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ABSTRACT

This study uses an ARIMA model to provide out-of-sample forecasts for United States housing 

prices as represented by the Case Schiller Index during the financial crises timeline ( between 

2005 and 2009). The major findings are that the model fails to predict the peak/tuming point o f  

the financial crisis but successfully predicted declining prices since 2006:6; therefore the 

magnitude o f the loss realized during that period could have been reduced had the models 

prediction been considered. The model predicted extremely negative one year ahead prices in 

2008:2, 2008:3 and 2008:9 which explains the timeline of the collapse o f  the Bear Stearns and 

Lehman Brothers as well as the subsequent global financial meltdown.
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ABBREVIATIONS AND ACRONYMS
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CHAPTER 1

INTRODUCTION

1.1 BACKGROUND INFORMATION

Housing can refer to the physical and environmental attributes o f  houses. It encompasses 

housing as an economic good, a social good, a social infrastructure, a political object and a body 

o f knowledge. Therefore housing statistics can be described as a collection o f numerical facts or 

data on the state of housing.

The statistics on housing prices are produced by exploiting a number of data sources and 

registers. The data covers the actually published statistical variables but in some statistics the 

processing necessitates the use o f data on background variables that are retrieved from diverse 

registers that are quite exhaustive and of good quality. In this respect, you can have various 

sources of data on statistics for housing prices which includes; prices on dwelling, rents on 

dwelling and real estate prices. Housing price statistics (dwelling prices, real estate prices, 

dwelling rents) have been used to come up with housing price indices that help to distinguish 

better than before the real price developed from price changes caused by dwelling characteristics 

in different time periods.

The housing market differs in many ways from the text book model o f  a liquid asset market with 

exogenous fundamentals. This implies that housing prices can be influenced not only by general 

supply and demand conditions, but also by idiosyncratic factors such as the urgency of sale and 

the effects o f the ownership transfer on the physical quality o f the house. Other factors that may 

influence housing prices include; the incomes o f potential buyers and the ability to make 

payments, borrow money, and the cost of borrowing money since a large percentage of homes 

purchased globally are purchased with a mortgage. Given the illiquid nature o f the housing
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market, housing prices tend to decline in the case of increased foreclosures. Foreclosures 

transfer houses to financial institutions that must maintain and protect them until they are sold.

These foreclosed houses are likely to sell at low prices, both because they may be physically 

damaged during the foreclosure process, and because financial institutions have an intention to 

sell them quickly. In a liquid market, an asset can be sold rapidly with minimal impact on its 

price, but the characteristics o f housing discussed above are a classic example o f how urgent 

sales lower prices. The supply and demand effect on housing prices and the subsequent impact 

o f  foreclosures on mortgage related instruments can be observed by the perceived “credit 

crunch” that was observed between the years 2007 and 2008 in the United States.

The concept o f a “credit crunch” has a long standing history that can be traced back to the Great 

Depression o f the 1930’s and more recently to the recession of 1990-91 that was characterized 

by a decline in the supply o f credit controlling for the stage of the business cycle. The term 

credit crunch can thus be used to explain the curtailment o f credit supply in reaction to a decline 

in the value o f bank capital and conditions imposed by regulators that require banks to hold more 

capital than they previously would have held. A milder version of a credit crunch can be referred 

to as a “credit squeeze” and arguably this was what was observed between 2007 and early 2008.

The recent global financial crisis experienced between the years 2007 and 2008 can be attributed 

to the effects o f financial innovation in mortgage-backed securities. The crisis occurred when 

housing prices fell and loan defaults increased as a result o f the rapid growth of the sub-prime 

mortgage market in the United States which was characterized by having non-standard mortgage 

facilities offered to individuals with nonstandard income and credit profiles -  but it is really a 

crisis that occurred as a result o f mispricing o f the risk associated with these products. New
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assets were developed based on subprime and other mortgages and sold to investors in the form 

o f  repackaged securities for increased sophistication. These securities provided higher returns 

than conventional securities and were regarded as safe due to their high ratings.

These repackaged securities were however not as safe as they were deemed to be mainly because 

their value was closely tied to the movements in house prices. As earlier mentioned, the 

securities offered high returns compared to other investment vehicles when housing values rose 

but when housing values began to fall, foreclosures on mortgages increased which sent 

shockwaves through the financial markets and resulted to the financial crisis.

