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A NOTE ON PLANARITY STRATIFICATION OF HURWITZ

SPACES

JARED ONGARO AND BORIS SHAPIRO

Abstract. One can easily show that any meromorphic function on a complex
closed Riemann surface can be represented as a composition of a birational
map of this surface to CP

2 and a projection of the image curve from an ap-
propriate point p ∈ CP

2 to the pencil of lines through p. We introduce a
natural stratification of Hurwitz spaces according to the minimal degree of a
plane curve such that a given meromorphic function can be represented in the

above way and calculate the dimensions of these strata. We observe that they
are closely related to a family of Severi varieties studied earlier by J. Harris,
Z. Ran and I. Tyomkin.

1. Basic definitions and facts

In what follows we will always work over the field C of complex numbers and by
a genus pg(C) of a (singular) curve C we mean its geometric genus, i.e. the genus
of its normalization. We start with the following statement.

Proposition 1. Any meromorphic function f : C → CP
1 on a complex closed

Riemann surface C can be represented as f = πp ◦ ν where ν : C → CP
2 is a

birational mapping of C to its image and πp : ν(C) → CP
1 is the projection of the

image curve ν(C) from a point p ∈ CP
2 to the pencil of lines through p.

Proof. Let C(C) be the field of meromorphic functions on C. Consider its subfield
C(f) ⊂ C(C) generated by f (i.e. the set of all rational functions of f). Since C is
one-dimensional the field extension C(C) : C(f) is finite. Choose any meromorphic
function g : C → CP

1 generating this extension. Removing a point from CP
1 and

its inverse images under f and g, we get a birational mapping C\ {finite set} → C2

given by the pair (f, g). Its compactification gives a birational mapping ν : C →
CP

2. Projection ”along the second coordinate” gives a presentation of the original
meromorphic function f : C → CP

1 as f = πp ◦ ν. �

Obviously if ν maps C birationally on its image and f = πp ◦ ν for some point

p ∈ CP
2, then deg(ν(C)) = deg f if and only if p /∈ ν(C) and deg(ν(C)) > deg f if

p ∈ ν(C).

Definition 1. The planarity defect pdef(f) of a meromorphic function f : C →
CP

1 equals

pdef(f) := min
ν

(deg(ν(C))− deg(f)

such that f = πp ◦ ν as above.

We start with the following simple observation.

Lemma 2. Given f : C → CP
1, then pdef(f) = 0 if and only if h0(f⋆(O1)) ≥ 3,

and for almost any point p ∈ C and any other point q 6= p,

h0(f⋆(O(1)) − p− q) = h0(f⋆(O(1))) − 2.
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2 J. ONGARO AND B. SHAPIRO

Proof. Indeed, observe that f determines a 1-dimensional linear subsystem in the
complete linear system f⋆(O(1)). (We count dimensions of linear systems projec-
tively.) Moreover, if rf = h0(f⋆(O(1))) ≥ 3 then the system f⋆(O(1)) defines a

map φf : C → CP
rf−1 with rf−1 ≥ 2. If additionally, sections of f⋆(O(1)) separate

each generic point on C from all other points then φf is birational on the image.
The latter condition is made explicit above. Choosing an appropriate 3-dimensional
subsystem of f⋆(O(1)) including f , we get the required statement. �

Unfortunately, the second condition is not easy to check in concrete situations,
see Remark below. We say that a linear system L on a curve C is birationally
very ample if the image of C in the projectivized space of its sections is birationally
equivalent to C, comp. [17].

The following sufficient condition of the birational very ampleness of f⋆(O(1))
is valid.

Lemma 3. If f : C → CP
1 has at most one complicated branching point, then

pdef(f) = 0 if and only if h0(f⋆(O(1))) ≥ 3. In particular, under the above as-
sumptions, if deg(f) = d ≥ g + 2 where g is the genus of C then pdef(f) = 0.

Proof. As in Lemma 2, the necessary condition for pdef(f) = 0 is rf := h0(f⋆(O(1))) ≥
3. By Riemann-Roch’s formula

rf := h0(f⋆(O(1))) = d− g + 1 + h0(K \ (f)∞), (1.1)

where (f)∞ is the pole divisor of f . The linear system f⋆(O(1)) determines the
mapping φf : C → CP

rf−1. Moreover if rf ≥ 3 and f has at most one complicated
branching point, then φf defines a birational mapping of C on its image φf (C).
Indeed, since rf ≥ 3 the only thing that we have to exclude is that φf : C → φf (C)
is a non-trivial covering. Assume that φf : C → φf (C) is a non-trivial covering.
Notice that independently of the fact whether φf is birational on the image or not,

f = πp◦φf where πp is a projection of CP2\p→ CP
1 from some point p ∈ CP

2. Also

the map f can be lifted in the standard way to f = π̃p ◦ φ̃f where φ̃f : C → φ̃f (C)

is the standard lift of φf to the normalization φ̃f (C) of the image φf (C), and π̃p is

the composition of the standard map from the normalization φ̃f (C) to the image
curve φf (C) with the projection πp. Branching points of f are either the images

under π̃p of the branching points of φ̃f or the branching points of π̃p itself. But
each branching point of π̃p is a non-simple branching point of f . Contradiction.

