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Abstract

The many uncertainties involved in the payment of losses makes the estimation of the

required reserves more difficult. Yet, some of the existing methods, such as the popular

chain-ladder, are simple to apply. However, it has become evident that there is a need

for better ways not only to estimate the reserves, but also to obtain some measures

of their variability. The chain-ladder is used as a benchmark in this study due to its

generalized use and ease of application. Although this facilitates comparisons between

different methods, studies have shown that different classes of insurance present different

development patterns hence the need to apply a variety of methods.

This dissertation aims at presenting different loss reserving models both deterministic

and stochastic and compare the variability in the models. The objective will be to

develop and implement a loss reserving model that combines both deterministic and

stochastic methods to estimate reserve provisions for different classes in general insur-

ance. In this study we also present Bayesian method to model both claim frequencies

and severity using some well defined assumptions and to use the resulting predictive

distributions to estimate loss reserves, allowing for negative values. In this study we

assume that the expected loss payments depends upon unknown parameters that de-

termine the expected loss ratio for each accident year and the expected payment lag.

The distribution of outcomes is given by a collective risk model in which the expected

claim severity increases with the settlement lag. The claim count distribution is given

by a Poisson distribution with its mean determined by dividing the expected loss by

the expected claim severity. The parameter that describe the posterior distribution are

calculated using a Monte Carlo simulation algorithm. Models back testing with real life

data have shown that in some classes of insurance the actual and expected estimates vary

significantly there by discrediting the models and hence the need to compare different

models and study the variability presented.
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Chapter 1

Introduction

1.1 Background Information

While a certain degree of variation in the reserves estimate is to be expected, it’s the

duty of the financial actuary to calculate as accurately as possible the amount of vari-

ation to be expected. The achievement of this goal necessitates an understanding of

the difference between the process variance, measured by the standard deviation of the

underlying claim case estimates and payment process, and the method variance, which

is a characteristic of the measurement method. Due to the heuristic nature of most of

the calculation methods used by actuaries, a certain amount of method variance is to be

expected. However, a critical evaluation of the most common methods used shows that

the techniques used yield for the most part a much higher error due to methodology

than is necessary. One of the basic properties of variance reveals why some common

reserve calculation methods result in a high variance.

This is the key property why variances are additive under additions but increase polyno-

mially under multiplication. The variance of the sum of a collection of random variables

1



Chapter 1. Introduction 2

is, in general, the sum of the variances of the individual variables, while any multiplica-

tion process applied to a random variable increases variance in proportion to the square

of the multiplier assuming the covariances are negative. To keep the error variance to

a minimum, one should seek to use methods that rely on the summation of data, and

avoid methods that use or result in multiplicative factors.

Many studies have shown that there has been an increasing recognition in consideration

of the random nature of the insurance loss processes that leads to better predictions of

ultimate losses. Some of the studies that led to this recognition include Stanard (1985)

and Barnett and Zehnwirth (2000). The other approach that has gained popularity

is that of recognizing outside information in the formulas that predict ultimate losses,

Bornhuetter and Ferguson (1972) represents one of the early papers exemplifying this

approach. More recently, papers by Meyers (2007) and Verrall (2007) have combined

these two approaches with a Bayesian methodology. In this study we advance the de-

velopment of the approach started by Meyers(2007) and draw from the methodology

described by Verrall(2007).

In his work Meyer(2007) accomplished to make predictions of the distribution of future

losses and validated the predictions on subsequent reported losses. The analysis of loss

reserving data is based on a run-off triangle. The runoff triangle is a matrix which con-

tains claims data, where each row corresponds to the year of an accident (the so-called

‘Accident Year’), and each column corresponds to the delay, or the number of years

between the accident year and the year in which the claim was made, the claim was paid

or outstanding (the so-called ”Development Year”). The matrix contains data in the

upper left triangle, and the aim of this study is to estimate future claims, to be filled in

the empty lower right triangle. The entries of each diagonal therefore correspond to one

single calendar period.
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As indicated the chain-ladder method is the most popular method of loss reserving,

however extensions to the chain-ladder method based on the stochastic nature of the

losses have started gaining popularity in the recent past. To cite but a few broadly

used models are the log-linear and the log-normal ANOVA-type models (Verrall, 2000).

Others include the dynamic state space models (Ntzoufras and Dellaportas, 2002), as

an extension to the log-normal models and Bayesian models using Markov chain Monte

Carlo techniques (Makov, 2001; Scollnik, 2001). Methods based on simulation include,

Stanard (1985) and Pentikainen and Rantala (1995) that describe methods of simulat-

ing random loss triangles in which data of the upper triangle are simulated and used to

estimate the simulated losses, that is, the missing values of the lower triangle.

Settlement of claims is one of the primary objective of an insurance company. Many

people take up insurance so that in return for the premiums paid, the insurance com-

pany can accept the liability to make a monetary payment to the insured or reinstate

them to the position they were before the occurrence of a specified event within a spec-

ified period of time. The insurer’s liability to pay a claim materializes on occurrence of

the insured risk. However, there are many factors that can lead to considerable delays

between occurrence, notification and payment. The insured risk itself may not occur

in a single phase and may not even be recognized as claimable events until after many

years. In other cases the legal liability of the insured to third parties may not always be

clear-cut, and there may be considerable delays before the insurer or the court decides

that liability exists. The quantum of damages may be impossible to determine until

some period of time has elapsed since occurrence of the event leading to further delays.

Estimating of outstanding liability in non-life insurance policies is highly speculative,

details of methodologies for making such predictions are contained in a comprehensive
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and highly detailed survey conducted by Taylor (1986). The research sponsored by Soci-

ety of actuaries on comparison of incurred but not reported methods by (Cabe Chadick

et al, 2009) found out that seasonality of the claims can have a material impact on the

mean error. For example, seasonality exhibited by claim concentration in early calen-

dar years resulted in typical material positive errors. Seasonality exhibited by claims

concentration in later calendar year depicted large deductibles as a result of recoveries.

With this in mind, development methods can be employed with completion factors and

projection factors that result in varying degrees of conservatism. It is therefore essential

to estimate variability in the estimates provided by the various method and consider

averaging and smoothing techniques that will typically create a series of potentially us-

able completion factors. The use of projection factors or other techniques to estimate

the most recent years incurred also involves selection of various trends. Implicit margin

can be created by conservatism in the choice of completion and projection factors.

A significant accomplishment of the Meyers (2007) paper cited above was that it made

predictions of the distribution of future losses of real insurers, and successfully validated

these predictions on subsequent reported losses. To do this, it was necessary to draw

upon proprietary data that, while generally available, comes at a price. While this made

a good case that the underlying model is realistic, it tended to inhibit future research

on this methodology.

Recognizing lack of comparative information on techniques used for estimating incurred

but not reported (IBNR) and reported but not enough reserves, presented an oppor-

tunity to assess the accuracy of commonly used IBNR estimation methods over a wide

range of scenarios. To conduct the study, a stochastic model was constructed to com-

pare and score estimates produced by the loss reserving methods that were selected for

testing. The testing was done over a significant number of iterations and alternative
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business situations.

This dissertation follows Arjas (1989). It presents a mathematical framework for claims

reserving and formulate the claims-reserving problem in the language of stochastic pro-

cesses. All actions relating to a claim are listed in the order of their notification at the

insurance company. From a statistical point of view, this makes perfect sense; however,

from an accounting point of view, one should preferably list the claims according to their

occurrence or accident date as suggested in Norberg (1993,1999)

The primary traditional loss reserving techniques used to determine loss reserve variabil-

ity are based on the inherent assumption that this variability arises from a single factor.

The Mack (1993), bootstrap (England and Verrall, 1999) and simulation approaches

all measure the variability in historical loss development patterns and use the derived

measures to determine a distribution of loss development factors and to calculate loss

reserve ranges. The Mack method uses chain ladder link ratios to obtain a mean value

of the loss reserve. The statistical features of chain ladder link ratios are used to derive

formulas for the process and parameter risk of the loss reserve. These two components

are combined to obtain a standard deviation measure. A log normal or normal distri-

bution is then fit to the mean and standard deviation to obtain a distribution of loss

reserves.

The bootstrap method calculates a triangle of cumulative fitted values by working back-

wards on the data triangle using chain ladder link ratios. The residuals between the

actual and fitted values are randomly arranged to obtain a new triangle of data that

has the same statistical characteristics as the actual data. New link ratios are obtained

from the sampled triangle to calculate a point estimate of the loss reserve. The sampling

of residuals is performed many times to obtain a distribution of the loss reserve. The

statistical characteristics of the sampled data are then used to derive the parameter
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variance and the total standard deviation of the loss reserve. The simulation method

calculates the mean and standard deviation of the link ratios, which are then fitted to

a log normal or normal distribution. Link ratios are simulated based on those distri-

butions to obtain a point estimate of the loss reserve. Then Monte Carlo simulation is

performed to obtain a distribution of the loss reserve.

Although the Mack, bootstrap and simulation approaches are able to calculate loss

reserve variability based on a single factor, there are many situations in which these

methods would fail to produce an accurate and meaningful distribution. First, there are

multiple factors that impact the variability of loss development. A change in inflation

can affect loss payment patterns, impacting loss development. Factors within a com-

pany, such as claim department staffing, selected year end cut-off dates, loss settlement

practices and the experience of claim department personnel, will all affect loss payment

patterns and loss development factors.

In addition, random factors that would affect when claims occur during the year and,

more importantly, when the outlier large claims occur, will impact the variability of loss

development factors. These factors would impact loss development in different directions

based on the calendar year, accident year and development year, and are often highly

uncorrelated. For example, inflation is a calendar year effect, impacting all claims that

are open in a calendar year. A high inflation rate in one calendar year would affect the

loss development factors along the diagonal on an accident year basis. A small change

in the inflation rate in either direction is likely to produce loss development patterns in

aggregate that are significantly different from the historical patterns. The approaches

aggregate all of these effects into a single variability measure.

Usually, different methods and differently aggregated data sets lead to very different re-

sults. It is only through experience that one is able to tell which is an accurate or good
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estimate for future liabilities for a specific data set, and which method applies to which

data set. Often there are many phenomena in the data that first need to be understood

before applying any claims reserving method. Especially in direct insurance, the under-

standing of the data can even go down to single claims and to the personal knowledge

of the managing claims adjusters. With this in mind, one is able to describe different

methods that can be used to estimate loss reserves, but only practical experience will

tell which of the methods should be applied in any particular situation. That is, the

focus of this dissertation is on the mathematical description of relevant models and we

will derive various properties of these models and their variations.

The question of an appropriate model choice for a specific data set is only partially

treated here. In fact, the model choice is probably one of the most difficult questions

in any application in practice. Moreover, the claims reserving literature on the topic of

choosing a model is fairly limited – for example, for the chain-ladder method certain

aspects are considered in Barnett and Zehnwirth (2000) and Venter (1998). In classical

claims reserving literature, claims reserving is often understood to be providing a best

estimate to the outstanding loss liabilities. Providing a best estimate means that one ap-

plies an algorithm that gives a number or amount. In recent years, especially under new

solvency regimes, one is also interested in the development of adverse claims reserves,

and estimating potential losses that may occur in the future in these best estimate re-

serves. Such questions require stochastic claims reserving models that can justify the

claims reserving algorithms and quantify the uncertainties in these algorithms. From

this point of view one should be aware of the fact that stochastic claims reserving models

do not provide solutions where deterministic algorithms fail, they rather quantify the

uncertainties in deterministic claims reserving algorithms using appropriate stochastic

models.
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The basic chain-ladder is used as a benchmark, due to its generalized use and ease of

application. This facilitates comparison between methods. However, in this dissertation

our aim in not to develop methods that provide results close to those of the chain-ladder

method. Rather, we aim at studying results of different methods from model that uti-

lize both claim intensity and severity using some common assumptions and to use the

resulting predictive variability to adjust estimated loss reserves, especially with data

allowing for negative values. Particular one would be concerned with the situation when

there are negative values in the development triangle of the incremental claim amounts

or cumulative claim amounts.

The purpose of this study is not to add or make recommendations to any of the exist-

ing methodologies but rather to return to the grass roots of the subject and exploring

more carefully the statistical variations in the estimates for the classical chain-ladder

and compare with related techniques, both deterministic and stochastic.

1.2 Problem Statement

The chain ladder method is intuitively appealing and simple to calculate and which

often give reasonable results these attributes makes the method popular. Because of

these strengths, there may have been some reluctance to adopting alternative methods

of estimating outstanding liabilities. However, the chain ladder method comes with its

shortcomings:

1. It is a purely multiplicative approach, the estimates for each origin period is formed
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by multiplying the most recent value in each value in each origin period by de-

velopment factor. For the long-tailed business the most recent values could be

zero or negative leading to underestimation of the ultimate claims. On the other

hand if the recent are unusually large perhaps because of some large claims, the

development factor may overstate the ultimate claims for the period.

2. The link ratios must be stable across the origin periods for the method to produce

sensible results and such stability is rare. In particular, the method is vulnerable

to changes in pace of claims settlement, especially when applied to claims paid.

3. Special adjustment to the data using information from the claims settled can help

to deal with changes in claims settlement however this kind of information is not

always available.

4. Mathematically, the chain ladder method works by calculating a series of linear

regression of the form.

y = Ax+ ε (1.1)

Where x represents the values in column N , y represents the value in column

N + 1, A is an estimate parameter and ε is a random error. However there is no

particular reason why the regression cannot take another form, hence motivation

to explore other models and

1.2.1 Objectives

The general objective of this study is to formulate a collective risk model aimed at

analyzing variability in loss reserves by incorporating information other than the claims

amounts. This is achieved by smoothing loss development factors and adjusting variation

in average claim reserves by accident year. This has addressed in two fold by looking at
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the process variations and parameter estimation variations.

The specific objectives are:

1. To estimate parameters of the posterior distribution given the prior and likelihood

distribution using a Bayesian Markov Chain Monte Carlo Algorithm.

2. To compare different loss reserving method with an aim of bridge the gap between

the stochastic underpinnings of the chain ladder method and its implementation

in practice.

3. Restate the reserves for each accident year using the characteristics of the open

claims for the accident year under evaluation, this eliminates inconsistency in the

subsequent loss development factors.

4. Apply the Bayesian approach in estimation of parameters as well as evaluation of

prediction uncertainty used in estimating reserves.

