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Abstract

This project studies rational curves and their enumeration. First, we show that there are

a finite number of rational curves of degree d passing through 3d − 1 general points in

the complex projective plane. Finally, we derive the Kontsevich formula which provides

a recursive relation for computing this number of rational curves.
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Chapter 1

Introduction

Enumerative geometry as a branch of algebraic geometry is mainly concerned with count-

ing curves in varieties satisfying some given conditions. The only requirement is that

enough conditions are given to achieve a finite count. These conditions include specifying

the genus, degree and intersections.

Enumerative problems have long history with many problems posed by the ancient Greeks.

For example, the simplest enumerative question is: how many lines are there in the com-

plex projective plane P2 passing through two given distinct points? The answer was given

by Euclid as 1. Another old problem also posed by Apollonius [Lei13] thousands of years

ago is: how many circles exist that are tangent to a set of three given circles? The answer

is 8 and many proofs have been given to this fact.

The curve C is topologically a sphere with handles on it. The number of such handles is

known as genus, denoted by g. It can be shown [Har77] that the only curve of genus 0 is

the projective line P1. This curve is topologically a sphere with no handles on it and is

called a rational curve.

This project aims at studying the enumeration of rational curves on the projective plane.

That is, we seek the answer to the enumerative problem seeks the answer to the question:

how many rational curves of degree d pass through 3d− 1 general points on the complex

projective plane P2. We also derive the Kontsevich’s formula for counting rational curves.

Notice that we consider 3d − 1 general points since it is the right number to obtain a

finite number to this enumeration problem. In particular, we have a unique line passing

through 2 general points on a plane.
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Figure 1.1: 2 general points on a plane

We also have infinitely many lines passing through a general point on a plane.

Figure 1.2: 1 general point on a plane

In addition, we have no line passing through 3 general points on a plane.

Figure 1.3: 3 general points on a plane

We denote such a number by N(d). Thus N(1) = 1 by Euclid. Apollonius (262BC-190BC)

showed there is a unique conic through 5 general points, so N(2) = 1. Studies on enumer-

ation of rational curves in P2 has been essential in the study of Gromov-Witten theory

and Quantam Cohomology in algebraic geometry [Pag10]. Following [Zin10], we explain

the concept of enumerative geometry and give the introductory formula for the number

N(d) of plane degree d−rational curves passing through 3d − 1 points, counting stable

maps.

The outline of the project is as follows:

Chapter 2: This chapter gives a brief introduction to complex projective spaces and

fundamental understanding of varieties and curves.

Chapter 3: Chapter 3 provides a background of this study and specifically discusses the

enumerative algebraic geometry of conics.

2



Chapter 4: Here, we introduce the concept of the moduli space of rational curves with n

marked points and their compactificaton. We also study the intersection theory on these

moduli spaces.

Chapter 5: Finally, we introduce the concept of moduli space of stable maps and derive

the Kontsevich formula that gives the answer to the research question: how many rational

curves of degree d pass through 3d− 1 general points on the complex projective plane P2.

3



Chapter 2

General Preliminaries

This chapter gives an introduction to algebraic varieties in the projective space. In par-

ticular, we discuss curves in the complex projective plane.

2.1 Complex projective spaces

Fix a vector space V over a field k, the associated projective space P(V ) is the set of

one-dimensional subspaces of V.

Definition 2.1.1. The complex projective Space Pn of dimension n is the set of

1-dimensional subspaces of Cn+1.

Thus Pn denotes the set of lines through the origin in Cn+1 [Got04]. We equivalently say

Pn = (Cn+1\{0})/ ∼

where (z0, . . . , zn) ∼ (λz0, . . . , λzn) if λ ∈ C∗. The space is a smooth 2n-manifold. Let

Ui = {[z0, . . . , zn] ∈ Pn : zi 6= 0} and,

φi : Cn → Ui, where φ(w1, . . . , wn) = [w1, . . . , wi−1, 1, wi+1, . . . , wn]. The set {(Ui, φi,Cn)}
is the standard atlas for Pn. For i < j, corresponding overlap is given by

φij : {(w1, . . . , wn) ∈ Cn : wn+1 6= 0} → {(w1, . . . , wn) ∈ Cn : wj 6= 0}

(w1, . . . , wn)→
( w1

wi+1

, . . . ,
wi
wi+1

,
wi+2

wi+1

, . . . ,
wj
wi+1

, w−1i+1,
wj+1

wi+1

. . . ,
wn
wi+1

)
.

The map φij is holomorphic and so is its inverse.

When n = 1, P1 = P(C2), is called the complex projective line, and when n = 2, P2 =

P(C3), is called the complex projective plane.
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2.2 Projective varieties

If g ∈ C[x0 . . . xn] is homogenous of degree d, then for all λ ∈ C,

g(λa0, . . . , λan) = λdg(a0, . . . , an)

.

Let I ⊂ C[x0 . . . xn] be a set of homogenous polynomials. The projective zero set or

vanishing set of I is given as:

V(I) =
{
p = (a0, a1, . . . an) ∈ Pn : f(p) = 0 for all f ∈ I}

Definition 2.2.1. A subset of the form V(I) is a projective algebraic set.

Definition 2.2.2. A reduced projective algebraic set is called a projective variety or

simply a variety.

An open subset of a projective algebraic set is called a quasiaffine variety and we simply

call it a variety.

Example 2.2.3. The algebraic set V(xy)⊂ P2 is a reducible projective variety, since it is

reducible into other components, V(x) and V(y) in P2.

Remark : If V and W are projective varieties then so is V ∪W.

2.3 Curves in P2

From the definition of vanishing set of I, V(I)= {p ∈ Pn: f(p) = 0 for all f ∈ I}. I is a

set of polynomials say I= {f1 . . . fr}, we then have that

V(f1 . . . fr) = V(I).

We recall that P2 is the set of 1−dimensional subspaces of C3. Let us look at the definition

of curve C in P2.

Definition 2.3.1. Let f ∈ C [x : y : z] be a non-constant homogenous polynomial. The

projective curve C is defined by

C := {[x : y : z] ∈ P2 : f(x, y, z) = 0}. (2.1)

5



Example 2.3.2. Let f ∈ C [x, y, z], we define f(x, y, z)= x2 +y2−z2. The curve defined

by x2 + y2 = z2 is a projective curve in P2.

If we define the affine curve C by:

C := {(x, y, ) ∈ C2 : h(x, y, ) = 0}, (2.2)

for h ∈ C [x, y].

and define the projective curve, C̄ by

C̄ := {[x, y, z] ∈ P2 : f(x, y, z) = 0} with f homogenous. (2.3)

We then view C̄ as a compactification of the affine curve C.