The case when φf (C) is a line in CP
2 is obviously impossible due to the dimension

of the linear system f⋆(O(1)). Finally observe that if d ≥ g + 2 then rf is at least
3 by Riemann-Roch’s formula (1.1). �

Remark. Observe that for d ≥ g+1, any curve C of genus g admits a meromorphic
function of degree d with all simple branching points, i.e. the natural map Hg,d →
Mg where Mg is the moduli space of curves of genus g is surjective, see [20].
Also for d ≥ 2g + 1, no genericity assumptions whatsoever on f are required for
birational ampleness since f⋆(O(1)) becomes very ample and defines an embedding
C → CP

rf−1. However in the interval g + 2 ≤ d ≤ 2g this linear system might
define a non-trivial covering on the image as shown by the next classical example,
see Proposition 5.3, [11]. This circumstance shows that one needs some additional
assumption on the branching points to avoid such coverings.

Example. Let C be a hyperelliptic curve of genus g > 2 and let |L| : C → CP
1 be

the hyperelliptic map. Let s0 and s1 be a basis for H0(L). Riemann-Roch’s formula

gives that h0(gL) = g + 1 < 2g. Note that there are precisely
(
d+n−1
n−1

)
monomials
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of degree d in n variables. Therefore there are precisely d+ 1 monomials of degree
d in s0 and s1. The map |L| : C → CP

1 is given by

C ∋ p 7→ [s0(p) : s1(p)] ∈ CP
1,

while the map |mL| : C → CP
g is given by

P 7→ [s0(p)
g : s0(p)

g−1s1(p) : · · · : s1(p)
g].

But it is now clear that |mL| : C → CP
g can be factored as |L| : C → CP

1 followed

by the Veronese embedding V : CP1 → CP
g. Hence, the image of C under the

map |mL| is a rational normal curve. Now suppose that m > g. Then Riemann-
Roch’s formula gives h0(mL) = 2mg+1 > m+1. Thus, s0 and s1 only generate a
subspace of H0(mL) and the above argument no longer works (which is good since
|mL| determines a closed embedding).

We now characterize the vanishing of the planarity defect in different terms.
Consider the push-forward sheaf f⋆(OC) on CP

1. Since f is a finite map of compact
curves, f⋆(OC) is a vectorbundle on CP

1 whose dimension equals deg(f). By the
well-known result of Grothendieck, f⋆(OC) = O ⊕

∑
iO(ai), where ai are integers

see e.g. [12]. Observe that all ai must be negative since h0(OC) = h0(f⋆(OC)) = 1.

Proposition 4. For any meromorphic function f : C → CP
1 with at most one

complicated branching point, its planarity defect pdef(f) vanishes if and only if
amax = −1, where amax is the maximal of all ai’s in the above notation.

Proof. Let us show that under our assumptions pdef(f) = 0 ↔ amax = −1. We
need to check that h0(f⋆(O(1)) ≥ 3 if and only if amax = −1. Consider f⋆(f

⋆(O(1)).
Observe that, h0(f⋆(f

⋆(O(1))) = h0(f⋆(O(1))) since f is a finite map of compact
algebraic curves. Now by projection formula, see Ex. 8.3 in [11]

f⋆(f
⋆(O(1)) = O(1)⊗ f⋆(OC) = O(1)⊕

∑

i

O(ai + 1).

Since amax = −1 then at least one of the terms O(ai + 1) equals O. Therefore
h0(f⋆(f

⋆(O(1))) = h0(O(1))+
∑

i h
0(O(ai+1)) ≥ 2+1. In fact, h0(f⋆(f

⋆(O(1))) =
2 + the number of indices i such that ai = −1. �

Proposition 4 shows that there is a connection of the planarity defect with the
slope invariants of meromorphic functions and with the Maroni strata, comp. [6]
and [18]. In fact, the following statement is true.

Proposition 5. Given a meromorphic function f : C → CP
1 of degree d, its

planarity defect pdef(f) equals d′ − d where d′ is the minimal degree of a linear
system L such that a) L is birationally very ample and b) the (effective) divisor of
f⋆(O(1)) is contained in the (effective) divisor of L.