5. To bridge the gap between the stochastic underpinnings of the chain ladder method

and its implementation in practice especially when link ratios are selected based

on judgement.

6. Provide a model whose underlying assumptions and actuarial inputs are testable

within a rigorously-defined statistical framework.

1.2.2 Significance of Study

Claims liability forms a significant proportion of insurance total liability, if claims re-

serves are understated this would lead to collapse of a company. It is therefore not only

necessary to build premium reserves for future exposures, but on the other hand one
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would need also to build claims reserves for unsettled claims of past exposures. There

are two different types of claims reserves for past exposures:

1. IBNyR reserves (Incurred But Not yet Reported): Claims reserves for claims which

have occurred, but which have not been reported by the end of the valuation year

(i.e. the reporting delay laps into the next accounting years).

2. IBNeR reserves (Incurred But Not enough Reported) or RBNS (reported but not

settled): Claims reserves for claims which have been reported but have not been

settled yet, i.e. still expect payments in the future, which need to be financed by

the already earned premium.

This study is geared toward estimating the ultimate reserves and measuring variability

by constructing upper limits at an adequate confidence level using both deterministic

and stochastic approaches. The reserving methods used in practice are frequently de-

terministic. For instance, the claims reserve is often obtained by case estimation of

individual claims. A popular statistical method is the chain-ladder method, which orig-

inally was deterministic. In most cases adjustments are applied, for example projection

of payments into the future can sometimes be done by extrapolating by eye, hence the

need to measure the standard error in the reserves estimates.

Regulatory authorities in different parts of the world especially developing countries have

also set guidelines on non-life insurance reserving to safeguard policyholders from losing

out on claims payments when insurance companies get ruined, in Kenya specifically this

is an establishment by Act of Parliament Chapter 487, this was a major motivation to

carry out this study.
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Literature Review

The linage of chain ladder can be traced to the mid - 60’s and the name refers to the

chaining of a sequence of age-to-age development factors into a ladder of factors by

which one can climb from the observations to date to the predicted ultimate claim cost.

The chain-ladder was originally deterministic, but in order to assess the variability of

the estimate it has been developed into a stochastic method. Taylor (2000) presents

different derivations of the chain-ladder procedure; one of them is deterministic while

another one is based on the assumption that the incremental observations are Poisson

distributed. Verrall (2000) provides several models which under maximum likelihood

estimation reproduce the chain-ladder reserve estimate.

In the recent past a large variety of methods of loss reserving based on run-off triangles

have been proposed. In each of these methods, it is assumed that all claims are settled

within a fixed number of development years and that the development of incremental or

cumulative losses from the same number of accident years is known up to the present

calendar year such that the losses can be represented in a run-off triangle.

The most venerable and most famous of these methods are certainly the chain-ladder

12
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method and the Bornhuetter-Ferguson method. The basic idea of the chain-ladder

method was already known to Tarbell (1934) while the Bornhuetter-Ferguson method

was first described almost four decades later in the paper by Bornhuetter and Ferguson

(1972) in his paper he recognized outside information into the formulas to better predict

the ultimate losses.

Meyers and Verral(2007) combined the chain ladder and the Bornhuetter and Ferguson

approach with a bayesian methodology this was a significant accomplishment in that

it made predictions of the distribution of future losses, and successfully validated these

predictions on subsequent reported losses.

In 2007 and 2008, the General Insurance Reserving Oversight Committee, under the

Institute of Actuaries in the U.K commissioned a study to test the model proposed by

England and Verrall (2002). The findings of the study were that even under ideal con-

ditions the probabilities of extreme results could be under-stated using the Mack and

the over dispersed poison bootstrap models. The detailed model proposed by Meyer

(2007) was also tested with UK motor data they fitted the model on the data excluding

that of the most recent diagonal, and then simulated distributions of the next diagonal

to compared with the actual diagonal. The model allowed for the error in parameter

selection to help overcome some of the underestimation of risk seen in the Mack(2000

and 2007) and Over Desperesed Poisson bootstrap models. However, this was not a

guarantee of correctly predicting the underlying distribution and the variability in the

reserves was still evident.

Meyer etal (2011) performed a retrospective testing of stochastic loss reserves on the

over dispersed poison bootstrap model as well as a hierarchical Bayesian model, using

commercial auto liability data from U.S. annual statements for reserves as of December

2007. The first was to test the modelled distribution of each projected incremental loss



Chapter 2. Literature Review 14

for a single insurer. The second was to test the modelled distribution of the total reserve

for many insurers. The findings were that in case there are environmental changes that

cannot be identified by the model under study then one cannot solely rely on stochastic

loss reserve models to manage the reserve risk and it would be desirable to develop other

risk management strategies to deal with the unforeseen environmental changes.

Stephen P. D’Arcy(2008) traditional loss reserving techniques measure variability based

on a single factor on historical loss development factors and loss reserves ranges. This

limits the calculated variability to what occurred during the experience period. How-

ever, there are multiple factors that impact the variability of loss development and they

are not always stationary. Inflation is a key element in loss development. The tradi-

tional approach for determining loss reserve variability is reasonable as long as inflation

is relatively constant. If inflation and its volatility, were to change, actual loss reserve

variability would turn out to be higher or lower than expected based on the traditional

approaches. Mack and bootstrap methods use only information from the historical loss

development patterns and assume future development would follow those patterns. Sim-

ulation method allow for customized inputs for simulating link ratios, but an increase

or decrease in the mean or the standard deviation compared to that obtained from the

historical data is difficult to justify, or properly quantify, on a one-factor basis. The

objective was to accurately estimate the inflation variability and the residual reserve

variability using a two factor model. The model accommodated shifts in inflation as

well as residual standard errors.

The greater predictive power in calculating loss reserve variability by using multiple

uncorrelated factors has been recognized by the increasingly popular use of statistical

modeling techniques in loss reserving. The statistical nature of the modeling frame-

work also allows separation of parameter uncertainty and process variability Barnett
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and Zehnwirth (1999). These parameters are not easy to extract from the data and

sometimes their introduction to the statistical model ends up distorting the framework

hence producing an incorrect distribution of the reserves, hence statistical modeling

techniques limit the calculated variability to what occurred during the experience pe-

riod to a certain degree. To overcome such limitations one would need to accurately

extract information from the data trends, one would also need to have some flexibility

in introducing variability that is different from what occurred during the experience pe-

riod, sound actuarial judgment and ability to produce a reasonable distribution of the

reserves.

One of the major advantages of the classical IBNR claims reserving methods, like the

chain-ladder, Cape Cod and Bornhuetter-Ferguson methods or credibility like methods

by Mack(2000), Hürlimann(2005)), is their distribution-free validity. However, the insur-

ance industry is slowly changing and the complexity in term of framework is increasing

becoming evidnet, there is an accrued interest to know more about the standard devia-

tion and the higher percentile values. Therefore, attempts to model adequately not only

the mean of the IBNR claims reserves but also its full distribution have the potential to

retain more attention from both a theoretical and practical viewpoint. Early develop-

ments in this area include work by Bühlmann et al.(1980), and Hertig(1985).

The present approach is inspired from Mack(1997), which proposes distribution depen-

dent IBNR claims reserving methods, in particular a cross-classified parametric method

of multiplicative type.

Studies on the statistical basis of the chain-ladder method, with a focus on the distribu-

tional assumptions of the aggregate data and the use of generalized linear models have

been advanced and the recent works focused on, over-dispersed Poisson (ODP) model

Renshaw and Verrall (1998), negative binomial model Verrall (2000), Mack’s model
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Mack (1993), and log-normal model Kremer (1982).

In recent years, the understanding of the chain-ladder technique has been further devel-

oped. Kuang et al. (2008, 2011) extends the chain-ladder model with a calendar effect

and uses time-series analysis to forecast this effect. Verrall et al. (2010) and Martinez

Miranda et al. (2011, 2012) proposes a double chain-ladder method that simultaneously

uses a triangle of paid losses and a triangle of incurred claim counts. Martinez-Miranda

et al. (2013) reformulates the triangular data as a histogram and proposes a continuous

chain-ladder model through the use of a kernel smoother.

Some studies done have also addressed the limitations of the chain ladder method,

notably, over-parametrization of the chain-ladder method Wright (1990), unstable pre-

dictions for recent accident years Bornhuetter and Ferguson (1972), problems with the

presence of zero or negative cells in run-off triangles Kunkler (2004), difficulties in sepa-

rating assessment of RBNS and IBNR claims Schnieper (1991), Liu and Verrall (2009),

difficulties in the simultaneous use of incurred and paid claims Quarg and Mack (2008).

At the heart of the limitations of such models is the small sample size and the inability

to use any information about the individual claims. These issues are derived from the

inherent nature of the use of aggregate data and thus generally cannot be addressed by

any adjustments within the framework of chain ladder models. The observed data in a

runoff triangle is typically small, leading to a prediction error that and could be very

large England and Verrall (2002).

A run-off triangle is essentially a summary of the underlying individual ideally homo-

geneous claims data. If claims are believed to be heterogeneous, then they are often

segmented by certain characteristics usually discrete and compiled into multiple trian-

gles. In this respect, individual claim level information is used to segment the data

before the modeling phase. Nevertheless, under circumstances when the heterogeneity
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of claims is due to many characteristics including continuous characteristics, or the char-

acteristics that contribute to the heterogeneity is not clear, or the number of claims in

the portfolio is big enough, the segmentation may not be practical and the incorporation

of individual claim level information would be desirable in the reserving model.

England and Verrall (2002) questioned the continuing use of aggregate data when the

underlying extensive micro-level information is available and the computation is feasi-

ble. Parodi (2012) points out the misalignment of rate-making and reserving: they both

value the same risk but the former is based on individual data whereas the latter is

based on aggregate data.

Run-off triangles are used in general insurance to forecast future claim numbers and

amounts. Usually run-off triangles arise in non-life insurance where it may take some

time to establish the full extent of the claim before the final payment can be made. Run

off triangles attribute the claims to the year in which the accident occurred. The idea is

to estimate how much of each class of business an insurance company is liable to pay in

claims so that it can make adequate provisions. It is clear that although the exact figure

for total claims is unknown because of delays in the claim settlements, provisions can be

made for future claims settlements with as much confidence and accuracy as possible.

In any claim event there may be delays in between the occurrence of the claim event

and the date on which the claim is reported to the insurer (reporting delay) and another

delay between the reporting date and the date on which the claim loss is finally settled

(settlement delay).

The first step in creating the claims loss settlement run-off triangle is to group the claims

loss settlement amounts by the year in which the associated claims events occurred; this

is called the claims occurrence year. Typically, claims losses settled for each claims
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occurrence year are not paid on one date but rather over a number of years (or time pe-

riods). This leads to development periods or delay lags measured from the accident date.



Chapter 3

Methodology

The approach of this project was to consider the claims incurred in an insurance company

in two fold 1.) the claims paid during a given accounting period and 2.) the case

estimates as at a given accounting period. In practice this data is presented based on

transactions. Data preparation and structuring for use in a reserving exercise is assumed

to be basic and done prior to beginning this study. We however assume that the accident

date, notification dates and the pay dates are available in the data. The case estimates

are assumed have been classified per accounting period and from this we are able to lag

the data per the accident periods for triangulation.

3.1 Incremental and Cumulative Losses

The incremental triangle can be based on paid claims or incurred claims depending on

data availability. The ultimate result should be a matrix of incremental aggregated pay-

ments or payments plus outstanding claims located in the upper triangle and the lower

triangle consisting in missing or zero values. Depending on the model data requirements

19
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the triangles can also be constructed to contain incremental number of reported claims.

For each claims occurrence year the incremental claims loss settled for a particular de-

velopment year is the amount settled in that development year. The next step employed

is to develop cumulative incurred or paid claims triangles by accident year, that is the

total amount settled up to that development year. Cells are summed forward to obtain

cumulative incurred and paid claims. The result is a progression of payments toward

ultimate payout for a given accident year.

3.2 Basic Chain Ladder

The chain ladder method is the most popular method for estimating outstanding claims

reserves. The main reason for this is its simplicity and the fact that it is distribution-

free. In most cases the results from the straight forward basic chain ladder method are

used as benchmarks. We will relax the assumptions to this impression because it is clear

that the chain ladder algorithm has far-reaching implications. These implications also

allow it to measure the variability of chain ladder reserve estimates and with the help of

this measure it is possible to construct a confidence interval for the estimated ultimate

claims amount and for the estimated reserves.

Traditional methodologies such as the chain ladder, though not necessarily stochastic

based are robust and when used as intended tend to be a holistic approach to estimating

reserves. Using such approaches may lead one to develop a gut feel for the uncertainty

in his or her estimates, but may not necessarily be able to quantify that gut feel. Con-

versely, more modern stochastic methods bring with them quantification of the volatility

of the forecasts, but usually conditioned on a specific set of assumptions.

The chain-ladder method assumes that factors such as inflation, changes in portfolio mix
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and changes in rate of settlement of claims can be ignored and assumes the form,

Cw,d = XwRd + ew,d (3.1)

and with known parameters taking the following observations,

Cw,d = XwRd + ew,d (3.2)

where Xw is the ultimate total cost of claims in the period of origin w and Rd is the

proportion of total claims incurred by the end of development period d. Cw,d is the cu-

mulative amount of claims incurred to the end of the period d. The claims development

pattern is assumed to be constant.

The chain-ladder method operates on cumulative observations, assume we have a set of

incremental claims data.

{Xw,d : w = 1, ....n; d....n− i+ 1} (3.3)

Where w indicates the accident year or the notification year and in some cases the un-

derwriting year.

d indicated the delay or the lag typically measured in years but could be adjusted to

quarterly or monthly.

Cumulative claims are derived from the incremental claims:

Cw,d =

d∑
k=1

Xw,k (3.4)
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Incremental claims can be obtained from the cumulative claims by letting.

Xw,d =


Cw,d if d = 0,

Cw,d − Cw,d−1 elsewhere.

(3.5)

The development factor or link ratio method is the oldest tradition approach to esti-

mating of technical liabilities. Assume that the development factors are denoted by:

Λd : d = 2, ....n (3.6)

The chain-ladder technique estimates the development factors as:

Λd =

n−d+1∑
w=1

Cw,d

n−d+1∑
w=1

Cw,d−1

(3.7)

and

rj =
d∏

k=1

Λk (3.8)

This method assumes that the claims development pattern is stable between each year

of origin and that the future claims inflation follows the past trends. In cases of volatile

claims inflation the method fails to provide reliable estimates. The purpose of loss re-

serving is to predict the ultimate losses Cw,n and accident year reserves Cw,n −Cw,n−w.

