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Abstract

The properties of W6-curvature tensor are studied in k-contact manifold
and the following theorems were proved;
A W6-flat K-contact Riemannian manifold is a flat space or manifold.
A W6-Semisymmetric K-contact Riemannian manifold is a W6-flat manifold.
A W6-symmetric and W6- semi symmetric K-contact Riemannian manifold
is a W6-flat manifold.
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Chapter 1

Introduction

Riemannian geometry was first put forward in generality by Bernhard Rie-
mann in the nineteenth century. It deals with a broad range of geometries
whose metric properties vary from point to point, including the standard
types of Non-Euclidean geometry.

Any smooth manifold admits a Riemannian metric, which often helps to
solve problems of differential topology. It also serves as an entry level for the
more complicated structure of pseudo-Riemannian manifolds, which (in four
dimensions) are the main objects of the theory of general relativity. Other
generalizations of Riemannian geometry include Finsler geometry. There ex-
ists a close analogy of differential geometry with the mathematical structure
of defects in regular crystals. Dislocations and Disclinations produce torsions
and curvature.

1.1 Tensor Analysis

1.1.1 Tensor algebras

We fix a ground field F which will be the real number field R or the complex
number field C in our applications. All vector spaces we consider are finite
dimensional over F unless otherwise stated. We define the tensor product
U ⊗ V of two vector spaces U and V as follows. Let M(U,V) be the vector
space which has the set U ×V as a basis, i.e., the free vector space generated
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by the pairs (u, v) where u ∈ U and v ∈ V . Let N be the vector subspace of
M(U,V) spanned by elements of the form.

(u+ u
′
, v)− (u, v)− (u

′
, v),

(u, v + v
′
)− (u, v)− (u, v

′
)

(ru, v)− r(u, v), (u, rv)− r(u, v),

Where

u, u
′ ∈ V, v,v

′ ∈ V and r ∈ F .

We set

U ⊗ V = M(U, V )/N For every pair (u, v) considered as an element of
M(U, V ), its image by the natural projection M(U, V ) 7−→ U ⊗ V will be
denoted by u ⊗ v. Define the canonical bilinear mapping ϕ of U × V into
U ⊗ V by ϕ(u, v) = U ⊗ V for (u, v)εU × V

Let W be a vector space and ϕ : U × V 7−→ W a bilinear mapping. We
say that couple (W,ϕ) has the universal factorization property for U × V if
for every vector space S and every bilinear mapping f : U × V 7−→ S there
exists a unique linear mapping g : W 7−→ S such that f = g ◦Ψ.

i. Contravariant and covariant vectors.

If N quantities A1, A2, . . . , AN in a coordinate system (x1, x2, . . . , xN)
are related to N other quantities Ā1, Ā2, . . . , ĀN in another coordi-
nate system (x̄1, x̄2, . . . , x̄N) by the transformation equations Āp =∑N

q=1
∂x̄p

∂xq
Aqp = 1, 2, . . . , N which by the convections adopted can sim-

ply be written as

Āp =
∂x̄p

∂xq
Aq

They are called components of a contravariant vector or contravariant
tensor of the first rank or first order.
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If N quantities A1, A2, . . . , AN , in a coordinate system (x1, x2, . . . , xN)
are related to N other quantities Ā1, Ā2, . . . , ĀN in another coordinate
system (x̄1, x̄2, . . . , x̄N) by the transformation equations

Āp =
∑N

q=1
∂xq

∂x̄p
Aqp = 1, 2, . . . , N or

Āp =
∂xq

∂x̄p
Aq

They are called components of a covariant vector or covariant tensor of
the first rank or first order. Note that a superscript is used to indicate
contravariant components whereas a subscript used to indicate covari-
ant components; an exception occurs in the notation for coordinates.
Instead of speaking of a tensor whose components are Ap or Ap we shall
often refer simply to the tensor Ap or Ap. No confusion should arise
from this.

ii Contravariant, covariant and mixed tensors.

If N2 quantities Aqs in a coordinate system (x1, x2, . . . , xN) are related
to N2 other quantities Āpr in another coordinate system x̄1, x̄2, . . . , x̄N

by the transformation equations

Āpr =
N∑
s=1

N∑
q=1

∂x̄p

∂xq
∂x̄r

∂xs
Aqs, p, r = 1, 2, , N

by the adopted conventions, they are called contravariant components
of a tensor of the second rank or rank two.
The N2 quantities Aqs are called covariant components of a tensors of
the second rank if

Āpr =
∂xq

∂x̄p
∂xs

∂x̄r
Aqs

The N2 quantities Aqs are called components of a mixed tensors of the
second rank if

Ārs =
∂x̄p

∂xq
∂xs

∂x̄r
Aqs
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iii Tensors of rank greater than two.

Tensors of rank greater tha two are easily defined. For example, Aqstkl
are components of a mixed tensor of rank 5,contravariant of order 3
and covariant of order 2, if they transform according to the relations

Āprmij =
∂x̄p

∂xq
∂x̄r

∂xs
∂x̄m

∂xt
∂xk

∂x̄i
∂xl

∂x̄j
Aqstkl

iv. Scalars or invariants.

Suppose φ is a function of a coordinate xk and let φ̄ denote the func-
tional value under a transformation to a new set of coordinates x̄k.
Then φ is called a scalar or invariant with respect to the coordinate
transformation if φ = φ̄ . A scalar or invariant also called a tensor of
rank zero.

v. Tensor fields.

If to each point of a region in N dimensional space there corresponds
a definite tensor,we say that a tensor field has been defined.This is a
vector field or a scalar field according as the tensor is of rank one or
zero.It should be noted that a tensor or tensor field is not just the set
of its components in one special coordinate system but all the possible
sets under any transformation of coordinates.

Let Tx = Tx(M) be the tangent space to a manifold M at a point
x and Tx the tensor algebra over Tx : Tx =

∑
T rs (x), where T rs (x) is

the tensor space of type (r,s) over Tx. A tensor field of type (r,s) on a
subset N of M is an assignment of a tensor KxεT

r
s (x) to each point x

of N. In a coordinate neighborhood U with a local coordinate system
x1, . . . , xn, we take Xi = ∂

∂xi
i=1,. . . ,n, as a basis for each tangent space

Tx, xεU , and wi = ∂xi, i = 1, . . . n, as the dual basis of T ∗x . A tensor
field K of type (r,s) defined on U is then expressed by,

Kx =
∑

Ki1...ir
j1...js

Xi1 ⊗ . . .⊗Xir ⊗ wj1 ⊗ . . .⊗ wjs (1.1)

Where, Ki1...ir
j1...js

are functions U, called the components of K with respect

to the local coordinate system x1, . . . , xn. We say that K is of class Ck
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if its components Ki1...ir
j1...js

are functions of class Ck; of course, it has to
be verified that this notion is independent of a local coordinate system.
This is easily done by means of the formula.

K̄i1...ir
j1...js

=
∑

Aik, . . . , A
ir
kr
Bm1
j1
, . . . , Bms

jj
Bk1...kr
m1...ms

, (1.2)

Where the matrix (Aij) is to be replaced by Jacobian matrix between
two local coordinate systems.

vi. Symmetric and skew-symmetric tensors.

A tensor is called symmetric with respect to two contravariant or two
covariant indices if its components remain unaltered upon interchange
of the indices. Thus if Amprqs = Apmrqs the tensor is symmetric in m and
p. If a tensor is symmetric with respect to any two contravariantand
any two covariant indices, its called symmetric. A tensor is called skew-
symmetric with respect to two contravariant or two covariant indices
if its components change sign upon interchange of the indices. Thus
if Amprqs = −Apmrqs the tensor is skew-symmetric in m and p. If a is
skew-symmetric with respect to any contravariant and any two covari-
ant indices it is called skew-symmetric.

vii. The line element and metric tensor.

In rectangular coordinates (x, y, z) the differential are length ds is ob-
tained from ds2 = dx2 + dy2 + dz2. By transforming to general curvi-
linear coordinates this becomes ds2 =

∑3
p=1

∑3
q=1

∑
gpqdupduq. Such

spaces are called three dimensional Euclidean spaces.

A generalization to N dimensional space with coordinates (x1, x2, ..., xN)
is immediate. We define the line element ds in this space to be given
by the quadratic form, called the metric form or metric,

ds2 =
N∑
p=1

N∑
q=1

∑
gpqdx

pdxq (1.3)
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or, using the summation convention.

ds2 = gpqdx
pdxq (1.4)

In the special case where there exists a transformation of coordinates
from xj to x̄k such that the metric form is transformed into (dx̄1)2 +
(dx̄2)2 + . . .+ (dx̄N)2 or dx̄kdx̄k, then the space is called N dimensional
Euclidean space. In the general case, however, the space is called Rie-
mannian.

The quantities gpq are the components of a covariant tensor of rank
two called the metric tensor or fundamental tensor. We can and al-
ways will choose this tensor to be symmetric.

viii. Conjugate or reciprocal tensors.

Let g =| gpq | denote the determinant with elements gpq and suppose
g 6= 0.

Define gpg by

gpq =
cofactorofgpq

g

Then gpq is a symmetric contravariant tensor of rank two called the
conjugate or reciprocal tensor gpq. It can be shown that

gpqgrq = δpr

ix. Associated tensors.

Given a tensor, we can derive other tensors by raising or lowering in-
dices.
For example, given the tensor Apq we obtain by raising the index p, the,
tensor Ap·q, the dot indicating the original position of the moved index.
By raising the index q also we obtain Apq·· . Where no confusion can
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arise we shall often omit the dots; thus Apq·· can be written Apq. These
derived tensors can be obtained by forming inner products of the given
tensor with the metric tensor gpq or its conjugate gpq. Thus, for example

Ap·q = grpArq, A
pq=grpgsqArs, A

p
·rs = grqA

pq
··s

Aqm·tk··n = gpkgsng
rmAq·st·r··p

These become clear if we interpret multiplication by grp as meaning:
let r = p (or p=r) in whatever follows and raise this index. Similarly
we interpret multiplication by grq as meaning: let r= q (or q = r) in
whatever follows and lower this index.

All tensors obtained from a given tensor by forming inner products
with the metric tensor and its conjugate are called associated tensors
of the given tensor. For example Am and Am. are associated tensors,
the first are contravariant and the second covariant components. The
relation between them is given by

Ap = gpqA
qorAp = gpqAq

For rectangular coordinates gpq = 1 if p= q , and 0 if p 6= q , so
that Ap = Ap.

x. Fundamental operations with tensors.

(a) Addition. The sum of two or more tensors of the same rank
and type (i.e same number of contravariant indices and same number
of covariant indices)is also a tensor of the same rank and type thus if
Ampq and Bmp

q are tensors, then Cmp
q = Ampq + Bmp

q is also a tensor.
Addition of tensors is commutative and associative.