Proof. If f⋆(O(1)) can serve as L then there is nothing to prove. Otherwise the
divisor of L must be strictly larger than that of f⋆(O(1)). In the latter case one
can choose a 1-dimensional linear subsystem of L defining a meromorphic function
g : C → CP

1 which is not proportional to f . Consider the map ψ : C → C
2 given

by (f, g) and extending it to the map ψ̃ : C → CP
2 we get the required planarity

defect. �

1.1. Planarity stratification of small Hurwitz spaces. The small Hurwitz
space of degree d functions of genus g curves is defined as:

Hg,d = {f : C → CP
1|f has only simple branched points, deg f = d ≥ 2, gen(C) = g ≥ 0}.
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Recall that dimHg,d equals the number of (simple) branching points of a function
from Hg,d and is given by the formula

dimHg,d = 2d+ 2g − 2.

Small Hurwitz spaces were introduced and studied in substantial details by Clebsch
[5] and Hurwitz [13] at the end of the 19-th century as a tool of investigation of the
moduli space Mg of genus g curves.

Proposition 1 allows us to introduce the planarity stratification of Hg,d:

H
m(g,d)
g,d ⊂ H

m(g,d)+1
g,d ⊂ · · · ⊂ H

M(g,d)
g,d = Hg,d, (1.2)

where Hl
g,d consists of all meromorphic functions in Hg,d whose planarity defect

does not exceed l.
We present some information about this stratification.

Proposition 6. For any pair (g, d) where g ≥ 0 and d ≥ 2,

m(g, d) = min
l≥0

(
d+ l − 1

2

)
−

(
l

2

)
≥ g. (1.3)

which gives

m(g, d) = max

(
0,

⌈
g −

(
d−1
2

)

d− 1

⌉)
. (1.4)

Moreover the following result holds.

Theorem 7. In the above notation, given g, d and l ≥ m(g, d), the stratum Hl
g,d

is irreducible and its dimension is given by:

dimHl
g,d = min (3d+ g + 2l − 4, 2d+ 2g − 2). (1.5)

The substantial part of the proof of Theorem 7 consists of the following general-
ization of the famous result by J. Harris [11] showing that the space of plane curves

of genus g and degree d where g ≤
(
d−1
2

)
is an irreducible variety whose dense subset

consists of nodal curves of genus g (irreducibility of the Severi varieties). Fixing

as above a point p ∈ CP
2, denote by Sg,d,l the variety of reduced irreducible plane

curves of degree d having genus g and order l at p, where g ≤
(
d+l−1

2

)
−
(
l
2

)
. (The

order of a plane curve at a given point is the multiplciity of its local intersection
at p with a generic line passing through p.) Denote by Wg,d,l ⊂ Sg,d,l its subset
consisting of curves having an ordinary singularity of order l at p (i.e. transversal
intersection of l smooth local branches) and only usual nodes outside p.

Theorem 8. (1) Wg,d,l is a smooth manifold of dimensional 3d+ g + 2l − 1;
(2) Wg,d,l is dense in Sg,d,l;
(3) Sg,d,l is irreducible.

The main result of [11] is the proof of the same statement in the basic case l = 0.
Theorem 8 follows from already known results of Z. Ran [19] and I. Tyomkin [22].
We first prove Proposition 6 and Theorem 8 and then Theorem 7.

Lemma 9. The genus of a plane curve decreases by at least
(
l
2

)
by a singularity of

order l. Moreover the ordinary singularity of order l decreases the genus by exactly(
l
2

)
.

Proof. The following algorithm describes by which number the genus of a plane
curve of degree d is decreased due to a singularity of order l.

Step 1. Subtract
(
l
2

)
from

(
d−1
2

)
.

Step 2. Blow up the singularity in the plane. The strict transform of the curve
will intersect the exceptional divisor at l points (counting multiplicities). If each
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of these (geometrically distinct) points is smooth on the strict transform then the

genus drops by exactly
(
l
2

)
.

Step 3. If among the latter points there exist singular we have to repeat the
previous step, i.e. if the order of singularity is s then we decrease the genus by

(
s
2

)
,

then we blow up this point etc.
After finitely many such steps the curve becomes smooth. (Further blow-ups

will not change the genus). Thus the minimal decrease of genus equals
(
l
2

)
. �

Proof of Proposition 6. The necessity of (1.3) is obvious. Indeed we need to con-
struct a plane curve of degree d + l such that it has a singularity of order l at p
(so that its projection from p will be a covering of degree d) and has a genus of
normalization equal to g. Having a singularity of order l at p decreases the genus
by at least

(
l
2

)
compared to

(
d+l−1

2

)
which is the genus of a smooth curve of degree

d + l, see Lemma 9 above. Thus the inequality (1.3) must be satisfied. To show
that the least value of l satisfying (1.3) is enough consider first a configuration of
l generic lines through p and additionally d lines in CP

2 in general position. This
curve has genus 0. A slight deformation of this curve by a polynomial vanishing up
to order l+1 at p will resolve all nodes outside p and given g = minl≥0

(
d+l−1

2

)
−
(
l
2

)
.