The earliest signs o f the impending crisis were seen in early 2007 when in April of that year New 

Century Financial, a subprime specialist had filed for chapter 11 bankruptcy and laid off half its 

employees; and in early May 2007 the Swiss owned investment bank UBS had closed the Dillon 

Reed hedge fund after incurring huge mortgage-related losses. Although these seemed like 

isolated incidents at the time, that month Moody’s (a rating agency) announced that it was 

reviewing the ratings o f  6 asset groups based on 21 U.S subprime mortgage securitizations. In 

June 2007 Bear steams supported two failing hedge funds, and in June and July three rating 

agencies all downgraded subprime related mortgage products from their “safe” AAA status. 

These events were later to develop into the full-scale credit-crunch o f  2007-08.

Many pundits believe that the financial crisis could have been prevented if predictions from both 

simple and complex econometric models had been used.
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1.2 PROBLEM STATEMENT

Before 2007, the subprime mortgage market saw an enormous growth trend which concurrently 

led to the introduction o f repackaged debt securities o f increasing sophistication. These 

securities offered high returns than other conventional securities but were tied to movements in 

housing prices. When housing prices rose so did the return on the securities but when prices fell, 

foreclosures on mortgages rose drastically which led to the credit crunch. Despite the 

availability o f both complex and simple econometric tools that could have been use to predict the 

crisis, many analysts ignored such input which if used could have prevented the financial crisis 

all together.

1.3 OBJECTIVES OF THE STUDY

The objective o f the study is to determine if an ARIMA model can be used to effectively predict 

both the movements o f  housing prices and specifically describe the timeline o f the financial 

crisis that occurred in the U.S between the years 2007 and 2008.

1.4 JUSTIFICATION FOR THE STUDY

Many benefits can be derived from the standardization o f social statistics data in the Kenyan 

context. Health statistics can be used to determine and improve the state of the healthcare 

system, crime statistics may be used to influence policies on management o f crime in different 

regions and housing statistics can be used by governments to address issues on distribution of 

resources and can also give an indication of different dynamics on the economic state of a nation.
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Given the benefits that can be derived from having a standardized approach with respect to the 

collection and maintenance o f social statistics data, it is o f glaring note that there exists a huge 

gap in the Kenyan system as far as data collection of these elements o f social statistics is 

concerned. The data collected by a majority o f  the responsible agencies is inaccurate, irrelevant 

or too little to derive any significant inferences.

The recent global financial crisis as experienced in the United States can be used as a case study 

o f  the importance o f having a standardized approach of collecting housing data. The crisis was 

mainly caused by an unexpected fall in housing prices and resulted to a global glut. Given that 

US housing prices are collected in the form o f the Case-Shiller index, it can be shown that the 

crisis could have been predicted and avoided beforehand thus affirming the importance of having 

such data.
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CHAPTER 2

LITERATURE REVIEW

Housing price forecasts are important in predicting mortgage defaults; property taxes, and other 

consumption investment and policy decisions (Kochin and Parks, 1982). Furthermore, studies 

by Case and Schiller (1989) indicate that housing prices are forecastable to a certain degree. It is 

therefore of great importance to determine which forecasting models can best describe future 

movements o f  housing prices.

Works by Larson (2011) compares the performance of different forecasting models on California 

housing prices and finds that multivariate theory models outperforms other time series models 

across a range of forecast comparison procedures. It is shown that incorporation of theoretic 

economic relationships into empirical forecasting models greatly improves forecast results. 

Although a myriad o f market analysts tend to predominantly rely on multivariate theory models 

for their predictions, one o f the critiques to the models is that they rely on functional assumptions 

to ascribe a form to fit the relationships of the variables (Lam et. al., 2008)

However, Artificial Neural Network models (ANN) are designed to capture functional forms 

automatically allowing the uncovering of hidden nonlinear relationships between the modeling 

variables. Results o f the study conducted by Lam et. al. (2008) rightfully indicates that ANN 

models produced by recurrent back-propagation neural networks to produce housing pricing 

models for Hong Kong outperform multivariate models. These models also have the advantage 

o f  being relatively inexpensive to produce and can predict trend movements without the need to 

quantify some data. Despite these benefits, ANN models are notoriously “black-box” in nature 

and lack capability o f  explanation, they are built through learning and adjusted weights during
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training and hence have no definite formula and they require a huge amount of data for learning 

to achieve optimum results.

