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Abstract

In an effort to reduce global maternal mortality, all countries that gathered at the United

Nation Millennium Summit in 2000 agreed to incorporate maternal mortality as MDG-5.

This was intended to improve maternal health by reducing maternal mortality ratio by three

quarters by 2015. South Sudan is one of the United Nation countries with the highest

mortality rate compared to other Countries worldwide. This study was conducted to model

and forecast maternal mortality ratio (MMR) at the Juba Teaching Hospital (JTH) using

the ARIMA time series model for the period of January 2008 to December 2014. Within the

study period, there were 135 maternal deaths and about 29,711 deliveries, which accounts to

MMR of 454 per 100,000 live births. The ARIMA (3, 0, 1) model adequately fitted Maternal

Mortality Ratio data and was able to forecast monthly Maternal Mortality ratios at the

facility for the period of January 2015 to December 2015.
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Chapter 1

INTRODUCTION

Maternal mortality is defined as the death of a woman while she is pregnant or within 42 days

after delivery from any cause related to or aggravated by the pregnancy or its management

but not from accidental or incidental causes (Conde-Agudelo and Belizán, 2000).

Maternal Mortality Ratio (MMR) is usually expressed as the number of maternal deaths

per 100,000 live births. It is influenced by a number of factors which include socio-cultural,

socio-demographic and socio-economic factors, access to health care such as antenatal care

and also her nutrition both in childhood and adulthood. Most of the maternal deaths are

thus, preventable and this could be achieved through; adequate nutrition, proper health

care, including access to family planning, and due presence of a skilled birth attendant

during delivery and emergency obstetric care (Asia, 2013).

1.1 Background.

Maternal mortality is an essential indicator of maternal health in both developed and devel-

oping countries (Høj et al ., 2003).

Women in developing countries on an average have more pregnancies than their counterparts

in developed countries; hence, their lifetime risk of death due to pregnancy is higher.

A womans lifetime risk of maternal death, the probability that a 15-year-old woman will

eventually die from a maternal cause is, 1 in 3700 in developing countries, versus 1 in 160 in

1



developing countries (WHO, 2014).

In an effort to reduce worldwide maternal mortality, all the countries that gathered at the

United Nation Millennium Summit in 2000, agreed to put maternal mortality as one of the

eight Millennium Development Goals (MDGs). In particular, maternal mortality is placed

as MDG 5 with the aim to improve maternal health, by reducing the maternal mortality

ratio (MMR) by three quarters by 2015 MDG (Report, 2014).

Worldwide, maternal death has declined by 45% from 380 per 100,000 live births in 1990 to

210 per 100,000 live births in 2013, showing an average annual decline of 2.6% (UN, 2014).

The report further indicates that African countries have reduced their MMR from an average

of 870 deaths per 100,000 live births in 1990 to 460 deaths per 100,000 live births in 2013,

an average reduction of 47%.

Attainment of the MDG target of reducing maternal mortality by three-quarters will require

accelerated efforts and stronger political backing for women and children. Improving mater-

nal health is another key to achieving MDG 4 of reducing child mortality (UN, 2014; Asia,

2013).

The maternal mortality ratio for most of Sub-Sahara Africa countries are above the MDG

target. However, the average regional figures show that maternal mortality has been de-

creasing; from 990 per 100,000 live births in 1990, 830 per 100,000 live births in 2000 to 510

per 100,000 live births in 2013 (UN, 2014).

According to WHO (2014), South Sudan has a higher maternal mortality ratio of 730 per

100,000 live births compared to the rest of the countries in the region; for example Kenya

has 488 per 100,000 live births in the same report. This implies that MMR in South Sudan

is higher when compared to worldwide, continental and regional estimates.

South Sudan with an estimated population of 9.6 million has only one referral hospital, Juba

Teaching Hospital (JTH), a 580-bed facility located in Juba City. Due to lack of proper func-

tioning primary health care facilities upcountry, many South Sudanese have nowhere to go

to but this national referral hospital. Furthermore, military and police hospitals, if any, are

non-functional country wide, hence soldiers and officers share the same limited facilities with

civilians at JTH ( RMF,2013).
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1.2 Problem Statement.

MMR in South Sudan is among the highest in the world and more so in Sub-Sahara Africa.

Being a new country, it has low levels of income in most families, low education levels among

women, lack of access to appropriate reproductive health care, poor health infrastructure,

inadequate medical supplies and insufficient human resource in existing health facilities.

Recognizing that these factors could be some of the main factors leading to high MMR;

Juba teaching hospital trained its medical staff in emergency obstetric care, increased its

surgical supplies to handle complications, ensured better reproductive health services for

adolescence and improved family planning care. Despite the new measures, MMR remained

high.

Women and girls are a driving force in our economies and when women are healthy, they play

a crucial role in the development of communities and nations in general.The attention and

care given to women before, during and after pregnancy; inside and outside the health system

reflects the relative value a society accords to women.Reducing MMR requires strengthening

of health care system. This process takes time and must be fueled by public commitments;

sustained by maternal death review and forecasting. One valuble entry point is research on

pattern of MMR and forecasting.

Most of the researchers in the reviewed literature used odd ratio and descriptive methods

in their analysis which are limited to their data and cannot be used to extrapolate any

conclusion about a full population or used to forecast the future trends. This study accounted

for this limitation by adopting an ARIMA model to explain the relation between the values

from the past and use the model to predict the future values of the variable.

1.3 Research Questions.

1. What is the pattern of maternal mortality ratio (MMR) in Juba Teaching Hospital?

2. How will the MMR in the Juba Teaching Hospital be in the following twelve months

after December 2014?
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1.4 Objectives.

1.4.1 Main Objective.

To model and forecast maternal mortality ratio at Juba Teaching Hospital using the ARIMA

time series model.

1.4.2 Specific Objectives.

1. To construct an appropriate ARIMA model depicting the pattern of MMR.

2. To forecast MMR in Juba Teaching Hospital for January 2015 to December 2015.

1.5 Justification of the Study.

There is no existing literature on forecasting maternal mortality ratio specifically in Juba

teaching hospital and also the study accounts for the limitation of methods of analysis used

by the existing literature. The study determines the pattern of MMR at the Juba teaching

hospital thus providing vital information regarding prevalence of MMR in the health facility.

The finding from the study provides important information to policy makers and other

stakeholders on future trends of MMR on JTH and thus will assist them in formulation of

policies and appropriate strategies for intervention to reduce MMR as well as evaluating and

monitoring maternal health policies; making it a core national concern.

Furthermore, the project will provide a baseline for further research on MMR and related

topics in the country in general.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction.

This chapter gives a brief summary of related literature. It starts with an empirical liter-

ature followed by an overview of the literature. The surveyed recent empirical literature is

organized chronologically.