Definition 2.3.3. The degree of a projective curve C in P2 defined by a homogenous

polynomial f ∈ C[x, y, z], is the degree d of f.

In this case if I is defined by a single polynomial f of degree d, d > 0, then V(f) is called

a hypersurface defined by f. A hypersurface of degree 1 is called a hyperplane.

Example 2.3.4. Let I ⊂ C [x,y,z] with I = {f1, f2, f3}, fi homogenous for all i=1,2,3.

Let f1 = x2yz + 2zy2x and f2 = 3x− 4y + 5z.

Now V(f1)=V(x2yz + 2zy2x) is a hypersurface defined by f1. V(f2)=V(3x− 4y + 5z) is

a hyperplane since f2 has degree 1.

Definition 2.3.5. The curve C is called irreducible if f ∈ C[x, y, z] is irreducible, that

is, f has no constant polynomial factors other than scalar multiples of itself.

Using the numerical invariant degree, we call a curve of degree 2 in P2 a conic and a

curve of degree 3 in P2 a cubic.

Example 2.3.6. The curve defined by ax2 + by2 + cz2 + dxy + exz + fyz = 0 where

a, b, c, d, e, f ∈ C, and are not all zeros is a conic.

Example 2.3.7. The curve defined by ax3 + by3 + cz3 + dx2z + ex2z + fy2z + gxyz = 0

where a, b, c, d, e, f, g ∈ C, and are not all zeros is a cubic.

The following definitions are given in [Har77].

6



Definition 2.3.8. Let Y ⊆ Pn be a variety. A function f : Y → C is regular at a point

P ∈ Y if there is an open neighborhood U with P ∈ U ⊆ Y, and homogenous polynomials

g, h ∈ S = C[x0, . . . , xn], of the same degree, such that h is nowhere zero on U, and

f = g/h on U. f is regular on Y if it is regular at every point of Y.

Definition 2.3.9. Let X and Y be two varieties, a morphism ϕ : X → Y is a continuous

map such that for every open set V ⊆ Y, and for every regular function f : V → C, the

function f ◦ ϕ : ϕ−1(V )→ C is regular.

Definition 2.3.10. An isomorphism ϕ : X → Y of two varieties is a morphism which

admits an inverse morphism ψY → X with ψ ◦ ϕ = Ix and ϕ ◦ ψ = Iy.

Definition 2.3.11. A rational map ϕ : X → Y is an equivalence class of pairs 〈U,ϕU〉
where U is a nonempty open subset of X,ϕU is a morphism of U to Y, and where 〈U,ϕU〉
and 〈V, ϕV 〉 are equivalent if ϕU and ϕV agree on U ∩ V.

Lemma 2.3.12. If f : P1 → Pn is a holomorphic map, there exists homogenous poly-

nomials p0, . . . , pn in two variables such that p0, . . . , pn are of the same degree, have no

factor and

f([z0, z1]) = [p0(z0, z1) . . . , pn(z0, z1)] for all [z0, zn] ∈ P1. (2.4)

Conversely, if p0, . . . , pn are homogenous polynomials in two variables that are of the same

degree and have no common factor, the map f : P1 → Pn given by 2.4 is well-defined and

holomorphic.

2.4 Bezout’s Theorem

Consider two projective curves in P2, say C and D, which intersect transversely. We

determine the number of points of their intersections. The theorem of Bezout gives the

number of intersections between such two curves C and D.

Theorem 2.4.1 (Bezout’s Theorem, [Kir92]). If C and D are two projective curves of

degree n and m in P2 which have no common component then they have precisely nm

points of intersection counting multiplicity.

Let C be a curve in P2 and f ∈ C[x, y, z]. A point P ∈ C is called a singular point or

singularity of C if

7



∂f

∂x
(P ) =

∂f

∂y
(P ) =

∂f

∂z
(P ) = 0. (2.5)

The set of singular points is denoted by sing(C).

Definition 2.4.2. The curve C is called a non-singular or a smooth curve if sing(C)

= ∅. Otherwise the curve C is called a singular curve.

Example 2.4.3. The curve C:= (x, y, z) : x2 + y2 + z2 = 1 is a non-singular curve.Let

f = x2 + y2 + z2 − 1. We check if there exists a point P = (x, y, z) ∈ C such that 2.5 is

satisfied.

We have ∂f
∂x

= 2x, ∂f
∂y

= 2y, ∂f
∂z

= 2z. Thus ∂f
∂x

= ∂f
∂y

= ∂f
∂z

= 0 ⇒ 2x = 2y = 2z = 0 ⇒
x = y = z = 0. The point P = (0, 0, 0) /∈ C hence the curve C is non-singular.

Definition 2.4.4. A node is a singularity on the curve which is locally complex-analytically

isomorphic to a neighborhood of the origin in the zero locus xy = 0 ⊂ C2. A nodal curve

is a curve such that every one of its points is either smooth or a node.

2.5 Degree-genus formula

The subsets of a curve C:= {[x, y, z] ∈ P2 : f(x, y, z) = 0} with f homogenous, have

standard topology. Thus it is possible to investigate non-singular projective curves from

the topological point of view.

A non-singular projective curve in P2 is topologically a sphere with g handles. This

number g is called genus of a curve.

g = 0 g = 1 g = 2

Figure 2.1: Smooth curves of genus g = 0, 1 and 2.

The relationship between the genus g of a curve and its degree d follows from the degree-

genus formula, see for example [Kir92].

g =
1

2
(d− 1)(d− 2). (2.6)

8



Remark : We observe that curves of degree 1 and 2 are of genus zero.

For the case of singular curves in P2, to each singular point pi, there can be assigned a

positive integer δ(pi) such that equation 2.7 holds, for pi,∀ i = 1 . . . r are singular points

[Kir92].

g =
1

2
(d− 1)(d− 2)−

r∑
j=1

δ(pi). (2.7)

There is only one curve of genus 0, upto isomorphism.

Definition 2.5.1. A curve of genus 0 is called a rational curve.

9



Chapter 3

Solving Enumerative Problems

This project aims at studying the enumeration of rational curves on the projective plane.

Namely complex plane curves of genus 0. A plane conic curve in C2 is the set of points

(x, y) ∈ C2 satisfying the equation

ax2 + bxy + cy2 + dx+ ey + f = 0

with coefficients not all zero [BKT08]. An example of plane rational curve is plane conic

with familiar examples such as circles, ellipses, parabolas and hyperbolas.

A conic is said to be nondegenerate if the conic is irreducible. Otherwise a conic is said

to be degenerate if the polynomial defining the conic factors into a product of linear

polynomials. Such a conic is a union of two lines. If the polynomial defining the curve

is a square of a linear polynomial, then the conic is thought of as a double line. These

Figure 3.1: An example of a degenerate conic (left) and double line (right).

