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Abstract

In routine forest inventories, total tree height and diameter at breast height are very

important growth parameters assessed to describe and estimate the stand structure and

volume, respectively, of the forest. Height-diameter models are often used to predict the

height for trees where only diameter is measured for all trees in a plot and a few trees

measured for total height. This is because, tree diameter can be determined easily and

accurately at little cost and time, but total tree height is more difficult to measure, time

consuming and more costly. Africa has lagged behind in adopting modelling techniques

that can assist in estimating tree height with higher precision and accuracy than that

obtained using ordinary least squares and ordinary nonlinear least squares (which are

the commonly used approaches). A study was carried out to demonstrate the utility

of mixed-effects modelling approach in tree height prediction models. The Chapman-

Richards model was selected as base height-diameter model and was fitted to model data

using Ordinary Nonlinear Least Squares method. Using the same base model and fit

data, a mixed-effects model was constructed using mixed-effects modeling approach. The

two models were then compared in terms of predictive accuracy on independent data

set (as well as model fit data for comparison). The mixed-effects model had a better

predictive accuracy on both data sets, especially the independent data. Superiority of

the mixed-effects model was more clearer when the two models were compared on a

plot-by-plot basis. Forest modelers and managers in Africa should consider using mixed-

effects modelling approach in development and use of height-diameter models in order to

estimate tree heights with higher precision and accuracy.

viii



Chapter 1

Introduction

Tree height and diameter at breast height (DBH; that is, diameter outside of the back

of tree taken at 1.30 metres above ground level) are fundamental tree characteristics

used in forest measurements in order to come up with estimates for timber volume,

site index and other important variables related to forest growth and yield, succession

and carbon budget models (Peng et al., 2001). Accurate determination of tree height

and DBH are thus critical in routine forest activities, management and decision making;

research and development of future forest management plans. DBH can be determined

easily and accurately at little cost and time using such instruments as: diameter tapes,

calipers, Biltmore stick and bark gauge. However, measurement of tree height is relatively

difficult, time consuming and expensive. Furthermore, tree, stand and site conditions may

also pose challenges in effective and efficient determination of tree height (Missanjo and

Mwale, 2014). Therefore, in routine forest inventories and also forestry related research

studies, DBH is measured for all tress sampled while tree height is measured only from

a sub-sample of selected trees in different diameter classes from all DBH measurements

taken within a plot/stand. Height- diameter models are then used to predict/estimate

the height for trees where only DBH has been measured (Sharma and Parton, 2007).
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1.1 Background

Traditionally, most of the height-diameter (H-D) models have been constructed with

height as response variable and diameter as the only predictor variable. Furthermore,

most of H-D models developed are fixed-effects models, which provide what is often

termed a ‘population average’estimate of height given DBH. The parameters in these

fixed-effects models are assumed to be fixed, or that parameter estimates apply to every

tree within a population. Thus, regardless of whether trees are located in same plot or

stand, the parameter estimates are assumed to be correct (VanderSchaaf, 2014).

Although DBH is a suitable predictor of height, Calama and Montero (2004) report that

the relationship between the diameter and height of a tree varies between stands be-

cause it depends on stand characteristics such as density and site index (Sharma and

Zhang 2004). Furthermore, the H-D relationship also varies over time even within the

same stand (Calama and Montero, 2004). Many studies have shown that factors such as

growing space and stand conditions affect the H-D relationship; for a particular height,

trees that grow in dense stands have smaller DBH than trees growing in less dense stand

due to differences in competition among trees (Missanjo and Mwale, 2014). The vari-

ation in H-D relationship in this regard may result in H-D model parameters differing

across plots/stands and thus specific plots/stands having what is generally termed ‘ran-

dom parameter’(VanderSchaaf, 2014). This may render the use of a base model (herein

and throughout this report referred to as a fixed-effects H-D model with only DBH as

predictor variable) less accurate in estimating tree height.

It is against this background that recent decades have seen wide spread development and

application of generalized H-D models; that is, fixed-effects H-D models that incorporate

stand characteristics as predictor variables in addition to tree DBH. Numerous studies

have shown that inclusion of stand characteristics leads to improved accuracy in predic-

tion of tree heights using H-D models. However, the inclusion of stand characteristic as

predictor variables, in addition to tree DBH, leads to the hierarchical structure of the

data (for example, trees grouped in plots and plots grouped in stands) resulting in lack of
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independence between measurements due to correlation in sampling units (Corral-Rivas

et al., 2014). When the measurements are correlated, the basic assumption about in-

dependent error term (identically distributed and normal random variable with mean of

zero and equal variance) of the model does not hold (Juntunen, 2010) and this renders

the application of basic modeling approaches such as ordinary least squares (OLS) and

ordinary nonlinear least squares (ONLS) to estimate model parameters inappropriate.

Fortunately, mixed-effects modelling approach can be applied to deal with this situation.

Mixed-effects modelling estimates both fixed parameters (parameters that are common

to the entire population) and random parameters (parameters that are specific to each

plot/stand) at the same time within the same model and this ensures that variability

between plots of the same population is modelled (Corral-Rivas et al., 2014). It is also

important to note that development and use of generalized H-D models might have prac-

tical implications in terms of costs and time for field sampling. This is as a result of the

need to measure or determine other tree and/or stand variables in addition to tree DBH.

1.2 Problem Statement

Estimation of tree height where only DBH and/or stand variables have been measured is

one of the biggest challenges faced by forest managers. Practically, it is often inevitable

to have a trade-off between getting reliable estimates for tree heights and time and costs

for field sampling. It is however expected that the standing volume, for example, of a

given stand and/or plantation is estimated as precisely and as accurately as possible.

Such precise or accurate estimations can only be achieved if DBH and tree heights were

measured and/ or estimated with high precision in the first place because they (DBH and

tree height) are the basic inputs in such computations (stand volume).

The challenge of estimating tree height with high precision and accuracy using H-D

models is real in Africa. This is because the continent has lagged behind in adopting

more efficient modelling approaches (such as mixed-effects) than the commonly used OLS

and ONLS. This assertion is evidenced by insufficient information on published research
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works on development and use of mixed-effects H-D models in Africa; to the knowledge of

the author, there are presently only two notable published research studies, ( Eerikäinen,

2003; Missanjo and Mwale, 2014). Both models were developed using stand level and

tree DBH as predictor variables for tree height. Insufficient information on utilization of

mixed-effects modeling approach in Africa could also imply that there is continued use

of H-D models developed using OLS and ONLS.

1.3 Objectives

1.3.1 Main Objective

The overall objective of this project was to demonstrate the development and utilization

of a mixed-effects model in prediction of tree height (using only tree DBH as predictor

variable).

1.3.2 Specific Objectives

1. To construct a mixed-effects model from a chosen base H-D model.

2. To compare the predictive accuracy of a base model developed using ONLS with

that developed using mixed-effects modelling approach; on both model fitting and

test data sets.

1.4 Significance of the Study

Tree height is an important variable which is used as an input in a number of aspects of

forestry such as estimating stand volume, site quality and for describing stand structure

(Adame et al., 2008). Therefore, development and use of an H-D model with known and

acceptable accuracy to estimate tree height is of paramount importance in routine forest

management and research related activities.

Furthermore, forest managers are often times faced with situations where they have to
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use simple and accurate models that can enable them determine tree height in a stand

with reliability, from measured DBH values (Calama and Montero, 2004). Thus, an H-D

model with only DBH as predictor variable but has a high predictive ability and accuracy

offers a reasonable opportunity to reduce time and costs involved in field sampling and

also data management and analysis.
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Chapter 2

Literature Review

2.1 Relationship between Tree Height and Diameter

The relationship between tree height and diameter is one of the most studied areas in

forestry. The relationship between the two is a structural characteristic of a tree that

describes key elements of stem form, and thus the volume of the harvestable stem. The

diameter to height relationship also affects product quality, as it influences wood structure

such as lignin and cellulose content, and thus important properties of the stem such as

stiffness (Kroon et al., 2008). The relationship also stems from the fact that tree diameter

is designed to support the load that depends on tree height and thus, diameter explains a

lot of variation in tree height (Zeide and VanderSchaaf, 2002). Using this relationship, a

number of H-D models, both linear and nonlinear, with only DBH as predictor variable,

have been developed (e.g. as cited in Huang et al., 1992; Zhang, 1997; Tesemesen and

Gadow, 2004; Calama and Montero, 2004; Sharma, 2009; Krisnawati et al., 2010; Ahmadi

et al., 2013; Xu et al., 2014). These models with many others, with some modified

from original, have been successfully used in modelling H-D relationship for specific tree

species and regions and subsequently used for example, in forest inventories and growth

models for predicting missing height measurements where only DBH had been measured.

There are a number of studies where fixed-effects H-D models, including only DBH as

independent variable, have been fitted to data sets using mostly ONLS and very good

6



values of goodness-of-fit statistics including bias, root mean square error, values of both

coefficient of determination and adjusted coefficient of determination of more than 0.80

obtained (e.g. Zhang, 1997; Sharma, 2009; Aigbe and Oyebade, 2012; Oyebade et al.,

2012; Osman et al., 2013; Stankova and Diéguez-Aranda, 2013; Lumbres et al., 2013;

Obeyed, 2014; Petráš, 2014).

2.2 Effects of Stand Variables on Height-Diameter

Relationship

Eichhorn (1904), cited by Picard et al. (2012), observed and postulated that production

of an even-aged, monospecific stand, for a given tree species in a given region and in

broad range of silvicultures (as long as the canopy is closed) was entirely determined by

its mean height or, by Eichhorns extended rule, on its dominant height (Picard et al.,

2012). However, many studies have questioned Eichhorns rule and have observed that

height does not exclusively depend on wood volume, which is a function of tree diameter

and height. Studies have shown that stand variables such as stand density, basal area,

site index and age, affect the H-D relationship (Sharma and Parton, 2007; Krisnawati et

al., 2010; Missanjo and Mwale, 2014). For example, in dense stands, trees with the same

diameter are taller than those in less dense stands (provided that the other conditions

are the same) and thus, stand density helps explain variation in height (Zeide and Van-

derSchaaf, 2002; Vargas-Larreta et al., 2009). In particular, Vanclay (2009) found that

in even-aged stands, the mean diameter of forest trees (DBH) tends to remain propor-

tional to the stand height (average height of the largest trees in a stand) divided by the

logarithm of stand density(number of trees per hectare).