The development factors obtained above are applied to the latest cumulative claims in

each accident year (row) Cw,n−w+1 to produce forecasts of future values of cumulative

claims.
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Cw,n−w+2 = Cw,n−w+1Λn−w+2,

Cw,k = Cw,k−1λk,

k = n− w + 3, n− w + 4, ..., n

(3.9)

A development pattern of quotas consists of parameters γ0, γ1, γ2, ...., γn with

γk =
E [Cw,k]

E [Cw,n]
(3.10)

The quotas represent the percentage of claims reported. A development pattern of

factors consists of parameters ψ1, ψ2, ..., ψn with

ψk =
E [Cw,k]

E [Cw,k−1]
(3.11)

These parameters are the development factors and simply represent the age-to-age fac-

tors.

The basic chain ladder is easy to explain and has been the subject of much literature. It

was not originally grounded in mathematical or statistical theory; though in the recent

past scholars have done work to set it into a statistical framework. In addition, it is

known to be quite volatile, particularly for less mature exposure periods.

Thus, the chain-ladder technique, in its simplest form, consists of a way of obtaining

forecasts of ultimate claims only. Ultimate is interpreted as the latest delay year so far

observed, and does not include any tail factors. From a statistical viewpoint, given a

point estimate, the natural next step is to develop estimates of the likely variability in

the outcome so that assessments can be made, for example, of whether extra reserves

should be held for prudence, over and above the predicted values. In this respect, the

measure of variability commonly used is the prediction error is defined as the standard
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deviation of the distribution of possible reserve outcomes. It is also desirable to take

account of other factors, such as the possibility of unforeseen events occurring which

might increase the uncertainty, but which are difficult to model.

Mack (1993) also consider a distribution free chain ladder model with cumulative claims

Cw,d of different accident years w being assumed to be independent. He observed that

there exists positive development factors Λ1,Λ2, ....,Λd−1 and positive parameters for

the standard error σ2
1, σ

2
2..., σd−1 such that for all 0 ≤ w ≤ n and all 1 ≤ d ≤ n.

E [Cw,d | Cw,0, Cw,1.........Cw,d−1] = Λd−1 × Cw,d−1

V ar [Cw,d | Cw,0, Cw,1.........Cw,d−1] = σ2
d−1 × Cw,d−1

(3.12)

The ultimate claims amount can be estimated as:

CCLw,k = Cw,k−1 ×
n−1∏
k=1

Λk (3.13)

The Chain Ladder reserve for accident year w is given by:

Rw = Cw,n−w+1 ×

[
n−1∏
k=1

Λk − 1

]
(3.14)

The CL development pattern is estimated by

β
CL
d =

[
n−1∏
k=1

Λk

]
(3.15)

Where β
CL
d is equal to 1.

That is, βCLd is an estimate of the proportion of the expected ultimate claim which

emerges up to development year d. From the assumption of cumulative claims indepen-

dence over the lags.
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E [Cw,n | DI ] = E [Cw,n | Cw,1, Cw,2, ..., Cw,n−w] = Cw,n−w ×

[
n−1∏
k=1

Λk

]
(3.16)

Mack(1993) showed that under assumptions of independence of cumulative claims data

the development factors estimators Λw are uncorrelated and unbiased for Λw. This is so

even when Λw−1 and Λw depend on the same data Cn−d−1,d.

The estimate for variance is:

σ2
d =

1

n− d− 1

n−d−1∑
w=0

Cw,d

(
Cw,d+1

Cw,d
− Λ̇d

)2

(3.17)

3.3 Bornhuetter-Ferguson

Another traditional approach is the Bornhuetter-Ferguson method. Rather than being

multiplicative and leveraged for less mature exposure periods, this method is additive

and tends to be more stable. However, the method needs both an estimate of the loss

emergence or development (as does the development factor method) but as well as a

prior estimate of ultimate losses for each exposure year. This latter requirement can

be overcome using a variant approach known as the Cape Cod method. In the cape

cod method one estimates the initial ”seed” by using an approach equivalent to the

development factor projection method.

Let Cw,d denote the cumulative amount of claims incurred of accident year w after d

years of development and that the following holds.

1 ≤ w and d ≤ n.

Let νw denote the earned premiums for accident year w.

Cw,n+1−w is the current known claim amount for accident year w, if Uw is the ultimate

claim amount of accident year w, then the claims reserve for accident year w can be



Chapter 3. Methodology 26

represented as:

Rw = Uw − Cw,n+1−w (3.18)

The underlying ultimate loss ratio for accident year w is.

qw =
Uw
νw

(3.19)

Let Fd denote the lag factor for lag d then we can estimate the reserve as:

Rw = νw ×
(

1− 1

Fw

)
× qw (3.20)

The chain ladders reserve strongly depends on the current amount Cw,n+1−w which can

lead to a negative reserve or a zero reserve for accident years where no claims are paid

or reported which is not unusual in excess of loss reinsurance.

The BF reserve estimate avoid this discrepancy from the current claims amounts Cw,n+1−w

hence:

R
BF
w = νw × qw × (1− zn+1−w) (3.21)

Where 1 − zn+1−w is therefore an estimate for the percentage of the expected claims

outstanding of accident year w.

The Frequency/Severity method presented by Berquist and Sherman (1977) is similar to

the Bornhuetter-Ferguson method. The focus of this method is on incremental average

cost per claim with separate selections for claim counts and trends in the incremental

averages. It exhibits some of the stability of the Bornhuetter-Ferguson method for less

mature exposure periods, and does not require a prior estimate of ultimate losses. It

does exhibit some volatility due to the forecasts of ultimate claim counts, and in the
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selection of trends for both current levelling and forecasting into the future.

The BF method is based on the following assumptions.

• All incremental claims Xw,d are independent.

• There are parameters µw, βd , 0 ≤ w ≤ n and 0 ≤ d ≤ n, with E [Xw,d] = µwβd

and β0 + ...+ βn = 1.

• There are proportionality constants σ2
d , 0 ≤ d ≤ n, with V ar(Xw,d) = µwσ

2
d.

• There are given unbiased a prior estimates µ̇w for µi, 0 ≤ w ≤ n.

Further assume that a development pattern of quotas consists of parameters γ0, γ1, γ2, ...., γn

with

γk = E[Cw,k] (3.22)

The quotas represent the percentage of claims reported. A development pattern of

factors consists of parameters ψ1, ψ2, ..., ψn with

ψk =
E [Cw,k]

E [Cw,k−1]
(3.23)

If the parameters γ0, γ1, γ2, ...., γn form a development pattern for the quotas, then the

parameters ψ1, ψ2, ..., ψn with

ψk =
γk
γk−1

(3.24)
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form a development pattern for the factors.

If the parameters ψ1, ψ2, ..., ψn form a development pattern for the quotas, then the

parameters γ0, γ1, γ2, ...., γn with

γk =
n∏

i=k+1

1

ψi
(3.25)

form a development pattern for the quotas.

Estimation of the parameter γk of a development pattern for quotas provided in the run

off triangle is an empirical individual quota.

γ0,k =
C0,k

C0,n
(3.26)

Estimation of the parameter ψk of a development pattern for factors provided in the run

off triangle is an empirical individual factors.

ψw,k =
Cw,k
Cw,k−1

(3.27)

Moreover any weighted mean of the estimators is an estimator as well.

If γ0, γ1, γ2, ...., γn represent development patterns for quotas, then the expected reserve

satisfied the following model.

E [Rw] = (1− γn−w)E [Cw,n] (3.28)

Therefore the predictors for the reserves can be defined as:

Rw = (1− γn−w)πwKw (3.29)
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where πw is a premiums volume measure while Kw is an estimator of the expected loss.

Ki = E

[
Cw,n
πw

]
(3.30)

The future cumulative losses satisfy the model equation.

E [Cw,k] = E [Cw,n−w] + (γk − γn−w)E [Cw,n] (3.31)

Mack(2006; 2008) criticized the use of the Chain Ladder development pattern in the BF

method due to the fundamental assumption of independence between past and future

claims, which underlies the BF method. Due to the proportionality of the Chain Lad-

der reserve to the current claims amount, the Chain Ladder reserve for accident year

w is smaller, the smaller the current claims amount Cw,n,w is. Mack (2008) observed

that the systematic use of the Chain Ladder link ratios assumes that the outstanding

claims part is a direct multiple of the already known claims part at each point of the

development. Therefore, the development pattern should be estimated differently from

the Chain Ladder development pattern.

According to Roger M. Hayne (2002) reserve uncertainty is the distribution of the

amount and timing of future payments for a particular book of policies. Timothy Peter-

son (1980) noted that the variability of loss reserves might be estimated using maximum

and minimum link ratios, instead of just averages but he noted that this method was

flawed.
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3.4 Over-Dispersed Poisson Model

The over-dispersed Poisson distribution differs from the Poisson distribution in that the

variance is not equal to the mean, but, instead, is proportional to the mean. In claims

reserving, the over-dispersed Poisson model assumes that the incremental claims Xw,d

are distributed as independent over-dispersed Poisson random variables, with mean and

variance:

The assumptions of this model are similar to those in the Bayesian claims reserving

models presented in England-Verrall(2002,2006), the assumption is that the parameters

are modeled through prior distributions and conditional on these parameters are the

incremental claims Xw,d have independent over dispersed Poisson distributions for ac-

cident years w and development years d. The final development year is given by I and

the observations at time I are given in the upper run-off triangle.

DI = {Xw,d : w + d ≤ I} (3.32)

The Bayesian over-dispersed poisson model is build on the following assumptions:

• µ0, ..., µI , γ0, ..., γI , ψ are independent positive random variables with joint density

u(.)

• Conditionally given θ = µ0, ..., µI , γ0, ..., γI , ψ are Xw,d random variables with

E [Xw,d] = mw,d = xwyd (3.33)

V ar [Xw,d] = φxwyd (3.34)
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Here, xw is the expected ultimate claims (where ultimate means up to the latest devel-

opment year observed in the triangle), and yd is the proportion of ultimate claims to

emerge in each development year. Over-dispersion is introduced through the parameter

φ, which is unknown and estimated from the data. Allowing for over-dispersion does not

affect estimation of the parameters, but does have the effect of increasing their standard

errors as pointed out by Renshaw and Verrall (1998).

It should be noted that, since yd appears in the variance, the restriction that yd must

be positive is automatically imposed. This implies that the sum of incremental claims

in column d must also be positive, which was a limitation of the model. Note that some

negative incremental are allowed, as long as any column sum is not negative. In this

formulation, the mean has a multiplicative structure, that is, it is the product of the

row effect and the column effect. Both the row effect and the column effect have specific

interpretations(being the expected ultimate claims in each origin year and proportion of

ultimate to emerge in each development year, respectively), and it is sometimes useful

to preserve the model in this form. However, for estimation purposes, it is often better

to re-parametrize the model so that the mean has a linear form.

log [mw,d] = c+ αw + βd (3.35)

This predictor structure is still a chain-ladder type, in the sense that there is a parameter

for each row w and a parameter for each column d. There are some advantages and

some disadvantages to this form of the model.As a generalized linear model, it is easy

to estimate, and standard software packages can be used; the estimates should be well

behaved. However, the parameter values themselves will be harder to interpret, making

it necessary to convert them back into more familiar quantities. Note that constraints

have to be applied to the sets of parameters, which could take a number of different
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forms. For example, the corner constraints would put

α1 = β1 = 0 (3.36)

Although this kind of model is based on the Poisson distribution, this does not imply

that it is only suitable for data consisting exclusively of positive integers. That constraint

can be overcome using a quasi-likelihood approach described by McCullagh and Nelder

(1989), which can be applied to non-integer data, positive and negative. With quasi-

likelihood, in this context, the likelihood is the same as a Poisson likelihood up to a

constant of proportionality. For data consisting entirely of positive integers, identical

parameter estimates are obtained using the full or quasi-likelihood.

Many statistical packages fit GLMs using quasi-likelihood by default, the user being

entirely unaware. In modelling terms, the crucial assumption is that the variance is

proportional to the mean, and the data are not restricted to being positive integers.

Assume there are N open and unknown claims, all of which are statistically indepen-

dent, and have the same probability distribution with mean µ and variance σ2. The

distribution of the reserves will have a mean and variance of:

E [R] = Nµ (3.37)

V ar [R] = Nσ2 (3.38)

If the distribution of Xi is known then the resulting reserve distribution will only exhibit

process uncertainty. In some cases the distribution of claim size will be known and

exhibit a closed form, however if the number of claims N is random and independent
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from the claim size distribution and has a mean λ and a variance τ2 then the reserve

will have the following mean and variance.

E [R] = λµ (3.39)

V ar [R] = λσ2 + µ2τ2 (3.40)

Consider a collective risk model, the random variable N is assumed to have a poison

distribution, in which case τ2 is equal to λ hence:

V ar [R] = λ
(
σ2 + µ2

)
(3.41)

With a poison claim count distribution, the variance of the average reserve is:

V ar

[
R

λ

]
=
λ(σ2 + µ2)

λ2
=

(σ2 + µ2)

λ
(3.42)

The variance approaches zero as λ becomes arbitrary large. Assuming the claim count

have a poison distribution, the process uncertainty inherent in the average reserve will

effectively disappear as the expected number of claims becomes large.

Consider a classical collective risk model and incorporate the following parameters α

and β. To this end we will assume that α and β are two random variables. The essence

of this is to solve the problem of calculating aggregate distribution for collective risk

models with weak restrictions on the claims size distribution.

Therefore:

E [α] = 1 (3.43)
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V ar [α] = c (3.44)

and

E

[
1

β

]
= 1 (3.45)

V ar

(
1

β

)
= b (3.46)

Next we formulate an algorithm to generate one observation of aggregate reserves.

• Randomly select a value of α from a gamma distribution.

• Randomly select the number of claims N from a poison distribution with param-

eters αλ.

• Randomly select a value for β from a gamma distbution.

• Randomly select N claims from a claim size distribution.

• Add the value of the N claims and divide the results by β.

Here c is a contagion parameter while b is a mixing parameter.

Under the assumption that the claims count and claim size distribution are independent

and claims size selection in step 4 are independent of each other and the random vari-

able α and β. We can calculate the expected value and the variance of aggregate reserves.