Simple Vector Autoregressive models (VAR) with error correction have been used to determine 

the causality between housing sales and prices (Zhou, 1996). Results indicated that there exists a 

bidirectional causality relationship between the two metrics. Price affects sales significantly but 

sales affects price weakly. The VAR model was then used to forecast sales and price for existing 

single-family housing during the period 1991 to 1994 by using a recursive method. The findings 

showed that the predictions for sales and price fit the data well.

Vitner and Iqbal (2009) used six different models to project changes in US home prices, 

including AR, ARIMA, Bayesian vector autoregression-level (VAR-level), Bayesian vector 

autoregression-difference (VAR-difference), Bayesian vector error correction model (VECM) 

and Bayesian factor augmented vector autoregression model (FA-VAR). The models were 

applied to the three most important measures for house prices in the US which are: FHFA 

purchase only index, S&P Case-Shiller index o f house prices and the FHFA index of house 

values. Results of the study indicated that the Bayesian FA-VAR outperforms other models in 

terms o f the out-of-sample root mean square error criteria.

Decision makers normally have multiple forecasts o f a particular variable available to them, it 

would therefore be difficult to know how best to exploit the information available in individual 

forecasts. A solution to the problem as suggested by Drought and McDonald (2011) is to 

combine individual forecasts to produce a single summary forecast a concept known as model 

combination. Model combination approaches have the advantage o f  being more robust to the 

misspecification biases o f  individual forecasts. Since individual models are subject to different
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biases, a combination will average out the biases and improve forecast accuracy. The study 

conducted by Drought and McDonald generated a combined forecast using three approaches: 

equal weights, mean square error weights and model selection. Results showed that model 

selection techniques had lower root mean squared forecast errors than the combination methods. 

This result is at odds with the earlier assumption and works by Timmerman (2006) that simple 

averages often produce more accurate forecasts than the best performing model at the time.

Autoregressive conditional heteroskedasticity models (ARCH) can also be used to forecast 

housing prices. Studies on the housing price index of Shanghai from Jan 1999 to Oct 2003 by 

Gongliang and Fenjie (2003) show that ARCH models based on the autoregressive distributed 

lag model (ADL) are better at analyzing and forecasting the volatility and trend o f an index. 

Although these models better forecast short-term changes than other commonly used methods 

during relatively high volatile periods they also have a tendency to overestimate the volatility 

impacts for forecasting mild price movements.

Various time-series methods for forecasting housing prices have been employed in a growing 

body o f empirical studies (e.g., Brown et al., 1997; Pace et al., 2000; Gu, 2002). Due to the 

boom-bust cycles and the substantial transaction costs in the housing market, the literature 

predominantly assumes a nonlinear relationship linking housing prices to a set of publicly known 

factors or to unobservable states (Muellbauer and Murphy, 1997; Capozza et al., 2002; Miles, 

2008). However, Crawford and Fratantoni (2003) indicate that a linear ARIMA model displays 

better out-of-sample forecasting o f home prices than Markov-switching and GARCH models, 

although the Markov-switching model is superior for the in-sample fit. Case and Schiller (1989, 

1990) were pioneers in their use o f linear techniques to forecast housing prices. The view 

holding that simpler linear specifications produce better forecasting performances than complex
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and sophisticated methods is shared by Timmermann and Perez-Quiros (2001) in the context o f  

stock returns. Moreover, due to its adaptive process, the forecasts from the ARIMA models are 

less affected by structural breaks (Clements and Hendry, 1996).
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CHAPTER 3

METHODOLOGY

3.1 DATA

The data consists o f the S&P (Standard and Poors) Case Shiller seasonal-adjusted 10-city 

composite index as the housing price from 1987:1 to 2009:1. The index is the leading measure 

for the US residential market, tracking movements in the value o f residential real estate in 10 

metropolitan regions. The index is calculated monthly using the repeated sales methodology 

which is widely considered as the most accurate way of measuring price changes for real estate. 