10



double lines play key role in counting problems involving conics.

To motivate our study, we will consider Jacob Steiner problem of 1848,: Given five conics

in the plane, are there any conics that are tangent to the five conics? If so, how many are

they? Steiner’s original answer to his problem, 1776, was incorrect. This is because he

assumed that the intersection of five subsets corresponding to the five given conics was

finite. The correct answer was given in 1859 by de Jonquieres and later Michel Chasles

developed a method which determines the number of such conics as 3264.

Any conic is determined the coefficients a, b, c, d, e and f of its defining equation ax2 +

bxy + cy2 + dx+ ey + f = 0 but not so uniquely. For example, the equations y − x2 = 0

and 4y − 4x2 = 0 describes the same curve. If a point (a, b, c, d, e, f) represents the conic

so does (λa, λb, λc, λd, λe, λf). The lines in R6 form a 5− dimensional projective space,

CP5 and so the parameter space for conics is CP5.

3.1 Motivation

We introduce a basic counting strategy to count the conics passing through some fixed

points and tangent to some fixed lines or conics. For each point p we form the subset

Hp ⊂ CP5 of conics passing through the point, for each line l we form the subset Hl ⊂ CP5

of conics tangent to l, and for each given nondegenerate conic Q we form the subset HQ

of conics tangent to Q. Points of intersection of all these subsets corresponds to the conics

that pass through all the points and are tangent to all the lines and conics. The three

hypersurfaces Hp, Hl and HQ are projective algebraic varieties.

For example, any conic passing through p(2, 3) must satisfy

4a+ 6b+ 9c+ 2d+ 3e+ f = 0

a linear condition. So the set of points Hp is a hyperplane in CP5.

Similarly, consider a conic tangent to a given line L : y = Mx + C, for example the line

y = 0. The point of intersection have the form (x, 0), where

ax2 + dx+ f = 0. (3.1)

When the discriminant d2−4af = 0 the equation 3.1 has a double root and the line y = 0

is tangent to the conic. So Hl is a hypersurface in CP5. defined by a degree 2 equation.

11



Lines l 0 1 2 3 4 5

Points p 5 4 3 2 1 0

Conic solutions 1 2 4 ? ? ?

Table 3.1: Number of conics passing through l lines and p points.

Definition 3.1.1. The hypersurfaces X1, . . . , Xn intersect transversely at a point p ∈
X1 ∩ . . . ∩Xn when their tangent spaces at p intersect in the point p only.

Counting in the projective space is given by Bezout’s theorem.

Theorem 3.1.2. If n hypersurfaces of degrees d1, d2, . . . , dn in Pn intersect transversally,

then the intersection consists of d1 · d2 · · · dn points.

For the case of counting curves passing through five points, there is a bijection between

the conics and the points in the intersection of five hypersufaces Hp of degree 1. Thus in

this case, the five hyperplanes intersect in 15 = 1 point by Bezout’s theorem. Thus there

is a unique conic passing through 5 general points in P2. Again by Bezout’s theorem, the

number of conics which pass through four given points and are tangent to a given line is

given by 14 · 2 = 2 points. Thus we are intersecting four degree 1 hypersurfaces Hp and

one degree 2 hypersurface Hl.

For the case of three points and two lines, the number of intersections will be 13 · 22 = 4.

For the last three cases, the corresponding hypersurfaces cannot intersect transversally

and it involves the double line conics. The only nonreduced conics are the double line

conics. We have infinitely double line conics as solutions to this problem.

However, considering the conics passing through one point and tangent to four lines, we

have finite number of reduced conics passing through the point and tangent to the four

given lines. We would like to ignore the double line solutions and count the number of

reduced conics passing through p and are tangent to 5− p given lines.

3.2 Duality in P2

We use duality in P2 to remove the double lines from our count. Duality allows exchange of

lines and points and also transformation of conics into conics. The dual projective plane,

denoted P̌2, is just another copy of P2. Consider the set of all lines in P2 defined by the

12



linear equation L : AX+BY +CZ = 0. The line can be represented by a point [A : B : C]

in a projective plane. Thus the set of lines in P2 is called the dual projective plane.

By definition, a line L in P2 corresponds to a point in P̌2, which we call Ľ (‘L dual’).

Geometrically duality associates lines in P̌2, to points in P2 and vice versa.

Figure 3.2: Four lines through one point (left) and the their duals (right).

Next we see what duality does to conics. If Q is a conic in P2, we define the dual curve

Q̌ in P̌2 to be the collection of all lines tangent to Q. This means that Q̌, will contain a

point Ľ if and only if the corresponding line L was a tangent to Q. If a line L1 is tangent

to a nondegenerate conic Q, then by definition Ľ1 is a point on Q̌. If p is a point Q, then

the line p̌ must be tangent to the dual conic Q̌ at a unique point.

For instance, if Q is the conic x2 − yz = 0 then a line Ax+By +Cz = 0 with A 6= 0 will

intersect Q where

A2x2 − A2yz = 0 and Ax = −(By + Cz).

Therefore, B2y2 + (2BC−A2)yz+C2z2 = 0. The line is a tangent when the discriminant

A2(A2 − 4BC) vanishes.

If we have five lines in the plane, then any non-degenerate conic tangent to them will have

a dual conic passing through the five dual points. There is only one such dual conic, thus

we only have one conic tangent to all five lines. We have 2 conics tangent to four lines

and passing through a point in general position. Finally, there are 4 conics tangent to 3

lines and passing through a pair of points in general position.
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Lines l 0 1 2 3 4 5

Points p 5 4 3 2 1 0

Conic solutions 1 2 4 4 2 1

Table 3.2: Complete table for number of conics passing through l lines and p points.

3.3 Steiner’s problem

We now turn to solve the Steiner’s problem: ‘How many conics are tangent to five given

conics?’ According to Bezout’s theorem, the intersection consists of 65 = 7776 points, the

answer Steiner gave. The intersection of five hypersurfaces HQ in P5 contains the set of

double lines. Duality cannot be used to filter out double lines conics, and here we use the

blow up.

Definition 3.3.1. The set of all points in P5 corresponding to double lines is called the

Veronese surface, V.

The lines in P2 are parametrized by P̌2, so the Veronese is 2−dimensional surface. It is

the image of the injective map from P̌2 into P5;

[A : B : C] 7→ [A2 : 2AB : B2 : 2AC : 2BC : C2].

Consider the map defined as δ : P5 → P5, which sends a conic to its dual. This map is

defined by polynomials and it is called a rational map. We take the Veronese surface

out of P5 and replace it with a four dimensional variety by looking at the graph of δ in

P5 × P5 and closing it up.