E [R] = λµ (3.47)

V ar [R] = λ
(
µ2 + σ2

)
(1 + b) + λ2µ2 (b+ c+ bc) (3.48)

The algorithm presented here allows for the combination of aggregate loss distributions

for several lines of insurance, each with its own contagion parameter c but with a global
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mixing parameter b. We will take advantage of this feature and have different contagion

parameters for each accident year as well as a single global mixing parameter reflecting

uncertainty that affects reserves for all accident years at once. Global uncertainty would

take forms of future inflation or court decisions.

3.5 Formulation of the Collective Risk Model

3.5.1 Mean Square Error of Prediction

The primary goal of this project is to estimate variability in reserves, in this section we

address the Mean Square Error technique that estimates how good the mean or expected

ultimate claims are ie the quality of the estimates.

Assume we have a random variable X (incremental claims) and a set of observations

D. In this case X denotes the incremental entries in the triangle while D is the set of

training data.

Assume that X is a D - measurable estimator for E [X|D]

The conditional mean square error for the prediction of the estimator X can be defined

as:

msepX|D
(
X
)

= E
[[
X −X

]2 |D] (3.49)

For a D - measurable estimator X we have:

msepX|D
(
X
)

= V ar [X|D] +
[
X − E [X|D]

]2
(3.50)
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where:

V ar (X|D) is the process variance ie. the variance which is within the stochastic model

(pure randomness which cannot be eliminated).(
X − E [X|D]

)2
is the parameter or estimation variance. It reflects the uncertainty in

the estimation parameter and of the expectation.

We assume that X is independent of D in a situation where we have iid experiments

and we want to estimate the average outcome.

E [X|D] = E [X] (3.51)

V ar [X|D] = V ar [X] (3.52)

The unconditional mean square error of prediction for the estimator X is:

msepX
[
X
]

= E
[
msepX|D

[
X
]]

(3.53)

msepX
[
X
]

= V ar [X] + V ar
[
X
]

(3.54)

Hence the parameter error is estimated by the variance of X.

Assume that X1, ..., Xn are iid with mean µ and variance σ2. We have the estimator.

X =

n∑
i=1

Xi

n
(3.55)

and therefore:

msepX|D
(
X
)

= σ2 +

(
1

n

n∑
i=1

Xi − µ

)2

(3.56)

By law of large numbers the last term disappears as n approaches ∞. In order to

determine this term for finite n, we explicitly calculate the distance between
∑n

i=1
Xi
n
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and µ. However since in general µ is not known we can only give an estimate for that

distance.

The unconditional mean square error of prediction is:

msepX
(
X
)

= σ2 +
σ2

n
(3.57)

We can assume that the deviation of
∑n

i=1
Xi
n around µ is on average of order σ

n .

In case X is not independent of the observation D.

msepX
(
X
)

= E
[
msepX|DX

]
(3.58)

This can be expressed as:

msepX
[
X
]

= E [V arX|D] + E
[[
X − E [X|D]

]2]
= V ar [X]− V ar [E [X|D]] + E

[[
X − E [X|D]

]2]
= V ar [X] + E

[[
X − E [X]

]2]− 2E
[[(
X − E [X]

)]
[E [X|D]− E [X]]

]
(3.59)

If the estimator X is unbiased for E [X] we obtain:

msepX
[
X
]

= V ar [X] + V ar
[
X
]
− 2Cov

[
X,E [X|D]

]
(3.60)

To quantify the variability in the chain ladder reserve estimates we will assume that

the claims amount do not have a specific distribution function and establish a formula

for the standard error which is an estimate for the standard deviations of outstanding

claims reserves.
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Let:

• w = Accident year.

• d = Development year/ Lag period.

• Cw,d = Cumulative losses (either paid or incurred)

• Xw,d = Incremental (paid or incurred) losses

Assume that we have an n× n triangle of incremental paid or incurred losses organized

by rows for accident years and by columns for development lags. We also have the pre-

mium associated with each accident year.

We estimate the age to age factors by:

Λd =
n−d∑
w=1

×
Cw,d

n−d∑
w=1

Cw,d

×
Cw,d+1

Cw,d
(3.61)

This can be shown to be equivalent to:

Λd =

n−d∑
w=1

Cw,d+1

n−d∑
w=1

Cw,d

=

n−d∑
w=1

Cw,d+1

Cw,d
(3.62)

For d = (1, 2..., n)

This is the weighted average of the observed individual development factors
Cw,d+1

Cw,d
and

the weights are proportional to Cw,d. Like Λd every individual development factor
Cw,d+1

Cw,d

is also an unbiased estimator of Λd because:
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E

[
Cw,d+1

Cw,d

]
= E

[
E

[
Cw,d+1

Cw,d
|Cw,1.....Cw,n

]]
= E

[
E [Cw,d+1|Cw,1.....Cw,n]

Cw,n

]
= E

[
Cw,dΛd
Cw,d

]
= E [Λd]

= Λd

(3.63)

This hold because by iterative rule E [X] = E [E [X|Y ]] and Λd is a scalar parameter

and the chain ladder uses Λd as an estimator of Λd.

Applying the principle of the theory of point estimation that states that among several

unbiased estimators preference should be given to the one with the smallest variance.

Assume that we estimate the age to age factors of the observed development factors

which is also an unbiased estimator as is in the case of weighted average.

Λd =
n−d∑
w=1

Ww,d
Cw,d+1

Cw,d
(3.64)

with
n−d∑
w=1

Ww,d = 1 (3.65)

Ww,d is a scalar if Cw,1, ..., Cw,n are unknown.

Ww,d is inversely proportional to:

V ar

[
Cw, d+ 1

Cw,d
|Cw,1, ..., Cw,n

]
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The chain ladder estimator Λd uses weights which are proportional to Cw,d and therefore

Cw,d is assumed to be inversely proportional to:

V ar

[
Cw, d+ 1

Cw,d
|Cw,1, ..., Cw,n

]
=

α2
d

Cw,d
(3.66)

with a proportionality constant α2
d which may depend on d but not on w and which

must be non negative because variance is always positive.

Cw,d is a scalar and generally V ar
[
X
c

]
= V ar[X]

c2
for any scalar c, we can state the above

proportionality condition in the form.

V ar [Cw,d+1|Cw,1, ..., Cw,n] = Cw,dα
2
d (3.67)

Note that the aim of claims reserving methods is to estimate the ultimate claim amounts

Cw,n

Where w = 2, ..., n

This is accomplished by applying.

Cw,n = Cw,n+1−w × (Λn+1−w, ...,Λn−1) (3.68)

The ultimate claims amounts are unbiased under the following assumptions.

• There are unknown constants Λ1, ...,Λn−1 with

E [Cw,d+1|Cw,1, ..., Cw,n] = Cw,dΛd (3.69)
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• The variables Cw,1, ..., Cw,n and Cd,1, ..., Cd,n of different accident years w 6= d are

independent.

The expected value of the estimator

Cw,n = Cw,n+1−w
[
Λn+w−1, ...,Λn−1

]
for the ultimate claim amounts and the true claim

amounts Cw,n are equal that is:

E
[
Cw,n

]
= E [Cw,n] (3.70)

To estimate the mean square error we need to know the average distance between the

forecast Cw,n and the future realizations Cw,n

mse
[
Cw,n

]
= E

[[
Cw,n − Cw,n

]2 |D] (3.71)

Where D = {Cw,d|w + d ≤ n+ 1} is the set of all data observed so far. The error we

want to estimate is that due to future randomness.

The unconditional error

E
[
Cw,n − Cw,n

]2
= E

[
E
[
Cw,n − Cw,n

]2 |D] (3.72)

This is the exact concept underlying

V ar [X] = E [X − E [X]]2 (3.73)
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Due to the general rule;

E [X − c]2 = V ar [X] + [E [X]− c]2

mse
[
Cw,n

]
= V ar [Cw,n] +

[
E [Cw,n|D]− Cw,n

]2
(3.74)

mse [Cw,n] depends on the unknown model parameters fk and α2
k. The standard error

s.e
[
Cw,n

]
of Cw,n is the standard error of the reserves s.e

[
Rw,n

]
.

Rw = Cw,n − Cw,n+1−w of the outstanding claim reserves. Therefore:

mse
[
Rw
]

= E
[[
Rw −Rw

]2 |D] = E
[[
Cw,n − Cw,n

]2 |D)
]

= mse
[
Cw,n

]
(3.75)

Equality of the mean square error also implies the equality of the standard errors.

s.e
[
Rw
]

= s.e
[
Cw
]

(3.76)

The standard error of claims reserves can be computed as:

[
s.e
[
(Cw,n

]2]
= C

2
w,n

n−1∑
k=n+1−w

α2
k

fk

 1

Cw,n
+

1
n−1∑
d=1

Cd,k

 (3.77)

where

α2
k =

1

n− k − 1

n−k∑
d=1

Cd,k

(
Cd,k+1

Cd,k
− fk

)
(3.78)

This is an unbiased estimator of α2
k.

We have estimated Rw and s.e
(
Rw
)

for the mean and standard deviation. The assump-

tion was that the outstanding claims were large enough and due to the central limit

theorem we had assumed that the distribution function was normal with the expected
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value equal to point estimate given by Rw and the standard deviation equal to the stan-

dard error s.e (Rw).

A symmetric 95% confidence interval for the reserves under normal distribution would

be: (
Rw − 2s.e

(
Rw
)
, Rw + 2s.e

(
Rw
))

(3.79)

This is a weak assumption especially if the distribution of the reserves is skewed that is

for the cases where s.e(Rw) is greater than 50% of Rw. In this case we recommend to

use an approach based on the log-normal distribution. For this purpose we approximate

the unknown distribution of Rw by a log-normal distribution with parameters µw and

σw. Such that the mean values as well as variance of both distributions are equal.

exp

(
µw +

σ2
w

2

)
= Rw

exp
(
2µw + σ2

w

) (
exp

(
σ2
w

)
− 1
)

= V ar
(
Rw
)

(3.80)

This leads to:

µw = ln (Rw)− σ2
w

2

σ2
w = ln

(
1 + V ar

(
Rw
)

R2
w

)
(3.81)

3.5.2 Bayesian Approach Models

Let Cw,d be random variables of accumulated claim amounts for accident years w and

development years d. We will denote all observed data in the triangle ie the training

data by D. We will assume that the claim amounts in the first year has fully developed

as so Cw,d for (2 ≤ w ≤ n) are considered as ultimate claims to be estimated.
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Given D the development factor Λd are estimated by:

Λd|D =

n−d∑
w=1

Cw,d+1

n−d∑
w=1

Cw,d

(3.82)

and the ultimate claim amounts for the wth (w ≥ 2) year denoted as:

Cw,n|D = Cw,n−w+1

n−1∏
d=n−w+1

Λd (3.83)

Model assumptions

• E [Cw,d+1|Cw,1, ..., Cw,d] = ΛdCw,d

• Cw,1, ..., Cw,n, Ck,1, ..., Ck,I are independent and

• V ar [Cw,d+1|Cw,1, ..., Cw,d] = σ2
dCw,d

To make simulations possible we assume that Cw,d+1 is normally distributed with mean

ΛdCw,d and variance σ2
dCw,d that is, this allows one to calculate t-tests, p-values, F tests,

etc. and draw inferences about how well simulated data describe the distribution of the

reserves.

Cw,d+1| (Cw,1, ..., Cw,d) ∼ N
(
ΛdCw,d, σ

2
dCw,d

)
(3.84)

Let Yw,d =
Cw,d+1

Cw,d
this assumption is equivalent to:

Yw,d| (Cw,1, ..., Cw,d) ∼ N
(

Λd,
σ2
d

Cw,d

)
(3.85)

The distribution of Cw,d is defined by parameters Λd, σ
2
d, the posterior distribution of

Λd, σ
2
d is calculated so that the posterior distribution of Cw,d can be evaluated.
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For simplicity assume that we have a vector:

Λ = (Λ1, ...,Λn−1)

σ2 =
(
σ2

1, ..., σ
2
n−1

) (3.86)

The first step of the Bayesian approach is to calculate the posterior distribution.

P
(
Λ, σ2|D

)
∝ P

(
C|Λ, σ2

)
P
(
Λ, σ2

)
(3.87)

Where P (Λ, σ2) is the joint distribution of Λ and σ2 and P (Λ, σ2|D) is the joint posterior

distribution. P (C|Λ, σ2) is determined by the assumptions of the model.

P
(
C|Λ, σ2

)
=

n∏
w=1

P
(
xw,1, ..., xw,n+1−w|Λ, σ2

)
=

n∏
w=1

[
P
(
xw,1|Λ, σ2

) n+1−w∏
d=2

P (xw,d|xw,1, ..., xw,d−1) ,Λ, σ2

]

=

[
n∏

w=1

[
P
(
xw,1|Λ, σ2

)] n∏
d=2

n−d+1∏
w=1

P
(
xw,d|xw,1, ..., xw,d−1),Λ, σ2

)]

∝
n∏
d=2

n−d+1∏
w=1

 1√
2Π(σ2

d−1xw,d−1)

 exp(−(xw,d − Λd−1xw,d−1)2

2(σ2
d−1)

)
∝

n−1∏
d=1

n−d∏
w=1

 1√
σ2
d

exp

−(yw,d − Λd)
2

2
σ2
d

xw,d


(3.88)

Note that yw,d is defined as yw,d =
xw,d+1

xw,d
if both xw,d+1 and xw,d are known.

By definition P (Λ, σ2) is a multi-dimensional distribution and generally there is no

guarantee of independency between pairs(Λd, σ
2
d). However any appropriate distribution

can be chosen as prior distribution so it is reasonable to assume that the chosen prior

distributions have the features of independency that is any pair of (Λd, σ
2
d) is independent
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of other pairs.

P
(
Λ, σ2

)
=

n−1∏
d=1

P
(
Λd, σ

2
d

)
(3.89)

Substituting accordingly:

P
(
Λ, σ2|D

)
∝

n−1∏
d=1


n−d∏
w=1


1√

σ2
d exp

− (yw,d−Λd
2σ2
d

xw,d

P (Λd, σ
2
d)



 (3.90)

which shows that the joint posterior distribution can be factorized. This gives an im-

portant conclusion that if the prior distribution is independent, the joint posterior dis-

tribution of the pair
(
Λd, σ

2
d|D

)
is also independent of other pairs.