Temesgen and Gadow (2004) evaluated two sets of models (first set for estimating tree

height as a function of individual tree DBH, and the second set for estimating tree height

as a function of individual tree DBH and other stand-level attributes) to develop gener-

alized H-D models for major tree species in British Columbia. The stand-level attributes

used were basal area (BA), basal area in larger trees (BAL) and stems per hectare (SPH).
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Their results showed that inclusion of stand-level attributes to the base H-D models in-

creased the accuracy of prediction for all species. Misir (2010) used a similar approach to

develop a generalized H-D model for Populus tremula stands in Turkey. Two sets of mod-

els were evaluated, with the first for estimating tree height as a function of individual tree

DBH and the second set for estimating tree height as a function of individual tree DBH

and some stand-level attributes. The findings were that inclusion of stand-level-attributes

(comprising BA, BAL, dominant height, dominant diameter and number of trees) into

the base H-D models increased the accuracy of prediction of tree height. Krisnawati et

al (2010) developed generalized H-D models for Acacia mangium Willd plantations in

South Sumatra by comparing model fits with only DBH as predictor variable with other

models that incorporated stand variables. They observed that inclusion of one or two

or all of stand variables that included stand age, site index and basal area improved the

resulting fit and prediction of height, compared with that of using DBH alone. They

however, observed that inclusion of number of stems per hectare was less significant. In

the process of developing an H-D model for Pinus kesiya in Malawi, Missanjo and Mwale

(2014) observed that models that incorporated basal area, stand age and site index had

a great impact on H-D relationship. The generalized H-D models performed better than

base models.

The foregoing case studies on effects of stand variables on H-D relationship indicate that

additional predictor variables are required to develop generalized H-D models in order

to avoid having to establish individual H-D relationships for every stand (Temesgen and

Gadow ,2004; Sharma and Parton, 2007). Furthermore, the predictive accuracy increases

for generalized H-D models as compared to base models because the former captures

stand/plot to stand/plot variability through the addition of other tree and/or stand vari-

ables.
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2.3 Mixed-Effects Modelling in Height-Diameter Mod-

els

Although other techniques have been used and are still in use especially in Africa, many

recent modelling efforts have used mixed-effects approach in order to improve the accu-

racy of prediction of tree height using H-D models. A mixed-effects model is a model that

incorporates both fixed-effects, which are parameters associated with an entire popula-

tion or with certain repeatable levels of experimental factors, and random-effects, which

are parameters associated with individual experimental units drawn at random from a

population (Pinheiro and Bates, 2000). Thus, mixed-effects models estimate both fixed

and random parameters simultaneously for the same model (Calama and Montero, 2004).

In this regard, mixed-effects models offer several advantages over OLS, ONLS, and other

approaches because:

1. Mixed-effects models can incorporate the hierarchical structure of data ( e.g. trees,

plots, stands) into the analysis and thus reduce interdependence among measure-

ments from the same sampling unit;

2. Mixed-effects models are a compromise between fitting global models with few

parameters and that do not include variability among sampling units (i.e. stand or

plot), and local models specific to each sample unit that have numerous and often

inter-correlated parameters;

3. Mixed-effects models provide an unbiased estimation of model parameters for sam-

ple units with small sample sizes since the variation in the parameter estimates is

known at each level of the hierarchical sampling structure; and

4. Mixed-effects models can be calibrated for new, previously unsampled plots or

stands quickly and effectively (Saunders and Wagner, 2008).

Sharma and Parton (2007) studied H-D equations for boreal tree species in Ontario.

They compared models with and without random effects parameters and using stand level
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variables in addition to DBH. Their results showed that inclusion of random parameter

consistently resulted in a better fit to the data and an improved tree height prediction

accuracy. Budhathoki et al (2008) also compared mixed-effects model approach and OLS

in modelling shortleaf pine growth in even-aged stands. The findings revealed that mixed-

effects models, with the inclusion of stand variables, predicted the total tree height better

than the similar models developed previously for the same species using OLS methods.

Saunders and Wagner (2008) developed H-D models for tree species of Central Maine in

northeastern United States, using both generalized nonlinear least squares (GNLS) and

mixed-effects approaches. They observed that generally the mixed-effects approaches

were superior to GNLS, with inclusion of site covariates (tree density and basal area)

accounting for some of the variability explained by the random coefficients in the full

mixed-effects models. Huang et al (2009a; 2009b) compared the predictive accuracy of

base models and expanded models (including stand level variables) using mixed-effects

modelling for both sets of models. They observed that a base model with only DBH

as predictor variable had a better predictive accuracy than expanded models at plot-

specific level. Paulo et al (2011) compared nonlinear fixed-effects model (NLFEM) and

nonlinear mixed-effects model (NLMEM) approaches in developing a generalized H-D

model for Portuguese cork oak stands. They concluded that even in situations where the

NLMEM calibration was not possible, the model should be preferred. Huang et al (2013)

compared base models developed using ONLS and mixed-effects modelling techniques for

major Alberta tree species. They observed that base models developed using nonlinear

mixed-effects technique had a better predictive accuracy both at overall and plot-by-plot

basis when compared to same models developed using ONLS. Missanjo and Mwale (2014)

also used mixed-effects modelling to develop an H-D model for Pinus kesiya in Malawi.

Realistic height predictions were obtained when a mixed-effects model, which included

a random parameter and stand level variables was fitted to the data collected. Similar

results of better height predictions using mixed-effects models were obtained by Xu et al

(2014) when they compared a model using only fixed-effects parameters with a nested two

level (plot and stand) nonlinear mixed-effects model. Carrol-Rivas et al (2014) compared
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models with and without random parameters in developing H-D functions for mixed,

uneven-aged stands in northwestern Durango (Mexico) by considering DBH and stand

variables as predictors. Their results revealed that mixed-effects models performed better

than same models that did not have random parameters.

2.4 Summary of Literature Review and Knowledge

Gaps

The H-D relationships referred to in the literature review can be written in a general

form as:

H = f(DHB) (2.1)

for a base model, where H is tree height; f denotes some nonlinear (and rarely linear)

function; and DBH is the tree diameter at breast height. The relationship in (2.1) can

be expanded to a generalized H-D model that includes other variables as follows:

H = f(DBH + othervariables) (2.2)

where other variables can mean other tree and/or stand variables such as; tree age, stand

age, dominant height, site index, stems per hectare, basal area, dominant height, top

height, crown ratio, species composition, bio-geo-climatic variables, and soil related fac-

tors (Huang et al., 2013). The aforementioned studies show that the predictive accuracy

of a base model can be improved by addition of statistically significant tree and/or stand

level attributes even in cases where mixed-effects modelling approach has not been ap-

plied. However, other studies also show that mixed-effects modelling approach leads to

improved prediction ability and accuracy of H-D models. This implies that the predictive

ability and accuracy of an H-D model can be significantly improved by addition of statis-

tically significant tree and stand level variables and also applying mixed-effects modeling

approach to the developed generalized H-D models, as stated in some of the foregoing

studies. It is however worth noting that the inclusion of other tree and stand variables

11



to a base model might necessitate added costs and time in terms of field sampling, data

management and analysis. Most of the studies outlined here considered comparison of

mixed-effects models that included stand level variables in addition to DBH. This study

however focused on ascertaining the extent of improvement in predictive accuracy of a

base model by applying mixed-effects modeling approach with only tree DBH as a predic-

tor variable. The study is similar in many respects to those of Huang et al (2009a; 2009b)

except the present study compares a base model fitted to the data using ONLS to the

same model fitted to same data using nonlinear mixed-effects modeling. Furthermore,

Huang et al (2009a; 2009b) compared a base model that had only DBH as predictor

variable with expanded models that included stand level variables. The present study is

also similar to Huang et al (2013) but uses a different formulation of the mixed-effects

model. It is also worth noting that only Huang et al (2009a; 2009b) compared the models

on plot-by-plot basis, where the main interest of a mixed-effects model lies; an approach

not used by previous researchers. This study is also similar to that of Carrol-Rivas et al

(2014) in that they also compared a base model developed using ONLS with that devel-

oped using mixed-effects modelling. However, a plot-by-plot analysis was not included

and only overall summary fitting statistics presented. The present study is thus among

the few that also compares models on a plot-by-plot basis in addition to comparison at

population level (which is the common practise used by most researchers).
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Chapter 3

Methodology

3.1 Sources of Data

The data sets used for both model fitting and testing were obtained from the website of the

United States Department of Agriculture (USDA) Forest Service, Forest Inventory and

Analysis Database (FIADB) (US Forest Service, 2015). Model fitting data set comprised

of annual surveys for the state of Arkansas, surveys conducted from 2004 to 2010, while

model testing data set was for the state of South Carolina, surveys conducted from 2004

to 2013. Both states fall under the Southern Region Research Station according to the

USDA FIA (Forest Inventory and Analysis) work unit classification (O’Connell et al.,

2013). Data is collected on a plot which is a cluster of four points approximately 0.02

ha (1/24 acre) each in size with radius of 7.32 m (24 feet). Subplot 1 is central with the

rest; that is subplots 2, 3 and 4 located 36.58 m (120 feet) horizontal at azimuths of 360,

120, and 240 degrees from the center of subplot 1, respectively as shown in Figure 3.1.

Thus, a plot refers to the entire set of four subplots (US Forest Service, 2011).
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Figure 3.1: The FIA Mapped Plot Diagram
Source: US Forest Service, 2011.

Each cluster point may be surrounded by a 17.96 m (58.9 ft) fixed-radius macroplot

where, generally, only trees with DBH of 60.96 cm and larger are measured. The four

macroplots combined total approximately 0.4047 ha (or 1 acre). Each cluster point is

surrounded by a 7.32 m (24 ft) fixed-radius subplot where trees with DBH of 12.70 cm

and larger are measured. The four subplots when combined total approximately 0.0672

ha (or 1/6th acre). Each sublopt contains a 2.07 m (6.8 ft) fixed-radius microplot where

only saplings with DBH ranging from 2.54 cm to 12.45 cm is measured. When combined,

the four microplots total approximately 0.005ha (or 1/75th acre) (VanderSchaaf, 2014).