Osoro et al.(2014) investigated the antecedent factors predisposing women to maternal death

in Kisii Level 5 Hospital using a descriptive retrospective study design, for the period ranging

from January 01, 2009 to June 30, 2010. They found that out of 72, 42 maternal deaths were

as a result of direct obstetric complications which included haemorrhage, post-partum sepsis,

pre-eclampsia and abortion. Post partum hemorrhage was the most common complication

which contributed to maternal deaths. Their findings also shows that out of 72 maternal

deaths, 33 were as a result of indirect causes with peritonitis, heart disease, HIV/AIDS,

anaemia, and convulsive disorder. Delayed access to transport, lack of money for user fees,

and hospital distance were challenges that led to delay in accessing care. They concluded

that lack of access to quality healthcare facility, poor health seeking behaviour and poor

socio-economic factors were the main causes of maternal mortality. A study conducted by

Savadogo et al.(2014) on Maternal Mortality Risk Factors in regional Hospital in Burkina

Faso using univariate analysis revealed that the most significant risk factors that led to in-

creased maternal Mortality were: age (women older than 35 and younger than 19 years),
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distance from hospital (greater than 10km), multiple deliveries, few antenatal care visits (less

than 3 visits), obstetrical maternal mortality direct causes and emergency reference.

Using an ARIMA model and quarterly data for a period of 2000 to 2010; Sarpong (2013)

examined maternal mortality ratios at the Okomfo Anokye Teaching Hospital in Kumasi

(Ghana) and found that ARIMA (1,0,2) model was the best to predict MMR for the period

of 20 quarters since ARIMA (2,0,1) model was insignificant. The calculated MMR was 967.7

Per 100,000 live births. Kitui et al.(2013) investigated the factors influencing the place of

delivery for women in Kenya. Using multivariate methods of analysis, they found that liv-

ing in urban areas, being wealthy, more educated, using antenatal care services optimally,

region, ethnicity, type of facilities used and lower parity strongly predicted where women

delivered. They reported that women most commonly cited distance and/or lack of trans-

port as reasons for not delivering in a health facility and concluded that physical access to

health facilities through distance and/or lack of transport, and economic considerations were

important barriers for women to delivering in a health facility in Kenya.

Mojekwu and Ibekwe (2012) carried out a study on maternal mortality in Nigeria using si-

multaneous stepwise multiple regressions. Their findings indicated that delivery by a skilled

health professional and educational level of women had more effect in reducing the maternal

mortality ratio than other factors. Fawole et al.(2012) examined the risk factors for mater-

nal mortality in institutional births in Nigeria. Using stratified multi-stage cluster sampling

strategy, they found that within the study period there were 79 maternal deaths and 8,526

live births which accounted for the maternal mortality ratio of 927 per 100,000 live births.

Almost about one-fifth (20.5%) of women had no antenatal care while 79.5% had at least one

antenatal visit during pregnancy. Four-fifths (80.5%) of all deliveries were normal deliveries.

Elective and emergency caesarean section rates were 3.1% and 11.5% respectively. Lack of

antenatal care, parity, level of education, and mode of delivery were significantly associated

with maternal mortality. Low maternal education, high parity, emergency caesarean deliv-

ery, independently predicted maternal mortality. Socio-economic factors have much impact

in increasing MMR as high-income countries have lower ratios than low-income countries

(Bhutta et al., 2012). They conducted a study on reducing maternal, newborn, and infant
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mortality globally and found an estimate of about 500 deaths per 100,000 live births in low-

income compared to 4 per 100,000 live births in high income countries. The health related

factors that escalate MMR included hypertensive diseases, sepsis/infections, obstructed la-

bor, and abortion-related issues.

Koch et al. (2012) used autoregressive models (ARIMA) to assess the main factors related

to maternal mortality reduction in Chile. Their findings revealed that the most significant

factor for the increase in MMR was abortion. The analysis further revealed that women’s ed-

ucation level among other factors; significantly contributed to the decrease in MMR in Chile

during the study period. The calculated MMR was 102.3 per 100,000 live births. Ahmed

et al.(2011) estimated maternal mortality at the Sub-national level in Bangladesh, using

an empirical Bayesian prediction method to provide a model based method of estimating

maternal mortality ratios in all 64 districts. They found MMR to be ranging from 158 per

100,000 live births to 782 per 100,000 live births. The highest MMR was especially in Sylhet

(678 per 100,000 live births) followed by Habiganj (654 per 100,000 live births). According to

the study carried out by Hogan et al.(2010) on maternal mortality for 181 Countries, using

robust analytical methods. The researchers found that there were 342,900 maternal deaths

worldwide in 2008, down from 526,300 in 1980. The global MMR decreased from 422 per

100,000 live births in 1980 to 320 per 100,000 live births in 1990 and to 251 per 100,000 live

births in 2008. The global maternal deaths show a rate of decline from 1.8% between 1980

and 1990 to 1.4% from 1990 to 2008. There results also shows that HIV epidemic had not

contributed to substantial increases in maternal mortality in eastern and southern Africa.

Baby (2010) investigated institutional factors affecting Maternal Mortality in Faidpur Med-

ical College Hospital in Bangladesh.Using a cross sectional analysis, he estimated MMR as

2,010.5 per 100,000 live births and the most common contributing factors were delayed or

non-attendance by senior doctors, unavailability of intensive care unit (ICU) as well as lack

of infrastructures of the health centre. Høj et al. (2003) used a prospective survey to assess

demographic and obstetric risk factors for pregnancy-related death in a multi ethnic rural

population in Guinea-Bissau. Their results indicated that maternal mortality ratio increased

with increasing distance from the regional hospital, multiple pregnancy and stillborn fetus.

They also found that women living in the region of Gabu had higher mortality than those
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living in Biombo. They concluded that screening approach of antenatal care is of limited

value for the purpose of reducing maternal mortality. Adopting a descriptive analysis, Cham

(2003) analysed the socio-cultural, economic and health service factors contributing to ma-

ternal deaths in rural Gambia. He found that bad experience with the health care system,

the delay in reaching an appropriate medical facility, lack of transportation or prolonged

transportation, seeking care at more than one medical facility and delay in receiving prompt

and appropriate care after reaching the hospital are significant causes of Maternal mortality.

Health service factors were the most frequently identified contributing factors to maternal

deaths and therefore, concluded that improving the quality of and accessibility to emergency

obstetrical care services would significantly contribute to the reduction of maternal deaths

in the area.