P
(
Λd, σ

2
d|D

)
∝

n−d∏
d=1

1

σ2
d

exp

−(yw,d − Λd)
2

2
(

σ2
d

xw,d

) P (Λd, σ
2
d)


∝
(
σ2
d

)−((n− d)

2

)
exp

[
− 1

2σ2
d

n−d∑
w=1

xw,d(yw,d − Λd)
2

]
P
(
Λd, σ

2
d

)

The second step is to compute the marginal posterior distributions P (Λd|D) and P (σ2
d|D).

We calculate this by integrating out the unwanted variables in the joint posterior distri-

bution.

P (Λd|D) ∝
∞∫

d=0

P
(
Λd|σ2

d, D
)
P
(
σ2
d|D

)
dσ2

d

∝
∞∫

d=0

P
(
Λd|σ2

d, D
)
dσ2

d

(3.91)

and similarly

P
(
σ2
d|D

)
∝

∞∫
d=0

P
(
σ2
d|Λd, D

)
P (Λd|D) dΛd

∝
∞∫

d=0

P
(
σ2
d|Λd, D

)
dΛd

(3.92)
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However this cannot be computed analytically hence we need to use numerical techniques

to compute the marginal posterior distributions. This makes the bayesian technique

tricky and the alternative is to resort to simulation techniques. To compute the variance

we assume independence in pairs (Λd, σ
2
d)|D)

E [w,d+1|D] = E [LambdadCw,d|D] = E [Lambdad|D]E [Cw,d|D] (3.93)

The second central moment is

E
[
C2
w,d+1|D

]
= E

[[
[ΛdCw,d]

2 + σ2
dCw,d

]
|D
]

= E
[
Λ2
d|D)

]
E
[
C2
w,d|D

]
+ E

[
σ2
d|D

]
E [Cw,d|D]

(3.94)

Hence the variance of Cw,d+1|D is

V ar(Cw,d+1|D) = E(C2
w,d+1|D)− (E(Cw,d+1|D))2

= E(Λ2
d|D)E(C2

w,d|D) + E(σ2
d|D)E(Cw,d|D)− (E(Λd|D))2(E(Cw,d|D))2

= V ar(Λd|D)(E(Cw,d|D))2 + E(Λ2
d|D)V ar(Cw,d|D) + E(σ2

d|D)E(Cw,d|D)

The values of E [Λd|D], V ar [Λd|D] and V ar
[
σ2
d|D

]
can be calculated from the posterior

distribution. The boundary is needed for this recursive formula, because

Cw,n−w+1|D = Cw,n−w+1

and its mean is

E [Cw,n−w+1|D] = Cw,n−w+1 (3.95)

and its variance is

V ar [Cw,n−w+1|D] = 0 (3.96)
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3.5.2.1 Parameter Estimation

The distribution of each pair of parameter (Λd, σ
2
d) can be calculated individually and

the posterior distributions have similar forms for different lag periods.

P (Λd, σ
2
d|D) ∝ (σ2)−

n
2 exp

(
− 1

2σ2

n∑
w=1

Cw(yw − Λ)2

)
P (Λd, σ

2
d) (3.97)

3.5.2.2 Known σ2

In order to make comparison we analyse σ2 when it is known. This can be simplified to:

P (Λd|D) ∝ exp

(
− 1

2σ2

n∑
w=1

xw (yw − Λ)2

)
P (Λ) (3.98)

For a non-informative prior distribution.

P (Λ) = 1 (3.99)

The equation simplifies to:

P (Λd|D) ∝ exp

(
− 1

2σ2

n∑
w=1

xw (yw − Λ)2

)
(3.100)

∝ exp

(
− 1

2σ2

(
Λ− Λ

)2)
(3.101)

(3.102)

where

Λ =

n∑
w=1

xwyw

n∑
w=1

xw
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The posterior distribution of Λ is normally distributed.

Λ|D ∼ N

Λ,
σ2

n∑
w=1

xw

 (3.103)

and the mean is

E [Λ|D] = Λ (3.104)

and the variance is

V ar [Λ|D] =
σ2

n∑
w=1

xw

(3.105)

With prior knowledge of Λ, it is useful to use an informative prior distribution.

P (Λ) =
1√

2Πσ2
exp

(
−(Λ− µ0)2

2σ2
0

)
(3.106)

Where µ0 is the prior knowledge of Λ and σ2
0 indicates the confidence about the prior

distribution. The larger the variance the lower the confidence. Using this prior the

posterior distribution becomes.

P (Λd|D) ∝ exp − 1

2σ2

n∑
w=1

xw(yw − Λ)2 − 1

2σ2
0

(Λ− µ0)2

P (Λd|D) ∝ exp − 1

2σ2

n∑
w=1

xw +
1

2σ2
0

(Λ−�)2

where

� =


Λ
σ2

n∑
w=1

xw + µ0
σ2
0

1
σ2

n∑
w=1

xw + 1
σ2
0

 (3.107)
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Hence the posterior distribution is normally distributed.

Λ|D ∼ N


Λ
σ2

n∑
w=1

xw + µ0
σ2
0

1
σ2

n∑
w=1

xw + 1
σ2
0

,
1

1
σ2

n∑
w=1

xw + 1
σ2
0

 (3.108)

3.5.2.3 Unknown σ2 Conjugate Prior

The idea is to choose a prior distribution that provides convenience in calculation. The

conjugate distribution to be used is the distribution which makes the prior and the

posterior belong to the same family of distribution. For the likelihood information the

conjugate distribution is the Normal-Inverse-Gamma distribution defined as:

P =
(
Λ, σ2

)
= P

(
Λ|σ2

)
P
(
σ2
)

(3.109)

Where σ2 has an Inverse-Gamma distribution.

σ2 ∼ IG(
ω0

2
, σ2

0) (3.110)

and Λ has a normal distribution with variance relate to σ2.

Λ|σ2 ∼ N
(
µ0,

σ2

η0

)

ω0, σ
2
0, µ0 and η0 are all parameters that can be chosen based on the prior knowledge.

With these prior the posterior distribution becomes.

P
(
Λ, σ2

0|D
)
∝ (σ2)−

n+ω0+3
2 exp

1

2σ2

{
η0(Λ− µ0)2 +

n∑
w=1

xw(Λ− yw)2 + σ2
0

}



Chapter 3. Methodology 51

The marginal distribution of Λ is:

P (Λ|D) ∝
∞∫

0

σ2−n+ω0+3
2 exp − 1

2σ2

{
η0(Λ− µ0)2 +

n∑
w=1

xw(Λ− yw)2 + σ2
0

}
d σ2

∝

{
η0 (Λ0 − µ0)2 +

n∑
w=1

xw (Λ− yw)2 + σ2
0

}−n+w+1
2

∝

1 +

(Λ−µn)2

σ2n
ωnηn

ωn


−ωn+1

2

Where

µn =
η0

η0 +
n∑

w=1
xw

µ0 +

n∑
w=1

xw

η0 +
n∑

w=1
xw

Λ

ηn = η0 +
n∑

w=1

xw

ωn = ω0 + n

σ2
n = σ2

0 + (n− 1)s2 +
η0

ηn
(Λ− µ0)2

n∑
w=1

xw

(3.111)

Hence Λ−µn√
σ2n
ωnηn

has a t distribution with ωn degrees of freedom.

Λ|D ∼ tωn(µn,
σ2
n

ωnηn
) (3.112)

This gives a mean of

E [Λ|d] = µk (3.113)

and a variance of

V ar [Λ|d] =
σ2
n

ωnηn

ωn
ωn − 2

=
σ2
n

(ωn − 2)ηn
(3.114)
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Likewise the marginal posterior distribution of σ2 is

P
(
σ2|D

)
∝
(
σ2
)(−ωn−2

2 )
(
− σ2

n

2σ2

)
(3.115)

σ2 has an inverse gamma distribution with parameters ωn
2 and σn

2 that is σ2|D ∼

IG
(
ω2
n, σ

2
n

)
with a mean E

[
σ2|D

]
= σ2

n
ωn−2 . The choice of distributions to use require

a thorough analysis of data especially where the data would result to negative or zero

entries in the last diagonal.

3.5.3 Stochastic Framework

Having build on the Bayesian framework that derives a posterior distribution from a

prior and a conjugate distribution, we can now extend this to a Bayesian Markov Chain

Monte-Carlo (MCMC) models. This model provides an unprecedented flexibility in

stochastic model development. In our model we wish to:

• Examine correlation accident years.

• Analyse a skewed distribution defined over the entire real line to deal with negative

incremental paid data.

• Accommodate changes in the claims settlement rate and payment year trends for

paid claims data set.

3.5.3.1 Lognormal Loss Development Model

We wish to examine two sources of variation. These effects are captured by the log-

normal random variable estimated for the next year of development with respect to the

accident year under review.
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• Process variance and

• Estimation Variation

For the paid losses triangle the development lags are independent from one period to

the next. The ultimate loss ratios are estimated based on the incurred losses.

We assume that the age to age development factors are log-normally distributed.

f(x;µ, σ) =
1

xσ
√

2Π
exp

{
−1

2

(
ln(x)− µ

σ

)2
}

(3.116)

The expected values and the variance of the distribution are given by;

E(x) = exp

{
µ+

σ2

2

}
(3.117)

and

V ar(x) = exp
{

2µ+ σ2
} (

exp
{
σ2
}
− 1
)

(3.118)

The product of independent log-normal random variables is also log-normal implying

that the age to ultimate loss development factors are log-normal. The product of a

constant and a log-normal random variable is log-normal, hence given the loss ratios

and the estimate age to ultimate factors we can compute the ultimate loss ratios.

To estimate the parameters for the log-normal distribution we use the unbiased estima-

tors.

x =
1

n

n∑
i=1

xi (3.119)

and

s2 =
n∑
i=1

(xi − x)2

n− 1
(3.120)
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where xi’s are the observed age to age factors and xi is a maximum likelihood estimator.

Using the estimated parameters that is µi and σi we can get the mean loss development

factors. The parameters define the log-normal distribution that best fits the data.

We combine the parameter estimates for the prospective age to age factors using the

multiplicative property of log-normal distribution to determine parameter estimates for

the prospective age to ultimate factors.

The product of n log-normal random variables with respective parameters (µ1, σ1), (µ2, σ2), ..., (µn, σn)

is a log normal random variable with parameters.

µ =

n∑
i=1

µi (3.121)

and standard deviation

σ =

√√√√ n∑
i=1

σ2
i (3.122)

To achieve the age to ultimate factors we need to take the natural logarithms of the

age to age factors. The ultimate development factor is the sum of the mean age to age

factor natural logarithms. The corresponding σ estimate is the square root of the sum

of variances of the natural logarithms for the age to age factors.

Measuring effect of log-normal loss development can be modelled for the next year on the

existing mean age to age and age to ultimate factors.The effect of adding a data point

arises from a log-normal distribution, the existing mean remains while the standard

deviation gets revised.

Examining the product of a constant and two log-normal random variables.

µ = ln(p) + µ1 + µ2

σ =
√
σ2

1 + σ2
2



Chapter 3. Methodology 55

The chain ladder random variable can be expressed as a product of two log-normal ran-

dom variables. The idea is to model revised loss ratio estimates for other time horizons

and the confidence intervals for the same and those of the estimated reserves.

xcl = xwE [tail] (3.123)

For the BF method.

xBF = xp − E [xp] + E [xp]E [tail] (3.124)

If we assume that µ = x and σ = s the 95% confidence interval is

exp(x−N−1(0.975× σ)) (3.125)

and

exp(x+N−1(0.975× σ)) (3.126)

The assumption of log-normal distribution is a weak one since it does not take in to

account the distribution of the claims count and the claims sizes. The fact that the log-

normal estimation of development factors reverts back to the traditional chain ladder

factors only gives a good frame work for studying the variability in the reserves.

3.5.3.2 Poisson Gamma Mixture

Assume that the claims frequencies are poisson distributed N ∼ Po(λ), the number of

claims in a fixed period of time from an insured in a large pool of insured. λ represents

the nature of risk.
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• Large λ represents high risks while

• Small λ represents low risks

Hence λ is itself a random variable in our case we assume that λ has a gamma distribu-

tion with parameters α and β.

λ ∼ gamma(α, β)

g(λ) = αβ

Γβλ
β−1e−αλ

The joint density of N and λ is:

P (N = n) =

∞∫
0

P (N = n|Λ = λ)g (λ) dλ

=

∞∫
0

e−λλn

n!

αβ

Γβ
αβ−1e−αλdλ

=
αβ

Γβn!

∞∫
0

λn+β−1e−(α+1)λdλ

We introduce a normalization parameter

Γ(n+β)

(α+1)(n+β)
This reduces to an integrand of a gamma distribution with parameters n+ β

and α+ 1 this is equal to one.

=
Γ(n+ β)

(α+ 1)(n+β)

αβ

Γβn!

∞∫
0

Γ(n+ β)

(α+ 1)(n+β)
λn+β−1e−(α+1)λdλ (3.127)
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This is a negative binomial distribution a mixture of a family of poisson distribution

with gamma mixing weights.

=
Γ(n+ β)

Γ(n+ 1)Γβ

(
α

α+ 1

)β ( 1

α+ 1

)n

=

 n+ β − 1

n

( α

α+ 1

)β ( 1

α+ 1

)n

This discretizes the claims severity distributions This model is sometimes problematic in

practical applications. It assumes that we have no negative increments in the incremen-

tal triangle.However if Xi,j denotes incremental payments, we can have negative values.

The negative values in a triangle can be accommodated by preserving the sum of the

incremental column. The second way to allow for negative increments in the triangle is

to opt for a Mixed Log normal-Normal distribution by replacing the truncated normal

distribution with another skewed distribution, such as the log normal distribution. De-

fine X ∼ N(z, σ) where z ∼ LN(µ, σ). The loss distribution has the desired features

of skewness and a domain that includes negative numbers, This can help us describe a

model for incremental paid losses with a calendar-year trend.

PredictionV ariance = ProcessV ariance+ EstimationV ariance (3.128)

The negative binomial model can be fitted using incremental or cumulative data. Unlike

the over dispersed poisson model which has an origin and development year parameter,
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the parameters of a negative binomial model relate to development year only.

