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ABSTRACT 

The project focuses on modeling and estimating loss claims from  Insurance company. 

 Generalized Pareto distributions family was used and compared to come with a best fitting 

distribution. These distributions include Exponential, Pareto and Uniform distribution. 

In the methodology the project shows how to develop the distributions from one distribution.  

Three methods for estimating parameters of the distributions were used i.e .the maximum 

likelihood method, the method of moments and L moment method. Properties of each 

distribution were shown. Then measures of risk were derived. 

In application, Using the three methods of estimations to come up with the best fitting 

distribution. I’ll also compare the three methods of estimations and come up with the best 

method. In addition .Using the best two distributions I’ll plot histogram and QQ plot to come up 

with the best distribution. Thereafter I will estimate the confidence intervals of the chosen 

distribution parameter estimate using the bootstrap method.  
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CHAPTER ONE 

     GENERAL INTRODUCTION 

1.1 BACKGROUND INFORMATION 

Extreme events are occurrences which are rare, high in magnitude and lead to huge losses. 

Extreme event risk affects all aspect of risk assessment, modeling and management especially in 

the context of credit market, insurance market, and operational market. These extreme events are 

either naturally occurring or man-made inflicted at the time they are least expected. If expected 

to happen there is very little or nothing can be done on their prevention. Some of these extreme 

risks are insured under general insurance policies. In non-life insurance a few large claims hitting 

a portfolio usually represent the most part of the indemnities paid out by the company. In fact 

10% of extreme claims paid out represent the largest share of the paid funds. This is equivalent 

to significant percentage on the performances of companies. 

Examples of such events include; The terrorist activities in Kenya like 1998 American embassy 

bomb blast; the Westgate terrorist attack (2014)wheremany lives and millions of money were 

lost;2007 post-election violence where a lot of property was destroyed; Kenya airways plane 

crash in Douala Cameroon; J.K.I.A fire 2014. Others include; The terrorist attack on the world 

trade center on 11 September 2001; The Hurricane Andrew earthquake in 1992 which cost USD 

16billion on insurance payout; Ebola outbreak in West Africa(2014) and Earthquakes in 

Japan(2014); Gikomba market fire breakout(2005) 

1.2 EXTREME VALUE THEORY 

Extreme value theory (EVT) is a statistical methodology that is well suited for assessing, 

modeling and managing such catastrophic events. EVT offers a framework for assessing the 

uncertainties’ inherent to describing the loss or claims distributions associated with these rare or 

extreme events. 

Extreme value theory provides a good tool for handling these extremes. Broadly speaking there 

are two kinds of models for extreme values. The oldest group of models is the block maxima 

models. These are the models for the largest observations collected from large samples of 

identical distributed observation, for example. If we record daily or hourly losses and profits 

from trading a particular instrument or group of instrument. The block maxima method provides 

a model which may be appropriate for the quarterly or annual maximum of such values. 

A more modern group of models are the peaks over threshold (POT). These are models for all 

large observations which exceed a high threshold. The POT models are generally considered to 

be the most useful for practical applications due to their more efficient use of data in extreme 

values. Within the POT class of models one may further distinguish two styles of analysis. There 

are the semi parametric models built around the Hill estimator and the fully parametric models 
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based on the generalized Pareto distribution (GPD). All these approaches are theoretically 

justified and empirically useful when used correctly. However all these models that have been 

used before are not working hence the need to look for a better alternative which is easy to use 

and error free .We therefore favor the latter style of analysis for reasons of simplicity both of 

exposition and implementation. GPD obtains simple parametric formulae for measures of 

extreme risk for which is relatively easy to give estimate of statistical error using the technique 

of maximum likelihood. 

Traditional statistical methods focus on the probability laws governing averages of sums, 

whereas EVT concerns the properties of the largest observation in a sample and the probability 

laws governing these extremal values. 

 

1.3 PROBLEM STATEMENT 

Over the last 25 years there have been an increasing large number of extreme events in the 

financial and insurance market in Kenya leading to huge losses and claims. These extreme events 

affect the day to day operation of the individuals or company, and hence the economy of the 

country at large making it unable to achieve its core business function. If such events are insured 

one indemnification can lead to an insurance company going under-receivership if not properly 

reinsured. It can also lead to winding up a company if no business insurance was done. Therefore 

there is need to study those extreme risk and advice the insurance companies on how to cushion 

them in case of a risk covered happening. 

 

1.4 OBJECTIVES OF STUDY 

1.4.1 MAIN OBJECTIVE 

The main objective is to model extreme claims in Insurance Company. 

 

1.4.2 SPECIFIC OBJECTIVES 

To fit fire claims data using the family of generalized Pareto distribution. 

To estimate the measures of risk. 
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1.5JUSTIFICATION OF THE STUDY 

This information enables the company make important decisions regarding premium rates and 

premium loading which it is supposed to charge policyholders to ensure high profitability. 

The study is of interest to the actuaries since they help in the pricing of reinsurance agreement 

such as excess of loss reinsurance treaties under which the insurer has to identify to contact re 

insurer for all his expenditure associated with given claim as soon as that expenditure exceeds a 

fixed limit 

The study is also geared to enlighten the insurance companies on the maximum amount of 

reserve that should be held to cover the cost of claims. 
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CHAPTER TWO 

     LITERATURE REVIEW 

2.1 INTRODUCTION 

This chapter reviews thematically the relevant literature regarding the different ways of 

modelling extreme valuerisks .Extreme value theory has become a key point in the performances 

of most financial institutions. Many researchers have developed different models to fit different 

kinds of claims .The most studied and applied being the generalized Pareto distribution. 

2.2 MODELS PREVOUSLY USED 

Hogg and Klugman(1984) focused on fitting the size of loss distribution to the data. They used a 

truncated Pareto distribution to fit the loss function. However Boyd (1988) argued that they 

seriously underestimated the tail region of the fitted loss distribution. Hogg and klugman 

compared two methods of estimation namely maximum likelihood estimation and methods of 

moments. They proved that the generalized Pareto distribution is better for measuring loss 

severity. 

Rootzen and Tajvidi(1999)used extreme value statistics to estimate loss due to windstorm. They 

used Swedish insurance group data Lansforsakring during the period 1928-1993.They described 

uncertainty by presenting several different quintiles of distribution of maximum loss over several 

different periods .They computed the distribution of excess loss, the conditional distribution of 

loss given it exceeds the upper reinsurance limit. They concluded that statistical extreme value 

theory provides a flexible and theoretically well motivated approach to study large losses. 

WO-Chiang Lee (2012) focused on modeling and estimating tail parameters of loss distribution 

from Taiwanese commercial fire loss severity .Using extreme value theory he employed the 

Generalized Pareto distribution and compared it with standard parametric modeling based on 

Lognormal, Exponential, Gamma and Weibull distributions. In an empirical study he determined 

the threshold of the GPD using mean excess plots and hill plots. Kolmogorov –Smirnov and 

likelihood ratio goodness of fit are conducted, value at risk and expected shortfall are calculated. 

He also constructed confidence intervals for the estimates using bootstrap method .This study set 

the reference point in my research. 

 

Li-Hua Lai and Pei-Hsuan Wu(2005 estimating the threshold value and loss distribution on rice 

damaged by typhoons in Taiwan. They applied extreme value theory to determine the threshold 

peaks of the data and then used the Kolmogorv-Smirnov and Anderson-Darling goodness of fit 

tests to show that the Generalized Pareto distribution fits the heavy-tailed distribution better than 

the Lognormal, Gamma, Weibull and Normal distributions in rice damaged by typhoons. The 

appropriate of the threshold value and probable maximum loss was calculated as one of reference 

indexes on risk retention and crop insurance associated with the natural systematic risk of major 

agricultural disasters. The properties were found to be useful in crop loss assessment and in the 
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decision making of government's risk financing for major agricultural disasters. They concluded 

that the method can be applied to other disasters in other countries. 

  

Rodney Coleman (2002) looked at probability models appropriate for modeling extreme losses. 

The methodology was applied to extreme banking losses. He used the hill plot to estimate the 

mean excess estimate. He used data for 12 monthly maxima of the losses from fraud during the 

1995 fraud in UK retail bank. 

McNeil (1996) studied the tails of loss severity distribution using extreme value theory. He used 

the Danish data of 2157 claims. He described parametric curve fitting methods for modeling 

extreme historic losses. This method revolves around the generalized Pareto distribution and is 

supported by extreme value theory. He concluded the Picklands –Balkema –de Haantheorem 

(Balkema& de Hann 1974 Picklands 1975).which essentially says that for a wide class of 

distributions losses which exceed high enough threshold follow the generalized Pareto 

distribution. 

Beatriz Vaz de Medo (2005)modeled extreme losses from an excess of loss reinsurance contract 

assuming there exist catastrophic process generating sequences of large claims. He arranged the 

claims in clusters. The number of clusters was modeled using the usual probability discrete 

probability and the severity of the sum of excess within clusters is modeled using a flexible 

extension of a generalized Paretodistribution. He studied this using the Danish fire insurance 

claims data set. Maximum likelihood estimates and bootstrap confidence interval were obtained 

for the parameter and statistical premium. He concluded that this cluster approach may provide a 

better fit for the extreme tail of the annual excess loss amount when compared to classical 

models of the risk theory. 

