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ABSTRACT

Generalized linear models (GLMs) form a class of fixed effects regression models for several 

types of dependent variable, whether continuous, dichotomous or counts.

Common GLMs include linear regression, Logistic regression and Poison regression. These 

models have typically been used a lot in modeling of data arising from a heterogeneous 

population under the assumption of independence. However, in applied science and in real life 

situations in general, one is confronted with collection of correlated data (Mark Aerts et al, 

2005). This generic term embraces a multitude of data structures, such as multivariate 

observations, clustered data, repeated measurements, longitudinal data, and spatially correlated 

data. Generalized Linear Mixed Models (GLMMs), also called Generalized Linear Mixed 

Effects Models (GLMEMs) are able to handle extra ordinary range of complications in 

regression- type analyses. They are often used to handle correlations as it arises in longitudinal 

and other clustered data.

In this paper we describe use of GLMMs to explain different factors and their influence on an 

individual morbidity in Kenya. We use maximum likelihood (ML) as the main estimation 

method. We also use Restricted Maximum Likelihood (REML) estimation when we relax the 

assumption of equal cluster sizes, to help in estimating intra and inter block weights. We shall 

assume normality of the random effects.

*«
The (2005/6) Kenya Integrated Household Budget Survey findings pointed out that there has 

been a worsening health situation in Kenya. The result further outlined that the number of

individuals having environmental health related disease had increases' as compared to the
*

previous studies. The higher prevalence of individual morbidity was* associated with social,
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economic and demographic factors. Reducing environmental health related diseases to a 

population remains one of the thorny issues that face developing countries, among them Kenya. 

Therefore, there is an urgent need to explain the way forward in addressing and guiding policy 

towards this noble goal. In our results, we deduced that gender increases the log-odds of a 

individual getting a disease, while people who are living in good housing conditions reduce the 

log-odds of individual experiencing morbidity. Main source of drinking water was also 

significant in explaining individual morbidity in Kenya. The human waste disposal method was 

also significant in explaining morbidity among individuals. This study can however be extended 

to incorporate income level of individuals. Individuals with low level of income are believed to 

be more likely to experience environmental health related diseases than individuals with higher 

levels of income.

(

-c*
4 ,

/
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CHAPTER ONE

BACKGROUND

Generalized linear mixed models (GLMMs) continue to grow in popularity due to their ability to 

directly acknowledge multiple levels of dependency and model different data type. GLMMs 

extend the generalized linear model, as proposed by Nelder and Wedderburn (1972) and 

comprehensively described in McCullagh and Nelder (1989), by adding normally distributed 

random effects on the linear predictor scale in order to include the concept of correlated data 

such as clustered data.

GLMM is one of the most useful structures in modern statistics, allowing many complications to 

be handled within the familiar linear model framework. The fitting of such models has been the 

subject of a great deal of research over the past decade. Early contributions to fitting various 

forms of the GLMM include Stiratelli, Laird and Ware (1984), Anderson and Aitkin (1985), 

Gilmour, Anderson and Rae (1985), Schall (1991), and Breslow and Clayton (1993).

Most literature on GLMM is around grouped data. For any model, parameter estimation is 

always one of the most important aspects of statistical inference. Many researchers have made 

efforts to estimate parameters using GLMMs. For instance, Hall; Hall, (2000) applied Maximum 

Likelihood (ML) estimation and Yau and Lee, (2001) applied hierarchical likelihood method of 

estimation to zero-inflated (ZI) mixed models. In this project, ML for normal random effect of
■c*

GLMMs and Restricted maximum likelihood (REML) method when assuming randoih effect 

distribution is unknown will be used.
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This study seeks to fit generalized linear mixed effects model to household data that was 

collected in 2005/6. In this survey, clusters were randomly selected across all the districts in 

Kenya. In each selected cluster, households were randomly selected with equal probability in 

each cluster; members in the selected households were interviewed. I therefore propose that 

cluster variable to introduce the random effect in this data. It is assumed that members in the 

same cluster are more likely to experience similar morbidity structures compared to members in 

different clusters.

1.2 Problem statement

Efforts to understand and predict determinants of environmental health related diseases in Kenya 

have been a big challenge. However, there has been lots of suggestion that all causes of 

morbidity are a result of socioeconomic factors such as income and poverty. These variables are 

normally collected based on multistage clustered sampling scheme. A normal regression model 

may not be able to capture the possible inter-class correlation in the data. In this paper, 1 propose 

to account for the interclass correlation in morbidity data, while identifying all the factors that 

are highly associated with environmental health related diseases.

1.3 Study Objectives

1.3.1 Main Objective

This study seeks to define factors that are associated with the probability of an individual in a
-c«

population experiencing an environmental health related disease in Kenya using'' Kenya 

Integrated Household Budget Survey.
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1.3.2 Specific objectives

The specific objectives of the study are:

1. Develop a statistical model that defines the factors that explain environmental health 

related morbidity in Kenya, while accounting for inter-class correlation in the data.

2. To measure the effects of household variables on environmental health related diseases

1.4 Significance of the study

Environmental health related morbidity continues to be an issue for most demographers with no 

clear model that can be used to explain causes of morbidity in Kenya. Previous studies have 

sought to model cause -specific morbidity without accounting for inter-class correlation in the 

data. Also, many of the direct determinants of morbidity are linked to environmental and 

household characteristics. This leaves us with a feeling that morbidity is not only correlated 

between households closer together than households further apart. This paper therefore develops 

a model that shall predict the probabilities of having environmental health related disease while 

accounting for random effects in the data.

/
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CHAPTER TWO

LITERATURE REVIEW

Generalized linear mixed effects models have been used for long time and more so by 

epidemiologists in the analysis of dichotomous data. Most of the recent contributions to the use 

of GLMMs was a study by Kandala, Nyovani, (2004). Their study aimed at describing the spatial 

variation in the prevalence of diarrhea, cough and fever among children under 5 years using the 

1992 Demographic and Health surveys (DHS) of Malawi and Zambia. Individual data record 

was constructed for 3660 children in Malawi and 5268 children in Zambia. Each record 

represents a child and consists of morbidity information and a list of covariates.

