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Abstract

Over the last four decades, the mixed effects model has gained prominence in so-
cial research in education, health and fields whose data naturally have hierarchical
structures. The ability of the mixed effects model to handle unbalanced clustered
data as well as providing analysis of within groups and between groups variations
have been behind the growing inclination to the use of this model. Prior to its
development, the standard linear regression model had been immensely employed
in modeling effects or influence of selected factors on the observed phenomena.
Hierarchical data structures have subjects nested within groups, a fact that intro-
duces correlation between subjects of the same group and calls for the application

of an appropriate model that sufficiently explains the origin of variations.

In this study the linear mixed effects model is applied in the analysis of national
examination scores for pupils who sat for that examination in 2013. The number of
pupils in each of the sampled schools is variant. The imbalance in the data struc-
ture inhibits the application of models like multivariate regression or the ANOVA
model and therefore stresses the choice for the linear mixed effects model. The
research project builds a suitable linear mixed effects model that explains the dis-
tribution of the observed examination scores given pupils'individual characteristics

as well as school level characteristics.

The structure of the data used in this study is nested. Insight is provided for the

process of choosing fixed and random effects variables and the Akaike Information

1X



Criterion is used in selecting the optimal model used the analysis. The adequacy
of the selected model is assessed using the Likelihood Ratio Test which compares
the likelihood functions of the selected model and a restricted null model. The
Restricted Maximum Likelihood Method has been considered for the estimation
of variance components of the model. The Best Linear Unbiased Estimator is em-
ployed in the estimation of the fixed effects parameters while the estimates of the
random effects parameters are predicted using the Best Linear Unbiased Predic-
tor. Finally, the results of the analysis have been presented with fixed and random

coefficients and interpretation given for the results.
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Chapter 1

Introduction

1.1 The Purpose of Education

According to (King, 1947) “education has a two-fold function to perform in the
life of man and in society: the one is utility and the other is culture. Education
must enable a man to become more efficient, to achieve with increasing facility
the legitimate goals of his life,”and adds, “complete education gives one not only
power of concentration, but worthy objectives upon which to concentrate”. The
thought presented by (King, 1947) is very powerful. Looking at education for what
it is and considering the purpose that is argued clearly points to one glaring fact,
that without equity, education systems are not efficient and thus do not meet the

purpose for which they are established.

(Foshay, 1991) articulates in his persuasion to review school curriculum that “ed-
ucational purpose have also been widely accepted to develop the intellect, to serve
social needs, to contribute to the economy, to create an effective work force, to
prepare students for a job or career, to promote a particular social or political sys-
tem.” In a similar thought process to the proposition of King, Foshay acknowledges

development of intellect as one of the purposes of education. In my modest consid-



eration, achieving half intellect is very detrimental to a nation since the neglected
half may not stand up to serve the social responsibilities that their nations require
of them once they graduate from schools. As noted by (OECD, 2013), “increase in
the results obtained from PISA increased the likelihood of an adult to contribute
meaningfully to the economy of his/her nation. This implies that if nations are
not keen to address equity issues in education, then the population that will be

available to actively work the economy will be shrunken.”

1.2 Introduction

Education and training has been presented by world leaders and scholars as one of
the necessary ingredients to economic growth in developed and developing coun-
tries. This is a persuasion that is supported by development of education in de-
veloped countries especially those that are members of the Organisation for Eco-
nomic Co operation and Development (OECD). In OECD countries, education is
not viewed as an end in itself but as a means to economic prowess. It is for this
reason that education assessments have been conducted in such countries and the
impact of any improvement made in the levels of achievements associated with

economics growth.

In most societies, education is viewed as an avenue to improve not only the eco-
nomic strongholds of nations but also the social fundamentals. This is seen through
the quality of social choices made by the educated citizens across the globe, there
is increased range of social choices that are available for the educated compared
to the constituency of persons that are not educated. It is suffice to conclude that
there is significant relationship between education and economic growth whether

one is looking at developed or developing countries.

Results from the OECD's recent Survey of Adult Skills show that highly skilled



adults are twice as likely to be employed and almost three times more likely to
earn an above-median salary than poorly skilled adults. In other words, poor skills
severely limit people's access to better-paying and more rewarding jobs. Highly
skilled people are also more likely to volunteer, see themselves as actors rather
than as objects of political processes, and are more likely to trust others. Fairness,
integrity and inclusiveness in public policy thus all hinge on the skills of citizens.

(OECD, 2013)

As evidenced by data from developed and developing countries, access to primary
education has grown over the years. The growing numbers of schools both in public
and private sectors around the globe is therefore not an accident but a deliberate
effort by individual countries to develop their education systems for sustainable
development. Majority of citizens around the world desire to acquire basic liter-
acy as they appreciate that education improves their livelihoods and in the same
stride they have a chance to build their economies. Apart from increasing the num-
bers of schools and learning institutions, many countries have reformed the way
they look at education. The South African Consortium for Monitoring Education
Quality (SACMEQ) for instance carries periodic education assessments in member
countries to establish the quality of education programs in each country. Coun-
tries participating in the Trends in International Mathematics and Science Study
(TIMSS) and Progress in International Reading Literacy Study (PIRLS) have in-
creasingly been interested in monitoring achievements of their systems which of
course are used in developing the systems in the directions they desire based on
lessons learnt from countries whose education systems perform comparatively bet-

ter.

Through the last decade, countries all over the world rallied to achieve universal
primary education through the United Nations led banner of Millennium Develop-

ment Goals (MDGs). Most countries have since achieved the goal while some are



yet to get there, especially in the African continent. While schools opened their
gates for school going age children to join the learning process, a new challenge
was born. Quality of education, in the eyes of education stakeholders, was put to
test in most of the African states, with much of the impacts felt claimed to be in
public schools. Quality education is, “Processes through which trained teachers
use child-centred teaching approaches in well-managed classrooms and schools and

skilful assessment to facilitate learning and reduce disparities,” (UNICEF, 2000).

Stakeholders in education have continued to decry overcrowded classrooms which
they claim may have negative effects on learning outputs in public schools. The
lack of equity in resourcing schools has led to quality of education being imbal-
anced across most African countries. Whereas quality of education is a broad
aspect and may take a long discussion in trying to establish the various tenets
of measurements, educationists have a consensus that examination scores are a
viable proxy to assess the quality of education. The inputs in schools through a
production function have been used in a lot of research work to be the influence

of assessment outcomes.

In Kenya, examination scores are used to assess the amount of learning that takes
place through the learning processes in schools. More than that, the scores are used
in filtering pupils and students for transition to higher levels of education. Entry
to secondary schools would require that pupils meet some minimum score. Tran-
sition into tertiary education would equally require a student to have met defined
desirable grades. In the job market, employers place more weight on candidates
who have higher examination achievements than those who perform comparatively

lower.



1.3 Background

The Government of Kenya has made big and bold steps towards improving access
to basic education since 2003. The efforts are reflected in the share of national
resources that have been allocated to the education sector in the last thirteen years
as well as a raft of policy measures that have been undertaken during the same pe-
riod. These measures were taken to enhance access to education and ensure there
is equity in the participation of learners in school. During the period 2000-2014
enrolment in primary education increased from 5.9 million to 9.9 million repre-
senting an increment of about 68%. The increment covered over age population
that had not accessed school as well as population that annually got to school
going age. More rapid growth in the enrolments was recorded in the rural areas.
This may be attribute to the removal of school levies that were charged by schools
prior to the period before 2003. The levies had been cited as serious hindrance to

accessing basic education.

The primary Gross Enrolment Rate, a measure of education system coverage in-
creased from 92.7% in 2000 to 115% in 2011 before improving to 103.5% in 2014.
Overall, the figures indicate that the system has enough capacity to carry its pop-
ulations school going age. There are however, regional disparities that still to
be corrected by employing region specific programs to address lack of equity in
access to education. Primary Gross Intake Rate (GIR) hit 102% in 2014 while
the Primary Completion Rate (PCR) was 79.3%. The number of primary schools
in the country have incredibly increased from 18,617 in 2000 to 29,460 in 2014
representing a growth of about 61%. The progress made in improving access
to primary education is credited to successful implementation of key education
programs including the Free Primary Education (FPE) which has boosted the en-

rolment rates; the School Feeding Program (SFP) which has enhanced retention



in Arid and Semi-Arid Areas (ASAL); School Infrastructure which has addressed
congestions in schools; and School Instructional Materials which eased the pressure
of school materials acquisition from parents. There are a raft of other programs
that the Government has implemented to advance education which may be ob-
tained from the Ministry of Education Science and Technology (MOEST) as the

custodian of education programs in the country.