The methodology measures the movement in prices o f single family homes by collecting data on 

actual sale prices o f single family homes in their respective regions. When a house is resold at 

some period later, the new sale price is matched and compared to its first sale price. The 

difference in the “sales pair" is measured and recorded and finally aggregated into one index.

3.2 TIME SERIES MODELS

3.2.1 Autoregressive Models

An autoregressive process {Yt } of order p takes the form:

Where Yt is the value o f the series at time t and Yt- i  , Tt_ 2 , . . . ,  Tt_ p are dependent on the 

previous values o f the variable at specified time periods; a 1? a 2, . . .  ,CCp are the regression
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coefficients and £t is the residual term that represents random events not explained by the 

model. It is abbreviated AR(p).

The Autoregressive model is capable in a wide variety of time series forecasting by adjusting the 

regression coefficients Ct. The difference between the Autoregressive models and other 

conventional regression models is with respect to the assumption o f  the independence o f the 

error term. Since the independent variables are time-lagged values for the dependent variable, the 

assumption o f uncorrelated error is easily violated.

3.2.2 Moving Average Models

The basic idea o f Moving-Average model is firstly finding the mean for a specified set of values 

and then using it to forecast the next period and correcting for any mistakes made in the last few 

forecasts. A moving average process { V̂ } o f order q takes the form

Yt~Et+ P l€t-1* '••+Pqst-q  (3 -2)

where Yt is the value o f  the series at time t, p 1 , /?2 , ...... , Pq are the weights applied to

£t_ !  , £t_ 2, ......... , £t-q  previous forecast errors and £t is the residual error. It is abbreviated

by MA(q).

To specify a Moving-Average, the number and the value o f the q moving average parameter /?x 

through pq have to be decided subject to the certain restrictions in value in order for the process 

to be stationary. The Moving-Average model works well with stationary data, a type of time 

series without trend or seasonality.
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3.2.3 Autoregressive Moving Average Models

While the AR and MA models can be used for many data sets, there are some data for which 

they are not adequate, and a more general set o f  models are needed.

The time series {V̂ } is said to be an autoregressive moving average process of orders p and q 

abbreviated ARMA (p,q) if Yt satisfies the equation

Yt= a1Yt. x+a2Yt. 2+...+apYt.p + et +PiSt. 1+p2et. 2+...+pqet.q (3.3)

This can be re-written as

h(L)Yt= g(L) £t (3.4)

where

/i(L) = 1 — a xL —... — apLp 

and

g(L) = I + (31L +  ...+PqLq

are polynomials of order p and q respectively, 

and L is a lag operator defined as

l % = n - (
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The ARMA (p,q) model is stationary provided the roots o f h(L) = 0 lie outside the unit circle 

and invertible provided the roots of g(L) = 0 lie outside the unit circle.

If p i- 0 and q f  0 we have a mixed ARMA. However, if p ^ 0 and q = 0 we have a pure AR(p), 

whereas if p = 0, q ^ 0 we have a pure MA(q).

3.2.4 Autoregressive Integrated Moving Average Models

ARIMA modeling takes into consideration historical data and breaks it down to the 

Autoregressive process, where there is a memory o f  past events ( e.g. the housing price this 

month is related to the housing price of last month, and so forth with a decreasing lag); an 

integrated process which accounts for stabilizing thus making the data easier to forecast; and a 

Moving Average (MA) o f the forecast errors such that the longer the historical data the more 

accurate the forecasts will be over time. The three components are all combined and interact with 

each other and recomposed to form the ARIMA (p,d,q) model.

In general we say that {V^} is an ARIMA process o f order p, d, q if the d th difference o f Yt is a 

stationary, invertible ARMA process o f order p, q. Thus using the lag operator L

h(L) (1 -  L ) d Yt = g(L)et (3.5)

Where £t is white noise, h{ L) and g(L) are polynomials of degree p and q respectively with all 

roots of the polynomial equations h (L) = 0 and g(L) = 0 lie outside the unit circle.
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3.3 The autocovariance and autocorrelation functions

The autocovariance function o f a stationary process {Yr} is

Y(k) = cov {Yt, Yt_k } (3.6)

One consequence o f the definition o f stationarity is that T(k) does not depend on t. Since Y(0) is 

the variance o f each Y(t), we define the autocorrelation function as;

p(fc) =  Y (k)/T (0) (3.7)

For a stationary process {Yt }, k is necessarily an integer.