Definition 3.3.2. The blow up of P5 along the Veronese surface, denoted as BlV P5 is

the closure of the graph of δ in P5×P5 and closing it up. The blowing down morphism

π : BlV P5 → P5 is given by projection onto the first factor.

In construction of the blow up we have taken the Veronese out of P5 and replace it with

a two dimensional larger, a four dimensional hypersurface. The hypersurface is called

exceptional divisor of the blow up, which we denote as E. The name ‘blowing up of

the Veronese’ can be thought of as inserting a soda straw˝ in a bubble of air to stretch

it out into a four-dimensional object.

Consider a hypersurface Y in P5 that contains the exceptional divisor. If we remove V
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from Y, and consider the image π−1(Y/V ). This will be isomorphic to Y/V. Taking the

closure π−1(Y/V ) we get a hypersurface intersecting E but does not contain it, called

strict transform of Y, denoted Ỹ . To solve Steiner’s problem, we will intersect the

transforms of the hyperplanes in P5.

3.3.1 The Chow ring

The Chow ring is a ring that describes how its subvariaties intersect. The elements of

the Chow ring are classes of subvarieties having the same intersection properties. For the

case of P5, Bezout’s theorem says that given the degree of a hypersurface we can be able

to determine its intersection properties. These hyperplanes will be in a particular class,

which we denote as [H]. Addition operation in Chow ring corresponds to the union of two

varieties while multiplication corresponds to the intersection of the varieties.

For example, two conics meet in 4 points. We see this in [EH11] as shown in figure 3.3.

A B

A′1

A′2

B′1

B′2

Figure 3.3: Intersection of two conics.

[A] = [A′1] + [A′2] and [B] = [B′1] + [B′2].

So [A][B] =
∑

i,j[A
′
i][B

′
j] = [4 points].

Any degree d hypersurface in P5 will be in the class d[H]. Intersecting five hypersurfaces

of the general degree corresponds in the Chow ring to the multiplication

d1[H] · d2[H] · d3[H] · d5[H] · d5[H]· = d1 · d2 · d3 · d4 · d5[H]5

representing d1 · d2 · d3 · d4 · d5 points.
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Let Y be a hypersurface of degree d in P5, then [π−1(Y )] = d[H̃]. If H is a hyperplane in

P5 that does not contain the Veronese, then the strict transform H̃ is equal to its inverse

image π−1(H). Let Y be a general degree d hypersurface in P5 containing the Veronese.

Then [π−1(Y )] = Ỹ + n[E] for some n, hence we have

Ỹ = d[H̃]− n[E]

We now find the strict transforms which we need to solve our enumerative problem.

There are many double line conics passing through a point p so the hyperplane Hp of

conics through p does not contain the Veronese. Thus [H̃p] = [H̃].

The hypersurface Hl of conics tangent to l has degree 2 and its first partial derivatives do

not vanish along V. So

[H̃l] = 2[H̃]− [E].

The hypersurface HQ of conics tangent to Q has degree 6 and its second partial derivatives

do not vanish along V. So

[H̃Q] = 6[H̃]− 2[E].

3.3.2 Counting curves

We now compute the answer to Steiner’s problem by intersecting the transforms in the

blow up. We already have the following equations:

[H̃p] = [H̃] (3.2)

[H̃l] = 2[H̃]− [E] (3.3)

[H̃Q] = 6[H̃]− 2[E] (3.4)

From earlier calculations involving conics passing through general points and tangent to

the given lines, we learn that in the Chow ring of the blow up,

[H̃p]
5 = [H̃l]

5 = 1.

[H̃p]
4[H̃l] = [H̃p][H̃l]

4 = 2.

[H̃p]
3[H̃l]

2 = [H̃p]
2[H̃l]

3 = 4.
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We have that

[H̃Q] = 6[H̃]− 2[E] = 2[H̃p] + 2[H̃l]

We now compute the answer to Steiner’s original problem, ‘How many conics are tangent

to five given conics?’

[H̃Q]5 = (2[H̃p] + 2[H̃l])
5

Expanding this we get

[H̃Q]5 = 32([H̃p]
5 + 5[H̃p]

4[H̃l] + 10[H̃p]
3[H̃l]

2 + 10[H̃p]
2[H̃l]

3 + 5[H̃p]
4[H̃l] + [H̃l]

5)

= 32(1 + 5(2) + 10(4) + 10(4) + 10(4) + 5(2) + 1)

= 3264.

Thus there are 3264 conics that are tangent to five given conics.
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Chapter 4

Moduli Space of Rational Curves

In this chapter we discuss Moduli Spaces and their compactification.

4.1 Introduction to moduli space

A moduli space is a geometric object which ‘counts’ the equivalence classes of geometric

objects given some kind of equivalence. Thus if we have n-ordered marked points on

a rational curve P1, we view the moduli space as parametrising the n-points on P1 up

to projective equivalence. We then say that moduli space is the ‘answer’ to the moduli

problem, i.e the problem of finding a parameter space of some objects up to some kind of

equivalence. We want to particularly have a bijection between the moduli space and the

objects under consideration.

Example 4.1.1. We can classify all circles in R2 up to equality (i.e circles are equivalent

if they have the same set of points). A circle is completely described as an ordered triple

(x, y, r), where (x, y) is the center of the circle with radius r > 0. The moduli space is

R2 × R>0, the cross product of the real plane and the real line.

Example 4.1.2. We can also classify conics in P2. A conic is defined by the vanishing

set of a polynomial of the form ax2 +by2 +cz2 +dxy+exz+fyz. The conic is determined

by the coefficients of this equation, i.e the 6- tuple (a, b, c, d, e, f). Two equations which

are scalar multiples of each other determine the same vanishing set. The moduli space is

C6/C∗ = P5, where C∗ = C \ {0}.
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We can be able to pick any n distinct points on P1 thus we have n − tuple (x1, . . . , xn).

We have an equivalence relation generated by (x1, . . . , xn) ∼ (y1, . . . , yn) if there is some

A ∈ PGL2(C).

Definition 4.1.3. [Zvo11] A Stable curve C with n marked points x1, . . . xn is an

algebraic curve which has simple nodes as the only singularities and satisfies the stability

codition 2− 2g − n < 0.

Definition 4.1.4. For 2− 2g − n < 0, the moduli space Mg,n is the set of isomorphism

classes of smooth algebraic curves of genus g with n-marked points.

An isomorphism of such n-pointed smooth rational curves, is an isomorphism of curves

that respects the marked points, in order. We consider the case where g = 0, thus from

the stability condition 2 − 2g − n < 0 we have that n ≥ 3. This is true since for g = 0,

we have from the stability condition 2− n < 0 thus n ≥ 3 since n ∈ N.