(b) Subtraction. The difference of two tensors of the same rank
and type is also a tensor of the same rank and type. Thus Ampq and
Bmp
q are tensors, then Dmp

q = Ampq −Bmp
q is also a tensor.

(c) Outer Multiplication. The product of two tensors is a tensor
whose rank is the sum of the ranks of the given tensors. This product
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which involves ordinary multiplication of the components of the tensor
is called the outer product. For example Aprq B

m
s = Cprm

qs is the outer
product of Aprq and Bm

s . However, not every tensor can be written as
a product of two tensors of lower rank.

(d) Contraction. If one contravariant and one covariant index of
a tensor are set equal, the result indicates that a summation over the
equal indices is to be taken according to summation convection. This
resulting sum is a tensor of rank two less than that of the original ten-
sor. The process is called contraction. For example, in the tensor of
rank 5, Amprqs , set r = s to obtain Amprqr = Bmp

q a tensor of rank 3.

(e) Quotient law. Suppose it is not known whether a quantity X
is a tensor or not. If an inner product of X with an arbitrary tensor is
itself a tensor, then X is also a tensor. This is called the quotient law.

1.1.2 Charts

In order that the usual operation of calculus should be possible in a space
more structure is required. Let M be a topological m-manifold a chart on
M comprises an open set P of M called a coordinate patch and a map
Ψ : P 7−→ Rm which is a homomorphism of P onto open subset of Rm. If x
lies in P then the pair (P,Ψ) is called a chart around x.

A homomorphism is a map that preserves selected structure between two
algebraic structures, with the structure to be preserved being given by the
naming of the homomorphism.

A topological manifold guarantees the existence of a chart around each point.
We need to establish the criteria of mutual consistency of coordinate systems
by specifying conditions to be satisfied when two charts overlap. It is at this
point that the concept of differentiability is introduced into the structure.

Suppose that (P1,Ψ1) and (P2,Ψ2) are two charts on M with overlapping
coordinates patches in the overlap (P1 ∩ P2) two maps to Rm are specified.
Since there maps are homomorphism they are invertible and therefore maps
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between open subsets of Rm maybe specified by

χ = Ψ2 ◦Ψ1−1) : Ψ1(P1 ∩ P2) 7−→ Ψ2(P1 ∩ P2)

χ−1 = Ψ ◦Ψ2−1 : Ψ2(P1 ∩ P2) 7−→ Ψ1(P1 ∩ P2)

The question of smoothness is now reduced to consideration of the maps χ
and χ−1 we invoke the condition that χ and χ−1 are both C infinity (C∞) or
both smooth which is to say Ck for every k.

This means that the functions relating the coordinates in two overlapping
patches may be differentiated any number of times. Pair of charts related in
this manner are said to be smoothly related. It is also possible to say that
two charts are smoothly related also if their domains do not intersect.

Since smooth functions of smooth functions are smooth functions the com-
position of smooth maps yields a smooth map. This suggests that it makes
sense to allow all charts which are smoothly related. This is the mathemat-
ical realization of the physical idea that all coordinate systems are equally
good.

1.1.3 Atlas

Consider a topological manifold M1 a smooth atlas for M is a collection of
pairwise smoothly related charts whose coordinate patches cover M . Thus
every point of M must lie in some patch of the atlas and thereby acquire
coordinates and where two sets of coordinates are both in operation they
must be smoothly related.

An atlas is called complete if it is not a proper sub collection of any other
atlas. This means that there is no chart smoothly related to all the charts
in the atlas which is not itself already in the atlas.

Any atlas may be completed by adding to it all the charts not already in
it which are smoothly related to those in it.

A manifold is developed in two stages first by establishing the topological
properties and then the differentiability.
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Let M be a topological space. If every point of M has a neighborhood
homomorphic to an open subset of Rm and if further more it is the Haus-
dorff space with a countable basis then M is called topological manifold of
dimension M or topological m-manifold.

1.1.4 Differentiable manifold.

An m-dimensional topological manifold M together with a complete atlas is
called an m-dimensional C∞ or smooth differentiable manifold.

A complete atlas is also sometimes called a differential structures for M .
Consider two charts (P1,Ψ1) and (P2,Ψ2) on m-dimensional smooth mani-
fold m with overlapping coordinates patches we may use the map χ and χ−1
to express the relation between the coordinates belonging to P1 and P2 re-
spectively, then xa2 = χa(xb1), xa1 = (χ−1)a(xb2), the inevitability of χ implies
that its Jacobian matrix and Jacobian matrix of (χ−1) are inverses of each
other. This is usually expressed in the following forms.

∂xa2
∂xc1

∂xc1
∂xb2

= δab ,
∂xa1
∂xc2

∂xc2
∂xb1

= δab

1.1.5 Submanifold

A submanifold of a manifold M is a subset S which itself has the structure
of a manifold, and for which the inclusion map S 7−→ M satisfies certain
properties. There are different types of submanifolds depending on exactly
which properties are required.

If φ : M 7−→ N is an immersion then in the special coordinates the im-
age (M) ⊂ N is represented locally by a coordinate m-plane, and the first M
of the coordinate on N serve as coordinates for it. It is therefore appropriate
to consider φ(M) as,locally, a submanifold of N .

A subset of N which is the image of an immersion M 7−→ N is called an im-
mersed submanifold of N , while a subset which is the image of an imbedding
is know is an imbedded submanifold or simply a submanifold of N .
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Suppose that S is a subset of a smooth manifold N with the property that
about each point in S there is chart of N such that the part of S covered
by the chart coincides with the coordinate m-plane ym+1 = ym+2 =, . . . ,=
yn = 0 Then the restriction of these charts to S define on it the structure of
a smooth manifold of dimension m, and the injection S 7−→ N which maps
each point of S (considered as a differential manifold in its own right), to
the same point regarded as a point of the differentiable manifold N , is an
immersion. Thus S is and immersed submanifold of N . In particular, if
fm+1, fm+2, . . . , fn are smooth of a function on N , then the subset S of N
on which they simultaneously vanish in an immersed submanifold of N , pro-
vided that differential ∂fm+1, ∂fm+2, . . . , ∂fn are linearly independent every
where on S.

In this case matrix of partial derivatives of the coordinate representation
of the f i(i = m + 1,m + 2, . . . , n) with respect to any coordinates z∞ on
N has n − m, and so without loss of generality it may be assumed that
the (n − m) × (n − m) matrix ∂f i

∂zj
non-singulars. It then follows that if

y1 = z1, y2 = z2, . . . , yn, ym+1 = fm+1z∞, . . . , yn = fnz∞ then the y∞ form a
coordinate system with respect to which S is given by ym+1 = ym+2 =, . . . ,=
yn = 0

1.1.6 Connection.

The theory of connections are developed starting from ideas of parallelism
first starting by vector method and then by exterior calculus.

Let M be a C∞-manifold, a connection, infinitely small connection or co-
variant differentiation on M is an operator DY that assigns to each pair of
C∞ vector fields X and Y with domain A, a C∞ field DXY with domain A.
If Z is a C∞ vector field on A and f is a C∞ real-valued function on A, then
D satisfies the following four properties:

(1) DX+YZ = DXZ +DYZ
(2) DfXY = fDXY
(3) DX(Y + Z) = DXY +DXZ
(4) DX(fY ) = (Xf)Y + fDXY

- the first two properties follows from linearity assumption and the remaining
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two from properties of parallellism.

- these properties imply that the vector (DXY )m at a point m on M de-
pends only on Xm and the value of Y on some curve that fits Xm.

- the existence of many manifolds with connections illustrated by the natural
induced connections on the hyper surfaces of RN .

- let σ(t) be a curve in M with tangent fields then a C∞ vectors field Y
and σ is parallel along σ iff DTY = 0 on σ.

- the curve σ is a geodesic iff DTT = 0 on σ thus a curve is a geodesic
iff its tangent fields is a parallel field along the curve.

1.1.7 Torsion Tensor.

The torsion tensor of a connection D is a vector value tensor usually denoted
by Tor(X, Y ) or T (X, Y ) that assigns to each pair of C∞ vectors X and
Y with domain (M). A C∞ vector field Tor(X, Y ) with domain (M) by
Tor(X, Y ) = DXY −DYX − [X, Y ]

We notice that Tor(X, Y ) = −Tor(Y,X)

Tor(X + Y, Z) = Tor(X,Z) + Tor(Y, Z)

Tor(fX, Y ) = fTor(X, Y )

Where f in space M and z in (M)
Thus the value of Tor(X, Y ) at a point m depends on Xm and Ym, but not
on the fields X and y. If for TorD ≡ 0, then we say D is symmetric or
torsion free.

1.1.8 Curvature and Torsion tensors.

The torsion field (torsion) T and the Curvature tensor field (Curvature) R.

We set
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T (X, Y ) = u(2Θ(X∗, Y ∗))forX, Y ∈ Tα(M), (1.5)

Where u is any point of L(M) with π(u) = x and X∗ and Y ∗ are vec-
tors of L(M) at u with π(X∗) = x and π(Y ∗) = y. We know that T (X, Y )
is independent of the choice of u,X∗, and Y ∗.

Thus , at every point x of M, T defines a skew symmetric bilinear map-
ping Tx(M)× Tx(M) 7−→ Tx(M). In other words T is a tensor field of type
(1,2) such that T (X, Y ) = −T (Y,X). We shall call T (X, Y ) the torsion
translation in Tx(M) determined by X and Y. Similarly , we set

R(X, Y )Z = u((2Ω(X∗, Y ∗))(u−1Z)forX, Y, Z ∈ Tx(M) (1.6)

Where u,X∗ and Y ∗ are chosen as above. Then R(X, Y )Z depends only on
X,Y and Z, not on u,X∗ and Y ∗. In the above definition,

((2Ω(X∗, Y ∗))(u−1Z) denotes the image of u−1ZRn by the linear endomor-
phism 2Ω(X∗, Y ∗(n,R)ofRn.
Thus R(X, Y )is an endomorphism of Tx(M) and is called the Curvature
transformation of Tx(M) determined by X and Y. It follows that R is a ten-
sor field of type (1,3) such that R(X, Y ) = −R(Y,X)

In terms of covariant differentiation, the torsion T and the curvature R can
be expressed as follows.

T (X, Y ) = ∇XY −∇YX − [X, Y ] (1.7)

and

R(X, Y )Z = [∇X ,∇Y ]Z −X −∇[X,Y ]Z (1.8)

Where X,Y and Z are vector fields on M
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1.2 Length of a vector, angle between vec-

tors.