The autocorrelation function is an important, albeit incomplete, summary of the serial 

dependence within a stationary random function. General properties o f  p(/c) include;

(a) p(0) = 1

(b) p(k)=p(-k),

(c) - l < p ( / c ) < l  ,

(d) If Yt and are independent, then p{k) = 0.

3.3.1 Estimating the autocorrelation function

ARMA and differenced ARIMA models are identified through patterns in their autocorrelation 

functions (ACFs) and partial autocorrelation functions (PACFs) . Both ACFs and PACFs are 

computed for the respective lags in the series and plotted. The ACF plot is defined as a graph o f  

the sample autocorrelation co-efficients rk
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against the corresponding lags k, each rk being defined as

n=  9k!9o (3.8)

where

9k=I,t=k+i(y t -  y)( y t-k -  ?V n (3.9)

is the kth sample autocovariance coefficient and y  = £F =i y t is the sample mean.

The simplest pattern to detect from visual inspection is a cut-off with respect to an MA(q), that 

is, all rk for k greater than some integer q are approximately zero. Smoothly decaying 

autocorrelations are more difficult to detect by visual inspection, except when the decay takes a 

particularly simple form such as the exponential decay associated with the AR(1) process. It is 

for this reason that we introduce a variant of the correlogram, the partial correlogram, which has 

a cut-off at lag p for an underlying AR(p) process. The correlogram and partial correlogram o f a 

mixed ARM A (p,q) fails to cut-off.

3.4 THE PARTIAL AUTOCORRELATION FUNCTION

The PACF takes the form

7T(k) =  Cov(K£ -  E(K, /  Y e (w  n + i.

(4.0)
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where

E(Kt / W  Vt+2,. . . ,  Yt+ n-i) and E(Kt+k/  Kt+1, Vt+2>... ,  V i+x-i) are the predictions of 

Yt and Yt+k given Kt+1, . . . ,  respectively.

in particular,

7r(0) = 1

tt(1)=P(1)

p (2 )-p ((l))2 
11(25 " 1- P«D)2
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3.5 FORECASTING WITH ARIMA MODELS

The Box-Jenkins methodology is used to identify and select a suitable model for the time series 

data as shown in the flow chart below

w Yes No No

Figure 3.1: Flowchart illustrating the identification process
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3.4.1. Stationarity

The first stage of identification of an ARIMA process is to establish the stationarity o f the series 

by examining the timeplot o f the data, { f t }. If the data is not stationary, the timeplot appears to 

have a trend.

ACF plots can also be used to demonstrate non-stationarity if they have a linear decay.

3.4.2 Differencing

If the timeplot/ACF plots o f the data indicate the presence o f trend in the data, a first difference 

o f  the series is taken and the differenced series is plotted again to check for stationarity. The 

maximum times that differencing can be done is d=2.

3.4.3 Parameter Identification

To identify the p and q components o f the ARIMA (p, d, q) model, we plot the sample ACF and 

PACF of the differenced series to look for behavior that is consistent with stationary processes. 

The general characteristics o f theoretical ACFs and PACFs are as follows:-

Table 3.1: Identification of the order

Model ACF PACF

AR Spikes decays towards zero Spikes cutoff to zero at lag p.

MA Spikes cutoff at lag q Spikes decay to zero

ARMA Spikes decay to zero Spikes decay to zero

Once the order of the ARIMA (p, d, q) model has been specified, we can then generate parameter 

estimates for the series. The list generated contains the coefficients, residuals and the Akaike 

Information Criterion (AIC).
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3.4.4 Model Diagnostics

Diagnostic checking of the fitted models involves analysis o f the residuals from the fit for any 

signs o f non-randomness. Box Jenkins methodology requires examining the residuals of the 

actual values minus those estimated by the model, if such residuals are random it is assumed that 

the model is appropriate. If not another model is entertained, parameters estimated, and residuals 

checked for randomness.

Signs o f non-randomness can be checked by plotting a diagnostic plot that contains a plot of the 

residuals, autocorrelation o f the residuals and the p-values of the Ljung-Box statistic for the first 

10 lags.

