
THE UNIVERSITY OF NAIROBI

COLLEGE OF BIOLOGICAL AND PHYSICAL SCIENCES

SCHOOL OF COMPUTING AND INFORMATICS

PROTECTING MOBILE AGENTS FROM MALICIOUS HOSTS IN A

DISTRIBUTED NETWORK

BY NGEREKI ANTHONY MBUGUA

P53/65839/2013

SUPERVISOR: DR. ANDREW M. KAHONGE

A RESEARCH WITH PROTOTYPE PROJECT REPORT SUBMITTED TO THE

SCHOOL OF COMPUTING AND INFORMATICS IN PARTIAL FULFILMENT OF

THE REQUIREMENTS FOR THE AWARD OF AN MSC. IN DISTRIBUTED

COMPUTING

JANUARY, 2015

ii

Declaration

This research project report is my original work and has not been presented in any other

academic institution for similar reasons.

Signed:

……………………………………. ……………………..

Anthony M. Ngereki Date

This research project report has been submitted for examination with my approval as

University Supervisor.

Signed:

……………………………………….. …………………………

Dr. Andrew M. Kahonge Date

iii

Dedication

To my mum Mary, my wife Rachel and my lovely daughter, Zaneta.

iv

Acknowledgement

I wish to express my gratitude first and foremost to the almighty God. Father, your love, grace

and favor has brought me this far.

To my supervisor, Dr. Andrew M. Kahonge. Your insights, exemplary guidance, valuable

feedback and constant encouragement throughout the duration of the project have been

outstanding. I have drawn a lot of confidence and learnt more from your patience and

humility. Am so grateful.

To my employer, Chuka University and in particular, the Vice Chancellor, Prof. E. Njoka, his

Deputy, Prof. S. M Kagwanja and the entire Staff Development and Education Committee

members for granting me this opportunity.

To my friend Eric Gitonga and Miriam Njoki, yours was more than support, but true

friendship. My workmates Kamweru, Nish, Dennis, Osero, Dr. Mukuthuria, Grace, Naomi, I

cant mention you all but thanks for your encouragement and support. Special gratitude to

Okello Nelson whose advice and guidance helped me complete this project.

To my course mates. It was tough but with your positive criticism, support and true comrade

spirit, we made it. Special gratitude to Kariuki and Waweru, you remind me of the slogan;

“you’ll never walk alone”.

To my parents, Mr. and Mrs. Ngereki, for giving me the gift of education. I cannot ask for

more.

Finally, not least though, to my wife Rachel, for being patient, understanding and supportive

in my time away, studying, you are more than I could ever seek for in a wife. And to our

daughter Zaneta, the joy, fulfillment and completion that you bring to the family fuels our

desire to do more than just succeed, I so love you.

v

Abstract

Distributed applications provide challenging environment in today’s advancing technological

world. To enhance the aspects of better performance and efficiency in real scenario, mobile

agent’s concept has been brought forward. Mobile agents (MAs) are autonomous computing

entities that have the capability of moving (migrating) from one host to another and resuming

execution in the new host. MAs are an extension of the mobile object concept and allow the

movement of an agent’s code, data and state. Of concern however are the security threats that

this exciting paradigm is associated with.

We have used the Tropos methodology to design a security framework for mobile agent

systems. We further demonstrate this security solution by use of a credit bureau use case. In

our design, the security mechanism protects tasks, sub-tasks, goals and soft goals of each

agent from other agents. Only an authenticated and authorized agent can access tasks or goals

of another agent. This security hierarchy uses a multi-faceted approach to protect mobile

agents and must be incorporated from the design stage of agent systems. The security

supervisor assumes the dual role of authentication and authorization. The status monitoring

agent, on the other hand, monitors the status of each agent in the environment.

Our results showed that a multi-agent system with no security at all factored into its design

will always be vulnerable. This is due to the fact that multi-agent systems are inherently

loosely coupled. A secure multi-agent system is one that has both a good monitoring and

security supervision framework. These two frameworks complement each other. Where the

security might fail, the monitoring framework would report an exception.

vi

Definition of Terms

Mobile Agent - Mobile agents (MAs) are autonomous computing entities that have the

capability of moving (migrating) from one host to another and resuming execution in

the new host.

Agent Platform – An agent platform provides the computational environment in which an

agent operates.

Mobility - Is the core property in a mobile agent concept whereby the agent has the

ability to migrate or transport itself from one node to another within the same

environment or from node to another node in a different environment

autonomously.

Ragged - MAs should be able to deal with errors when encountered and during their

(errors) occurrence.

Actors – Interchangeably used with the term agent. An actor is an autonomous software

component.

Financial Regulator – An institution mandated by the government to regulate finance

industry.

Credit Reference Bureau - An institution, licensed by a government, to offer credit reference

services like Credit Scoring, for instance.

vii

Abbreviations and Acronyms

MA Mobile Agent

MAS Mobile Agent System

TLS Transport Layer Security

ACL Agent Communication Language

OHA One Hop Agent

MHA Multiple Hop Agent

PMM Partial Mobility Mechanism

CRB Credit Regulatory Bureau

API Application Programming Interface

SSL Secure Sockets Layer

FTP File Transfer Protocol

viii

Table of Contents

Declaration ………………………………………………………………………………..ii

Dedication……………. ... iii

Acknowledgement.. iv

Abstract……… ... v

Definition of Terms .. vi

Abbreviations and Acronyms .. vii

Table of Contents ... viii

List of Figures ……………………………………………………………………………xi

CHAPTER ONE ... 1

1.0 Introduction ... 1

1.1 Background of the Study ... 1

1.2 Statement of the Problem .. 2

1.3 Research Objectives .. 2

1.4 Scope of the Research ... 2

1.5 Justification/ Benefits of the Research .. 3

CHAPTER TWO .. 4

2.0 Literature Review .. 4

2.1 Mobile Agents and state of the art .. 4

2.2 The Mobile Agent Lifecycle ... 4

2.3 Advantages of Mobile Agents ... 5

2.4 Characteristics of Mobile Agents .. 7

2.5 Security Threats in Mobile Agents ... 7

2.6 Security threats on Mobile Agents by Mobile Agent Platforms 8

2.6 Related Work .. 10

2.6 Agent Hierarchy And Inter-Agent Migration ... 11

CHAPTER THREE .. 13

3.0 Research Methodology.. 13

3.1 Introduction ... 13

3.2 Research Design .. 13

3.3 System Development Methodology .. 14

ix

3.4 Prototyping .. 15

CHAPTER FOUR ... 16

4.0 Technical Design, Analysis and Implementation.. 16

4.1 Introduction ... 16

4.1.1 A Multi-Faceted Mobile Agent Security Mechanism ... 16

4.1.2 Protection Against Blocking and Denial of Service ... 16

4.1.3 Protection Against Masquerading ... 17

4.1.4 Protection Against Eavesdropping and Alteration .. 18

4.2 System Description ... 19

4.2.1 Current System Model (Early Requirements Phase) .. 19

4.2.1.1 Main Actors ... 19

4.2.2 Proposed System Model (Late Requirements Phase) ... 23

4.2.3 Security Requirements Engineering .. 25

4.3 Architectural Design ... 26

4.3.1 Actors And Their Capabilities .. 30

4.3.1.1 Validation Main Actor .. 30

4.3.1.2 Analytics Main Actor .. 32

4.3.1.3 Production Database Loading Main Actor .. 34

4.4 Detailed Design ... 36

4.4.1 Validation Agent System Attributes ... 36

4.4.2 Analytics Agent System .. 38

4.4.3 Production Loading Agent System ... 40

CHAPTER FIVE ... 42

5.0 Evaluation And Discussion of Results .. 42

5.2 Threats Posed By A Hosting Environment .. 42

5.3 Threats Posed By Man-In-The-Middle Attacks ... 43

5.4 Threats Posed By A Remote Malicious Agent .. 43

5.5 Test Results Discussion ... 43

CHAPTER SIX ... 48

6.0 Conclusion and Future Work ... 48

6.1 Introduction ... 49

x

6.2 A Multi-Agent Security Mechanism .. 48

6.3 Design and Development of a Secure Multi-Agent System Prototype 49

6.4 Evaluation of the Prototype ... 49

6.5 A Use Case Demonstrating A Secure Multi-Agent System 49

6.6 Future Work .. 49

References ... 50

Appendices .. 53

Appendix 1: Application Configuration Source Code .. 53

Appendix 2: Validation Utilities Source Code.. 55

xi

List of Figures

Figure 2.1: Mobile Agent Lifecycle (Aglet perspective) ... 5

Figure 2.2: Reduced communication with mobile agents .. 6

Figure 2.3: Agent hierarchy and Inter-agent migration ... 12

Figure 3.1: The circular process of scientific learning .. 13

Figure 4.1: High level Tropos model focusing on the Financial Institution 22

Figure 4.2: Proposed System Model (SCIPD) ... 24

Figure 4.3: Security Architecture... 25

Figure 4.4: Overall Architectural Design .. 27

Figure 4.5: Secure communication via TSL/ SSL ... 28

Figure 4.6: Monitoring and Security Supervision Hierarchy ... 29

Figure 4.7: Monitoring Hierarchy .. 29

Figure 4.8: Security Supervision Hierarchy .. 30

Figure 4.9: Validation Agent Hierarchy .. 31

Figure 4.10: Analytics Agent Hierarchy .. 34

Figure 4.11: Production Database Loading Main Agent. .. 35

Figure 4.12: Agent Interaction Protocol .. 36

Figure 4.13: class diagram for the validation multi-agent system component. 36

Figure 4.14: Analytics class diagram ... 39

Figure 4.15: Database Loading Class Diagram. ... 40

Figure 5.1: Results of computation in a secure MAS .. 44

Figure 5.2: Results of computation in unsecured MAS ... 45

Figure 5.3: Communication traffic in unsecured MAS ... 46

Figure 5.4: Communication in a secure MAS ... 47

1

CHAPTER ONE

1.0 Introduction

1.1 Background of the Study

The mobile agent paradigm is a shift in the evolution of computing and the distributed

computing environment in particular. Previous works show that agent concepts and mobile

agents have become important building blocks of the architecture of new networks, systems

and services. Mobile agents (MAs) are autonomous computing entities that have the

capability of moving (migrating) from one host to another and resuming execution in the new

host. MAs are an extension of the mobile object concept and allow the movement of an

agent’s code, data and state. Although mobility is the core property of MAs, they should also

be autonomous, interactive, adaptive, proactive, intelligent, coordinative, learning,

cooperative, ragged and ability to act as proxy.