A more careful deformation will resolve any number of nodes between 0 and
(
d
2

)
,

see the proof of Theorem 8 below. The classical case g ≤
(
d−1
2

)
is well presented in

[10], Appendix E and the general case in [19]. �

We will need some information about the Hirzebruch surfaces and the Severi
varieties on them. For a given non-negative integer n, let Σn = Proj(OCP1 ⊕
OCP1(n)) be the Hirzebruch surface and let κ : Σn → CP

1 be the natural projection.
Consider two non-zero sections (1, 0), (0, σ) ∈ H0(CP1,OCP1 ⊕ OCP1(n)). They
define the maps

CP
1 \ Z(σ) → Σn,

where Z(σ) is the zero locus of σ. We denote the closures of the images of these
maps by L0 and L∞, respectively. (It is clear that the homological class of L∞ is
independent of the choice of σ.) The following facts are standard.

Proposition 10. (i) The Picard group Pic(Σn) is a free abelian group generated
by the classes F and L∞, where F denotes the fiber of projection κ. (Observe that
L0 = nF + L∞.)
(ii) The intersection form on Pic(Σn) is given by F 2 = 0, L2

∞ = −n, and F ·L∞ = 1.
(iii) Any effective divisor M ∈ Div(Σn) is linearly equivalent to a linear combina-
tion of F and L∞ with non-negative coefficients. Moreover, if M does not contain
L∞, then it is linearly equivalent to a combination of F and L0 with non-negative
coefficients.
(iv) The canonical class is given by:

KΣn
= −(2L∞ + (2 + n)F ) = −(L0 + L∞ + 2F ).

(v) Any smooth curve C with the class dL0 + kF has genus g(C) = (d−1)(dn+2k−2)
2 .

Let g, d, k be non-negative integers. We define the Severi variety Vg,d,k ⊆
|OΣn

(sL0 + kF )| to be the closure of the locus of reduced nodal curves of genus
g which do not contain L∞, and we define V irr

g,d,k ⊂ Vg,d,k to be the union of the
irreducible components whose generic points correspond to irreducible curves.

The main result of [22] (see Theorem 3.1 there) is as follows.

Theorem 11. For any triple g, k, d of non-negative integers, the variety V irr
g,d,k ⊂

Vg,d,k (if non-empty) is irreducible and of expected dimension.
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Proof of Theorem 8. Let us first naively count the expected dimension of Sg,d,l.
Indeed, the dimension of the space Sg,d,l of plane curves of degree d + l with a

singularity at p of order l equals (d+l)(d+l+3)
2 −

(
l+1
2

)
. The number of nodes on such

a curve under the assumptions that it has genus g equals

♯nodes =

(
d+ l − 1

2

)
−

(
l

2

)
− g. (1.6)

Assuming that each node decreases the dimension by 1 we get

exp dimSg,d,l = 3d+ g + 2l− 1.

We finish our proof with a reference to Theorem 11. Indeed, if one blows up the
point p ∈ CP

2 then one gets the first Hirzebruch surface Σ1. Observe that plane
curves of degree d+ l having a singularity of order l at p will after the blow-up lie in
the class (d+ l)L0 − lL∞ = dL0 + lF . Therefore the above set Wg,d,l of irreducible
plane curves having the singularity of order l at the point p after this blow-up will
transform into the space V irr

g,d,l in the above notation. (We consider only the strict

transform of each curve disregarding the exceptional divisor.) Thus by the latter
Theorem, the variety Sg,d,l is irreducible and of expected dimension. Another proof

of essentially the same result directly in the plane CP
2 can be found in [19], see

Irreducibility Theorem on p. 122. �

Proof of Theorem 7. To settle Theorem 7 we need to prove an analog of Propo-
sition 17 or a weaker statement that such curves equivalent as coverings do not
appear in families of G3-orbits. If this is true then dimHl

g,d = dimSd,l,g − 3. We
need the following Proposition.

Let S(d, l, g) be the Severi variety of all plane curves of degree d + l, genus g
and ordinary singularity of order l at point p. Let H(g, d) be the Hurwitz space
of all branched coverings of degree d and genus g. Let B : S(d, l, g) → H(g, d) be
the branching morphism sending each plane curve from S(d, l, g) to the branched

covering from its normalization to CP
1 obtained by projection from the point p.

Proposition 12. The dimension of the fiber of the above map at the curve N
obtained by normalization of a generic curve C from S(d, l, g) equals h0(N,ON (E))
where E is the divisor of degree d+2l on N obtained as the pull-back of projection
point p together with the pull-back of the general line section of C. (For an arbitrary
curve C ∈ S(d, l, g) the dimension of the fiber is at most h0(N,ON (E)).)