McNeil and Saladin (1997) looked at peaks over threshold method to estimating high quartiles of 

loss distribution. They reviewed the peaks over threshold method of modeling tails of loss 

severity distributions and discussed the use of this technique for estimating high quantiles and 

the possible relevance of this to excess of loss insurance in high layers. They tested the method 

on a variety of simulated heavy-tailed distributions to show what kind of thresholds is required 

and what sample sizes are necessary to give accurate estimates of quantiles. They used Pareto 

Log-gamma, Studen- t and Log-normal distributions. 

 

Cebrian, Denuitand  Lambert (2003)looked at Generalized Pareto fit  to the society of actuaries 

large claims database. They discussed a statistical modeling strategy based on extreme value 

theory to describe the behavior of an insurance portfolio, with particular emphasis on large 

claims. The strategy was illustrated using the 1991-92 group medical claims database maintained 

by the Society of Actuaries. Using extreme value theory, the modeling strategy focused on the 

“excesses over threshold" approach to fit Generalized Pareto distributions. The proposed strategy 

was compared to standard parametric modeling based on Gamma, Log-normal and Log-gamma 

distributions. They concluded that Extreme value theory outperforms classical parametric fits 
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and allows the actuary to easily estimate high quantiles and the probable maximum loss from the 

data. 

 

Leonardo (2002) looked at Bayesian analysis of extreme values by use of mixture modeling. He 

modeled extreme values in the presence of heterogeneity. He considered losses for several 

related categories for each category he viewed exceedances over a given threshold as generated 

by Poisson process whose intensity is regulated by a specific location, shape and scale parameter 

using Bayesian approach. He developed a hierarchical mixture priori with unknown number of 

components for each of the above parameters. He performed the computation using the 

reversible jump MCMC.This model accounted for possible clustering effects and take advantage 

of the similarities across categories’ both for estimation and prediction. The method illustrated 

throughout using a data set on large claims against a well-known insurance company for 15 yrs. 

Hosking and Wallis (1987)looked at parameter and quantile estimation for the generalized Pareto 

distribution. They used a two parameter Pareto distribution which contains Exponential, Uniform 

and Pareto distribution. They estimated the parameter using three methods of estimation 

i.e,Maximum likelihood method, Method of moment and Probability weighted moment.They 

showed that unless the sample size is 500 or moreestimators derived by the method of moment or 

the method of probability weighted moments are more reliable.They used computer simulation to 

assess the accuracy of confidence intervalfor the parameter.Their main conclusion was that 

maximum likelihood estimation although asymptotically the most efficient method does not 

clearly display efficiency even in samples as large as 500and that the method of moment is 

generally reliable except when k<-2, and that PWM may be recommended if it seems likely that 

k<0.Where k is the scale parameter.They finally applied the results to estimation of extreme 

floodsusing an example of a series of flood peaks for river Nidd at Hunsingore England.. 

Eric Brodin (2005) studied the univariate and bivariate GPD method of predicting windstorm 

losses. He aimed to select, tailor and develop extreme value methods for use in windstorm 

insurance. Themethod was applied to the 1982-2005 losses for the largest Swedish insurance 

company the Lansforsakrigargroup. Both a univariate and a bivariate generalizedPareto 

distribution gave models which fitted the data well. TheBivariate model led to lower estimates of 

risk except for extreme cases but taking statistical uncertainty into account the two models lead 

to qualitative similar results, He concluded  that the bivariate model provided the most realistic 

picture in real uncertainities. It additionally made it possible to explore the effects of changes in 

the insurance portfolio  

MeelisKaarik (2012) studied the estimation of loss distribution and risk measures.The research 

used extreme value theory and Generalized Pareto distribution in relation to heavy tailed data. 

He studied third party liability claims from EstonTraffic Insurance Fund.The fitting consisted of 

two parts fitting a Lognormal distribution and a Generalized Pareto distributionwhich was used 

for the tail resulting in a certain composite Lognormal/Generalized Pareto model.He emphasized 

on the proper threshold selection.He sought for stability of parameter estimates and study the 
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behavior of risk measures at wide range of thresholds. He finally provided an alternative 

threshold selection method which is based on the risk measures (quantiles)and recommended it 

to be used in insurance data analysis. 

Ramchadran(2010) presented the generalized extreme value technique for making use of all large 

losses. He investigated the problem of assessing the relative contributions of various factors to 

fire losses. He did multiple regressions with extreme observations of given ranks. He took into 

consideration the biases due to use of extremes and the difference between catergory of risk in 

regard to the frequency of fire claims. He illustrated this using the largest and second largest 

losses in textile industries in the United Kingdom during the six year period of 1965-1970.The 

technique enables different estimates to be obtained for each regression parameter for different 

ranks. He developed a second model for performing a regression analysis combining 

observations pertaining to a number of ranks covariance of the residual were also taken into 

account in this model. 

Patricia de Zea Bermudez(2011)looked at importance of Generalized Pareto distribution in the 

extreme value theory. Patricia used EVT on Forest Fires that occurred in Portugal between 1984-

2004.Patricia reviewed the methods to estimate the parameter of Generalized Pareto distribution. 

She used Bayesian hierarchical models and Non-linear time series models.She went ahead and 

incorporated Uniform, Beta, Exponential and Pareto in analysis.To get the best fit she plotted the 

QQ plots. 

Matthew J Pocernich(2002) looked at the application of extreme value theory and threshold 

models to Flood events. The aim of the paper was to quantify the probability of very high stream 

flows. The paper examined the use of extreme value statistics in predicting the probability of rare 

flood events. He used maximum likelihood estimate to fit parameter in a point process model .He 

also used L-moment method with annual maximum values. He therefore considered time as a 

covariate in order to determine if the magnitude and frequency of high flows events change with 

time. He applied this method in a data from Cherry Creek at Franktown,Colorado. It was found 

that the parameter estimate did not vary significantly with time. 

Gonzalo and Olmo(2004)looked at establishing which extreme values are really extreme.They 

defined the extreme values of any random sample of size n from a distribution function F as the 

observations exceeding a threshold and following a type of Generalized Pareto distribution 

involving the tail index F.The threshold was defined as the order statistic that minimized 

distribution of the corresponding largest observation and the corresponding GPD. To formalize 

the definition they used semi parametric bootstrap to test the corresponding GPD approximation. 

Finally in the methodology they estimated the tail index and value at risk of some financial 

indexes of major markets. They compared data from Dax, Ftse, Ibex, Nikkie and Dow Jones. 
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Carl (2012) reviewed of the extreme value threshold estimation and uncertainty quantification. 

He argued that from a statistical perspective the threshold is loosely defined such that the 

population tail can be well approximated by an extreme value model (generalized Pareto 

distribution)obtaining a balance between the bias due to the asymptotic tail approximation and 

parameter approximation due to inherent sparcity of threshold  

2.3 A SUMMARY OF LITERATURE REVIEW 

Generalized Pareto distribution has been extensively been used with a combination of different 

estimation method depending on the event being analysed.This is because it easy to use .The 

Generalized Pareto distribution has also been compared with other parametric distributions like 

Lognormal, Gamma, Exponential, Student-t, Uniform and has resulted to be the best distribution 

in fitting extreme values. Previous studies have modeled data from fire insurance, floods, 

windstorms and medical claims. 

Generalized Pareto distribution parameter has been estimated by a number of methods including 

Maximum likelihood method, Method of moment,L moments, Percentile weighted method, 

Empirical Bayesian method and Probability Weighted Method. 

In this study we are going to apply Generalized Pareto distribution whose parameters has been 

estimated bythree methods namely maximum likelihood estimation method, Method of moment 

and Linear combination of moments (L-Moment method). It will also compare three  

distributions include, Pareto, Exponential and Uniform. 
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CHAPTER THREE 

CONSTRUCTION AND PROPERTIES OF GPD 

3.1 INTRODUCTION 
In this chapter,We have constructed generalized Pareto distribution and its members using transformation 

technique, mixtures and mixed distribution technique.  

3.2 DEFINITION AND MEAN OF GPD 

The probability density function of a Generalized Pareto distribution with parameters (μ,δ,ξ) is 

defined as      where ξ>0,x>0, 

              f(x) = 
 

 

    
      

 
 
    
 

   ξ ≠0,ξ = 0 

 

And its cumulative distribution function is therefore 

F (x) = {1-(   
 

 
     )

    

 
                      } 

when μ = 0,we have f(x) = 
   

  

 
 
    
 

 
  ξ≠ 0 

  

 

Mean of GPD   E(X) = ∫        
 

 
 

    = ∫  
 

 

 

 
   

      

 
 
   

 

 dx 

     Let z/μ = 1+
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     x= 
 

 
(
 

 
  ) +μ 

=∫  
 

 
 
 

 
      

 

 

 

 
     

    

 
 

  
dz 

        =∫  
 

 
 
 

 
      

 

 
                 dz 

=∫
 

 

 

 
    [

 

  
     

 

 
 
    

            ]dz 

Opening the brackets and simplifying you get 

=[
 

   
                   

 

 
                       ] 

Therefore you substitute for z with u and ∞ 

= -δ                  
 

 
 
 

  
 
 

                

= 
  

      
 -
 

 
 +μ 

= μ +    
        

      
 

=μ +
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3.3 CONSTRUCTING GENERALIZED PARETO DISTRIBUTION 

3.3.1  USINGTRANSFORMATION METHOD 

Uniform distribution can be transformed to a generalized Pareto distribution by the change of 

variable technique. 