Conde-Agudelo and Belizán (2000) conducted a cross sectional study in Latin America and

the Caribbean to investigated the impact of inter-pregnancy interval on maternal morbidity

and mortality. Using Crude and adjusted odds ratios they found that women with inter-

pregnancy intervals of 5 months or less had higher risks for maternal death, third trimester

bleeding , premature rupture of membranes, puerperal endometritis, and anaemia while

those with inter-pregnancy intervals longer than 59 months had significantly increased risks

of pre-eclampsia and eclampsia; both intervals compared with women with inter-pregnancy

intervals of 18 to 23 months. They concluded that inter-pregnancy intervals less than 6

months and longer than 59 months were associated with an increased risk of adverse mater-

nal outcomes.

2.2 Overview of the literature.

Some of the factors identified by the researchers in the literature review as the major con-

tributes of maternal mortality ratio includes: age, distance from hospital, multiple deliveries,

few antenatal care visits , obstetrical maternal mortality direct causes, mode of delivery,

abortion-related issues, seeking care at more than one medical facility, and emergency ref-

erence. In conclusion, the main causes of maternal mortality are lack of access to quality

healthcare, poor health seeking behaviour and poor socio-economic factors and therefore,
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improving the quality of and accessibility to emergency obstetrical care services would sig-

nificantly contribute to the reduction of maternal deaths. Reducing MMR requires strength-

ening of health care system; a process which takes time and requires public commitments

as well as maternal death review and forecasting. One valuable entry point is research on

pattern of MMR and forecasting. Most of the researchers in the reviewed literature used odd

ratio and descriptive methods in their analysis which are limited to their data and cannot

be used to extrapolate any conclusion about a full population or used to forecast the future

trends. This study accounted for this limitation by adopting an ARIMA model to explain

the relation between the values from the past and and use the model to predict the future

values of the variable.
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Chapter 3

METHODOLOGY

3.1 Introduction.

This chapter describes the theoretical background of the models applied in this study, formu-

lations and the methods of analysis to the data available for the fulfilment of the objectives

of the study. It focuses on the Box-Jenkins methodology for constructing ARIMA models

and carrying out forecasting.

3.2 Data Source and Type.

This study aimed at modelling and forecasting the patterns of maternal mortality ratios

at the Juba Teaching Hospital (JHT). The analysis was based on secondary data available

at the Department of Statistics, Directorate of Obstetrics and Gynaecology of JTH. The

data collected include monthly records of maternal deaths and monthly records of live birth

deliveries for the period January 2008 to December 2014. From the data, we computed

maternal mortality ratios using the following expression:

MaternalMortalityRatio = (Maternaldeaths÷ livebirths)× 100, 000 (3.1)

We calculation of MMR on monthly and yearly basis for the study period. The data had only

one variable under study, which was maternal mortality ratio; related to its past values and
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current and past error terms. Therefore univariate time series models were purely stochastic

processes and do not have explanatory variables. The data points for the study were 84

monthly observations under the seven years duration.

Table 3.1: Data Structure and Source

Date months Maternal deaths Live births MMR per 100,000 live births

Jan 2008 1 166 602
...

...
...

...

Dec 2014 3 482 622

3.3 The Concept of Time Series.

The special feature of time-series data is that successive observations are usually not inde-

pendent and so the analysis must take account of the order in which the observations are

collected. The series is a time dependent sequence X t, where t belongs to the set of inte-

gers and denotes the time steps. If the time series can be expressed as a known function,

X t = f(t), then it is said to be a deterministic time series. If it is expressed as X t = Y (t),

where Y is a random variable then X t is a stochastic time series. The main objectives of

time-series analysis are; description, modeling, Forecasting and control. Time series analysis

aims to decomposes the variation in a time series into several components of trend, periodic

and stochastic (Chatfield, 2000; Sarpong, 2013).

3.3.1 Stationary Time Series.

A time series is stationary if its mean, variance and auto-covariance are time invariant; thus,

they do not change over time. It remains constant or unchanged. The time series is made

stationary, so that we can study its behaviour over the period of consideration and also for

the purpose of forecasting.
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3.3.2 Non-Stationary Time Series.

A time series is said to be non-stationary, if its mean, variance and auto-covariance changes

over the time periods. Thus it is not constant throughout the time.

3.4 The Unit Root Test for Stationarity.

The unit root test is done by Augmented Dickey Fuller (ADF) test which is the same as

Dickey-Fuller test, but it is carried out in the context of the model. The advantage of

the Augmented Dickey-Fuller test for unit root is that it can accommodate higher order

autoregressive process in εt (Dickey and Fuller, 1979).

Considering the model below is an AR(1)

Xt = ρXt−1 + εt (3.2)

where εt are independent random errors with zero mean and constant variance σ2
ε . And Xt

is a random walk, whereby the value of the series tomorrow is Xt+1 with its unpredicted

change of εt+1 and its value today is Xt .

The Zero Mean.

Now by substituting the values of t = 1, 2, . . . , T into equation (3.2) and if ρ=1 becomes:

X1 = X0 + ε1

X2 = X1 + ε2

substituting X1, we gets X2

X2 = X0 + ε1 + ε2)

X3 = X0 + ε1 + ε2 + ε3

...

Xt = X0 + ε1 + ε2 + ε3 + . . .+ εt

which is equal to

Xt = X0 +
∑

εt
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Therefore taking expectation on both sides of the equation

E(Xt) = E(X0 +
∑

εt) = X0

var(Xt) = E(X0 +
∑

εt)
2 = E(

∑
εt)

2 = tσ2

This implies, that the mean of Xt is equal to a constants but if t increases, its variance also

increases indefinitely such a condition is stationary.

Dickey-Fuller Test.

From equation (3.2)

Xt = ρXt−1 + εt(−1 ≤ ρ ≤ 1)

If ρ=1

Xt = Xt−1 + εt

Xt −Xt−1 = εt

Now using the lag operator L (1− L)Xt = εt, if (1− L)= 0 , we get L=1.

The hypotheses for Dickey- Fuller test are now as follows:

H0 : ρ = 1 (the series is non-stationary and has unit root)

H1 :| ρ |≤ 1 ( the series is stationary and has no unit root)

If we subtract Xt−1 from both sides of equation (3.2):

Xt −Xt−1 = ρXt−1 −Xt−1 + εt

∆Xt = (ρ− 1)Xt−1 + εt

let (ρ− 1) equal to γ then it becomes

∆Xt = γXt−1 + εt (3.3)

where γ = ρ− 1

H0 : γ = 0 (the series is non-stationary and has unit root)

H1 : γ 6= 0 ( the series is stationary and has no unit root).
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Decision on Null and Alternative hypotheses.

If, we fail to reject the null hypothesis, we conclude that the series is non-stationary and has

unit root. But if we reject the null hypothesis then we conclude that the series is stationary

and has no unit root.