The nature of mobile agents leads to many benefits. By allowing users to package and migrate

their operations to be carried out locally, computation is moved to the data rather than the data

to the computation thus reducing the network load. Another benefit is that their mobility and

adaptive properties enables MAs to respond to real-time systems. These benefits along with

conservation of bandwidth have seen MAs fronted as a replacement to the client/ server

model in the building of computer networks. However, security for MAs remains a significant

obstacle towards their full adoption.

Security is one of the major important issues that should be carefully planned when

developing a MA model. The model must protect all parties in the system such as: MAs,

Hosts, the mobility and communications. This area has taken a wide range of researchers’

attention. And it could be classified as one of the biggest challenges. The importance of the

security comes from the nature of the MAs itself; that contains distributed entities any

gape of security will affect overall the system. The MA needs protection against other

malicious MAs and hosts. Mobile agent systems have not only incorporated security

issues that have often incurred in conventional distributed systems, it also possesses some

new security threats. Security threats in mobile agent systems are classified into four

main categories: agent-to-platform, platform-to-agent, agent-to-agent, and others-to-agent

platform.

2

1.2 Statement of the Problem

One of the major concerns towards the reliability of mobile agent is its security/protection

from various types of threats like authentication & authorization of the user, malware threats,

communication of private information, denial of service attack, logic bomb or event-triggered

attacks, compound attacks, security threats from malicious hosts and malicious logic (Mishra

and Singh, 2014).

Security is the biggest concern which darkens the advantageous side of mobile agent

infrastructure (Srivastava

and Nandi, 2014). The ability of a mobile agent to migrate from it’s

home platform to another execution environment exposes to various attacks (eavesdropping,

network sniffing, malicious execution environment, etc.).

Ebietomere and Ekuobase (2014) posit that ensuring security for a mobile agent against a

malicious host appears to be the most serious of the fundamental security issues of mobile

agents. They further state that no solution has been found for the problem yet, though effort

has been made by researchers to solve the problem.

Although the mobile agent paradigm promises a great revolution in distributed networks and

applications, its’ adoption is still low largely because of the security risks that introduces.

1.3 Research Objectives

1. To propose a multi-agent system security mechanism.

2. Design and build a prototype that implements the proposed security mechanism.

3. Evaluate the prototype to establish level of security threats mitigation in the prototype.

4. Demonstrate secure multi-agent system operation using a credit bureau use case.

1.4 Scope of the Research

Although, there a number of models that can be used to describe agent systems, a simple

model consisting of two components: the agent and the agent platform is sufficient to discuss

security in mobile agents. From this model, security threats to mobile agents can be

categorised as: agent to agent, agent to platform, platform to agent and other to agent

platform.

http://www.sciencedirect.com/science/article/pii/S131915781300027X
http://www.sciencedirect.com/science/article/pii/S131915781300027X

3

This study seeks to propose a solution to security threats associated with agent platform to

mobile agent. Such threats are expounded on in section 2.6.

1.5 Justification/ Benefits of the Research

The Mobile Agent (MA) technology is gaining importance in the distributed management of

networks and services for heterogeneous environments. MA-based management systems

could represent an interesting alternative to traditional tools built upon the client/server

model. The acceptance of MA solutions is limited by the request for security. Without

security, applications cannot suit global untrusted environments, such as the Internet.

The mobile agent paradigm provides a very important feature in developing high

performance, decentralized software applications in distributed environments. As agents

(executable code) can travel on the network, data transfer between the communicating

parties is drastically reduced, which increases communication performance by utilizing

network bandwidth.

It is therefore imperative to develop solutions to the challenges of the MA paradigm

especially security threats.

4

CHAPTER TWO

2.0 Literature Review

2.1 Mobile Agents and state of the art

Ahmed (2013) and Paulino (2002) both define mobile agents as independent objects capable

to achieve tasks in heterogeneous networks on behalf of users. The mobile agent paradigm

is an extension of the mobile – object concept in which the object (code and data) is moved

from one machine to another. Mobile agents (MA’s) moves code, data and state from one

computing environment to another autonomously. This mobility known as migration is

achieved by having the MA saving its state and execution in one host that does not have the

resources that the MA needs to execute, the MA then moves to another host in the network

that have the required resources and resumes execution from the previously saved state.

The MA’s body consists of three parts: first part is a code which represents the behavior or

tasks of the MA that will be executed in the hosts. The second part represents the MA’s

data space which is updated according the execution of the first part. The third part is the

execution state that keeps a execution start point in each host. (Ahmed, 2013).

2.2 The Mobile Agent Lifecycle

The MA lifecycle according to the aglet platform consists of creation, cloning, dispatching

(migration), retraction, activation, deactivation and disposal. (Aneiba and Rees, 2004).

Creation is the first period where a mobile instance is created and eqipped with the desired

parameters so as to achieve its goal. Cloning creates a copy of the original mobile object when

the need for another agent with the same features and properties to do the same or other job in

conjuction with the original agent arises. Dispatching (migrating) is responsible for moving

the agent fro one node to another within the network environment by specifying the

destination address(e.g. URL) to the agent. The retraction function is done where the agent’s

source node requires its agent to be returned to the original host or node. Activation

and deactivation are operations done when the mobile agent is required to start or to stop

only within certain time of its lifetime. Finally, the dispose operation is done where

the agent life comes to the end. Fig. 2.2 explains the above mobile agent operations

as suggested by an Aglet system.

5

Figure 2.1: Mobile Agent Lifecycle (Aglet perspective)

2.3 Advantages of Mobile Agents

Satoh (2008) outlines various advantages of MA’s in the development of various services in

smart environments in addition to distributed applications. These include:

 Asynchronous execution: After migrating to the destination-side computer, a mobile

agent does not have to interact with its source-side computer. Therefore, even when

the source can be shut down or the network between the destination and source can be

disconnected, the agent can continue processing at the destination. This is useful

within unstable communications, including wireless communication, in smart

environments.

 Direct manipulation: A mobile agent is locally executed on the computer it is

visiting. It can directly access and control the equipment for the computer as long as

the computer allows it to do so. This is helpful in network management, in particular

in detecting and removing device failures. Installing a mobile agent close to a real-

time system may prevent delays caused by network congestion.

 Reduced communication costs: Distributed computing needs interactions between

different computers through a network. The latency and network traffic of interactions

6

often seriously affect the quality and coordination of two programs running on

different computers. As illustrated in Figure 2.3, if one of the programs is a mobile

agent, it can migrate to the computer the other is running on and communicate with it

locally. Thus, mobile agent technology enables remote communications to operate as

local communications.

Figure 2.2: Reduced communication with mobile agents

 Dynamic-deployment of software: Mobile agents are useful as a mechanism for the

deployment of software, because they can decide their destinations and their code and

data can be dynamically deployed there, only while they are needed. This is useful in

smart environments, because they consist of computers whose computational

resources are limited.

 Easy-development of distributed applications: Most distributed applications consist

of at least two programs, i.e., a client-side program and a server side program and

often spare codes for communications, including exceptional handling. However,

since a mobile agent itself can carry its information to another computer, we can only

write a single program to define distributed computing. A mobile agent program does

not have to define communications with other computers. Therefore, we can easily

modify standalone programs as mobile agent programs.

 A mobile agent enables dynamic service customization and software deployment

because it encapsulates some services or protocols into its mobility entity.

7

2.4 Characteristics of Mobile Agents

Aneiba and Rees (2004) have higlighted several characteristics that a mobile agent should

have. MAs should be autonomous, having the ability to act without direct external

interferences. In other words, they have some degree of control over their data and

states. MAs should be Interactive in communicating with the environment and other agents.

MAs should be adaptive. In other words, they have ability to respond to other agents

or theirenvironment.

Mobility is the core property in a mobile agent concept whereby the agent has the

ability to migrate or transport itself from one node to another within the same

environment or from node to another node in a different environment autonomously.

Proxy, MAs may act on behalf of someone or for the benefit of some entities (e.g.

software systems). In order to act on behalf of others, mobile agents must have at

least a minimal degree of autonomy. Proactive, MA should be a goal-oriented entity,

and take an initiative in responding to an environment.