The quantity ApBp, which is the inner product of Ap and Bp , is a scalar
analogous to the scalar product in rectangular coordinates. We define the
length L of the vector Ap or Ap as given by’

L2 = ApAp = gpqApAq = gpqA
pAq (1.9)

We can define the angle θ between Ap and Bp as given by

cosθ =
(ApBp)√

((ApAp)(BpBp))
(1.10)

1.2.1 The physical components

The physical components of a vector Ap or Ap, denoted by Au, Av , and Aw.
are the projections of the vector on the tangents to the coordinate curves
and are given in the case of orthogonal coordinates by

Au =
√
g11A

1 = A1√
g11

, Av =
√
g22A

2 = A2

g22
, Aw =

√
g33A

3 = A3√
g33

,

Similarly the physical components of a tensor Apq or Apq are given by

Auu = g11A
11 = A11

g11

Auv =
√
g11g22A

12 = A12√
g11g22

Auw =
√
g11g33A

13 = A13√
g11g33

1.2.2 Christoffel’s symbols

Christoffel’s symbols. The symbols

[pq, r] =
1

2

(
∂gpr
∂xq

+
∂gqr
∂xq
− ∂gpq
∂xr

)
(1.11)
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{
s
pq

}
= gsr[pq, r] (1.12)

are called the Christoffel symbols of the first and second kind respectively.
Other symbols used instead of

{
s
pq

}
are {pq, s} and Γspq.

The latter symbol suggests however a tensor character, which is not true
in general.

1.2.3 Transformation laws of christoffel’s symbols.

If we denote by a bar a symbol in a coordinate system x̄k, then

[ ¯jk,m] = [pq, r]
∂xp

∂x̄j
∂xq

∂x̄k
∂xr

∂x̄m
+ gpq

∂xp

∂x̄m
∂2xq

∂x̄jx̄k

{
n̄
jk

}
=
{
s
pq

} ∂x̄n
∂x̄s

∂xp

∂x̄j
∂xq

∂x̄k
+
∂x̄n

∂xq
∂2xq

∂x̄j∂x̄k

are the laws of transformation of the Christoffel symbols showing that they
are not tensors unless the second terms on the right are zero.

1.2.4 The covariant derivative

The covariant derivative of a tensor Ap with repect to xq is denoted by Ap,q
and is defined by

Ap,q ≡
∂Ap
∂xq
−
{
s
pq

}
As

a covariant tensor of rank two. The covariant derivative of a tensor Ap

with respect to xq is denoted by Ap.q and is defined by

Ap·q ≡
∂Ap

∂xq
+
{
p
qs

}
As
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a mixed tensor of rank two. For rectangular systems, the Christoffel sym-
bols are zero and the covariant derivatives are the usual partial derivatives.
Covariant derivatives of tensors are also tensors . The above results can be
extended to covariant derivatives of higher rank tensors. Thus

Ap1...pmr1...rn,q
≡
∂Ap1...pmr1...rn

∂xq
−
{
s
r1,q

}
Ap1...pms r2...rn −

{
s
r2,q

}
Ap1...pmsr1r3...rn

− . . .−,
{
s
rn,q

}
Ap1...pmr1...r(n−1)s

+
{
p1
qs

}
Asp2...pmr1...rn

+ · · ·+
{
pm
qs

}
A
p1...p(m−1)s
r1...rn

is the covariant derivative of Ap1...pmr1...rn,q
with respect to xp.

The rules of covariant differentiation for sums and products of tensors are the
same as those for ordinary differentiation. In performing the differentiations,
the tensors gpq ,gpq and δpq may be treated as constants since their covariant
derivatives are zero . Since covariant derivatives express rates of change of
physical quantities independent of any frames of reference, they are of great
importance in expressing physical laws.

1.2.5 Permutation symbols and tensors

Permutation symbols and tensors. Define epqr by the relations

e123 = e231 = e312 = +1

e213 = e123 = e321 = −1

epqr = 0 if two or more indices are equal and define epqr in the same manner.
The symbols epqr and epqr are called permutation symbols in three dimen-
sional space.

Further, let us define εpqr = 1√
g
epqr,ε

pqr =
√
gepqr

It can be shown that εpqr and εpqr are covariant and contravariant tensors
respectively, called permutation tensors in three dimensional space. Gener-
alizations to higher dimensions are possible.
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1.2.6 Tensor form of gradient, divergence and curl.

1. Gradient. If Φ is a scalar or invariant the gradient of Φ is defined by

∇Φ = gradΦ = Φ.p =
∂Φ

∂xp

where Φ, p is the covariant derivative of Φ with respect to xp.

2. Divergence. The divergence of Ap is the contraction of its covariant
derivative with respect to xp, i.e. the contraction of Ap.q Then divAp = Ap.q =

1√
g

∂
∂xK

(√
gAk

)
3 Curl. The curl of Ap is

Ap,q − Aq,p =
∂Ap
∂xq
− ∂Aq
∂xp

a tensor of rank two. The curl is also defined as −εpqrAp,q

4. Laplacian. The Laplacian of is the divergence of grad Φ or

∇2Φ = divΦ,p =
1
√
g

∂

∂xj

(
√
ggjk

∂Φ

∂xk

)
In case g < 0,

√
g must be replaced by

√
(−g). Both cases g > 0 and g < 0

can be included by
√
| g | in place of

√
g.

1.2.7 The intrinsic or absolute derivative

The intrinsic or absolute derivative of Ap along a curve xp = xq(t) denoted

by δAp
δt

is defined as the inner product of the covariant derivative of Ap and
∂xq

∂t
i.e. Ap,q

∂xq

∂t
and is given by

δAp
δt
≡ ∂Ap

∂t
−
{
r
pq

}
Ar
∂xq

dt

Similarly, we define

δAp

δt
≡ ∂Ap

∂t
−
{
r
pq

}
Ar
∂xq

dt
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The vectors Ap or Ap are said to move parallelly along a curve along the
curve if their intrinsic derivatives are zero, respectively. Intrinsic derivatives
of higher rank tensors are similarly defined.

1.3 Relative and absolute tensors.

A tensor Ap1...pmr1...rn,q
is called a relative tensor of weight w if its components

transform according to the equation

Āq1...qms1...sn
= |∂x

∂x̄
|wAp1...pmr1...rn,

∂x̄q1

∂xp1
. . .

∂x̄qm

∂xpm
∂xr1

∂x̄s1
. . .

∂xrn

∂x̄sn

where J = |∂x
∂x̄
| is the Jacobian of the transformation. If w = 0 the ten-

sor is called absolute and is the type of tensor with which we have been
dealing above. If w = 1 the relative tensor is called a tensor density. The
operations of addition, multiplication, etc., of relative tensors are similar to
those of absolute tensors.

1.3.1 The summation convection.

In writing an expression such as a1x
1 + a2x

2 + . . . + aNx
N we can use the

short notation
∑N

j=1 ajx
j. An even shorter notation is simply to write it as

ajx
j, where we adopt the convection that whenever an index (subscript or

superscript) is repeated in a given term we are to sum over that index from
1 to N unless otherwise specified. This is called the summation convection.
Clearly, instead of using the index j we could have used another letter, say p,
and the sum could be written, apx

p. Any index which is repeated in a given
term, so that the summation convention applies, is called a dummy index or
umbral index. An index occurring only once in a given term is called a free
index and can stand for any of the numbers 1, 2, . . . , N .

1.4 Curves and functions

Let M be a smooth manifold. A curve in M is a map R 7−→ M or a map
I 7−→M , where I in an open interval of R. A curve is smooth if it is defined
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by a smooth map of manifold. Let σ : I 7−→ M be a curve in M (I may be
the whole of R), the the curve σ is said to be smooth on a subinterval J of I
if these in a chart (P,Ψ) of M such that σ,(σa) = (xa ◦σ) : J 7−→ Rn is given
by smooth functions. If σ(J) lies in two overlapping coordinate patches and
σ is smooth in one chart then it will also be smooth in the other, because
of the assumed smoothness of coordinate changes. Since the whole of M
is covered by charts, so is the whole of σ(I), and σ is called smooth if its
domain is covered by overlapping intervals in each of which it is smooth. The
definition depends on the differentiable structure of M but not on the choice
of particular charts.

1.5 Immersions and Imbeddings

Let φ:M 7−→ N be a smooth map and (P,Ψ) is a chart about some point
χ ∈ M and if (Q, ξ) is a chart about φ(x) ∈ N , then we may form the jaco-
bian matrix ∂φα

∂xa
of φ or strictly of its coordinate presentation.

The Jacobian matrix changes when the coordinates have changed but it does
so by pre and post multiplication by non-singular matrices. Namely the jaco-
bian matrices of the coordinate transformation in Rn and Rm respectively. It
follows that the rank of the jacobian matrix of φ at any point is independent
of change of coordinate and is therefore a property of φ itself we call it the
rank of φ at that point.

A smooth map whose rank does not vary from point to point is rather easier
to deal with those one whose rank does vary

If a smooth map φ has a constant rank K on M then coordinate charts
may always be found on M and N with respect to which the coordinate
presentation of φ is given by,

φ1(xa) = x1, φ2(xa) = x2, . . . , φK(xa) = xK (1.13)

φk+1(xa) = φk+2(xa) =, . . . , φn(xa) = 0 (1.14)

The two particular extreme cases are of interest. First when K = n 6 m,
the coordinate presentation of φ corresponds to projection of Rm onto the
first n factors. A smooth map whose rank is everywhere equal to the dimen-
sion of its core domain is called Submersion.
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At the other extreme when K = m 6 n, the coordinate presentation of
φ corresponds to the injection of Rm into Rn as a coordinate m-plane.

A smooth map whose rank is everywhere equal the dimension of its domain
is called an Immersion.

It is clear that an immersion is locally injective. No two points of m lying in
the coordinate neighborhood in which φ has the coordinates presentation can
have the same image, however an immersion need not be injective globally.
Moreover an immersion may have other undesirable global features.

1.6 Parallelism and connections on manifolds

Parallelism on a manifold shall be defined with respect to a path.

- A path in a manifold M is a curve freed from its parametrization. The
essential notion of parallelism is that one should be able to identity the tan-
gent spaces at any two points once we know of a path joining them.

- this identification should preserve the linear structure of the tangent spaces.

- vectors at point x and y which are identified in this manner are paral-
lel with respect to the given path.

- one would expect that if z is a point on the path intermediate between
x and y then vectors at x only will be parallel if they are both parallel to the
same vector at z.

- a rule of parallel transport along a path is defined as a collection of non-
singular maps YY,X : TXM 7−→ TYM one for every pair of points x, y on the
path, such that for any path z on the path.