Decision on computed P-value.

If the computed P-value is greater than 5%, we fail to reject the null hypothesis and we

conclude that the series is non-stationary and has unit root. But if the computed P-value

is less than 5% we reject the null hypothesis and conclude that the series is stationary and

has no unit root.

Decision on critical value and test statistic.

If the absolute value of ADF test statistic is less than the critical value, we fail to reject

the null hypothesis and conclude that the series is non-stationary and has unit root. But

if the absolute value of ADF test statistic is greater than the critical value we reject the

null hypothesis and conclude that the series is stationary and has no unit root. The critical

value of ADF test were tabulated by the statisticians’ professor David Dickey and professor

Wayne Fuller, the Dickey-Fuller critical values are more of negative values that why we are

taking absolute value ( Hill, et al., 2011).

3.5 Box and Jenkins ARIMA Methodology.

The ARIMA model was introduced by Box and Jenkins (also known as Box-Jenkins mode)

in 1960. It is an extrapolation method for forecasting and, like any other such method,

it requires only the historical time series data on the variable under forecasting. ARIMA

models are the most important for classification of models for forecasting a time series data.

Usually the ARIMA model is represented as ARIMA (p, d, q) where p is the number of

autoregressive terms, d is the number of non- seasonal differences, and q is the number of

lagged forecast errors in the prediction equation (Shrivastav and Ekata, 2012).

The use of ARIMA models is also known as the Box-Jenkins approach; following the work of

Box and Jenkins (Box G. and Jenkins, G. 1976) as cited by Atkinson (2005) and according
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to (ONS, 2008) .

Box and Jenkins (1976) propose a four-step iterative approach to modeling as follows:

1. Model identification.

2. Model parameter estimation.

3. Model checking (goodness of fit).

4. The forecasting.

The four iterative steps are not straightforward, but are embodied in a continuous path

depending on the set of data under study (Sarpong,2013).

In practice, most of the time series are non-stationary. In order to fit a stationary model,

it is necessary to remove non-stationary sources of variation by the mean and variance of

the original data by differencing the series. Differencing is widely used for econometric data.

Such a model is called an Integrated model, because the stationary model that is fitted to

the difference data has to be integrated to provide a model for the original non-stationary

data (Chatfield, 2004).

It is an extrapolation method for forecasting and, like any other such method, it requires

only the historical time series data on the variable under forecasting. ARIMA models are

the most important for classification of models for forecasting a time series data.

3.5.1 Assumptions of ARIMA.

The Box-Jenkins model assumes that the time series is stationary; and stationary series has

the following assumptions:

1. Normality of Distributions of Residuals (εt ∼ N(µ, σ2)).

The normality of residuals is evaluated in time-series analysis by the normalized plot of

residuals for the model before evaluating an intervention. They are independent and

normally distributed, with mean zero and homogeneity of variance. It implies that

the correlation in the series of observations has been removed to be adequate for the

model.

15



2. Homogeneity of Variance and Zero Mean of Residuals .

The homogeneity of variance and zero mean is done by the plots of standardized resid-

uals versus predicted values to assess homogeneity of variance over time. But if there

is heterogeneity of variance in the series, one can apply a logarithmic transformation

to remove these from the series.

3. Independence of Residuals (εt ∼ iidN(0, σ2)) .

Once the model is developed and residuals are computed, there should be no remaining

autocorrelations or partial autocorrelations at various lags in the ACFs and PACFs;

to show that the residual are a white noise process.

3.5.2 Model Specifications.

3.5.2.1 Autocorrelation Function (ACF) and Correlogram.

The autocorrelations at lag 1, 2, 3, . . . , k make up the autocorrelation function (ACF). The

plot of ACF against the lag is called a correlogram and helps us visualize the ACF easily.

It also behaves a standard tool in exploring a time series before forecasting and it provides

a useful check for seasonality, cycles, and other time series patterns. The autocorrelation

at lag k, ACF (k), is the (linear) Pearson correlation between observations k time periods

(lags) apart. If the ACF (k) differs significantly from zero, the serial dependence among the

observations must be included in the ARIMA model (Box and Jenkins, 1976).

ACF is denoted by ρk ;

ρk =
γk
γ0

=
cov(Xt, Xt−k)

var(Xt)
(3.4)

where −1 ≤ ρk ≤ 1

To compute this, we must first compute the sample covariance at lag k,γ̂k and the sample

variance γ̂0 which are defined as

γ̂k =

∑
(Xt − X̄)(Xt − X̄)

n

γ̂0 =

∑
(Xt − X̄)2

n
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where n is the sample size and X̄ is the sample mean. Therefore, the sample autocorrelation

function at lagk is ρ̂k = γ̂k
γ̂0

. A plot of ACF was used in this study to determine the p order

of AR model by observing the number of significant spikes in the correlogram.

3.5.2.2 Partial Autocorrelations Function (PACF).

Like the ACF (k), the partial autocorrelation at lag k, or PACF (k), measures the correlation

among observations k legs apart. We use the partial autocorrelation function in this study to

determine q orders of MA model respectively, by observing the number of significant spikes.

Denoted by φkk, PACF is defined as;

φkk = corr[Xt − E∗(Xt|Xt−1,...,Xt−k+1
), Xt−k] (3.5)

Where

E∗(Xt|Xt−1,...,Xt−k+1
)

is the minimum mean-squared error predictor of Xt by Xt−1, . . . , Xt−k+1. In summary, the

properties of ACF and PACF of an ARIMA model are illustrated in the table (3.2)

Table 3.2: Properties of ACF and PACF

AR(p) MA(q) ARMA (p,q)

ACF Tails off Cuts off after lag q Tails off

PACF Cuts off after lag p Tails off Tail off

Source: Box and Jenkins, 1976

3.5.2.3 Lag.

Lag is a difference in time between an observation and a previous observation. Xt−k lags Xt

by k periods.
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3.5.3 Model Formulation.

3.5.3.1 Autoregressive (AR) Model: AR (p).

AR models are based on the relationship between the current variables of the series Xt , and

it previous lagged values of the series plus the current error term. That is, AR (p) is the

autoregressive model of order p is of the form:

Xt = C + β1Xt−1 + β2Xt−2 + . . .+ βpXt−p + εt (3.6)

In general, AR (p) is of

Xt = C +

p∑
i=1

βiXt−i + εt

Where c is the constant, Xt is actual values, and βi, (i = 1, 2, 3, . . . , p) are the model

parameters and p is the order of the model εt is a white noise process which is independent

and identically normally distributed (i.i.d) random variables with mean zero and constant

variance σ2
ε .

