classes, provided the 
classes are linearly separable [21]. The limitation of a perceptron is that that it cannot classify classes of patterns 
whose decision functions are not linearly separable. To solve this problem, use is made of multilayer neural 
networks. There are two classes of multilayer neural networks namely, feed-forward networks and feedback 
networks. The feed-forward ANNs allow signals to travel one way only; from the input to output. There are no 
feedback loops and so the output of any layer is not affected by previous output of the same layer. Feed-forward 
networks associate inputs with output and are extensively used in pattern recognition. Feedback network have 
signals travelling in both directions by introducing loops in network. 

1.2. Learning Rule 
A learning rule is a procedure for modifying the weights and biases of a network. Learning rules can be classi-
fied under three categories namely; supervised learning, unsupervised learning, and reinforcement learning. 

In supervised learning, the networkis provided with a training set, which is a set of examples which give 
proper network behaviour: { } { } { }1 1 2, 2 ,, Q Qp t p t p t，， , where Qp  is the thQ  network input and Qt  is the 
corresponding network output commonly referred to as the target. As the inputs are applied to the network, out-
puts are compared to the target. The learning rule is then used to adjust the weights and biases of the network in 
order to minimize the difference between the network outputs and the targets. 

In unsupervised learning, the weights and the biases are modified in response to the network inputs only. 
There are no target outputs available. The algorithm performs some kind of clustering operation. Inputs are ca-
tegorized into finite number of classes. 

In reinforcement learning, the learning algorithm is provided with the network inputs and a grade (also called 
score). The grade is a measure of the network performance over some sequence of output. 

2. Algorithm Development 
Expert microscopist use color, shapes, relative sizes and texture of both infected erythrocyte and Plasmodium 
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Figure 1. The neuron model, it consists of the weighted inputs, the summer, and the activation function f. 
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parasites to distinguish between different life stages and species of Plasmodium parasites. Therefore, an auto-
mated system for performing such classification using images of thin blood smear should be able of inferring 
information about color, and morphology of infected erythrocytes and Plasmodium parasites from the images. It 
is therefore logical that the system should comprise of classifiers trained with color and morphological features 
on infected erythrocyte images in order to categorize various classes of the parasite life stages and species. This 
is the model used to develop such a system in this work. A block diagram of the model is depicted in the Figure 2. 

3. Methodology 
Images of thin blood smear were obtained from two sources, namely Center for Disease Control (CDC) [22] and 
Kenya Medical Research Institute (KEMRI) [22] [23]. The images were preprocessed by performing median 
filtering operation with a filter kernel of 5 by 5 to remove noise. The images were then spatially rescaled to a 
uniform size. Identification of infected erythrocytes was then done by a trained ANN using erythrocytes RGB 
feature as its input [24]. 

Automation of Plasmodium parasites classification into their respective stages and species is a difficult task. 
This is due to the high correlation of parasite features in different stages and species. Based on this difficulty, 
neural network classifiers were considered to be the best tools for the job. This is because they would learn to 
distinguish different stages and species using examples of image features of these parasites used as training set. 

3.1. Stages Classification 
Two sets of features were used to train neural network classifiers to classify Plasmodium life stages. One was, 
direct pixel values of RGB images obtained from the two sources. Another set of features comprised of the pa-
rasites and infected erythrocytes morphological, color and texture information. The features were divided into 
four classes corresponding to the four main life stages of Plasmodium parasites namely; early trophozoites (the 
ring stage), mature trophozoite, schizoint and gametocyte stages. These features were then used to train two 
ANN classifiers to recognize Plasmodium life stages. Algorithmic steps for the two procedure followed are giv-
en in Table 1 and Table 2. A total of 100 images were used in training of ANN classifiers. 
 

Thin blood smear images 

Feature Extraction 

Species Determination Stages Determination 

Plasmodium faciparum/ 
Plasmodium ovale/ 
Plasmodium vivax/ 

Plasmodium malariae 

Ring stage/ 
Mature trophozoite/ 

Schizont/ 
Gametocyte  

Figure 2. Block diagram showing a black box model of Plasmodium parasites stages and 
species classification. 
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Table 1. Algorithmic steps for training ANN to identify Plasmodium life stages using color features. 