If U is uniformly distributed on [0, 1] then 

  X = μ + 
 

 
(     ) 

Solving for the distribution using the change of variable technique we have 

  X – μ=
 

 
(     ) 

 

  ξ( x -μ) = δ (     ) 

 

  
       

 
  = (     ) 

   

  
       

 
 + 1=     

  U = 
           

 

  

 
 

  
  

  
 = 

 

 
 
       

 
   

    

  

  f(x) = 1|J| 

  f(x) = 
 

 
 
       

 
   

    

  

This is the Generalized Pareto Distribution function. 
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3.3.2 CONSTRUCTION OF GPD BASED ON INVERSE METHOD 

F(x) = Prob[ X≤ x] 

 = Prob{μ + 
        

 
 ≤ x} 

 = Prob{
        

 
 ≤ x-μ} 

 = Prob{      
      

 
} 

 = Prob{    ≤ 1+
      

 
} 

 = Prob{
 

  
     

      

 
  } 

 = Prob{
 

  
      

 

 ≤   } 

 =Prob{       
      

 
   } 

 =Prob {u ≥    
      

 
 
  

 } 

F(x) = 1- Prob{u ≤    
      

 
 
  

 } 

f(x) = 1- G   
      

 
 
  

  

Therefore f(x) = 
 

 
      

      

 
 
  

 [   
      

 
 
    

 ] 

 f(x) = 
 

 
{     

      

 
 
  

 }[   
      

 
 
    

 ] 

But      
      

 
 
  

  =1         Uniform (0,1) 

Therefore f(x) = 
 

 
   

      

 
 
    

  

From x = μ + 
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u= 0   x = ∞       u= 1 , x = μ 

f(x) = 
 

 
   

      

 
 
    

           for μ ≤ x ˂ ∞    ξ≠ 0 

3.3.3 CONSTRUCTING GPD BASED ON MIXTURES 

We shall consider a gamma –gamma mixtures where the first gamma distribution is given by 

 f(x/ß) =  
  

  
             x>0,  >0,  ß>0 

which is the conditional distribution. 

The second gamma which is the mixing distribution is given by 

g(ß) = 
  

  
            ß>0,  𝛌>0,v>0 

Thus the mixed distribution is 

 F(x) = ∫             
 

 
 

  =∫
  

  

 

 
        

  

  
        dß 

  =
      

    
∫               
 

 
dß 

  = 
      

            
 ( +v) 

  = 
      

    

      

        
        x>0, 𝛌>0,  >0 

When   = 1 we get 

 F(x) = 
   

                 
  x>0,>0,v>0 

Which is Pareto ii( Lomax) distribution 

Further put v= 
 

 
 and 𝛌= 
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Then f(x) = 

 

 
 
 

 
 
 
 

   
 

 
 
 
   
 
 
 

 = 

 

 

   

 

   
 

 

 
    

 

 
 
   
 

 

 = 

 

 

 

 
   

  

 
 
  

 
 

 

 = 
 

     
  

 
 
  

 
 

 

Replace x by x-μ we have 

 f(x) = 
 

     
  

 
 
  

 
 

                    for x>μ,δ>0,ξ>0 

Which is GPD (μ,δ,ξ) 

 

3.3.4 OTHER APROACH USING MIXTURES 
We consider the case when k<0, δ>0 and x>0 

Proposition 

Castillo (1997) let   ⟾ G(x, Ө) = 1-  
   

  with x>0, δ>0, k<0 and let Ө>0.a sample of the random 

variable Ө ⟾ Gamma (0,1,-
 

 
) 

Then the random variable x obtained from mixing the two random variable    and Ө is GPD (K, δ) 

random variable. 

PROOF 

  ⟾ 1- 
   

            Ө ⇾
 

   
 

 
 
    

    

  

We calculate the cumulative distribution function of the random variable x 
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F(x) = P(X<x) = ∫     
   

  
 

 

 

   
 

 
 
    

    

   d Ө 

=
 

  
  

 
 
∫    
 

 
  

 
 ⁄    d Ө -

 

 (   ⁄ )
∫    
 

 
(  

  

 
) * (  

  

 
)+
   ⁄   

 d*    
  

 
 + 

 

=
 

 (   ⁄ )
∫    
 

 
  

 
   ⁄    d Ө - 

 

 (   ⁄ )
∫    
 

 
(  

  

 
) * (  

  

 
)+
   ⁄   

 d*    
  

 
 + 

 

 (   ⁄ )
∫    
 

 
(  

  

 
) * (  

  

 
)+
   ⁄   

 d*    
  

 
 +=    

  

 
 
  

  

=    
  

 
 
  

  .
 

 (   ⁄ )
∫    
 

 
(  

  

 
) * (  

  

 
)+
   ⁄   

d*    
  

 
 + 

=   
  

 
 
  

  

 

3.4SPECIAL CASES OF GPD 

3.4.1 TRANFORMED PARETO DISTRIBUTION 
A two parameter Pareto distribution with the shape parameter ξ and the scale parameter δ, denoted by 

GPD (ξ ,  δ) is the distribution of the random variable where 

 X = 
 

 
(1-     ) 

Where y is a random variable with the standard exponential distribution. 

The GPD (ξ, δ) has the following distribution. 

     (X) ={
       

 

 
  

 

 

      
(
  

 
)
     

       1 When ξ = 0 the GPD (ξ, δ) reduces to an exponential distribution with mean Exp (δ) 

 2 When ξ=1 the GPD (ξ, δ) becomes uniform U (0, δ) 

       3 When ξ<0 the GPD (ξ, δ) reduces to a Pareto (ξ, a, c) distribution of the second kind. 
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Which imply that a family of generalized Pareto distribution comprises of Uniform, Exponential and 

Pareto distribution which needs to be studied and compared into detail in this project 

 

 

PROOF 

X = 
 

 
 (1 -    )     which is a GPD random variable. 

F(x) = p (X<x) 

         =P (
 

 
 (1 -    ) <x) 

         =p (1 –     ) <
  

 
 ) 

                 =P (1 -     < ξ
 

 
) 

 =P (1- 
  

 
<    )  

 =P (ln (1- 
  

 
) < -ξy) 

 =P (y <
        

  

 
 

 
)  

                  =P (y < -ln   
  

 
 
 

  

                 When y → Exp (1) it’s f(x) = 1 -     

           Replacing for x with-ln   
  

 
 
 

 in f(x) above we get   =1-        
  

 
 
 
 

 

= 1 -    
  

 
 
 

 For x Є (0, 
 

 
) 
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i. When ξ = 0  in the CDF of GPD   1 –    
  

 
 
 

  

The F(x) becomes             
 

 
 
 

  

                                            = 1 -    

Which is the CDF of an exponential distribution with mean of δ  and a pdf is δ     

ii.  When ξ = 1                         
 

 
   

  =1 – (1- 
 

 
) 

  =
 

 
 

Which is a uniform distribution with mean of 
 

 
 and the limits are u [0, δ] 

 

 

iii.  When ξ< 0 it reduces to a Pareto distribution (k,a,c)distribution of  the second kind. 

 

                     1 -    
 

 
      =           

 

 
    

                                                   = 1-    
 

 
    

      = 1-
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3.4.2 RELATION OF PARETO TO EXPONTIAL DISTRIBUTION. 

If x is a Pareto distributed with parameters u and a then y =    
 

 
  is Exponential distributed with 

intensity a 

Proof, 

P(y<x) 

P(y <   
 

 
) 

P (    
 

 ) 

P (
 

  
     ) 

The F(x) of a Pareto Distribution with parameters u and a has CDF of 1 - 
 

 
   

                      The substituting for x in the CDF of a Pareto we get  

                      = 1-( 
 

   
   

                     =1 - 
 

  
   

                     =1 -      

                     = Exp (a) 

Which is an Exponential distribution withparameters a. 
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3.4.3 DERIVATION OF EXPONENTIAL TO PARETO DISTRIBUTION 

If Y is an Exponential distribution with intensity a then x=u   is Pareto distribution. 

Using the change of variable technique. 