When faced with a group o f candidate models, the Akaike Information Criterion can be used as 

a model selection condition. For the fitted ARIMA time series o f length n, the AIC is defined as

AIC=ln(ap<7)+2(p+q)/n (3.10)

where Opq is the residual error variance from the fitted model. When comparing the fitted 

models the basic idea is that the smaller the AIC the better the fit. The AIC penalizes tor 

additional model complexity with the addition o f  2(p+q)/n.
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3.5 SOFTWARE

The housing index data was analyzed using R software which is a widely used environment for 

statistical analysis. It is an open source software which is maintained by scientists for scientists. 

R has gained many users and contributors which increases the capabilities o f the software by 

releasing add-ons (packages) that offer functionalities that suit users’ needs. Various packages 

o f the software were downloaded and used to perform the end to end process from model 

identification to the eventual prediction o f the 10 city composite index for this analysis.

R is distributed by the “Comprehensive R Archive Network” (CRAN) and is available from the 

Url: htto://cran.r-proiect.org
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CHAPTER 4

DATA ANALYSIS AND RESULTS

4.1 Stationarity Check

The first step was to check for the stationarity o f  the series which was done by generating the 

time-plot for the data as shown below

Time

Figure 4.1 Time series plot of the 10 city composite index from 1987:1 to 2004:12
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F

From the time series plot, there exists some evidence o f trend which is indicative o f non- 

stationarity in the 10 city composite index. This was also compounded by the ACF plot as 

shown below;

Composite.10

Lag

Figure 4.2 ACF plot of the 10 city composite index from 1987:1 to 2004:12
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The ACF plot has a significantly linearly decaying pattern which indicates a non-stationary

process.

4.2 Differencing the series and Parameter Identification

Given that the series was not stationary, the 10-city composite index was differenced once to 

eliminate trend.

Figure 4.3 First differenced Time series plot of the 10 city composite index from 1987:1 to 2004:12

From figure 4.3 above it was found that the trend in the 10 -  city composite index was 

eliminated by differencing the data once hence d = 1.
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Given that the data was stationary, the ACF and PACF plots for the data were plotted to aid in 

identification of the p and q components in the ARIMA model as shown below;

Series Dif Series Dif

Lag

5 10 15 20

Lag

Figure 4.4 ACF and PACF plot of the differenced 10 city composite index from 1987:1 to 2004:12
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From figure 4.4 we can see that the ACF plot o f the differenced series decays more quickly. The 

sample PACF cuts off after lag 1. This behavior is consistent with a first-degree autoregressive- 

AR(l)-model. We thus specified and fit an ARIMA(1,1,0) model for the S&P Case Shiller 10- 

city composite index.

4.3 Parameter Estimation and Model Diagnostics

Once the order o f the ARIMA (p,d,q)- model was specified, the next step involved generating the 

parameter estimates as indicated below;

Table 4.1 Parameter estimates for the ARIMA(1,1,0)

AR(1) S.E AIC BIC LOG-LIKELIHOOD Sigma A2 J

CO-EFFICIENTS -0.7912 0.0693 95.01 102.82 -44.5 ( 0.1412

Model diagnostics involved first analyzing the residuals from the fit for any sign of non

randomness. A diagnostic plot was produced which contains a plot of residuals, the 

autocorrelation of the residuals and the p-values o f the Ljung- Box statistics for the first 10 lags.

The Box-Pierce and Ljung Box test examines the null hypothesis that residuals are randomly 

distributed as derived from the notion that the residuals from a correctly specified model are 

independently distributed. After running the Box-Pierce test to the fitted 10-city composite 

index, we accepted the null hypothesis that the residuals are randomly distributed given a p-value 

o f  0.4452. The diagnostic plot of residuals is shown below;
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Figure 4.5 Diagnostic plot of residuals
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4.4 Model Forecast Results

The out o f sample forecast begins from 2005:1 where the in sample period lies between 1987:1 

to 2004:12. The in sample is then expanded by one month and the parameters re-estimated based 

on the most up-to-date information available at the time of the forecast. Each forecast horizon is 

12 months ahead. As shown from Diagrams 1 through 50 in the appendix, we use the index from 

1987:1 to 2004:12 to forecast from 2005:1 to 2005:12 for the first prediction, for the second we 

use the index from 1987:1 to 2005:1 to forecast from 2005:2 to 2006:1 and so on thereafter. The 

ARIMA prediction is presented as a solid green line while both the upper and lower 95% 

confidence bounds are represented with a solid grey line. Each ARIMA prediction goes through 

the model identification process as outlined in the previous chapter where we use the 

ARIMA(1,1,0) as the most suitable model.

