PARTIAL REPLACEMENT OF NATURAL RIVER SAND WITH CRUSHED ROCK SAND IN CONCRETE PRODUCTION

MANGURU, G.K., KARUGU, C.K., OYAWA, W.O., ABUODHA, S.O. and MULU, P.W.

1Department of Civil, Construction and Environmental Engineering
Jomo Kenyatta University of Agriculture & Technology
P.O. Box 62000-00200, Nairobi, KENYA
gmanguru@yahoo.co.uk

2Department of Civil and Construction Engineering
University of Nairobi
P.O. Box 50197-00100, Nairobi, KENYA
abuodha@uonbi.ac.ke

ABSTRACT

The use of crushed rock sand as a partial replacement of river sand in concrete production was investigated. Water cement ratio varied between 0.50 and 0.59 for 0 % to 100 % natural sand replacement. The slump range between 48 and 60 mm for 0 % to 100 % natural sand replacement. The average compressive strength of the control concrete (C20) was 22.5 N/mm². The effective natural sand (38) replacement ranged between 0 and 60 % with the best results achieved at 20 % replacement. The peak compressive strength and indirect tensile strength values of 32.2 N/mm² and 1.42 N/mm² respectively were obtained. Modulus of elasticity of concrete increased from 22 KN/mm² to 23 KN/mm² with 20 % replacement of natural sand. Also, the indirect tensile strength increased from 1.28 N/mm² to 1.42 N/mm² with 20 % river sand replacement. The beam deflection ranged between 0.25 mm and 0.4 mm with the least deflection recorded at 20 % CRS and highest deflection of 0.4 mm with the control mix (0 % CRS). The ultimate tensile value of natural sand replacement 0 to 100 % improved the beam deflection. The 20 % CRS content recorded the highest flexural strength of 696.7 N/mm² beyond which the strength decreased to 68 % CRS after which there was a constant value in strength up to 100 % CRS.

Keywords: Fine Aggregates, Natural River Sand, Concrete, Crushed Rock Sand.

Article History: Received 25 June 2013, Accepted 27 July 2013.

1.0 INTRODUCTION

Concrete is generally composed of aggregates, cement and water. The aggregates are usually coarse and fine aggregates. Cement is used for binding the concrete materials together. Coarse aggregates have particles bigger than 5 mm in diameter while fine aggregates have particles smaller than 5 mm in diameter. Cement is hydrated to form a gel around aggregates which sets thus binding the concrete mass. The aggregates should have good mechanical properties in terms of shape, density, grading, hardness, purity to achieve the required strength and durability. The cement commonly used in Kenya is categorized as 32.5 or 42.5 also referred to as power plus (Manguru et al., 2013). The coarse aggregates which are generally crushed rock are mainly produced mechanically by crushers but it is also manually produced on small scale in areas with no other source of income. Generally concrete has high compressive strength with low tensile strength. Essential properties for concrete are strength, durability, and flexure, workability, drying shrinkage, cracking and permeability. Aggregates reactivity potential should be low by controlling the deleterious material content. Good quality water is used for mixing concrete materials. The quality of concrete produced depends on the quality of constituent materials and the way they are proportioned and mixed. The fine aggregate is usually sand sourced from river banks or pits. Coarse aggregates may be classified as normal, light or heavy weight aggregates. Aggregates should be clean and free from organic impurities. Sand should be clean and free from clay, organic content, silt and other inferior materials.

2.0 LITERATURE REVIEW

Conservation of river sand in addition to better ways of disposing wastes from the quarry sites are some of the merits of using UGF reported by Marnadeh (2014). Indirect tensile strength value increased with UGF content up to 20 %, after which a decline in indirect tensile strength was observed. Peak indirect tensile strength value of