 =P(X<x) 

 =P(Y<y) 

 =P(X< u  ) 

 =P(X/U<  ) 

 =P(      ) 

 =P(ln           ) 

 =P(y<ln (x/u)) 

The CDF of exponential distribution is 1-     substituting it in our equation we get 

 =1-           

 =1-           

 = 1-       which is a Pareto distribution with parameter (x, a) 

3.5 PROPERTIES OF DISTRIBUTIONS 

3.5.1 PARETO DISTRIBUTION 

f(x) = 
    

        
𝛌>0, >0,x>0 

Mean  

E(X) = x ∫       
 

 
 

         =∫
   

        
 

 
 dx 
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    = ∫                  
 

 
 dx 

     =let 𝛌+x= t     ,   x= t –𝛌,     dx = dt 

                       =∫     
 

 
(t-𝛌)         dt 

=∫     
 

 
t,         dt -∫             

 

 
 dt 

=∫    
 

 
   dt -∫       

 

 
      dt 

=-   [
   

   
  +      [

   

 
  

=-    
   

   
 +      

   

   
 –[- 

  

   
    + 

        

 
 ] 

= 
  

   
 -
  

 
 

= 
          

   
 

E(X) = 
 

   
 

 

E (  ) of Paretodistribution. 

   E   ) =∫   
 

 

   

        
 dx  

                                Let t=𝛌+x     dt=dx 

                                             X=t-h 

                                                     =       

                                =   - 2t     

Replacing of    in our intergrationwe have  
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=∫             
 

 
            dt 

=∫    
 

 
      -2          +          dt 

=     
     

   
] +2      [

     

   
] +     [   ] 

=
   

   
 --
    

   
 +
  

 
 = 

                    
           

          
 

=    -     -2           +     -3    + 2   

                 E (  ) = 
   

          
 

 

Variance (X) =E (  ) –[       

=
   

          
 -

  

      
 

=
                 

            
 

=
                 

            
 

Variance (X) = 
   

            
 

The CDF of Pareto distribution 

F(X) =∫     
 

 
 

∫
   

          
 

 
  = ∫     

 

 
            dx 
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Let 𝛌+x = t     ∫         
 

 
 dx =    

       

 
 

=  
 

   
   

=1-( 
 

   
  

 

3.5.2 EXPONENTIAL DISTRIBUTION 

f(x)=                                 

F(x) =∫     
 

 
dt 

=∫       
 

 
dt 

= ∫     
 

 
dt 

=-𝛌
  

 
dt 

= [     -1] 

=1-      The cdf of Exponential. 

 

Mean E(X) = ∫       
 

 
 

 =∫          
 

 
 

   =𝛌∫      
 

 
  dx        using intergration by partswe 

have∫      =u v –∫  du/dx 

Let u =x                dv =      
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 =1      v = 

     

 
 

 

  = [-x
    

 
  +∫

    

 

 

 
dx ] 

 

= [-x
    

 
 +
      

 
 ] 

= [-x     
     

 ] 

=-∞    -
     

 
 

=0-[-
    

 
] 

=
 

 
 

 

        E (  ) =∫   
 

 
      

  =∫   
 

 
𝛌     dx           let u=       dv =      

                                 du =  2x    v = 
     

 
 

                                   
   

  
 = u. v 

   

  
 

=𝛌[-  
    

 
  ∫

    

 
     

 

 
] 

=𝛌[ -  
    

 
  

 

 
       ] 
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           =𝛌[  -
    

 
 

 

 
   

     

 
  

    

 
]]  

 

=𝛌{-  
    

 
  

      

  
   

     

  
} 

=[-        
      

   
      

 
  

     

 
] 

=∞-2∞ -
 

 
 = 0 

=[-      -
      

 
 - 2

     

 
] 

=
 

 
 

Variance (X) = E (  ) -       

=
 

 
 -
 

   
 = 

    

  
 

=
    

  
 

3.5.3 UNIFORM DISTRIBUTION 

f(x) = 
 

   
                        a<x<b 

MEAN 

E(X) = ∫      
 

 
 

     =∫
 

   
  

 

 
 

     =
 

      
[  ] 



25 
 

     =
 

      
(     ) 

     =
          

      
 

     =
   

 
 

E(  ) = ∫       dx 

     =∫
  

   

 

 
dx 

     = 
 

   
∫   
 

 
dx 

     = 
 

      
 [  ] 

     =
     

      
 

 

Variance(X) = E (  )-      

    = 
     

      
-
      

 
 = 

 (     )      (    )

       
 

    =
                      

       
 

    =
                       

  
 

    =
         

  
 

    =
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3.6  THE CDF OF GENERALIZED PARETO DISTRIBUTION USING THE 

TRANSFORMATION METHOD 

   f(x) = 
   

      

 
 
    
 

 
 

    Let z/u= 1+
      

 
 

     =∫
   

    
 

 

 

 

 

  
   

     =∫  
    

 
 

 
 
   

 
 

  
dz 

     = ∫         
 

 
 

 Replacing for 1/ξ with   we get 

     = 1-            
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CHAPTER 4 

ESTIMATION OF GENERALIZED PARETO DISTRIBUTION 

4.1 INTRODUCTION 

There are three methods of estimating parameters of GPD , namely method of moment, L-moment 

method and maximum likelihood method. 

In this chapter we shall discuss the three methods and also derive the parameters of the three distributions 

.I shall also discuss order statistics.We shall also describe the quantiles of the generalized Pareto 

distribution . 

4.2 MAXIMUM LIKELIHOOD ESTIMATION. 

It involves estimation of parameters of each of the sampled probability distributions .Once the parameters 

of a given distribution are estimated then a fitted distribution is available for further analysis. 

The maximum likelihood estimates are used because they have several desirable properties which include 

consistency,efficiency,asymptotic  normality and invariance. 

The advantage of using the maximum likelihood estimation is that it fully uses all the available 

information about the parameters contained in the data and that if highly flexible (Denuit 2007) 

The steps involved in finding the maximum likelihood estimators are as follows. 

(1) Write down the likelihood function for the available data. If the likelihood is based on a set of 

known values xn1, 2 ,…, , then the likelihood function will take the form f (  ) f (   ),,,f (  ) , 

where f (x) is the PDF (or PF if it’s discrete) of the distribution that is to be fitted. 

(2) Take logs. This will usually simplify the algebra. 

(3) Maximize the log-likelihood function. This usually involves differentiating the 

Log-likelihood function with respect to each of the unknown parameters, and 

setting the resulting expression(s) equal to zero. 

(4) Solve the resulting equation(s) to find the MLEs of the parameters.  
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4.2.1 MLE OF PARETO DISTRIBUTION 

Let            be a random variable from a Pareto distribution.Then its MLE is given by 

    f(x) =  
  

        
 

   ∏    
   =      ∑             

    

  ln∏    
   =nln + nln𝛌-( +1)∑        

    

   
 

  
ln∏      

   
 

 
 +nln𝛌 -∑        

    

   
 

 
 +nln𝛌 -∑        

   =0 

   
 

 
 = -nln𝛌 +∑        

    

    =
 

∑             
   

 

Then differentiating with respect to 𝛌 

 
         

  
=
  

 
 -  ∑        

    - ∑        
    

  = 
  

 
 - 

 

  
{ n𝛌 +  nxi – n𝛌 + nx} 

  = 
  

 
 -  n –n 

Equating to zero we have 

  0= 
  

 
 -  n –n 

  
  

 
 = n +  n 

  
 

  
 = 

 

     
 

  𝛌 = 
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4.2.2 MLE USING THE METHOD OF TRANSFORMATION 

  f (x) =  
 

 
 
      

 
   

    

  

Using the transformation to a Pareto distribution we let   = 1/ξ 

And using the transformation z/u= 
      

 
   

   Therefore z= u {
      

 
  } 

   And d z =
    

 
 

   ⟾ d x =
    

  
 

 Therefore the Jacobian of the transformation is f (z) = g(z)|J| 

   = 
 

 
             

 

  
 

   = 
 

  
              

   = 
         

 
     

Replacing 1/ξ with   we get =            

   = 
   

    
 Which is a Pareto distribution 

Finding its MLE 

L(x, u,  ) = ∏    
    

 = ∏
   

    
 
    

 =      ∑         
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Ln ∏    
    =n ln  +  n ln u – ( +1)ln   

    

 
    ∏    

   

  
 = 

 

 
 + n ln u - ∑   

 
    

  
 

 
 + nln u - ∑   

 
      

    
 

 
 = ∑   

 
    – nln u 

    
 

 
 =  ∑     

  

 
  

    

    
 

 
 = 

 

 
∑     

  

 
  

    

 Substituting back 1/ξ= .We get 

   ξ = 
 

 
∑     

  

 
  

    

   

4.2.3 MLE OF UNIFORM DISTRIBUTION 

Suppose             form a random sample from a uniform distribution on the 

interval (0,Ө) where Ө> 0 and is unknown. 

  f(x)=
 

   
 

   =
 

 
 

  L(fx,Ө)= 
 

  
 

 Taking natural logs 

  LnL(fx,Ө)= ln    

  LnL(fx,Ө)= -lnӨ 
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 Differentiating with respect to Ө 

  
          

  
 = - 

 

 
 

 Equating to zero we have 

  Ө=min of             

   

4.2.4 MLE OF EXPONENTIAL DISTRIBUTION 

Let            be a random variable from an exponential distribution. 