In terms of inclusion of trees in sample data sets, only live trees without broken tops and

physically measured in the field were included as opposed to trees visually estimated or

predicted using equations. Furthermore, only trees and/or plots that had been measured
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once were included in the sample. Lastly, only one tree species; that is Shortleaf pine

(Pinus echinata Mill.) was considered for both model fitting and testing data sets. The

structure of data used in this study, for both model fit and test, was as shown in Table

3.1.

Table 3.1: Data Structure

Plot ID(i) Tree(j) DBH(cm) H(m)

1 1 17.78 8.84

1 2 14.22 9.88

...
...

...
...

2 1 13.72 14.02

2 2 20.57 17.98

2 3 14.22 12.50

...
...

...
...

m ni . .

where, m is the last plot number, i is a specific plot number, i = 1, 2, 3, ...,m ; ni is the

number of trees in the ith plot; j is a specific tree number in the ith plot , j = 1, 2, ..., ni;

DBH (cm) is tree diameter at breast height measured in centimetres and H (m) is tree

height measured in meters.

3.2 Selection of Base Height-Diameter Model

Most studies conducted indicate that height-DBH relationships for various tree species

normally exhibit a typical sigmoidal-concave curve when total tree height to DBH is plot-

ted. This was also evidenced in the data used for this study. Through literature review,

the Chapman-Richards model, which is a nonlinear function with appropriate mathe-

matical and biological properties, was chosen as a base model for this study. One major

difference between linear and nonlinear models is that the latter are generally mechanistic

in nature; that is, a nonlinear model is constructed based on the mechanism producing

the response. Consequently, the parameters in a nonlinear model generally have a phys-
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ical interpretation (Pinheiro and Bates, 2000). In line with this, the Chapman-Richards

model defines a sigmoid curve; which means that as the size of the tree increases, the

growth rate also increases from a minimum value to a maximum at a point of inflec-

tion and then declines towards zero of the upper asymptote. Furthermore, the model

has three parameters representing the upper asymptote, a rate parameter and a shape

parameter. These three parameters characterize the different biological processes and

growth behaviours (Peng et al., 2001; Lumbers et al., 2013). It is also worth noting that

satisfactory results, as a result of use of this model, have been reported in literature for

various tree species in different regions across the globe (e.g. Zhang, 1997; Sharma and

Parton 2007; Huang et al., 2009a; 2009b; Lumbers et al.., 2013; Corral-Rivas et al., 2014).

The Chapman-Richards model is defined by the following expression:

H = 1.30 + β1(1− exp(−β2DBH))β3 (3.1)

where, H= tree height (m); DBH= diameter at breast height (cm); 1.30= a constant

used to account for measuring tree DBH at 1.30m above ground; β1, β2 and β3= model

parameters to be estimated; exp= exponential - base of the natural logarithm (≈ 2.71828).

3.3 Estimation of Parameters for the Base Model

Model (3.1) is a nonlinear function which generally may be expressed as (Rawlings et

al.,1998; Greene, 2012; SAS Institute, 2013):

Hj = f(DBHj;β) + εj (3.2)

where, Hj is the random variable representing the height for tree j; f(DBHj;β) is

the nonlinear function relating the expectation of the response variable, E(H), to the

independent variable; DBHj is the observed DBH for the jth tree; β is the vector of p

parameters and εj is the random error associated with the jth tree; j = 1, 2, ..., n. The

basic assumptions are made on the random errors; they are assumed to be independent
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random variables with mean 0 and a constant variance (σ2).

Parameters of (3.2) are obtained as nonlinear least squares estimators that minimize the

sum of squares of the residuals:

SSResiduals(β̂) =
n∑
j=1

(Hj − f(DBHj;β))2. (3.3)

In matrix form, (3.3) may be represented as:

SSResiduals(β̂) = (H− f(β̂))′(H− f(β̂)) (3.4)

where, f(β̂) is the n× 1 vector of f(DBH;β) evaluated at the n values of DBHj.

Under the assumption that the random errors are independent variables with mean 0

and a constant variance, the nonlinear least squares estimate of β is also the maximum

likelihood estimate of β. The first order conditions for the minimization of (3.3) are the

partial derivates of the sum of squares of the residuals with respect to each β̂k in turn

and equated to zero in order to obtain the p normal equations. The solutions to the

normal equations give the nonlinear least squares of β. The general form of each normal

equation is expressed as (Rawlings et al., 1998):

∂SSResiduals(β̂)

∂β̂k
= −

n∑
j=1

(Hj − f(DBHj; β̂))

(
∂f(DBHj; β̂)

∂β̂k

)
= 0 (3.5)

where,
(
∂f(DBHj ;β̂)

∂β̂k

)
is the partial derivative of the functional form of the model. The

main difference between linear models and nonlinear models is that for the case of the

latter, the partial derivatives are functions of the parameters; the resulting normal equa-

tions are not in closed form and thus cannot be simply solved by equating to zero (0) in

order to get explicit solutions for β̂. For the case of (3.1) used in this study, the partial

derivatives of the functional form of the model with respect to the three parameters are:

∂H

∂β1
= (1− exp(−β2DBH))β3 ;
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∂H

∂β2
= β1DBHβ3 exp(−β2DBH)(1− exp(−β2DBH))(β3−1);

∂H

∂β3
= β1 log(1− exp(−β2DBH))(1− exp(−β2DBH))β3 .

As can be observed with the three partial derivatives for (3.1), each one is a function

of parameters. Therefore, the resulting normal equations do not have closed-forms and

thus explicit solutions for the parameters cannot be obtained by simply equating the

normal equations to zero. Instead, iterative numerical methods are used in order to

get the explicit estimates for the parameters in a nonlinear model. The five commonly

used iterative numerical methods are: Steepest Descent (gradient), Gauss-Newton, Mar-

quardt, Newton and the Multivariate Secant of False Position or Derivative Free (DUD)

method. The use of any of the five methods require that starting values of the parameters

(herein referred to as β0) are specified. The starting values are then substituted for β

to compute the residual sums of squares and also adjustments to β0 that will reduce the

residual sums of squares. The process is repeated until there are no further adjustments

on β0 for successive steps and the process is said to have converged (Rawlings et al., 1998;

SAS Institute, 2013). In the framework of nonlinear regression, convergence implies that

the best estimates of the parameters have been obtained under the assumption that the

model is adequate (Bates and Watts, 1988).

In this study, the Gauss-Newton and Marquardt methods were used and parameter es-

timates compared. Both methods regress the residuals onto the partial derivatives of

the model with respect to the parameters until the estimates converge. The Marquardt

method, which can be viewed as a Gauss-Newton algorithm with a ridging penalty, ap-

pears to work well in most cases (Rawlings et al., 1998; SAS Institute, 2013). Since both

methods gave the same solutions in this study, the estimation procedure for the Gauss-
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Newton method is hereby outlined.

The Gauss-Newton method uses the Taylor series expansion of f(DBHj; β̂) about the

starting values, β0, in order to obtain a linear approximation of the nonlinear model in

the region near the starting values. The term f(DBHj; β̂) is replaced by a linear approx-

imation as follows:

f(DBHj;β) ≈ f(DBHj;β
0) +

p∑
k=1

(
∂f(DBHj;β

0)

∂βk

)
(βk − β0

k)

or in matrix form as:

f(β) ≈ f(β0) + F(β0)(β − β0) (3.6)

where, F(β0) is an n× p matrix of partial derivatives evaluated at β0 and n data points,

DBHj.The matrix has the form:

F(β0) =



∂[f(DBH1;β0)]
∂β1

∂[f(DBH1;β0)]
∂β2

. . . ∂[f(DBH1;β0)]
∂βp

∂[f(DBH2;β0)]
∂β1

∂[f(DBH2;β0)]
∂β2

. . . ∂[f(DBH2;β0)]
∂βp

...
...

...
...

∂[f(DBHn;β0)]
∂β1

∂[f(DBHn;β0)]
∂β2

. . . ∂[f(DBHn;β0)]
∂βp


. (3.7)

Equation (3.6) is called the linearised regression model (Greene, 2010). Linear least

squares technique is then applied to (3.6) in order to get estimated amount to adjust

starting values. This is done by regressing H − f(β0) on F(β0). New values of the pa-

rameters are obtained by adding the estimated amount of adjustment to the previous

starting values. The model is then linearised about the new values of the parameters and

linear least squares again applied to find the second set of adjustments. The process is

repeated until the desired degree of convergence is achieved. The matrix F(β0), which

may be written as F for brevity, plays the role in nonlinear least squares that X plays in
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linear least squares (Rawlings et al., 1998). The adjustment or update vector of param-

eter estimates (∆ = β − β̂) for Gauss-Newton is given by (SAS Institute, 2013):

∆ = (F′F)−1F′(H− f(β̂))

while for the Marquardt method is given by:

∆ = (F′F + λ ∗ diag(F′F))−1F′(H− f(β̂));

where, λ is a Lagrange multiplier or algorithmic parameter ; λ ≥ 0 (Marquardt, 1963;

Gavin, 2013).

The Marquardt method is a compromise between the steepest descent and Gauss-Newton

methods where if λ −→ 0 the method tends to approach Gauss Newton while if λ −→∞

the method approaches steepest descent. If SSResiduals(β̂) decreases on each iteration,

then λ −→ 0 while if SSResiduals(β̂) does not improve, then λ is increased and one

would be essentially moving towards steepest descent method (SAS Institute, 2013).

If the usual assumptions about the error term, εj, in equation (3.2) are satisfied, that

is ε ∼ N(0, Iσ2), β̂ is approximately normally distributed with mean β and var (β̂) =

(F′F)−1σ2:

β̂ ∼ N [β, (F′F)−1σ2].

In the case where normality assumptions are not satisfied for ε, β̂ can still be shown to

be asymptotically normally distributed as n, the data points, gets larger.