Most of these programs were implemented in a 'one size fits all'fashion for instance
the FPE assumed a capitation model where each pupil enrolled in a public pri-
mary schools was allocated an agreed per capita irrespective of their geographical
background. The funds are disbursed to schools and are spent on teaching and
instructional materials, school utilities and maintenance. It is important to note
that during the conceptualization of the program, there was no distinction made
between regions, whether they had any difference in terms of economic endow-
ments and potentials when making the allocations. There was no variation made
in the allocations to rural or urban pupils. An assumption was made that provid-
ing a flat rate capitation for each learner across the country would be sufficient in
supporting education for all learners. With this support, learners are assumed to

have been equalized across the country.

There is an acknowledgment of the achievements that have been registered this
far by the education sector and specifically in primary education for the sake of
this study. However, the achievements in increasing access to primary education
notwithstanding, there is need to understand the story behind the programs im-
plemented vis-a-vis the outcomes that pupils register at the end of each academic
cycle. The country is endowed with diversity of geographical and other natural
factors that may influence the education outcomes. Knowing that pupils vary in
assessments not only because of their individual differences may help the country

design better programs that will address disparity in education. In addition, know-



ing that a pupil in a school with a given set of characteristics is likely to perform in
a certain predictable way should prompt the Government to adjust the inputs of
the established model to establish an equitable system. This will also give parents
the platform to make a choice of where to take their children and thereby insti-
tuting a competitive culture where schools hunger to satisfy their communities.
Deliberate creation of varied models for each grouping or cluster may be desirous
in optimizing the achievements from learning institutions. In deed the Government
should have the motivation to measure the return on investments to education and

to know where there could be better returns compared to other areas.

1.4 Statement of Problem

At the end of each academic year, learners who have been in schools for roughly
eight years, having gone through instruction of the same curriculum, are subjected
to a national examination. I say roughly eight years taking note that some pupils
may stay in the primary cycle longer than eight years and this explains why the
PCR in 2014 for instance was 79.3%. Adjusting for entry behaviour of children,
the expectation from each of the individual would be minimal variation in the
results of the national examinations. However, the scores from Kenyan National
Examinations have depicted wide variation over the years. The variation has often
been presented as pupil-pupil difference and noting the different means of different

regions or administrative units.

There are grouping effects that may be responsible for some of the variations
seen in pupils'scores. Pupils are grouped in classrooms; classrooms are grouped
in schools; schools are grouped in districts; and districts are grouped in counties.
These groupings have unique characteristics that may be responsible for some

variation that is witnessed in the candidates'scores which seems to be ignored.



Application of appropriate models is required in effort to have the variance con-

tribution of these groupings assessed and determined.

This far we have discussed the various areas where examination scores are ap-
plied in the life of a candidate with respect to their futures. If it is established
that the variations of these scores are influenced by factors that cannot be con-
trolled by the candidates there would be need to accord them the balancing effect
they deserve. Of the 13 countries and economies that significantly improved their
mathematics performance between 2003 and 2012, three also show improvements
in equity in education during the same period, and another nine improved their
performance while maintaining an already high level of equity proving that coun-
tries do not have to sacrifice high performance to achieve equity in education

opportunities(OECD, 2013).

1.5 Objective of the Study

The main objective of the study is to develop an explanatory model to sufficiently
explain the variations in pupils'scores. Specific Objectives The specific objectives

of the study include to:

i. Establish whether grouping of pupils in schools have any effect on their exam-

ination scores
ii. Evaluate the proportion of variance explained by schools grouping effect

iii. Evaluate the suitability in the application of the model



1.6 Significance of the Study

(Vlaardingerbroek, Taylor and Heyneman, 2008) argue that, “Success in schooling
system is one of the characteristics believed necessary for modern leadership. Al-
though it is possible for leaders to emerge through experience, just good fortune, or
military might, regardless, success in schooling is considered to be a sine qua non
as an essential criterion of legitimacy”. With this argument, a very heavy burden
has been presented to educationists by the authors. First is to determine what
success is in the context of education and subsequently define the measurements.
The importance that countries place in the development of their education systems
have been covered in the introduction section of this chapter. Having noted that,
a very pertinent question is raised. If countries are to have a clique to pick modern
leaders from then there is need to ensure that all children who are sent to schools
'succeed'. The chance of picking an effective leader according to Vlaardingerbroek

et al is increased by reducing the variation between their successes.

When children join preparatory school, they are often told that they will be lead-
ers of 'tomorrow'. As they graduate from the elementary level of the schooling
system it is necessary that learners in whose hands the leadership of 'tomor-
row'demonstrate acceptable success. If the success of learners is to be measured by
what they score from school then there is need to ensure that education systems
provide the children with environments that can facilitate their success. Educa-
tion systems must strive to create an equal playing field for learners so that the
variations that may be exhibited from assessments and examinations may be down

to individual capacities.

Showing that schools account for significant variation on the learners scores will
be a big impetus for education planners to review education production functions

to establish the optimal level of providing resources to schools for the development



of a sustainable and equitable system. As (Gustafsson, 2007) notes, appreciation
of the inputs in education programs relative to the outputs becomes very impor-
tant. I have noted that there is not much application of the mixed model in the
country in the analysis of assessments and examinations results. This study seeks
to add to the existing analyses and I believe it will spur the national application
in the analysis of examination scores for consideration of equitable transition to

secondary schools.

10



Chapter 2

Literature Review

2.1 Introduction

This chapter presents the background of examination systems and a review of ex-
isting knowledge from papers and texts published or documented by researchers in
education and other related fields. The review provides insight to approaches that
existing work has employed in analyzing education outcomes especially outcomes
from examination and assessments. The chapter also discusses the theories of the
widely used methodologies in education research; their merits as well as demerits.
The chapter finally discusses the model selected for this research setting the basis

for its preference.

2.2 Education Assessment Systems

(Braun and Kanjee, 2006) opine that “although assessment is often seen as a tool
to measure the progress of individual students, it also allows individuals, com-
munities, and countries to track the quality of schools and educational systems”.

It is true that assessments help in examining the achievement levels of the sys-

11



tem. From assessment scores, the system accounts for what pupils and /or students
learn. It is sort of a feedback expressing the process of transfer of knowledge. If
the process is effective then it is expected that learners would exhibit high scores
in the assessment. This would amount to assessing the state of the quality of ed-
ucation systems. In strategic planning, corporates often motivate themselves that
'what gets measured gets done'. I believe education assessments equally operate

in the same spirit.

In Kenya assessment systems have been used for nearly the same purposes. Exam-
inations and assessments have been used in assessing the knowledge and compe-
tency that learners get out of any considered cycle of education for instance Early
Grade Reading assessment was mounted to establish the reading skills of learners
in mother tongue, English and Kiswahili (Piper, 2010); The principal purpose of
SACMEQ is to track the learning competencies achieved by learners at primary
school level (Wasanga, Ogle and Wambua, 2010); and the results of Uwezo show
that school going children are not achieving desirable competencies in literacy and
numeracy (Uwezo Kenya, 2013). All these point out some of the reasons for which

education assessments have been carried out in the country.

The national end of education cycle examinations results have been used to filter
learners who are deemed 'ready'for the succeeding level of education. The Kenya
Certificate of Primary Education Examination results for instance are used in es-
tablishing those who transit to secondary education while the Kenya Certificate of
Secondary Examination results are used in placing learners into middle level col-
leges and institutions of higher learning according to the standards they achieve.
The standards are set by the MOEST through public policies. In some cases as-
sessments have been carried out for ad hoc purposes, may be to get a feeling of
what is happening in the schooling system. “In theory, if policymakers have ac-

cess to reliable information on educational quality in specific schools and make

12



this information available to the aware public, then students and parents may be
better able to choose among educational options and demand education of higher
quality,” (Braun and Kanjee, 2006). This is a theory that should have a practical
place in the 21st century if education has to make meaning to those who seek it as
well as to those who invest in it especially governments, communities and private

entities.

2.3 Previous Studies on Education Assessments

As earlier mentioned, all learners in countries that have nationally regulated educa-
tion systems are subjected to similar curricula. In Kenya, all learners are subjected
to the same curriculum (8-4-4) which is regulated nationally by the Ministry of
Education Science and Technology. Assessment systems have over the years ex-
hibited that despite this uniformity of curriculum, there exists variation in the
assessment outcomes. Most of the education research work done in the country

have used the multiple regression model in the analysis.

In a study to establish the influence that final examinations in primary schools
have in the final secondary examinations score of students from Nyamira District,
Nyamira County, Ondima et al used the linear regression to demonstrate their
idea. “Regression analysis will be used to analyse data which will be useful in
measuring entry scores in KCPE and final performance in KCSE. Given the re-
liability of regression analysis of the data, the results could be used to alert the
management, stakeholders and parents, the level of learners and the strategies
needed for them to achieve better results,”(Ondima et al, 2013). It is important
to note that the students who were selected for the study were nested in schools

and the schools are further nested to administrative zones.