Proof. Let π : Σ1 → CP
2 be the standard projection of the first Hirzebruch surface

Σ1 obtained by the blow-up of the point p to CP
2. We have natural maps

N
g

//

f

!!
❈

❈

❈

❈

❈

❈

❈

❈

Σ1

��

CP
1

and exact sequences

0 // TN // g⋆TΣ1

//

��

Ng
//

��

0

0 // TN // f⋆TCP1
// Nf

// 0.

It is known that Def1(N, g) = H0(N,Ng) and Def1(N, f) = H0(N,Nf ) are
the tangent spaces to the space of deformations of the pairs (N, g) and (N, f) resp.
The first one is the tangent space to the Severi variety if g is an immersion; the
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second one is the tangent space to the Hurwitz space. The sequence (1.1) implies
that the kernels α : g⋆TΣ1

→ f⋆TCP1 and Ng → Nf coincide since g⋆TΣ1
։ f⋆TCP1 .

Since the CP
1-bundle Σ1 → CP

1 admits two non-intersecting sections (the line L
and the inverse image of p in Σ1) then Ker α = g⋆OΣ1

(L+ π−1(p)).
�

For small number of nodes compared to the degree of the irreducible plane curve
Theorem 7 is immediate from the following fact, see Exercise 20 (iii) of § 1, Appen-
dix A, Ch. 1 of [2]. (Moreover a stronger statement is valid.) It claims that if the
number δ of nodes of an irreducible plane nodal curve Γ ⊂ CP

2 of degree d satisfies
the inequality δ < d− 3 then the linear system g2d cut out on Γ by lines is complete
and unique on the normalization C of Γ. This fact immediately implies that under
the above assumptions two plane curves whose normalizations are isomorphic will
be projectively equivalent. Then for degree at least 4 it will be straight-forward
that if the isomorphism of their normalizations is induced by the equivalence of
the meromorphic functions obtained by projection from the same point p, then the
projective transformation realizing this equivalence belongs to G3, see the proof
of Proposition 17 below. In general, one should show that for a generic curve in
S(d, l, g), one has h0(N,ON (E)) = 3. This fact is also valid and will appear in a
forth-coming publication [21]. �

Corollary 1. Given g, d as above,

M(g, d) = max

(
0,

⌈
g − d+ 2

2

⌉)
. (1.7)

In particular, m(g, d) =M(g, d) = 0 if and only if d ≥ g + 2.

Proof. From Theorem 7 is follows that M(g, d) equals the minimal non-negative
integer l for which

3d+ g + 2l − 4 ≥ 2d+ 2g − 2 ↔ 2l ≥ g − d+ 2.

The latter inequality implies that M(g, d) = max
(
0,
⌈
g−d+2

2

⌉)
. This formula for

M(g, d) gives that M(g, d) = 0 if and only if d ≥ g + 2. �

Corollary 2. The planarity stratification of Hg,d consists of one term in the fol-
lowing two cases. Either d ≥ g + 2 in which case the planarity defect vanishes, or
d = 3 in which case the planarity defect equals ⌈ g−1

2 ⌉.

Proof. We have that Hg,d consists of one term if and only if m(g, d) =M(g, d). By
Proposition 6 and Theorem 7 (unless M(g, d) vanishes which happens if and only
if d ≥ g + 2) this corresponds to the case when

⌈
g −

(
d−1
2

)

d− 1

⌉
=

⌈
g − d+ 2

2

⌉
.

If d > 3 then the denominator of the left-hand side is smaller than that of the
right-hand side and the numerator of the left-hand side is bigger than that of the
right-hand side which means that the equality never holds. For d = 3 the left-hand
side and the right-hand side coincide giving the planarity defect equal to ⌈ g−1

2 ⌉. �
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1.2. Stratification of Hurwitz spaces with one complicated branching

point. Analogously to the above, given a partition µ = (µ1 ≥ µ2 ≥ · · · ≥ µn) ⊢ d
of positive integer d, denote by

Hg,µ = {f : C → CP
1|f has all simple branched points except at ∞

whose profile is given by µ, deg f = d ≥ 2, gen(C) = g ≥ 0}

the Hurwitz space of all degree d functions on genus g curves with one complicated
branching point at ∞ having a given profile µ. Recall that dimHg,µ equals the
number of simple branching points of a function from Hg,µ and is given by the
formula

dimHg,µ = 2d+ 2g − 2−

n∑

i=1

(µi − 1).

Proposition 1 allows us to introduce the planarity stratification of Hg,µ:

Hm(g,µ)
g,µ ⊂ Hm(g,µ)+1

g,µ ⊂ · · · ⊂ HM(g,µ)
g,µ = Hg,µ. (1.8)

Here Hl
g,µ consists of all meromorphic functions in Hg,µ whose defect does not

exceed l.
By Lemma 3, M(g, µ) ≤ d+ 2.