With the values β obtained as β̂ , σ2 is estimated as:
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s2 =
SSResiduals(β̂)

n− p
;

and thus the variance-covariance matrix for β̂ is estimated as:

s2(β̂) = (F̂′F̂)−1s2. (3.8)

The standard errors for β̂ are estimated using (3.8)(Rawlings et al., 1998) for the gradi-

ent, Marquardt and Gauss-Newton methods for unconstrained estimates (SAS Institute,

2013).

The base model (3.1) was fitted to the model fitting data set and parameters estimated

using ONLS using the PROC NLIN procedure in SAS. Parameter estimates obtained by

other researchers were used as starting values.

3.4 Motivation for use of Mixed-Effects Modelling

Approach

Quite often, the data that is used in modelling H-D relationship contain measurements

of height and DBH from multiple trees from a given sample plot; although individual

plots are generally located within different stands (Sharma and Parton, 2007). Such a

nested structure, that is trees within plots and plots within stands, results in a lack of

independence between observations since data from the same sampling unit tend to be

more correlated that the average. The lack of independence between observations results

in biased estimates of the confidence intervals of the parameters if ordinary least squares

regression technique is used (Dorado et al ., 2006). Mixed-effects modeling approach can

be applied to deal with such correlated observations (Dorado et al ., 2006; Sharma and

Parton, 2007). The data used in this study comprised of tree measurements taken in

different plots across the state/county and as such conformed to a nested data structure.

Therefore, the chosen base model, Chapman-Richards model, was subjected to nonlinear
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mixed-effects (NLME) modelling.

3.4.1 Mixed-Effects Model Formulation and Assumptions

A general expression for a NLME model, at one level of grouping (plot in this study),

can be defined as (Pinheiro and Bates, 2000; Dorado et al ., 2006, Huang et al ., 2009;

Xu et al ., 2014):

Hi = f(DBHi;Φi) + εi (3.9)

where, Hi is the ni × 1 vector of the ni observations of the tree heights taken from the

ith sampling unit(plot in this study); f =a general, real-valued, differentiable nonlinear

function of the predictor variable and the parameter vector; DBHi is the ni×1 vector of

the predictor variable (DBH) for the ni trees taken from the ith plot; Φi is a parameter

vector (r × 1; where r is the number of parameters in the model) which is specific for

each plot; and εi is a ni × 1 vector for the residual terms.

The main feature of mixed-effects models is that they allow parameter vectors to vary

from plot to plot; that is, regression coefficients are broken down into fixed part, common

to the population, and random components, specific to each plot/stand (Calama and

Montero, 2004; Dorado et al., 2006). Therefore, the parameter vector Φi in (3.9) can be

succinctly expressed as:

Φi = Xiβ + Zibi

where, β is the p× 1 vector of fixed population parameters (p =number of fixed param-

eters in the model); bi is a q × 1 vector of random-effects associated with the ith plot

(q is the number of random parameters in the model); Xi and Zi are design matrices of

size r × p and r × q for the fixed and random-effects specific for each plot, respectively.

The elements for these design matrices are usually 0, 1, or the value of the covariate(s)
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associated with the fixed and/or random-effects. The basic assumption for the nonlinear

mixed-effect models theory include the asymptotic multivariate normal distribution for

the random-effects vector, the residual terms vector and the observations of the response

variable vector (Calama and Montero, 2004; Dorado et al ., 2006). Furthermore, it is

assumed that εi and bi are uncorrelated. Mathematically, the foregoing assumptions

imply that:

E

bi

εi

 =

0

0

 ;

V ar

bi

εi

 =

D 0

0 Ri

 ;

Hi ∼MVN(Xiβ,ZiDZ′i + Ri);

where, D is a positive-definite variance-covariance matrix of size q × q for the random-

effects, representing among-plot variability and assumed to be the same for every plot;

and Ri is the variance-covariance matrix of size ni×ni, defining the within-plot variabil-

ity. Equation (3.9) may also simply be expressed as follows:

Hi = f(DBHi,β,bi) + εi (3.10)

where, Hi = [Hi1, Hi2, ..., Hini
]′ is a vector of measurements for tree heights in the ith plot ;

DBHi is a known design matrix of the DBH measurements in the ith plot; β = [β1, β2, β3]
′

is a vector of fixed-parameters; bi = [b1i, b2i, b3i]
′ is a vector of random parameters specific

to plot i; εi = [εi1, εi2, ..., εini
]′ is a vector of within-plot errors; and ni is the total

number of trees in the ith plot for which corresponding individual tree height and DBH
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measurements had been observed.

3.4.2 Mixed-Effects Model Development

Generally, there are three steps that are necessary for constructing a mixed-effects model,

once an appropriate base model has been selected (Calama and Montero, 2004; Dorado

et al., 2006; Sharma and Parton, 2007; Missanjo and Mwale, 2014; Xu et al., 2014):

1. Specification of the nature of the parameters of the model to be treated as mixed

(that is, made up of fixed and random-effects) or purely fixed-effects;

2. Determination of an appropriate within-plot variance-covariance structure (Ri), for

explaining variability among trees in the same plot; and

3. Determination of among-plot variance-covariance structure (D).

Determination of fixed and random effects parameters in a model is a flexible decision

subject to debate. All parameters in the model are first considered mixed if convergence

is possible. If convergence is not achieved in first step, the number of random effects

parameters is then systematically reduced until convergence is attained (Sharma and

Parton, 2007; Missanjo and Mwale, 2014).

To account for within-plot heteroscedasticity in Ri, which includes weighting factors, the

approach as given by Calama and Montero(2004) and cited in Xu et al. (2014) is given by:

Ri = σ2G0.5
i Ini

G0.5
i

where, σ2 is a scaling factor for the error dispersion; Gi is an ni × ni diagonal matrix

within-plot error heteroscedasticity variances and; Ini
is an ni × ni matrix showing the

within-plot autocorrelation structure of error.

A plot of residuals versus predicted values did not show obvious pattern of unequal error
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variance. Furthermore, the study only used trees and/ or plots that had been measured

once, and hence autocorrelation was not considered or assumed to exist. Therefore, Ri

was assumed to be σ2
εIni

; where σ2
ε is the estimated error variance of the model and Ini

is an ni × ni identity matrix. Thus:

Ri = σ2
εIni

. (3.11)

Determination of D was carried out by first treating all the three parameters in (3.1)

as mixed; that is, made of a fixed and random part. Unfortunately, the model did not

converge. The model only converged and realistic parameter estimates were obtained

when random parameters were added to β1 and β3. Therefore, D was assumed to be an

unstructured covariance matrix that is the same for all i. Thus:

D =

 σ2
b1

σb1b3

σb1b3 σ2
b3

 (3.12)

where, σ2
b1

and σ2
b3

are the variances for random parameters b1 and b3 respectively; and

σb1b3 is the covariance between b1 and b3.

Therefore, the nonlinear mixed-effects model corresponding to (3.1) took the following

form:

Hij = 1.30 + (β1 + b1i)(1− exp(−β2DBHij))
(β3+b3i) + εij (3.13)

where, Hij and DBHij are the observed tree height and DBH for the jth tree in the ith

plot; i = 1, 2, 3, ...,m; j = 1, 2, 3, ..., ni; m is the total number of plots; ni is the number

of trees in the ith plot; β1, β2 and β3 are the fixed-effects parameters common to every

plot; and b1i and b3i are the unique random-effects parameters unique for each plot; and

εij is the within-plot error term of the model, assumed to be normally distributed with

mean zero and constant variance.
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3.4.3 Estimation of Parameters for the Mixed-Effects Model

The aim of mixed-effects modelling is estimation of the components:β,D and Ri. In this

particular study, estimation of the parameters was based on methods based on likelihood

function. Random-effects are unobserved quantities and as such maximum likelihood

estimation is based on numerically maximizing an approximation to the marginal like-

lihood - that is, the likelihood integrated over the random effects (Pinheiro and Bates,

2000; Littell et al ., 2006). With reference to (3.9) and (3.10), the marginal density for

the responses, H, is given by (Pinheiro and Bates, 2000; Calama and Montero, 2004):

p(H|DBH,β, σ2,D) =
m∏
i=1

∫
p(Hi|DBHi,β, σ

2,bi)p(bi|D)dbi (3.14)

where, p(H|DBH,β, σ2,D) is the marginal density of H; p(Hi|DBHi,β, σ
2,bi) is the

conditional density of Hi given the random effects bi and; p(bi|D) is the marginal distri-

bution of bi; m is the number of sampling units (plots in the case of this study); and σ2 is

the variance of the error term of the model. Maximization of expression (3.14) is not an

easy task and in most cases does not have a closed form because the random-effects enter

the model in a nonlinear fashion. Therefore, in order to make the numerical optimization

of expression (3.14) mathematically tractable, different approximations have been pro-

posed with the common ones being: (1) first-order Taylor series expansion of the model

function around the expected value of the random effects, or (2) around the conditional

modes of the random effects (first-order conditional expectation method of Lindstrom

and Bates) and (3) Gaussian quadrature, which tries to solve the integral numerically

(Pinheiro and Bates, 2000; Calama and Montero, 2004). In this study, the first-order

Taylor series expansion approximation was adopted.

The Taylor series expanded version of equation (3.10), with the quadratics and cross-

products dropped, is given by (Huang et al ., 2009a; 2009b):

Hi ≈ f(DBHi,β
∗,b∗i ) + Xi(β − β∗) + Zi(bi − b∗i ) + εi (3.15)
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where, β∗ is a vector of starting values or values close to β and b∗i is set to zero(0), which

is the expected value of the random parameters. The derivative matrices Xi and Zi are

defined by:

Xi =
∂f(DBHi,β,0)

∂β′

∣∣∣∣β∗ = β̂,b∗i = 0; (3.16)

Zi =
∂f(DBHi,β,0)

∂b′i

∣∣∣∣β∗ = β̂,b∗i = 0. (3.17)

Given that b∗i = 0, a pseudo-response function, H∗i , can be defined as:

H∗i = Hi − f(DBHi,β
∗,0) + Xiβ

∗, (3.18)

and rearranging terms in equation (3.15), we get:

H∗i = Xiβ + Zibi + εi. (3.19)

Equation (3.19) shows that the pseudo-response vector,H∗i , is linear both in β and bi

and thus can be solved using linear mixed-effects model theory to get estimates for the

parameters (Huang et al., 2009b).