3.5.3.2 Moving Average (MA) Model: MA (q).

MA models account for the possibility of a relationship between a variable and the residuals

from previous periods. It is the alternative to the autoregressive representation in which

the Xt on the left-hand side of the equation are assumed to be a linear combination of the

moving average model of order q, assuming that the white noise εt on the right-hand side of

the defining equation are combination of linear form of the observed data; that is:

Xt = µ+ θ1εt−1 + θ2εt−2 + . . .+ θqεt−q + εt (3.7)

In general, MA(q) is of the form:

Xt = µ+

q∑
j=1

θjεt−j + εt

where µ is the constant value, θj at (j = 1, 2, 3, . . . , q) are the model parameters and εt is

white noise series which is independent and identically normally distributed (i.i.d) random

variables with mean zero and constant variance σ2
ε .
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3.5.3.3 Autoregressive Moving Average ARMA (p, q) Model.

This is a general development of autoregressive, moving average, or sometime called mixed

autoregressive moving average (ARMA), models for stationary time series. The ARMA (p, q)

model, if it is stationary is defined as:

Xt = µ+

p∑
i=1

βiXt−i +

q∑
j−1

θjεt−j + εt (3.8)

where,Xt, at t = 1, 2, . . . , n is the series being modelled (maternal mortality ratio in the case

of this study)

p = is the number of AR Parameters

βi = is the ith AR parameter

q = is the number of MA parameters

θj = is the jth MA parameters

εt = is the residual series

The important assumptions involved in such models are that (εt) has Zero mean with terms

which are uncorrelated and form an independently identically distributed random variable.

i.e εt ∼ iidN(0, σ2) ( Mujumdar and Kumar, 1990; Shumway and Stoffer, 2006).

3.5.3.4 Autoregrssive Integrated Moving Average ARIMA (p, d, q) Model.

The ARIMA model was introduced by Box and Jenkins (also known as Box-Jenkins mode)

in 1960. It is an extrapolation method for forecasting and, like any other such method, it

requires only the historical time series data of underlying variable for forecasting. ARIMA

models are the most important for classification of models for forecasting a time series data.

Usually the ARIMA model is represented as ARIMA (p, d, q) where p is the number of

autoregressive terms, d is the number of non- seasonal differences, and q is the number of

lagged forecast errors in the prediction equation (Shrivastav and Ekata, 2012). If the variable

under the study is stationary at level, I(0) or at first difference I(1) determines the order of

integration, which is called as ARIMA model.
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3.5.4 Model Fitting or Estimation.

The general structure form of an ARIMA model is expressed as follows:

5dXt = µ+ β15d Xt−1 + . . .+ βp5d Xt−p + εt − θ1εt−1 − . . .− θqεt− q (3.9)

where,

5Xt = Xt −Xt−1 = (1− L)Xt

This can be written in the general form:

β(L)5d Xt = µ̄+ θ(L)εt

where 5 = 1− L

β(L) = 1− β1L− . . .− βpLp, βp 6= 0

θ(L) = 1− θ1 − . . .− θqLq, θq 6= 0

where β(L) and θ(L) are polynomials in the lag operator, and have no common root,L is

defined such that LnXt = Xt−n

Therefore, the model that will be fitted for this study was

Xt = µ+ β1Xt−1 + β2Xt−2 + . . .+ βpXt−p + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q + t (3.10)

εt = a white noise process.

Xt = the observation under study (maternal mortality ratio)

AR = Autoregressive polynomial β(), and of the

MA = Moving average polynomial θ().

3.5.5 Estimation of Model Parameters.

The main approaches to fitting Box-Jenkins models are non-linear least squares and max-

imum likelihood estimation. Maximum likelihood estimation is generally the most pre-

ferred technique. The parameters for this study were estimated using the conditional max-

imum likelihood estimation for time series. For ARIMA models, L is a function of βi =
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(β1, β2, β3, . . . , βn) , θi = (θ1, θ2, θ3, . . . , θn), and σ2
ε given the observations X1, X2, . . . , Xn.

The conditional maximum likelihood estimators are defined as those values of the parameters

which maximize the likelihood function (Greene, 2012).

The CMLE approach of estimation of parameters of an ARMA (p, q) model is hereby out-

lined;

Xt = β1Xt−1 + β2Xt−1 + . . .+ βpXt−p + εt − θ1εt−1 − θ2εt−2 − . . .− θqεt−q (3.11)

Where εt∼ iidN(0,σ2
ε) white noise, the joint probability density of ε = (ε1, ε2, . . . , εn) is as

follows

p(ε|β, µ, θ, σ2
ε) = (2πσ2

ε)−
n

2
exp[− 1

2σ2
ε

n∑
t=1

ε2t ] (3.12)

Rearranging equation (3.10) becomes

εt = θ1εt−1 + θ2εt−2 + . . .+ θqεt−q +Xt − β1Xt−1 − . . .− βpXt−p (3.13)

Therefore, we can write down the likelihood function of the parameters (β, µ, θ, σ2
ε). Con-

sidering the series of X = (X1, X2, X3, . . . , Xn) and assume the initial conditions X∗ =

(X1−p, . . . , X−1, X0) and ε∗ = (ε1−q, . . . , ε−1, ε0). The conditional log-likelihood function is

given by

lnL(β, µ, θ, σ2
ε) = −n

2
ln 2πσ2

ε −
S∗(β, µ, θ)

2σ2
ε

(3.14)

Where

S∗(β, µ, θ) =
n∑
t=1

ε2t (β, µ, θ|X∗, ε∗, X) (3.15)

is the conditional sum of squares function. The quantities of β̂ ,µ̂ and θ̂ which maximize

equation (3.13) are called the conditional maximum likelihood estimators. lnL(β, µ, θ, σ2
ε)

Involves the data only through S∗(β, µ, θ), these estimators are the same as the conditional

least squares estimators found from minimizing the conditional sum of squares functions

S∗(β, µ, θ) ,which contain the parameter σ2
ε . The conditional sum of squares function in

equation (3.14) becomes

S∗(β, µ, θ) =
n∑

t=p+1

ε2t (β, µ, θ|X) (3.16)
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After obtaining the parameter estimates of β̂,µ̂ and θ̂ ,the estimate σ̂2
ε of σ2

ε is calculated

from

σ̂2
ε =

S∗(β, µ, θ)

d.f
(3.17)

Where by the degrees of freedom (d.f) equals the number of terms used in the sum of

S∗(β, µ, θ) minus the number of the parameters estimated. If equation (3.16) is used to

calculate the sum of squares (Wei, 1990), d.f = (n− p)− (p+ q + 1) = n− (2p+ q + 1)

3.5.6 Model Selection Criteria.

There are several model selection criteria like, Akaike Information Criterion (AIC), Corrected