The model forecast results are generally accurate from Diagram 1 to Diagram 10 (forecasting 

made between 2004:12 and 2005:9), where we can observe that the realized housing prices are 

mostly within the 95% confidence interval of the 12 months out-of-sample forecasts. Beginning 

from Diagram 11 (forecasting made in 2005:10) the out-of-sample results begin to deteriorate 

where only the first four months predictions are accurate. From Diagram 12 to 17, the model in

accurately predicts a rising trend in housing prices where it fails to detect the pcak/tuming point 

o f the housing prices in 2006:4. In Diagram 18 (2006:5), one month after the turning point, it is 

surprising to see that not all realized prices lie within the models forecasting interval. In short the 

model does not predict the housing bubble until 2006:6.
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In Diagram 19 (2006:6), two months past the turning point, the model accurately predicts the 

declining housing price with a modest declining rate. During the extraordinary turnaround o f the 

housing market as seen in Diagram 20 to 29 ( 2006:7 and 2007:4), the model exhibits a 

downward trend, however for the most part the realized housing prices are seemingly below the 

models forecasting lower bound and the one year ahead forecasting price is still above 200. In 

Diagram 30 (2007:5), for the first time the model was able to predict a one year ahead price that 

is below 200. This means that at this time, the model begins to recognize the length and breadth 

o f the housing slump. It is during this period in real time that the financial market began to show 

concern about mortgage-back security. From Diagrams 31 to 38 (2007:6 to 2007:12), the model 

predicts a declining trend but the realized decline is deeper than what is predicted.

Predictions made in Diagrams 39 and 40 (2008:2 and 2008:3), produce a lower price forecast 

than what is realized where the one-year-ahead forecasts lie between 140 and 150 (a significant 

decline from the peak). At this time the Bear Steams collapsed. From Diagram 46 (2008:9), we 

can observe that for the first time the model predicts a much lower price o f 130 in one year. It is 

in this month that Lehman Brothers’ went bankrupt and the financial markets exploded. From 

this, we can leam that the timeline o f the financial crisis was not driven by shocks due to a 

specific company’s financial problem or due to government decision making but is rationally 

driven by a forecasting model. The forecasted values from the model have a direct effect on the 

values o f the mortgage-related securities and therefore should determine the investor’s 

investment decisions.

Diagrams 46 to 50 (2008:9 to 2009:1) show the worst outlook of the housing prices which 

coincides with the period where there was wide-spread panic o f a global financial meltdown.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

There are five key insights that were derived from the study. First, the ARIMA model was not 

able to predict the turning point o f the housing prices that occurred in 2006:4; it recognizes the 

peak after a two month lag i.e 2006:6. Second, the model predicts mild declining prices from 

2006:6 to 2007:5; while the model fails to capture the gravity of the housing slump during this 

period, it explains the illogicality of longing mortgage-related assets during this period. Third, 

the model predicts deeper declining prices from 2007:6 to 2008:1 which reflects the beginning of 

the housing crisis but fails to capture the scale o f the housing burst. Fourth, in 2008:2 and 

2008:3, the model predicts significantly worse prices, which coincides with the collapse o f the 

Bear Steams in 2008:3. Finally, from 2008:9 to 2009:1, the model forecasts worsening housing 

prices which coincides with the meltdown of the global financial market.

5.2 RECOMMENDATIONS

The standardized approach o f  capturing housing price data in the U.S in the form of the Case- 

Shiller index has proven to be o f significant worth given that such information can be used to 

make certain inferences/predictions that touch on the economic condition of a nation. In the 

Kenyan context, it is therefore o f  great importance that the government adopt a standardized 

approach to the capturing o f  such information as it bears a direct correlation to the performance 

of the economy. Predictions can then be made based on such information that consequently 

advice fiscal policy.
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APPENDIX
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