Example 4.1.5. For g = 0, n = 3, every rational curve (C, x1, x2, x3) with three marked

points can be identified with (P1, 0, 1,∞) in a unique way. That is any three marked points

(x1, x2, x3) can be sent to the ordered triple (0, 1,∞). If we have the map ϕ : (x1, x2, x3)→
(0, 1,∞) and ψ : (y1, y2, y3)→ (0, 1,∞) then (x1, x2, x3) ∼ (y1, y2, y3) via the map ψ−1◦ϕ.
Thus any two ordered three marked points are equivalent and hence M0,3 = point.

Example 4.1.6. For g = 0, n = 4, every curve (C, x1, x2, x3, x4) can be uniquely de-

termined with (P1, 0, 1,∞, t). The number t 6= 0, 1,∞ is determined by the position of

marked points of C. The number t is called modulus and hence the term ‘moduli space’.

The moduli space M0,4 is the set of values of t, i.e M0,4 = P1\{0, 1,∞}.

In general g = 0 and n arbitrary chosen, the curve (C, x1, . . . , xn) can be uniquely iden-

tified with (P1, 0, 1,∞, t1, . . . , tn−3). The moduli space M0,n is given by,

M0,n = {(t1, . . . , tn−3) ∈ (P1)n−3|ti 6= 0, 1,∞, ti 6= tj} (4.1)

The dimension of the space M0,n is given by

dimM0,n = n− 3.

For example the dimM0,3 = 3− 3 = 0. Actually the dimension of a point is 0. We will

draw twigs cartoons to represent rational curves.

Example 4.1.7. Rational curves with three marked points and four marked points respec-

tively are drawn as follows:
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Figure 4.1: Rational curve with three marked points.

Figure 4.2: Rational curve with four marked points

4.2 Compactification of M0,n

The space M0,n is in general non-compact. To see this, let us consider an example, for

the case n = 4.

Example 4.2.1. Compact spaces contain limits of families, yet for the family Ct =

(0, 1,∞, 0) becomes (0, 1,∞, 0) as t → 0. This is not in the moduli space since the

points are not distinct. For the case g = 0, n = 4, as seen earlier the moduli space M0,4

is isomorphic to P1\{0, 1,∞}. A point t ∈ P1\{0, 1,∞} encodes that (C, x1, x2, x3, x4) '
(P1, 0, 1,∞, t). When t→ 0, we obtain the curve (P1, 0, 1,∞, 0) with four marked points.

In this case x1 and x2 coincide, i.e x1 = x4. Without changing the curve C we can change

the local coordinate of the curve via the map x 7→ x
t

and obtain the curve (C, x1, x2, x3, x4)

' (P1, 0, 1
t
,∞, 1). When t→ 0, we obtain the curve (P1, 0,∞,∞, 1). In this case we have

x2 and x3 colliding, i.e x2 = x3.

Since we cannot prefer one local coordinate to the other, we include both limit curves in

the description of this limit. The limit of this family is a nodal curve with one component,

in which x2 and x3 coincide and another in which x1 and x4 coincide. We can think of

this as saying that when two marked points approach one another in the limit, the curve

sprouts an extra component to receive them.The genus of a stable curve C is the genus

of the surface obtained from C by smoothening all its nodes.

Theorem 4.2.2. For each n ≥ 3, there is a smooth projective variety M0,n, that is a

moduli space for the stable n-pointed rational curves. It contains M0,n as a dense open

subset.

Example 4.2.3. M0,4 = P1, which is a compactification of M0,4 = P1\{0, 1,∞}.

Definition 4.2.4. The space M0,n is called the Deligne-Mumford compactification of

the moduli space M0,n of smooth algebraic curves.

It is not nice when we let the points collide, say two points collide in another copy of P1

and we draw it on a new twig. In this case let points 2 and 3 coincide.
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2 3 =1 4

3

2
1 4

Figure 4.3: Two points colliding.

This is the idea that when two points collide, they pop out on a new twig. In this case

we have three points, the two points 1 and 2 together with the node where the twig is

attached.We develop the idea of a ’tree’ from the ’twigs’.

Definition 4.2.5. A tree of projective lines is a variety which:

1. Is a graph in theoretic sense(connected and no loops).

2. Has a twig as irreducible component, isomorphic to P1.

3. Has no more than two twigs crossing at any point.

4.3 Boundary strata

We have seen that M0,n contains M0,n as a dense subvariety. The boundary is simply

the added points in the process of compactification. For example a point in the boundary

might correspond to the following tree:

5
6

1 4 7

3

2

Figure 4.4: A point in the boundary.

We consider the subvariety of all points corresponding to the curves of certain form. We

denote this by a tree in brackets, i.e:
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1 2
3

4

5
6

7

Figure 4.5: A boundary strata.

The brackets mean that a whole subset determined by the varying positions of the points.

These subsets are called boundary strata, since the whole boundary can be expressed as

a union of these subvarieties.

We can be able to determine the dimension of these boundary strata. We can view the

automorphism of a tree as a bunch of automorphisms of twigs which are ‘glued together’.

Thus we can just work out the dimension of the smaller moduli spaces and sum them up

counting nodes as marked points on both twigs.

For example, in the case of the stratum above, the stratum corresponds to M0,5× M0,3

× M0,3. Thus the stratum has dimension 2 = 2 + 0 + 0, i.e

dim M0,5 = 5− 3 = 2 and dim M0,3 = 3− 3 = 0

In this example, we are in a space of dimension 7 − 4 = 3 and we have the dimension

of the stratum as 2. The codimension of a boundary stratum is equal to the number of

nodes of the tree. We can get inclusions among the boundary strata. In the example

below we have that A ⊇ B.

6
7

1 4 5
3
2 1 2

3

5
4 6

7

= A = B

The following are the boundary strata for M0,4.
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3 41 2 = 1
2

3 4

Figure 4.6: Limit curve when points 1 and 2 collide.

3 41 2 = 1 2
3

4

Figure 4.7: Limit curve when points 2 and 3 collide.

3 41 2 = 1 2 3
4

Figure 4.8: Limit curve when points 3 and 4 collide.

2 31 4 = 1
4

2 3

Figure 4.9: Limit curve when points 1 and 4 collide.
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2 41 3 = 1
3

2 4

Figure 4.10: Limit curve when points 1 and 3 collide.

4 31 2 = 1 2
4

3

Figure 4.11: Limit curve when points 2 and 4 collide.

4.4 Intersection theory of M0,n

To understand the intersection theory ofM0,n, we need to understand the intersections of

different boundary strata. Thus we are interested in intersecting the cohomology classes

(elements in the boundary). When intersecting two strata we consider the two cases:

transverse and non-transverse intersections.