YY,Z .TZ,X = TYX (1.15)

It follows from above description that YX,X is the identity on TXM and
TX,Y = (YY,X)−1 If a rule of parallel transport is given for each path of M
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then we say that a rule for parallel transport is given in M. We assume that
if one path is a subset of the other then a rule of parallel transport on the
subset is that one obtained by restriction.

- A vector field given along a path is known as parallel field along the path
or said to be parallel transport. If it may be obtained by parallel transport
from a vector given at some point of the path thus W is a parallel field if
WY = YY,XWX for each y and some x on the path.

- if a subspace HX of TXM is given one may define a field of subspaces
along a given path through x by parallel transporting the vectors in Hx and
there by constructing subspaces

HY : {YY,XV |V ∈ HX} (1.16)

The field of subspaces obtained in this manner known as parallel along the
path.

- parallel transports may also be extended to co-vector in a straight for-
ward way defined as follows.

- a non singular linear map

Y ∗Y,X : T ∗XM 7−→ T ∗YM is defined by
〈
W,Y ∗Y,Xα

〉
= 〈YX,YW,α〉 for each

α ∈ T ∗Xm and for all W ∈ TYM

- this rule ensures that parallel transport preserves pairing.

- we may employ parallel transport to construct along a curve on absolute
derivative of a vector field which is not necessarily parallel. The result is
another vector field along the curve.

- let W be a vector field defined along a curve σ let W (t) denote the vector
of W at σ(t) and let W (t + δ) be the vector at σ(t) obtained by parallel
transporting W (t + δ) along the path obtained by σ from σ(t + δ) to σ(t)
such that W (t+ δ), ,= Yσ(t), σ(t+ δ)W (t+ δ).
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The absolute derivative of W along σ at σ(t)is

Dw
Dt

(t) = limδ 7−→0
1
δ
(W (t+ δ, ,−W (t))) = d

ds

{
Yσ(t), σ(s)W (s)

}
It is now shown that if Dw

Dt
= 0 along a path, then W is a parallel path.

- Fix a point x on the path. Take a curve σ which defines the path such
that X = σ(0).

- observe that D
Dt

{
YX,σ(t)W (t)

}
= d

ds

{
YX,σ(t+s)W (t+ s)

}
s = 0

= d
ds

{
Yx,σ(t).Yσ(t), σ(t+ s)W (t+ s)

}
= s = 0

= YX,σ(t)
d
ds

{
Yσ(t),σ(t+s)W (t+ s)

}
s = 0

= YX,σ(t)
Dw
Dt

(t)

Thus if Dw
Dt

(t) = 0 in some interval about x then YX,σ(t)W (t) is a constant
vector in TXM . Thus, we say W and so W (t) = Yσ(t),xW is parallel.

- the rule of parallel transport is said to determine a linear connection on
m. This term is also used for rule of parallelism, for the associated absolute
derivative or for the covariant derivative operator.

Hausdorff topological space. A space (X, τ) is called Hausdorff if for
every pair of distinct points x, y ∈ X there exist disjoint open sets U and V
with x ∈ U and y ∈ V

If (X, τ) is a topological space. An open set U which contains a point x ∈ Xis
called a neighbourhood of x.

1.6.1 Pseudogroup

A pseudogroup is an extension of the group concept, but one that grew
out of the geometric approach of Sophus Lie, rather than out of abstract
algebra (such as quasigroup, for example). A theory of pseudogroups was
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developed by lie Cartan in the early 1900s. It is not an axiomatic algebraic
idea; rather it defines a set of closure conditions on sets of homeomorphisms
defined on open sets U of a given Euclidean space E or more generally of a
fixed topological space S. The groupoid condition on those is fulfilled, in that
homeomorphisms.

h : U 7−→ V

and

g : V 7−→ W

compose to a homeomorphism from U to W . The further requirement on a
pseudogroup is related to the possibility of patching (in the sense of descent,
transition functions, or a gluing axiom).

That is a pseudogroup of transformation on a topological space S is a set Γ
of transformation satisfying the following axioms:

(1) Each fεΓ is a homeomorphism of an open set (called the domain of
f) of S onto another open set (called the range of f ) of S;

(2) If fεΓ, then the restriction of f to an arbitrary open subset of the domain
of f is in Γ;

(3) Let U = UiUi where each Ui is an open set of S. A homeomorphism
f of U onto an open set of S belongs to Γ if the restriction of f to Ui is in Γ
for every i;

(4) For every open set U of S, the identity transformation of U is in Γ;

(5) If fεΓ, then f−1εΓ;

(6) If fεΓ is a homeomorphism of U onto V and f
′
εΓ is a homeomorphism

of U
′

onto V
′

and if V ∩U ′ is non-empty, then the homeomorphism f
′ ◦ f of

f−1V ∩ U ′ onto f
′ (
V ∩ U ′ ) is in Γ.
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Examples of pseudogroups are,

Let Rn be the space of n−tuples of real numbers (x1, x2, , xn) with the
usual topology. A mapping f of an open set of Rn into Rm is said to be
of Cr, r = 1, 2, . . . ,∞, if f is continuously r times differentiable. By class
Cw we mean that f is real analytic. The pseudogroup Γr(Rn) of transfor-
mation of class Cr of Rn is the set of homeomorphisms f of an open set
of Rn onto an open set of Rn such that both f and f−1 are of class Cr.
Obviously Γr(Rn) is a pseudogroup of transformation of Rn. If r < s, then
Γs(Rn) is a subpseudogroup of Γr(Rn). If we consider only those fεΓr(Rn)
whose Jacobians are positive everywhere, we obtain a subpseudodroup of
Γr(Rn). This subpseudogroup, denoted by Γr0(Rn) is called the pseudogroup
of orientation-preserving transformations of class Cr of Rn. Let Cn be the
space of n−tuples of complex numbers with the usual topology. The pseu-
dogroup of holomorphic (i.e., complex analytic) transforms of Cn can be
similarly defined and will be denoted by Γ(Cn).

1.6.2 Riemannian Manifold

A manifold on which one has (defined) singled out a specific symmetric and
positive define (or non-singular) 2-covariant tensor field, know as the metric
tensor, is referred to as Riemannian (or semi-Riemannian) manifold.

Metric tensor allows one to define lengths, angles, and distances. Let M
be a Riemannian manifold with metric tensors <,>. Let X and Y be in
mm. we define the length of X by | X |=

√
< X,X >. We define the angle

θ between X and Y (both non-zero) by < X, Y >=| X || Y | makes this
possible.

The length of a curve is defined by integrating the length of its tangent
vector field. Let σ from a to b, denoted by | σ |ba, is defined by,

| σ |ba=
∫ b

a

√
< T (t), T (t) > dt. (1.17)

The integral exist, since the integrand is continuous. The length of a broken
C∞ pieces. The number | σ |ba is independent of the parameterization of its
image set in the following sernse:
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Let g be a C1 map of [c, d] into [a, b] with end points mapping to end points,
we assume g(c) = a and g(d) = b, then,∫ b

a

(< Tσ(t), Tσ(t) >)
1
2dt =

∫ d

c

(< Tσ(g(t)), Tσ(g(t)) >)
1
2 g
′
(b)dt

=

∫ d

c

(< Tσ◦g(t), Tσ◦g(t) >)
1
2dt (1.18)

Since Tσ◦g(t) = g
′
(t)Tσ(g(t)) by the chain rule. Thus we can write

| σ |1q=| σ |ba, where q = σ(a) and p = σ(b).

Classically, the metric tensor is almost always expressed by the notation
ds2 = gijdx

idxj. This means one is giving the inverse product on a co-
ordinate domain ∪ with coordinate functions x1, x2, . . . , xn in terms of the
coordinate bases; i.e xi = ∂

∂xi
, then gij =< xi, xj > is a C∞ function on

∪. If Y =
∑
yixi and Z =

∑
zkxk, then < Y,Z >=

∑n
i,k=1 yizkgik. thus ,

giving the matrix of functions gij on ∪ determines the inner product of ∪.
The ds only makes sense when one is discussing a curve σ which maps into
∪, so that for s(t) =| σ |ta, we have,

(
ds

dt

)2

=< T, T >=
∑

gij
d(xi ◦ σ)

dt
.
d(xj ◦ σ)

dt
(1.19)

If M is connected, a pseudo-metric is defined on M by d(p,m) = inf [| σ |: σ
a broken C∞ curve from p to m]. Trivially, d(p,m) ≥ 0, d(p, p) = 0,
d(p,m) = d(m, p) and the triangle inequality d(p,m) ≤ d(p, q) + d(q,m)
are satisfied.

1.7 Riemannian Connexion

A connexion D on a Riemannian manifold M is called Riemannian connexion
on M if it satisfies the following properties
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1.
DXY −DYX = [X, Y ]

2.
Z < X, Y >=< DZX, Y > + < X,DZY >

for all fields X,Y and Z with a common domain

1.8 Fundamental theorem of Riemannian Ge-

ometry

There exists a uniquely determined Riemannian connexion on a Riemannian
manifold.

- We show that a Riemannian connexion D exists and is uniquie on every
coordinate domain ∪. The uniqueness implies D must agree on overlapping
domains; hence D exists and is unique on all of M.

Let x1, x2, . . . , xn be the coordinate fields on ∪. Let gij =< xi, xj > on
∪ and let g−1

ij be the jth entry of the inverse matrix of g = gij (which is
non-singular).

We know that giving D on ∪ is equivalent to giving functions Γigk with
Dxk(Xj) =

∑n
i=1 Γigkxi and demanding that properties

1. DfXY = fDXY
2. DX(fY ) = (Xf)Y + fDX

1.8.1 Complex manifolds

Definition: Complex manifolds are differentiable manifolds with a holomor-
phic atlas. They are necessarily of even dimension, say 2n, and allow for a
collection of charts (Uj, Zj) that are one to one maps of the corresponding
Uj to Cn such that for every non-empty intersection Uj ∩ Uk the maps are
zjz
−1
k are holomorphic.

26



The (unit) two-sphere S2, which is the subset of R3, defined by

x2 + y2 + z2 = 1,

is a complex manifold. We can use stereographic projection from the North
pole to the real plane R2 with coordinates X, Y given by,

(X, Y ) =

(
x

1− z
,

y

1− z

)
This can be done for any point except the North Pole itself (corresponding
to z = 1). To include the North Pole, we introduce a second chart, in which
we stereographically project from the South pole:

(U, V ) =

(
x

1 + z
,

y

1 + z

)
which holds for any point on S2 except for the South pole (at z = −1). In
both patches, we can now define complex coordinates,

Z = X + iY, Z̄ = X − iY,W = U − iV, W̄ = U + iV

,
and show that on the overlap of the two patches, the transition is holomorphic
indeed, on the overlap we compute that W = 1

z
.