Intelligent, MAs may have certain degree of intelligence, based on knowledge in order

to act efficienciently. Coordinative, MAs should be able to perform data transfer

activities in sharing with other agents within the givenenvironment. Learning refers to

a mobile agent’s ability in gaining information about the current environment, which

will help MAs to modify its behaviour. Cooperative, MAs should be able to

coordinate with other agents to achieve a common purpose. Ragged, MAs should be

able to deal with errors when encountered and during their (errors) occurrence.

2.5 Security Threats in Mobile Agents

Pai P, Shinde S.K and Khachane (2012) and Varnamkhasti M.M and Mahmoodi M (2013)

observe that threats to security generally fall into three main classes: disclosure of

information, denial of service, and corruption of information. Although, there a a number of

models that can be used to describe agent systems, a simple model consisting of two

components: the agent and the agent platform is sufficient to discuss security in mobile

agents. The agent platform provides the computational environment in which an agent

operates. The platform from which an agent originates is referred to as the home platform, and

normally is the most trusted environment for an agent.

8

From this model, we can categorise security threats as:

Agent-to-Platform: this category category represents the set of threats in which agents

exploit security weaknesses of an agent platform or launch attacks against an agent platform.

This set of threats includes masquerading, denial of service and unauthorized access.

Agent-to-Agent: The agent-to-agent category represents the set of threats in which agents

exploit security weaknesses of other agents or launch attacks against other agents. This set of

threats includes masquerading, unauthorized access, denial of service and repudiation. Many

agent platform components are also agents themselves.

Platform-to-Agent: The platform-to-agent category represents the set of threats in which

platforms compromise the security of agents. This set of threats includes masquerading,

denial of service, eavesdropping, and alteration.

Other-to-Agent Platform: The other-to-agent platform category represents the set of threats

in which external entities, including agents and agent platforms, threaten the security of an

agent platform. This set of threats includes masquerading, denial of service, unauthorized

access, and copy and replay.

2.6 Security threats on Mobile Agents by Mobile Agent Platforms

The mobility factor of mobile agents poses the greatest of exposure of a mobile agent to

threats. Mobility is regarded as either weak or strong. Strong migration means that the mobile

agent can carry itself, its data and its state while weak migration means that mobile

agent can carry only itself and its data (e.g. mobile object). In case of strong mobility of

mobile agent all its code, data and state are exposed to the mobile agent platform in which it

migrates for execution of operation. Because of this, a mobile agent faces more severe

security risks. Following are possible attacks by malicious platforms (Dadhich et al., 2010)

2.6.1 Leak out/ modify mobile agent’s code

Since the mobile agent’s code has to be read by a guest platform, so this malicious platform

can read and remember instructions going to be executed to infer the rest of the program

based on that knowledge .By this process, platform knows the strategy and purpose of mobile

agents. If mobile agents are generated from standard building libraries , the malicious

platform knows a complete picture of mobile agent’s behavior and it finds out the physical

9

address and can access its code memory to modify its code either directly or by insertion of

virus. It can even change code temporarily , execute it and finally resuming original code

before the mobile agent leaves.

2.6.2 Leak out/ modify mobile agent’s data

A lot of data is security sensitive like security keys, electronic cash, e.t.c. If the malicious

platform get to know the original location of data it can modify the data in accordance with

the semantics of data. Above tasks can lead to severe consequences. Even if data is not

sensitive, malicious platform can attack on normal data like traveling data of person and

leaking it to somebody.

2.6.3 Leak out/ modify mobile agent’s execution flow

By knowing the mobile agents physical location of program counter, mobile agent’s code and

data the malicious platform can predict what will be set of instructions to be executed next

and deduce the state of that mobile agent. By help of this process, it can change the execution

flow according to its will to achieve its goal. It can even modify mobile agent’s execution to

deliberately execute agent’s code in wrong way.

2.6.4 Denial of Service(DoS)

This attack causes mobile agent to miss some good chances if agent can finish its execution

on that platform in time and travel to some other platform. DoS causes not to execute the

mobile agent migration and put it in waiting list carrying delays.

2.6.5 Masquerading

Here malicious platform pretends as if it is the platform on which mobile agent has to migrate

and finally becomes home platform where mobile agent returns. By this mechanism, it can get

secrets of mobile agents by masquerading and even hurts the reputation of the original

platform.

2.6.6 Leak out/ Modify the interaction between a mobile agent and other parties

Here malicious platform eavesdrop on the interaction between a mobile agent and other

parties like another agent or other platforms. This leads to extraction of secret information

about mobile agent and third party. It can even alternate the contents of interaction and expose

10

itself as part of interaction and direct the interaction to another unexpected third party. By this

way, it can perform attacks to both mobile agent and third party.

2.6 Related Work

The executing host in mobile agent systems has complete control over executing programs.

This makes agent protection difficult. Several approaches have been proposed to solve this

shortcoming. We survey some approaches some of them,

Shrivastava & Mehta, (2012) propose an algorithm to protect agents. In their algorithm,

there’s a monitoring agent and a dummy agent with the same script but with dummmy data.

The original agent sends the monitoring agent and dummy agent to the the next node in the

network to chech its behaviour. If the node is suspicious, the monitoring agent sends an alert

acknowledgement and an OK acknowledgement if otherwise. Though this algorithm protects

the agent, it still adds to some overhead in the network due to the cteation of the dummy agent

and its data.

Ahmed, (2013) proposes partial mobility mechanism (PMM) to protect mobile agents

integrity and privacy against malicious hosts. In PMM the MA has two types: the first

one is an One_Hop_Agent (OHA) which can visit only one host. The second is a Multi-

Hop-Agent (MHA) which can visit multiple hosts. The MHA can contain multiple of

OHAs. The main idea behind PMM is to allow to the One-Hop-Agent to visit untrusted

hosts only. So, the MA will not visit any host that is classified as untrusted host. In

PMM, all hosts will be visit by MAs are classified in two categories, trusted and

untrusted hosts. The problem with this method is that untrusted host has to be known prior to

the design of the system. This may be particularly difficult in a distributed environment.

The Ajanta mechanism: This mechanism proposes three approaches for protecting the

MA. The first is to allow the programmer to define parts of the MA’s state as Read-Only

and if any modification occurs to these parts, the MA’s user can detect using the

digital signature mechanism. The second approach is let the MA creates append-only data

states container where the data stored in this container can not be deleted or altered without

detection by MA’s user. The third approach is to let programmers to define data states to

specific hosts and no other hosts can deal with these data states. These mechanisms use the

encryption, the decryption and the digital signature.

11

A Secure Mobile Agents Platform: By using access control and authentication, this

mechanism protects the MAs. The host controls all the resources available on it. Each MA

defines its own control policy for other MAs by using an Interface Definition Language

(IDL).

KeyLets mechanism: This mechanism based on partitioning a MA as units according to

the task type. By using secret keys, it encrypts each unit to protect them. The distribution of

keys to different hosts is done through the execution of specific type of a MA that is termed a

Keylet. The disadvantages of this approach: Propagation requires a third party code producer

that can supply the MA by a template the MA’s owner. Also, a large number of transactions

related to the keylet and a host may not be willing to support the increased of computation.

Moreover, key revocation is not good in quality. In addition, it requires a complicated

mechanism to categorize tasks of the MA. Also, this mechanism does not protect the MA

code completely.

2.6 Agent Hierarchy and Inter-Agent Migration

We used an approach where a hierarchy of agents exists. The parent agent supervises and

keeps track of all children in its hierarchy. If the children fork other children in the course of

their execution, then the child is in supervision of the children forked.

This hierarchy of command and control ensures that any activity by the agent is tracked as

well as any activity or intent to tamper with an agent. If this happens, then the parent agent

has a decision to make whether to kill the agent or deploy in another host

The model is achievable through introduction of the following concepts as borrowed from

(Satoh, 2008.)

1. Agent Hierarchy: Each mobile agent can be contained within one mobile agent.

2. Inter-agent Migration: Each mobile agent can migrate between mobile agents as a

whole with all its inner agents.

12

Figure 2.3: Agent hierarchy and Inter-agent migration

The agent hierarchy is given as a tree structure in which each node contains a mobile agent

and its attributes. The runtime system is assumed to be at the root node of the agent hierarchy.

Agent migration in an agent hierarchy is performed just as a transformation of the tree

structure of the hierarchy. In the runtime system, each agent has direct control of its inner

agent. That is, a container agent can instruct its embedded agents to move to other agents or

computers, serialize and destroy them. In contrast, each agent has no direct control over its

container agent. Instead, each container can offer a collection of service methods which can

be accessed by its embedded agents.

13

CHAPTER THREE

3.0 Research Methodology

3.1 Introduction

In this chapter, we discuss the general methods, tools and instruments that we used to achieve

the objectives we set out in chapter one. The methodologies discussed are directly matched

with the tasks that we undertook to solve the problem which included; formulation of a

security solution for mobile agents, development of a prototype that demonstrates the security

solution and use of a test case to verify effectiveness of the security solution.

3.2 Research Design

The nature of the research favored an experimental design. Much of the substantial gain in

knowledge in sciences comes from performing experiments (Seltman, 2014). In an

experimental design, the researcher interferes with the conventional order of doing a thing by

introducing a selected condition or change. Observations or measurements are then planned to

illuminate the effect of the changes. Experimental designs help infer about causes or

relationships on than just simply describe. An experiment may be either exploratory or

confirmatory; in our case it was exploratory.

Seltman, (2014) describes scientific learning as an iterative process in which experimentation

is one of the steps. Analysis and interpretation of information got from experiments leads to

possible modification of the current state of knowledge. This process is shown in the figure

below.