Then the likelihood function is given by, 

   f(x)= 𝛌     

   L(x,fx)=     ∑   
 
    

  Ln (L(x,fx))=nln𝛌 -𝛌∑   
 
    

  
 

  
 Ln (L(x,fx))= 

 

 
 -∑   

 
    

  
 

  
 Ln (L(x,fx))=0 

  
 

 
 -∑   

 
   =0 

  
 

 
 =∑   

 
    

  𝛌=
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4.3METHODS OF MOMENT 

The basic idea behind this form of the method is to equate the first sample moment about the 

origin   = 
 

 
∑    
    to the theoretical moment E(x) 

Equate the second moment about the origin   =
 

 
∑     
    to the second theoretical moment 

E(  ) 

Continue equating the sample moments about the origin    with the corresponding theoretical 

moments E(  ) 

Solve for the parameters 

4.3.1 MOM OF PARETO DISTRIBUTION 

Let              be  a random variable from a Pareto distribution.Then its moments are 

   f(x)=
   

    
           x>0,𝛌    >0 

   E(X)=x∫       
 

 
 

    =x∫           
 

 
dx 

    =           dx 

    =-   
     

   
 

    =   ,
     

   
- 

    =   
   

   
 

      =
  

   
 

 =∑    
   

 

 
 

   E(  )=   f(x)dx 

    =  ∫
   

    

 

 
dx 

    =   ∫       
 

 
dx 

    =-   ,
     

   
- 
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    =   
     

   
 

      =
   

   
 

Using the methods of moment we can solve the parameters 𝛌 and   by Equating the first and 

second moments    and    

   =
∑    
   

 
 = 

  

   
 

    ( -1)= 𝛌 

     -u1= 𝛌 

     - 𝛌=   

  Factoring   and solving for it we have 

   =
  

    
       *1   

Solving for 𝛌 in the same equation we have   = 
  

   
 

     ( -1)= 𝛌 

Solving for 𝛌 we have 𝛌=
       

 
      *2 

Then with the use of *1 and *2 we can get the individual estimate by replacing either of the two 

in our second moment equation. 

    =
   

   
 

Using *1 replace   and solve 

 (
   

 

    
)/(

  

    
  )=   

 (
   

 

    
)/(

          

    
)=   

 (
   

 

    
)/(

         

    
)=   

 (
   

 

    
)/(

     

    
)=   
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Opening brackets and simplifying we have   

 
   

 

     
=   

Cross multiplying we have      
 -2  𝛌+  =0 

This result is a quadratic equation where we can solve for the values of 𝛌 by completing squares. 

   -
    

  
  =-    

   - 
    

  
 + 

  

  
   =  

  

  
   –   

    
  

  
  = 

  
 

   
 –    

 𝛌- 
  

  
 = √ 

   

   
     

 𝛌 = 
  

  
+ √ 

   

   
     

We can now get the   estimate by replacing the 𝛌 in our *1 

   = 
  

   
  
  
  √ 

  
 

  
     

 

4.3.2 MOM OF EXPONENTIAL DISTRIBUTION 

let             be a random variable from an exponential distribution assumed to be 

independent and identically distribution with exponential (𝛌) 

f(x) =              x>0 

E(x) =       
 
 dx   = 

    

 
 = 

 

 
 

E(  ) = ∫   
 

 
      dx = 

  

  
 = 

 

  
 

The method of moment of 𝛌 based on the second moment 

   = 
 

 
 = 

 

   
 

    √
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4.3.3 MOM OF UNIFORM DISTRIBUTION 

Parameter estimation of uniform distribution using the method of moment. 

  = 
   

 
                *1 

μ2 = 
        

 
         *2 

Solving for a in *1 we get a=2μ1 –b, replacing μ in *2 we get  

μ2=        
 +

         

 
 +   𝛌 

μ2 = 4   
        

         
    

 
 

μ =    
 - 

    

 
 +   

3μ2 =     
  - 2  b +    

Solving the equation by completing the squares we have  

   - 2  b = 3μ2 -   
  

   = 2  b +   
  = 3μ2 -    

  +   
  

      
  =     - 3  

  

=3(μ2-        
 ) 

Therefore b-    = √    -   
 ) 

    Therefore    =   + √        
   

Replacing for    in    = 2  - b we get  

   = 2   -   - √         
   

   =   - √        
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4.4 ORDER STATISTICS 

The order statistics of a random sample      ………   are the sample values placed in ascending order. 

They are denoted by -          . 

Let         be a random sample of size n from a distribution with pdf f(x) and cdf . 

Then the cdf of the j th order statistic is given by, 

Fj(x) = ∑ (
 
 
) 

                      

Let            be a random sample size and form a distribution of continuous population with 

pdff(x)andcdf f(x). 

Then the pdf of the jth order statistic is given by, 

 Fj(x) = j(
 
 ) f(x)[       ]            

 

 

 

4.5 L MOMENTS 
Definition, 

Let x be a real  valued random variable with cumulative  distribution function F(x) and quartile x(f) and 

let     n ≤    n ≤ …   .n be the order statistic  of a random sample size n drawn from the distribution  of 

x. 

Define the L moments of x to be the quantities 

   =    ∑          
   (

   
 

) Exr-k;r      r = 1,2,……. 

The L in the moments emphasizes that    is a given function of the expected order statistics furthermore . 

The natural estimation of    based on an observed sample of data is linear combination of the ordered 

data values. 

From the previous page the pdf of jth order statistic is given by, 

Fj(x) = j(
 
 )f(x)                      

=
  

            
                    fx 
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The expectation of an order statistic may be written as 

Exj.r = ∫         
 

  
 

=∫  
 

  

   

            
                     f(x) dx 

Hence, 

E   r = 
  

           
∫            
 

 
            dfx 

Lemma 2 

A finite mean implies finite expectation of all order statistics  

Proof 

Assume that the mean u=∫     
 

 
 is finite so x(u) is intergrable in the interval (0,1) 

∫     
 

 
        du = B (j, r-j+1) = 

            

   
 

Is finite then              is intergrable in the internal (0,1) 

Hence x(u)              is intergrable in the interval (0,1) because the product of the intergrable  

function on any interval is an intergrable function function on this interval and so  

 

∫     
 

 
    du is finite 

E  .r = 
  

            
∫         
 

 
         du is finite 

Therefore a finite mean implies a finite expectation all order statistics. 

i.e.    =    ∑         
   (

   
 

)E                  r=1,2,…………..2.1.2 

to a simple form that is easy to use  

Change variables u=F(x) let Q be the inverse of function F  i.e. Q(fx) = x or F(Quj) =u 

E       =
  

            
∫     
 

 
             du                        2.1.3 

Substitute from equation 2.1.3 into eqn, 2.1.1 

   =    ∑         
   ( 

   
 

) 
  

          
∫         
 

 
       du 

For convenience consider   +1 ………………..of    
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  +1 =        ∑         
    

 
 

) 
      

        
∫   
 

 
           du 

Make that      =        (r+1)! =r! and rearrange terms  

     =∫ ∑       
   

 

 
(
 
 
)
 
          Q(u)du       2.1.4. 

Expand        in powers of u! 

     = ∫ ∑       
   

 

 
(
 
 
)
 
    ∑        

   (
 
 
)     Q(u) du 

=∫ ∑ ∑       
   

 
   

 

 
(
 
 
)
 
(
 
 
)    Q(u)du. 

Interchange order of summation over j and k. 

     = ∫ ∑ ∑       
   

 
   

 

 
(
 
 
)
 
(
 
 
)     Q(u)du 

Reverse order of summation over j and k 

     = ∫ ∫ ∑ ∑         
   

 
   

 

 

 

 
(

 
   

)
 
(
   
   

)  Q(u)du. 

     = ∫ ∫ ∑         
   

 

 

 

 
,∑  

 
   

   
   

   
   

-  Qudu       2.1.5. 

Note that, 

(
 

   
)
 
(
   
   

)(
 
 
)   (

 
 
) (
 
 
) 

Expand the binomial in terms of factorial and the 

∑  
 
 
  
 
 
  

   = ∑ (
 

   
) (
 
 
) 

    = (
   
 

) = (
   
 

) 2.1.7 

Second equality follow because to choose r items form r+m we can choose from the first m items and r-n 

from the remaining r items for any n in 0.1,…….m from 2.2.5 and 2.2.6 we have  

∑ ((
 

   
)
 
) (
   
   

) 
   = (

 
 
)(
   
 

) 2.1.8 

And substituting into 2.1.5 gives, 

     = ∫

 
 

   

 

 
       (

 
 
) (
   
 

)x(f) Fm df                                                    2.1.9 

Let     
  =        (

 
 
) (
   
 

)  2.1.10 
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And    
 (f)  =∑       

  
    2.1.11 

Substituting (2.1.11)     into 2.1.9 we have  

   = ∫     
 

 
    
  (f) df                                   r=1,2,……                                                  2.1.12 

To find       = 
 

 
∑       
   (

 
 
) E        

=
 

 
*     (

 
 
)              

 (
 
 
)       + 

=
 

 
[            ] = 

 

 
 E(           ) 

And we can substitute r=2 in equation 2.1.12  

   = ∫     
 

 
   (F) df 

=∫     
 

 
 [∑     

  
      ]dffrom equation 2.1.12. 