A general expression for a linear mixed-effects model can be written as (Pinheiro and

Bates, 2000; Gurka, 2006):

Hi = Xiβ + Zibi + εi (3.20)

where, Hi is a ni × 1 vector of observations(trees) on the ith subject (plot); Xi is a

ni × p known, constant design matrix for the ith subject with rank p (the number of

fixed-effects parameters); β is a p × 1 vector of unknown, constant population (fixed-

effects) parameters; Zi is a ni × q known, constant design matrix for the ith subject

with rank q corresponding to bi, a q × 1 vector of unknown, random subject-specific

parameters; and finally εi is a ni × 1 vector of random within-subject error terms. The

linear mixed-effects model (3.20) has the same basic distributional assumptions as the

NLME model given for equation (3.9), that is; bi is normally distributed with mean

vector 0 and variance-covariance matrix D; and εi is normally distributed with mean
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vector 0 and variance-covariance matrix Ri and finally, bi and εi are independent. The

variance-covariance matrices D and Ri are characterized by unique parameters contained

in the r × 1 vector, θ. The total variance for the response vector is Vi = ZiDZ′i + Ri.

The marginal log-likelihood function for (3.20) is given by:

lML(θ) = −N
2

log(2π)− 1

2

m∑
i=1

log |Vi| −
1

2

m∑
i=1

(Hi −Xiβ)′V−1i (Hi −Xiβ) (3.21)

where, N =
∑m

i=1 ni - the total number of observations (tree measurements) in the

dataset; m and ni are the number of plots and total number of trees in the ith plot,

respectively. Maximization of lML(θ) produces maximum likelihood estimators (MLE) of

the unknown parameters. When θ is known, the MLE of β is given by:

β̂ =

(
m∑
i=1

X′iV
−1
i Xi)

−1

)
m∑
i=1

X′iV
−1
i Hi. (3.22)

In most cases, same with this particular study, when θ is unknown, Vi is replaced with

its estimate V̂i (Gurka, 2006). Estimates for β and the variance components for the

matrices D and Ri, that is D̂ and R̂i , respectively were obtained in SAS using the

PROC NLMIXED (SAS Institute, 2014). The starting values for the parameters used

were obtained from related previous studies reported by other researchers.

Finally, following the linear and normality conditions, bi was approximated by the value of

the empirical best linear unbiased predictor (EBLUP) for the parameters of the random-

effects in plot i, b̂i. EBLUP indicates that it is not the real best linear unbiased predictor

(BLUP), since it is estimated using estimates for the variance components (Calama and

Montero, 2004). The equation for the EBLUPS used was (Huang et al ., 2009a; Huang

et al ., 2013; VanderSchaaf, 2014):

b̂i ≈ D̂Ẑ′i(ẐiD̂Ẑ′i + R̂i)
−1(Hi − f(DBHi, β̂,0)); (3.23)
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which is the same as:

b̂i ≈ D̂Ẑ′i(ẐiD̂Ẑ′i + R̂i)
−1(Hi − Ĥi fix) (3.24)

where, Ĥi fix is a vector of predicted heights for the ith plot using the fixed-effects pa-

rameter estimates obtained using PROC NLMIXED with the random-effects parameters

set to 0.

3.5 Prediction of Tree Height using Height-Diameter

Models

The main purpose of developing a model is to use it as a predictive tool in forest man-

agement (Calama and Montero, 2004). Thus, the use of the two models in this particular

study was to predict the dependent variable (total tree height) in terms of the indepen-

dent variable (DBH) through the relationship specified in each model (3.1) and (3.13).

Prediction of tree height was done in three ways on both model fitting and model testing

data sets. The first method of prediction of tree height involved using the base model

(3.1) and the estimated parameters using ONLS. Thus, the equation used was:

Ĥij = 1.30 + β̂1(1− exp(−β̂2DBHij))
β̂3 (3.25)

where, Ĥij is the predicted height for the jth tree in the ith plot, using the base model

(3.1); β̂1, β̂2 and β̂3 are the estimated model parameters using ONLS; and DBHij is the

observed DBH for the jth tree in the ith plot.

There are two situations in which mixed-effects models are used in a predictive role

(Calama and Montero, 2004; Dorado et al., 2006; Sharma and Parton, 2007):

1. Fixed-effects response pattern: prediction of tree height in stands where only DBH

and/or stand variables included in the model were measured and no previous height

observations were made; and
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2. Calibrated response pattern: prediction of tree height in stands in which a subsam-

ple of tree heights, apart from DBH and/or stand variables, are available.

The fixed-effects approach represents the pattern of predicted height representing the

mean behaviour of variation in height for both the given DBH and associated stand char-

acteristics. Therefore, the second method of prediction was based on use of model (3.13)

but with the random parameters set to zero and thus involved use of fixed parameters

estimated using the mixed-effects modeling approach; that is PROC NLMIXED. The

predictions were done using the expression:

Ĥi fix = 1.30 + β̂1(1− exp(−β̂2DBHi))
β̂3 (3.26)

where, Ĥi fix is a vector of predicted heights for the ith plot; β̂1, β̂2 and β̂3 are the

estimated model parameters using NLME modelling approach and DBHi is a vector of

the observed DBH for trees in the ith plot.

Prediction of height is different, however, in the case of calibrated response pattern. In

this case, model parameters are localized first by using the predicted values of the random

parameters for each plot. Thus, the third method of prediction of tree height was based

on model (3.13) with both fixed-effects and random-effects parameters included. The

expression for prediction took the form (Huang et al., 2009a; 2009b):

Ĥi = Ĥi fix + Ẑib̂i. (3.27)

The derivatives for model function (3.13) with respect to the two random parameters

took the form:

derb1 =
∂f(DBHi, β̂,0)

∂b1
= (1− exp(−β̂2DBHi))

β̂3 ;

derb3 =
∂f(DBHi, β̂,0)

∂b3
= β̂1 log(1− exp(−β̂2DBHi))(1− exp(−β̂2DBHi))

β̂3 .
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Calculations of the partial derivatives constituted the design matrix Zi as defined in

(3.17). Thus;

Zi =


derb11 derb31

...
...

derb1ni
derb3ni

 . (3.28)

b̂i was estimated using expression (3.24).

Different researches have proposed different approaches for tree measurements to be used

for calibration of a mixed-effects model (e.g Calama and Montero, 2004; Dorado et al.,

2006; Sharma and Parton, 2007; Huang et al., 2009a; VanderSchaaf, 2013; Carrol-Rivas

et al., 2014). However, no attempt was made in this study to determine the appropriate

number and/or approach of prior tree height measurements to be used for calibration.

It is important to note however that in most forest inventories, a subsample of trees is

usually measured for tree heights from each plot; and that also can be used to calibrate

a mixed-effects model.

3.6 Goodness-of-Fit Measures

Determination of the accuracy of model predictions and comparison of the two models

(3.1) and (3.13) was based on the following statistics (Huang et al., 2009a; Juntunen,

2010; Stankova and Diéguez-Aranda, 2013; Huang et al., 2013; Corral-Rivas et al., 2014;

Missanjo and Mwale, 2014):

1. the bias (ε), which reflects the deviation of the model with respect to the observed

values;

ε = H − Ĥ (3.29)
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and the overall mean bias given by the expression:

ε̄ =
1

N

m∑
i=1

ni∑
j=1

εij.

The errors (residuals) associated with predictions using (3.25) were calculated as

follows:

εij = Hij − Ĥij;

while the errors(residuals) associated with predictions using (3.26) and (3.27) were

calculated as:

εi fix = Hi − Ĥi fix

and

εi = Hi − Ĥi;

with the overall mean bias for the ith plot given by the expression:

ε̄i =

∑ni

j=1(Hij − Ĥij)

ni
.

2. Percent mean bias ((Bias%) or (ε̄%)), calculated as:

ε̄% =
ε̄

H̄
× 100 (3.30)

where, H̄ is the mean height of the observed/measured trees.

3. Standard Deviation (StdDev) of the errors given by:

StdDev =

√√√√ 1

N − 1

m∑
i=1

ni∑
j=1

(εij − ε̄)2. (3.31)
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4. The root mean square error (RMSE), which analyses the precision of the estimates:

RMSE =

√√√√ 1

N − p

m∑
i=1

ni∑
j=1

(Hij − Ĥij)2 (3.32)

on model fitting data set (where p is the number of fixed parameters in the model)

while on model testing data set was calculated as:

RMSE =

√√√√ 1

N

m∑
i=1

ni∑
j=1

(Hij − Ĥij)2. (3.33)

5. Coefficient of determination, (R2), which is a measure of variability explained by

the model and given by the expression:

R2 = 1−

[∑m
i=1

∑ni

j=1(Hij − Ĥij)
2∑m

i=1

∑ni

j=1(Hij − H̄)2

]
. (3.34)

6. Overall model Prediction Accuracy(δ) given by:

δ = ε̄2 + StdDev2. (3.35)

7. Akaikes information criterion (AIC) given by:

AIC = −2 log(l) + 2P. (3.36)

8. Bayesian information criterion (BIC) given by:

BIC = −2 log(l) + P log(m) (3.37)

where, for the (AIC) and (BIC), l is the maximized value of the likelihood function of

the model; P is the total number of effective parameters to be estimated in the model
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(for the case of mixed-effects model, it includes fixed parameters, variance-covariance

components of the random parameters, plus the residual variance component); m is the

number of subjects (plots) in the study; and log is the natural logarithm. For the case

of base model fitted using ONLS, the log(m) for BIC used was log(N); where N is the

total number of observations (trees) in model fit data.