Figure 3.1: The circular process of scientific learning

14

3.3 System Development Methodology

We used the Tropos methodology in developing the system prototype. Tropos is an agent-

oriented software engineering (AOSE) methodology that covers the whole software

development process. Tropos is based on two key ideas. First, the notion of agent and all

related mentalistic notions (for instance goals and plans) are used in all phases of software

development, from early analysis down to the actual implementation. Second, Tropos also

covers the very early phases of requirements analysis, thus allowing for a deeper

understanding of the environment where the software must operate, and of the kind of

interactions that should occur between software and human agents.

Tropos spans four phases:

 Early requirements, concerned with the understanding of a problem by studying an

organizational setting; the output of this phase is an organizational model which

includes relevant actors, their respective goals and their inter-dependencies. Early

requirements include two main diagrams: the actor diagram and the goal diagram. The

latter is a refinement of the former with emphasis on the goals of a single actor.

 Late requirements, where the system-to-be is described within its operational

environment, along with relevant functions and qualities. The system-to-be is

represented as one actor which has a number of dependencies with the other actors of

the organization. These dependencies define the system's functional and non-

functional requirements.

 Architectural design, where the system’s global architecture is defined in terms of

subsystems, interconnected through data, control and other dependencies. This phase

is articulated in three steps:

 Definition of the overall architecture.

 Identification of the capabilities the actors require to fulfill their goals and

plans.

 Definition of a set of agent types and assignment to each of them one or more

capabilities.

15

 Detailed design, where behavior of each architectural component is defined in further

detail. Each agent is specified at the micro-level. Agents' goals, beliefs and capabilities

are specified in detail, along with the interaction between them

3.4 Prototyping

Prototyping is the process of building a model of a system. A prototype is designed to test a

new design to enhance precision by system analysts and users. Prototyping serves to provide

specifications for a real, working system rather than a theoretical one. The choice of

prototyping in this research was informed by several factors, key among them being the

limited time available for the completion of the project. By prototyping, we were able to

simply demonstrate functions relevant to our research using available software tools.

We used a proof of principle (proof of concept) prototype to test the main aspect of our

intended design without attempting to exactly simulate the actual implementation. Proof of

concept prototypes are can be used to prove out a potential design approach to demonstrate its

feasibility. An advantage of proof of concept prototypes is that they are usual small and may

or may not be complete.

16

CHAPTER FOUR

4.0 Technical Design, Analysis and Implementation

4.1 Introduction

In this chapter, we describe the system prototype in detail. We discuss the security

mechanisms employed in the prototype. We then, describe the CRB use case in detail using

flowcharts, use case diagrams and activity diagrams. We have relied heavily on open source

tools to achieve this objective. Open source tools are distributed for free and are suitable in

academic research because the researcher can modify as per system requirements without the

need for user licenses which are in most cases expensive to acquire.

4.1.1 A Multi-Faceted Mobile Agent Security Mechanism

Most mobile agent security mechanisms proposed only detect rather than protect (Jansen and

Karygiannis, 2003). Literature reveals that a single approach cannot protect a mobile agent

from all the security challenges that dog this exciting paradigm (Shrivastava and Mehta,

2012). We therefore propose a multi-faceted approach to dealing with security threats in

mobile agent systems. Such a solution must be implemented right from the design stage to

implementation if a mobile agent system has to be truly secure. The use of the Tropos

methodology helps us achieve this. This approach effectively deals with all known threats by

malicious hosts to mobile agent systems. Sections 4.1.2 to 4.1.4 describe the algorithms that

we have embedded in our mobile agent code to mitigate against threats posed by a malicious

host.

4.1.2 Protection Against Blocking and Denial of Service

Using time to live (TTL) and heart beat mechanisms, a mobile agent can be protected against

blocking or denial of the service by a malicious host. The following steps describe how the

mechanism detects and protects against blocking or denial of service

While not Successful;

1. Parent Agent

a) Creates a new agent (Either in the present or alternative host)

b) The created Agent:

17

a. Checks resource availability (If enough resources,

Acknowledge ability to execute else dies)

c) Transfer data to the created agent

d) Sets TTL and Starts timer

2. While child Agent Not Done;

a) Sends heartbeat to parent

3. While Timer < TTL;

a) Waits for result from child agent

4. If Timer >= TTL;

a) Attempt to destroy child agent

5. Else If Not Successful;

a) Cut off communication from child agent

6. If there is a free agent;

a) Assign task of child agent to free agent

7. Else

a) Create another child agent in another host

4.1.3 Protection Against Masquerading

We have achieved this by centralizing the security requirements of any agent to itself. This

implies that when an agent desires to migrate, it creates its instance in a new host and kills

itself in the current host. It also informs its parent host of this move. This completely abstracts

the use of host identity in the migration process making it difficult for a host to masquerade as

another. Further to this requirement, a parent agent assigns a child agent ID for each of the

children it creates. This ID is not replicable as it uses a one-way hashing algorithm. The

parent agent keeps a repository of all IDs of the children it has created and tries to match this

with the ID of any agent that tries to communicate with it. If a match cannot be found,

communication is denied. Communication between a parent agent and a child is that a child

must identify itself when communicating with the parent or any other agent in the network

while a parent agent must not necessarily identify itself with its children.

The following steps describe the process of generating an irreplicable child ID:

1. Call a hashing function (We propose a 256 bit SHA1 algorithm)

18

2. Call a timestamp retrieval function

 Generate current timestamp (Computed to nanosecond

precision)

 Host time zone

3. Call an agent ID generator function (Concatenates Hash value +

Timestamp + Time zone)

This process creates a unique ID for any agent created. The reasoning here is that even in a

synchronized environment, it is difficult for a malicious host to precisely fake an ID with

precision to the nanosecond.

4.1.4 Protection Against Eavesdropping and Alteration

We use encryption and decryption mechanisms to achieve this. Eavesdropping is only

possible in the host environment since in our mechanism, communication between remote

hosts is via SSL/ TLS. We further make eavesdropping on an agent’s code by using a

production ready tool (Scala) in development of our agents. This implies that the agents’ code

is compiled and not visible to the host environment.

The files and data created during execution is however visible by the host. To counter

eavesdropping, we use an encryption algorithm to encrypt the temporary files and data before

writing to memory of the host environment and a decryption algorithm whenever we need to

read them.

We further protect against alteration by adding a CRC based on our encrypted data and

compare it when retrieving data to detect alteration and take corrective actions. The steps

below describe how we achieved this:

Writing Temporary Files to Host

1. Encrypt data before writing to host file system.

2. Generate CRC based on data in step 1 above.

3. Write out the data to the file system

Reading Data from Temporary Files

1. Retrieve data.

19

2. Calculate CRC.

3. Calculate CRCs to see if data is modified

4. If CRC1 is NOT equal to CRC2

a. Inform the parent

b. Cease processing

The parent agent then decides whether to transfer task to a free agent or to start the agent in a

new host.

4.2 System Description

As mentioned in the previous chapter, we used the Tropos methodology in the development of

the prototype. The Tropos methodology spans four phases namely: Early Requirements, Late

Requirements, Architectural Design and the Detailed Design Phases.

In line with our objectives as set out in Section 1.3, we chose a use case to demonstrate our

secure multi-agent system operation. The use case is a credit bureau which is described in the

sections that follow using the Tropos methodology.

4.2.1 Current System Model (Early Requirements Phase)

The current credit bureau system is as described below. The relevant actors (agents), their

respective goals and their interdependencies are described.

4.2.1.1 Main Actors

An actor represents:

 A physical or a software agent.

 A role, meant as an abstract characterization of the behavior of one or more agents

taken in a specific context.

 A position, i.e., a set of roles generally assumed by a single agent, e.g., Data Analyst.

In our survey of the current system, we identified the following actors:

Financial Institution:

All financial institutions are required by laws of Kenya to submit their credit data to a

licensed credit reference bureau. This actor refers to a representative in each financial

institution charged with the responsibility of ensuring that data is formatted properly, in

20

accordance with the industry regulator’s template, before it’s submitted to a licensed credit

reference bureau through the system. Goals of a financial institution actor are:

 Prepare credit information records that comply with the industry regulator’s provided

document template.

 Submit the credit information records to the credit reference bureau.

 Review processing reports generated by the credit reference bureau and revise the

credit information records as needed.

 Resubmit revised credit information records to the credit reference bureau.

Credit Reference Bureau:

This refers to an institution, licensed by a government, to offer credit reference services like

Credit Scoring, for instance. It’s this institution that reports to the industry regulator the

compliance level of each financial institution. In a generic notion, it’s the responsibility of a

credit reference bureau to report to the regulator, the compliance level of each financial

institution. This, it does by generation reports that shows statistics and detailed results of

processing data it receives from financial institutions. This actor models the credit reference

bureau personnel charged with the responsibility of generating and manually verifying the

accuracy and presentation of statistical and detailed processing reports. The personnel also

have a responsibility to dispatch the reports to the regulator in the processing workflow. The

credit reference bureau has the following goals:

 Process credit information records received from financial institutions by enforcing

rules provided by the industry regulator.

 Generate processing summary statistics and detailed reports.

 Send generated summary statistics and detailed reports to financial institutions using

in-house portal or e-mail.

 Send generated summary statistics to the industry regulator using a provided online

portal or e-mail.