The linear regression in this case has not taken into account that students grouped

13



in the same school may have similar achievement tendencies that may arise from
their learning together. In any case the number of students selected from each
school was not uniform thus making the choice for standard regression inappro-
priate for their study because of the unbalanced structure of the data used in the
analysis. In their conclusion, Ondima et al, found out that KCPE score for each
student included in the study did not significantly influence the KCSE scores for
the same students. Since the students'scores four years earlier were tacked and
their compared to their KCSE performance, the design of the study ought to be
that of a repeated measures. In case the design could be modified to have the
same number of students drawn from each school, repeated measures anova could
have been applied. The effect of grouping in schools was not taken into account
either. Perhaps a complex situation was how to handle students in a given school
considering that they attended different schools for the KCPE assessments. As it

was, the mixed model should have sufficed.

(OECD, 2013) reports on the Programme for International Student Assessment
(PISA) which is undertaken by sixty five OECD countries to assess “the extent to
which students near the end of compulsory education have acquired some of the
knowledge and skills that are essential for full participation in modern society, par-
ticularly in mathematics, reading and science”. PISA “gathers information from
students about their learning environment, educational experiences, and attitudes
towards education,”, “Analyses of PISA data provide information on the relative
performance of students and on the differences between student environments, at-
titudes, and experiences within and across countries,” (Kastberg, Roey, Lemanski,

Chan and Murray, 2014).

With the design of national and international variables built in the assessment
tools, it becomes very easy to establish the within country and between country

variation and of course the proportion of variation that this kind of data structure

14



can explain. The Rasch model, was used in scaling the learners'data to provide
insight into the performances which indicated high disparities between countries
and well as gender imbalances. The program's results are used by policy makers

from participating countries to develop their respective education systems.

The Southern and Eastern Africa Consortium for Monitoring Educational Quality
(SACMEQ), another system of assessment, carries out large-scale cross-national
research studies in member countries in the Southern and Eastern Africa region.
The aim of the assessments carried out by the consortium is to evaluate the sta-
tus of schools and learners'achievements in literacy and numeracy, (ACER, 2015).
Over the years there has been an attempt to assess the achievements in literacy and
numeracy with a view to informing policy makers on reviewing what works and
what does not work in the schooling systems. The SACMEQ has implemented four
series of assessments since its inception in the 1990's, the latest being SACMEQIV

which was conducted in 2014.

In the SACMEQ III results, linear regression was used to establish the signifi-
cance of selected predictor variables on the assessment scores of grade six learners
(Wasanga et al, 2010). The predictors ranged from learners to school and teacher
variables. The account given by the procedure used by SACMEQ demonstrates
the first stage of fitting a mixed effects model where all the independent variables
are treated as fixed effects where all explanatory variables are treated as fixed and
the OLS procedure is used in estimating the parameters. The researchers found
70 variables in the study to be significant at (o =0.05), a finding that should have
triggered tests of misspecification of the model as the variables may be too many.
To account for grouping effects in a study, subsequent steps have to be undertaken
and decision has to be made on which variables are to be made fixed and which
ones are to be considered as having random effects to learners'achievements in

reading or mathematics. (Wasanga et al., 2010) reckon that multilevel modeling

15



was conducted at two levels i.e. pupil level and school level.

The researchers have failed one, to demonstrate the procedure which was used in
the second level of analysis. Readers are left to wallow in dilemma of not knowing
which pupil level or schools level variables were treated as either fixed or ran-
dom. The results provided for the SACMEQ III project in the case of Kenya
did not indicate the intercepts for the random variables included in the fitted
model. The variance accounted for by the grouping of pupils in a school is equally
not given which raises questions on the comprehensiveness of the procedure and
methodology. It is evident that there is appreciation of the mixed effects model,
or multi-level modeling as the authors have referred to it, in analysis of multi-level
data is there. However, the SACMEQ III project has not demonstrated to the
latter the application of the methodology.

A similar case is presented during the development of the multi-level modeling
where a study had been conducted on primary schools learners in the 1970's. The
study looked at formal styles of teaching reading and the progress made by such
learners as opposed to learners who were not exposed to such styles. Analysis was
carried out using standard regression analysis treating learners as the only unit of
analysis. The analysis did not put any emphasis on the effects of grouping learn-
ers into teachers grouping (Goldstein, 1999). In later work the same data were
subjected to multi-level analysis which then showed that some of the variables had
lost their significance to the grouping effects. This fact raises a very fundamental

question when dealing with multi-level data.

In his working paper on the development of an equitable public schooling system in
South Africa, (Gustafsson, 2007) used hierarchical linear modeling to establish the
effect grouping pupils in schools had on their learning outcomes. He established
that 55% of the total variation was due to schools effect. Learners accounted for

only 10% of the variation. This points to a systemic neglect rather than learn-
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ers'inability to succeed in their education endeavours.

2.4 Summary of Findings

While I note the incredible work that has been carried out by researchers in the
field of education, I have also noted that there is a wide usage of trivial models
to explain observed phenomena. It is with this understanding that I propose the
application of linear mixed effects model in the analysis of learners'outcomes. This

will help in developing adequate program that address disparities in education.

In the next section, I have provided a review of the linear regression modeling
detailing its application as well as the limitations. This way, there is an under-
standing of the basis upon which my critiques are based. The transition into

hierarchical modeling is also made easier for my future readers of this work.

2.5 Linear Regression Model

To provide a transition from the most used model in social research to the model
that has gained prominence in the past four decades, the standard regression model
is reviewed in this section. Some aspects of the standard linear regression remain
very useful in the mixed effects model, especially in the estimation of fixed effects
parameters. The most basic model that may be used to explain the relationship
between variables, one being continuous and the other may take any form, is the
linear model. The direction and magnitude of the association may be deduced

simply by employing the simple linear regression model.

“Simple linear regression is the most commonly used technique for determining
how one variable of interest (the response variable) is affected by changes in an-

other variable (the explanatory variable). The terms "response” and ”explana-
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tory” mean the same thing as "dependent” and ”independent”, but the former
terminology is preferred because the ”independent” variable may actually be in-

terdependent with many other variables as well,” (Kirchner, 2001).

“In spite of the availability of highly innovative tools in statistics, the main tool
of the applied statistician remains the linear model. The linear model involves the
simplest and seemingly most restrictive statistical properties: independence, nor-
mality, constancy of variance, and linearity. However, the model and the statistical
methods associated with it are surprisingly versatile and robust. More importantly,
mastery of the linear model is a prerequisite to work with advanced statistical tools
because most advanced tools are generalizations of the linear model,” (Rencher and

Schaalje, 2008). The general form of the linear regression model is given as:

y=XB+e¢ (2.1)

where y is an n x 1 vector of observed responses, X is an n X p matrix of constants,
[ is a p x 1 vector of unknown parameters, and is an n x 1 vector of random
errors. The reason the model represented in equation (2.1) is called linear comes
from the relationship between the observed response vector y and the parameter
[. The mean of the observed y values is linear in 5. The simple form of the linear
regression is considered when there is just one independent variable explaining the

observations on the response variable.
Yi = Po+ 1 X + & (2.2)

The parameters in equation (2.2) are estimated using Ordinary Least Squares
(OLS) method where the squared residuals obtained from the fitted model are
minimized i.e.

(2.3)

<

€ =Yi—
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7 is the estimated value of the response variable using the line of best fit while y;is
the observed response variable. Since summing individual residuals will obviously

result to zero, they are squared such that:

But
Y= Bo + Ble
Se? = Sy — (fo + X)) (2.4)

To solve for the parameters and we obtain partial derivatives of the sum of the

squared residuals and minimize them:

6%e? A
= =25(y; — (Bo + £1X1)) x (=1) (2.5)
00
6Xe? A
5511 =28(y; — (Bo + B1.X1)) x (X1) (2.6)
Solving equation (2.5) and (2.6) simultaneously, we obtain
2 XY,
— EXZY;I _ 1+
Pr=n nEX? — (BX,)?
Bo =7 — b

We note that the linear model described in equation (2.2) allows for only one
predictor. However, in the real world most of the observed phenomena in day to
day situations are composites of multiple factors. We may take the example of a
political election where aspirants seek votes from the electorate. There are several
factors that may influence voters to give their vote to a given aspirant and not the
next aspirant. These factors may include the aspirant's age, sex, marital status,
religious affiliation, and maybe perceived or real economic endowment. In this case,

the general form of the linear model described by equation (2.2) may be specified
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to allow for more than one causal variable. In the example of a political aspirant,
all the five listed variables will be included in the resultant model. In this case
the Linear Regression Model changes from Simple to Multiple Linear Regression
Model which may be represented by equation (2.7) and the normal equations used
in the estimation of model parameters can be developed as in equation (2.9), (2.10)

and (2.11).

yi = Bo + 51X + BoXio + .. + B X + & (2.7)

Se? = Sy — (Bo + BiXa + BoXig + .. + BiXur)) = Q (2.8)

((;—g) =2%(y; — (Bo + B1Xi1 + BoXig + oo + B X)) X (—1) (2.9)
§—§1 = 2% (y; — (Bo + BiXir + BaXio + oo 4 BrXin)) X —(Xa1) (2.10)
;% = 20 (y; — (Bo + S1.Xi1 + BoXio 4 o 4 BeXir)) X —(Xir) (2.11)

These sets of normal equations in equations (2.9), (2.10) and (2.11)can be repre-

sented in a matrix form as:

Table 2.1: Normal Equations for Estimating Multivariate Linear Regression

Y Bo 31 82 Bk
1 2y nﬁAo Blinl 522)(12 BkZXik
Xo SXay foSXa  BEXE BEXaXe .. BEXaXa
X DXy BoSXi LiEXaXi SoESXoXp .. ﬁkZka

The multiple linear regression in Table (2.1) above is of the form y = X + ¢ and

its parameters are estimated by:

B=(X'X)'Xy (2.12)



Assumptions and Estimation of Linear Regression Model

Application of linear regression models makes the following fundamental assump-

tions:
i. The data used in analysis is representative of the population under study
ii. The relationship between the dependent and independent variables is linear.