Akaike Information Criterion (AICc), Hannan-Quinn criterion (HQ) and Bayesian Informa-

tion Criterion (BIC). Based on these methods of model selection criteria, this study used

AIC , AICc and BIC, the model with the least AIC value will be selected. Using R-software

for plotting the graphs and analysis of the data set. The mathematical formulations for the

model selection criteria used in this study are as follows:

1. Akaike Information Criterion (AIC):

AIC = ln(σ̂2
ε) +

2k

n
(3.18)

2. Bayesian Information Criterion (BIC):

BIC = ln(σ̂2
ε) +

k

n
ln(n) (3.19)

where k = (p+ d+ q) number of estimated parameters,n is number of observations used for

estimation and σ̂2
ε is the estimated variance (Dobre and Alexandru, 2008;Greene, 2012)

3.6 Model Diagnostics (Goodness of Fit).

After determining the appropriate lag length, the model diagnostics using Box-Jenkins model

is the same as model validation for nonlinear least squares fitting. We use diagnostic test to

differentiate whether a time series appears to be non auto correlated.
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3.6.1 Diagnostic Test for Residuals.

Box- Jenkins model is considered to be a good model for the data if the residuals should

satisfy these assumptions: the residuals should be white noise (or independent when their

distributions are normal), should be drawn from a fixed distribution with a homogeneous

mean and variance.

1. The Box-Pierce (1970) Q- statistic.

The Box-Pierce test statistic is used for the sum of squares of the residual autocorre-

lations. If this test statistic exceeds some critical t− value (found in a table), then the

model is declared to be inadequate.

Q = n
k∑
k=1

ρ̂2k (3.20)

H0: the residuals are independent and identically distributed

H1: the residuals are not independent and indectically distributed

2. Ljung Box (1979) statistic.

Q′ = n(n+ 2)
k∑
k=1

ρ̂2k
n− k

(3.21)

the same hypothesis implies on the Box-Pierce test statistic.

3.6.2 Diagnostic Test for the Parameters of the Model.

Model testing was conducted on the basis of the P - value or calculating t test, if the t

statistic is greater than 1.96, then we reject the null hypothesis and concluded that the

model parameters are statistically significant.

t =
β̂i

s.e(β̂i)
(3.22)

var(β̂i) =
1− (β̂i)

n

β̂i ± 2

√
var(β̂i)

H0 : all parameters coefficints of β and θ = 0

H1 : all parameters coefficients of β and θ 6= 0
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3.7 Forecasting.

Forecasting is concerned with the process used to predict the unknown. That is to say,

it is used to predict the unknown future (time series forecasting), but sometimes we make

predictions about people, firms or other objects that are a cross-section forecasting. The

field includes the study and application of judgment as well as quantitative I (Statistical)

methods (Afzal, et-al., 2002).

Time series forecasting thus can be termed as the act of predicting the future by understand-

ing the past. Therefore, one of the most popular and frequently used stochastic time series

models is the Autoregressive Integrated Moving Average (ARIMA) model.

Forecasting for this study was done for the period January 2015 to December 2015, using

the estimated model. From equation (3.10) , the following are the forecasting equations:

(Nielsen, 2005)

Xt = µ+ β1Xt−1 + β2Xt−2 + . . .+ βpXt−p + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q + εt

Xt+1 = µ+ β1Xt + β2Xt−1 + . . .+ βPXt−p+1 + θ1εt + θ2εt−1 + . . .+ θqεt−q+1 + εt+1

Xt+2 = µ+ β1Xt+1 + β2Xt−1 + . . .+ βPXt−p+2 + θ1εt+1θ2εt−1 + . . .+ θqεt−q+2 + εt+2

...

Xt+12 = µ+ β1Xt+11 + β2Xt+10 + . . .+ βPXt−p+12 + θ1εt+11θ2εt+10 + . . .+ θqεt−q+12 + εt+12

Measuring Accuracy of Forecast.

In most of the forecasting situation, accuracy is treated as the overriding criterion for select-

ing a forecasting method. The word accuracy is referring to goodness of fit, how good the

forecasting model is able to reproduce the data for future from the known observations. To

the consumers of the forecasts, it is the accuracy of the future forecast that is most essential.

E.g if Xt is the actual observation for time period t and Ft is the forecast for the same period,

then the error is defined as (Hyndman and Koehler, 2006) Thus, a scaled error is defined as

πi =
εi

1
n−1

∑n
t=2 |Xt −Xt−1|
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The Mean Absolute Scaled Error is simply

MASE = E|πi|

When MASE < 1, the proposed method gives, on average, smaller errors than the one-step

errors from the näıve method.

Various measures have been proposed for assessing the predictive accuracy of forecasting

models. The most important of these measures are designed to evaluate expost forecasts

(Greene,2012;Gor,2009)

1. Mean absolute percentage error (MAPE).

The mean absolute percentage error (MAPE) is also known as mean absolute percent-

age deviation (MAPD), is a measure of accuracy of a method for constructing fitted

time series values in Statistics , specially in trend estimation. It usually ecpresses

accuracy as a percentage, and is defined by the formula:

MAPE =
1

n

n∑
t=1

| (At − Ft)
At

| ×100 (3.23)

Where At is the actual value and Ft is the forecast value.

2. Root mean squared error (RMSE) and mean absolute error (MAE) is also known as

mean absolute deviation (MAD).

These two measures are based on the residuals from the forecasts . And it is calculated

using the following formulas

RMSE =

√√√√ 1

n

n∑
i=1

(ei)2 (3.24)

MAD =
1

n

n∑
i=1

|ei| (3.25)

Where n is the number of period being forecasted.

3. The mean square error (MSE).

It is common for two forecasting models to be ranked differently depending on the
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accuracy measures used. The MSE gives more weight to large errors because they are

squared,in these case it is not often used in most practice.

MSE =

∑n
i=1 |ei2|
N − 1

(3.26)

MAD =

∑n
i=1 |ei|
n

(3.27)

4. Mean error (ME) and mean forecast error (MFE) .

These two measures are computed only for the last half of the data. The forecasting

models are evaluated by dividing the data in to two parts. The first part is used to fit

the forecasting model and the second part of the data is used to test the model and is

called the forecasting sample.Therefore, ME is denoted by ei

ME = At − Ft (3.28)

MFE =

∑n
i=1(ei)

n
(3.29)

Notes that if MFE > 0 , model tends to under - forecast and MFE < 0 , model tends

to over - forecast.

Accuracy in forecasting model is really irrelevant while, accuracy in the forecasting sample

is more important because the pattern of the data often changes over time. The forecasting

sample is used to evaluate how well the model tracks such changes (Gor et al. 2009).
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Chapter 4

DATA ANALYSIS AND RESULTS

4.1 Summary of Calculated MMR for the Study Pe-

riod.