This expression relates the coordinate W to Z in a holomorphic way. Hence
the two-sphere is a complex manifold which can be identified with C ∪∞.

1.8.2 Almost complex manifolds.

Definition: An almost Complex structure on a manifold M is an operator
I : TM 7−→ TM such that I2 = −Id. It is called integrable if I is in-
duced by a complex structure. Let M be a Hausdorf topological space. In
order to analyze M locally, we use open charts, that is to say, pairs of the
type (U,ϕ) where U is an open subset of M , and ϕ : U 7−→ ϕ(U) ⊂ Rk is
a homeomorphism of U onto an open subset of Rk. A collection of charts
{(U∞, ϕα)αεA} gives M the structure of a smooth manifold of dimension k
if the open sets U∞ cover M , and if for all pairs of indices α, β the transition
function ϕβ◦ϕ−1

α : ϕα(Uα ∩ Uβ) 7−→ ϕβ(Uα ∩ Uβ) is a smooth map. We then
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say that (U∞, ϕα)αεA is an atlas of M .

A complex structure on a topological space M consists of a family
(U∞, ϕα)αεA, where U∞ is an open subset of M and U∞ : U∞ 7−→ Cn is a
homeomorphism onto an open subset of Cn, such that

(a) M = UαεAU∞
(b) For each pair of indices α, βεA, the function
ϕβ ◦ ϕ−1

α : ϕα(Uα ∩ Uβ) 7−→ ϕβ(Uα ∩ Uβ) is holomorphic.

Each pair (U∞, ϕα) is called a complex chart, and the whole collection
{(U∞, ϕα)∞εA} is called a complex atlas. The integer n is the complex di-
mension of M .

A complex manifold of dimension n is, in a natural way, a real manifold
of dimension 2n. For given a point pεM , let us consider a complex chart
(U,∞) with pεU and ϕ(q) = (z1(q), . . . , zn(q)). The complex valued func-
tion zj can be decomposed in terms of their real and imaginary parts, zj(q) =
xj(q) + iyj(q), decomposition that in turn induces a map.

q 7−→ (x1(q), y1(q), . . . , xn(q), yn(q))

from U onto an open subset of R2n. This function defines a real local chart of
M . It is easy to see that transition functions of these charts of M are smooth
functions. Thus, the collection of all such charts on M as a real differentiable
manifold of dimension 2n.

The set
{
∂xj |p, ∂yj |p

}
forms a basis of the tangent space TpM . Using it,

we define a linear isomorphism,

J = Jp : TpM 7−→ TpM

by
J(∂xj |p) = ∂yj |p, J(∂yj |p) = −∂xj |p, (1.20)

This map is in effect independent of the choice of coordinates made. For if
ϕ̄ (q)=( −1(q), . . . , z̄−n(q)) is another local chart in a neighborhood of p such
that,
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z̄ = vj(q) + iwj(q), the linear map

J̄(∂vj |p) = ∂wj |p, J̄(∂wj |p) = −∂vj |p

Coincides with J. Indeed, we have that

∂xj =
∑
k

(
∂vk

∂xj
∂

∂vk
+
∂wk

∂xj
∂

∂wk

)

∂yj =
∑
k

(
∂vk

∂yj
∂

∂vk
+
∂wk

∂yj
∂

∂wk

)
Since the transition function ϕ̄ ◦ ϕ−1 is holomorphic, the functions vj, wj

satisfy the Cauchy-Riemann equations.

∂vk

∂xj
− ∂wk

∂yj
= 0,

∂vk

∂yj
− ∂wk

∂xj
= 0

Thus

∂xj =
∑
k

(
∂vk

∂xj
∂

∂vk
+
∂wk

∂xj
∂

∂wk

)
=
∑
k

(
∂xk

∂vj
∂

∂vk
− ∂vk

∂yj
∂

∂wk

)

∂yj =
∑
k

(
∂vk

∂yj
∂

∂vk
+
∂wk

∂yj
∂

∂wk

)
=
∑
k

(
∂vk

∂yj
∂

∂vk
+
∂vk

∂xj
∂

∂wk

)
)

It then follows easily that,

J̄(∂vj |p) = ∂wj |p, J̄(∂wj |p) = −∂vj |p,

Which shows that J̄ agrees with J on the basis elements
{
∂xj |p, ∂yj |p

}
.

Thus, J̄ = J
In this way, we obtain a globally defined tensor
p 7−→ Jp : TpM 7−→ TpM , that squares to minus the identity, J2 = −1.
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1.8.3 A contact metric manifold

Let (M,φ, ξ, η, g) be an (n=2m + 1)-dimensional almost contact metric man-
ifold consisting of a (1, 1) tensor φ, a vector ξ, a 1-form η and a Rie-
mannian metric g. Let χ(M) be the Lie algebra of vector in M . Con-
sider X, Y, Z, V,Wεχ(M) throughout the paper, unless otherwise specifically
stated. Then,

∅2 = −I + η ⊗ ξ, η(ξ) = 0, η ◦ φ = 0 (1.21)

g(∅X, ∅Y ) = g(X, Y )− η(X)η(Y ) (1.22)

From (1.21)and (1.22) we have,

g(X,φY ) = −g(X, Y ), g(X, ξ) = η(X) (1.23)

Hence it is contact contact metric manifold since,

g(X,φY ) = dη(X, Y )

1.8.4 Almost contact metric manifold.

Let (M, , ξ, η, g) be an (n=2m + 1)-dimensional almost contact metric man-
ifold consisting of a (1, 1) tensor φ, a vector ξ, a 1-form η and a Rie-
mannian metric g. Let χ(M) be the Lie algebra of vector in M . Con-
sider X, Y, Z, V,Wεχ(M) throughout the paper, unless otherwise specifically
stated. Then,

φ2 = −I + η ⊗ ξ, η(ξ) = 0, η ◦ φ = 0 (1.24)

g(φX, φY ) = g(X, Y )− η(X)η(Y ) (1.25)

From (1.24)and (1.25) we have,

g(X,φY ) = −g(φX, Y ), g(X, ξ) = η(X) (1.26)

Hence an almost contact metric manifold is a contact metric manifold if

g(X,φY ) = dη(X, Y )
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1.8.5 K-contact metric manifold.

Let (M,φ, ξ, η, g) be an (n=2m + 1)-dimensional almost contact metric man-
ifold consisting of a (1, 1) tensor φ, a vector ξ, a 1-form η and a Rieman-
nian metric g. Let χ(M) be the Lie algebra of vector in M . Consider
X, Y, Z, V,Wε(M) throughout the paper, unless otherwise specifically stated.
Then, If Mn is a k-contact Riemannian manifold, then besides From (1.4)
and (1.5) the following relations hold,

∇xξ = −αφX + β(X − η(X)ξ),∇xξ = −∅X (1.27)

(∇xη)(Y ) = −g(φX, Y ) (1.28)

S(X, ξ) = (n− 1)η(X) (1.29)

η(R(X, Y )Z) = g(Y, Z)η(X)− g(X,Z)η(Y ) (1.30)

For any vector fields X, Y where R and S denote respectively the curvature
tensor of (1,3) and the Ricci tensor of type (0,2).

1.8.6 Almost Hermitian manifolds

Definition: Let (M,J) be an almost complex manifold. A Riemannian
metric g is said to be J-Hermitian if g(JX, JY ) = g(X, Y ) for all pair of
vectors fields X, Y . we say that (J, g) is almost Hermitian structure on M
which, when provided with one structure, will be called an almost Hermitian
manifold.

On an almost Hermitian manifold (M,J, g), we may defined tensors that
tie up properties of J and g. Indeed, let us start by introducing a J−Ricc
tensor. Let us recall that the usual Ricci tensor r(X, Y ) of a Riemannian
manifold (M, g) is the trace of the linear map L 7−→ R(L,X)Y , where R
is the Riemann curvature tensor R(X, Y )Z = (∇X∇Y − ∇[X,Y ])Z, ∇ the
levi-Civita connection of g. If g is Hermitian relative to J , we reproduce this
concept with a J-twist, and define the J-Ricci tensor by,

rJ(X, Y ) = traceL 7−→ −J(R(L,X)JY ),

The tensor defined above is essentially the only new tensor we can obtain by
computing the trace of a J-twisting of R in two different positions. Indeed,
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varying the type of trace we take and using the symmetries of the curvature
tensor R, up to a constant factor or a permutation of the arguments, we only
obtain the expression rJ , J∗rJ or J∗r, respectively.

Unlike r, rJ does not turn out to be a symmetric tensor in general.

The usual scalar curvature s is the total contraction of the curvature tensor,
that is to say, the metric trace of the Ricci tensor r. Analogously, we define
the J-scalar curvature sJ as the metric trace of rJ .

A straightforward calculation shows that in terms of the components of R
and J , we have that,

s = Rli
li, s

J = −J itRt
ilmJ

lm

For an almost Hermitian manifold (M,J, g), consider the tensor

ω(X, Y ) = ωJg (X, Y ) = g(JX, Y ).

The invariance of g and J makes this an alternate tensor, which is referred
to at the fundamental form of (M,J, g). This form is J-invariant, but does
not have any other special property unless we impose further conditions on
the metric g. On the other hand, despite the fact that generally speaking rJ

is neither symmetric nor J-invariant, the tensor

pJ(X, Y ) = −rJ(X, JY ), is alternate. This 2-form will be called the J-Ricci
form of the almost Hermitian structure (J, g).

1.8.7 The pseudo-metric topology on M equals the man-
ifold topology

Consider a point m in M and x1, x2, . . . , xn be a coordinate system about m
will domain ∪. Now p in ∪ let d(p) = d(m, p) and d(p) = [

∑
xj(p)

1]
1
2 , where

we assume xi(m) = 0. Choose a > 0, so A = [p : d1(p) ≤ a] is contained in
∪. On the compact set B = [(p, xp) : p in A and 1 =

∑
dxi(p)

2], the form

function, | Xp |=
∑

ij gij(p)dxi(Xp)dxj(Xp)]
1
2 ), is a continous function which

takes on a maximum R and a minimum r > 0.
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Let σ be any broken C∞ curve in A with σ(0) = m, σ(b) = p and (σ(t), T (t)

always in B. Then |σ| =
∫ b

0
|Tσ(t)|dt > rb > rd

′(p). From a broken curve σ

from m to p that leaves A, one has |σ| > ra > rd
′(p). Hence, we have’

(1) d(p) > rd
′p. But if σ curve with xi ◦ σ(t) = tpi

d
′
(p)

, where xi(p) = pi,

then |σ| =
∫

0
d′p|Tσ(t)dt ≤ Rd

′p| . Hence we have

(2) d(p) ≤ Rd
′
(p). The inequalities (1) and (2) prove the theorem.