Geo-additive logistic analyzes was used on the probability of a child being ill with malaria, 

cough, and diarrhea during the preference period to determine the socio-economic, demographic 

variables that are associated with these three ailments while simultaneously controlling for 

spatial dependence in the data and possibly nonlinear effects of covariates.

The response variable applied was defined as
r

yit= 1: if a child i was ill during the preference period t

0: if a child i survive the illness,
V.

Two models were fit in this data: simpler parametric probit model and probit model with 

dynamic and spatial effects for the probability of falling ill at month t.

M V .m rX ’uB ...........................................................................................................................(2.1)

M2: m rfi(age) +f2 (mab) + / Mnj,r(dist) + / i/r(dist) +X’itB ................................................... (2.2)
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The fixed effects in model Ml included all the covariates with constant fixed effects. When the

two models were compared, it turned out that model M2 was superior in terms of Deviance 

Information Criteria (DIC) [Spiegelhalter et.al., 2002] which is a method used for model 

comparison. In addition, model M2 in the DIC, accounted for the unobserved heterogeneity that 

might exist in the data, which cannot be captured by the covariates.

The effects of/ /  a n d ^  were modeled by cubic penalized splines with second order random walk 

penalty. Spatial affects f slr(s) were experimented with different prior assumptions.

In both countries models were estimated where either a structured or an unstructured effect was 

included as well as a model where both effects were included. As a result there was clear 

evidence for both countries of spatial correlation among neighboring districts. Hence, a spatially 

correlated effect f str was included into the predictors of the final models. Additionally, an 

unstructured effect f unstr was included because there was evidence of local extra variation in the 

highly urbanized areas in Malawi and Zambia.

Including the spatial component f unstr + f str (dist) increases model complexity. With such model, it 

is assumed that random components at the contextual level (district) are mutually independent. 

The estimates of the presumed spatial correlated districts level random effects showed strong 

evidence of spatial dependence.

Hedeker and Gibbons (2003) described a random effects ordinal probit regression model, 

examining longitudinal data collected in the NIMH Schizophrenia Collaborative S(udy on 

treatment related changes in overall severity. The dependent variable was item 79 of the

Inpatient Multidimensional Psychiatric Scale (IMPS; [30]), scored as: (a) normal or borderline
*

mentally ill, (b) mildly or moderately ill, (c) markedly ill, and (d) severely or among the most

Page | 5



extremely ill. In this study, patients were randomly assigned to receive one of four medications: 

placebo, chlorpromazine, fluphenazine, or thioridazine.

Here, a logistic GLMM with random intercept and trend was fit to these data using SAS PROC 

NLMIXED with adaptive quadrature. Fixed effects included a dummy-coded drug effect placebo 

= 0 and drug = 1), a time effect (square root of week; this was used to linearize the relationship 

between the cumulative logits and week) and a drug by time interaction.

The results indicated that the treatment groups do not significantly differ at baseline (drug 

effect), the placebo group does improve over time (significant negative time effect), and the drug 

group has greater improvement over time relative to the placebo group (significant negative drug 

by time interaction). Thus, the analysis supports use of the drug, relative to placebo, in the 

treatment of schizophrenia. Comparing this model to a simpler random intercepts model yields 

clear evidence of significant variation in both the individual intercept and time-trends likelihood- 

ratio.

Also, a moderate negative association between the intercept and linear time terms is indicated, 

expressed as a correlation it equals -.40, suggesting that those patients with the highest initial 

severity show the greatest improvement across time (e.g., largest negative time trends). This 

latter finding could be a result of a floor effect’, in that patient with low initial severity Scores 

cannot exhibit large negative time-trends due to the limited range in the ordinal outcome 

variable.

/
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There were more work on morbidity and factors associated to morbidity that involved GLMM 

that was done in (2002) by Narayan, Sarah B. et al, (2002). This analysis sought to examine 

trends and differentials in diarrhea prevalence and treatment in Brazil between 1986 and 1996 

using data from Demographic and Health Survey program. Information on child health, health- 

related behavior, use of health care services and several other topics was collected. The survey 

was based on a multistage clustered sampling scheme. A total of 8,369 dwellings units was 

selected for the survey across 337 primary sampling units (PSUs) whereby PSUs represented the 

entire country. Interviews were completed with 5,892 women aged 15 to 44 years and 

information on diarrhea was obtained for 3,183 children born to these women.

Multilevel logistic regression was used to model the relationship between the diarrhea prevalence 

and the background and intermediate factors. The dependent variable was a binary response,^*, 

that indicated whether the ith child of the j01 family living in the klh community had diarrhea (y,y*= 

1) or not {ytjk =0). The probability of a child having diarrhea was defined as p,y* - pr (y,y*=l) and 

logit transformation of pijk modeled as a linear function of the covariates in the model:

Log [pijk / (\-Pijk)] ~ X ’ijkpi +X’jk P2 +X'k P3 + Ujk +Vk............................................................. (2.3)

Ujk represents a family-level random effect and v*a community-level random effect that ar?each 

normally distributed with a zero mean and variance Su2 and dv2 respectively. Ay,* represents 

background child covariates, Xjk family covariates and A* community covariates.

t,

Model 2.4 included intermediate child covariates (fV,jk) and intermediate family covariates (Wjk). 

Log [ p Jk / (1 -PiJk)] = W’uky ,+  W’jk y 2 + X'tjkP 1+ X ’jkp  2 + X ’kP 3 + Ujk+vk ...................... (2.4)
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Model 2.3 and model 2.4 allowed them study how background factors directly and indirectly 

affected diarrhea prevalence. Model 2.3 showed the total effect of each background factor on 

diarrhea prevalence.

This study showed that the family and the community random effects were statistically 

significant in mode; 2.3 and model 2.4, although unobserved family effects were far more 

important than unobserved community effects. The variance of the family random effect (2.33) 

was more than six times as large as the variance for the cluster random effect (0.35). The intra

family level correlation was .45 while the intra-cluster correlation was only .06.

The large family-level variance indicates that there was a strong correlation in the chances of 

siblings having diarrhea that may be the result of important unmeasured maternal characteristics 

and household environmental factors (Sastry, 1997).

The study also found that there were significant effects on diarrhea of child age, mother’s 

education, father’s education, parent’s marital status, rural-urban place of residence, and region 

of residence.