1. Load RGB images with different life stages ofPlasmodium parasites 
2. Convert the image into double class. 
3. Extract the red, green, and blue intensity pixel values from images of infected erythrocytes. These features should be obtained from infected regions of erythrocytes 
4. Form feature vectors comprising of three elements using the three colour components extracted in step 3 
5. Categorize these feature vectors into four classes; early trophozoites, mature trophozoite, schizonts, and gametocytes stages. 
6. Form the corresponding target (desired output) vector for feature classes of step 5. The four target vectors for the four classes were, [1 0 0 0]T, [0 1 0 0]T, [0 0 1 0]T, 

[0 0 0 1]T where T denotes matrix transpose. 
7. Train a multilayer neural network with varying numbers of hidden neurons and record learning accuracies. 
8. Choose the ANN with highest degree of classification accuracy and generalization 

 
Table 2. Algorithmic steps for training ANN to identify Plasmodium life stages using colour, morphological and texture 
features. 

1. Load images of infected erythrocytes to a computer 
2. Extract the RGB features from infected regions of erythrocytes 
3. Obtain binary images of infected erythrocytes and Plasmodium parasites using suitable segmentation techniques 
4. Determine the following features from the segmented objects; 

i. Ratio of the parasite area to area of the infected erythrocyte 
ii. The seven moment invariants of both the color and binary images 

5. Use the intensity and saturation components of infected erythrocyte to determine the following features 
i. R-measure 
ii. 3rd moment 
iii. Uniformity 
iv. Entropy 

6. Form a feature vector from the features extracted above 
7. Use the feature vector obtained in 5 above to train a multi-layer neural network to categorize images of infected erythrocytes into their respective life stages. 
8. Determine the classification accuracy of the multi-layer artificial neural network. 
9. Choose the network that gave the highest degree of classification accuracy and generalization 

 
Artificial neural network was designed and trained using the steps described in Table 1 and their performance 

noted for different numbers of hidden neurons. The training set comprised of a 3 by 800 matrix of RGB input 
features and a target matrix of 4 by 800 elements. The training set was divided into four classes corresponding to 
the four stages of Plasmodium parasites. A fifth of the training set was set aside for validating the network per-
formance. 

The next technique explored for Plasmodium parasites stages differentiation was the use of the parasites 
morphological, colour and texture information. Here, another set of features comprising of morphological (shape 
and size), colour and texture features were extracted. The features are similar to what human microscopists use 
to distinguish between stages and species of Plasmodium parasites. Once an erythrocyte had been identified as 
infected, the parasite size, shape, texture, number of nucleated objects per infected erythrocyte, and their separa-
tion distances were evaluated. Besides colour information was also represented in form of the average hue, sa-
turation, intensity, red, green, and blue components of the infected erythrocytes. These parameters were then 
used as feature vector for training a multilayer neural network to classify Plasmodium parasites into its respec-
tive life stages. The training set comprised was made up of 15 by 800 input features and a 4 by 800 target matrix. 
This training set was also divided into four groups corresponding to four plasmodium parasites life stages with a 
fifth of the feature vector used for validation. The algorithmic steps used for this classification task are given in 
Table 2. 

The neural network classifier described above was trained with different number of hidden neurons and their 
performances recorded. 

3.2. Species Determination 
As was the case with stages classification, species identification was experimented using two approaches. One 
was training a multilayer neural network classifier using only colour information of the infected erythrocyte, and 
the second scheme was to use a combination of colour, morphology, and texture features of infected erythrocyte. 
In both cases, a total of 205 infected erythrocyte sub-images were used to form 205 feature vectors. 80 feature 
vectors were extracted from Plasmodium falciparum infected erythrocytes, 50 feature vectors were extracted 
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from Plasmodium ovale infected erythrocytes, 50 feature vectors were extracted from Plasmodium vivax in-
fected erythrocytes, while, 35 feature vectors were extracted from Plasmodium malariae infected erythrocytes. 
The feature vectors were used to train multilayer artificial neural network classifiers. 

In the first case RGB features were used to form the feature vector. These were the red, green, and blue com-
ponents of the infected erythrocytes. The features were divided into four classes—the four species of Plasmo-
dium parasites which infect humans. 