Transverse intersections work out nicely, since the codimensions add up properly. For

example, the intersection below is a transverse intersection.

51 64
3
2

4
5

1 62 3 = 2
3

5
4

1 6

Figure 4.12: An example of a transverse intersection.
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However, in non-transverse intersections, codimensions do not add up properly. Intersect-

ing a boundary strata with itself gives the original strata since the one stratum degenerates

the other. To help fix the non-transverse intersections, we introduce the ψ−classes.

Definition 4.4.1. For pairwise disjoint i, j, k ∈ {1, . . . , n}, denote by δi|j,k the set of stable

genus 0 curves with a node separating the ith marked poin from the jth and kth marked

points.

OnM0,n we have ψi = [δi|j,k]. For example, in the intersection below, the intersection will

just be the first stratum. This is because the left boundary stratum is a degeneration of

the right one. This is therefore a non-transverse intersection. To ’wiggle’ to transversality,

we first intersect the stratum with higher codimension with ψ− class at all common nodes

of the strata.

1

2

3

4
5

7

6

1

2

3

4 5

6

7

Figure 4.13: An example of a non-transverse intersection

We look at the intersection at the marked node (common node) and separate all the twigs

but remembering their attached points. The diagram with the common node will look

like this:

3
4

5

We intersect this strata with the ψ− class, ψ�. Let ψL� be the ψ− class at the mark � on

the left twig and ψR� be the ψ− class at the mark � on the right twig.
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We have

ψL�=
3 4

and ψR� = 0.

The ψ− class which we intersect is ψ� = −ψL� − ψR� . gluing back everything together we

find:

ψ� =

1

2

3 4
5

7

6

The ψ−class is contained in both strata we are intersecting, thus the intersection is the

ψ−class.
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Chapter 5

Enumeration of Rational Curves in

P2

5.1 Moduli of stable maps

This section introduces moduli spaces of stable maps of curves of genus 0. The moduli

space of curves is seen naturally as the moduli space of stable maps of curves. For the

case of constant maps, these spaces and the moduli spaces of curves do coincide.

Definition 5.1.1. Let (C, x1, . . . , xn) be a nodal curve with n points on it, then:

1. The curve C is prestable if the points xi are distinct and in the smooth locus of C.

2. The prestable curve (C, x1, . . . , xn) is stable if every geometric genus 0 irreducible

component has at least 3 special points on it (where a special point is one of the xi

or a node).

Definition 5.1.2. Let X be a smooth projective variety. A stable map is the datum of

(C, x1, . . . , xn, f), where

1. (C, x1, . . . , xn) is a prestable curve.

2. f : C → X is a morphism.

3. If the map f contracts an irreducible component Ck to a point, then if Ck is of genus

0, it must have three special points on it.
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Let β ∈ H2(X,Z). We say that f : C → X represents a homology class β if [C] ∈ H2(C,Z)

is the fundamental class of C and f∗[C] = β. For example if X = P2 and f : C → P2 is a

morphism such that f∗[C] = dl, where l ∈ H2(P2) is the class of a line. We say that d is

the degree of the map f and write d for dl.

Definition 5.1.3. A pointed map of genus g is a morphism f(C, x1, . . . , xn) → X that

represents a class β of an n-pointed smooth curve C.

Two pointed maps f1 : (C, x1, . . . , xn) → X and f2 : (C, y1, . . . , yn) → X are called iso-

morphic if there exists an isomorphism φ : C1 → C2 of curves such that φ(xi) = yi for all

i and φ admits the following commutative diagram as seen in [Ong13].

X

C1 C2

φ

f1 f2

We can be able able to determine the space parametrizing isomorphism classes [f :

(C, x1, . . . , xn)→ X] of pointed maps representing a class β, denoted by M0,n(X, β).

M0,n(X, β) =
{
f : C → X|C is a prestable curve}/ ∼ .

We write (C, x1, . . . , xn, f) as an element in M0,n(X, β). The moduli space M0,n(X, β)

of maps is not compact because the maps can degenerate in various ways. There is

however a compactification for M0,n(X, β), called Kontsevich compactification, denoted

asM0,n(X, β). The moduli spaceM0,n(X, β) has the following properties, see for example

[Ong13]:

1. Evaluation maps: There are n evaluation maps, evi :M0,n(X, β)→ X, defined by:

evi(C, xi, f) := f(xi).

2. Forget map; π :M0,n+1(X, β)→M0,n(X, β).
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3. Let X and Y be smooth projective varieties. If g : X → Y , then there is an induced

map fg :M0,n(X, β)→M0,n(X, g∗β). If Y is a point, this gives a stabilization map

stab :M0,n(X, β)→M0,n.

4. There is a universal map over M0,n(X, β). If n1 ≥ n2 and M0,n2(X, β) exists, then

there is a forgetful morphism

M0,n1(X, β)→M0,n2(X, β).

5.2 Enumeration of curves

We consider curves of degree d > 0 and seek the answer to the question: How many curves

of degree d pass through 3d−1 points in general position in the plane? We call N(d) ∈ N
the answer to such question. A degree d rational curve in P2 is given as the zero locus of

an homogenous, degree d polynomial in 3 variables. The space of such curves is projective

of dimension
(d+ 2)(d+ 1)

2
− 1.

In this space there is zariski open subset U sm with the resulting curve smooth and of

genus
(d− 1)(d− 2)

2
. We have another zariski topology Unod is made of curves that have

at worst nodal singularities. The 0 nodes in this case corresponds to U sm. The formulae

for such a curve will be
(d− 1)(d− 2)

2
− n, where n is the number of nodes.

The locus of such curves having k−nodes will have codimension k. The space of rational

curves of degree d in P2 has dimension 3d− 1.

Since the dimension, say D, is given by

D =
(d+ 2)(d+ 1)

2
− 1 =

d2 + 3d

2
,

and the genus of the rational curve having k− nodes is:

(d− 1)(d− 2)

2
− k = 0⇒ 2k = d2 − 3d+ 2.

Thus we have

D =
3d+ 2n− 2 + 3d

2
= 3d− 1 + k.
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If d = 1, 2, the numbers
(d+ 2)(d+ 1)

2
− 1 and 3d − 1 coincide and we have g = 0 for

d = 1, 2. Thus we have N(1) = N(2) = 1. In general, we first translate our enumerative

problem, in an intersection-theoretic problem on a moduli space.

Definition 5.2.1. The moduli space of maps of degree d from a genus 0 curve is:

M0,n(P2, d) := {(C, x1, . . . , xn, φ)},

where C is a smooth genus 0 curve, xi ∈ C, i = 1, . . . , n, are pairwise distinct points of it,

and φ : C → P2 is a degree d map.