More work to the use of GLMMs was a study by Gruder, Gruder et AL, (1993). This study 

aimed at describing smoking cessation, whereby 489 individuals were randomized into three 

groups; Control, discussion, or social support conditions. The control group was given a self help 

manual and encouraged to watch 20 twenty television programs on smoking cessation. Subjects
•t*

on the experimental groups were in addition given a chance to participate in group meetings and 

were given further training in support and relapse prevention. To analyze the data as binary 

response variables, the two experimental groups were combined together into one category
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called experimental group. Data were collected at four telephone interviews: post intervention, 

and 6, 12, and 24 months later. Smoking abstinence rates at these four times were as follows:

-Control group: = 109, 97, 92, and 77

-Experimental group: = 380, 357, 337, and 295

Two logistic GLMM were fit to this data i.e. a random intercept model and a random intercept 

and linear trend of time model. In this study, the analysis was based on the probability of 

smoking abstinence and not the probability of smoking. The fixed effect were the group, with 

0=control and l=experimental. Based on a likelihood-ratio test, the random intercept and linear 

trend of time model was preferred (with a —21oglikelihood ratio= 1594.7) to the random intercept 

model (with a -21oglikelihood ratio=1631.0). As a result, there was a clear evidence of subjects 

varying by both the intercepts and the time trends. Both models had a nonsingular time effect, 

but the treatment was highly significant. Interaction between condition and time was non

significant in the both models, which suggested a declining condition over time. The interaction 

was non-significant in the random intercepts and time trend model, but was significant in the 

random intercept model.

This study showed that the significance of model terms can highly depend on the struc tu red  the 

random effects. Therefore, a researcher must decide upon a reasonable model for the random 

effects as well as for fixed effects. A recommended approach is to perform a sequential model 

selection procedure such as step wise regression analysis. Here one includes all the possible 

covariates of interest into the model and selects between the possible models of random effects 

using model fit criteria such as the likelihood ratio test, Deviance analysis, Akaike Information 

Criteria among others. In this study, I shall take advantage of the superiority of Akaike
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Information Criteria o f being adjusted for both the sample size and the number of parameters in 

the model. For model selection criterion, I shall use the backward stepwise selection, whereby 

the model with a smaller AIC value being preferred to the model with larger value.

Carla J. Machado and Ken Hill July (2003) [19] used data for the (1998) -birth cohort, City of

S.Paulo, Brazil. The hypothesis was that early infant morbidity may produce adverse outcomes 

in subsequent life. The duo used Apgar units to estimate early infant morbidities, with a low 

Apgar score being a convenient measure of early infant morbidity. The study used determinants 

of early infant morbidity (sex, plurality, mode of delivery, prior losses, gestation age, prenatal 

care and birth weight, parity and maternal age, race, maternal education and community 

development).

Information was extracted from 2009,628 birth records, and used multivariate logistic regression 

to assess the effect of each independent variable on Apgar score less than seven at one minute 

and Apgar score less than seven at five minutes.

The outcome variable was whether or not an infant had an Apgar score below seven at one 

minute or not and whether or not an infant had an Apgar score below seven at five minutes. The 

explanatory variables were classified as; -

1. Proximate determinants-birth weight, gestation age, prenatal care, sex, plurality, prior 

losses and mode of delivery
t,

2. Less proximate determinates- parity and maternal age

3. Distal determinants- race, maternal education and community development
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To obtain an adjusted odds ratio, a multivariate logistic regression model was used in order to 

model the two dichotomous outcomes. Because characteristics of mothers and infants from 

the same community were related, the standard errors were corrected for lack of 

independence between observations using the Huber/White Sandwich correction, which 

assumes that observations are independent across clusters but not within clusters (the 

community of mother’s residence at the time of birth).

From their results, Low birth weight, prematurity and community development had strong 

prediction of morbidity. Maternal education showed strong negative correlation with both 

Apgar scores. The negative correlations between maternal schooling and Apgar scores were 

observed after prenatal care, parity and maternal age were included in the model. Children of 

very young adolescent mothers had lower Apgar scores at one minute (but not at five 

minutes) than those born to mothers aged 15 to 19. Parity one or higher was associated with 

decreased odds of low Apgar scores. Cesarean section and operative delivery were also 

strongly associated with higher odds of early infant morbidity.

4,

/

Page | 11



CHAPTER THREE

METHODOLOGY

3.0 Introduction

There are many probability distributions that can be used to model the socio-economic factors 

affecting environmental health related diseases in households. In this chapter, we describe the 

data and variables that will be used then examine various models that can be used to model 

clustered data.

3.1 Data

The data for this study comes from the Kenya Integrated Household Budget Survey (KIHBS) 

conducted by Kenya National Bureau of Statistics in (2005/6). In KIHBS, data was collected 

over a period o f 12 months, which covered all possible seasons. This survey was to collect a 

wide spectrum of socio-economic indicators required to measure, monitor and analyze the 

progress made in improving living standards. The Household Questionnaire was designed to 

collect information on the following: demographics, housing, education, health, agriculture and 

livestock, enterprises, expenditure and consumption, among others.

The Survey was conducted in 1,343 randomly selected clusters across all districts in Kenya and 

comprised 861 rural and 482 urban clusters, 10 households were randomly selected with equal 

probability in each cluster resulting in a total sample size of 13,430 households. This study is 

confined to members of the household who experienced any sort of disease at the time, of the
t,

study. This produces a data set comprising about 66,725 individuals.

/
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3.2 Dependent Variable

The outcome variable of interest (morbidity) asked whether a member of household had suffered 

from environmental health related disease. This variable is binary in nature with values 

(l=household member had environmental health related disease, 0= household member had not 

experienced environmental health related disease).

3.3 Explanatory Variables

This study used explanatory variables available in the Kenya Integrated Household Budget 

Survey data. These include socioeconomic and demographic variables. The socioeconomic 

variables used in the study include gender, highest level of education, individual working status, 

main source of drinking water, housing condition and means of human waste disposal. The 

demographic variable used is area of residence i.e. rural/urban.

3.4 Modeling

In this section, we review some of the statistical methods and techniques that will be used in 

herein. It also gives us more on the basic concepts that are used in the build up to use GLMMs in 

analysis of morbidity data.