Proposition 13. For any pair (g, µ ⊢ d) where g ≥ 0 and d ≥ 2,

m(g, µ) = min
l≥0

(
d+ l − 1

2

)
−

(
l

2

)
≥ g. (1.9)

which gives

m(g, µ) =

⌈
g −

(
d−1
2

)

d− 1

⌉
.

(Observe that m(g, µ) = m(g, d) given by (1.3).)

Proof. Since the stratum H
m(g,µ)
g, u should lie at least in H

m(g,d)
g,d or, possibly in the

higher strata of the planarity stratification of Hg,d. Therefore m(g, µ) is at least
equal to the minimal l given by the right-hand side of (1.9). The fact that m(g, µ)
is exactly equal to the minimal l satisfying the latter condition is explained in the
proof of Theorem 14. �

We have the following result above the dimensions of the strata of (1.8).

Theorem 14. In the above notation, given g, d and l ≥ m(g, µ), the stratum Hl
g,µ

is equidimensional and its dimension is given by:

dimHl
g,µ = min (3d+ g + 2l− 4−

n∑

i=1

(µi − 1), 2d+ 2g − 2−
n∑

i=1

(µi − 1)). (1.10)

Proof. Theorem 14 follows directly from Lemmas 15 and 16. �

Fix a flag p ∈ L0 ⊂ CP
2, positive integers g, d, l, and a partition µ ⊢ d. Consider

the locus V ⊂ |O2
CP
(d + l)| of plane curves C such that: 1) deg C = d + l; 2) C is

reduced and irreducible; 3) multpC = l; 4) pg(C) = g; 5) κ−1L0 =
∑

i µiqi where

κ : C̃ → C is the normalization map.
Again let Σ1 = BlpCP

2 be the first Hirzebruch surface obtained by the blow-up

of CP2 at p. Let F0 ⊂ Σ1 be the strict transform of L0, and let F be the class of F0.
Denote by L ⊂ Σ1 the class of the preimage of a general line in CP

2, and denote by
E ⊂ Σ1 the exceptional divisor. Then V can be identified with the locus of curves
C ∈ |OΣ1

((d+ l)L− lE| = |OΣ1
(dL+ lF )| such that i) C is reduced and irreducible;

ii) pg(C) = g; iii) κ−1F0 =
∑

i µiqi. (Here pg(C) is the geometric genus.)
Let V1 ⊂ V be an irreducible component of V .
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Lemma 15. dimV1 ≥ expdim := −KΣ1
· C + g − 1−

∑n
i=1(µi − 1).

Proof. Let o ∈ V1 be a general point, Co be the corresponding curve. By [14] Lemma
A.3 there exists a neighborhood W of o ∈ V1 over which the family CW → W is

equinormalizable, i.e. if C̃W → CW is the normalization then ∀a ∈ W, (C̃W )a →
(CW )a = Ca is the normalization. Thus dimV1 is equal to the dimension of (a com-

ponent of) the deformation space of f : C̃0 → Σ1 satisfying condition (iii). Notice
that condition (iii) has codimension ≤

∑n
i=1(µi−1) in the space of all deformations

of the pair (C̃0, f0). Thus, it suffices to show that (any component of) Def(C̃0, f0)
has dimension at least −KΣ1

· C + g − 1. By the standard deformation theory any

component of the latter space has dimension ≥ dimDef ′(C̃0, f0)− dimOb(C̃0, f0).

In our case Def ′(C̃0, f0) = H0(C̃0, Nf0) and Ob(C̃0, f0) = H1(C̃0, Nf0) where Nf0 is
the normal sheaf of f0, i.e. Nf0 = Coker(TC̃0

→ f∗
0TΣ1

). This implies the statement

since h0(C̃0, Nf0)−h
1(C̃0, Nf0) = χ(C̃0, Nf0) = −KΣ1

·C+g−1 by Riemann-Roch’s
theorem. �

Lemma 16. dimV1 ≤ expdimV1.

Proof. If dimV1 > exp dim then there exists a configuration of r points on F0 such
that {C ∈ V1|C ∩F0 = given configuration} has dimension greater than −KΣ1

· C +
g− 1−

∑n
i=1(µi − 1)−n = −KΣ1

· C + g− 1−F0 · C, which is a contradiction with
[22], Lemma 2.9. �

Corollary 3. Given g, µ as above,

Mg,µ = max

(
0,

⌈
g − d+ 2

2

⌉)
. (1.11)

In particular, mg,µ =Mg,µ = 0 if and only if d =
∑

i=1 µi ≥ g + 2.