Tables 4.1 and table 1 in the appendix show the calculated MMR on yearly and monthly

basis respectively.

Table 4.1: Calculated Annual MMR

Year Maternal deaths Live births MMR per 100,000 live births

2008 17 3115 546

2009 29 3315 875

2010 9 3925 229

2011 23 4088 563

2012 10 5120 195

2013 25 4972 503

2014 22 5176 425

Total 135 29711 3336

The results in table 4.1 shows the highest MMR calculated for the hospital was 875 per
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100,000 live births, in 2009 while the lowest MMR calculated was 195 per 100,000 live births,

recorded in 2012. The average yearly MMR recorded within the study period was 476.6 per

100,000 live births.The table 1 in the appendix shows the monthly calculated MMR for the

hospital from the period of January 2008 to December 2014.

From the calculated values, the highest MMR was 1,835 per 100,000 live births recorded

in the month of April 2011 while the lowest MMR was 0 which was spread throughout the

study period. In particular, the year 2010 had MMR equal to 0 for four consecutive months;

that is from February to May. The maternal death within the study period was 135 and

the live births were 29,711 contributing to total MMR of 454.4 per 100,000 live births. The

average monthly MMR recorded within the study period was 500.7 per 100,000 live births

for the period of January 2008 to December 2014.

4.2 Patterns of Maternal Mortality Ratios(MMR).

Figure 4.1, shows that the monthly MMRs recorded during the study period has no trend

and the general behaviour was rather irregular.This is also confirmed in the decomposition

of the time series data as shown in the Figure 4.2.
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Figure 4.1: Plot of Calculated MMR Patterns from January 2008 to December 2014.
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Figure 4.2: Decomposition of the Time Series Data.
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4.3 Test for Stationarity of Time Series Data.

Table 4.2: Augmented Dickey-Fuller Test

DF Statistic lag order P-value

-7.9934 0 0.01

-4.7007 1 0.01

The results for test of stationarity of time series data is as shown in table 4.2. The

calculated Augmented Dickey-Fuller test (ADF), Dickey-Fuller is -7.9934, at the lag order

of 0 and the p-value is 0.01 and also ADF value was -4.7007, at the lag order of 1 with the

p-value of 0.01. Based on the p-values, the null hypothesis is rejected and the conclusion is

that the series of observation is stationary and has no unit root. The data is stationary with

zero order differences or integrated of order zero I(0).

4.4 Model Identification.

In identification of an appropriate ARIMA model, we make use of the original plot of the

time series data as shown in figure 4.1, ACF and PACF in figure 4.3.
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Figure 4.3: Plot ACF and PACF of Monthly MMR.
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The ACF plot shows three (3) significant spikes exceeding 95% confidence interval, whereas

the PACF plot of the series appears to have one (1) significant spike that exceeds 95%

confidence interval. Therefore an AR (3) and MA (1) model is identified based on the data.

4.5 Model Estimation and Evaluation.

The process for choosing the best model depends on choosing the one with minimum AIC,

AICc and BIC. The models constructed are presented in table 4.3 with their corresponding

AIC, AICc and BIC.

Table 4.3: Model Fit Based on AIC and BIC for the Suggested ARIMA

Model AIC AICc BIC

ARIMA (3,0,1) 1073.75 1075.04 1087.41

ARIMA (2,0,1) 1083.04 1083.95 1094.42

ARIMA (1,0,1) 1084.91 1085.51 1094.02

ARIMA (2,0,0) 1083.02 1083.62 1092.13

ARIMA (1,0,0) 1087.81 1088.16 1094.64

ARIMA (0,0,1) 1088.24 1088.59 1095.07

ARIMA (3,0,0) 1082.15 1083.06 1093.52

ARIMA (0,0,2) 1086.66 1085.26 1093.77

ARIMA (1,0,2) 1082.1 1083 1093.48
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From table 4.3 ARIMA (3, 0, 1) was chosen as the appropriate model that fit the data well.

This is because it has the minimum AIC, AICc and BIC among the different ARIMA models

constructed.

Table 4.4: Estimated Parameters for ARIMA (3, 0, 1)

Variable Coefficient Standard Error t-value p-value

Intercept 505.106 88.5867 5.7018 <.0001

β1 -0.7741 0.1049 -7.3794 <.0001

β2 0.3375 0.1325 2.5472 <.0001

β3 0.4609 0.1106 4.1673 <.0001

θ1 0.9944 0.2350 4.2315 0.0000

σ2 =141644 log likelihood = -530.87
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Using the method of maximum likelihood estimation, the estimated parameters of ARIMA

(3,0,1) model with their corresponding standard error, t-value and the p-values are shown

in the Table 4.4. The coefficients of the model are significantly different from zero (based

on comparison of absolute values to t-test critical value of 1.96). The p-values and the x2

-test value of 18.5057 for the estimates also show that all the parameters are statistically

significant at 0.05 level of significance. Therefore, we conclude that ARIMA (3, 0, 1) model

satisfies the stability condition of good fit. The results from table 4.5 show the accuracy of

the model fitted, based on MASE value of 0.6075, since it is less than 1, the model gives on

average smaller error.

Table 4.5: In-Sample Measures of Error for ARIMA (3,0,1) Model

Accuracy measurements Corresponding values

ME 2.4456

RMSE 376.3564

MAE 282.9222

MPE 2.2133

MAPE 190.2704

MASE 0.6075

4.6 Goodness of Model Fit.

In time series modeling, the choice of a better model fit to the data is directly related to

whether the residual analysis is done well. One of the assumptions of ARIMA model is that,

for a better model, the residuals must follow a white noise procedure. That is, the residuals

are independent identically distributed with mean zero, constant variance, and the residuals

are uncorrelated.
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Figure 4.4: Diagnostic and Residual Plots of ARIMA (3,0,1) Model.
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Figure 4.4 showing the standardized residual reveals that the residuals of the model have

zero mean and constant variance and ACF plot of the residuals and the probability plot of

the residuals respectively shows the residuals appear to be random and uncorrelated. The

ACF plot shows no evidence of a significant spike. Finally, the results from Box-Pierce

statistic clearly exceed 5% at lag orders 10 based on p-value of 0.9935; we fail to reject the

null hypothesis and conclude that, there is no significant departure from white noise for

the residuals. Thus, the selected model satisfies all the model assumptions and therefore,

ARIMA (3, 0, 1) is a white noise process we can use this model to make forecasts. The

constructed model is of thus:

Xt = 505.106− 0.7741Xt−1 + 0.3375Xt−2 + 0.4609Xt−3 + 0.9944εt−1 (4.1)

4.7 Forecasting.

Forecasting is the procedure of estimating the unknown situations, which is usually used in

discussion of time-series data. It is a planning tool which helps decision makers to predict

the future uncertainty based on the behaviour of past and current observations. For intuitive

notion, short-term forecasting should be more reliable than long-term forecasting.
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Table 4.6: ARIMA (3,0,1) Forecasting Results for In-Sample and Out- of-Sample.