Financial Industry Regulator:

This refers to an institution mandated by a government to regulate the finance industry. The

regulator defines rules and templates used by financial institution to submit credit data to the

21

system. This actor models a regulator personnel charged with the responsibility of going

through generated reports and advising relevant stakeholders as needed. The goals of an

industry regulator actor are:

 Prepare document submission specification to be used by the financial institution to

submit credit information to the credit reference bureau.

 Review reports it receives from credit reference bureau about the compliance level of

the financial institution and act accordingly.

 Revise the document submission specification and train the credit reference bureau

and the financial institution on its usage.

In our methodology, intentional elements include goals, soft goals, tasks and resources. These

can either be internal to an actor, or define a dependency relationship between actors. A goal

is a condition or state of affairs in the world that the actor would like to achieve. For example,

a credit reference’s bureau to codify rules it receives from the industry regulator is modeled as

a goal.

A soft goal is typically a non-functional condition, with no clear-cut criteria as to when it’s

achieved. For example, the fact that all processing should be completed within 24 hours of

receiving financial institution data, regardless of volume, is modeled as a soft goal.

A task specifies a course of action that produces the desired effect. A resource, represented is

a physical or information entity. For example, a financial institution waits for file processing

reports to be availed by the credit reference bureau.

Some intentional elements are internal to each actor. While some are delegated from one actor

to another. For example, a financial institution depends on a credit reference bureau to access

credit score of a credit applicant. The resource is modeled as a dependency, using dependency

links, from financial institution to the credit reference bureau. Dependency links are used to

represent inter-actor relationships.

22

Revise Submission

Financial

Institution

Query (Reports)

Comply to

Regulator Rules

Submit Credit

Information

Obtain Document

Template

++

-

-

-

Figure 4.1: High level Tropos model focusing on the Financial Institution

Figure 4.1 zooms into one of the actors of this domain, the financial institution. It shows how

the high level intentional elements of the financial institution are refined and operationalized.

The refinements and relationships among intentional elements are represented with these

intentional links: means-ends, decomposition and contribution links. Each element connected

to a goal by a means-ends link is an alternative way to achieve the goal. Decomposition links

define a refinement for a task. For example, if a financial institution wants to access credit

information for an applicant, they must have submitted their own credit records to a credit

23

reference bureau and the credit records they submitted must have been conformant to the

industry regulator rules.

A contribution link describes the impact that an element has on another. The impact can be

positive or negative. Positive impact is represented by a plus sign (+) while a negative impact

is represented by a minus sign (-). For example, if the financial institution revises its

submission on receiving a processing report from the credit reference bureau, there will be a

positive impact on the quality of a resubmission, and hence the compliance level of the

financial institution to the industry regulator rules.

4.2.2 Proposed System Model (Late Requirements Phase)

In this stage, we are going to focus on the requirements in the target system, i.e., the system-

to-be. The goal of this phase is to provide a set of functional and non-functional requirements

of the target system. Contrary to early requirements phase, we are going to model the system

itself by introducing it as an actor system and model its dependencies with the other actors of

the organization.

Figure 4.2 shows a late requirements Tropos model of the target system. The system is code

named SCIPD, for System for Distributed Credit Information Processing and Querying

System. The system simplifies the current processing of credit information, as explained in

[4.2] by introducing a distributed system that automates much of the processing and

communication needed. It also makes it easy to create a Query API. The Query API would be

used by all subscribed financial institutions to query credit applicant’s credit score or credit

history.

Of note in the target system is the security and distributed processing requirements. As shown

in [4.2], centralizing processing to credit bureaus’ premises may lead to delays in

communicating compliance feedback to financial institutions. Also, industry regulator may

find it hard to mine trends in compliance by the financial institutions. By adopting a

distributed approach, financial institutions have control over reviewing of their compliance

level and only commit their credit information to the credit reference bureau when they are

satisfied with the compliance level.

24

SCIPD

Provide Secure

Information Processing

Credit

Records
Regulator Rules

Bank Records

Score Lookup

Regulator Template

CRB

Archive

statistics

API

Access

Fast

Processing

Figure 4.2: Proposed System Model (SCIPD)

Given the sensitive nature of credit information, security of the data is of paramount

importance. To this end, modeling of the system takes into account security patterns from this

early stage in the software development process. Whereas most software development

25

processes normally consider security after design of the system, we adopted Tropos

development methodology because it integrates security concerns throughout the development

stages. In modeling the security requirements of the system, we’ve used Secure Tropos, an

extension of the Tropos software development methodology, to model and analyze security

requirements alongside functional requirements.

4.2.3 Security Requirements Engineering

Security requirements engineering is geared at detecting and analyzing security issues in the

software development process. Security mechanisms are of utmost importance because

systems are subject to threats, which may influence organizational assets. As shown in figure

4.3, every communication between agents goes through a security supervisor. The security

mechanism protects tasks, sub-tasks, goals and soft goals of each agent from other agents.

Only an authenticated and authorized agent can access tasks or goals of another agent. In the

figure, a high level representation of the interactions of the main agents in the system is

shown. For example, if a financial institution agent wants to retrieve a processing report, it

has to go through the security supervisor agent to be authenticated first. Every request to a

credit reference bureau agent must be explicitly authorized by the parent of such agent.

SCIPS

Component A

FI

Interaction

Interface

Regulator Interaction

Interface

CRB

Interaction Intrface

Security

Supervisor

Authentication + Authorization

Figure 4.3: Security Architecture

26

It’s worth noting that there’s not just a single security supervisor agent. Each agent that

creates other agents also creates a security supervisor agent to control access to its children.

This is to ensure that security is localized to the parent agent. It also minimizes cross network

traffic. Cross network communication will only happen if an agent wishes to communicate

with a remote agent. When remote communication is necessary, then the parent of the target

agent, the one whose services are being sought, controls access to the agent’s goals and tasks.

4.3 Architectural Design

In this stage of our software development methodology, we define the system’s global

architecture in terms of actors interconnected through data and control flows, represented as

dependencies. Additionally, we are going to map actors into a set of software agents, each

characterized by its specific capabilities. This stage in our software development methodology

is achieved in three steps: Overall architecture definition, identification of actor capabilities to

fulfill their goals and plans, and definition of agent types and capabilities assignment to each

agent.

Validation

MAS

Query

API

Communication

MAS

Security

Supervisor

Analytics MAS

Resource Exchange

Production DB

Loading MAS

Regulator

MAS

External

Subscription System

Co-ordination

Resource Exchange

Resource Exchange

Co-ordination

27

Figure 4.4: Overall Architectural Design

As shown in figure 4.4, there are five main components in the SCIPD system:

 Validation multi-agent system component.

 Analytics multi-agent system component.

 Production database multi-agent system component.

 Communications multi-agent system component.

 Regulator multi-agent system component.

As shown in the figure, the data flow is from the validation multi-agent system component to

the analytics multi-agent system and the production database multi-agent system components.

The validation multi-agent system component resides at the financial institution’s local area

network. The analytics multi-agent system and the production database multi-agent system

components reside at the credit reference bureau’s local area network.

Communication between the validation multi-agent system and the analytics and production

database multi-agent system components take place across the Internet. To protect the

integrity of the data and ensure that the data is not compromised en-route, data must be

encrypted. Also, transfer of the data must take place through a secure dedicated channel for

the duration of the transfer. To achieve this, SCIPD uses Transport Layer Security to encrypt

communication as shown in figure 4.5. Communication between the validation multi-agent

system and production database loading multi-agent systems components uses the same

protocol and encryption algorithm. The same applies to communication between the analytics

and the regulator multi-agent system components.

Validation

MAS

Production DB

Loading MAS

Analytics

MAS
TSL/ SSL

TSL/ SSL

28

Figure 4.5: Secure communication via TSL/ SSL

Internally, each agent and sub-agent must protect its goals, plans and tasks. To do so, each

agent that creates another agent also creates its own security supervisor that controls access to

its internal data and state from other agents and from the host operating environment.

Whenever an agent receives a message to perform a task or communicate its status from

another agent, it delegates authentication and authorization to the security supervisor before

fulfilling the request. If authentication and authorization fails, the request is not fulfilled and

fails silently along with the security supervisor, a state monitoring agent is created for each

agent with children.

The goal of a state monitoring agent is to periodically check and validate the state of the

parent agent and its children. If an inconsistent is discovered, the agent hanged and its parent

is informed of the state. The decision will be on the parent agent to determine whether and

when to restart or resume the agent either on the same or in an alternative host. Figure 4.6, 4.7

and figure 4.8 illustrate this.

Validation

Master Agent

File Re-order

Agent

Security

Supervisor

State Monitoring

 Agent

Record

Validation Agent

29

Figure 4.6: Monitoring and Security Supervision Hierarchy

Figure 4.6 shows a combined monitoring and security supervision hierarchy. It shows the

communication hierarchy for security supervision and state monitoring. Figure 4.7 shows

monitoring hierarchy only. It illustrates the flow of monitoring messages in the event of an

exception from the lowest agents in the hierarchy to the highest working level in the

hierarchy. Figure 4.8 shows the security supervision hierarchy. If, for example, the top level

agent in the analytics multi-agent system component has a security breach, the top level agent

in the validation multi-agent system is informed of the exception. The validation multi-agent

system then resumes or restarts the analytics multi-agent system in the same host or in an

alternative host.

Internally, each multi-agent system has its own supervision and monitoring hierarchy which is

created dynamically.