3.5 Exponential Distribution Family

The distribution of a random variable y, (with mean //,) is said to belong to the exponential family 

if it has a probability density function of the form;
4,

f ( y u a, CD) =  exp [ +  c&'. <D)7  ( 3 . 1 )

cD is a constant dispersion parameter, 6 i is the natural or canonical parameter that can be expressed as
*

some function of mean pi and kOj is a cumulant generating function.'Among many of the common
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distributions that are known to belong to this distribution include; Normal, Gamma, Poisson and 

Binomial.

3.6 Generalized Linear Models (GLM’s)

The generalized linear model (GLM) refers to a larger class of models popularized by McCullagh and 

Nelder (1982, 2nd edition 1989). In these models, the response variable y, is assumed to follow an 

exponential family distribution with mean which is assumed to be some (often nonlinear) function 

of xT

They represent a class of fixed effects regression models for several types of dependent 

variables (i.e. continuous, dichotomous, counts). Thus, it can be said that the generalized linear 

model involves logistic models for binary dependent variables, log linear analysis, Poisson 

regression, etc.

There are three components to any GLMs:

1. Random Component -  refers to the probability distribution of the response variable (T); e.g. 

normal distribution for Y in the linear regression, or binomial distribution for Y in the binary 

logistic regression. Y, ’s are independent and random variables with mean E (7^ = piu and are 

member of the exponential family of distributions.

2. Systematic Component - specifies the explanatory variables (X ), X2, ... Xfi in the model, 

more specifically their linear combination in creating the so called linear predictor; e.g.,
4,

Po + P1X1 + P2X2

3. Link Function, // or g(n) - specifies the link between random and systematic 

components. It says how the expected value of the response relates to the linear predictor
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of explanatory variables; e.g., rj = g(E(Yi)) = E(Yi) for linear regression, or q = logit(n) 

for logistic regression.

Generalized linear models are based on the following assumptions:

• The data Yj, Y2, .... Y„ are independently distributed, i.e., cases are independent.

• The dependent variable T,does NOT need to be normally distributed, but it typically 

assumes a distribution from an exponential family (e.g. binomial, Poisson, multinomial, 

normal)

• GLM does NOT assume a linear relationship between the dependent variable and the 

independent variables, but it does assume linear relationship between the transformed 

response in terms of the link function and the explanatory variables; e.g., for binary 

logistic regression logit(n) = fio + PX.

• Independent (explanatory) variables can be even the power terms or some other nonlinear 

transformations of the original independent variables.

• The homogeneity of variance does NOT need to be satisfied and errors need to be 

independent but NOT normally distributed.

• It uses maximum likelihood estimation (MLE) rather than ordinary least squares (OLS) to 

estimate the parameters, and thus relies on large-sample approximations.

3.7 Generalized Linear Mixed Models (GLMMs)
t*

The generalized linear mixed model (GLMMs) is an extension to the generalized linear models in 

which the linear predictor contains random effects in addition to the usual fixed effects. They extend the 

idea of linear mixed models to non-normal data.
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The general form of the model (in matrix notation) is:

y=XJ3+Zy+£ (3.2)

Where y is a column vector, the outcome variable; X is a matrix of the p predictor variables; p is a 

column vector of the fixed-effects regression coefficients (the "betas"); Z is the design matrix for 

the q random effects (the random complement to the fixed X); y is a vector of the random effects (the 

random complement to the fixed p); and e is a column vector of the residuals, that part of y that is not 

explained by the model, Xp+Zy

The inclusion of random effects in the predictor is to account for over dispersion, correlation and 

heterogeneity in the data. Since correlation is a natural feature of clustered data as much as in the 

longitudinal data, GLMMs have been used extensively for such data Aitkin, (1996), Stiratelli et al, 

(1984); Zeger et al, (1988).

GLMMs for a cluster data are defined as follows:

Suppose that the observations on the i‘h cluster consists of response y IJt covariates x,j and z,y associated

with the fixed and random effects respectively, for i= l,2,3,...... , K and j=  1,2,3, ...................t j .  Given a p-

dimensional vector of unobservable random effects bh y,j are independent with means E (yj/bi) = Mij (bjj) 

and variance var (yt/bi) = a (D) v (yij(bi)). Here the conditional mean depend on the random effect.

The GLMMs consists of the following parts;
t*
4,

1. The linear predictor □,/&*) = xT$  + z,yi>, with yy independent and from the distribution density of 

the form;
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f  (yij\bi, p, o ;  =  exp /"O -1 (yijdtj. y  ($,)) +  c(ytJ, O )] ( 3.3)

2. The random part conditional on random effects bi, y \ jS  are independent random variables with 

conditional densities belonging to exponential dispersion family and have conditional means and 

variance

3. The link function which is defined as h Efyi/pj) = xT,jfi + zybi. Here, h is called the link function 

and Xjj and zy are p and q vectors of known covariates. P is a p-dimensional vector of unknown 

fixed regressor coefficients and bj ~N  (0,D). Since our response variable is binary, we show this 

illustration using logistic regression model;

logit Pr(yij=l/pi) =Po + Pi + fiiXy (3.4)

This model shows that each individual in our data is exposed to own probability of a normal response (y 

= 1) which is given by

Pr (yij =  1/pi) =
exp(/?o + pi)

1 + exp(/?o + pi) (3.5)

The model also indicates that an individual’s odds of a normal response are multiples of exp (pi). The 

basic principle of the random effects model is that there exists a natural heterogeneity amoug subjects in 

a subset of the regression coefficients e.g. in the intercepts. The fundamental assumptions of the random 

effects model is that b \s  are independent of the explanatory variables.

4,
There are certain assumptions that are made in random effects models:-

1. The conditional distribution of y»j given bi follow a distribution from the exponential family of 

distributions with pdf / (yi/bi,p). '
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2. Given |u.i, the clustered observation yn, yl2, ..... yni , are independent

3. The bj’s are independent and identically distributed.

3.8 Estimation for Generalized Linear Mixed Models

In this study two methods of estimation will be considered namely conditional likelihood and maximum 

likelihood estimation.