The dimension of such a space is 3d − 1 + n. There are well defined evaluation maps

evi :M0,n(P2, d)→ P2 :

evi(C, x1, . . . , xn, φ) := φ(xi).

We now translate our enumerative question into the following problem. Let P1, . . . , P3d−1

be general points in P2. We then compute the number of points

Nd := ]{ev−11 (P1) ∩ . . . ∩ ev−13d−1(P3d−1)}.

It is easy to work with a compactified moduli space.We have the following definition of

M0,n(P2, d).

Definition 5.2.2.

M0,n(P2, d) := {(C, x1, . . . , xn, φ)},

where {(C, x1, . . . , xn, φ)} is a rational n−pointed stable map of degree d.

Theorem 5.2.3. The space M0,n(P2, d) is a smooth compactification of M0,n(P2, d).

In the view of properties in page 28, we have the following result.

1. An evaluation map: evi :M0,n(P2, d)→ P2 : evi(C, xi, φ) := φ(xi).

2. A forgetful map that forgets the point xi : forgi :M0,n(P2, d)→M0,n−1(P2, d).

3. A forgetful map that remembers only the rational curve (C, xi) : f :M0,n(P2, d)→
M0,n.
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5.3 Preliminary for Kontsevich formula

5.3.1 The Grassmanian

The Grassmanian, denoted G(k, V ), is simply a set of all k−dimensional linear subspaces

in V . Naturally it is a space parametrizing linear subspaces and is useful in enumerative

problems.We get the following definition from [Ran10].

Definition 5.3.1. The Grassmanian G(k, V ) is defined as

G(k, V ) := {W ⊂ V : W is a subspace, dim W = k}.

To build up on understanding the Grassmanian structure we discuss the wedge product

and exterior power of a vector space.

Wedge product: Given any two vectors v and w, we have v ∧w as a 2− multivector or

a blade that satisfies

v ∧ w = −w ∧ v.

We similarly define a k−multivector as v1 ∧ . . . ∧ vk which negates the product upon

interchanging 2 adjacent elements.

Exterior power of a vector space: Given a vector space V , the kth exterior power of

the vector space,
∧k V is the span of the k− blades in V . I.e

∧k V := span{v1 ∧ . . .∧ vk :

vi ∈ V }.
We need the following definitions:

Definition 5.3.2. A K multivector ω ∈
∧k V is said to be totally decomposable if can be

written as k−blade, i.e ω = ω1 ∧ . . . ∧ ωk.

Definition 5.3.3. Given a multivector ω ∈
∧k V, v ∈ V is said to be a divisor of ω if ω

can be written as ω = V ∧ ϕ such that ϕ ∈
∧k−1 V.

Let W ∈ G(k, V ) and associate to W a multivector λ = v1 ∧ . . .∧ vk, where {vi} span the

space W . We have the map ψ : G(, V ) → P(
∧k V ),with W = 〈v1, . . . , vk〉 7→ [λ], where

[λ] is the projectivized coordinate of λ, that is, linear subspace generated by v1 ∧ . . .∧ vk.
The map ψ is known as the plucker map and is an embedding of G(k, V ) into P(

∧k V ).

The image ψ(G(k, V )) is the projectivatization of the space of all totally decomposable

vectors in
∧k V.
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Let the coordinates of Pn = P
∧k V be plucker coordinates on G(k, V ). The Grassmanian

G(k, V ) is a variety, since it is the intersection of finitely many projective hypersurfaces

see for example [Hud07].

5.3.2 Almost complex and sympletic structures

Let X be a smooth manifold. An almost complex structure on X is a smooth family of

linear maps Jp : TpX → TpX such that Jp(Jpv) = −v for all v ∈ TpX and p ∈ X. Every

complex n−manifold X carries a natural almost complex structure J, defined as follows:

[Zin10]

Definition 5.3.4. Let {(Ui, φi, U i
i )}i∈I be the (homolophic)atlas for X. If p ∈ Ui we set

Jp = dφi|φ−1
i (p) ◦ i ◦ dφ

−1
i |p.

An almost complex structure arising in such a way is called complex or integrable.

Let X be a smooth manifold.A sympletic form on X is a closed two-form ω on X which

is nondegenerate at every point of X. I.e dω = 0, and for every point in X and nonzero

tangent vector v ∈ TpX, there exists ω ∈ TpX such that ωp(v, p) 6= 0. For example if

(x1, y1, . . . , xn, yn) are standard coordinates on Cn,

ω ≡ dx1 ∧ dy1 + . . .+ dxn ∧ dyn,

is a sympletic form on Cn. In general, if X admits a sympletic form, the (real) dimension

of X is even.

5.3.3 Tautological line bundle

Let γ = {(l; z0, . . . , zn) ∈ Pn × Cn+1 : (z0, . . . , zn) ∈ l. We denote by π : γ → Pn the

projection map. For each l ∈ Pn we have the fiber ωl = π−1(l) over a point l ∈ Pnis the

line l through the origin in Cn.

For each i = 0, . . . , n let

Ũ = π−1(Ui) = {(l; z0, . . . , zn) ∈ ω : zi 6= 0}

φ̃i : Cn × C→ Ũi, Ũ(w1, . . . , wn;λ) = (φi(w1, . . . , wn);λw1, . . . , λwi, λwi+1, . . . , λwn).

The set {(Ũi, φ̃i,Cn)×C} is the standard atlas for γ. γ is a complex (n+ 1) manifold and

γ → Pn is a holomorphic line bundle.
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Lemma 5.3.5. If p is a homogenous polynomial of degree d in n + 1 variables, sp is a

holomorphic section of the holomorphic line bundle γ⊗∗d, where sp(l) is a map from γ to

C such that

{sp(l)}(l; z0, . . . , zn) = p(z0, . . . , zn).

Conversely, if s is a holomorphic section of γ⊗∗d, then s = sp for some homogenous

polynomial p of degree d in n+ 1 variables.

5.4 Kontsevich formula

Let x0, x1, x2 and x3 be four points in P2 given by

x0 = [1 : 0 : 0], x1 = [0 : 1 : 0], x3 = [1, 1, 1].

We denote by H0(P2 : γ∗⊗2) the space of holomorphic sections of the holomorphic line

bundle γ∗⊗2 → P2, i.e the space of the degree-two homogenous polynomials in 3 variables.

Let U = {([A;B] : [z0, z1, z2] ∈ P1 × P2 : (A − B)z0z1) − Az1z2 + Bz0z2 = 0}. The space

U is a compact complex manifold.

Let π : U →M0,4 ≡ P1 denote the projection onto the first component. If [A,B] ∈M0,4,

the fiber π−1([A,B]) is the conic

CA,B = [z0, z1, z2] ∈ {P2 : (A−B)z0z1 − Az1z2 +Bz0z2 = 0}.