E [Xw,d] = (λd − 1)Cw,d−1

V ar [Xw,d] = Φλd(λd − 1)Cw,d−1

E [Xw,d] = mw,d = (λd − 1)Cw,d−1

log(mw,d) = log(λd − 1) + log(Cw,d−1)

log(λd − 1) = c+ αd−1

log(mw,d) = c+ αd−1 + log(Cw,d−1)

(3.129)

This specifies a generalized linear model with logarithmic link function and a negative

error structure.

V ar
[
λd
]

= V ar
[
λd − 1

]
= exp(C − αd−1)V ar

[
C − αd−1

]
(3.130)

3.5.3.3 Shifted Pareto Distribution

Let the number of claims N be exponentially distributed N ∼ exp(λ) and the claims sizes

be gamma distributes λ ∼ γ(α, β). The joint probability is a shifted pareto distribution

that allows us to model policies with deductibles.

The joint density of N and λ is:
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P (N = n) =

∞∫
0

P (N = n|Λ = λ)g (λ) dλ

=

∞∫
0

λe−λx
αβ

Γβ
αβ−1e−αλdλ

=
αβ

Γβ

∞∫
0

λβe−(α+x)λdλ

We introduce a normalization parameter

=
αβΓ(β + 1)

Γβ(x+ α)β+1

∞∫
0

λβ
(x+ α)β

Γ(β + 1)
e−(x+β)λdλ (3.131)

(3.132)

But Γα = (α− 1)!

and Γ(α+ 1) =
∞∫
0

e−λλαdx

Hence this is a shifted Pareto distribution of the form

βαβ

(x+ α)β+1
(3.133)

It can be viewed as a compound gamma distribution because an exponential distribution

is a special case of a gamma distribution.
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3.5.3.4 Metropolis Algorithim

The metropolis algorithm provides an elegant method for obtaining sequences of ran-

dom samples from probability distributions. The main idea is to draw samples from a

distribution which can be evaluated from any point not necessarily an integral.

F (θ|D) =
F (D|θ)F (θ)

F (D)
(3.134)

F(D) is the unconditional probability of observing the data. This is not dependant on

the parameters of the model θ on which we wish to perform the inference, hence F (D)

is effectively a normalizing constant which makes F (D|θ) a proper probability density

function. In case we have non-normalized probability density functions which we wish

to estimate by taking random samples. The process of generating random samples may

be very difficult for complex models, we therefore need to explore the distributions using

Markov chain.

The chain we need is that if we run it long enough will constitutes as a whole of random

sample from the distribution of interest. This property of the Markov chain is called

ergodicity. The metropolis Hastings algorithm is a well structured model for constructing

such a chain. This algorithm can be constructed as follows.

• Choose a vantage point (starting point) in the parameter space X.

• Choose a candidate point such that Y ∼ N (X,σ) this is defined as the proposal

distribution.

• Move the candidate point with probability min
(

Φ(Y )
Φ(X) , 1

)
• Repeat this over the number of iterations
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The limitation of this approach is the selection of σ. Efficient mixing (the rate at which

the chain converges to the target distribution) occurs when σ approximates the standard

deviation of the target distribution. When the value of σ is not known in advance we

allow σ to adapt that of the history of the chain so far.

A Markov Chain is Stochastic process in which future states are independent of past

states given the present state. A Stochastic Process is a consecutive set of the random

quantities indexed at time (t) defined on some known state space Θ, where Θ is a pa-

rameter space.

P
(
θt+1|θ1, θ2, ..., θt

)
= P

(
θt+1|θt

)
(3.135)

The Markov chain is a bunch of draws of θ that are slightly dependant on the previous

one. The chain wanders around the state space, remembering only where it has been in

the last period. The jumping rule is governed by a transition kernel which is a mecha-

nism that describes the probability of moving to some other state based on the current

state. The rows sums to 1 we therefore have to define a conditional Probability Mass

Function, conditional on the current a state. The column are the marginal probabilities

of being in a certain state in the next period.

M =


P
(
θt+1
A |θtA

)
P
(
θt+1
B |θtA

)
P
(
θt+1
C |θtA

)
P
(
θt+1
A |θtB

)
P
(
θt+1
B |θtB

)
P
(
θt+1
C |θtB

)
P
(
θt+1
A |θtC

)
P
(
θt+1
B |θtC

)
P
(
θt+1
C |θtC

)



For a continuous state space infinite possible states the transition kernel is a bunch of

conditional Probability Density Function f
(
θt+1
j |θti

)
. The steps are as follows.
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• Define a starting distribution π(θ) a 1× k vector of probability that sums to 1.

• The first iteration of our distribution π(1) from which θ1 is drawn is

π(1) = π(0) × P (3.136)

where P is a k × k matrix

• At iteration 2 the distribution of π(2) from which θ2 is drawn is

π(2) = π(1) × P (3.137)

• At iteration t our distribution π(t) from which θt is drawn is

π(t) = π(t−1) × P

= π(0) × P t
(3.138)

Define a stationary distribution π to be same distribution as Φ such that

π = πP (3.139)

For all MCMC algorithm we use the Bayesian statistics, the Markov chain will typically

converge to π regardless of our starting point. We can devise a Markov chain whose

stationary distribution π is our desired posterior distribution P (θ|y), such that when

we run this chain we get draws that are approximately from P (θ|y) once the chain con-

verges.
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Regardless the starting point the chain will always converge but the time taken to con-

verge varies depending on the starting point. In practice we throw out a certain number

of the first draws a process known as burn in. This makes our draws closer to stationary

distribution and less dependant on the starting point. Once we obtain a Markov chain

that converges to the stationary distribution then the draws from the Markov chain

appear to be like those drawn from P (θ|y).

We can therefore use Monte Carlo simulation to find quantities of interest. The draw

back is that the draws are not independent which is a requirement for Monte Carlo to

work. Evoking the ergodic theorem, Let θ1, θ2, ..., θm be M values from a Markov chain

that is aperiodic, irreducible and positive recurrent the chain is ergodic and E [g (θ)] ≤ ∞

with probability 1.

1

m

∞∑
i=0

→
∞∫

0

g (θ)π (θ) dθ (3.140)

This is the Markov chain analog that allows us to ignore the dependence between draws

of the Markov chain when calculating quantities of interest. A markov chain is egordic

if:

• The Markov chain is aperiodic - if the only length of time for which the chain

repeats same cycle of values is the trivial case with cycle length equal to one. A

• The Markov chain is then irreducible - if it is possible to go from any state to any

other state not necessarily in one step.

• The Markov chain is recurrent - if for any give state i (if the chain starts at i) it

will eventually return to it with a probability of 1.

• And if it is positive recurrent - if the expected return time to state i is infinite

otherwise it is null recurrent.
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To break the dependence between draws in the Markov chain we only keep every dth

draw of the chain a process called thinning. This is however not necessary with ergodic

theorem. It also tends to increase the variances. Therefore MCMC is a class of methods

in which we can stimulate draws that are slightly dependent and are approximately from

a posterior distribution. In Bayesian statistics we have two MCMC algorithms that we

can use.

• Gibbs Sampler algorithm

• Metropolis-Hastings algorithm

In this project we take advantage of Metropolis-Hastings algorithm due to its ease in

implementing. It is particularly useful especially when the posterior distribution doesn’t

look like any known distribution that is there is no conjugacy, when the posterior dis-

tribution has more than two parameters and when some or all of the full conditionals

do not look like any known distribution we know and we cannot do Gibbs Sampling.

3.5.3.5 Fast Fourier Transform

The Fast Fourier Transform is an efficient method to calculate compound distributions

via the inversion of the characteristic function. The method has been known for many

decades and originates from the signal processing. The existence of the algorithm be-

came generally known recently in the mid-1960s. It is now being used to model aggregate

loss distributions in the insurance industry. FFT works with discrete severity and based

on the discrete Fourier transformation. It can be defined as follows.

If F:[0, L] −→ C be a Riemann Integrable function with f(0) = f(L). The kth complex

fourier- coefficient of f is defined as



Chapter 3. Methodology 65

fk =
1

L

L∫
0

f(x)e−2πi k
L
Xdx

f(x) =
∞∑

k=−∞
f(k)e2πi k

L
X

(3.141)

3.5.3.6 Discrete Fourier Transform

Let x = (x0, ..., xN−1) then the Discrete Fourier Transform of x is defined as

xk =
1

N

∞∑
j=0

XKe
2πi k

L
j (3.142)

x(k) is the DFT of the N-point sequence x(n)

x(k) =

N−1∑
n=0

x(n)e2πi k
L
n

x(k) =
N−1∑
n=0

x(n)Wnk
N

(3.143)

WN = cos

(
2π

N

)
− isin

(
2π

N

)
(3.144)

The characteristic function (CF) of any random variable X completely defines its prob-

ability distribution on a real line and it is given by the following formula:

fX(u) = E
[
eiuX

]
=

∞∫
−∞

eiuXfX(x)dx (3.145)
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Where u is a real number, i is the imaginary unit, and E denotes the expected value,

fX(x) denotes the probability density function (PDF). The characteristic function is

defined on the whole number line. There is a bijection between CDF and CFs in the

sense that two distinct probability distributions can never share the same characteristic

function.

Given a CF φ, it is possible to reconstruct the corresponding CDF.

fX(y)− fX(x) = limτ→∞
1

2π

+τ∫
−τ

e−iux − e−iuy

iu
Φx(u)du (3.146)

The inversion of the equation above is

fX(x) =
1

2
+

1

2π

∞∫
0

eiuxΦx(u)− e−iuxΦx(u)

iu
du (3.147)

where

eiux = cosux+ i sinux

I =

∞∫
0

eiuxΦx(−u)− e−iuxΦx(u)

iu
du

=

∞∫
0

∞∫
−∞

eiuxΦx(−u)− e−iuxΦx(u)

iu
du

=

∞∫
0

∞∫
−∞

2 sinu(x− z)
u

dF (Z)du

= π(2F (x)− 1)

= π(2

(
1

2
+

1

2π
I

)
− 1)

(3.148)
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In our case the characteristic function of the severity density f(x) is defined as

y =

∞∫
−∞

f(x)e−itxdx (3.149)

The probability distribution of the frequency data set is discrete. The probability gen-

erating function.

Pr [N = k]

y =

∞∑
k=0

SkPk

For a compound loss Z model, the characteristic function of a compound loss Z function

denoted as X(t) can be expressed through the probability generating function of the

frequency distribution and characteristic function of the severity distribution.

X(t) =

∞∑
k=0

(ϕ(t))kPk

y =

∞∑
k=0

SkPk

If N is poisson distributed Poi(N).

X(t) =
∞∑
k=0

(ϕ(t))k
e−λλk

k!

= eλϕ(t)−λ (3.150)
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N is from a negative binomial distribution

X(t) =

∞∑
k=0

(ϕ(t))k
(
k +m− 1

k

)
(1− p)kpm

=

(
1

1− (1− p)ϕ(t)

)m
(3.151)

Given the characteristic function, the density of aggregate loss Z can be calculated using

the FFT.

h(z) =
1

2π

∞∫
−∞

x(t)e−itzdt

For non-negative random variable Z

h(z) =
1

2π

∞∫
0

Re(x(t)) cos(tz)dt

H(z) =
1

2π

∞∫
0

Re(x(t))
sin(tz)

t
dt (3.152)
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Data Analysis

The approach taken in the data analysis was first to structure data in a format it can

be easily triangulated. The loss date or accident date, the notification dates and the

valuation date or pay dates were important data fields in enabling computations of lag

periods. The claims data is segmented into two data sets the paid and the incurred data

set. The genesis of the analysis begins from the chain ladder deterministic model and

build to statistical models and eventually to the stochastic methods. The assumption

that the proportional development of claims from one development period to the next

is the same for all origin years is not violated in all the models. To accomplish all the

tasks the models are implemented in R a rich language for statistical modelling and data

manipulations that allows fast prototyping and easily interfaces with other applications.

69
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4.1 Chain Ladder

Historical claims data is often presented in form of a triangle structure, showing the

development of claims over time for each exposure (origin) period. In this analysis we

consider the origin year to be the loss or accident year, this can be defined in otherwise

for example the year the policy was written or earned. The origins period can be yearly,

quarterly or monthly, the choice of the origin period depends on outcome of an analysis

of claims occurrence to partial and closure turn around times.

We will refer to the development period of an origin period is this paper as age or lag.

Data on the diagonals represent payments in the same calendar period. The triangles

emanate from data of individual policies that has been aggregated from homogeneous

lines of business, division levels or perils. Below is a sample of the data ready for mod-

elling in R.

Table 4.1: Structured Claims Data

w d premium cpdloss incloss

1 1 5812 952 1722
2 1 4908 849 1581
3 1 5454 983 1834
4 1 5165 1657 2305
5 1 5214 932 1832
6 1 5230 1162 2289
7 1 4992 1478 2881
8 1 5466 1240 2489
9 1 5226 1326 2541

10 1 4962 1413 2203

Where the first column represents the accident year, the second column represents the

development periods, the third holds the earned premiums in the periods while the last

two columns represent the paid and incurred losses respectively.
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4.1.1 Incremental Triangle

The incremental triangle considered in this project was based on paid claims. England

and Verrall(2000) point out that the using incremental losses requires one to use paid

rather than incurred losses since the most severity distributions are defined on non neg-

ative losses. Incurred losses include estimates by claims adjusters that can be adjusted

downward. Negative incremental paid losses occasionally occur because of salvage and

subrogation, but a feature of the GLM and severity distribution parameter estimation

procedure allows for negative incremental losses as long as all column sums of the loss

triangle remain positive.

Table 4.2: Incremental Triangle

d

w 1 2 3 4 5 6 7 8 9 10
1 1,722 2,108 - 227 232 38 22 23 - - 1 -
2 1,581 611 336 5 - 5 2 4 7 - 3
3 1,834 1,175 479 512 105 - 18 25 58
4 2,305 1,168 240 305 277 39 9
5 1,832 793 461 407 28 42
6 2,289 871 - 6 50 - 14
7 2,881 1,373 587 335
8 2,489 467 426
9 2,541 766

10 2,203

4.1.2 Cumulative Triangle

From the rectangular data above that consists of 55 entries of incremental losses we

structure it to a triangle and use it as our training data. The chain ladder approches

require that the losses are considers as a cumulation.