=∫     
 

 
 [      

  +       
 ] 

=∫       
 

 
     (

 
 
) (
 
 
)+      (

 
 
) (
 
 
)F] dyfrom     2.1.10 

=∫         
 

 
df 

   = 
 

 
E(     -     ) = ∫  

 

 
 (2F – 1) df 

The first four 𝛌 moments are  = E(X)=∫    
 

 
 

   = E(            = ∫  
 

 
 (2f- 1) df 

   =   ⁄ E(     -      +     ) = ∫  
 

 
 (6   – 6F+1) df 

   = 
 

 
E(     - 3     + 3     -     ) = ∫  

 

 
 (20   - 30   – 12F)df 

The use of 𝛌 moments to describe probability distribution is justified by the next theorem. 

  is a measure of the scale or disperse on of the random variable x. It is often convenient to standardize 

the higher moments    r≥ 3 so that they are independent of the units of measurement of x. 
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4.5.1 L MOMENTS OF UNIFORM DISTRIBUTION. 

In this section we find the L moment for the uniform distribution. The uniform distribution has the 

probability density. 

F(x) = 
 

   
Fx = ∫

 

   

 

 
 dx = 

    

   
       F= 

    

   
 

XF = F(b – a )+a 

And its quartile function x(f) =   + (ß -  )F 

We are about to find the first four L moments of the uniform distribution. Beforedoing so we have to 

determine the first PWM of the uniform distribution. 

   = ∫      
 

 
df             r = 0, 1, 2… 

=∫           
 

 
  dF  =∫    

 

 
dF + ∫           

 

 
 dF 

=* 
    

   
+ + *

         

   
+ 

=
 

     
 + 

    

   
 

   = 
 

   
 +  

    

   
 

   =    =    +
    

 
  = 

 

 
(ß  +  ) 

   = 2   -    = 2*
 

 
  

    

 
+  - 

    

 
   = 

 

 
(ß -  ) 

   = 6   – 6    +    = 6*
 

 
  

    

 
+ – 6 *

 

 
  

    

 
+ + 

    

 
 = 0 

=20*
 

 
  

    

 
+ – 30 *

 

 
  

    

 
+ + 12*

 

 
 

    

 
+   

    

 
  = 0 

Hence        =   /   = 0 

   =   /     = 0 
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4.5.2 L MOMENTS FOR EXPONENTIAL DISTRIBUTION. 

In this section we find the four L moments for the exponentials distribution. 

F(x) = 1 – exp(- 
   

 
)      where     ξ ≤ x ˂∞ 

Firstly we want to find the quartile function of the exponential distribution so we replace x(f) with x and f 

with F(x) we have 

F = 1 –exp              then 1 – F exp             

Hence in (1 – F) = - (x(F) – ξ) /  

Therefore   x (F) = ξ -  ln (1 – F) 

 Secondly we want to find the rth PWM for the exponential distribution. 

   = ∫       
 

 
 df          = 0,1,2,……….. 

=∫              
 

 
   df = 

 

   
 ∫   

 

 
ln (1 – F)df 

Now we find ∫   
 

 
 ln (1 – F)df 

Integration by part we get, 
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        + + 

 

   
∫
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df 
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4.5.3. L MOMENTS FORGENERALIZED PARETO DISTRIBUTION 

The generalized Pareto distribution has the probability density function. 

 F(x) =           [  
              ] 

 And has the quartile, 

 X(f) = ξ +             (k=ξ+ 
 

 
 - 
 

 
       

Now we will find    for the generalized Pareto df 

   = ∫     
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   df - 
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  df 

Let u=1-f⟾du –dfF = 1-u 
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Moreover, 
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PARAMETERS OF DISTRIBUTION USING THE L MOMENTS 

4.5.1.1 UNIFORM DISTRIBUTION 

 
      

 
 =     *1 

 
      

 
 =     *2 

Solving for   and ß we have 

 2  =   + ß 

   = 2  -ß    *3 

 ß = 2   -      *4 

Substituting *3 in *2 we have 

   = 
            

 
 

Solving we have 

 6   = -2   + 2ß2ß = 6   + 2   

 ß= 3   +    

We can also solve for   by replacing ß in our *3 

   = 2  - (3   +  )= 2  - 3   –   

 =    -3   
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4.5.2.1 EXPONENTIAL DISTRIBUTION 

   = ξ +   

 If ξ = 0 then    =   

 Hence   =    = 
 

 
 

4.5.2.1GENERALIZED PARETO DISTRIBUTION 

The first and second L moments for the generalized Pareto distribution are 

   = ξ + 
 

   
 

   = 
 

          
 

 If ξ = 0 then we need to solve for the parameters 

   = 
 

   
 

  =   (1+k) 

Replacing for   in our other equation we have 

   = 
 

          
 

   = 
       

          
 

 Cross multiplying we have 

   (1+k)(2+k)=   (1+k) 

Simplifying by 1+ k on both sides we have 

   (2+K)=    

 2+K = 
  

  
 

 K = 
  

  
 -2 

We can now get the parameter estimate   in   =   (1+k) 

   =   (1+
  

  
 -2 ) 
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   =   (
         

  
) 

   = 
            

 

  
 

 

   = 
        

  
 

 

4.6 RISK MEASURE 

Some of the most frequently used measure of risk in extreme quantile estimation includes value 

at risk (VaR)and Expected shortfall (ES)and return level. This corresponds to the determination 

of the value at a given variable exceed with a given probability .This risk measure will be 

discussed into detail. 

4.6.1 VALUE AT RISK 

VaR is generally defined as the risk capital sufficient, in most instances to cover losses from 

portfolio over a holding period of a fixed number of days. Suppose a random variable X with a 

distribution function F describe negative returns on a certain financial instrument over a certain 

time horizon. Then VaR can be defined as the qth quantile of the distribution F. 

   

Where F-1 is the inverse of the distribution(q).The inverse of the distribution at a particular 

probability level is the called quantile. For risk management q is usually taken to be greater than 

0.95and quantile in this case is referred to us Value at risk. 

4.6.2 EXPECTED SHORTFALL 

Another informative measure of risk is the expected shortfall (ES)or the tail conditional 

expectation which estimates the potential size of loss that exceed VaRq. 

   

Artzner et al (1999)argue that VaR is not a coherent risk measure,but proved that ES is a 

coherent measure. 

Once we know the values of the parameter of the generalized Pareto distribution. We can use 

them to calculate the value at risk and expected shortfall. 
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PROOF 

VaRq 

We start from the fact that the GPD is a good approximation of the excess distribution function. 

        (x) =       
           

      
 

In addition F(u) can be numerically be approximated by 

   F(U) = 
    

 
 

Where N denotes the total number of data and Nu denotes the number of excedances over the 

threshold u 

       (x) = 
           

      
   = 

         

      
 

       (x)[1-F (μ)]= F(x+ μ) –F (μ) 

   F(x+ μ) =     (x) [1-F (μ)] + F(μ)  

And replacing Fu(X) by GPD which is ,  
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  F(x+u) = 1-
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Let us denote the probability level of 1 day VaR by   .We want to calculate VaR(1- ) given that 

the random variable x denote 1 day losses taken with the positive sign we have. 

  P (x≤ VaR (1-  )) = 1-  

  ⟾F[VaR (1- )]= 1-   = F(x) 

In addition let xp be such that 

  X p + u = VaR(1- ) 

Hence we have 1- =F( xp + u)⟾F(u +x)=q 

Therefore   1-
  

 
    

      

 
     = q 

Then replacing for     =x we have 

Q=1-
  

 
    

          

 
      

then solving for VaR q We have 

(q-1)
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(1-q)
 

  
 =     

          

 
      

 
  

  
   = 1+ 

          

 
 

 
  

  
     == 

          

 
 

    - μ= 
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     ) 

        = μ+
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EXPECTED SHORTFALL 

     =      + E(X-     /x>    ) 

The second term on the right is the expected exceedances over threshold VaRq.This is also 

known as the mean excess function for GPD with parameter ξ<1 which corresponds to the 

following expression. 

  E(u) =E(x-u/x>u) = 
     

   
               for δ + ξu>0 

 

Therefore we get  

  ESq=      + 
            

   
 

  =
                        

   
 

  = (VaRp – ξ VaRp + δ + ξ VaRp + ξμ)/(1-ξ) 

  ESq= 
         

   
 

The function gives the average of the excesses of X over varying values of the threshold x. 
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CHAPTER FIVE 

APPLICATION 

This section presents the procedure which was used in the study .It explains in detail the steps 

that were encountered in the modeling process which includes the data processing and analysis. 

5.1 SCOPE OF THE DATA 

Secondary data from U.A.P insurance company regarding fire industrial claims for the period 

2002-2013 was used in this study. Three assumptions were made on the data before use. 

1 All claims came from the same distribution.ie they were independent and identically 

distributed. 

2 There were no zero claims for any fire policy sold. 

3 Future claims were to be generated from the same distribution. 

 

5.2 ACTUARIAL MODELING PROCESS 

This section will describe the steps that were followed in fitting a statistical distribution to the 

extreme claim severity .These steps include 

1) Selecting the model family of distributions. 

2) Exploratory data analysis. 