Validation

Monitoring Agent

Global

Monitoring Agent

Analytics

Monitoring Agent

Regulator Monitoring

Agent

Co-ordination

Co-ordination

Co-ordination

Figure 4.7: Monitoring Hierarchy

30

Validation

Security Supervisor

Agent

Global

Security Supervisor

Agent

Analytics

Security Supervisor

Agent

Regulator Security

SupervisorAgent

Co-ordination

Co-ordination

Co-ordination

Production DB Security

Supervisor Agent

Co-ordination

Figure 4.8: Security Supervision Hierarchy

4.3.1 Actors And Their Capabilities

The main actors (agents) in the SCIPD system are:

 Validation main actor

 Analytics main actor

 Production database loading main actor

 Global security supervision actor

 Global state monitoring actor

4.3.1.1 Validation Main Actor

The goals of this actor are:

 Read text files from the file system. It should be able to read very large

files. To do this, it needs to implement reading of continuous streams of

data instead of loading entire files into the main memory.

 Split text files into individual records.

 Differentiate between the different file types being loaded from the file

system.

 For each file type read, it should be able to read corresponding

configuration settings. Configuration settings are divided into two:

Regulator rules for the file types and bureau’s defined rules meant to

ensure better data quality.

31

 It should be able to apply defined validation routines to each record read

from a file of a specific type.

 It should be able to write out processing logs to the file system or insert

into a database as it processes records for each file type.

To achieve these goals, the validation main actor has the following sub-actors:

 File reader agent: This actor reads files from the file system or from an

FTP server by streaming. For every file streamed from the file system or

from an FTP server, this actor creates sub-actor to work on the files.

 Configuration loading agent: This actor is responsible for loading

configuration settings for each file type. Some of the configurations are

stored locally to where the agent is running. Others are loaded from a

remote server. This actor also ensures that the local copies of configuration

files are up to date.

Record Validator Agent

File Re-Order Agent

Security Supervisor

Agent

State Monitoring

Agent

Validator Main Actor/ Agent

Configuration Agent

Resource Exchange

Figure 4.9: Validation Agent Hierarchy

 Record validator agent: There’s a validator agent for every defined file

type. The goal of a validator agent is to perform actual validation of a

record. The output of such an agent are validation logs.

 Security supervisor agent: This agent’s task is authentication and

authorization whenever another agent requests for the main validation

32

agent’s services. If a remote agent requires a service offered by the main

validation agent or any it’s child agents, authentication and authorization

are delegated to the security supervisor agent.

 State monitoring agent: An agent’s and its children’s states are

continuously monitored to know when and whether the agent’s state has

been compromised.

 Communication agent: All external communication, i.e., communication to

other agents is through one specialized agent. This agent will choose the

protocol of communication based on the type of communication to be

performed. Communication can include requesting other agent’s to perform

some task, creating an agent in a remote host, sending out e-mail address,

retrieving data from a remote FTP server, among others.

4.3.1.2 Analytics Main Actor

The goals of this actor are:

 Receive compressed validation processing logs from the validation multi-

agent system component.

 Generate processing statistics based on the data it has received.

 Generate processing summary reports targeted at both the financial

institution and the industry regulator.

 Generate detailed processing reports targeted at the financial institution;

 Load report templates from configuration files.

 When statistics and reports generation is complete, sends the data to the

archiving multi-agent system component.

To achieve these goals, this actor has the following sub-actors:

 Report templates loading agent: This agent is charged with the

responsibility of loading templates for reports to be generated from a

configuration file. If necessary, loads configuration files from a remote

host.

 Statistics aggregation agent: This agent is charged with the responsibility

of generating aggregation statistics based on the data received from the

33

validation agent. To do this effectively, this agent implement a light-weight

aggregation pattern to track the following measures: total number of

records processed thus far, total number of valid records, total number of

valid records and total value, in money terms, of all valid records processed

thus far.

 Report generation agent: This agent is charged with the responsibility of

generating configured reports, as loaded by the reports templates loading

agent.

 Communication agent: This coordinates and chooses the appropriate

protocol for communication with other agent systems and other interfaces.

Communication can include requesting services from other agents, sending

an e-mail notification, or retrieving a remote resource.

 Security supervision agent: This agent is charged with the responsibility of

restricting to this agent system’s goals, tasks and plans. All incoming

requests are vetted by this agent to determine whether or not they can be

fulfilled or not based on the prevailing security configuration.

 State monitoring agent: This agent monitors the state of the analytics agent

system and reports any security exception to the global security supervising

agent.

34

Configuration

Loading Agent

Communication Agent

Security Supervisor

Agent

State Monitoring

Agent

Analytics

Main Agent

Statistics

Generator Agent

Resource Exchange

Resource Exchange

Figure 4.10: Analytics Agent Hierarchy

4.3.1.3 Production Database Loading Main Actor

Production database loading main actor has the following goals and tasks:

 Receive valid records from the validation actor system.

 Load production database configuration either from the local file system or from a

remote configuration hosting server.

 Perform search to establish whether a record is to be created a new or updated;

 Generate production loading report.

To achieve these goals, the agent has the following sub-actors:

 Communication agent: The responsibility of this agent is to coordinate

communicate with remote agents and remote server hosts. For example, when

receiving valid records from the validation agent system.

 Database configuration loading agent: This agent is charged with the responsibility

of loading all production database configurations and managing connection to

them.

 Search agent: This agent performs search on existing records to determine whether

a record needs to be created or updated.

35

 Production logs generating agent: This agent generates logs as production loading

is happening. It then coordinates with the communication agent to dispatch the logs

to be reviewed by the credit reference bureau staff.

Search Agent

Database Configuration

Loading Agent

Security Supervisor

Agent

State Monitoring

Agent

Production Database

Loading Agent

Production Logs

Generator Agent

Resource Exchange

Resource Exchange

Figure 4.11: Production Database Loading Main Agent.

36

4.4 Detailed Design

In this stage, we are going to specify, in detail, the goals of main agents, their beliefs,

capabilities and communication between the agents. Figure 4.4 shows an agent interaction

protocol focusing on dialogue among the agents. In the following sections, we are going

to show how the capabilities of each agent is fulfilled by defining tasks, attributes and

measures for each agent and it’s interaction with other agents. We’ve divided this section

by agent system types.

Figure 4.12: Agent Interaction Protocol

4.4.1 Validation Agent System Attributes

File Reorder

File Name

File Path

Security Supervisor

Access Control List

Record Validator

Record

Mandatory Ref
Data Type Ref

Configuration Loader

File Type

ConfigurationLogs

State Monitor

Agent List
Overall State

Figure 4.13: class diagram for the validation multi-agent system component.

Validation

MAS

Analysis MAS Production DB MAS Archiving MAS

Validation

Complete

Send Data

Refuse

Agree

Sending Data

Info
Success

Failure

Send data

Refuse

Agree

Sending Data

Send Data

37

4.4.1.1 File Reader Agent

 File name

 Absolute file path

 File type

 File size

 Batch ID

 Processing start date

 Processing end date

 FTP server host (Optional)

 FTP server username (Optional)

 FTP server password (Optional)

4.4.1.2 Configuration Loading Agent

 File Type

 Configuration base location

 Configuration up-to-date

 Configuration handler

4.4.1.3 Record Validator Agent

 Record

 Mandatory rules

 Data type rules

 Business type rules

 Validation errors

 Valid flag

4.4.1.4 Security Supervisor Agent

 Access control list

 Global security supervisor address

 Authentication time to live manager

 Authorization token generator

38

 Authorization validity monitor

4.4.1.5 State Monitoring Agent

 List of agents to monitor

 Overall status

 Monitoring schedule

 State criticality

4.4.1.6 Communication Agent

 Network communication protocol

 Intra-agent communication protocol

 Encryption algorithm

4.4.2 Analytics Agent System

Reports Template

Base Locator

Report Formats

StateMonitor

List Controller

Statistics Aggregator

Total Report

Total Ref

Reports Generator

Security Supervisor

ACL
Global Supervisor ActorCommunication Agent

Protocol
TCL

Overall Status

39

Figure 4.14: Analytics class diagram

The Analytics class diagram will be used to create the analytics multi-agent system

component. The attributes and measures for each of the sub-actors of this component are

shown below.

4.4.2.1 Report Templates Loading Agent

 Report template base location

 List of available report formats

 List of report recipients

 Determine recipients from metadata

 Report language

4.4.2.2 Statistics Aggregation Agent

 Total records processed

 Total number of validation errors

 Total value of all valid records

4.4.2.3 Report Generation Agent

 Pre-generate reports

 Report submission mode

 Report publishing base

4.4.2.4 Communication Agent

 Network communication protocol

 Intra-agent communication protocol

 Data encryption algorithm

4.4.2.5 Security Supervisor Agent

 Access control list

 Global security supervisor address

 Authentication time to live manager

 Authorization token generator

40

 Authorization validity monitor

4.4.2.6 State Monitoring Agent

 List of agents to monitor

 Overall status

 Monitoring schedule

 State criticality

4.4.3 Production Loading Agent System

The production loading multi-agent sub-system is responsible for database data loading.

Its goals can be thought of as two-pronged: Search a record to determine where to create

new record or update an existing record. The attributes and measure definition of this sub-

system is shown in the corresponding sub-actor sections.

Search Agent Database Loading

Communication Agent
Security Supervisor

State Agent

Search ModePK

Action Option

DB CommPK

ProtocolPK

ACLPK

Overall StatusPK
attribute namePK

 Figure 4.15: Database Loading Class Diagram.