1.8.8 A Sasakian manifold

Let (M,φ, ξ, η, g) be an (n = 2m + 1)-dimensional almost contact metric
manifold consisting of a (1, 1) tensor φ, a vector ξ, a 1-form η and a Rie-
mannian metric g. Let χ(M) be the Lie algebra of vector in M . Con-
sider X, Y, Z, V,Wεχ(M) throughout the paper, unless otherwise specifically
stated. Then,

φ2 = −I + η ⊗ ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0 (1.31)

g(, ) = g(X, Y )− η(X)η(Y ), g(X, ξ) = η(X) (1.32)

(Xφ)Y = g(X, Y )ξ − η(Y )X, (Xξ)Y = −φX (1.33)

Thus M is a sasakian manifold. Further the following relation hold.

R(X, Y )Z = g(Y, Z)X − g(X,Z)Y , (1.34)

R(X, Y )ξ = (Y )X − η(X)Y , (1.35)

R(ξ,X)Y = g(X, Y )ξ − η(Y )X, (1.36)

R()ξ = η(X)ξ −X, (1.37)

S(X, ξ) = (n− 1)η(X), (1.38)

φξ = (n− 1)ξ, (1.39)

For all vectors fields X, Y, Z and where O denotes the operator of covariant
differentiation with respect to g, φ is a (1,1) tensor field, S is the Ricci tensor
of type (0,2) and R is the Riemannian curvature tensor of the manifold.
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Chapter 2

Literature Review

2.1 The tensor defined by different authors

Set of new curvature tensors was defined on the line of Weyl tensor by
Pokhariyal amd Mishra (1970), and Pokhariyal (1979); to study Relativis-
tic significance of curvature tensors. The Weyl’s projective curvature tensor
was defined on the basis of geodesic correspondence due to a particular type
of distribution of vector fields contained in it.These new tensors were not
necessary due to its invariance in two spaces Vn and V̄n, but showed that
the “distribution”(order in which the vectors in question are arranged before
being acted upon by the tensor in question), of vector field over the metric
potentials and matter tensors plays an important role in shaping the vari-
ous physical and geometrical properties of a tensor, viz the formulation of
gravitational waves, reduction of electromagnetic field to a purely electric
field, vanishing of the contracted tensor in an Einstein space and the cyclic
property.

The Weyl’s projectiive curvature tensor is given by;

W (X, Y, Z, T ) = R(X, Y, Z, T )+
1

n− 1
[g(X,Z)Ric(Y, T )−g(X,T )Ric(Y, Z)]

The relativistic significance of Weyl’s projective curvature tensor has also
been explored by Singh et..al(1965)
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On-τ -Curvature Tensor in K-contact and Sasakian manifolds by Mukut Mani
Tripaths and Gupta (2011), studied properties of quasi−τ− flat, ξ− τ− flat
and ϕ − τ− flat K-contact and Sasakian manifolds. They gave neccessary
and suffient condition for the K-contact manifold to be ϕ − τ− flat under
some algebraic condition. Among others, they proved that a compact ξ−τ−
flat K-contact manifold with regular contact vector field, under an algebraic
condition, is a principal S1−bundle over an almost Kaehler space of constant
holomorphic section curvature.They further defined a semi-Riemannian man-
ifold M has flat if R(X, Y )Z = 0. It is also said to be ξ−flat if R(X, Y )ξ = 0,
where ξ is a non-null unit vector field in M.

De and Biswas (2006) studied the ξ−conformally flat contact metric mani-
folds with ξ ∈ N(k). They proved that a contact metric manifold with ξ ∈
N(k) is ξ−conformally flat if and only if it is η−Einstein manifold. Dwivedi
and Kim (2010) proved that a Sasakian manifold is ξ−conharmonically flat
if and only if it is η Einstein.

A semi-Riemannian manifold M is said to be semisymmetric by Szbo (1982)
if it satisfies R(X, Y )·R = 0, where R(X, Y ) acts as a derivation on R.
Semisymmetric manifold is a generalization of manifold of constant curva-
ture and symmetric manifold (OR = 0). A semi-Riemannian manifold is
said to be recurrent by Walken (1950) if it satisfies OR = α⊗R, where α is
1-form. Takagi (1972) gave an example of Riemannian manifolds satisfying
R(X, Y )·R = 0 but not OR = 0.

A semi-Riemannian manifold M is said to be Ricci-semisymmetric by Deszcs
(1989) if its Ricci tensor S satisfies R(X, Y )·S = 0, where R(X, Y ) acts as a
derivation on S. Ricci-semisymmetric manifold is a generalization of manifold
of constant curvature, Einstein manifold, Ricci symmetric manifold, symmet-
ric manifold and semisymmetric manifold.

Ricci-semisymmetric manifolds were studied by Adati and Miyazawa (1979),
On some Curvature Properties of K-contact Manifolds by Manuel de Leon
in 2011 talked about Semisymmetry of a Riemannian manifold by Cartan
(1926). A general study of semisymmetric Riemannian manifolds was made
by Szabo (1982). Semisymmetric manifolds have been studied by other au-
thors such as Sekigawa and Tanno (1970), Sekigawa and Takagi (1971) and

35



Sekigawa (1969). Also they studied about projectively semisymmetric K-
contact manifolds and prove that a projectively semisymmetric K-contact
manifold is Sasakian. The notion of pseudosymmetric manifolds has been
introduced by Deszcz (1992).

The other tensors defined by (Pokhariyal and Mishra) (1970)are given as;

W1(X, Y, Z, T ) = R(X, Y, Z, T )+
1

n− 1
[g(X,T )Ric(Y, Z)−g(Y, T )Ric(X,Z)]

W2(X, Y, Z, T ) = R(X, Y, Z, T )+
1

n− 1
[g(X,Z)Ric(Y, T )−g(Y, Z)Ric(X,T )]

W3(X, Y, Z, T ) = R(X, Y, Z, T )+
1

n− 1
[g(Y, Z)Ric(X,T )−g(Y, T )Ric(X,Z)]

W4(X, Y, Z, T ) = R(X, Y, Z, T )+
1

n− 1
[g(X,Z)Ric(Y, T )−g(X, Y )Ric(Z, T )]

W5(X, Y, Z, T ) = R(X, Y, Z, T )+
1

n− 1
[g(X,Z)Ric(Y, T )−g(Y, T )Ric(X,Z)]

W6(X, Y )Z = R(X, Y )Z + 1
n−1

[g(X,Z)Y − s(Y, Z)X]

The tensor W6 has been studied in this project.

2.2 Curvature Tensor.

In a (2n+ 1)-dimensional Riemannian manifold M, the τ− curvature tensor
is given by Tripathi and Gupta (2011).

τ(X, Y )Z = a0R(X, Y )Z + a1S(Y, Z)X + a2S(X,Z)Y

+a3S(X, Y )Z + a4g(Y, Z)QX + a5g(X,Z)QY
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+a6g(X, Y )QZ + a7r(g(Y, Z)X − g(X,Z)Y ) (2.1)

Where R,S,Q and r are the curvature tensor, the Ricci tensor,the Ricci op-
erator and the scalar curvature, respectively

In particular, the τ -curvature tensor is reduced to be

1. the quasi-conformal curvature tensor C∗ if

a1 = −a2 = a4 = −a5, = a3 = a6 = 0 a7 = − 1
2n+1

( a0
2n

+ 2a1)n

2. the conformal curvature tensor C if

a0 = 1a1 = −a2 = a4 = −a5 = − 1
2n−1

, a3 = a6 = 0, a7 − 1
2n(2n−1)

3. the conharmonic curvature tensor if

a0 = 1, a1 = −a2 = a4 = −a5 = − 1
(2n−1)

, = a3 = a6 = a7 = 0

4. the concircular curvature tensor υ if

a0 = 1, a1 = a2 = a3 = a4 = a5 = a6 = 0, a7 = − 1
2n(2n+1)

,

5. the pseudo-projective curvature tensor P∗ if

a1 = −a2, a3 = a4 = a5 = a6 = 0, a7 = − 1
(2n+1)

( a0
2n

+ a1),

6. the projective curvature tensor P if

a0 = 1, a1 = −a2 = − 1
2n
, a3 = a4 = a5 = a6 = a7 = 0,

7. the m-projective curvature tensor if

a0 = 1, a1 = −a2 = a4 = −a5 = − 1
4n
, a3 = a6 = a7 = 0,

The w0 -curvature tensor if in equation (2.1)
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a0 = 1 a1 = −a5 = − 1
2n
a2 = a3 = a4 = a6 = a7 = 0

w0(X, Y )Z = R(X, Y )Z − 1

2n
S(Y, Z)X +

1

2n
g(X,Z)QY

= R(X, Y )Z +
1

2n
(g(X,Z)QY − S(Y, Z)X) (2.2)

g(w0(X, Y, Z), T ) = g(R(X, Y, Z), T )+
1

2n
(g(X,Z)g(QY, T )−S(Y, Z)g(X,T ))

w
′

0(X, Y, Z, T ) = R
′
(X, Y, Z, T ) +

1

2n
(g(X,Z)Ric(Y, T )− g(X,T )Ric(Y, Z)

= R
′
(X, Y, Z, T ) +

1

2
(g(X,Z)Ric(Y, T )− g(X,T )Ric(Y, Z) (2.3)

The w∗0-curvature tensor if in equation (2.1)

a0 = 1 a1 = −a5 = 1
2n
n a2 = a3 = a4 = a6 = a7 = 0

w∗0(X, Y )Z = R(X, Y )Z +
1

2n
S(Y, Z)X − 1

2n
g(X,Z)QY

= R(X, Y )Z +
1

2n
(S(Y, Z)X − g(X,Z)QY ) (2.4)

g(w∗0(X, Y, Z), T ) = g(R(X, Y, Z), T )+
1

2n
(S(Y, Z)g(X,T )−g(X,Z)g(QY, T ))

w∗0
′
(X, Y, Z, T ) = R

′
(X, Y, Z, T ) +

1

2n
(g(X,T )Ric(Y, Z)− g(X,Z)Ric(Y, T ))

= R
′
(X, Y, Z, T ) +

1

2n
(g(X,T )Ric(Y, Z)− g(X,Z)Ric(Y, T )) (2.5)

The w1 -curvature tensor if in equation (2.1)

a0 = 1 a1 = a2 = 1
2n
a3 = a4 = a5 = a6 = a7 = 0
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w1(X, Y )Z = R(X, Y )Z +
1