Proof. See the proof of Corollary 1.
�

Stratification (1.2) is (almost) the special case of (1.8) the difference being that
one simple branching point is placed at ∞.

Remark. According to the information the author obtained from I. Tyomkin one
can prove that each stratum Hl

g,µ is irreducible for g = 0 and g = 1, and hopefully

for other genera if µ ⊢ d is not very complicated. Whether Hl
g,µ is irreducible for

an arbitrary partition µ is unknown at present and might be a difficult problem.

2. Hurwitz numbers of the planarity stratification and Zeuten-type

problems

Due to irreducibility of strata of (1.2) and equidimensionality of strata of (1.8) we
can introduce the correspoding notion of Hurwitz numbers related to these strata.
Recall that the branching morphism

δg,d : Hg,d → CP
2d+2g−2 \∆ (2.1)

is, by definition, the map sending a meromorphic function f to the unordered set
of its branching points (which are distinct by definiton). Here ∆ ⊂ CP

2d+2g−2 is
the hypersurface of unordered (2d + 2g − 2)-tuples of points in CP

1 where not all
of them are pairwise distinct. It is well-known that δg,d is a finite covering and
its degree hg,d is called the (small) Hurwitz number. In particular, for g = 0 the
corresponding Hurwitz number h0,d equals (2d−2)!dd−3. In general, however closed
formulas for hg,d (as well as for many other Hurwitz numbers) are unknown.

Analogously, the branching morphism

δg,µ : Hg,µ → C
wµ \∆ (2.2)
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is, by definition, the map sending a meromorphic function f ∈ Hg,µ to the un-
ordered set of its simple branching points (which are distinct by definiton). Here
∆ ⊂ Cwµ is the hypersurface of unordered wµ-tuples of points in C where not all of
them are pairwise distinct. Here wµ = 2d+2g− 2−

∑n
i=1(µi− 1). It is well-known

that δg,µ is a finite covering and its degree hg,µ is called the single Hurwitz number.
In particular, for g = 0 the corresponding Hurwitz number h0,µ equals

(d+ n− 2)!
n∏

i=1

µµi

i

µi!
dn−3.

Stratifications (1.2) – (1.8) allow to introduce Hurwitz numbers which take into
account these filtrations. Before we introduce this notion in general, let us start
with a motivating example.

Example. Fixing a point p ∈ CP
2, consider the space Sd,p of all smooth plane

curves of degree d not passing through p. Each such curve defines a branched
covering of CP1 of degree d. There exists a three-dimensional group Gp ⊂ PGL3

of projective transformations preserving p as well as the pencil of lines through p.
In other words, each line through p will be mapped to itself. Obviously Gp acts
(locally) freely on Sd,p for d > 1 and curves from the same orbit define equivalent

branched coverings of CP1. The following simple statement holds.
As usual, two mappings p1 : C1 → CP

1 and p2 : C2 → CP
1 are called equivalent

if there exists an isomorphism f : C1 → C2 s.t. p2 ◦ f = p1.

Proposition 17. Suppose that C1, C2 ⊂ CP
2 are smooth projective curves of degree

at least 4 not passing through p. Then the morphisms πC1
and πC2

are equivalent
if and only if there exists an automorphism f ∈ Gp s.t. f(C1) = C2.

Proof. The ’if’ part being obvious, suppose that πC1
and πC2

are equivalent and
that this equivalence is performed by the isomorphism f : C1 → C2. For each line
ℓ ∋ p, the isomorphism f maps C1 ∩ ℓ to C2 ∩ ℓ; thus, f maps hyperplane sections
of C1 to hyperplane sections of C2. Since both C1 and C2 are embedded in CP

2 by
the complete linear system of plane sections, this implies that F is induced by a
projective automorphism F ∈ PGL3. It remains to check that F ∈ Gp; to that end,
consider a generic ℓ ∋ p; this line intersects C at M = degC > 1 points p1, . . . , pm,
and these points are mapped by F to m distinct points on ℓ. So, F (ℓ) = ℓ for the
generic (whence for any) ℓ ∋ p. If ℓ1, ℓ2 ∋ p, then

F (p) = F (ℓ1 ∩ ℓ2) = F (ℓ1) ∩ F (ℓ2) = ℓ1 ∩ ℓ2 = p,

which completes the proof. �

Denote by hd the number of different 3-dimensional orbits of the above action
on the space Sd,p witth the same set of d(d−1) tangent lines (e.g. branching points
of the projection).
Example. One can easily observe that h2 = 2, h3 = 40 (which are the usual

Hurwitz numbers for degree d and genus
(
d−1
2

)
. But starting with d = 4 the

situation changes. So far the only calculated non-trivial example is d = 4 see [23],
[24] for which h4 = 120× (310 − 1). Numbers hd for d > 4 are unknown at present.