4.4.3.1 Database Configuration Loading Agent

 List of database connection strings to interact with

 Database selection criteria

 Database connection handler

41

4.4.3.2 Search Agent

 Search mode

 Search result action options

 Matching function

4.4.3.3 Production Processing Logs Generating Agent$

 Log base location

 Log distribution mode

 List of log distribution recipients

 Log file split format

 Compression flag

 Compression algorithm

 Encryption flag

 Encryption algorithm

4.4.3.4 Security Supervisor Agent

 Access control list

 Global security supervisor address

 Authentication time to live manager

 Authorization token generator

 Authorization validity monitor

4.4.3.5 State Monitoring Agent

 List of agents to monitor

 Overall status

 Monitoring schedule

 State criticality

4.4.3.6 Communication Agent

 Network communication protocol

 Intra-agent communication protocol

 Data encryption algorithm

42

CHAPTER FIVE

5.0 Evaluation and Discussion of Results

5.1 Introduction

The test cases outlined here are meant to test the security of the designed system. These are

black box tests meant to test whether or not the designed system is secure. This system has

been designed to address most of security threats that dog multi-agent systems. Security

threats in a multi-agent system come in a number of ways; a hosting environment may try to

exploit agents resident on it, a malicious person may launch a man-in-the-middle attack on a

multi-agent system, a hosting environment may attempt, deliberately or otherwise, to corrupt

an agent’s data or state, and a malicious agent may deliberately feed an agent the wrong data

on which to act on.

A secure multi-agent system is the one that can protect both its internal state, data its working

on, and the data it produces. Internal state of an agent refers to the agent’s attribute values. If

these values can be changed by an external program in an unpredictable ways, then such an

agent is not secure and, therefore, is not reliable Agents act on data and produce data that

correspond to results of their computation. Once an agent gets data, it’s the agent’s

responsibility to guard that data for the duration of its computation. Any results from

computation should also be protected from accidental or deliberate manipulation from any

other agent. If an agent is incapable of guaranteeing the security of the data it’s acting on, then

such an agent cannot be relied upon to produce correct computation results.

5.2 Threats Posed By A Hosting Environment

A hosting environment can deliberately or accidentally alter the state of agents running on it.

This test is three-pronged:

 Deliberate manual injection of data to an agent’s processing queue.

 Automated agent deliberately feeding an agent wrong information.

 An agent, that’s not intended to be part of the multi-agent system running on the

host deliberately attempting to alter one of the attributes of an agent.

43

5.3 Threats Posed By Man-In-The-Middle Attacks

This test is targeted at investigating the vulnerability of cross-network agent communication.

Our system uses transport layer security (TLS) and secure sockets layer (SSL) for

communication. As a control, we have a channel that does not use any channel encryption

algorithm for communication. We first attempt to detect the agent communication traffic by

using a packet sniffer. Once we discover the traffic, we then write a script to interfere with the

communication by altering the packet header. One such alteration is changing destination host

address. Another is to bring the whole communication to a standstill by consuming the

packets before they reach the intended host.

5.4 Threats Posed By A Remote Malicious Agent

A multi-agent system running in one host might pose threats to a multi-agent system running

on another host. The threat can be on the agent’s state or data. To perform this test, we’ve

constructed a separate multi-agent system whose work is solely to corrupt other multi-agent

systems’ states and data. This, it does by injecting random data and setting the agents’ states

to random values.

5.5 Test Results Discussion

Our results showed that a multi-agent system with no security at all factored into its design

will always be vulnerable. This is due to the fact that multi-agent systems are inherently

loosely coupled. To achieve security protection of some level, security must be factored into a

multi-agent system design right from the requirements stage. Like any piece of software

where security is important, software implementation should use defensive programming to

improve the security of the system.

Without use of a monitoring system, it’s impossible to know if an agent has been

compromised unless one reviews the results of the agent’s computation. Implementing a

monitoring framework is especially very important for maintaining the integrity of a multi-

agent system running on a host that is likely to corrupt the agent’s state and/or data.

A monitoring framework alone is not enough. Whereas as such a framework informs us of the

inadequacies in our system, what it doesn’t do is prevent these inadequacies from being there

in the first place. One way we found is most effective at preventing these vulnerabilities is a

44

well-designed security framework. The security framework includes a requirement that each

agent requesting for a service must be authenticated and authorized before a service can be

rendered to it. The security framework also protects the monitoring framework from

malicious agents and/or hosts.

In conclusion, a secure multi-agent system is one that has both a good monitoring and security

supervision framework. These two frameworks complement each other. Where the security

might fail, the monitoring framework would report an exception. Coupled with these

frameworks, the implementation must be use defensive programming techniques.

Figure 5.1: Results of computation in a secure MAS

Figure 5.1 shows the results of computation on files performed by a completely secure multi-

agent system. Completely secure means the multi-agent system implements both the state

monitoring and security supervision frameworks.

45

Figure 5.2: Results of computation in unsecured MAS

Figure 5.2 shows the result of computation on the same sets of files as those shown in figure

5.1. Unlike in figure 5.1, however, the multi-agent system that produced this output did not

implement either the monitoring or the security supervision framework. As such, another

multi-agent system was able to introduce new records in the processing pipeline of the multi-

agent system. The result, as illustrated by record 1 in figure 5.2, is an output that includes

records and balance amount measures that were not contained in the original files. Multi-

agent systems are inherently loosely coupled. So, while it should be possible for multi-agent

systems to interact, that interaction should be an expected one. A security supervision

framework would ensure that if an agent cannot be identified then its request is not serviced.

Also, the monitoring agent would detect unexpected state and escalate the exception to the

parent agent which would execute the appropriate mitigation strategy.

46

 Figure 5.3: Communication traffic in unsecured MAS

Figure 5.3: Shows intercepted communication traffic in a multi-agent system which has not

implemented the security supervision and state monitoring frameworks. As shown, the data

can be easily converted into readable format with the appropriate tools; there are a myriad of

tools available on the Internet for interpreting this. This particular screenshot was produced

using Smart Sniff TCP traffic sniffer.

47

Figure 5.4: Communication in a secure MAS

Figure 5.4 shows the same traffic but in an environment that has implemented the security

supervisor and the state monitoring frameworks. As shown, traffic data is encrypted and thus

cannot be easily interpreted.

48

CHAPTER SIX

6.0 Conclusions and Future Work

6.1 Introduction

In this chapter, we present high level conclusions of our work as well as recommendations for

future work. We organize our conclusions based on the four objectives that guided the project.

This include formulation of a multi-agent security mechanism, design and development of a

prototype implementing the proposed mechanism, evaluation of the security properties of the

prototype and demonstration of a secure multi-agent system using a use case.

6.2 A Multi-Agent Security Mechanism

Previous works have suggested security approaches for multi-agent systems but most of these

works address just one or two of these requirements. To achieve a completely secure multi-

agent system, a multi-faceted approach to security must be adopted. Such an approach is

proposed in this work. We suggested separate algorithms to counter security threats in mobile

agents by malicious hosts and incorporated them in the agent’s code effectively protecting our

agents from the different forms of attacks.

6.3 Design and Development of a Secure Multi-Agent System Prototype

A number of agent oriented software engineering (AOSE) methodologies exist. Most of these

methodologies however normally consider security requirements after design of the system.

We adopted Tropos development methodology because it integrates security concerns

throughout the development stages. In modelling the security requirements of the system,

we’ve used Secure Tropos, an extension of the Tropos software development methodology, to

model and analyze security requirements alongside functional requirements. We then

developed the prototype with Scala which is a production ready tool. This helped us to

produce a compiled code for our agents therefore minimizing the ability of the executing

platform to read and possibly alter the agent’s code.

6.4 Evaluation of the Prototype

For any computer system to be said to be secure, it must meet several security requirements

i.e. confidentiality, integrity, authentication, authorization, non-repudiation and availability.

We conducted black box tests to test our prototype using this metrics and compared the results

49

with parallel systems that incorporated other security mechanisms. Computation results in the

other systems revealed inadequacies while our system produced expected results. While

multi-agent systems are inherently loosely coupled, their interactions are expected and thus

can be monitored. Our mechanism provides for such monitoring without adding to

computational overheads and as such makes it easier to trace security violations while making

them difficult to happen in the first place.

6.5 A Use Case Demonstrating A Secure Multi-Agent System

We chose a Credit Reference Bureau (CRB) use case to demonstrate our security mechanism.

We enhanced the functionality of the CRB by introducing a secure multi-agent system to run

its operations. The CRB handle highly confidential transactions using traditional file transfer

between executing hosts. While transforming the CRB to be truly distributed and reducing

communication overheads between hosts, our mechanism also enhanced integrity of the

system. Proper security considerations for mobile-agent systems thus enable conversion of

legacy systems into trusted distributed applications.

6.6 Future Work

This research project concentrated on securing MAS to mitigate against security threats

imposed by malicious executing environments. The approach used mitigates against such

threats but has however no mechanism of logging or marking insecure hosts so as to notify

other agents not to visit them. Further work can be done to include such an option.

The prototype can also be enhanced to include functionality such that in the event that a

previously insecure host is solved, that host should not be marked as insecure indefinitely.

There are many cryptographic algorithms available. In the prototype, we have used selected

encryption algorithms like SHA1 with 256 bits and security mechanisms like TLS.

Experiments can be done using current algorithms as well as emerging hashing and

cryptographic technologies to enhance mobile agent security

50

References

Ahn, J., 2013. Mobile Agent Group Communication Ensuring Reliability and Totally-ordered

Delivery. 10(3).

