
 

 

 

PERFOMANCE OF THE CMIP5 MODELS IN SIMULATION 

OF PRESENT AND FUTURE PRECIPITATION OVER THE 

LAKE VICTORIA BASIN 

 

ANYANGO MAUREEN WANZALA 

I56/70060/2013 

 

DEPARTMENT OF METEOROLOGY 

UNIVERSITY OF NAIROBI 

BOX 30197-00100, 

NAIROBI, KENYA. 

 

A Research Project Submitted in Partial Fulfillment of the Requirements 

for the Award of the Degree of Master of Science in Meteorology 

JULY 2015



 i 

DECLARATION 

I certify that this research project is my original work and has not been presented for a degree 

in this or any other university. 

 

Anyango W. Maureen 

Signature…………….……… 

Date…………………………. 

This dissertation has been submitted for examination with our approval as University 

Supervisors: 

Supervisors: 

Prof. Ogallo, L.A 

Signature……………….……… 

Date…………………………….. 

Department of Meteorology 

Dr. Opijah, F. J 

Signature……….……………… 

Date………….………..………. 

Department of Meteorology 

Dr. Mutemi, J. N 

Signature……….…………….. 

Date………….………..………. 

Department of Meteorology 



 ii 

DEDICATION 

To my beloved husband Pinto and parents Mr. and Mrs. Wanzala for their wise counsel, 

advice, encouragement and spiritual inspiration they accorded me during the entire exercise.    

 

 

 

 

 

 

 



 iii 

ABSTRACT 

The usefulness and limitations in climate information are due to uncertainty inherent in the 

climate system. The reduction of errors increases the reliability of the information. Therefore, 

for any given region to have sustainable development there is need to apply climate 

information into its socio-economic strategic plans. 

The overall objective of the study was to assess the performance of the Coupled Model Inter-

comparison Project (CMIP5) over the Lake Victoria Basin. The data used in the study 

included the observed point station data, gridded rainfall data from Climate Research Unit, 

University of East Anglia (CRU) and hindcast data from eight Coupled Model Inter-

comparison Project 5 (CMIP5) for the period 1971 to 2005 for historical and 2006-2100 for 

model future projections. The methodology employed included trend analysis, spatial 

analysis, correlation analysis, Principal Component Analysis (PCA) regression analysis, and 

categorical statistical skill score.  

The present study is a preliminary interrogation of the ability of eight CMIP5 models to 

characterize seasonal and annual mean precipitation cycle over LVB. Analysis of the trends in 

the observed rainfall records indicated an increase in rainfall variability both in space and time for 

all the seasons. Similarly, majority of the eight models analyzed correctly reproduce the mean 

seasonal and annual cycle of precipitation for the period 1971–2005 as compared to gridded 

satellite-derived observations. At the same time the analysis shows significant biases in 

individual models depending on region and season. Specifically, a modest number of models 

were able to capture correctly the peaks of bimodal (March - May and October - December) 

and June - August rainfall while a few either dragged the onset to subsequent months or 

displaced the locations of seasonal rainfall. 

The spatial patterns of the individual models output from the models of MPI, MIROC, 

EC-EARTH and CNRM were closest to the observed rainfall patterns. The skill of the 

ensemble models was higher than those of the individual member models in terms of its 

ability to capture the rainfall peaks during the October - December season. Climate projections 

of rainfall over the region indicated that the March to May (MAM) and October to December 

(OND) seasonal rainfall for the period 2021–2050, 2051-2070, 2071-2100 will exhibit decreasing 

trends with major peaks in MAM rainfall occurring during 2041, 2083 and 2087 respectively in 

relation to the Representative Concentration Pathway (RCP) 4.5 scenario. 
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While the model was capable of reproducing the general climatological patterns over the 

region, it did not skillfully capture the effects of the small scale features on the region‘s 

climate. There is need for improvement in the model physics and resolution and optimization 

of the model domain in order to enhance the performance of the CMIP5 over the region. This 

study provides useful climate change and variability information for regional planning for 

sustainable development. The results of the study will play a crucial role in enhancing the 

socio-economic productivity of the region in terms of agriculture and food availability, water 

resources, transport, fisheries, power production, industry and health. 
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CHAPTER ONE 

1.0 INTRODUCTION 

1.1 Background  

Lake Victoria region is one of areas within East Africa with very high rate of population 

growth, fast growth of unplanned settlements; over use of natural resources, environmental 

degradation among many other socio-economic challenges (LEVMP, 2003). Lake Victoria, 

located at the heart of the three East African countries is the largest fresh water body in the 

tropical region and the second largest fresh water lake in the world after Lake Superior. The 

Lake and its adjoining catchments form the region known as the Lake Victoria Basin (LVB). 