3.8.1 Condition likelihood estimation

The main idea behind conditional likelihood estimation of p is to treat the random effects b, as nuisance 

parameters and then estimate p using conditional likelihood of the data given bj. Treating b as fixed, the 

likelihood function for p and b can be given as;

f(y>/P. b j a

m ninn
H  J=I

exp [d i j -  y  (Oij)] (3.6)

Where 6 y- 6  jj(p, b). Restricting this to the canonical link functions for simplicity for which 0^ = x7 + 

d ’jjbj, the likelihood becomes;

- Z  V (Gtj) *  (3.7)
U

3.8.2 Maximum Likelihood estimation
-c*

In maximum likelihood estimation, bj is treated as a sample of independent unobservable variables from 

a random effects distribution. This assumption suggests that by understanding the variability of the

/
t
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overall population, we can learn about an individual’s coefficient. Here, the likelihood function for the 

unknown parameter 5, which is defined to include both p and elements of G, where b,~ i.i.d f (/uit G) is:

L (S, y) ffyi/b ,; P )f(b i;G) dbi (3.8)

This is simply the marginal distribution of Y obtained by integrating the joint distribution of Y and b 

with respect to b. The maximum likelihood is found by solving the score function which we obtain by 

setting the first derivative of the likelihood function above with respect to 8 to 0.

The complete data score for P has the form;

m ni

S/3 (S\y, b) = z l  z l  Xijyij - Mu (bi) = 0 (3.9)
/=l y=i

Where My (bi) = E (y^bj) = □ “ /  (x’y + d ’tjbi)

These observed data score equations are obtained by taking the expectation of the complete data 

equations with respect to the conditional distribution of the unobserved random effects given the data. 

The score function for G is given as; ^

M

Sg (d\y) = i  D~‘ Z j E (btb ’,|yO G~‘ - y  G = 0 (3.10)

/
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3.9 Logistic regression for binary data

Considering the nature of the response variable in this study, we introduce literature behind logistic 

regression models as a parametric tool for modeling binary data. Logistic regression models are the most 

widely used models for categorical response data.

Consider the explanatory variable X of a binary response variable Y and let

n(x) -  prob (Y = 1\X = x) = 1- prob (Y =0\X = x) (3.11)

This yield to the logistic regression model;

n(x) exp(a + fix)
1 + exp(a + fix) (3.12)

In this model the log-odd, which are also called the logits has the linear relationship given by;

logit[n(x)J = log[ -  71 ̂  -J =a  + fix 
1 -  7t{x)

(3.13)

which is the logit link function to the linear predictor. The sign of the p (log odds) determines the slope 

of the curve i.e. whether 7t(x) is falling or rising. For quantitative x with P > 0, the curve of rc(x) has the 

shape of the cumulative distribution function of the logistic distribution, and since the logistic 

distribution is symmetric, then the 7r(x) approaches 0 and 1 at the same rate.

Taking exponent of the above equation we get '•

exp [Logit[n(x)]] = exp [a  + fix] (3.14)
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This shows that the odds ratios are exponential functions of x. Therefore, the odds increases 

multiplicatively by ep for every 1-unit increase in x. i.e. e  is an odds ratio, the odds at X = x+1 divided 

by the odds at X = x.

3.10 Inference in Logistic regression

Wald (1943) showed that the parameter estimators in logistic regression models have (asymptotic) large- 

sample normal distributions. Thus, inference in logistic regression models can use the Wald, likelihood- 

ratio methods.

For the model with predictor Logit[n(x)] = a  + fix we test the null hypothesis Ho : P = 0 against Hi * 0.

The wald test uses the log likelihood at B, with the test statistics being z = — —— . The likelihood ratio
SE{fi)

test has a x2 distribution with 1 degree of freedom and uses twice the difference between the maximized 

log likelihood at P and at P = 0. One way of checking for the model fitness is by using the likelihood 

ratio test to compare the fitted model with a more complex model. Another way of checking for model 

fit is by checking for any way that the model fails. This procedure checks for the model’s lack of fit 

other than model fit.

3.11 Mixed effects models for binary data

In marginal modeling and marginal distributions of clustered responses, the joint dependence structure is 

treated as a nuisance. There is an alternative approach of using cluster- level terms in the model. These 

terms are unobserved, taking different values for observations in different clusters. The^are treated as 

varying randomly, hence are called random effects. Random effects models for normal responses are 

well established and only recently have random effects been used much in models for categorical data. 

Due to the nature of our outcome variable, we shall narrow this to logistic-normal model. Random
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effects models for categorical clustered data in an ordinary linear model, fixed effects refer to 

parameters that describe a factor’s effects and they apply to all categories of interest. Generalized linear 

models extend ordinary regression by allowing non-normal responses and a link function of the mean, 

while GLMMs allows random effects as well as fixed effects in the linear predictor.

3.12 The model

If we let yu denote observation t in cluster i, t = 1, . . , T*. We further let xtt denote a column vector of 

values of explanatory variables, for fixed effect model parameters p. Again, let pi denote the vector of 

random effect values for cluster i. This is common to all observation in a specific cluster. Let Zjt donate a 

column vector of their explanatory variables. Conditional on //,, a GLMM resembles an ordinary GLM. 

The linear predictor for the model is defined as;

g(Pu) = x ri,p +  zTHi (3.15)

Where the mean pjt = E (Yjt|pO and g (.) is the link function. It’s further assumed that p i ~N (0, X). We 

shall introduce here the inter-class and the intra-class correlation in mixed effects model. The intra-class 

correlation is given by:

n
P = n+cn (3.16)

Where t2 is the within group variation, and a2 is the overall variation, i.e. residual error. The variability 

of among p, induces a non-negative correlation for the marginal distribution that is averaged over the 

subjects. Observations within the same cluster i share the same mean pj. Random effects also enter into 

our model as any other explanatory variables. .The purpose of including random effects in a model 

include among others; '

Page | 22



• They at times will represent the heterogeneity in the data that is caused by not observing certain 

predictors. Therefore, random effects model the unobserved predictors by reflecting these terms 

that would have been in the model.

• They provide a way of explaining the over-dispersion in basic models that do not have these 

effects.

• They reflect terms that would otherwise be in the fixed effects part of the model if certain 

predictors would be included in the model.

• They represent random measurement errors in the independent variables.