Ahuja, P. & Sharma, V., 2012. A JADE Implemented Mobile Agent Based Host Platform

Security. International Institute for Science, , 3(7).

Ahuja, P. & Sharma, V., 2012. A Review on Mobile Agent Security. International Journal of

Recent Technology and Engineering (IJRTE), June.

Aneiba, A. & Rees, S.J., 2004. Mobile Agents Technology and Mobility.

Bellavista, P. et al., 2004? Security for Mobile Agents: Issues and Challenges. Bologna:

University of Bologna.

Bellavista, P., Corradi, A. & Stefanelli, C., 1999. An Open Secure Mobile Agent Framework

for Systems Management. Bologna: Università di Ferrara.

Bosede, O., A.O, O. & Aderounmu, G.A., 2013. A framework for an Operating System-based

Mobile Agent. IOSR Journal of Computer Engineering (IOSR-JCE), 14, pp.1 - 6.

Ebietomere, E.P. & Ekuobase, G.O., 2014. Issues on Mobile Agent Technology Adoption.

African Journal of Computing & ICT, 7.

Groot, D.R.A.d., 2004. Cross-Platform Generative Agent Migration; An Agent Factory

Approach. Master’s Thesis. Vrije Universiteit Amsterdam.

Gupta, S. & Sinha, S., 2013. A Secure Architecture for Mobile Agent Based Communication

System. International Journal of Latest Trends in Engineering and Technology (IJLTET), 2.

Herv´e, P., 2002. A Mobile Agent Systems’ Overview.

Ichiro, S., 2008. Mobile Agents.

Karzan, A.A. & Erdoğan, N., 2014. Securing Mobile Agent Systems in Which the Agents

Migrate via Publish/Subscribe Paradigm. Lecture Notes on Software Engineering, 2.

Lovrek, I. &Sinkovic, V., 2000? Performance Evaluation of Mobile Agent Network.

University of Zagreb.

51

W. Jansen, T. Karygiannis, NIST Special Publication 800-19-Mobile Agent Security,

Technical paper, National Institute of Standards and Technology, Computer Security

Division.

Mahmoodi, M. & Varnamkhasti, M.M., 2013. A Secure Communication in Mobile Agent

System. International Journal of Engineering Trends and Technology (IJETT), 6.

Marikkannu, P., Jovin, J.J.A. & Purusothaman, T., 2012. Self-Protected Mobile Agent

Approach for Distributed Intrusion Detection System against DDoS Attacks. International

Journal of Information and Electronics Engineering, 4.

Mishra, P.K. & Singh, R., 2014. A Survey on Reliability Estimation Techniques for Mobile

Agent based Systems. International Journal of Advanced Computer Research, 4.

Osero, B.O. & Mwathi, D.G., 2014. Implementing Security on virtualized network storage

environment. International Journal of Education and Research.

Pai, P., Shinde, S.K. & Khachane, A.R., 2012. Security In Mobile Agent Communication.

International Journal of Advanced Engineering Research and Studies, 1.

Persson, M., 2001. Mobile Agent Architectures. Scientific Report. LINKÖPING: Division of

Command and Control Warfare Technology.

Seltman H. J., 2014. Experimental Design and Analysis.

Shrivastava, R. & Mehta, P., 2012. Securing Mobile Agent and Reducing Overhead Using

Dummy and Monitoring Mobile Agents. International Journal of Management, IT and

Engineering , 2.

Singh, Y., Gulati, K. & Niranjan, S., 2012. Dimensions and Issues of Mobile Agent

Technology. International Journal of Artificial Intelligence & Applications (IJAIA), 5.

Singh, A. & Malhotra, M., 2012. Agent Based Framework for Scalability in Cloud

Computing. International Journal of Computer Science & Engineering Technology (IJCSET).

Srivastava, S. & Nandi, G.C., 2014. Fragmentation based encryption approach for self

protected mobile agent. Journal of King Saud University - Computer and Information

Sciences, 26, pp.131- 142.

52

Upadhye, S. & Khot, P.G., 2013. Optimize Security solution for mobile agent security: A

Review. International Journal Of Engineering And Computer Science, 2, pp.322-29.

Verma, G., 2012. Strategies of Mobile Agent for Handling a Task. International Journal of

Engineering and Innovative Technology (IJEIT), 2.

Virmani, C., 2012. A Comparison of Communication Protocols for Mobile Agents.

International Journal of Advancements in Technology, 3.

53

Appendices

Appendix 1: Application Configuration Source Code

akka {

 actor {

 provider = "akka.remote.RemoteActorRefProvider"

 }

 remote {

 enabled-transports = ["akka.remote.netty.ssl"]

 secure-cookie = "090A030E0F0A05010900000A0C0E0C0B03050D05"

 require-cookie = on

 netty.tcp = {

 hostname = "127.0.0.1"

 port = 8989

 }

 netty.ssl = {

 hostname = "127.0.0.1"

 port = 9898

 enable-ssl = true

 security {

 key-store = "C:/ws/scala/hello-akka-

local/src/main/resources/KEYSTORE/keystore"

 key-store-password = "09040407050407080702010C0903090D0C0E0906"

 key-password = "09040407050407080702010C0903090D0C0E0906"

54

 trust-store = "C:/ws/scala/hello-akka-local/src/main/resources/KEYSTORE/truststore"

 trust-store-password = "09040407050407080702010C0903090D0C0E0906"

 protocol = "TLSv1"

 random-number-generator = "AES128CounterSecureRNG"

 enabled-algorithms = ["TLS_RSA_WITH_AES_128_CBC_SHA"]

 }

 }

 }

}

55

Appendix 2: Validation Utilities Source Code

package utils

import org.slf4j.LoggerFactory

import java.util.Properties

import scala.collection.mutable.Map

import java.io.FileInputStream

import kafka.producer._

object CfgUtils {

 val cfgBaseDir = "D:/sws/scipd-vs/cfg/"

 val remoteDataDir = "C:/tmp/others/raw"

 val localDataDir = "D:/tmp/data"

 val logBaseDir = "C:/tmp/others/logs"

 val logger = LoggerFactory.getLogger(getClass)

 // FTP Server Config

 val FTP_HOST = "localhost"

 val FTP_PORT = "21"

 val FTP_DIR = "ftp"

 val FTP_USER = "ftp_user"

 val FTP_PASS = "0k5LLO12"

 // File type codes

56

 val IC = "ic"

 val CI = "ci"

 val CA = "ca"

 val CR = "cr"

 val GI = "gi"

 val SI = "si"

 val FA = "fa"

 val BC = "bc"

 // Institution type codes

 val BANK = 'B'

 val DPFB = 'B'

 val MFB = 'M'

 // Number of columns

 val IC_COLNUM = 67

 val CI_COLNUM = 58

 val CA_COLNUM = 25

 val SI_COLNUM = 37

 val GI_COLNUM = 40

 val CR_COLNUM = 26

 val BC_COLNUM = 11

 val FA_COLNUM = 15

57

 // Validation error classes

 val ERROR_TYPE_COLNUM = "INVALID NUMBER OF COLUMNS"

 val ERROR_TYPE_CLASS1 = "VALIDATION ERROR CLASS 1"

 val EMPTY_VALUE_REGEX = "(NA|NONE|NULL|[^A-Za-z0-9])"

 // KAFKA communication config

 val KAFKA_HOSTS = "127.0.0.1:9092"

 val IC_TOPIC = "IC"

 val IC_CONSUMER_GRP = "IC"

 val CI_TOPIC = "CI"

 val CI_CONSUMER_GRP = "CI"

 val SI_TOPIC = "SI"

 val SI_CONSUMER_GRP = "SI"

 val GI_TOPIC = "GI"

 val GI_CONSUMER_GRP = "GI"

 val BC_TOPIC = "BC"

 val BC_CONSUMER_GRP = "BC"

 val CA_TOPIC = "CA"

 val CA_CONSUMER_GRP = "CA"

 val CR_TOPIC = "CR"

 val CR_CONSUMER_GRP = "CR"

 val FA_TOPIC = "FA"

 val FA_CONSUMER_GRP = "FA"

58

 // Kafka Producers

 val IC_KAFKA_PRODUCER = new KafkaProducer(IC_TOPIC, KAFKA_HOSTS)

 val CI_KAFKA_PRODUCER = new KafkaProducer(CI_TOPIC, KAFKA_HOSTS)

 val SI_KAFKA_PRODUCER = new KafkaProducer(SI_TOPIC, KAFKA_HOSTS)

 val GI_KAFKA_PRODUCER = new KafkaProducer(GI_TOPIC, KAFKA_HOSTS)

 val CA_KAFKA_PRODUCER = new KafkaProducer(CA_TOPIC, KAFKA_HOSTS)

 val CR_KAFKA_PRODUCER = new KafkaProducer(CR_TOPIC, KAFKA_HOSTS)

 val BC_KAFKA_PRODUCER = new KafkaProducer(BC_TOPIC, KAFKA_HOSTS)

 val FA_KAFKA_PRODUCER = new KafkaProducer(FA_TOPIC, KAFKA_HOSTS)

 def loadProperties(instType: Char, fileType: String): Properties = {

 val props = new Properties

 props.load(new FileInputStream(cfgBaseDir +

 fileType.toLowerCase + "." + instType.toLower + ".properties"))

 val msgProps = new Properties

 msgProps.load(new FileInputStream(cfgBaseDir + "msg/en.properties"))

 props.putAll(msgProps)

 return props

 }

}