The goodness-of-fit measures outlined by the expressions given were applied to the entire

population. An examination was however carried out for the frequency distributions of

plot-specific biases from the base and mixed-effects models. This was done because overall

mean biases averaged over all the observations (trees) from all plots could be misleading

because the positive and negative residuals (errors) from individual plots could cancel one

another out. Calculations were thus also obtained on plot-by-plot basis by considering ni

observations from the ith plot for the mean bias, Bias% and RMSE in order to compare

the two models on plot-by-plot basis. The plots were the Bias%i exceeded ±2.5% of the

observed mean were identified and listed separately. The reason for this identification

was based on dividing the one-sided 5% significance level commonly used in statistical

inferences into two sides (Huang et al., 2009a; 2009b).
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Chapter 4

Data Analysis, Results and

Discussion

4.1 Exploratory Data Analysis

The summary statistics of model fitting and testing data sets used in the study are shown

in Table 4.1 while Figures 4.1 and 4.2 show the scatter plot of tree height versus DBH

for the model fit and test data sets respectively used in the study.

Table 4.1: Summary Statistics of Model Fitting and Testing Data Sets

Data Set Plots No. of Trees DBH(cm) H(m)

Min. Max. Mean StdDev Min. Max. Mean StdDev

Model Fit 95 3,882 2.54 68.65 20.45 9.67 1.83 32.00 14.23 5.47

Model Test 36 287 2.54 58.93 16.31 7.95 3.03 31.39 13.28 5.00

Min. = minimum; Max. = maximum; DBH=Diameter at Breast Height in centimeters;

H=Height in meters; StdDev=Standard Deviation.
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Figure 4.1: Scatter Plot of Height against Diameter at Breast Height for Model Fitting
Data

Figure 4.2 shows a scatter plot for model test data set.
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Figure 4.2: Scatter Plot of Height against Diameter at Breast Height for Model Testing
Data

The plots of residuals (m) versus predicted tree heights (m) for both models, on model

fitting data set, did not show obvious pattern of unequal error variance. Figures 4.3 and

4.4, show that there is no obvious violation of the assumption that the residuals (errors)

are independent and identically distributed (iid) with mean 0 and a constant variance for

both base and mixed-effects models.
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Figure 4.3: Plot of Residuals against Predicted Tree Heights for Base Model

Figure 4.4 shows the residual plot for the mixed-effects model.
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Figure 4.4: Plot of Residuals against Predicted Tree Heights for Mixed-Effects Model

4.2 Estimated Parameters and Fitting Statistics

The results obtained for parameter estimates with their associated standard errors and

other statistics using SAS Proc NLIN and Proc NLMIXED procedures on model fitting

data are shown in Table 4.2.
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Table 4.2: Estimates of Fixed Parameters, Variance Components and their Standard
Errors

Parameter Base Model Mixed-Effects Model

Estimate Approx Std Error Approx 95% CL Estimate Std Error t-Value Pr>|t|

β1 33.5497 1.7981 30.0244 - 37.0244 29.7177 1.3930 21.33 <.0001

β2 0.0259 0.0030 0.0200 - 0.0318 0.0310 0.0031 9.86 <.0001

β3 1.0255 0.0411 0.0945 - 1.1061 1.0465 0.0474 22.08 <.0001

σ2
b1

16.2457 4.5723 3.55 0.0006

σ2
b3

0.0326 0.0086 3.18 0.0002

σb1b3 0.5732 0.1664 3.44 0.0009

σ2
ε 6.1796 0.1436 43.04 <.0001

All the estimated parameters for the two models were statistically significant at α = 0.05

level as shown in Table 4.2. Furthermore, the coefficients of the two models are biologically

logical; for example, β1 represents the upper asymptotic height and was close, for both

models, to the maximum height shown in Table 4.1, on model fitting data set. Based on

the estimated parameters shown in Table 4.2, the two models fitted to the data can now

be expressed as:

Ĥij = 1.30 + 33.5497(1− exp(−0.0259DBHij))
1.0255 (4.1)

for the base model; with the mixed-effects model without random parameters expressed

as:

Ĥi fix = 1.30 + 29.7177(1− exp(−0.0310DBHi))
1.0465 (4.2)

while the mixed-effects model incorporating random effects parameters expressed as:

Ĥi = 1.30 + (29.7177 + b1i)(1− exp(−0.0310DBHi))
(1.0465+b3i). (4.3)

The variance-covariance matrices for among-plot and within-plot variability are given by:

D̂ =

16.2457 0.5732

0.5732 0.0326

 ; (4.4)
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R̂i = 6.1796× Ini
. (4.5)

Table 4.3 shows a summary of the fit statistics for the two models on model fit data set.

Table 4.3: Fit Statistics for Base and Mixed-Effects Models on Model Fit Data

Model Fitting Method Fit Statistics

R2 RMSE AIC BIC

3.1 NLIN 0.74 2.77 18,932.2 18,957.3

3.13 NLMIXED 0.80 2.45 18,376.0 18,394.0

Table 4.3 which shows a summary of goodness-of-fit statistics indicates that model (3.13)

had better results than model (3.1);R2 was 0.80 and RMSE was 2.45 for the mixed-effects

model compared to 0.74 and 2.77 for R2 and RMSE respectively, for the base model.

The results imply that R2 increased by 8.12%[((0.80 − 0.74)/0.74) × 100] while RMSE

reduced by 11.55%[((2.77 − 2.45)/2.77) × 100] when mixed-effects modelling approach

was used to fit the same data fitted using ONLS. Similarly, both AIC and BIC reduced

when the same data was fitted using mixed-effects modelling approach. The increase in

R2, which measures the percentage of variation in the data explained by the model, and

reduction in RMSE indicates that mixed-effects modelling had a positive effect in terms

of fitting the data and thus was the better model compared to the base model. Similarly,

in model selection using information criterion, a model with both smaller AIC and BIC

is preferred.

4.3 Predictive Performance of the Models

In order to assess the predictive performance of the two models in real-world applications,

height predictions from the base model and the mixed-effects model were made based

on the model testing data set (as well as model fitting data set for comparison). The

summary statistics for the overall height predictive performance of the two models on

both data sets are shown in Table 4.4.
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Table 4.4: Summary Statistics for the Predictive Performance of the Base and Mixed-
Effects Models

Data Set Model N Bias(ε) Accuracy(δ) Bias%(ε̄%)

Min. Max. Mean StdDev

Fitting 3.1 3,882 -10.585 11.651 0.005 2.769 7.669 0.036

3.13 3,882 -8.243 11.672 0.026 2.448 5.992 0.184

Testing 4.1 287 -7.085 8.932 1.128 2.540 7.721 8.494

4.3 287 -5.688 6.077 0.362 1.916 3.802 2.725

The results as shown in Table 4.4 suggest that both models, on the average, under-

predicted the height for both data sets (that is, the mean biases are all positive). The

mixed-effects model (3.13) produced the larger mean bias (0.026) but lower standard

deviation of the errors (2.448) on model fitting data. It (3.13) however produced an

overall better predictive accuracy (5.992) than the base model (7.669). The results for

model testing data reveal that the mixed-effects model outperformed the base model on

all goodness-of-fit measures related to model predictive accuracy; model (4.3) had both

lower mean bias (0.362) and standard deviation of the errors (1.916) and consequently a

higher predictive accuracy (3.802) as compared to the base model(4.1) with mean bias of

1.128 and standard deviation of errors of 2.540 resulting in predictive accuracy of 7.721.

The results suggest that the mixed-effects model was twice better in terms of predictive

accuracy on model testing data set. The last column of Table 4.4 shows that the base

model, on average, under-predicted tree heights by 0.036% while the mixed-effects model

under-predicted by 0.184% on model fit data. The difference for under-prediction is

obvious on model test data set where the base model, on the average, under-predicted by

8.494% as compared to 2.725% for the mixed-effects model.

Results in Table 4.4 are in agreement with the fit statistics in Table 4.3 which shows that

the mixed-effects model had an overall better fit to the data as reflected by a higher R2

and lower RMSE.

From the results in Tables 4.3 and 4.4, we can conclude that plot-by-plot variability was

significant and that it was taken into account when mixed-effects modeling approach
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was applied. The base model fitted using ONLS however could not account for plot-

by-plot variability; variability among plots was included in the error term and thus a

higher RMSE and lower R2 recorded when compared to the mixed-effects model. This

explains the reason for a better predictive accuracy for the mixed-effects model. It also

confirms the fact that a model fitted to the data using ONLS provides population average

estimate of height for given DBH observations; regardless of whether trees are measured

in different plots, the parameter estimates are assumed to be correct or the same. It is

common knowledge that trees, for example in a 5 years plot would not be expected to

have the same maximum height as trees in a 20 years plot, all other things being equal.

Thus, one would expect, for example β1 representing the upper asymptotic height, in the

Chapman-Richards model to be different for the two plots. A model fitted using ONLS

however does not take that into account unless different parameter estimates are obtained

for each plot! Since the mixed-effects model as constructed in this study has a random

component to β1, it means that such a difference would be taken into account and the

H-D model can be quickly localized without having to fit separate models for each plot.

4.4 Prediction of Tree Height for an Example Plot

To demonstrate the prediction of tree height using equations (4.1), (4.2) and (4.3), one

of the plots in model test data sets is hereby presented:
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Table 4.5: Height Prediction for an Example Plot

M Observed Predicted δi ε̄i%

DBHij Hij Ĥij εij derb1 derb3 Ĥi εi

4.1 37.34 25.60 21.84 3.7574 32.0217 20.6210

46.99 31.39 24.71 6.6850

31.75 27.43 19.83 7.5979

2.54 3.35 3.29 0.0588

Mean 21.94 17.42 4.5248

StdDev 3.3983

4.3 37.34 25.60 0.6742 -7.5480 25.35 0.2482 7.9468 8.8354

46.99 31.39 0.7579 -5.9654 28.73 2.6584

31.75 27.43 0.6132 -8.5167 22.92 4.5119

2.54 3.35 0.0672 -5.1536 3.01 0.3363

Mean 20.00 1.9387

StdDev 2.0465

In Table 4.5, M=Model; δi=Model Accuracy for the ith plot; ε̄i%=Bias% for the ith plot.