As defined in chapter 3 w represents the accident years while d represents the develop-

ment lags.
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Table 4.3: Cumulative Triangle

d

w 1 2 3 4 5 6 7 8 9 10
1 1,722 3,830 3,603 3,835 3,873 3,895 3,918 3,918 3,917 3,917
2 1,581 2,192 2,528 2,533 2,528 2,530 2,534 2,541 2,538 NA
3 1,834 3,009 3,488 4,000 4,105 4,087 4,112 4,170 NA NA
4 2,305 3,473 3,713 4,018 4,295 4,334 4,343 NA NA NA
5 1,832 2,625 3,086 3,493 3,521 3,563 NA NA NA NA
6 2,289 3,160 3,154 3,204 3,190 NA NA NA NA NA
7 2,881 4,254 4,841 5,176 NA NA NA NA NA NA
8 2,489 2,956 3,382 NA NA NA NA NA NA NA
9 2,541 3,307 NA NA NA NA NA NA NA NA
10 2,203 NA NA NA NA NA NA NA NA NA

4.1.2.1 Classical Chain Ladder Analysis

This run off triangle shows the known values of loss from each origin year as of the end

of the origin year and annual evaluations thereafter.For example, the known values of

loss originating from the 8 exposure period are 2,489, 2,956, and 3,382 as of year ends

1, 2, and 3, respectively. The most recent diagonal, i.e., the vector 3,917, 2,538 . . .

2,263 from the upper right to the lower left, shows the most current evaluation available.

The column headings show the years of the observations in the column relative to the

beginning of the exposure period. The objective of a reserving exercise is to forecast

the future claims development in the bottom right corner of the triangle and potential

further developments beyond development year 10. Eventually all claims for a given

origin period will be settled, but it is not always obvious to judge how many years or

even decades it will take. We speak of long and short tail business contingent to the

time it takes to pay all claims.
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Table 4.4: Age To Age Factors

1 - 2 2 - 3 3 - 4 4 - 5 5 - 6 6 - 7 7 - 8 8 - 9 9 - 10

1 2.224 0.941 1.064 1.010 1.006 1.006 1.000 1.000 1.000
2 1.386 1.153 1.002 0.998 1.001 1.002 1.003 0.999
3 1.641 1.159 1.147 1.026 0.996 1.006 1.014
4 1.507 1.069 1.082 1.069 1.009 1.002
5 1.433 1.176 1.132 1.008 1.012
6 1.381 0.998 1.016 0.996
7 1.477 1.138 1.069
8 1.188 1.144
9 1.301

smpl 1.504 1.097 1.073 1.018 1.005 1.004 1.006 0.999 1.000
vwtd 1.479 1.09 1.076 1.02 1.005 1.004 1.006 0.999 1.000

4.1.2.2 Link Ratios Analysis

Most commonly as a first step, the age-to-age link ratios are calculated as the volume

weighted average development ratios of a cumulative loss development triangle from one

development period to the next. The bottom rows represent the simple average factors

as well as the volume weighted factors.

In 1993 Thomas Mack introduced a method of estimating the standard errors of the

Chain Ladder forecast without assuming a distribution under three conditions. Mack’s(1992)

chain ladder method calculates the standard error for the reserves estimates. The

method works for a cumulative triangle if the following assumptions hold.

E

[
Cw,d+1

Cw,k
|Cw,1, Cw,2, ..., Cw,d

]
= Λd

V ar

[
Cw,d+1

Cw,k
|Cw,1, Cw,2, ..., Cw,d

]
=

σ2
d

mw,dCw,d
(4.1)

Cw,1, ..., Cw,n, Cd,1, ..., Cd,n are independent for origin periods w 6= d. If the assump-

tions above hold, the Mack Chain Ladder model gives an unbiased estimator for IBNR

(Incurred But Not Reported) claims. The Mack Chain Ladder model can therefore be
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regarded as a weighted linear regression through the origin for each lag period.

Figure 4.1: Claims development pattern (per origin period).

Table 4.5: Regression Statistics

Origin Years Link Ratios Residuals R Squared

1 1.4792 12.9274 0.9696
2 1.0900 4.9917 0.9943
3 1.0756 2.9784 0.9981
4 1.0203 1.6610 0.9994
5 1.0047 0.4023 1.0000
6 1.0041 0.1450 1.0000
7 1.0062 0.4677 1.0000
8 0.9994 0.0363 1.0000
9 1.0000 NA 1.0000

To check that Mack’s assumption are valid we review the residual plots, if there are

no possible trends then the model is valid. For each origin year we can examine the
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Figure 4.2: Residual Plot (Test validity of the model).

standard errors, the expectation is that for the less developed years the standard error

is deviations are high compared to the fully run off years.

Figure 4.3: Standard Error Plot (Per Origin Period).
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4.1.2.3 Bootstrap Chain-Ladder

One objective of this paper of to measure the process variation, following the paper by

by England and Verrall(2001) we use the bootstrapping and simulation approach and

address this in two stages. In the first stage we use the ordinary chain-ladder method

and apply it to the cumulative claims triangle. From this we calculate the scaled Pearson

residuals which we bootstrap R times to forecast future incremental claims payments via

the standard chain-ladder method. In the second stage we simulate the process error with

the bootstrap value as the mean and using the process distribution assumed. The set

of reserves obtained in this way forms the predictive distribution, from which summary

statistics such as mean, prediction error or quantiles can be derived. We assume that the

losses follow a gamma distribution. The bootstrap procedure is performed by completing

Table 4.6: Bootstrap Chain Ladder

Latest Mean Ult Mean IBNR IBNR.S.E IBNR 75% IBNR 95%

1 3,917 3,917 0 0 0 0
2 2,538 2,538 0 0 0 0
3 4,170 4,166 -4 42 0 19
4 4,343 4,365 22 88 31 166
5 3,563 3,588 25 102 46 193
6 3,190 3,233 43 111 68 218
7 5,176 5,352 176 203 273 557
8 3,382 3,765 383 295 530 937
9 3,307 4,005 698 368 904 1,363

10 2,203 3,962 1,759 737 2,190 3,092
Total 3,102 4,043 6,545

the following steps, which can be performed without difficulty in R:

• Obtain the standard Chain-Ladder development factors from cumulative data.

• Obtain cumulative fitted values for the past triangle by backwards recursion, start-

ing with the observed cumulative paid to date in the latest diagonal.

• Obtain incremental fitted values for the past triangle by differencing.
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• Calculate the unscaled Pearson residuals for the past triangle.

• Calculate the Pearson scale parameter.

Figure 4.4: Bootstrap Plot (Simulation Analysis).

The distribution of the IBNR appears to follow a log-normal distribution.

Figure 4.5: IBNR apperars to follow (log normal distribution).



Chapter 4. Data Analysis 78

4.1.2.4 LogNormal Model for Link Ratios

We assume that the age-to-age development factors are log normally distributed. The

product of independent and log normal random variables is also log normal, which implies

that age-to-ultimate loss development factors are log normal. Because the product of

a constant and a log normal random variable is log normal, we have the cumulative

paid loss ratio at all ages and the estimated parameters of the matching age-to-ultimate

factor, we can therefore determine the parameter estimates of the ultimate loss ratio.

Using these parameters we can estimate the IBNR and the expected loss ratio as well

as confidence intervals around that estimate. The log normal parameters µ and σ of the

age to age factors can be estimated by a variety of methods. In this analysis we apply

the unbiased estimators. y is a maximum likelihood estimator.

y =
1

n

n∑
i=1

yi =
1

n

n∑
i=1

ln(xi)

σ2 =

n∑
i=1

(yi − y)2

n− 1
(4.2)

The table below shows the upper and lower bound for age to age factor. We set The

Table 4.7: Age-to-Age factors CI

Age-to-Age factors

2[2]*Log Normal 95% CI

Est mean Est SD Mean LDF Lower Bound Upper Bound
9–Ult* 0.000 0.001 1.000 0.999 1.001

LDF 8 - 9 -0.001 0.001 0.999 0.998 1.001
LDF 7 - 8 0.006 0.007 1.006 0.991 1.020
LDF 6 - 7 0.004 0.002 1.004 0.999 1.009
LDF 5 - 6 0.005 0.006 1.005 0.992 1.017
LDF 4 - 5 0.017 0.026 1.018 0.966 1.072
LDF 3 - 4 0.070 0.050 1.073 0.972 1.183
LDF 2 - 3 0.090 0.082 1.098 0.932 1.284
LDF 1 - 2 0.393 0.177 1.505 1.046 2.098
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table below shows the 0.95 confidence interval for the age to ultimate factors assuming

a log normal distribution.

Table 4.8: Age-to-Ultimate Factors Analysis

Age-to-Ultimate factors

2[2]*Log Normal 95% CI

Est mean Est SD Mean LDF Lower Bound Upper Bound
9–Ult* 0.000 0.001 1.000 0.999 1.001
8–Ult* -0.001 0.001 0.999 0.997 1.001
7–Ult* 0.005 0.007 1.005 0.990 1.020
6–Ult* 0.009 0.008 1.009 0.993 1.024
5–Ult* 0.013 0.010 1.014 0.993 1.034
4–Ult* 0.031 0.028 1.032 0.975 1.090
3–Ult* 0.100 0.058 1.107 0.987 1.238
2–Ult* 0.190 0.100 1.216 0.994 1.471
1–Ult* 0.583 0.204 1.830 1.202 2.671

Devd = β(Lag/10|µ, σ)− β(Lag − 1/10|µ, σ) (4.3)

4.1.2.5 Clark and Capecod Models

Where β(Lag/10|µ, σ) is the cumulative probability of a log normal distribution with

unknown parameters µ and σ estimated as unbiased estimates. Other examples in this

multitude include the models in Meyers(2007), who uses a model with constraints on the

Devd parameters, and Clark(2003), who uses the Loglogistic and Weibull distributions

to project Devd parameters into the future. Using a longitudinal analysis approach,

Clark(2003) assumes that losses develop according to a theoretical growth curve. The

LDF method is a special case of this approach where the growth curve can be considered

to be either a step function or piecewise linear. Clark envisions a growth curve as mea-

suring the percent of ultimate loss that can be expected to have emerged as of each age

of an origin period. The LDF method assumes that the ultimate losses in each origin
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period are separate and unrelated. The goal of the method, therefore, is to estimate

parameters for the ultimate losses and for the growth curve in order to maximize the

likelihood of having observed the data in the triangle.

The CapeCod method assumes that the a prior expected ultimate losses in each ori-

gin year are the product of earned premium that year and a theoretical loss ratio.

The CapeCod method, therefore, need estimate potentially far fewer parameters:for the

growth function and for the theoretical loss ratio.

One of the side benefits of using maximum likelihood to estimate parameters is that its

associated asymptotic theory provides uncertainty estimates for the parameters. Observ-

ing that the reserve estimates by origin year are functions of the estimated parameters,

uncertainty estimates of these functional values are calculated according to the Delta

method, which is essentially a linearisation of the problem based on a Taylor series ex-

pansion. The unknown parameters in this model are ELRw (w=1,2,:::,10), representing

the expected loss ratio for accident year AY,and Devd (d=1,2,:::,10), representing the

incremental paid loss development factor. TheDevd parameters are constrained to sum

to one. The structure of the parameters is similar to the one above this stochastic model

allows the ELRw parameters to vary by accident year.

E[Lossw,d] = Premiumsw ∗ ELRw ∗Devd (4.4)

4.2 Stochastic Analysis

Let Xw,d be a random variable for the loss in the training data (w,d). We describe the

distribution of Xw,d by the collective risk model, which can be described by the following

simulation.
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Figure 4.6: ClarkLDF Growth function: weibull(ClarkLDF Standardized Residuals
Plots).

• Select a random claim count, Nw,d, d from a Poisson distribution with mean λw,d

• For i= 1, 2,..., Nw,d select a random claim amount, Zd,i

• Set Xw,d =
N∑
i=1

Zd,i

The claim severity distribution of Zd are given in this paper we the gamma distribution

with the cumulative distribution function.

F (z) =
γ(b, az)

Γ(b)
(4.5)

Set b = 2 for all settlement lags and a to vary with the settlement lags. The average

severity increases with the settlement lag, which is consistent with the common obser-

vation that larger claims tend to take longer to settle. To summarize, we have two
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models (the Cape Cod and the log normal) that give E[Xw,d] in terms of the unknown

parameters E[Xw,d] and Devd. We also assume that the claim severity distributions of

Zd are known. Then for any selected ELRw and Devd, we can describe the distribution

of Xw,d by the following steps.

• Calculate λw,d =
E(Xw,d)
E(Zd) = Premiumsw∗ELRw∗Devd

E(Zd)

• Generate the distribution of Xw,d using the steps above.

4.2.0.6 The Posterior Distribution of Model Parameters

Let L(X|ELRw, Devd) be the likelihood of X given the parameters ELRw, Devd. Using

Bayes’ Theorem, we can calculate the probability of the parameters ELRw, Devd

Pr [(ELRw, Devd)|X] ∝ L(X|ELRw, Devd)Pr [(ELRw, Devd)] (4.6)

Meyers(2007) calculates the likelihood of X by finely discretizing the claim severity dis-

tributions and using the Fast Fourier Transform (FFT) to calculate the entire aggregate

loss distribution. The likelihood can be approximated using the Tweedie distribution

in place of the collective risk model described in Simulation Algorithm. The Tweedie

distribution can be viewed as a collective risk model with a Poisson claim count distri-

bution and a gamma claim severity distribution.

We let λ be the mean of the Poisson distribution and θt and αt be the scale and shape

parameters of the gamma claim severity distribution.

f(x) = Γ(αt)
e
− x
θt

x

(
x

θt

)αt
(4.7)

The expected claim severity is given by θtαt and the the claim severity variance is θtα
2
t .
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4.2.0.7 Results

The results below are based on the basic chain ladder model. The two sets of results

are based on the simple link ratios and the volume weighted link ratios. The chain-

Table 4.9: Simple and Volume weighted Results

Diagonal SimpleDF VolumeDF EstdUlt1 EstdUlt2 IBNR1 IBNR2

1 3,917 1.000 1.000 3,917 3,917 0 0
2 2,538 1.000 1.000 2,538 2,538 0 0
3 4,170 0.999 0.999 4,167 4,167 -3 -3
4 4,343 1.005 1.006 4,364 4,367 21 24
5 3,563 1.009 1.010 3,594 3,597 32 34
6 3,190 1.013 1.014 3,233 3,236 43 46
7 5,176 1.032 1.035 5,339 5,358 163 182
8 3,382 1.107 1.113 3,744 3,765 362 383
9 3,307 1.215 1.214 4,017 4,013 710 706

10 2,203 1.827 1.795 4,025 3,955 1,822 1,752
Total 35,789 NA 38,939 38,914 3,150 3,125

ladder model for volume weighted average link ratios is expressed as a weighted linear

regression through the origin. Below is are the summary results of the regression model.