In the second case colour, morphological and texture information for both the detected parasites and infected 
erythrocytes were used to form the feature vector. The features were divided into four classes, the four species 
of Plasmodium parasites which infect humans. Table 3 and Table 4 give the algorithmic steps used to extract 
the features and train the classifiers. 

A feature vector of 3 by 205 elements was formed. Four fifth of these features were used in training of an 
ANN classifier while remaining features were used for validation of the network. 

A total of 4000 features were extracted from the infected erythrocyte images. These features were divided into 
4 classes based on the species of plasmodium parasites that was infecting the erythrocyte they were extracted 
from. 

4. Results and Discussion 
4.1. Test Results for Stages Determination 
Table 5 gives the results obtained after training an ANN classifier with colour features. From these results it can 
be seen that the network attained an overall classification accuracy of 75.5% with a generalization ability of 
51.1%. Regression plot for the network is shown in Figure 3. The validation session shows that that the network 
performed relatively poor (correlation of 51.8%) when tested with features which were not used in training it 
(the validation set). This implies that there would be nearly a 50% chance of correct diagnosis by the classifier 
using colour features as the input. 

For the second ANN classifier, morphological, colour and texture features were extracted from the same 30 
images used in the first classifier. The performance of the network was recorded in Table 6. 

From these results it can be seen that the network attained an overall classification accuracy of 90.34% with a 
generalization ability of 99.91%. Regression plot for the network is shown in Figure 4. This is a great im-
provement compared to the previous value of 51.8% obtained from ANN trained with RGB features to perform 
Plasmodium parasite identification. This implies that colour features alone are not adequate to distinguish dif-
ferent life stages of plasmodium parasites but rather morphological and texture of the infected cell ought to be 
factored in as well. The system generalization ability as impressive as can be seen from the validation column of 
Table 6. This implies that given similar features independent of the training set, there would be a 99.91% 
chance of correct diagnosis. 

4.2. Test Results for Species Identification 
Classification accuracies of neural networks trained to differentiate species of Plasmodium parasites using two 
sets of features were investigated. One neural network was trained with RGB features while the other network 
was trained with a combination of morphological, colour and texture features. The networks performances were 
monitored for different number of hidden neurons and training was stopped when the network reached the opti-
mum performance, i.e. when no further improvement in the classification accuracy of the network could be 
made. Table 7 show the best performance attained by both networks. 
 
Table 3. Algorithmic steps for training ANN to identify Plasmodium parasites species using color features. 

1. Load RGB images with different life stages of Plasmodium parasites 
2. Convert the image into double class. 
3. Extract the red, green, and blue intensity pixel values from images of infected erythrocytes. These features should be obtained from infected regions of erythrocytes 
4. Form feature vectors comprising of three elements using the three colour components extracted in step 3 
5. Categorize these feature vectors into four classes based on the parasite species that infected the erythrocyte which the features were extracted from. 
6. Form the corresponding target (desired output) vector for feature classes of step 5. The four target vectors for the four classes were, [1 0 0 0]T, [0 1 0 0]T, [0 0 1 0]T, 

[0 0 0 1]T where T denotes matrix transpose. 
7. Train a multilayer neural network with varying numbers of hidden neurons and record learning accuracies. 
8. Choose the ANN with highest degree of classification accuracy and generalization. 
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Table 4. Algorithmic steps for training ANN to identify Plasmodium species using colour, morphological and texture fea-
tures. 

1. For each infected erythrocyte sub-image, generate its RGB and HSI colour histograms and compute the first five statistical moments for each histogram. 
2. Use RGB and HSI colour components of infected erythrocyte sub-images to compute four statistical texture measures namely; 

i. R-measure 
ii. 3rd moment 
iii. Uniformity 
iv. Entropy 

3. Threshold the infected erythrocyte sub-image using the first threshold value, T1 obtained from Zack’s algorithm to produce a binary image of the infected erythrocyte 
and use this image to compute the following features; 

i. Infected erythrocyte relative size, Sif. This is obtained as follows; 

_
_ _if

I areas
I area nI area

=
−

 

where, 
I_area = the number of foreground pixels in an infected erythrocyte 
nI_area = the number of foreground pixels in a non-infected erythrocyte 

ii. First five statistical moments of the infected erythrocyte shape signature 
iii. Eccentricity of the erythrocyte 
iv. Compactness 
v. Roundness 
vi. Aspect ratio 
vii. Form factor 
viii. Solidity 
ix. Convexity 
x. Extent 
xi. Erythrocyte centroid 