The parameters can be estimated using the Ordinary Least Squares (OLS) ap-
proach or the method of maximum likelihood. In estimating the parameters of
the equation each of the residuals for corresponding observations are assumed to
be normally and independently distributed with mean zero and variance of §. The
variance of the residuals is assumed to be constant. This assumption together with
the assumption on representativeness and linearity must be met if the parameters
estimated using the model are to be unbiased estimators of the population param-
eters. Apart from estimation of the population parameters, these assumptions are
necessary in testing hypotheses and constructing confidence intervals within which

the decision taken on hypotheses testing hold.

2.5.1 Limitations of the Linear Regression Model

Inasmuch as the linear regression model has been widely used to analyse numerous
real world phenomena there are some challenges it did not address which motivated
the development of further models. “Prior to the development of HLM, hierar-
chical data was commonly assessed using fixed parameter simple linear regression
techniques; however, these techniques were insufficient for such analyses due to
their neglect of the shared variance,” (Woltman, Feldstain, Mackay and Rocchiet,
2002).

The linear regression model assumes a single mean with no regard for additional
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intercepts that may be realized due to grouping. In their demonstration of ran-
dom variation concept, (Pinheiro and Bates, 2000) established that introducing
the grouping effect of Rails, “there is considerable variation in the estimated mean
travel times per rail. The residual standard error obtained for the fixed-effects
model § =4.0208, is about one-sixth of the corresponding estimate obtained for
the single-mean model”. Other weaknesses include the assumption that an ob-
servation on the dependent variable is due to an independent variable. In some
cases, the conclusion of causality may just be mere coincidence in which case there
could be other variables excluded from the model or the phenomena may have

some other external factors influencing the observations.

2.6 Hierarchical Linear Modeling

“Hierarchical Linear Modeling (HLM) is a complex form of Ordinary Least Squares
(OLS) regression that is used to analyze variance in the outcome variable when the
predictor variables are at varying hierarchical levels,” (Woltman et al, 2002). In
contrast to the linear model which assumes that all independent variables influence
the dependent variable from the same level and therefor ignores shared variance
in the grouped subjects, hierarchical modeling takes into account the effects of
the groups into which the subjects are. Thus the linear mixed effects model is

applicable in the analysis of grouped data.

“In a mixed model, the total residual variation of the observations is divided to
within-group and between-group variation. However, after estimating these vari-
ance components, we can use the observations of our data to predict also effects
for individual groups,”(Mehttalo, 2013). “A grouped dataset may have either a
single level of grouping or multiple levels of grouping,”(Mehttalo, 2013). In the
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single case we may consider pupils grouped in a classroom such that we would
be interested to know whether grouping the pupils in a classroom explains any
proportion of the variability from the next classroom. In a two level case we would
consider pupils grouped into classrooms and the classrooms are further grouped in
schools. Consequently, the hierarchical model is used to establish the proportion
of variance accounted for by both classroom and school effects compared to the

proportion accounted for by individual pupil difference.

2.6.1 Crossed vs Nested Data Structure

The structure of data in multi-level modelling may be crossed or nested. “In a
two-way design, the analysis is considered crossed if each level from one way is
contained in each level of the other way. In this design, every person (unit of
analysis) has a score in every cell,” (Kyle, 2002). In an education context we would
consider the example of classrooms and teachers. Teacher x would be available
to teach in classroom A and classroom B. This design would be crossed since
for each of the classes assessed, teacher x has a score. In a nested case, there
is seamless hierarchy where no interaction exist between pupils in a given school
and the next school. The uniqueness of a school is limited to the pupils who are
grouped into it. If higher hierarchies are available, the seamlessness will be sus-

tained, there will be no interaction between schools in a given location for instance.

2.6.2 Balanced vs Unbalanced Data Structure

In the analysis of variance where treatments effects on experimental units are as-

sessed, balance refers to allocation of equal number of experimental units to each
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of the treatments to be evaluated. In the unbalance case, the number of subjects is
not same for the grouping levels considered. In the case of this study, the number

of pupils who are considered per school is not the same.

2.6.3 Fixed vs Random Effects

The notion of fixed and random effects variables can be so challenging to apply to
a dataset as there are no hard and fast rules to what one would consider a fixed or
a random variable. However, based on sampling, “A fixed effect factor is a factor
whose levels are the only possible levels in the population being studied. This
is opposed to a random effect factor whose levels in the study are just a sample
of all the other possible choices,” (Onyango, 2009). “A group effect is random if
we can think of the levels we observe in that group to be samples from a larger

population,” (Taylor, n.d.).

(Winter, 2006) attributes a fixed variable to one that is measured with an abso-
lute precision. Usually, it is assumed that the values of a fixed variable remains
the same across studies such that the value assumed by a variable in study a will
be similar to the value assumed by the same variable in study b. 'Random vari-
ables'are assumed to be values that are drawn from a larger population of values
and thus will represent them. With this understanding and subsequent applica-
tion to the pupils'score dataset, sex of a pupil which is measured as either male or
female, is considered to be a fixed effect in my model. In the case of schools, since
the schools selected for analysis are due to some systematic or non-probabilistic

chances, the effects they have on the model will be random.
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2.6.4 Inter Class Correlation

One of the main reasons the mixed model is preferred is its ability to estimate the
effects of a higher level hierarchy on lower level subjects that are grouped therein.
One of the statistics that we look out for is the inter-class-correlation, in the case
of this study inter-school-correlation. From the estimation of the variance compo-

nents of the model we have the total variance due to pupil and schools given as:

var(y@, XZ]) = /Uar<U0j7€ij) — u02 + 5502
Where d,0% is the school variance while 6. is the pupil variance.

The inter-class-correlation is given by:

u0”
a Suo” + =0
The inter-class-correlation estimates the proportion of variance due to the group-
ing effect (Goldstein, 1999). When the inter-class-correlation is lower in multilevel
model, there the estimates are reasonably close to those obtained by the standard
OLS estimates,(Goldstein, 1999). This fact can be used as a test to validate the

choice for a mixed model instead of standard regression model. The variation be-

tween pupil to pupil, the within school variation, is given by:

CO?J(’UOj + 5i1j7 UOj + €i2j) = COU(UQj) = u02

2.7 Non Normal Residuals and Non Continuous
Response Variables

In the real world, it is obvious that not all phenomena will have observations

record-able in continuous forms. The other challenges that may arise are the vi-
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olation of critical assumptions like normality, homoscedasticity. There are other
models that will come in handy in dealing with this dilemma. “Generalized linear
mixed models provide a means of modeling these deviations from the usual lin-
ear mixed model,” (Kachman, 2000). Just like in linear models, generalized linear
models come into play where assumptions in the former are violated, the general-
ized linear mixed models have been widely used in the same context for the linear
mixed effects models. The focus remains on the link function. However, on the
generalized linear mixed effects model the focus is on the inverse of the link func-

tion.

26



Chapter 3

Methodology

3.1 Introduction

This chapter gives the functional details of the model described in chapter two.
It discusses the data structure as used in the research project; formulation of the
linear mixed model; the structure of the model and its components; the basis
and steps for model selection; model assumptions and tests of assumptions of
the model; estimation of the model parameters; hypothesis testing and confidence

intervals; and prediction using the fitted model.

3.2 Data Structure

The data used in this research was obtained from the results of the 2013 Kenya
Certificate of Primary Education examinations which are administered by the
Kenya National Examinations Council (KNEC). The research has made a delib-
erate focus on Homa Bay County which has six administrative districts and over
one thousand schools. We note that not all candidates who sat for examination in

2013 have been considered in this study as some of them sat for the examinations
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in private centers which are not schools. Since the study aims at predicting future
outcomes of a pupil's final examination score based on individual characteristics
of a pupil who sat for an exam as well as the characteristics of the school the pupil
took the exam from, private examination centers had to be omitted. The rationale

being that their characteristics are not available.

The study has adopted a two level hierarchical model. Pupils and their individ-
ual characteristics have been considered in the first level and are nested in the
schools from which they took their exams, considered as level two. We wish to
analyze the effects of independent school characteristics, level two variables, on

the pupils'score, a level one variable.