Because of its spatial extent, Lake Victoria induces its own circulation pattern and hence 

influences the climate of its adjoining catchments (Anyah and Semazzi, 2005). Spatial-

temporal variability in climate has resulted into extreme weather and climate events, 

especially the extremes that have far-reaching impacts on livelihoods of communities, 

particularly in developing countries such as those of East Africa (Mutai et al., 1998). The 

weather and climate extremes of the lake region include floods, drought, lightning, hailstorm 

and landslides.  

Due to the economic importance of the LVB and the linkage of most regional activities to 

weather and climate, climate studies over the region are important. Addressing climate risks 

of the lake region require accurate and timely climate early information.   

Currently, more than 12 centers around the world have developed climate models to enhance 

our understanding of climate and climate change (IPCC, 2001, 2007). The use of model 

outputs for prediction and early warning from Global Climate Models (GCM) as well as 

assessment of regional climate change impacts has been inadequate and not exhaustive. This 

can be attributed to the coarse temporal and spatial resolution of most GCMs currently 

between 100 km and 300 km that makes it impossible to resolve the mesoscale forcing 

including orographic and other local scale drivers (such as inland water sources and 

convection) that play a vital role in regional climates (IPCC, 2001). Some attempts have been 

made to downscale GCMs output to regional level (Anyah, 2005) by scientists. Downscaling 

techniques help in obtaining regional projections of climatic changes ranging from smoothing 

and interpolation of GCM anomalies (Tabor and Williams, 2010), to neural networks, and 

regional climate modeling (Giorgi and Bates, 1990). Simulation of regional climates using 

high-resolution climate models has become a vital and an effective tool for studying regional 
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climate change and variability. This study focused on assessing the performance of the 

CMIP5 in simulation of the present and future rainfall over Lake Victoria region and 

downscale the model projections for future. 

1.2 Problem Statement  

Lake Victoria produces its own climate with distinct diurnal, seasonal and inter-annual 

characteristics. The social and economic importance and development of the LVB are highly 

dependent on rain-fed systems that are often disrupted by abrupt changes in weather and 

climate, which result to severe hazards such as fluctuating lake levels, frequent floods, 

prolonged droughts, and disease outbreak  

Despite a number of studies over the region on present-day climate variability, there is still a 

vast present-day and future climate information gap. This is as a result of the difficulties to 

represent some of the unique local and regional weather and climate, together with their 

interaction with global systems by many dynamical models. Model simulations based on 

climate scenarios are some of the tools recommended for assessing the impacts of climate 

change-related disasters (IPCC, 2007). 

The present study attempts to narrow the existing climate information gap over the LVB by 

assessing the performance of CMIP5 models to simulate the much needed accurate seasonal 

climate forecasts for early warning to reduce climate risks that affect the local livelihoods and 

life around the lake.  

1.3 Objectives of the Study  

The main objective of this study was to assess the performance of CMIP5 models in the 

simulation of the present and future rainfall over the Lake Victoria Basin. 

The specific objectives were to: 

a) Determine the temporal variability of observed rainfall records over the LVB during 

the recent past over the region. 

 

b) Determine the accuracy and skill of the best CMIP5 ensembles in simulating the 

observed temporal and spatial patterns of rainfall over the study region. 

c) Downscale the CMIP5 rainfall projections for the future  considering changes over 

various time windows  (e.g., years 2006-2040, 2041-2070, 2071-2100) 
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1.4 Justification of the Study  

Climate variability is associated with both positive and negative consequences that occur over 

many regions, including the Lake Victoria Basin (LVB). Thus, access to timely, accurate and 

detailed seasonal climate information is particularly vital in developing countries, where 

economic stresses are likely to increase the vulnerability to potentially damaging impacts of 

climate variability such as frequent floods and prolonged droughts causing famine, loss of 

lives and property.  Information on how skillful climate models are is vital in the regional 

planning for sustainable development. 