4. Threshold the infected erythrocyte sub-image using the second threshold value, T2 obtained by zack’s algorithm to produce a binary image of the potential Plasmo-
dium parasite. Use this binary image to compute the following features; 

i. Relative size of the parasite. This is given by the following expression; 

. .
Ap

A I E
=  

where Ap is the area of the parasitized region and A.I.E is the total area of the infected erythrocytes. 
ii. Eccentricity of the parasite 
iii. Compactness 
iv. Solidity 
v. Convexity 
vi. Aspect ratio 
vii. Form factor 
viii. Extent 
ix. Roundness 
x. Number of nucleated objects 
xi. Separation distances of the nucleated objects 
xii. Distances of the nucleated object from the centroid of the infected erythrocyte 

5. Form a feature vector of each infected erythrocyte sub-image using features obtained from steps 1, 2, 3, and 4 above. 
6. Group these feature vectors in four categories based on the Plasmodium species infecting the erythrocyte 
7. Train a multilayer ANN using the features of step six above as the training set. 
8. Vary the number of neurons in the hidden layer of the ANN and record the performance of the resulting classifier. 
9. Determine the best performance obtained in step 8 above. This is the classification accuracy of the ANN. 

 
Table 5. Performance of stages identification using only RGB colour features of the detected Plasmodium parasites. 

Feature vector used Training session 
% accuracy 

Validation session 
% accuracy 

Test session 
% accuracy 

Overall performance 
% accuracy 

RGB features vectors only 91.9 51.8 74.8 75.5 
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Figure 3. Performance of an ANN trained with RGB features to per-
form stages recognition. 

 
Table 6. Performance of stages identification using morphological, colour and texture features of the detected Plasmodium 
parasites. 

Feature vector used Training session 
% accuracy 

Validation session 
% accuracy 

Test session 
% accuracy 

Overall performance 
% accuracy 

RGB features vectors only 95.93 99.91 99.76 90.34 
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Figure 4. Performance of an ANN trained with colour, morphological and texture features to 
perform Plasmodium stages identification. 
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The best performance recorded was produced by the network trained with a combination of morphological, 
colour and texture features. This network yielded an overall classification of 95.85% with 93.2% generalization 
ability as can be seen from the regression plot of Figure 5. This implies that for a new sample being classified 
by the network, there would be a 96.26% chance of correct species identification. This is a great improvement 
from the other network trained only with colour features. As before, the reason for this can be attributed to the 
fact that a combination of colour, morphology and texture features describes Plasmodium parasites species more 
precisely as compare to colour features alone. It was therefore concluded that artificial neural network for spe-
cies identification trained with colour, morphological, and texture features should be adopted for development of 
the malaria diagnosis system. 

5. Conclusions 
In this paper, a technique of classifying plasmodium parasites life stages and species in thin blood smear images 

 
Table 7. ANN performance for species identification. 

Feature vector used Training session 
% accuracy 

Validation session 
% accuracy 

Test session 
% accuracy 

Overall performance 
% accuracy 

RGB features vectors only 60.0 24.0 16.6 33.5 

Morphological, colour and texture 100 93.2 96.2 95.9 
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Figure 5. Performance of ANN trained with colour, morphological and texture features to identify Plas-
modium species. 
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using ANN was developed. Algorithmic steps for extracting features from infected images as well as training of 
different ANN classifiers were described. The trained networks were then tested using validation samples dif-
ferent from those used as the training set. 

The ANN classifier for stages identification attained a classification accuracy of 99.9% and 97.76% in train-
ing and validation respectively. The ANN classifier for species identification attained sensitivities of 96.2% and 
93.2% in training and validation respectively. Colour, morphological and texture features of infected erythrocyte 
images were found to be most suitable inputs to the above classifiers. 

This technique has the potential for substituting human microscopist in clinical diagnosis of malaria. The in-
strumentation requires implementing the technique comprising of an optical microscope fitted with a digital mi-
croscope. The digital camera should be interfaced to a computer installed with a software for acquisition of mi-
croscopic images and processing them using the described technique. 
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