In multilevel modeling, the dependent variable has to be a level one variable thus
a Pupil's Kenya Certificate of Primary Education Score has been treated as that.
Explanatory variables may assume either levels of the hierarchy for instance Age
and sex are explanatory variables on level one of the hierarchy while schools status
and location are on level two. Figure 3.1 shows a sample of the data used in this

research work.

Age The age of the pupil at the time of the examination
Sex The biological category of the pupil, male or female
Status The ownership of the school, whether private or public

Location The location of the school, either rural or urban.

3.3 The Linear Mixed Effects Model

“Mixed-effects models are primarily used to describe relationships between a re-
sponse variable and some covariates in data that are grouped according to one or

more classification factors,” (Pinheiro and Bates, 2000). Unlike the linear model,
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Pupil Sex Age KCPE Score School Status Location
689 Male 14 293 25 Public Rural
1241 Male 18 288 46 Public Rural
1294 Male 16 213 47 Public Rural
1416 Male 17 NA 53 Public Rural
1548 Male 15 274 57 Public Urban
2064 Male 17 260 73 Public Rural
4269 Male 12 330 162 Public Urban
6300 Male 17 289 246 Public Rural
6469 Male 17 276 252 Public Rural
6667 Male 16 248 260 Public Rural
8032 Female |13 197 312 Public Rural
8358 Male 16 238 321 Public Urban
10023 Male 15 315 387 Public Rural
10663 Female |17 279 409 Public Urban
10711 Male 17 183 410 Private | Rural
11897 Female |13 196 456 Public Rural
13861 Male 14 366 530 Public Rural
14142 Male 14 274 540 Public Rural
15824 Male 14 220 609 Public Rural
16121 Male 13 350 620 Public Rural
16173 Female |13 272 620 Public Rural
16183 Male 15 267 620 Public Rural
18323 Female |14 168 701 Public Urban
19543 Male 17 150 738 Public Rural
21094 Male 13 339 806 Public Rural

Figure 3.1: Sample of Pupils’ Score Data

the mixed effects model has an additional random component which linearly in-
fluences the response variable. The random component of the mixed effects model
partitions the error term in the linear model thus reducing the proportion of un-

explained variability in the resultant model.

29



3.3.1 Model Formulation

We begin from the standard linear regression. A pupil's score is given by:
Yi = Po+ 01X + & (3.1)

For the multilevel model we consider the modification of the standard linear re-

gression equation such that we have
Yij = Poj + PrjAge; + PojSexiy + €i (3.2)

Yi; is the score of the 7th pupil in the jth school for 1=1,2,3,, N and j=1,2,3,M; [

is the regression constant; /3;; is the regression slope; and ¢;; is the residual.

From (3.2) each level two unit, schools in this case, has its unique level one re-
gression constant (fp;). We also note that each school has a unique pupil level
regression slopes based on sec and age. These constants and regression slopes vary
from school to school. In order to sufficiently account for the effects of school level
variables, we consider parameters of equation (3.2) and use them to develop school
level equations. Each of the coefficients in (3.2) will yield a level two equation given

in (3.3), (3.4) and (3.5).

Bog = Yoo + Yo1School Status + ~yoaSchool Location + vy; (3:3)
B17 = Y10 + y11School Status + v125chool Location + vy (3.4)
Ba2j = 720 + Ya1S5chool Status + va2.School Location + vs; (3.5)

Here, 7's are the school level regression coefficients and do not vary from school
to school. For instance the coefficients for a rural school remains the same across

all rural schools in the sample. In fact, it is for this reason that the regression
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coefficients are modeled without subscripts. vg;,v1; and vy, are random variations

between schools.

Voj 0 Voj Too To1 To2
E vy | = (0| :var |vy| = |70 711 712
(% 0 (% Too To1 T22
9. . . _
var(g;;) = 6% var(voj) = Too; var(vyj) = Ti1; var(ve;) = Too

cov(gij,v5) =0

Substituting equations (3.3), (3.4) and (3.5) into (3.2) we have
Yij = Yoo + Yo1School Status + ~yp2School Location + vy;

+Age(v10 + 711 School Status + v12S5chool Location + v;;)
+Sex (Y20 + Y21 5choolStatus + va2School Location + vgj) + €5

Which can be simplified into
Yij = Yoo + Yo1Age + vy Sex + yo1.School Status + ~yoa.School Location+

v11.5chool Status x Age + v125chool Location x Age + 721 School Status x Age+
Y22School Location * Sex + vg; + vi;Age + vy;Sex + €5

Notice that the resultant equation has a grand mean, level one and level two
predictors which in some cases are interacting and finally the variance component

which is composed of school level randomness and the pupil level variation.

The model formulated can be represented in matrix form as:
y=XB+Zv+e¢ (3.6)

y is the examination score for each of the pupil in the study. X and Z are n x p and

n X q design matrices respectively which give the relationship between the fixed
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effects and random effects covariates and the observations. 3 is an unknown vector
of fixed effects. v is also an unknown vector of random effects which is normally
distributed with mean and variance-covariance matrix var(v) = G. Finally e is an
unknown n x 1 matrix of random errors which again are assumed to be normally
distributed with mean E(g) = 0 and variance var(e) = R = §?I. The identity

matrix in the variance of the residual is of size n X n.

e ~ N(0,R); where R = 6’1
v~ N(0,G); where G = 6>
The expectation of the formulated model is given by:
E(y) = E(Xp) + E(Zv) + E(¢)
=BE(X)+ ZE(v) + E(¢)
- X8

We note that the variance component in a mixed effects model is composed of
the variance of the subjects as well as the group variance. Assuming that u and
e suffer no multi co-linearity, the covariance matrix associated with the response

variables is given by:

var(y) = var(e) = var(Zv +¢) = ZGZ" + R

The model described this far requires that we satisfy that the data to be applied
satisfy the model. We take a pause in the theory of the model to cover model
selection. The assumptions of the model and estimation of model parameters as

well as tests of hypotheses are covered in subsequent sections.
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3.3.2 Model Selection

In order to select the best model that suits the pupils'score data, iterative models
have been fitted manipulating the variables in the data, making them fixed and
random and assessing their effects when applied on the model defined in equation
(3.17). In all models fitted, Age and Sex of a pupil are considered as fixed effects
variables. The first model (Modell) considers alongside Age and Sex, Location
and School Status as fixed effects predictors. Both possible levels of location (ru-
ral and urban); and both levels of school status (private and public) have been
selected leaving no chance for randomness hence the treatment as fixed effects.
Since Age and Sex are level one variables, an interaction with level two variables
is considered. Schools are treated as random effects as not all the schools in the
county were selected for this study. Inasmuch as school location is a fixed effect in
the model, schools are located either in the rural or urban area and the model has

been fitted with this consideration the Restricted Maximum Likelihood method.

Modell = Ilmer(KCPEScore Age x Location + Age x Status + Sex * Location +
Sex x Status + (Location|School)

where (*) represents full interaction between variables

The second model has dropped the interaction between age and school status and

location so that the fitted model is given by:

Model2 = Imer(KCPEScore Age x Status + Sex x Location + Sex x Status +
(Location|School)

Iteratively the following models have been fitted to increase the range of choices
from which the eventual model is selected.

Model3 = Ilmer(KCPEScore Age+Sex*Location+SexxStatus+(Location|School)
Model4d = Imer(KCPEScore Age+ Sex* Status+ Location+ (Location|School))
Model5 = Ilmer(KCPEScore Age+Sex+Status+ Location+(Location District))
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Model6 = Ilmer(KCPEScore Age + Sex + Status + Location + (1|School)

There are more permutations of models that could be fitted but for the time being
we concentrate on the six and evaluate the best to be selected. It is noted that
there exist several criteria that may be used to select suitable models. One of the
criteria is the R2 which tends to be better as the model grows bigger. In effect
models may end up having too many variables in an effort to maximize R2. The
other criteria is the adjusted R2 whose values decrease with increasing size of the
model. The two are largely used in the standard linear regression models and
caution should be taken to test against model misspecification when using them

as criteria for model selection.

Misspecification tests that include the Regression Specification Error Test (RE-
SET) can be carried out to check for any omission of critical variables or inclusion
of irrelevant variables in the model being tested. Other criteria include the Akaike
Information and Bayesian Information Criteria which offer the relative estimate
of information lost when a given model is used to represent the mathematical
processes and interactions that yield the specified response variable. The crite-
ria examines the goodness of fit of the model in question and balances that with
its complexity. All the models have been fitted using the Restricted Maximum
Likelihood Method. To obtain the AIC, analysis of variance procedure has been
conducted in R comparing all the fitted models. The results from the analysis of

the variance is shown in Table (3.1) below.