3) Choosing the threshold. 

4) Estimating the parameters. 

5) Goodness of fit test. 

5.3 SELECTING THE MODEL FAMILY 

 

Here considerations were made of a number of parametric probability distributions as potential 

candidates for the data generating mechanism for extreme claims. Most data in general insurance 

is skewed to the right and therefore most distributions that exhibit these characteristics can be 

used to model the extreme claims. 

However the list of potential probability distributions is enormous and it is worth noting that the 

choice of distributions is to some extent subjective. 
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For this study the choice of the sample distributions was with regard to  

 -Prior knowledge and experience in curve fitting. 

 -Time constraint 

 -Availability of computer soft-ware to facilitate the study. 

 -The volume and quality of data. 

Therefore three distributions were used including:Pareto,Exponential and Uniform 

5.4 EXPLORATORY DATA ANALYSIS 

It was necessary to do some descriptive analysis of the data to obtain the salient features .This 

involves the Mean,Median,Mode,Standard Deviation,Skewness and Kurtosis. This was done 

using MATLAB  programming language and also manual calculation.. 

 

5.5 CHOOSING A THRESHOLD 

A good choice of threshold is important. Balancing act was applied where if a lower threshold is 

chosen it results in a large model error with more data and smaller parameter error. High 

threshold results in smaller model error and a less data with larger parameter error. 

5.6 QUANTILE-QUANTILE (Q-Q) PLOTS 

The quantile-quantile plots are graphical techniques used to check whether or not a sampled data 

set could have come from some specific target distribution .i.e. to determine how well a 

theoretical distribution models the set of sampled data provided. This study used the Q-Q plot to 

check for the distribution that fit the sample. 

The first q stands for the quantile of the sampled data set and the second q stands for the quantile 

of the distribution being checked whether it fits the data. Q-Q plot is a plot of the target 

population quantile (y)against the respective sample quantile (x). 

If the sample data follow the distribution suspected ,then the quantile from the sample data 

would lie close to where they might be expected and the points on the plot would straggle about 

the line y=x. 

In addition. If the Q-Q plot deviates significantly from a straight line,then either the shape 

parameter is inaccurate or the model selection is untenable. If the graph is concave this indicates 

a fat tailed distribution, whereas a convex shape is an indication of a short –tailed distribution. 

Theoretically,In order to calculate the quantile of the distribution,this target distribution must 

first be specified .i.e.Its population mean and standard deviation but in practice,the sample 

estimates are used, thereforesample mean and standard deviation of the distribution were 

estimated to be same as ones of the sampled data set. 
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5.6.1ADVANTAGES OF Q-Q PLOT 

1The sample sizes do not need to be equal. 

2Many distributional aspects can be simultaneously tested for example shifts in locations, shifts 

from scale, changes in symmetry and the presence of outliers. This is important because if the 

claims amount and the claim count of the data set comes from population whose distributions 

differ only in location, the points should lie along a straight line that is placed either up or down 

from the 45-degree reference line.. 

5.7RESOURCES 

The study required a computer preferably 250GB hard disk,1 GB Ram,1-73GHZ  dual processor 

any model.It also required a Microsoft office package,Matlab Program,Microsoft office 

especially Excel and R program. 

5.8COMPUTATION AND INTERPRETATIONS 

5.8.1SPECIFIC OBJECTIVES 

Testing for the appropriate statistical distribution for the claim amount  

Test the goodness of fit of the chosen distribution 

5.8.2VARIABLE 

The random variables used in the study were the fire claim amount reported and claimed at UAP 

Insurance. 

5.8.3DESCRIPTIVE DATA ANALYSIS 

Mean = 6.2966e+005 

Variance =1.0395e+013 

Median =5.4276e+004 

Mode = 27840 

Skewness= 17.0740 

Kurtosis =381.5717 

Number of observations =902 

The data according to descriptive statistics shown above indicates that the data is skewed to the 

right(skewedness coefficient of 17.07)Right –skewedness means that the right tail is long relative to the 

left tail. 

Kurtosis is a measure of whether the data is peaked or flat relative to a normal distribution. The loss data 

set with high kurtosis tend to have a distinct peak near the mean, decline rather rapidly and have heavy 

tails. 
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5.8.4CHOICE OF THE THRESHOLDS 

The study sampled data using two thresholds the 90% and 95%quantile.A comparison of the two samples 

was done by plotting a generalized Pareto distribution.A threshold of 95% quantile was chosen which has 

45 claims. 

(a)                                                                                      ( b) 

 

Graph b from a threshold of 95%quantile is more fitting as compared to (a)which is from a threshold of 

90% 
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The histogram plot of claims with a normal distribution shows that the data highly skewed and hence for 

any analysis we need to take the first ,second and third logarithm to reduce skewness and normalize the 

data. 
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Histogram of claims with a normal distribution superimposed on it shows that the data is normalized. This 

is after taking the third natural logarithms. 
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5.8.5 THE PARAMETER ESTIMATION 

The parameters of the three distributions were estimated and compared for the three methods of 

estimation.Its clear that Pareto distribution had the least estimate of the three distribution 

followed by exponential and finally uniform distribution meaning that Pareto distribution was the 

best fitting distribution. 

DISTRIBUTION MLE MOM L-MOMENT 

Exponential Mu=0.9878 Mu=0.9878 Mu = 0.987803 

Uniform a = 0.8136 

b = 1.0641 

a=0.9174 

b=1.058 

a=3.92 

b= -1.944 

Pareto k = -1.94 

Sigma = 2.065 

K= - 1.9309 

Sigma= 2.08 

K= -2.1893 

Sigma= 1.9893 

Generalized Pareto K= -1.94 

Sigma = 2.065 

K= 1.0309 

Sigma= 2.08 

k = -.9893 

Sigma = 1.9893 

Theta = 0 

 

The maximum likelihood estimate of Exponetial distribution was equal for the three methods of 

estimation.For uniform distribution the parameter estimate was in the range of 0.8136 and 1.06 for the 

method of moment and the maximum likelihood method. The L moment method gives results that are in 

the range of -1.944 to 3.92.meaning it does not give the best estimate with the least error. 

For Pareto distribution the three methods of estimation gives result in the range of -2.1893 to 2.08. The  

three methods are almost giving results that are almost equal. Method of maximum likelihood gives the 

least estimate hence the best estimation method. Therefore with the two distributions that is exponential 

and Pareto distribution we shall carry out  Q-Q test to come up with the best fit.   

Therfore we conclude that Pareto distribution is the best fitting distribution of the three distribution but 

further analysis needs to be done to check confirm that Pareto is the best distribution. 
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5.8.6Q-Q PLOTS 

HO:The statistical distribution provides the best fit for extreme claims data. 

H1:The statistical distribution does not provide the best fit for the extreme claims data. 

 

5.8.6.1EXPONENTIAL 

H0:The exponential distribution provides the correct statistical model for the extreme claims 

data. 

H1:The exponential does not provide the correct statistical model for the extreme claims. 

 

This figure shows the 70% of the points are lying close to the abline.The plot depicts that the 

exponential distribution has light tails on both ends as most points are not falling on the reference 

line. 

Conclusion 

The null hypothesis was therefore rejected and a conclusion was made that the exponential 

distribution does not provide the correct statistical model at 99% confidence level. 
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5.8.6.2GENERALIZED PARETO DISTRIBUTION 

H0: Generalized Pareto distribution provides the correct distribution for extreme claim data 

H1: Generalized Pareto distribution does not provide the correct statistical distribution for 

extreme claims data 

 

. 

  

The Q-Q plot shows the best distribution where almost all the points are lying on the line,except  

few that are outliers but are very close to the line if you keenly compare the points they lie 

closest to the line. 

CONCLUSION 

We do not reject the hypothesis and hence we conclude that generalized Pareto distribution 

provides the correct distribution for extreme claims data at 99% confidence level.  
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5.8.6.3 Q-Q PARETO DISTRIBUTION 

HO: Pareto distribution provides the correct claims data set 

H1: Pareto distribution does not provide the correct claims data set. 
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5.8.7Histogram Plot 

To come up with the best distribution of the two selected distributions histogram plot of data 

with a distribution were plotted. 

HO: Claims data comes from Pareto distribution 

H1:Claims data does not come from Pareto distribution 

 

This histogram shows that about 90% of the points are lieing on the distribution line.Meaning 

that,about 10% of the points are lieing outside the distribution line. These points lieing outside 

the distribution curve are the ouliers, in this case they are the extremely high claims. Thus 

making Pareto to be the best fitting distribution 
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5.8.8Exponential Histogram Plot 

H0:Claims data comes from exponential distribution 

H1:Claims data does not come from exponential distribution 

 

This histogram shows that about 80% of the points are lieing on the distribution curve.Meaning 

about 20% are lieing outside the distribution curve .Thus making it to be the least fitting 

distribution 

CONCLUSION 

The two histogram shows clearly that Pareto distribution is the best fitting distribution of the 

claims data. 
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5.8.9BOOTSTRAP CONFIDENCE ESTIMATES 

 The study went ahead to find the confidence intervals of the generalized Pareto distribution 

estimates. 