The origin can be adjusted depending on the assumptions. Mack chain ladder approach

Table 4.10: Regression Statistics

Regression Statistics

w Link Ratios Standard Error R squared
1 1.4792 12.9274 0.9696
2 1.0900 4.9917 0.9943
3 1.0756 2.9784 0.9981
4 1.0203 1.6610 0.9994
5 1.0047 0.4023 1.0000
6 1.0041 0.1450 1.0000
7 1.0062 0.4677 1.0000
8 0.9994 0.0363 1.0000
9 1.0000 1.0000

forecasts future claims developments based on a historical cumulative claims develop-

ment triangle and estimates the standard error around the estimates. If the classical
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chain ladder assumptions hold the present model can be regarded as a weighted lin-

ear regression through the origin for each development period. Under the bootstrap

Table 4.11: Mack Model Results

w Latest Dev.To.Date Ultimate IBNR Mack.S.E CV(IBNR)

1 3,917 1.0000 3,917 0 0 NA
2 2,538 1.0000 2,538 0 0 Inf
3 4,170 1.0006 4,167 -3 3 -1.1698
4 4,343 0.9945 4,367 24 37 1.5291
5 3,563 0.9904 3,597 34 34 0.9842
6 3,190 0.9858 3,236 46 40 0.8741
7 5,176 0.9661 5,358 182 146 0.8042
8 3,382 0.8982 3,765 383 225 0.5870
9 3,307 0.8240 4,013 706 412 0.5834

10 2,203 0.5570 3,955 1,752 878 0.5011
Totals 35,789 0.9197 38,914 3,125 1,057 0.3381

procedure it is possible to provide a predictive distribution of reserves or IBNRs for a

cumulative claims development triangle. This approach uses a two-stage bootstrapping

simulation approach. We apply the ordinary chain-ladder methods to the cumulative

claims triangle. From this we calculate the scaled Pearson residuals which we bootstrap

R times to forecast future incremental claims payments via the standard chain-ladder

method. The process error can be simulated with the bootstrap value as the mean and

using the process distribution assumed. The set of reserves obtained in this way forms

the predictive distribution. For paid triangles, the distributions predicted by both the

Mack and the bootstrap models tend to produce expected loss estimates that are too

high. The explanation to this is:

• The claims handling department has experienced changes that are not observable

at the current time. Improved efficiency in claims settlement and establishment

of fraud risk frameworks that seem to be effective could be considered as possible

changes.

• Model validation through qq plots.
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Table 4.12: Bootstrap ODP and Gamma Models

Overdispersed Poisson distribution

w Latest Mean Ultimate Mean IBNR SD IBNR IBNR 75% IBNR 95%
1 3,917 3,917 0 0 0 0
2 2,538 2,538 0 0 0 0
3 4,170 4,168 -2 41 0 17
4 4,343 4,362 19 89 34 159
5 3,563 3,590 27 103 45 215
6 3,190 3,232 42 111 64 254
7 5,176 5,354 178 210 276 580
8 3,382 3,774 392 283 534 895
9 3,307 4,042 735 407 950 1,520

10 2,203 3,988 1,785 721 2,198 3,077
Totals 35,789 38,965 3,176 1,020 3,796 4,927

Gamma Assumption
w Latest Mean Ultimate Mean IBNR SD IBNR IBNR 75% IBNR 95%
1 3917 3,917 0 0 0 0
2 2538 2,538 0 0 0 0
3 4170 4,168 -2 42 0 22
4 4343 4,372 29 91 37 214
5 3563 3,593 30 101 44 204
6 3190 3,238 48 116 73 258
7 5176 5,356 180 204 290 555
8 3382 3,757 375 257 516 841
9 3307 4,015 708 392 922 1,450

10 2203 3,946 1,743 717 2,137 2,989
Totals 35789 38,900 3,111 1,014 3,671 4,957

The Cap Code approach assumes that the incremental losses across development periods

in a loss triangle are independent. The other assumption is that the expected value of

an incremental loss is equal to the theoretical expected loss ratio (ELR) times the on-

level premium for the origin year times the change in the theoretical underlying growth

function in our case we assume a weibull growth curve over the development period.

To complete the model we wrap the expected values within an Overdispersed Poisson

(ODP) process where the ”scale factor” σ2 is assumed to be a known constant for all

development periods.

The parameters of Cape Cod method are therefore: ELR, and ω and θ. Finally, we

use the maximum likelihood to parametrize the model that is uses the ODP process
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to estimate Process Risk, and uses the Cramer-Rao theorem and the delta method to

estimate Parameter Risk.

Table 4.13: Cape Cod Results

w Latest Premium ELR GrowthFactor Mean IBNR UltValue StdError CV

1 3,917 5,812 74% 0.0023 10 3,927 38.317 3.798
2 2,538 4,908 74% 0.0036 13 2,551 44.026 3.319
3 4,170 5,454 74% 0.0058 23 4,193 59.299 2.541
4 4,343 5,165 74% 0.0093 36 4,379 73.930 2.071
5 3,563 5,214 74% 0.0154 60 3,623 96.669 1.621
6 3,190 5,230 74% 0.0263 102 3,292 127.642 1.251
7 5,176 4,992 74% 0.0467 173 5,349 166.206 0.962
8 3,382 5,466 74% 0.0875 355 3,737 238.900 0.674
9 3,307 5,226 74% 0.1792 694 4,001 327.675 0.472

10 2,203 4,962 74% 0.4437 1,633 3,836 494.365 0.303
Total 35,789 52,429 3,099 38,888 835.083 0.269

Collective Risk Model

The proposed model aims at testing the predictive power of the loss reserving models

considered above. For the paid claims the methods considered above tend to understate

the range of possible outcomes.

We use the Bayesian Markov Chain Monte Carlo model to improve the predictive power

by recongnizing some elements implicit in the historical data.

From our Bayesian Framework:

Posterior = Prior × Likelihood (4.8)

We choose a prior and posterior distribution from the same family to obtain a conju-

gate distribution. Our prior is a poisson distribution while our likelihood is a gamma

distribution.
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4.2.0.8 Factor Model - Cape Code Model

The unknown parameters in this model are the expected loss ratios for the accident

years and the development lags with parameters constrained to one.

E [Lossw,d] = Premiumw × ELRw ×Devd (4.9)

4.2.0.9 Log normal Model

In our earlier analysis we saw that the development factors parametrized on unbiased

estimates of a log normal distribution yield similar results as those of the basic chain

ladder,

Devlag = y

(
Lag

10
|µ, σ

)
− y

(
Lag − 1

10
|µ, σ

)
(4.10)

where B(x|µ, σ) is the cumulative probability of a log normal distribution with unknown

parameters µ and σ. This model replaces the ten development lags parameters. We

describe the distribution of Xw,d by a collective risk model

4.2.0.10 Simulation

• Select a random claim count, Nw,d from a poison distribution with mean λw,d.

• For i = 1, 2, ..., Nw,d select a random claim Zd,i

• Set Xw,d =
Nw,d∑
i=1

Zd,i
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From the model we assume that we have a claim severity distribution is known.

Fα,λ =

Λ∫
0

λα−1e−λ

Γ(α)
dλ

Fα,λ = P (Λ ≤ λ) = F

(
α,
λ

β

)
(4.11)

Set α = 2 and let β vary with settlement lags. Subject the claims to a limit of say one

million.

With the Log Normal and Cape Code models we can obtain E [Xw,d] in terms of unknown

parameters namely the Expected Loss Ratio and the Development Lags. If the claims

severity is known then for any selected ELR and Devlag we can describe the distribution

of Xw,d as

λw,d =
E [Xw,d]

E [Zd]
(4.12)

This is equivalent to

λw,d =
Premiumsw × ELRw ×Devlag

E [Zd]
(4.13)

We can calculate the likelihood of the losses by finely disretizing the claim severity

distribution using FFT and calculate the entire aggregate distribution by multiplying

the FFTs of the distribution.

Alternatively, we could use a tweedie distribution as a collective risk model with a

poisson claim count and a gamma severity distribution. This takes us back to the

Bayesian analysis discussed earlier. Given the gamma as the conditional distribution

and the poisson as the prior distribution we can obtain the posterior distribution as

f(x) =

∞∫
0

f(x|λ)× g(λ)dλ (4.14)
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The solutions to such equations may not have a closed form the metropolis algorithm

comes in hardy to solve such equations especially when λ has many dimensions. Markov

Chain Monte-Carlo method produces sample parameters that describe the posterior

distribution. The Markov Chain will typically converge regardless of the starting point

if it is ergodic. Monte-Carol is just a computer algorithm.

Table 4.14: Collective Risk Model Results

w LCL.Est LCL.S.E LCL.CV Mack.Est Mack.S.E Mack.CV Actual

1 3,930 72 0.0183 3,917 0 0.0000 3,917
2 2,542 58 0.0228 2,538 0 0.0000 2,532
3 4,112 104 0.0253 4,167 3 0.0007 4,279
4 4,316 120 0.0278 4,367 37 0.0085 4,341
5 3,561 109 0.0306 3,597 34 0.0095 3,587
6 3,329 128 0.0384 3,236 40 0.0124 3,268
7 5,350 271 0.0507 5,358 146 0.0272 5,684
8 3,763 269 0.0715 3,765 225 0.0598 4,128
9 4,175 615 0.1473 4,013 412 0.1027 4,144

10 4,281 1,220 0.2850 3,955 878 0.2220 4,181
w=2:10 35,429 1,570 0.0443 34,997 1,057 0.0302 36,144



Chapter 5

Conclusions and

Recommendations

5.1 Conclusions

The collective risk model provides a better framework for the range of reasonable esti-

mates to quantify the uncertainty in estimation of a loss reserves. One source of this

uncertainty comes from the statistical uncertainty of the parameter estimates, espe-

cially if one was to draw repeated random samples of data from the same underlying

loss generating process, the collective risk model answers the question of how variable

the estimates are from the mean loss reserve.

The problem of predicting the sum of the future outcomes is addressed by the Metropolis-

Hastings algorithm having selected the Expected Loss Ratio and the Development Fac-

tors for the lags from iterations of a Metropolis-Hastings algorithm, the calculations of

the posterior distribution of outcomes becomes conceptually easy by repeated use of the

simulation algorithm.

90
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The likelihood of the training data can calculated by finely discretizing the claim severity

distributions and using the Fast Fourier Transform however this can be time consuming

using a Tweedie distribution as a collective risk model with a Poisson claim count dis-

tribution and a gamma claim severity distribution leads to much faster running times

for the algorithms and convergence of the process.

The collective risk model calculates the maximum likelihood estimates by searching over

the space of ELR and the development factors subject to the constraint that the Devlag

and up to 1.

The approach described in this project is a challenger to the practising actuaries and

aims in striking a balance between importance of judgement in setting reserves and the

experience gained by examining the reserves from different insurers. It incorporates

prior knowledge through selection of an appropriate prior.

FFT has been used to calculate the predictive distribution. While it is very technical

and hard to implement, it is faster and it produces more accurate results (relative to

the model assumptions) making it worth for the industry to consider in the set of mod-

els to evaluate liabilities when the total outstanding claim size is thought to follow a

Compound Poisson gamma distribution.

5.2 Recommendations

The stochastic claims reserving methods considered in this thesis predict the lower (un-

known) triangle and assess the uncertainty of this prediction. For instance, Mack’s

uncertainty formula quantifies the total prediction uncertainty of the chain-ladder pre-

dictor over the entire run-off of the outstanding claims. Modern solvency considerations,

such as Solvency II, require a second view of claims reserving uncertainty.
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This second view is a short-term view because it requires assessments of the one year

changes of the claims predictions when one updates the available information at the

end of each accounting year. To achieve this one could force a constraint so that the

last DevLag parameters decrease by a constant factor, and incorporate possibility of the

earlier origin period to continue developing.

If a claim severity distribution was not available, one could use the Tweedie distribu-

tion and treat the parameters as unknown. Exploring multivariate chain ladders allows

multiple reserving triangles to be modelled and developed simultaneously. The advan-

tage of the multivariate modelling is that correlations among different triangles can be

modelled, this leads to more accurate uncertainty assessments.

The collective risk model doesn’t incorporate all the information regarding the policy,

in addition to the expected variation with operational time a seasonal effect could be

inherent. Such complexity are better addressed using GLMs. Under the collective risk

model it is difficult to extrapolate data points, GLM provides the framework within

which such exploration can be carried out efficiently.

Finally incorporating the value at risk (VaR) and tail value at risk (TVaR) as risk mea-

sure at a confidence level, especially when modelling catastrophic events that can take

a significant share of the risk capital of a company could play an important role in im-

proving the technical liability estimates.
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Appendix A

Appendix: Process, Parameter

and Model Risk

Stochastic modelling aims at addressing the process risk, parameter risk and model risk.

One way to describe process and parameter risk is to consider the relationship for a

random variable X conditioned on a parameter say θ.

V ar (X) = Eθ [[V ar(X|θ)]] + V arθ [E(X|θ)] (A.1)

The left hand side of the equation represents the total risk.

The first term represents the average variance of the outcomes from the expected result.

The second term represents the parameter risk the variance due to the many possible

parameters in the posterior distribution. This is also referred to as the range of reason-

able estimates.

The MCMC model sample simulates N number of θ parameters in the CCL model.
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Hence:

TotalRisk = V ar

[
10∑
w=1

Cw,10

]
(A.2)

Using the formula for the mean of a lognormal distribution we can calculate.

ParameterRisk = V arθ

[
E

[
10∑
w=1

Cw,10|θ

]]
= V ar

[
10∑
w=1

eµw,10+
σ210
2

]
(A.3)

Model risk is the risk that one did not select the right model. We can formulate a model

as a weighted average of the candidate models, with the weights as parameters. If the

posterior distribution of the weights assigned to each model has significant variability,

this is an indication of model risk. Viewed in this light, model risk is a special case

of parameter risk. If we run the model over many simulations the parameter risk will

shrink towards zero and any remaining risk, such as model risk, will be interpreted as

process risk. The total risk is more preferred as this is the only risk we can test by

looking at the actual outcomes.
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