The output results include the Akaike Information Criteria (AIC) as well as

Bayesian Information Criteria (BIC) which are computed as:
AIC = —2logLik + 2k

BIC = —2logLik + klog(N)
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Table 3.1: ANOVA Output for Model Comparison

Model | Df AIC BIC LogLik | Deviance | Chisq | ChiDf | Pr(Chisq)
Model6 | 5 | 222619.4 | 222659.3 | -111304.7 | 222609.4 NA NA | NA
modelb | 7 | 222612.5 | 222668.3 | -111299.2 | 222598.5 | 10.9635 2 0.00416
modeld | 8 | 222599.2 | 222662.9 | -111291.6 | 222583.2 | 15.2854 1 9.2424e-05
model3 | 9 | 222449.5 | 222521.2 | -111215.7 | 222431.5 | 4.2566 1 0.03909
model2 | 11 | 222443.3 | 222531.0 | -111210.6 | 222421.3 | 10.2122 2 0.00605
modell | 13 | 222438.0 | 222541.6 | -111206.0 | 222412.0 | 9.3235 2 0.00944

Here k is the number of parameters in the considered model while N is the total
number of observations in the model. Under these definitions, smaller is better.
That is, if we are using AIC to compare two or more models for the same data, we
prefer the model with the lowest AIC, (Pinheiro and Bates, 2000). The Bayesian
criteria employs similar evaluation of smaller is better although its values will
obviously turn out larger than the AIC for large samples. Using Akaike Information
Criteria, modell is selected as it has the lowest value and will be used in subsequent

sections for analysis and discussion.We recall that the model is given by:

Modell = Ilmer(KCPEScore Age x Location + Age x Status + Sex x Location +
Sex x Status + (Location|School)

3.3.3 Parameter Estimation

From the formulation of the mixed model, it is clear that there exist the observed
part of the model and another that are unknown. Y ,X and Z are observed.
B,u,R,and G are unknown. The unknown parameters are estimated in two folds,
the () are estimated using the Best Linear Unbiased Estimator (BLUE) while the

vector of the random effects (v) are estimated using the Best Linear Unbiased

Predictors (BLUP) method. We note that the (/) are fixed parameters and es-
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timation methods can be used absolutely. The (u) on the other hand are not
fixed occurrence and are due to chance. “estimation of a random quantity is often
called prediction to emphasize the fact we are trying to get our hands on something
that is not fixed and immutable, but something whose value arises in a random
fashion,” (Davidian, n.d.) We begin by estimating the variance components. The

results of which are used in estimating the fixed and random effects parameters.

Estimation of Gkelihood method of estimation is used in estimating the
variance components (covariance matrices G and R) of the random ef-
fects parameters. “The maximum likelihood procedure produces biased
estimates of the random parameters because it takes no account of the
sampling variation of the fixed parameters. This may be important in
small samples, and we can produce unbiased estimates by using a mod-
ification known as restricted maximum likelihood (REML),” (Goldstein,

1999) . The method is based on the marginal model.

y=Xp+e* e* = Zv + ¢ such that * ~ N,(0,V); V=7GZ" +R
Assuming that the variance components G and R have some parameter

a, then

V(a) = ZG(a)Z" + R(a)

The marginal log likelihood of the model is thus given by
lr(ay) = fn(/(ﬁ,a)dﬁ)

[ 3ot = [ GV + eapg - XBYV(@) - XA}

But

(y = XB)'V () (y— XB) = X'V (a) ' X3 =24V () ' XB+¢'V(a) Ny
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= (B —B(a)y)' A(a)(8 — B(a)y) +y'V(a) " —y'B(a) A(a) B(a)y
With this, and R

Restricted Maximum Li

—1/2
J a5 = [ e (G () !+ Bla) Al Bla)ln)}dsx

[ enl (5 = By Ata)(s - By}
Here we note that
B(a) = A(a) ' X'V (a)™ and Ala) = X'V(a)'X
We also note that
B = (XVH@)X) XV (@) Ny
= Ala) ' X'V (a)ty
= B(a)y

~1/2 . \n/2
= [.ans = [TOLZ o o-xba) Vi) o-xdanix 20—

iy = L]V (@)| + (v~ XB(0))V (@)™ ~ XB(0))} — £ InlA(0)| + K
We now let
ooy = 5 IV (@)] + (y — X))V @)™y — X ()

Such that
1
L) = Loty — 5InlA(@)| + K (3.7)

The restricted maximum likelihood of « is given by & which maximizes the marginal

log likelihood function in equation (3.7).
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Estimation of 5 and v

Since f3 is the set fixed effects fixed effects parameters and V = ZGZT + R we
make use of the GLS estimation procedure to find the Best Linear Unbiased Es-
timates (BLUE). “The GLS estimator properly takes into account the residual
heteroscedasticity and correlation among residuals,” (Mehttalo, 2013). Assuming
the variance component of the model are uncorrelated with each other, the least

square equation for estimating [ is given by:
b=(XX) ~1)Xy
In the place of standard linear regression where var(e) = 621, we have the variance

of the mixed model given as var()=V. The GLS estimates of beta are given by:

We could also solve equation the array of matrices below to yield the same results.
Here we recall that X is an n x p design matrix with respect to the fixed effects

of the model. Z is also a design matrix for the random effects with dimension n x q.

X'R'X X'R'Z B X'R ™y
ZR'X ZR1'Z+G! v Z'R™ Yy

To show that the GLS estimate of the fixed effects parameters are unbiased,

A

E(B) = B(XTVEVX)TIXTV )
= (XTVIX) ' XTVE(y)
= (XTVIX)TIXTV X
=
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cov(f) = coo((XTVIX) I XTV 1)
= (XTV X)) XTV Deov(y)(XTVIX) T XTV Y
= S[(XTVIX) XTIV X (XTV X))
= [(XTVIX) T IXTV X (XTV X))
= S [(XTVTIX)

Next, we estimate the Best Linear Unbiased Predictor of the random effects pa-

rameter by recalling that
Yy~ No(XB, V), v~ Np(0,G); €~ N,(0,R); and cov(v,e) =0

cov(y,v) = cov(X B + Zv +¢,v)
= cov(XB,v) + Zvar(v,v) + cov(e,v)
=7G

Given these assumptions, we can establish a joint distribution for the two random

variables such that:

Yy Xp vV ZG

~J

n+mgq

v o) \gzr @

The marginal distribution of v is given as

U|y ~ N(:uuh/’ Ey|u>; Huly = Ho + Zuyzy—l(y - /Ly); EZ/|u = 2“92;129u

The expectation of the conditional distribution of v is computed as

E(’U’y) = [ + Zuyz};1<y - #y)

GZ'V ' y—XpB) =0
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3.3.4 Hypothesis Testing

In linear mixed effects models hypotheses can be tested on the significance of the
fitted model as well as on individual parameters. “Asymptotic results on the dis-
tribution of the maximum likelihood estimators and the restricted maximum likeli-
hood estimators are used to derive confidence intervals and hypotheses tests for the
model's parameters.” (Pinheiro and Bates, 2000) “The earliest estimation methods
in the context of mixed-effects models were based on an ANOVA- approach. The
method lead to unique, unbiased estimators for balanced datasets, where there is
an equal number of observations in each group and no missing data.” (Mehttalo,
2013). Because of the unbalanced nature of the pupils score data, the Likelihood
Ratio Test is used to examine the adequacy of the fitted model.

Testing Hypothesis on the Fitted Model

The fitted mode is assessed to establish its adequacy. Likelihood is the probability
of seeing the data you collected given your model. The logic of the likelihood ratio
test is to compare the likelihood of two models with each other. First, the model
without the factor that youre interested in (the null model), then the model with
the factor that youre interested in, (Winter, 2013). To obtain the null model, I
make restrictions on and u of the fitted model such that the mean of the restricted
model is zero and its variance is equal to 2I. The restricted model is then tested

against the fitted model and the hypothesis is given by:

Hy:  the null model is sufficient

H,: the fitted model is significantly better than the null model.

Likelihood Ratio Test statistic used in making the decision on the adequacy of the
fitted model is given by:
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LRT = 2in(Ly/Ly) = 2[In(Ly) — In(Ly)]

Ly and L, are the likelihood functions of null and fitted models respectively. The

likelihood function is given by:

L(y|B,v,6%) = Pr(y|B,v,6°)

1

2\(—n/2
(2m6%)( /)eznp{2—52

Sy - XB)?};, P =Z'GZ+R

The likelihood ratio statistic has a chi square distribution with pq degrees of free-
dom i.e. LRT ~ x*(p—q). The likelihood ratio statistic is compared to the critical
value of the chi square to make a decision either to reject or fail to reject the null
hypothesis. The null hypothesis is rejected if the test statistic value is less than

the critical value read from the chi square distribution.
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Chapter 4

Data Analysis

4.1 Introduction

This chapter presents analysis of the results obtained using the model selected in
chapter three. I have included some data manipulation processes in the chapter to
show how the data that was used in the research project was created. Exploratory
data analysis has been presented to give readers an insight into the data that has
been used in the analysis. Various hypotheses have been tested and their signifi-

cance discussed within the various sections.