3.13 Binary responses

The univariate random effect model is of the form;

logit ( P [Yu = 1/f/iJ) = xTi, p  + fj„ (3.17)

Where p, independent ~ N (0, a2) variates. This model is a special case of a generalized linear mixed 

model and g (.) is the usual logit link function. Let denote the cumulative density function (cdf) that is 

the inverse link function. Then, for any s * t,

cov (Yls, Yit) = E [  cov (Yis, Y,,\/u, )]  + cov[E(Y,s\nJ, E(Yi,\^JJ = 0 + cov [&(xTisp  + ju,), 0 (xT„P +

Pi)]- (3.18)

You shall notice that both O (xTtsP + n,) andC> (xT, tp + //,) are monotonically increasing with pj,

therefore are non-negatively correlated. At each t, the predictor variable j pdf of x is interchangeable for

clustered data, a factor that is common also with longitudinal data, where observations in close together

time wise are likely to be more correlated than observations that are further apart. In estimation, the 
. /
interpretation is a around the fixed effects, with the random effects used for example, o the estimate of
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the standard deviation of the random intercept may be used to predict the population’s degree of 

heterogeneity.

a = 0- The model simplifies to a logistics regression model, with all observations independent of each 

other. Recall the log odds ratio given by;

logit[P (T„= l\Ui)]-logit[P(Yhs = l\Hh)] = (xu-X h/P  + (/a - Mh) (3.19)

recall that (pi- ph) ~N(0, 2o). Thus, 100(l-a)% of the log odds fall with the following range;

(Xit-Xhs/fi ± z a  °   ̂ (3.20)

o >0 -  the log-odds ratio of two observations in same cluster

3.14 Introducing multilevel models

Most data sets that are collected in human surveys tend to be inherently correlated through clustered

nature due to the design of the surveys. The denomination of clusters basically refers to a two level

hierarchy, where some basic units of measurement are grouped into clusters. A good example includes

Litter effects in animal study and subject effects in repeated measurements. In most complex surveys,

this procedure is more common in the process of generating a more parsimonious sample, which is not

affected by sampling errors, hence resulting in systematic samples or cluster samples, in place of sample

random samples. In analyzing this kind of data whose sample was selected through multistage sampling,
<■

then we need to consider using statistical procedure that takes into account the correlation between units 

that are in the same cluster. This leads us to the use of multi-level modeling techniques. Multi-level 

models are categorized into two parts; Continuous and discrete multi-level models. Due to the nature of
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the response variable (Binary), the discussion in this section will be based on the discrete multi-level 

models, with special emphasis on those that can be used on binary data.

3.15 Multilevel models for continuous data

Consider a sample with K clusters, with Jk household within the k-th cluster (k=l,2,3,...,K) and

members in the j-th household in the k-th cluster (j= 1,2,3,__,Jk)- Again let’s assume is the values

assumed by the response variable associated to the i-th members of the j-th household in cluster k. Then;

ytjk = XijkP + z(3)ijk u  + z(2)ijk Hjk + z(,)ijkGjk (3.21)

Where xyk and z’jjk s are fixed covariates and (3 is a fixed vector of parameters, and u  fijk and Gjk are 

mutually independent and normally distributed random variables. The u'ks and the y )k s are 

unobserved/latent variables that are used to model variation in data that is attributed to the clustering 

effect at different levels depending on the survey design.

When z(3)jjk = z(2\jk = 1, the above model reduces to a simple random intercept model. When z = 1, 

then this model only includes a simple residual error term. However, the possibility of adding extra 

covariates permits the representation of complex variation at level 1, including subgroup variability 

(heteroscedasticity). Parameter estimation can easily be done by maximum likelihood estimation 

procedures that maximize the likehood functions.

3.16 Multilevel models for discrete data

As stated, the discussion in this section concentrates on binary data multilevel models due to the nature 

of the response variable. If we assume a random variable as defined in the above section, then here we 

shall consider the model below;
/t
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logit[(ntjk)] XjjkP +  ^   ̂ijk̂ Jk “ ijk Hjk (3.22)

Where n̂ k = P[yijk = l\vk, pj/J. For this discussion we shall assume that -Bernoulli (jty*), and 

therefore the above model can as well be written as;

V  —  _  i - ( I )  € i j k  
■* ijk ftijk  "*■  Z jjk (3.23)

With z (l)ijk = Kjk (l- ^k), and n,jk ~(0,1).

For inference and estimation procedures, we can maximize the marginal likelihood obtained after 

integrating the random effects. But due to computational bulkiness of marginal likelihood and the 

resulting intractable expression, one has to use numerical integration procedures such as Gaussian 

quadrate (zeger and karim 1991) and Markov chain Monte Carlo techniques. But again, these procedures 

can be computationally difficult and therefore other approximate procedures have been suggested among 

them Breslows penalized quasi likelihood (PQL) and marginal quasi likelihood (MQL).

The model above can also be written as;

logit [  ProfYtjk = 1 \yij)] = fio + Hij + xijk P (3.24)

for simplicity purpose, we assume that ya = Po + Pij and further assume that Xjjk does not include n 

intercept term. Then, the joint likelihood functions for p and y is proportional to;

mnn exp [  yij X-W* + (^yv^oOP - X log1 + exP(W + x
/ '= !  / = !  *=1  *=1  *= i

(3.25)

The conditional likelihood of p given the sufficient statistics for the yij is of the form given by;
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(3.26)

t i n - .  exp(y L | yijkXijkfi) 

,=1 y=1 ' L KJQXp ( L Z y ijx'ijl̂

Where Ry contains all the (nyCy) ways of choosing yy positive responses out of ny correlated 

observations.

4 ,
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CHAPTER FOUR

APPLICATION OF GLMMS IN MODELING MORBIDITY 
EPISODES AND ANALYSIS OUTPUT

Statistical tools for Microsoft excel, SPSS and R were used for data input and analysis. Some of the 

explanatory variables were categorized before starting the analysis into two or more categories to make 

the analysis and interpretations more meaningful. Exploratory data analysis is done using SPSS and R 

statistical software, data is then fed into models for further analysis.