Predictions for tree heights using the base model were obtained using equation (4.1). The

derivatives at the given DBHs, derb1 and derb3 , shown in Table 4.5 were calculated using

equations outlined for (3.28) . They constitute the Zi matrix defined in (3.28). Thus;

Ẑi =



0.6742 −7.5480

0.7579 −5.9654

0.6132 −8.5167

0.0672 −5.1536



The among-plots and within-plots variability as given in (4.4) and (4.5)are given by:

D̂ =

16.2457 0.5732

0.5732 0.0326


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R̂i =



6.1796 0 0 0

0 6.1796 0 0

0 0 6.1796 0

0 0 0 6.1796



With these matrices and the observed heights given in Table 4.5, the random parameters,b̂i,

are predicted using equation (3.24):

b̂i ≈ D̂Ẑ′i(ẐiD̂Ẑ′i + R̂i)
−1(Hi − Ĥi fix)

b̂i =

[
7.6893128 0.1555327

]′

with Ĥi fix predicted using (4.2) and Hi are the observed tree heights as given in Table

4.5 under the third column.

Height predictions using the mixed-effects model (4.3) were obtained in a similar manner

for all the other plots. The Bias% and model prediction accuracy shown in Table 4.5 were

calculated using expressions (3.30) and (3.35) respectively. As can be seen in Table 4.5, it

is clear that the mixed-effects model had a better predictive accuracy than the base model

for the example plot. The mixed-effects model had both smaller Bias% (8.8354%) and

accuracy (7.9468), which is desirable, than the base model ( with Bias% = 20.6210% and

accuracy = 32.0217). Furthermore, the predicted mean height (20.00m) using the mixed-

effects model was much closer to the mean height observed (21.94m)for the example plot;

the predicted mean height (17.42m) using base model was not as close. Summary results

as shown for the example plot; that is Bias% and accuracy on a plot-by-plot basis were

calculated for all the plots on both model fit and test data sets. The results for model

test data are as shown in appendix 1.
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4.5 Distribution of Biases for the Base and Mixed-

Effects Models

It is important to note that comparison of the two models as shown in Table 4.4 could

be misleading at times. This is because the biases or errors could cancel each other out

when calculations are made or averaged over all observations. Thus, a plot-by-plot anal-

ysis often reveals more information about the performance of models being compared.

Furthermore, the main interest of mixed-effects modeling lies in plot-by-plot performance.

Therefore, summary statistics for the distribution of biases (errors) from all the 95 plots

for model data and 36 plots for model test data are shown in Table 4.6.The summary in

Table 4.6 is based on identified plots that had Bias%i exceeding ±2.5% of the observed

mean. The reason for this identification was based on dividing the one-sided 5% signifi-

cance level commonly used in statistical inferences into two sides (Huang et al ., 2009a;

2009b).
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Table 4.6: Summary of Distribution of Plot-by-Plot Biases for Model Fit and Test Data Sets

Model Data Variable Model Fit Data Model Test Data

Freq. Min. Max. Mean StdDev δ Freq. Min. Max. Mean StdDev δ

4.1 All ε̄i 95 -3.233 2.700 -0.008 1.180 1.39 36 -2.126 6.168 1.243 1.960 5.39

ε̄i% 95 -32.490 17.432 -1.739 10.124 36 -27.940 29.439 6.264 12.799

RMSEi 95 0.803 6.035 2.862 0.918 36 0.786 6.329 2.583 1.450

−2.5 ≤ ε̄i% ≥ 2.5 ε̄i 25 -0.394 0.346 0.027 0.220 0.05 6 -0.223 0.197 0.060 0.180 0.04

ε̄i% 25 -2.231 2.450 0.201 1.514 6 -2.043 1.867 0.481 1.630

RMSEi 25 0.803 5.652 2.682 0.975 6 0.786 1.789 1.283 0.413

4.3 All ε̄i 95 -0.989 0.735 -0.006 0.270 0.07 36 -1.030 3.345 0.523 0.936 1.15

ε̄i% 95 -12.052 6.529 -0.509 2.923 36 -16.243 15.964 2.411 6.444

RMSEi 95 0.718 5.614 2.439 0.848 36 0.766 3.473 1.880 0.798

−2.5 ≤ ε̄i% ≥ 2.5 ε̄i 75 -0.280 0.456 0.060 0.132 0.02 14 -0.291 0.244 -0.007 0.166 0.03

ε̄i% 75 -2.233 2.235 0.349 0.865 14 -2.460 2.109 -0.141 1.435

RMSEi 75 0.738 5.614 2.529 0.805 14 0.766 2.038 1.340 0.400
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Table 4.6 shows that the contrast in prediction accuracy between the base and mixed-

effects models is obvious on both model fit and test data sets. The base model produced

larger biases on more plots on both data sets than the mixed-effects model. The base

model had only 25 plots out of 95 (for model data) and 6 plots out of 36(for test data) with

biases not exceeding ±2.5% of the observed mean where as the mixed-effects model had

75 plots out of 95(for model data) and 14 plots(for test data) with biases not exceeding

±2.5% of the observed mean. The distribution of the biases is further illustrated in bar

charts as shown in Figures 4.5 and 4.6.
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Figure 4.5: Frequency Distribution of Bias % for Model Fit Data
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Figure 4.5 shows clearly that 68 plots out of 95 had bias class midpoint of 3% for the

mixed-effects model compared to only 28 plots out of 95 for the base model. The results

show a similar trend on the test data as can be seen on Figure 4.6.
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Figure 4.6: Frequency Distribution of Bias% for Model Test Data

Figure 4.6 shows clearly that more than half of biases for the mixed-effects model were

centred on 4% as opposed to being spread out as can be seen for the base model. Table 4.6

and Figures 4.5 and 4.6 clearly demonstrate the superiority of the mixed-effects model

over the base model when the two modes are compared on a plot-by-plot basis. The

summary of fit statistics and predictive performance as shown in Tables 4.3 and 4.4

respectively, based on all observations, do not show the superiority of the mixed-effects

model as revealed in Table 4.6 and Figures 4.5 and 4.6. This means that comparison of

models (where mixed-effects modeling is applied) just based on all observations could be
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misleading and as such it is important to do a plot-by-plot comparison as was observed

and recommended by (Huang et al., 2009a; 2009b). A complete analysis of plot-by-

plot calculation of Bias%, mean bias, standard deviation of errors and model prediction

accuracy for model test data is as shown in Appendix 1.

4.6 Discussion

The results obtained in this research project are similar in many respects to those obtained

by other researchers. For example, Corral-Rivas et al (2014) observed that a mixed-

effects model had better fit statistics (R2 = 0.85;RMSE = 2.21;BIC = 6461) than

the base model fitted using ONLS (R2 = 0.73;RMSE = 2.95;BIC = 8749). They

however did not compare the two models on plot-by-plot basis as has been done in the

present study. The findings in this study are also in agreement with those of Huang

et al (2009a; 2009b) who observed that plot-by-plot comparison of models was necessary

when considering mixed-effects models. In particular, Huang et al (2009b) recommended

that frequency distribution of biases should be routinely examined in any future study

involving nonlinear mixed-effects modeling approach. Their recommendation was utilized

in this study and the findings are that frequency distribution of biases from individual

plots are indeed more powerful in revealing the superiority of a given mixed-effects model

than just relying on summary statistics averaged over all the observations. Huang et al

(2013) also compared the predictive performance of base models with their counterpart

mixed-effects models. Their results are similar to the present study in that they also

concluded that mixed-effects models performed better than base models on both model

and application data sets. Furthermore, Huang et al (2013) in their study defined the

thresholds (absolute) for percent mean bias (ε̄%) as 0.5% on model fitting data and 10%

for the independent application data, respectively, for a given model to be considered

generally acceptable, provided that it makes biological sense. The results obtained in

this study are within these limits for both the base and mixed-effects models on both

model fit and test data sets as shown in Table 4.4. Paulo et al (2011) also obtained
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similar results of better fit statistics for the nonlinear mixed effects model (NLMEM)

when compared to nonlinear fixed effects model (NLFEM) approaches. They concluded

that even in situations where the NLMEM calibration was not possible, the model should

be preferred. The findings in this study are however in contrast to recommendations by

Paulo et al (2011) but in agreement with De-Miguel et al (2013) who concluded that

fixed-effects models (or base model for the case of this study) should be preferred in the

absence of calibration data. This is because the base model had better fit statistics and

predictive accuracy on both model fit and test data sets when compared to a mixed-effects

model which did not incorporate random effects; predictions based on expressions (4.1)

and (4.2). The comparison of predictive performance between base and mixed-effects

(with fixed-effects only) models is presented in Appendix 2.

51



Chapter 5

Conclusion and Recommendations

5.1 Conclusion

The Chapman-Richards model was considered in this study to demonstrate the develop-

ment and utilization of a mixed-effects model in prediction of tree height using only DBH

as the predictor variable. The predictive performance of the constructed mixed-effects

model was compared to the base model (fitted using ONLS) on model test data as well

as model fit data set. The comparison was done based on statistics that included Bias,

Bias%, RMSE, standard deviation of the errors, overall model accuracy, R2,AIC and

BIC. Based on these statistics, the mixed-effects model performed better than the base

model on both data sets. An examination was also done on frequency distribution of

the biases for individual plots and the results were more revealing on the superiority of

the mixed-effects model to the base model. Mixed-effects modelling approach was there-

fore found to be more appropriate, for model development and use of H-D models for

predicting tree height, than the commonly used ONLS.

5.2 Recommendations

1. Comparison of H-D models, where mixed-effects modelling is applied, should also

be done on plot-by-plot basis and not just based on statistics averaged over all the

observations.
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2. Forest modelers and managers in Africa should consider using mixed-effects mod-

elling technique in the development and utilization of H-D models.