4.2 Design of Study

Kenya has a total of forty seven counties. In each of the counties KCPE exami-
nations are administered each year through schools that register candidates. The
data used in this research are extract of 2013 KCPE results. I purposively selected
Homa Bay County being my home county to demonstrate the use of mixed models

in analysis of nested data. All the candidates who registered and sat for 2013 ex-
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amination in the whole county have been considered. All the six districts in Homa
Bay County have been considered in the research. The total number of schools
selected was eight hundred and twenty six (826) being a sub set of all functional

schools and registered examination centres in the county.

4.3 Data Management

I obtained the first dataset from the Kenya National Examination Council (KNEC)
having the index of the pupil; their sex, their year of birth; their examination score
during the 2013 KCPE; and the school from which they sat for their examination.
This completed the pupil level variables. The second data set was obtained from
the Ministry of education Science and Technology (MOEST) detailing the school
name; the status of the school; the accommodation type; the category; the loca-
tion of the school, a unique identifier for each school as well as the district within

which the schools is found. These formed the second level of hierarchy data.
Harmonization of datasets

I carried out merging of the two datasets in Ms Excel making use of INDEX and
MATCH functions. The Ms Excel is one of the most powerful data management
tools that exist on the face of the earth. The flexibility with which it allows users
to create or use existing formulas based on their needs is so incredible. Since the
two data sets had school names, the first step was to merge the two using the

schools.

This was however not as straight forward as it may seem as the characters used
in the schools nomenclature were not necessarily the same so aliases were created.
Manual identification of schools was employed at some point. In addition, some

examination centres are not schools so a decision was made to leave them out of the
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analysis as there would be no corresponding schools characteristics for them. Once
schools were matched, I supplied to each school in the KNEC list the corresponding

unique school code from the MOEST data set for ease of further data management.

4.4 Model Diagnosis

For the mixed effects model to hold, there are couple of assumptions that the data
under research need to meet. Like in the linear model, the linear mixed model ap-

plies similar assumptions of homoscedasticity, linearity, normality, independence.
Homoscedasticity

One graphical summary that should be examined routinely is a plot of the resid-
uals versus the fitted responses from the model. This plot is used to assess the
assumption of constant variance of the ;j, (Pinheiro and Bates, 2000). Figure
4.1 is a plot of the raw residuals plotted against the fitted pupils score showing
decreasing variance with increase in the pupils KCPE scores. Figure 4.2 is a plot
of the standardized pupil level residuals against the fitted values showing a trend
similar to the raw scores. The residuals of the plot in Figure 4.2 are standardized
by computing respective residual for each observation and dividing through by the

standard deviation of the residual.

Figure 4.1 and Figure 4.2 indicate obvious violation of the assumption of ho-
moscedasticity. However, since the estimation of $ was done using the GLS pro-
cedure which took into account possible heteroscedasticity in the variance, this

requirement can certainly be relaxed.
Normality

The random and residual components of the model all together are assumed to
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Figure 4.2: Fitted Model vs Standardized Residuals

be multivariate normally distributed. Figure 4.3 is a plot of the distribution of
the residuals. The histogram to the left of Figure 4.3 suggests normal distribution
which is confirmed by the Normal QQ-plot. The Assumption of normality in the

distribution of the residuals is this sufficiently satisfied.
Linearity

The fitted model is tested for linearity as it is one of the assumptions made. Figure
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Figure 4.3: Distribution of Model Residuals

4.4 satisfies the assumption of normality as there is no indication of a polynomial
trend. The KCPE scores is confirmed to be influenced by a linear combination of

the fixed effects, the random effects and the error term.

Independence

One of the reasons why the mixed model is preferred to the linear model is its
ability to address the non-independence of data. However, caution still needs to
be taken to ensure that all variables picked for modeling are effective in the resul-

tant model and cross check is done for misspecification.
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Figure 4.4: Distribution of Model Residuals
4.5 Exploratory Data Analysis

The study involved 826 schools drawn from the entire county with about 8% pri-
vately owned. The number of pupils considered for the study is 21,595. There
are 9,784 girls accounting for 45.3% of the total sample. In terms of location, the
number of pupils attending schools in urban areas accounted for 12.9% of the total
sample. The Minimum age for the sample is 11 years with a maximum of 36. The
Mean age of the learners is 14.99 years. The theoretical age for all grade eight
pupils in Kenya is 13 years. A test of mean on the distribution of the age of the
sampled pupils shows that there is a significant difference between their true mean

and the expected mean.

During analysis, 210 observations are omitted from the study as the correspond-
ing KCPEScores are missing. The Pupil with the least score KCPEScore in the

sample managed 73 marks, 357 less than the pupil who scored the highest.
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Table 4.1: Summary of Data Variables

Sex Age KCPE Score Status Location
Female: 9,784 | Min. :11.00 Min. : 73.0 | Public :19,876 | Rural:18,812
Male :11,811 1st Qu.:14.00 | 1st Qu.:222.0 | Private: 1,719 | Urban: 2,783
Median :15.00 | Median :258.0
Mean :14.99 Mean :258.7
3rd Qu.:16.00 | 3rd Qu.:296.0
Max. :36.00 Max. :430.0
NA’s :210
Distribution of Age
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Figure 4.5: Distribution of Pupils Ages
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Figure 4.6: Distribution of KCPE Scores

4.6 Results

This section presents the results of the modelling. The study intended to de-
velop an explanatory linear mixed effects model to sufficiently explain the varying
phenomenon on the results of pupils'score in the national examinations. Specific
objectives to the study included establishing the grouping effect of schools on the
variations of pupil scores and to estimate the proportion of variance accounted for
by schools. The model fitted satisfied the assumptions made except the assump-

tion of homoscedasticity of residuals whose correction has been handled.

4.6.1 Model Adequacy

As noted in chapter three, the adequacy of a linear mixed effect model is estab-
lished by a likelihood ratio test. The fitted model is compared to a null model

whose parameters are all restricted. The R output for the likelihood ratio test is
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given in Table 4.We recall that the hypotheses tested for model adequacy here are:

Hy: Null model is sufficient
H,: Fitted model is significantly better than null model

Table 4.2: Likelihood Ratio Test Output
Model Df | LogLik Df | Chisq | Pr(;Chisq)

Null Model | 3 |-112,348.98 | NA NA NA
Full Model | 13 | -111,196.87 | 10 | 2,304.21 | O

From the results, the LRT test statistic is significant with a value of 2304.21. I
reject the null hypothesis and conclude that the full model is better than the null

model.

4.6.2 Model Results And Inference

Linear mixed model fit by REML [lmerMod’]

Formula: KCPEScore Age * Location + Age * Status + Sex * Location + Status
* Sex 4+ (Location—School)

REML criterion at convergence: 222,393.7

The output given by running the model is broken into sections. The first part of
the output recalls what business went on in the model fitting. It shows that the
model is of the Linear Mixed Model and was fitted using the Restricted Maximum
Likelihood method. Since the data was run in R, the output further indicates
that the fitting was made possible by the lmer function from the Ime4 package.
The formula (model) that has been fitted is printed out output of the model is a

confirmation that the model was fitted using the Linear Mixed Effects Regression
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(LMER/lmer) and the formula fitted is given alongside.
Randon Effects

The grouping effects of schools is quite visible as schools account for about 30% of
the variations in the pupils scores. This is given by the inter-class-correlation. In

the case of Fixed Effects

Table 4.3: Random Effects Estimates

Groups Name Variance | Std.Dev. | Correlation
School (Intercept) 778 27.89

Location:Urban | 590.1 24.29 |-0.49
Residual 1,753.8 41.88

Table 4.4 gives the fixed effects estimates of the fitted model based on the R

Table 4.4: Fixed Effects Estimates

Effect Estimate | Standard Error | t value
(Intercept) 352.4157 3.1825 110.74
Age -7.2955 0.199 -36.65
LocationUrban 36.0963 9.4435 3.82
StatusPrivate 41.2511 11.593 3.56
SexMale 16.7453 0.6549 25.57
Age:LocationUrban -1.7861 0.5926 -3.01
Age:StatusPrivate 0.5265 0.7658 0.69
LocationUrban:SexMale | -4.2269 1.7589 -2.4
StatusPrivate:SexMale -3.2869 2.2117 -1.49

output. The output does not display the p-values corresponding to the estimates.