2n
S(Y, Z)X − 1

2n
S(X,Z)Y

= R(X, Y )Z +
1

2n
(S(Y, Z)X − S(X,Z)Y ) (2.6)

g(w1(X, Y, Z), T ) = g(R(X, Y, Z), T )+
1

2n
(Ric(Y, Z)g(X,T )−Ric(X,Z)g(Y, T ))

w
′

1(X, Y, Z, T ) = R
′
(X, Y, Z, T ) +

1

2n
(Ric(Y, Z)g(X,T )−Ric(Y, T )g(X,Z))

= R
′
(X, Y, Z, T ) +

1

2n
(Ric(Y, Z)g(X,T )−Ric(Y, T )g(X,Z)) (2.7)

The w∗1 -curvature tensor if in equation (2.1)

a0 = 1 a1 = −a2 = − 1
2n
a3 = a4 = a5 = a6 = a7 = 0

w∗1(X, Y )Z = R(X, Y )Z − 1

2n
S(Y, Z)X +

1

2n
S(X,Z)Y

= R(X, Y )Z − 1

2n
(S(Y, Z)X + S(X,Z)Y ) (2.8)

g(w∗1(X, Y, Z), T ) = g(R(X, Y, Z), T )+
1

2n
(S(X,Z)g(Y, T )−S(Y, Z)g(X,T ))

w∗1
′
(X, Y, Z, T ) = R

′
(X, Y, Z, T ) +

1

2n
(g(Y, T )Ric(X,Z)− g(X,T )Ric(Y, Z))

= R
′
(X, Y, Z, T ) +

1

2n
(g(Y, T )Ric(X,Z)− g(X,T )Ric(Y, Z)) (2.9)

The w2 -curvature tensor if in equation (2.1)

a0 = 1 a4 = −a5 = − 1
2n
a1 = a2 = a3 = a6 = a7 = 0

w2(X, Y )Z = R(X, Y )Z − 1

2n
g(Y, Z)QX +

1

2n
g(X,Z)QY

= R(X, Y )Z +
1

2n
(g(X,Z)QY − g(Y, Z)QX) (2.10)
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g(w2(X, Y, Z), T ) = g(R(X, Y, Z), T )+
1

2n
(g(X,Z)g(QY, T )−g(Y, Z)g(QX, T ))

w
′

2(X, Y, Z, T ) = R
′
(X, Y, Z, T ) +

1

2n
(g(X,Z)g(QY, T )− g(Y, Z)g(QX, T ))

= R
′
(X, Y, Z, T ) +

1

2n
(g(X,Z)Ric(Y, T )− g(Y, Z)Ric(X,T )) (2.11)

The w3 -curvature tensor if in equation (2.1)

a0 = 1 a2 = −a4 = − 1
2n
a1 = a3 = a5 = a6 = a7 = 0

w3(X, Y )Z = R(X, Y )Z − 1

2n
nS(X,Z)Y +

1

2n
g(Y, Z)QX

= R(X, Y )Z +
1

2n
(g(Y, Z)QX − S(X,Z)Y ) (2.12)

g(w3(X, Y, Z), T ) = g(R(X, Y, Z), T )+
1

2n
(g(Y, Z)g(QX, T )−S(X,Z)g(Y, T ))

w
′

3(X, Y, Z, T ) = R
′
(X, Y, Z, T ) +

1

2n
(g(Y, Z)Ric(X,T )− g(Y, T )Ric(X,Z))

= R
′
(X, Y, Z, T ) +

1

2n
(g(Y, Z)Ric(Y, T )− g(Y, T )Ric(X,Z)) (2.13)

The w4 -curvature tensor if in equation (2.1)

a0 = 1 a5 = −a6 = 1
2n
a1 = a2 = a3 = a4 = a7 = 0

w4(X, Y )Z = R(X, Y )Z +
1

2n
g(X,Z)QY − 1

2n
g(X, Y )QZ

= R(X, Y )Z +
1

2n
(g(X,Z)QY − g(X, Y )QZ)

g(w4(X, Y, Z), T ) = g(R(X, Y, Z), T )+
1

2n
(g(X,Z)g(QY, T )−g(X, Y )g(QZ, T ))

w
′

4(X, Y, Z, T ) = R
′
(X, Y, Z, T ) +

1

2n
(g(X,Z)Ric(Y, T )− g(X, Y )Ric(Z, T ))

= R
′
(X, Y, Z, T ) +

1

2n
(g(X,Z)Ric(Y, T )− g(X, Y )Ric(Z, T )) (2.14)
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The w5 -curvature tensor if in equation (2.1)

a0 = 1 a2 = −a5 = − 1
2n
a1 = a3 = a4 = a6 = a7 = 0

w5(X, Y )Z = R(X, Y )Z − 1

2n
S(X,Z)Y +

1

2n
g(X,Z)QY

= R(X, Y )Z +
1

2n
(g(X,Z)QY − S(X,Z)Y )

g(w5(X, Y, Z), T ) = g(R(X, Y, Z), T )+
1

2n
(g(X,Z)g(QY, T )−S(X,Z)g(Y, T ))

w
′

5(X, Y, Z, T ) = R
′
(X, Y, Z, T ) +

1

2n
(g(X,Z)Ric(Y, T )− g(Y, T )Ric(X,Z))

= R
′
(X, Y, Z, T ) +

1

2n
(g(X,Z)Ric(Y, T )− g(Y, T )Ric(X,Z)) (2.15)

The w6 -curvature tensor if in equation (2.1)

a0 = 1 a1 = −a6 = − 1
2n
a2 = a3 = a4 = a5 = a7 = 0

w6(X, Y )Z = R(X, Y )Z − 1

2n
s(Y, Z)X +

1

2n
g(X, Y )QZ

= R(X, Y )Z +
1

2n
(g(X, Y )QZ − s(Y, Z)X)

g(w6(X, Y, Z), T ) = g(R(X, Y, Z), T )+
1

2n
(g(X, Y )g(QZ, T )−s(Y, Z)g(X,T ))

w
′

6(X, Y, Z, T ) = R
′
(X, Y, Z, T ) +

1

2n
(g(X, Y )Ric(Z, T )− g(X,T )Ric(Y, Z))

= R
′
(X, Y, Z, T ) +

1

2n
(g(X, Y )Ric(Z, T )− g(X,T )Ric(Y, Z)) (2.16)

The w7 -curvature tensor if in equation (2.1)

a0 = 1 a1 = −a4 = − 1
2n
a2 = a3 = a4 = a5 = a7 = 0

w7(X, Y )Z = R(X, Y )Z − 1

2n
S(Y, Z)X + 1/2ng(Y, Z)QX
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= R(X, Y )Z +
1

2n
(g(Y, Z)QX − S(Y, Z)X)

g(w7(X, Y, Z), T ) = g(R(X, Y, Z), T )+
1

2n
(g(Y, Z)g(QX, T )−S(Y, Z)g(X,T ))

w
′

7(X, Y, Z, T ) = R
′
(X, Y, Z, T ) +

1

2n
(g(Y, Z)Ric(X,T )− g(X,T )Ric(Y, Z))

= R
′
(X, Y, Z, T ) +

1

2n
(g(Y, Z)Ric(X,T )− g(X,T )Ric(Y, Z)) (2.17)

The w8 -curvature tensor if in equation (2.1)

a0 = 1 a1 = −a3 = − 1
2n
a2 = a4 = a5 = a6 = a7 = 0

w8(X, Y )Z = R(X, Y )Z − 1

2n
S(Y, Z)X +

1

2n
S(X, Y )Z

= R(X, Y )Z +
1

2n
(S(X, Y )Z − S(Y, Z)X)

g(w8(X, Y, Z), T ) = g(R(X, Y, Z), T )+
1

2n
(S(X, Y )g(Z, T )−S(Y, Z)g(X,T ))

w
′

8(X, Y, Z, T ) = R
′
(X, Y, Z, T ) +

1

2n
(g(Z, T )Ric(X, Y )− g(X,T )Ric(Y, Z))

= R
′
(X, Y, Z, T ) +

1

2n
(g(Z, T )Ric(X, Y )− g(X,T )Ric(Y, Z)) (2.18)

The w9 -curvature tensor if in equation (2.1)

a0 = 1 a3 = −a4 = 1
2n
a1 = a2 = a5 = a6 = a7 = 0

w9(X, Y )Z = R(X, Y )Z +
1

2n
S(X, Y )Z − 1

2n
g(Y, Z)QX

= R(X, Y )Z +
1

2n
(S(X, Y )Z − g(Y, Z)QX)

g(w9(X, Y, Z), T ) = g(R(X, Y, Z), T )+
1

2n
(S(X, Y )g(Z, T )−g(Y, Z)g(QX, T ))

(2.19)
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w
′

9(X, Y, Z, T ) = R
′
(X, Y, Z, T ) +

1

2n
(g(Z, T )Ric(X, Y )− g(Y, Z)Ric(X,T ))

= R
′
(X, Y, Z, T ) +

1

2n
(g(Z, T )Ric(X, Y )− g(Y, Z)Ric(X,T )) (2.20)

The M-curvature tensor if in equation (2.1)

a0 = 1 a1 = −a2 = a4 = −a5 = − 1
4n
a3 = a6 = a7 = 0

WM(X, Y )Z = R(X, Y )Z − 1

4n
S(Y, Z)X − 1

4n
g(Y, Z)QX +

1

4n
g(X,Z)QY

= R(X, Y )Z+
1

4n
(S(X,Z)Y +g(X,Z)QY −S(Y, Z)X−g(Y, Z)QX) (2.21)

g(WM(X, Y, Z), T ) = g(R(X, Y, Z), T ) +
1

4n
(S(X,Z)g(Y, T )

+g(X,Z)g(QY, T )− S(Y, Z)g(X,T )− g(Y, Z)QX, T ) (2.22)

w
′

9(X, Y, Z, T ) = R
′
(X, Y, Z, T ) +

1

4n
(g(Y, T )Ric(X,Z)

+g(X,Z)Ric(Y, T )− g(X,T )Ric(Y, Z)− g(Y, Z)Ric(X,T )) (2.23)
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Chapter 3

Methodology

By studying various properties of the defined tensors, W6-curvature tensors
results were derived to by making use of the Semisymmetric and symmetric
propeties.

A W6-flat K-contact Riemannian manifold is a flat space or manifold;
A W6-Semisymmetric K-contact Riemannian manifold is a W6-flat manifold.
A W6-symmetric and W6- semi symmetric K-contact Riemannian manifold
is a W6-flat manifold.

The K-contact Riemannian manifold Mn is said to be flat, if the Riemannian
curvature tensor vanishes identically i.e

R(X, Y )Z = 0, (3.1)

A K-contact Riemannian manifold Mn is said to be W6- flat, if W6-curvature
tensor vanishes identically i.e.