4.1 Variable descriptions

1. Diseased:- This is a binary variable defined as 1 if an environmental health related disease 

occurred or 0 if it didn’t occur to an individual

2. Gender:- sex of an individual- coded as 1= Male, 0=Female thus it’s a categorical variable 

with 2 levels

3. Highest education attained:- it’s a categorical variable with four levels coded 0=None, 

l=primary, 2=secondary and 4=tertiary

4. Current working status:- A categorical variable coded l=working and 0=Not working.

5. Area of Residence :- A categorical variable with l=Rural and 0= Urban

6. Main source of drinking water :- is a categorical variable coded 1-safe drinking water and 0= 

unsafe drinking water

7. Human waste disposal:- A binary variable defined as 1 if one use hygienic human waste

disposal means or 0 if not *'

8. Housing condition :- is a binary variable coded 1 if has good housing condition and 0 if has 

poor housing condition

9. Clust:- clustering variable
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4.2 Modeling individual morbidity using Generalized Linear Mixed Model

We fit a GLMM effect model to the individual morbidity data described above. The dependent variable 

is “diseased”, as a measure of whether an individual experienced environmental health related disease.

4.3 The individual model

The generalized linear mixed effects model with logit link is defined as below:

logit[Prfyy = 1 \nJ] =J30 + Pi + pixij (4.1)

the model takes the form;

logit[(Prob(disease c/,j) = l\pJJ = Po + Pi + /?/(gender)jj + ^(education)^ + ........... +/?7(housing)jj +

Z)o(clust). (4.2)

We begin by showing the distribution of different dependent variables. The table below shows all the 

variables that were fitted in the model.

4.4 Exploratory data analysis

In this section we seek to show the distribution of the dependent variable compared to some selected 

covariates. -

Table 4.4: Summary statistics (Categorical variables)

Variable Category Descriptive
--—V------------------

Percentage

Gender Male 32,918 49.3

Female
1

33,807
/

50.7
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Area of residence
Rural 47,126 70.9

Urban 19,351 29.1
Working status

Working 14,895 66.9

Source of drinking water Not working 7,374 33.1

protected source 32,870 50.1
Human waste disposal

unprotected source 32,732 49.9

Highest Education hygienic waste 31,158 47.5
disposal

34,495 52.5
unhygienic waste

disposal

28,731 61.1
None

9,920 21.1
Housing condition Primary

4,896 10.4
Secondary

3,505 7.4
Tertiary

38,788 *59.3
good housing

condition 26,670 40.7

poor housing
condition

4,

1
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Table 4.5: Cross-tab of all covariates against the dependent variable “diseased”

Variable Non
Level diseased diseased Total Cramer's V

gender Male 50.3 45.6 49.3 0.037
Female 49.7 54.4 50.7

Area of residence Rural 71.1 70.1 70.9 0.009

Urban 28.9 29.9 29.1

Working 66.4 69.2 66.9 0.023
Working status

Not working 33.6 30.8 33.1

protected 49.8 51.2 50.1 0.011
main source water source

unprotected 50.2 48.8 49.9
source

hygienic 46.9 49.5 47.5 0.02
human waste disposal waste

disposal
53.1 50.5 52.5

unhygienic
waste
disposal

60.4 64.2 61.1 •0.033
highest education

None 21.4 19.5 21.1

Primary 10.7 8.9 10.4

Secondary 7.5 7.4 7.4 4

Tertiary
housing condition 59.1 59.8 59.3 0.005

good *
housing l
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condition 40.9 40.2 40.7

poor
housing
condition

We fit a GLMEM using the Imer command in R which contains functions for estimation of multilevel or 

hierarchical regression models. /? represents the coefficients of fixed effects while b's represent the 

coefficients of the random part.

A generalized linear mixed effect model for all explanatory variables in R produced the model in the 

table 4.7 below.

Table 4.8 shows the fitted GLM with outcome “diseased”. This model uses a logit link to estimate the 

factors that drive morbidity incidences. We use this model to compare the results from the GLMEM 

reported previously.

Table 4.6: Model 1 Null linear mixed model by REML

AIC BIC LogLink Deviance REML dev

63774 63792 -31885 63857 63770
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Random effects

Groups Name Variance Std.Dev

Clusters Intercept 0.011986 0.10948

Residual 0.147679 0.38429

Fixed effects:

Estimate Std.Error z value Pr(>|z|)

Intercept 1.53199 0.02271 67.45 <2e-16 ***

The above model is an empty model i.e model fitted without including the explanatory variables. The 

variance component corresponding to the random intercept is 0.011986.

The two variance components can be used to partition the variance across levels. The interclass 

correlation coefficient is equal to;

p  = ------ P——1— ---------=0.075 meaning that roughly 0.08% of the variance is attributed to
0.011986 + 0.147679

the cluster-level. The strength of the intra-cluster correlation determines how observations within 

a given cluster are likely to be similar to each other. Thus, a higher intra-cluster correlation gives
4,

a more pronounced “clustering effect.”

t
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To explain some of the cluster-level variance, we incorporate the explanatory variables in the 

empty model. The table below shows the GLMM for the random intercept and fixed predictors in 

individual level using REML.

Table 4.7 Model 2: GLMM for the random intercept and fixed predictors using REML

AIC BIC Loglink deviance REML dev

3946 4023 -1961 3855 3922

Random effects
Groups Name Variance Std. Dev

Clusters Intercept 0.0077387 0.08797

Residual 0.1393540 0.37330

Fixed effects
Estimates Std. Error z value Pr(>|z|

(intercept) 1.35917 0.13153 10.334 < 2e-16 ***

Male 0.26122 0.08322 3.139 0.00170

Urban -0.11217 0.13598 -0.825 0.40943

Working -0.06090 0.09769 -0.623 0.53304

Unprotected 
water source

0.01772 0.10003 0.177 0.85938

Unhygienic waste 
disposal

0.10290 0.09925 1.037 0.09984

Primary -0.01127 0.10086 -0.112 0.91103

Secondary 0.15345 0.13454 1.141 0.25407

Tertiary 0.04185 0.12827 0.326 0.74420

Poor housing condition 0.23273 0.10640 2.187 • 0.02872

7
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The variance component corresponding to the random intercept has decreases to 0.0077387, indicating 

that the inclusion of the explanatory variables has accounted for the some of the unexplained variance. 

Comparing both the AIC and BIC statistics in both models above, it is clear that the model 2 is 

preferable to the model 1 since it gives smaller values of AIC and BIC.

From the GLMM model above; gender, human waste disposal and housing condition are significant in 

predicting the probability of an individual getting an environmental health related disease. However, 

area of residence, education and working condition and main source o f water are insignificant.