Year Months Actual MMR Predicted MMR 95 % Intervals

Lower limit Upper limit

2014 Sep 853 453.15 -443.73 1350.03

Oct 493 527.75 -369.18 1404.67

Nov 0 497.86 -400.90 1396.62

Dec 622 494.41 -405.55 1394.37

2015 Jan 521.38 -380.00 1422.77

Feb 485.56 -416.28 1387.39

Mar 520.79 -381.21 1422.81

Apr 493.86 -408.15 1395.87

May 510.09 -391.94 1412.13

Jun 504.68 -397.46 1406.83

Jul 501.93 -400.30 1404.17

Aug 509.72 -392.59 1412.03

Sep 500.27 -402.06 1402.61

Oct 508.94 -393.39 1411.28

Nov 502.63 -399.71 1404.97

Dec 506.09 -396.25 1408.43

Using the estimated model in equation (4.1), we forecast MMR for the last four months

of the data set from the Aug 2014 to Dec 2014 and compared to its actual values to measure

the forecast accuracy of the model. Since the actual value for the month of Oct (493) MMR

is near to it predicted value (527.75) and since both actual and the predicted values of the

forecast data fall between the 95% confidence interval, we rather concluded that the ARIMA
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(3,0,1) model is adequate to be used to forecast monthly MMR at the JTH.

The results in table 4.5 and figure 4.5 summarize the forecasting values of monthly MMR over

the period of Aug 2014 to Dec 2015 with their respective 95% confidence intervals. When

converted to one year, the estimated MMR for forecast period was 505.495 per 100,000 live

births, showing an increase of 5.7% from an annual figure of 476.57 per 100,000 live births

for the study period.
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Figure 4.5: Forecasts for 12 Months from January 2015 to December 2015 (Highlighted part).

The results from table 4.6, show that the mean forecast error is -247.64 and the mean

absolute deviation is 265.01 and the conclusion was that the forecast model tends to be

over-forecast,with an average absolute error of 265 units.

40



Table 4.7: Measures of Forecast Accuracy for (2014) Out-of-Sample Forecast.

Months At Ft ME MAE MSE

Sep 853 453.15 -399.85 399.85 159,880.02

Oct 493 527.75 34.75 34.75 1,207.56

Nov 0 497.86 -497.86 497.86 247,864.58

Dec 622 494.41 -127.59 127.59 16,279.21

Total -990.55 1,060.05 425,231.37

MAD = 265.01 MFE = -247.64 MSE=106.31

4.8 Discussion.

This study shows that there were 135 maternal deaths and about 29,711 live birth deliveries,

which account for the total maternal mortality ratio of 454 per 100,000 live births, within the

study period of January 2008 to December 2014. The average annual MMR recorded for the

study period was 476.6 per 100,000 live births, which is lower than the average annual figure

of the country. The MDG report (2014) reveals that MMR for South Sudan was 730 per

100,000 live births. Nevertheless, the figure from this study is still higher for the institution

when compared to both continental and global estimates in the same report. The study

further found that ARIMA (3, 0, 1) model is best for the prediction of monthly MMR at

the JTH in South Sudan for the period of January 2015 and December 2015. The integrated

order of zero (0) found in this study is similar to the findings of Sarpong, (2013). Who

constructed an ARIMA (1, 0, 2) and ARIMA (2, 0, 1) and found that ARIMA (1,0,2) model

was the best to predict MMR for the period of 20 quarters since ARIMA (2,0,1) model was

insignificant at the Okomfo Anokye Teaching Hospital in Kumasi (Ghana).
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Chapter 5

CONCLUSIONS AND

RECOMMENDATIONS

5.1 Conclusion.

ARIMA (3, 0, 1) is an appropriate and parsimonious model to forecast the MMR at Juba

Teaching Hospital for the next twelve (12) months from January 2015 to December 2015 .

5.2 Recommendations.

Since, the ARIMA (3, 0, 1) model is adequate to be used to forecast monthly MMR at JTH

for the period of January 2015 to December 2015. A similar approach like the one presented

in this report, could be used to model, maternal mortality ratio at both institutional,Ngos

and national level in South Sudan for future planning.
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Appendix 1

Table1. Calculated Monthly MMR for Period January 2008 to December 2014

Years Maternal Deaths Live Births MMR per 100,000 live births

2008 1 166 602

2008 0 185 0

2008 3 206 1456

2008 1 221 452

2008 3 235 1277

2008 0 230 0

2008 1 455 220

2008 2 247 810

2008 0 293 0

2008 2 260 769

2008 1 360 278

2008 3 257 1167

2009 3 256 1172

2009 2 230 870

2009 3 261 1149

2009 2 270 741

2009 4 300 13332009 4 300 1333

2009 2 259 772

2009 2 240 833

2009 2 143 1399

2009 1 311 322

2009 4 373 1072

2009 2 327 612

2009 2 345 580

2010 1 314 318

2010 0 270 0

2010 0 297 0

2010 0 289 0

2010 0 310 0

2010 1 340 294

2010 1 315 317

2010 0 394 0

2010 2 356 562

2010 1 372 269

2010 1 374 267

2010 2 294 680

2011 4 254 1575

2011 2 219 913

2011 1 288 347

2011 6 327 1835

2011 1 321 312
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Years Maternal Deaths Live Births MMR per 100,000 live births

2011 2 324 617

2011 2 380 526

2011 0 372 0

2011 2 363 551

2011 0 418 0

2011 2 414 483

2011 1 408 245

2012 0 401 0

2012 2 369 542

2012 2 288 694

2012 0 403 0

2012 0 363 0

2012 1 435 230

2012 2 475 421

2012 1 459 218

2012 1 435 230

2012 0 522 0

2012 0 468 0

2012 1 502 199

2013 1 431 2322013 1 431 232

2013 4 311 1286

2013 3 445 674

2013 1 381 262

2013 1 424 236

2013 3 388 773

2013 4 383 1044

2013 3 388 773

2013 0 440 0

2013 2 423 473

2013 3 670 448

2013 0 288 0

2014 2 250 800

2014 1 251 398

2014 2 317 631

2014 1 369 271

2014 1 498 201

2014 1 444 225

2014 2 476 420

2014 2 483 414

2014 4 469 853

2014 3 609 493

2014 0 528 0

2014 3 482 622

Total 135 29,711 454
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