53



Bibliography
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APPENDIX 1: Plot-by-Plot Calculated Mean Bias, Bias%, Standard Deviation, RMSE and Accuracy 

for Model Test Data Set 

 
    BASE MODEL 

    

MIXED-EFFECTS MODEL     

Plot ID Mean Bias Bias% RMSE StdDev Accuracy 
 

Mean Bias Bias% RMSE StdDev Accuracy 

1 0.614 5.556 1.334 1.233 1.896 
 

0.136 1.231 1.183 1.223 1.514 

2 -0.223 -2.043 1.654 1.795 3.272 
 

-0.132 -1.212 1.635 1.785 3.204 

3 -1.771 -27.940 3.271 3.075 12.594 
 

-1.030 -16.243 2.621 2.694 8.320 

4 -0.109 -1.079 1.789 1.996 3.996 
 

-0.108 -1.070 1.784 1.990 3.973 

5 2.343 17.672 2.890 1.854 8.927 
 

0.977 7.370 1.954 1.853 4.389 

6 -0.275 -2.931 1.289 1.336 1.861 
 

-0.109 -1.157 1.249 1.320 1.755 

7 1.089 8.933 1.936 2.263 6.309 
 

0.703 5.765 1.750 2.266 5.630 

8 -0.775 -7.754 1.257 1.027 1.655 
 

-0.209 -2.090 0.988 1.002 1.048 

9 2.274 18.650 3.321 2.794 12.978 
 

1.174 9.631 2.679 2.780 9.108 

10 0.143 1.228 0.996 1.138 1.315 
 

0.038 0.325 0.981 1.132 1.282 

11 1.731 14.256 1.856 0.732 3.532 
 

0.733 6.039 0.983 0.718 1.053 

12 0.192 1.688 0.786 0.823 0.714 
 

0.047 0.410 0.766 0.826 0.685 

13 2.652 19.956 2.950 1.361 8.886 
 

0.808 6.080 1.521 1.358 2.497 

14 4.525 20.621 5.398 3.398 32.022 
 

1.939 8.835 2.627 2.047 7.947 

15 0.884 6.855 2.194 2.200 5.622 
 

0.359 2.782 1.989 2.143 4.722 

16 2.563 13.560 2.632 0.846 7.284 
 

1.848 9.780 1.917 0.717 3.930 

17 -0.721 -6.721 3.465 3.712 14.301 
 

-0.350 -3.264 3.364 3.665 13.554 

18 -1.108 -17.316 1.108 0.001 1.228 
 

-0.869 -13.586 0.870 0.011 0.756 

19 3.589 20.419 4.719 3.200 23.120 
 

0.973 5.534 3.090 3.063 10.328 

20 0.158 1.223 1.487 1.620 2.648 
 

0.061 0.472 1.404 1.537 2.366 

21 1.577 12.617 3.073 2.849 10.605 
 

0.659 5.271 2.633 2.753 8.013 

22 1.578 12.493 1.862 1.067 3.628 
 

0.602 4.766 1.154 1.063 1.493 

23 -0.957 -8.092 1.513 1.229 2.428 
 

-0.291 -2.460 1.178 1.197 1.518 

24 -2.126 -19.648 2.959 2.200 9.359 
 

-0.790 -7.296 2.027 1.996 4.608 

25 0.955 7.794 1.961 1.742 3.945 
 

0.132 1.075 1.612 1.633 2.684 

26 1.334 7.293 1.561 0.889 2.569 
 

0.719 3.931 1.126 0.949 1.417 

27 6.168 29.439 6.233 1.037 39.122 
 

3.345 15.964 3.473 1.079 12.352 

28 1.803 13.071 2.305 1.536 5.609 
 

0.694 5.035 1.611 1.553 2.895 

29 0.512 4.425 1.304 1.340 2.059 
 

0.244 2.109 1.045 1.136 1.350 

30 6.081 26.251 6.329 1.922 40.676 
 

2.327 10.045 2.874 1.847 8.827 

31 1.736 11.360 2.883 2.461 9.070 
 

0.648 4.241 2.354 2.420 6.275 

32 1.779 11.990 2.833 2.240 8.185 
 

0.229 1.543 2.038 2.057 4.285 

33 -0.456 -4.046 2.083 2.142 4.798 
 

-0.178 -1.578 1.937 2.033 4.165 

34 3.139 17.909 3.979 3.459 21.814 
 

2.250 12.840 3.198 3.213 15.389 

35 3.663 15.963 4.796 3.344 24.597 
 

1.201 5.234 3.104 3.092 11.003 

36 0.197 1.867 0.987 1.059 1.161 
 

0.045 0.428 0.958 1.048 1.100 
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APPENDIX 2: Predictive Performance of Base and Mixed-Effects (with Fixed-Effects only) Models 

 

Table A1 Summary of Predictive Performance of the Base and Mixed-Effects (with Fixed-Effects 

only) Models 

Data Set Model N Bias ( ) Accuracy 

( ) 

Bias% 

(   %) Min. Max. Mean StdDev 

Fitting 4.1 3882 -10.585 11.651 0.005 2.769 7.669 0.036 
 

 4.2 3882 -10.024 11.933 0.086 2.778 7.727 0.607 
 

Testing 4.1 287 -7.085 8.932 1.128 2.540 7.721 8.494 
 

 4.2 287 -7.046 9.260 1.122 2.574 7.883 8.453 

 

 

Table A2 Height Prediction for an Example Plot 

 

Model Observed  Predicted Bias% 

(   %) 

Accuracy 

( )                                 

(4.1) 37.34 25.60  21.84 3.75738   20.6210 32.0217 

 46.99 31.39  24.71 6.68504     

 31.75 27.43  19.83 7.59787     

 2.54 3.35  3.29 0.05880     

 mean 21.94  17.42 4.52477     

 StdDev    3.39826     

(4.2) 37.34 25.60    21.34 4.2650 22.5493 37.8319 

 46.99 31.39    23.82 7.5661   

 31.75 27.43    19.52 7.9082   

 2.54 3.35    3.30 0.0523   

 mean     17.00 4.9479   

 StdDev      3.6538   
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Table A4 Plot-by-Plot Comparison of Base and Mixed-Effects (with Fixed-Effects only) Models 

  BASE MODEL         MIXED-EFFECTS MODEL (with Fixed-Effects only) 

Plot ID Mean Bias Bias% RMSE StdDev Accuracy   Mean Bias Bias% RMSE StdDev Accuracy 

1 0.614 5.556 1.334 1.233 1.896 
 

0.541 4.903 1.299 1.229 1.803 

2 -0.223 -2.043 1.654 1.795 3.272 
 

-0.299 -2.738 1.660 1.789 3.290 

3 -1.771 -27.940 3.271 3.075 12.594 
 

-1.797 -28.344 3.262 3.043 12.492 

4 -0.109 -1.079 1.789 1.996 3.996 
 

-0.176 -1.739 1.787 1.989 3.986 

5 2.343 17.672 2.890 1.854 8.927 
 

2.265 17.081 2.827 1.854 8.566 

6 -0.275 -2.931 1.289 1.336 1.861 
 

-0.349 -3.722 1.310 1.340 1.917 

7 1.089 8.933 1.936 2.263 6.309 
 

1.011 8.295 1.895 2.267 6.160 

8 -0.775 -7.754 1.257 1.027 1.655 
 

-0.844 -8.450 1.297 1.022 1.757 

9 2.274 18.650 3.321 2.794 12.978 
 

2.196 18.011 3.265 2.790 12.609 

10 0.143 1.228 0.996 1.138 1.315 
 

0.071 0.607 0.984 1.133 1.289 

11 1.731 14.256 1.856 0.732 3.532 
 

1.659 13.663 1.787 0.727 3.281 

12 0.192 1.688 0.786 0.823 0.714 
 

0.115 1.016 0.774 0.827 0.697 

13 2.652 19.956 2.950 1.361 8.886 
 

2.573 19.361 2.878 1.360 8.470 

14 4.525 20.621 5.398 3.398 32.022 
 

4.948 22.549 5.873 3.654 37.832 

15 0.884 6.855 2.194 2.200 5.622 
 

0.828 6.420 2.154 2.179 5.432 

16 2.563 13.560 2.632 0.846 7.284 
 

2.720 14.391 2.746 0.532 7.681 

17 -0.721 -6.721 3.465 3.712 14.301 
 

-0.792 -7.385 3.470 3.700 14.320 

18 -1.108 -17.316 1.108 0.001 1.228 
 

-1.163 -18.175 1.164 0.039 1.355 

19 3.589 20.419 4.719 3.200 23.120 
 

3.624 20.618 4.725 3.166 23.157 

20 0.158 1.223 1.487 1.620 2.648 
 

0.119 0.921 1.455 1.589 2.538 

21 1.577 12.617 3.073 2.849 10.605 
 

1.546 12.371 3.086 2.885 10.715 

22 1.578 12.493 1.862 1.067 3.628 
 

1.506 11.926 1.800 1.064 3.400 

23 -0.957 -8.092 1.513 1.229 2.428 
 

-0.996 -8.416 1.529 1.217 2.473 

24 -2.126 -19.648 2.959 2.200 9.359 
 

-2.151 -19.876 2.945 2.151 9.252 

25 0.955 7.794 1.961 1.742 3.945 
 

0.912 7.446 1.923 1.721 3.795 

26 1.334 7.293 1.561 0.889 2.569 
 

1.695 9.268 1.898 0.936 3.750 

27 6.168 29.439 6.233 1.037 39.122 
 

6.234 29.755 6.289 0.957 39.785 

28 1.803 13.071 2.305 1.536 5.609 
 

1.780 12.903 2.319 1.590 5.694 

29 0.512 4.425 1.304 1.340 2.059 
 

0.566 4.888 1.383 1.411 2.312 

30 6.081 26.251 6.329 1.922 40.676 
 

6.221 26.856 6.481 1.989 42.661 

31 1.736 11.360 2.883 2.461 9.070 
 

1.744 11.412 2.865 2.431 8.949 

32 1.779 11.990 2.833 2.240 8.185 
 

1.790 12.064 2.789 2.173 7.927 

33 -0.456 -4.046 2.083 2.142 4.798 
 

-0.518 -4.596 2.073 2.115 4.744 

34 3.139 17.909 3.979 3.459 21.814 
 

3.165 18.058 3.939 3.318 21.022 

35 3.663 15.963 4.796 3.344 24.597 
 

4.160 18.130 5.167 3.310 28.262 

36 0.197 1.867 0.987 1.059 1.161 
 

0.119 1.129 0.974 1.059 1.136 
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