If [A,B] 6= [1, 0], [0, 1], [1, 1], CA,B is a smooth complex curve of genus zero, i.e a sphere

with four marked points. On the other hand, if [A,B] = [1, 0], [0, 1], [1, 1], CA,B is a union

of two lines each containing two marked points and they intersect at a single point.[Zin10]

The concept of cross ratio is important in deriving the kontsevich formula. Denote

M0,4(P2, d) by Md. On Md, we have a rational function ϕ, given by a cross ratio: at

a point of Md corresponding to a map f : (C; p1, p2, p3, p4)→ P2, with C irreducible, it is

the cross ratio of points p1, p2, p3, p4 ∈ P1; i.e in terms of affine coordinate z on P1,

ϕ =
(z1 − z2)(z3 − z4)
(z1 − z3)(z2 − z4)

,where zi = z(pi). (5.1)

Cross ratio takes on the values [0 : 1], [1 : 0], [1 : 1] only when two points coincide.
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The Kontsevich recursive formula seeks to answer the question: how many rational curves

(finite) pass through 3d− 1 points of P2. Such a number is denoted as N(d) as indicated

before.

In 1993, Kontsevich found the recursive formula, given by:

N(d) =
d−1∑
d=1

d1d2

[
d1d2

(
3d− 4

3d1 − 2

)
− d22

(
3d− 4

3d1 − 3

)]
N(d1)N(d2). (5.2)

The next discussion aim at proving equation 5.2.

We introduce a curve B ⊂ Md, which we will make calculations on. Fix a point p ∈ P2

and two lines L and M where L,M ⊂ P2, both passing through point p. Fix two more

general points q, r ∈ P2 and a collection Γ ⊂ P2 of 3d − 4 general points. We have the

locus

B =
{
f : (C; p1, p2, p3, p4)→ P2|f(p1) = q, f(p2) = r, f(p3) ∈ L, f(p4) ∈Mand Γ ∈ f(C)

}
⊂Md.

The space of rational curves of degree d in P2 has dimension 3d− 1, and we want curves

in our family to pass through 3d − 2 points, i.e points q, r and 3d − 4 points of Γ. The

locus B is a curve.

There may be points inB for which the domain C of the corresponding map f : (C; p1, p2, p3, p4)→
P2 is reducible. If the image of C has components D1, . . . , Dk of degrees d1, . . . , dk, then

Di can contain at most 3di − 2 points Γ ∪ {q, r}. Thus

3d− 2 ≥
k∑
i=1

(3di − 1) = 3d− k,

whence k ≤ 2, since

k∑
i=1

(3di − 1) = 3(d1 + . . .+ dk)− k = 3d− k.

In these cases C will have at most two components. There are only finite points in B for

which the domain C is reducible.

If D = D1 ∪D2 ∈ P2, with Di a rational curve of degree di, and Γ ∪ {q, r} ⊂ D, then Di
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must contain exactly 3d − 1 points of the 3d − 2 points Γ ∪ {q, r}. The number of such

plane curves is thus: (
3d− 2

3d1 − 1

)
N(d1)N(d2).

We now equate the number of zeros and of poles of ϕ on B. First we consider the points

f : (C; p1, p2, p3, p4) → P2 of B with C irreducible. Since f(p1) = q and f(p2) = r are

fixed and do not lie on lines L and M , for points pi to coincide on the curve then we

must have f(p3) = f(p4) = p where L ∩M = p. Such points are zeros of ϕ : the number

of zeros is given by the number of rational plane curves of degree d through the 3d − 1

points p, q, r and Γ.

The other case is when C = C1∪C2 is reducible. We can be able to determine the number

of zeros and poles of ϕ coming from points f : (C; p1, p2, p3, p4)→ P2 of B. We get a zero

of ϕ at such a point if and only if p1 and p2 lie on one component of C and p3 and p4 lie

on the other. If the degree of C1 is d1 and C2 is d2 with d1 + d2 = d, then f(C1) must

contain q, r and 3d1− 3 points of Γ, while C2 contains 3d− 4− (3d1− 3) = 3d2− 1 points

of Γ.

For any subset of 3d1 − 3 points of Γ, the number of such plane curves is N(d1)N(d2),

and for each such plane curve there are d2 choices of the point p3 ∈ C2 ∩ f−1(L) and

d2 choices of the point p4 ∈ C2 ∩ f−1(M). We as well have d1d2 choices of the point

f(C1 ∩ C2) ∈ f(C1) ∩ f(C2). The total number of zeros of Γ arising in this way are:

d−1∑
d1=1

d1d
3
2

(
3d− 4

3d1 − 3

)
N(d1)N(d2). (5.3)

We count the poles of Γ similarly. Letting p1 and p3 lie on C1, and p2 and p4 lie on C2.

Again let the degree of C1 be d1 and for C2 be d2 with d1 + d2 = d. Then f(C1) must

contain q and 3d1 − 2 points of Γ, plus r. For any subset 3d− 2 points of Γ, the number

of such plane curves is curve is N(d1)N(d2), and for each plane curve there are d1 choices

of the point p3 ∈ C2 ∩ f−1(L), and d2 choices of the point p4 ∈ C2 ∩ f−1(M), as well as

d1d2 choices of the point f(C1 ∩ C2) ∈ f(C1) ∩ f(C2). Thus the total number of poles of

Γ is given by:
d−1∑
d1=1

d21d
2
2

(
3d− 4

3d1 − 2

)
N(d1)N(d2). (5.4)
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Adding up the poles and zeros we get:

N(d) =
d−1∑
d=1

d1d2

[
d1d2

(
3d− 4

3d1 − 2

)
− d22

(
3d− 4

3d1 − 3

)]
N(d1)N(d2). (5.5)

Equation 5.5 is a recursive formula that helps determine N(d) if we know N(d′) for d′ < d.

For example, there is a unique line through two points, and a unique conic through 5

general points, so N(1) = N(2) = 1. The following examples give calculations for N(3)

and N(4).

Example 5.4.1. For the case where d = 3,

N(3) = 2
[
2

(
5

1

)
− 4

(
5

0

)]
+ 2
[
2

(
5

4

)
− 4

(
5

3

)]
= 12.

There are 12 rational cubic curves through 8 general points of P2.

Example 5.4.2. For the case where d = 4,

N(4) = 3·12
[
3

(
8

1

)
−9

(
8

0

)]
+4
[
4

(
8

4

)
−4

(
8

3

)]
+3·12

[
3

(
8

7

)(
8

6

)]
= 620.

Namely, 620 rational quartic curves through 11 general points of P2.

For d = 6, we have the number N(6) = 26312976.
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