However since the sample is large, the t-distribution follows a normal distribution
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and the t-values cab be directly compared to the 1.96 from the normal distribution
at («=0.05) confidence. With this in mind we note that interaction between school
status and pupils age as well as the interaction between school status and pupils
sex are not significant as their corresponding t-values are lower than the critical

value of 1.96.

i. The grand mean is 352.42 implying that if all the explanatory variables are
controlled, a pupil would score 352.42.

ii. A unit increment in the age of a pupil in urban location causes a decrease in

the KCPEScore by 1.79.
iii. A male pupil in urban location scores 3.2 marks less
iv. A unit increment in age in private school increases the KCPE Score by 0.53

Since the interactions are significant the main effects of the model are not inter-

preted much as R provides them as outputs.
Correlation of Fixed Effects

The final section of the output provides a correlation matrix that highlights the
correlation between fixed effects variables of the fitted model. The coefficients in
the matrix are quite low in all cases pointing to independence of the explanatory

variables (absence of multicollinearity).
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Table 4.5: Correlation of Fixed Effects

(Intr)  Age LetnUr SttsPr SexMal Ag:LcU  Ag:StP LeU:SM

Age -0.932

LocatinUrbn  -0.295 0.282

StatusPrivt -0.223  0.211  -0.096

SexMale -0.024 -0.096  0.004 0

Ag:LetnUrbn - 0.282  -0.305 -0.921  0.069  0.032

Ag:SttsPrvt 0.2 -0.215 0.065 -0.946 0.024  -0.067

LetnUrbn:SM - 0.005  0.034  -0.027  0.02  -0.327  -0.076  -0.008
SttsPrvt:SM  0.001  0.026 0.02  -0.015 -0.226  -0.009 -0.089 -0.119

4.6.3 Plots of KCPE Performance by Selected Variables
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Figure 4.7: Performance by Sex
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4.7 Discussion

It is quite evident from the results of the model that the variations in the exami-
nations are not entirely due to individual difference in capability. There are other
factors that influence the variation which are the random systemic occurrences.
This study has established that 30% of the total variation is due to the schools
group effect. With a correlation of -0.49, the inclusion of the random effects in
the model is justified and upheld. This study thus makes comparison with the
findings of (Gustafsson, 2007). Using hierarchical modeling, he established that
the structure of historically disadvantaged schools was a major reason accounting

for the variation between schools.

In the Kenyan case this may just be the reason. The education system over the
years has treated schools in a similar manner. There is a systemic marginaliza-
tion of some schools while others are made to thrive. Schools that have had their
management close to perceived political power have been rewarded with better
infrastructure; better financial resources; and other human inputs that facilitate
learning. In the South African case, (Gustaffson, 2007) implores the Government
to increase funding to schools that were traditionally neglected by the adminis-
trations that presided over the country during and after the apartheid ages. In a
similar fashion, Kenya has a chance of correcting the historical bias and work to-
wards improving the entire education system. Schools that are already performing
well should be sustained to continue performing well. Schools with systemic weak-
nesses should be supported more to ensure that they catch up with the schools

that perform well. This will see the system achieve joint common gains.
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Chapter 5

Conclusions and

Recommendations

5.1 Introduction

This chapter closes the study with a summary of the findings of the research as

well as recommendations that will further the objectives of this study.

5.2 Conclusions

The study has established in line with the aim that schools account for significant
proportion of the variations observed in pupils scores. Schools have been estab-
lished to account for 30% of the variation. The pupils account for about 45% of
the variation. This shows that over half of the disparities observed in assessments
can be addressed through systemic adjustments. Gender disparity has come out
very strongly. Rural schools perform relatively lower than urban schools. Private

schools perform relatively better than public schools.
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5.3 Recommendations

The model that was used in the study was a two level model. With the findings
that have been made, there is a strong possibility that higher level hierarchies could
still account for more proportions of the variations. With the County Governments
having been operationalized, this could be an impetus to call them to action in
improving education in counties that may be found wanting. I recommend that
more study be carried to establish whether there are other factors explaining the
variations. In addition to the higher level hierarchies, there is need to look at the
cause of within schools variation beyond the age and the sex of pupils. Household
characteristics may be big influence of the scores and may need to find themselves

in the list of variables.

My final recommendation is the adoption of this procedure in the analysis of
assessments such that beyond the subjects/pupils, the effect of their environment
may be taken into just consideration. This way it there will be a rational attempt

to apply equalizers when there are known causes of inequality.
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Appendices

Data Management in MS Excel

Font Allgrment Humber Styles
© 0 X e sIRE200s£2005,72025,INDEX| School_Codes!SC$2:5C5832 MATCH(£2030,School_Codes!$A$2:545832,0) |
B C D E ; G H

06011 F 2002 202 AYUYU PRI, 243011021 HOMA BAY

106012 M 1996 202 AYUYU PRI, 243011021 HOMA BAY

106012 M 1997 192 AYUYU PRI, 243011021 HOMA BAY

106014 M 1996 201 AYUYU PRI, 243011021 HOMA BAY

06015 F 2000 142 AYUYU PRI, 203011021 HOMA BAY

106016 M 1998 195 AYUYU PRI. 243011021 HOMA BAY

B16001 M 1998 249 BALA 243041016 RACHUONYO NORTH
B16002 F 1999 207 BALA 243041016 RACHUONYO NORTH
316003 M 1999 318 BALA 243041016 RACHUONYO NORTH
B16004 F 2000 322(BALA | 243041016|RACHUONYO NORTH
116005 M 1998 300[ BALA |=IF(E2030=E|RACHUONYO NORTH
116006 M 1999 247 BALA 243041016 RACHUONYO NORTH
B1&00T E 2000 210 BALA TAEMIONE BACHIIOEN T BICETH

Figure 5.1: Assigning Pupils A School Unique Code
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Figure 5.2: Assigning School Attributes to Pupils
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Appendix 2: R-Codes

Loading Data

kepe=read.csv(” Pupils Scores.csv”)

kepe.subLocation = factor(kcepe.subLocation,levels=c(1,2),labels=c(” Rural”,” Urban”))
kepe.subStatus = factor(kepe.subStatus,levels=c(1,2),labels=c(” Public”,” Private”))
kepe.subSex = factor(kepe.subSex,levels=c(”1”,’2’),labels=c(” Female”,” Male”))
kepe.subSchool = factor(kepe.subSchool)

attach(kcpe.sub)

library(plyr);library(doBy);library (nlme);library (R2wd)

Models Fitting

modell=Imer(KCPEScore Age*Location+Age*Status+Sex*Location+Status*Sex+ (Location—Sch
model2=Imer(KCPEScore Age*Status+Sex*Location+Status*Sex+(Location—School))
model3=Imer(KCPEScore Age+Sex*Location+Status*Sex+(Location—School))

(

(
modeld=Imer(KCPEScore Age+Status*Sex+(Location—School))
model5=Ilmer(KCPEScore Age+Sex+Location+Status+(Location—School))
(

model6=Imer(KCPEScore Age+Sex+Location+Status+(1—School))

Model selection

anova(modell,model2,model3,model4,model5,model6)

Posting Results Direct to MS Word using R2wd package
wdGet/()
wdTable(anova(modell,model2,model3,model4,model5,model6))

Model Diagnosis Homoscedasticity
par(mfrow=c(1,2))
plot(modell,type=c(”p”,”smooth” ), main="Raw
Resuduals” xlab="Fitted” ylab="Residuals”)

plot(modell,sqrt(abs(resid(.))) fitted(.), type=c(”p”,”smooth”))
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plot(fitted(modell),residuals(modell),main="Standardized Residuals” ;xlab="Fitted” ,ylab="Resid

Normaity test

par(mfrow=c(1,2))

hist(residuals(modell),main="Residuals Distribution” xlab="Model Residuals”)
qqnorm(residuals(modell),main="Normal QQ-Plot” abline(a=0,b=0))

par(mfrow=c(1,1))

Model adequacy: creation of a null model
null=lmer(KCPEScore 14(1—School))
summary(null)

anova(null,modell)

Likelihood Ratio Test
library(lmtest)
Irtest(null,modell)

Exploratory data analysis
Summary=ddply(kcpe.sub,c(” Location”,” Status” ) ,summarize, Pupils=length(School),
Boys=round(mean(KCPEScore[Sex=="Male”],na.rm=T),digits=2), Girls=round(mean(KCPESco

wdTable(Summary) Test on means of Age

t.test(Age,mu=13)

hist(Age, breaks=25 main="Distribution of Age” col="sky blue”);

hist(KCPEScore, breaks=20, col="cornflowerblue”, xlab="KCPEScore”, main="Histogram
of KCPE Scores”)

Boxplots

plot(KCPEScore Sex)
plot(KCPEScore Location)
plot(KCPEScore Status)
boxplot(KCPEScore Status+Sex)
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boxplot(KCPEScore Sex+Status)
boxplot(KCPEScore Location+Sex)
boxplot(KCPEScore Location+Status)
boxplot(KCPEScore Status+Location)

summary of the fitted model Random and Fixed Effects Estimates
summary(modell)

wdTable(modell)

print(ve = VarCorr(modell), comp = ¢(” Variance”,” Std.Dev.”))
fixef(modell)

Schools Random Intercepts and Slopes
ranef(modell)

coef(modell)

Predictive power of the model
iqrvec = sapply(simulate(modell,3000),IQR)
obsval=IQR(KCPEScore,na.rm=T)
post.pred.p=mean(obsval>=c(obsval,iqrvec))

post.pred.p
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