Observe a straight-forward analogy of the calculation of hd with (a special case)
of the classical Zeuten’s problem, see [25], [1]. Namely, given d ≥ 2 and 0 ≤

k ≤ d(d+3)
2 define the number Nk(d) as the number of smooth curves of degree

d passing through k points in general position and tangent to d(d+3)
2 − k lines in

general position. In [25] H. G. Zeuten predicted these numbers for d up to 4. His
predictions were rigorously proven only in the 90’s, see [1] and references therein.

The above problem of calculation of hd is similar to Zeuten’s problem for k = d(d+3)
2 .
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But instead of taking d(d+3)
2 generic lines we should take d(d+3)

2 − 3 generic lines
through a given point p and count the number of 3-dimensional orbits under the
action of Gp.

Definition 2. Introduce the Hurwitz number hlg,µ as the degree of the restriction

of the morphism δg,µ to the (irreducible component of the) stratum Hl
g,µ where

m(g, µ) ≤ l ≤M(g, µ).

By definition, h
M(g,µ)
g,µ = hg,µ. Also the number hd introduced above equals

h0(d−1)(d−2)/2,1d .

3. Final Remarks

1. It would be very interesting to prove/disprove the irreducibility of the strata
Hl

g,µ.

2. It is important to develop tools helping for calculation of the Hurwitz numbers
of Hl

g,d and/or Hl
g,µ due to the fact that they are naturally related to Zeuten-type

problems. In the case of the usual single Hurwitz numbers there exists a standard
combinatorial approach to the calculation of those which is not always very useful
for practical computations but is very important theoretically. Other standard
tools for the usual Hurwitz numbers are the cut-and-join equation, see e.g. [8] and
the ELSV-formula, see e.g. [7]. It might be possible to find analogs of the latter
tools by using an appropriate compactification of the above strata similar to those
already existing in the literature.

3. Another approach to the calculation of the Hurwitz strata of the planarity filtra-
tion might come from the correspondence theorem in tropical algebraic geometry.
Recently in [3] the authors developed some tropical tools for finding the answers to
a similar class of Zeuten-type problems.

4. Finally, we want to mention a recent preprint [4] which gives a criterion when
meromorphic functions of degree d on a certain class of plane curves of degree d
with only nodes and some additional non-degeneracy assumptions might be realized
by a projection from a point outside the curve.

Acknowledgements. We want to thank O. Bergvall, S. Shadrin for discussions,
and especially I. Tyomkin for his explanations of [22] and his help with the proofs
of Theorem 7 and Theorem 14.
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old, arXiv: 1204.6254.

[15] A. Maroni. Le serie lineari speciali sulle curve trigonali. Ann. Mat. Pura Appl. (4), 25:343–354,
1946.

[16] R. Miranda, Linear systems of plane curves, Notices of the AMS, vol. 46(2) (1999) 192–202.
[17] A. Ohbuchi, On some numerica relations of d-gonal linear systems, J. Math. Tokushima Univ.,

vol. 31 (1997), 7–10.
[18] A. Patel, The geometry of Hurwitz space, PhD thesis, Harvard University, April 22, 2013.
[19] Z. Ran, Families of plane curves and their limits: Enriques’ conjecture and beyond, Ann.

Math. vol 130(1) (1989), 121–157.
[20] F. Severi Vorlesungen über algebraische Geometrie, Teubner-Verlag, 1921.
[21] B. Shapiro, I. Tyomkin, On the Severi-type varieties of plane curves, in preparation.
[22] I. Tyomkin, On Severi varieties on Hirzebruch surfaces, Int. Math. Res. Not. IMRN (2007),

no. 23, Art. ID rnm109, 31 pp.
[23] R. Vakil, Twelve points on the projective line, branched covers, and rational elliptic fibrations,

Math. Ann. 320 (2001) 33–54.
[24] R. Vakil, The characteristic numbers of quartic plane curves. Canad. J. Math. 51 (1999), no.

5, 1089–1120.
[25] H. G. Zeuten, Almindelige Egenskaber ved systemer of plane Kurver, Kongelige Danske

Videnskabernes Selskabs Skrifter - Naturvidenskabelig och Mathematisk vol. 10 (1873), 287–

393.

Department of Mathematics, Stockholm University, S-10691, Stockholm, Sweden

E-mail address: ongaro@math.su.se

Department of Mathematics, Stockholm University, S-10691, Stockholm, Sweden

E-mail address: shapiro@math.su.se


	1. Basic definitions and facts
	1.1. Planarity stratification of small Hurwitz spaces
	1.2. Stratification of Hurwitz spaces with one complicated branching point

	2.  Hurwitz numbers of the planarity stratification and Zeuten-type problems
	3. Final Remarks
	References