The GLMM model is of the form

logit [(prob(disease di}) = 1 //xj = fio + Hi + /?/(gender)jj + /^(human waste disposal)^ + /^(housing 

condition^ (4.3)

The GLMM outputs above indicates that with group of the female as the reference group; then the log of 

odds of getting an environmental health related disease increases by 0.0017.

Holding other variables constant; an individual living in poor housing condition is about 3% more 

likely to have the disease compared to an individual living in a good housing condition. Also the odds 

of getting an environmental health related disease is exp (0.09984) = 1.10499 times fo? unhygienic 

waste disposal compared to hygienic means of human waste disposal.

/
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Table 4.8: A generalized linear model for “diseased”

AIC 4002.792

Estimate
Std.
Error

z
value p-value

(intercept) 1.232434 0.11169 11.034 2.00E-16

Male 0.24782 0.080393 3.083 0.002052

Urban -0.108088 0.104391 -1.035 0.300476

Working -0.097075 0.09077 -1.069 0.28486

unprotected source 0.041063 0.083227 0.493 0.001744

unhygienic waste disposal 0.145195 0.087092 1.667 0.095486

poor housing condition 0.323525 0.089386 3.619 0.000295

Primary 0.002356 0.096739 0.024 0.980572

Secondary 0.182476 0.12824 1.423 0.154758

Tertiary 0.056151 0.121077 0.464 0.64282

The Akaike Information Criteria (AIC) for GLM model was 4002.792 which is a measure of goodness 

of fit that takes the number of fitted parameters into account. This value is larger as compared to AIC in 

the GLMM model. Thus GLMM model is preferable to GLM in modeling clustered data. ~

From the GLM model above;, gender, human waste disposal, housing condition and main source of 

drinking water are significant in predicting the probability of an individual getting an environmental
4 ,

health related disease. However, area of residence, education and working condition are insignificant. 

Hence the GLM model would be
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In ------------— =fio + /?/(gender) + P2(housing condition) + p3(main source of water) +
1 - P ( y  = 1| * )

P4(human waste disposal) (4.4)

The GLM outputs above indicates that with group of the female as the reference group; then the log of 

odds of getting an environmental health related disease increases by 0.24782. For the main source of 

water variable, the odds of getting an environmental health related disease is exp (0.041063) = 1.0419 

times for unprotected main source of water compared to protected source of water. Holding other 

variables constant; an individual living in poor housing condition is about 38% more likely to have the 

disease compared to an individual living in a good housing condition. Also the odds of getting an 

environmental health related disease is exp (0.145195) = 1.1563 times for unhygienic waste disposal 

compared to hygienic means of human waste disposal.

t
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CHAPTER 5

CONCLUSSION, RECOMMENDATINS AND SUGGESTIONS 
FOR FURTHER STUDIES

5.1 Introduction

This chapter provides conclusion, recommendations and suggestions for further studies.

5.2 Conclusion

This study was set to determine factors that are associated with the probability of an individual in a 

population experiencing an environmental health related disease in Kenya. It was also set to develop a 

statistical model that describes the influence of these factors while accounting for inter-class correlation 

in the data. The study found that individual morbidity is associated with some social, economic and 

demographic factors in the country. The study applied both GLM and GLMM models to model 

household data that was collected in 2005/6 to investigate factors associated with environmental health 

related diseases. Further, the study applied Akaike Information Criteria (A1C) to determine the 

preferable model in modeling clustered data.

From the analysis, it was found that, the severity of environmental health related disease is likely to 

increase with gender whereby a female individual is likely to get a disease than a male individual. This 

outcome supports the idea that gender-specific differences in morbidity and mortality may be explained 

by genetic factors and by their differential response to the environment.

•t*
People living in poor housing conditions were found to be more likely to get a disease than those from 

good housing condition. Main source of drinking water was also significant in explaining individual 

morbidity in Kenya with an individual using unprotected main source of water found more likely to get 

a disease than an individual using protected main source of water.
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Means of human waste disposal was another factor found affecting the disease outcome whereby an 

individual using unhygienic waste disposal was more likely to have an environmental health related 

disease than the one using hygienic means.

However, the study found that area of residence; working condition and education level do not affect the 

diseased outcome.

On the statistical model that account for inter-class correlation in the data, it was found that the value of 

AIC in GLM model was larger compared to AIC value in GLMM model. According to Akaike’s 

theory, the most accurate model has the smallest AIC hence; for this study, it could conclude that 

GLMM model is more preferable to GLM in modeling clustered household data.

5.3 Recommendations

Efforts to address the plight of the environmental health related disease should be more focused to 

individuals living in poor conditions and should not only be focus in offering facilities but also 

economic empowerment.

5.4 Suggestions for Further Studies

This study can be extended to incorporate income level of individuals. Individuals with low level 

of income are believed to be more likely to experience environmental health related diseases than 

individuals with higher levels of income.

■««
Further studies should also be carried out to focus on mapping the areas which are mostly.affected in the 

country and developing an effective model to address the issue.
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APPENDIX
R Syntax Commands used

GLMM Commands

mydata=read.csv(file.choose())

attach(mydata)

mydata

library(lme4)

install. packages("lme4")

#null-model

lmer(y ~ 1 + (1 | clusters), data=mydata)

#random intercept, fixed predictor in individual levelusing REML 

lmer(y ~ xl+x2+x4+x5+x6+x7+x8 + (1 | clusters), data=mydata)

#random intercept, fixed predictor in individual levelusing ML

lmer(y ~ xl+x2+x4+x5+x6+x7+x8 + (1 | clusters), data=mydata, method="ML")

GLM model Commands
i

mydata=read.csv(file.choose()) 
attach(mydata) 
mydata library(mlogit) 
mydata$y<-as. factor(mydata$y)
mldata<-mlogit.data(mydata, varyingfNULL, choice="y", shape="wide") 
mlogit.model<-mlogit(y~xl+x2+x3+x4+x5+x6+x7+x8, data=mydata, reflevel-’diseased")- 
summary (mlogit.model)

mylogit<-glm(y~xl+x2+x4+x5+x6+x8+x7, data=mydata, family=binomial)
Summary (mylogit)
AIC (mylogit)
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