W6(X, Y )Z = 0, (3.2)

A W6-flat K-contact Riemannian manifold is a flat space or manifold.
Let W6 be a (1,3)-type tensor. Then the K-contact Riemannian manifold
said to be a W6 -semisymmetric, if it satisfies

R(X, Y )W6 = 0, (3.3)

where R(X,Y) acts as the derivation on W6.
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Based on the properties of covariant derivation we were able to derive the
results on symmetric, semi-symmetric and flatness of the spaces.

We obtainted the results based on embending theorem’s, that K-contact
Riemannain manifolds are simply, the subspace of contact manifolds. In
this connection K-contact manifolds form the broader group of infinitely dif-
ferentiable manifolds, so by using infinitesimal transformation; one gets the
very odd dimensinal K-contact manifolds.
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Chapter 4

A Study of W6 - K-contact
Riemannian Manifold

4.1 Results

Theorem 1. A W6-Semisymmetric K-contact Riemannian manifold is a W6-
flat manifold. Let R be a (1,2)-type tensor. Then the K-contact Riemannian
manifold is said to be R symmetric if

∇R = 0 (4.1)

Theorem 2. A K-contact Riemannian manifold is said to be W6-symmetric
if it satisfies,

∇(X)W6(Y, Z, U) = 0. (4.2)

Theorem 3. A W6-symmetric and W6- semi symmetric K-contact Rieman-
nian manifold is a W6-flat manifold.

4.2 Preliminaries

Let Mn be an (n = 2m+ 1) dimensional contact Riemannian manifold with
the structure tensors (φ, ξ, η, g).

Then the following formulas holds:

Φ2X = −X + η(X)ξ, η(ξ) = 1,Φξ = 0, (4.3)
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g(X, ξ) = η(X) (4.4)

g(ΦX,ΦY ) = g(X, Y )− η(X)η(Y ) (4.5)

F (X, Y ) = −g(ΦX, Y ) = +g(X,ΦY ) = (∇Xη)(Y ) = −(∇Y η)(X), (4.6)

dη(X, Y ) = g(X,ΦY )

[see[1]] for any vector fields X and Y in M.

If we defined an operator h̄ by h̄ = 1
2
LξΦ where h̄ is the lie derivative,

then any contact Riemannian manifold satisfies the condition that h̄ and Φh̄
are symmetric operators, h̄ anti-commutes with Φ (i.e. Φh̄ + h̄Φ), η ◦ h̄ = 0
see [2] and [3] h̄ξ = 0 and e (∇Xξ = −ΦX − Φh̄X), A contact Riemannian
manifold is said to be K-contact if,

If ∇Xξ = −ΦX also in K-contact we have,

(∇Y F )(Z,X) = R(Z,X, Y, ξ), (4.7)

(∇ZF )(ΦX,ΦY ) + (∇ZF )(X, Y )− η(Y )η(∇ZΦX) + η(X)η(∇ZΦY ) = 0,
(4.8)

R(X, Y, Z, ξ) +R(ΦX,ΦY,ΦZ,Φξ) = η(Y )η(∇ZΦX − η(X)η(∇ZΦY )),
(4.9)

η(∇Y ΦX) = η(X)η(Y )− g(X, Y ), (4.10)

S(ξ, ξ) = Ric(ξ, ξ) = n− 1,

where R is the Riemannian (0,4) curvature tensors S = Ric(., .) is the Ricci
tensor and F (X, Y ) = g(ΦX, Y ).

4.3 W6-tensor in K-contact Riemannian

Mishra and Pokhariya [4] gave the definition of W6-tensor as

W6(X, Y )Z = R(X, Y )Z +
1

(n− 1)
[g(X,Z)Y − S(Y, Z)X]
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where Q is the Ricci operator. or

W
′

6(X, Y, Z, U) = R
′
(X, Y, Z, U) +

1

n− 1
[g(X, Y )S(Z,U)− S(Y, Z)g(X,U)]

(4.11)

Definition 1: A K-contact Riemannian manifold Mn is said to be flat if the
Riemannian curvature tensor vanishes identically i.e R(X, Y )Z = 0.

Definition 2: A K-contact Riemannian manifold Mn is said to be W6-
flat if W6-curvature tensor vanishes identically i.e. W6(X, Y )Z = 0.

Theorem 1. A W6-flat K-contact Riemannian manifold is a flat space or
manifold.

Proof; If W6 = 0 i.e. flat in

W6(X, Y, Z, U) = R
′
(X, Y, Z, U)+

1

(n− 1)
[g(X, Y )S(Z,U)−S(Y, Z)g(X,U)]

(4.12)

then we have,

R
′
(X, Y, Z, U) =

1

(n− 1)
[S(Y, Z)g(X,U)− S(Z,U)g(X, Y )] (4.13)

using

S(Y, Z) = g(φY, Z) = (n− 1)g(Y, Z)

We have

R
′
(X, Y, Z, U) =

1

(n− 1)
(n− 1)g(Y, Z)g(X,U)− (n− 1)g(Z,U)g(X, Y )

= g(Y, Z)g(X,U)− g(Z,U)g(X, Y ) (4.14)

Since

R
′
(X, Y, U)(Y, Z)g(X,U)− g(X, Y )g(Z,U)⇒ R

′
(X, Y, Z, U) = 0
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and thus the theorem.

Definition 3. Let W6 be a (1,3)-type tensor. Then the K-contact Rie-
mannian manifold said to be a W6

-semisymmetric if it satisfies R(X, Y )W6 = 0 where R(X, Y ) acts as the
derivation on W6.

Theorem 2. A W6-Semisymmetric K-contact Riemannian manifold is a
W6-flat manifold.

Proof : If we let R be a (1,2) tensors field and also W6 i.e W6(U, V )Z
then

R(X, Y )W6(U, V )Z = 0

⇒ R(X, Y )W6 = g(Y,W6)X−g(X,W6)Y = W
′

6(Y, U, V )Z.X−W ′

6(X,U, V )Z.Y
(4.15)

⇒R(X,Y) W6 = 0 iff W
′
(X,U, V )Z = 0

⇒ that a W6-semisymmetric manifold is a W6-flat manifold. Hence the the-
orem.

4.4 W6-symmetric K-contact Riemannian man-

ifold Mn

Definition 4. Let R be a (1,2)-type tensor. Then the K-contact Rieman-
nian manifold is said to be R symmetric if ∇R = 0

Definition 5. A K-contact Riemannian manifold is said to be W6-symmetric
if it satisfies,

∇XW6(Y, Z, U) = 0.

Theorem 3. A W6-symmetric and W6- semi symmetric K-contact Rieman-
nian manifold is a W6-flat manifold.

Proof: If K-contact Riemannian is a W6-symmetric then the following is
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satisfied.

R(X, Y,W6(Z,U, V ))−W6(R(X, Y, Z), U, V )−W6(Z,R(X, Y, U), V )

−W6(Z,U,R(X, Y, V )) = 0 (4.16)

Expanding the above equationR
′
(X, Y,W6(Z,U, V ), ξ) = g(R(X, Y,W6(Z,U, V )))

= η(X)W6′ (Z,U, V,X)− η(Y )W
′

6(Z,U, V,X) (4.17)

W
′
6(R(X, Y, Z), U, V, ξ) = R

′
(R(X, Y, Z), U, V, ξ)

+
1

(n− 1)
[R
′
(X, Y, Z, U)S(V, ξ)− S(U, V )(R(X, Y, Z))] (4.18)

using S(U, V ) = (n− 1)g(U, V ),

We have

W
′
6(R(X, Y, Z), U, V, ξ) = R

′
(R(X, Y, Z), U, V, ξ)+ (n−1)

(n−1)
[R
′
(X, Y, Z, U)η(V )−

g(U, V )(R(X, Y, Z))] = g(U, V )η(R(X, Y, Z))−η(U)R
′
(X, Y, Z)+η(V )R

′
(X, Y, Z)

−g(U, V )η(R(X, Y, Z)) = η(V )R
′
(X, Y, Z, U)− η(U)R

′
(X, Y, Z, V ) (4.19)

W
′
6(Z,R(X, Y, U), V, ξ) = R

′
(Z,R(X, Y, U)V, ξ)

+
1

(n− 1)
[g(Z,R(X, Y, U)S(V, ξ))− S(R(X, Y, U), V )g(Z, ξ)] (4.20)

using

S(Y, Z) = (n−1)g(Y, Z) we have = R
′
(Z,R(X, Y, U), V, ξ)+ (n−1)

n−1
)[η(V )R

′
(X, Y, U, Z)−
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η(Z)R
′
(X, Y, U, V )] = η(Z)R

′
(X, Y, U, V )−g(Z, V )η(R(X, Y, U))+η(V )R

′
(X, Y, U, Z)−

η(Z)R
′
(X, Y, U, V ) = η(V )R

′
(X, Y, U, Z)− g(Z, V )η(R(X, Y, U))

W
′
6 = (Z,U,R(X, Y, V ), ξ)

= R
′
(Z,U,R(X, Y, V ), ξ)+

1

(n− 1)
[g(Z,U)S(R(X, Y, V ), ξ)−S(U,R(X, Y, V )g(Z, ξ))]

(4.21)

then with

S(Y, Z) = (n− 1)g(Y, Z) = η(Z)R
′
(X, Y, V, U)− η(U)R

′

= g(Z,U)η(R(X, Y, V ))− η(U)R
′
(X, Y, V, Z) (4.22)

Put together (2.14-2.20) we get

η(X)W
′
6(X, Y, Z, U)− η(Y )W

′
6(X,Z, U, V ) + η(V )R

′
(X, Y, Z, U)

- η(U)R
′
(X, Y, Z, V ) + η(V )R

′
(X, Y, U, Z)− g(Z, V )η(R(X, Y, U))

+g(Z,U)η(R(X, Y, V ))− η(U)R
′
(X, Y, V, Z) = 0 (4.23)

or

η(X)W
′
6(Y, Z, U, V )− η(Y )W

′
6(X,Z, U, V ) + η(V )(R′(X, Y, Z, U)

+R
′
(X, Y, U, Z))−η(U)R′(X, Y, Z, V )+R

′
(X, Y, V, Z)+g(Z,U)η(R(X, Y, V ))

−g(Z, V )η(R(X, Y, U)) = 0 (4.24)

Terms which are coefficients of η(V ) and η(U) cancelled out since they are
skew symmetric with respect to the last variable i.e. U,Z and Z, V. and also
the K-contact manifold being W6-semisymmetric means R(X, Y, Z) = 0 and
thus follows the theorem.
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