Bootstrapping is the practice of estimating properties of estimators (such as the variance)by 

measuring those properties when sampling from an approximating distribution. This can be 

implemented by constructing hypothesis test. 

The bootstrap method involves taking the original set of N heights and using a computer 

samplingfrom it to form a new sample called a resample or bootstrap sample that is also of size 

N.The bootstrap sample is taken from the original using sampling with replacement so it is not 

identical with original.This process is repeated a large number of times typically 1000 times. 

Then for each of the bootstrap sample we compute the mean and standard deviation. Using the 

estimated parameters we fit a Q-Q plot of the parameters. We therefore obtain the histogram of  

Generalized Pareto distribution parameters which gives us the confidence intervals of those 

parameters. 

 

5.8.9.1QQ PLOTS OF BOOTSTRAP ESTIMATES 
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5.8.9.2 HISTOGRAMS

 

5.8.10 VALUE AT RISK AND EXPECTED SHORTFALL 

We have calculated for the Value at risk and expected shortfall using a threshold of Ksh 2450300 giving 

me 45 samples exceeding threshold from a sample of 902 claims reported in an insurance company. 

Quntile VaR ES 

.90 24500O9 2450201 

.95 2449977 2450188 

.99 2449950 2450181 

 

The table shows that an increase in the quantile results to a decrease in the value at risk.Meaning 

that, Huge number of the claims if occurred will be borne by insurer himself.It also leads to a 

decrease in the expected shortfall. This is the probable loss that would result incase a risk 

happens at a certain quantile. 
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CHAPTER SIX 

SUMMARY AND CONCLUSION 

6.1 SUMMARY 

The major objective is to come up with one statistical distribution that fits the extreme claims 

data well and to test how well this statistical distribution fits those extreme claims so that this 

distribution can be used for modeling the extreme claims. 

The data that wasanalyzed came from an Insurance company which were fire claims from 2002 

to 2013.The data had 902 claims. I carried out the descriptive analysis of the data where the 

mean was found to be 6.2966e+5 , The variance is 1.0395e+13, Skewnessis 17.0740 and kurtosis 

381.5717.From the descriptive statistics it shows the data is heavy tailed hence extreme value 

theory was applicable. Two different thresholds were selected to sample the extreme claims and 

the normal claims. The thresholds chosen were beyond 95% percentile and beyond 90% 

percentile. The peaks of threshold graph shows that the 95% data is the best to use hence I went 

ahead to use it discarding data below the 95% percentile. A threshold of 2,450,300Ksh was used. 

The parameter estimates of the three distributions were compared and Pareto distribution came 

up to be the best fitting distribution.The Q-Q plots indicate that most points of the Pareto 

distribution are lying along the reference line thus making it the best distribution family in 

preliminary stage. A histogram of claims with two selected distributions also pointed  that Pareto 

distribution was the best fitting distribution among the three distributions, followed by 

Exponential distribution, while the Uniform distribution was the worst distribution with the 

claim points lying very far away from the abline of the Uniform distribution.. 

Bootstrap method was carried out where I got a another sample with replacement then estimated 

the parameters of the generalized Pareto distribution, plotted the QQ plots of the sample then 

estimated the confidence intervals of the parameters to be for scale parameter and shape 

parameter 

6.2 CONCLUSIONS 
We have shown that GPD can be fitted to fire insurance loss severity. When the data exceeds a high 

threshold, the GPD is a useful method for estimating the tails of loss severity distributions. It also means 

that the GPD is theoretically well supported technique for fitting a parametric distribution to the tails of 

unknown distribution. 
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6.2.1 RECOMMENDATION 

I would like to recommend future researchers to model the tail forms of other forms of insurance. 

Secondly, from a risk management viewpoint,constructing a useful management technique for avoiding 

large claims would be an interesting line of research. In addition to, I would like to recommend a similar 

research using the extreme value distributions family still employing  the three methods of estimation or 

come up with other methods of estimation. 

6.2.2CHALLENGES ENCOUNTERED 

The scarcity of observations from the tail region of the distribution is small compaired to the sample size 

required to estimate the form of the tail region with significant power.There is a bias –variance tradeoff 

issues when deciding the number of upper order statistics to use in the analysis. 
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APPENDIX 

MATLAB PROGRAM CODE 
helpxlsread 
g=xlsread('C:\Users\ROBERTS\Desktop\roba\uaplingm.xls',1,'C1:C903'); 
g 
% decriptive data statistics 
A=mean(g) 
B=var(g) 
C=median(g) 
D=mode(g) 
E=skewness(g); 
F=kurtosis(g) 
%Selecting the threshold at 95%extreme 
q=quantile(g,0.95); 
q 
%Mean Excess Function 
mydata=g(g>q)-q; 
mydata 
klop=mean(mydata) 
c=length(mydata) 
J1=mydata 
J1 
y=mydata 
%Transforming the data to reduce it skewness by taking los 
lx=log(mydata); 
llx=log(lx); 
lllx=log(llx); 
figure(9) 
hist(mydata) 
myalpha=0.01; 
%evaluate the parameters 
[expparms,expci]=expfit(lllx,myalpha); 
[gamparms,gamci]=gamfit(lllx,myalpha); 
[wblparms,wblci]=wblfit(lllx,myalpha); 
%log likehood function is calculated 
o=expfit(lllx,myalpha) 
o 
k=wblfit(lllx,myalpha) 
k 
t=gpfit(lllx,myalpha) 
r=gpfit(lllx,0.95) 
r 
p=gpfit(lllx,0.995) 
p; 
m=histfit(mydata) 
m 
figure (12) 
histfit(llx) 
figure (11) 
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histfit(lllx) 
figure (10) 
llllx=log(lllx) 
histfit(llllx) 
paramEsts = gpfit(y) 
kHat      = paramEsts(1)  % Tail index parameter 
a=kHat 
sigmaHat  =paramEsts(2);   % Scale parameter 
b=sigmaHat 
bins = 0:10:25 
h = bar(bins,histc(y,bins)/(length(y)*.25),'histc') 
set(h,'FaceColor',[.1 .1 .1]) 
ygrid = linspace(0,1.1*max(y),1) 
figure (40) 
line(ygrid,gppdf(ygrid,kHat,sigmaHat)) 
xlim([0,10]); xlabel('Exceedance'); ylabel('Probability Density') 
[F,yi] = ecdf(y) 
plot(yi,gpcdf(yi,kHat,sigmaHat),'-') 
hold on; stairs(yi,F,'r'); hold off; 
legend('Fitted Generalized Pareto CDF','EmpiricalCDF','location','southeast') 
replEsts = bootstrp(100,@gpfit,lllx) 
figure (6) 
subplot(2,1,1), hist(replEsts(:,1)); title('Bootstrap estimates of k'); 
subplot(2,1,2), hist(replEsts(:,2)); title('Bootstrap estimates of sigma'); 
figure(5) 
subplot(1,2,1), qqplot(replEsts(:,1)); title('Bootstrap estimates of k'); 
subplot(1,2,2), qqplot(log(replEsts(:,2))); title('Bootstrap estimates of log(sigma)'); 
[paramEsts,paramCI] = gpfit(lllx); 
h = lillietest(lllx,alpha) 
alpha1=0.001 
h = lillietest(lllx,alpha1) 
alpha2=0.001 
h = lillietest(lllx,alpha2,'ev') 
alpha3=0.05 
s=gpcdf(lllx) 
P = gpcdf(lllx,a,b,1) 
figure (45) 
nbins=25 
histfit(mydata,nbins,'exponential') 
figure (46) 
histfit (mydata,nbins,'gp') 
figure (47) 
PD3 = fitdist(lllx,'exponential') 
PD3 
PD4 = fitdist(lllx,'gp') 
PD4 
[m,v]=unifstat(A,B) 
helpqqplot 
figure (16) 
qqplot(lllx,PD4) 
figure (18) 
qqplot(lllx,PD3) 
figure (19) 
v=gpfit(lllx,0.01) 
z=unifit(lllx,0.01) 
U=expfit(lllx,0.001) 
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ALPHA5=0.05 
H = KSTEST(mydata,PD4,ALPHA5,'unequal') 
K1 = mle(lllx,'distribution','exponential') 
K2 = mle(lllx,'distribution','gp') 
K5 = mle(lllx,'distribution','uniform') 
nlogL=-explike(expfit(mydata),mydata) 
nlogL=-gplike(gpfit(mydata),mydata) 
[p,ci] = gpfit(lllx) 
figure (22) 
qqplot(lllx,K5) 
paramEsts=K2 
[nll,acov] = gplike(paramEsts,mydata); 
StdErr = sqrt(diag(acov)) 
[ahat,bhat] = unifit(mydata) 
figure (27) 
plot(lllx) 
figure (28) 
plot(llx) 
figure(29) 
plot(lllx,'o') 
PD4 
figure (30) 
hist (lllx) 
bo=moment(mydata,1) 
bo 
b1=moment(mydata,2) 
b1 
b2=moment(mydata,3) 
b2 
lo=mean(lllx) 
lo 
lp=var(lllx) 
lp 
 

 

 

 

 

 

 

 

 

 

 