The highly variable customized climate over the LVB makes it almost impossible for the 

climate models to capture and simulate their outputs accurately. There is therefore need for 

comprehensive assessment of the model performance for specific regional application for 

optimum performance. Hence, assessing the skill of the seasonal climate models over the 

LVB would provide the information on climate variability required by policy makers on the 

mitigation and adaptation measures that are suitable for the region.  

1.5 Area of Study  

The study was conducted over Lake Victoria Basin (LVB). The main feature of focus in this 

region is the Lake Victoria. The lake is located within  SN  00.32.0  

and EE 00 5.345.31  . Lake Victoria has a surface area of about 68,800 km
2
, with a 

maximum depth of 79 m and a mean depth of 40 m; it is at an altitude of 1135 m (LEVMP, 

2003). The LVB covers an area of 181,000 km
2
 (LEVMP, 2003) and includes parts of 

Tanzania, Kenya, Uganda. The lake is shared by Kenya (6%), Uganda (45%) and Tanzania 

(49%). Primary inflows into the lake are the Kagera and Katonga rivers in the west and the 

Nzoia, Sondu and Mara rivers from the east. In all, a total of 17 perennial rivers drain the 

Lake Basin (Nicholson, 1996). However, the only outflow from the lake is River Nile 

(Victoria Nile) which leaves the lake at Jinja in Uganda and flows northward through Lake 

Kyoga. It is then joined by the blue Nile in Sudan to form the main river Nile that flows 

northward through Egypt and finally drains into the Mediterranean sea The LVB is one of the 

vital natural resources on which about 33 million people in the riparian countries are mutually 

dependent. The LVB serves as a resource for food, energy, water, building materials, and 

transport in the riparian communities. Figure 1a shows Lake Victoria and its adjoining 

catchments.  
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1.6 Observed Variability in the Role of the Lake Victoria Basin  

The LVB is one of the agriculturally most productive areas in East Africa and thus a major 

breadbasket and major foreign exchange earner for the region (Anyah, 2005). It is also 

important in terms of fisheries, water transport, and generation of hydroelectric power and 

fresh water supplies for both domestic and industrial use, among others (Anyah and Semazzi, 

2005). Moreover, Lake Victoria is the source of the Nile River, a watercourse of significant 

importance to many parts of Africa. 

  

The LVB has however been exposed to wanton environmental degradation. The rapidly 

growing population in the region (currently over 33 million people) has exerted excessive 

pressure on the limited natural resources. Environmental degradation practices such as 

deforestation within the lake catchments, dumping of untreated industrial wastes and more 

recently invasion by the water hyacinth, have negatively impacted the role of the lake basin in 

the previous four or so decades (LEVMP, 2003). For instance, WRMD (2005) has reported 

significant fluctuations of the lake water levels that have greatly impacted on the regional 

development goals, for example, losses in terms of a fall in fish supplies, unsafe docking of 

lake transport vessels, and hydroelectric power crisis among others. 

Figure 1: Lake Victoria Basin and its adjoining catchments (East Africa Secretariat 

report, 2006). 



 5 

The physical features also play a major role in weather modification over the LVB. The 

topography of the region is complicated with many mountains with the Great Rift Valley 

running meridionally. One of the local effects of topography are the thermally-induced 

Katabatic winds during the early morning when the highlands are colder (due to radiational 

cooling) than the lowlands and water surfaces. 

1.7 Climatology of the Study Area 

The climate over eastern Africa in general and Lake Victoria Basin in particular is mainly 

characterized by the spatial and temporal distribution of rainfall. This in turn determines the 

settlement patterns, population density and distribution and agricultural productivity over the 

region. The rainfall over the LVB exhibits high space-time variability. This high variation in 

rainfall has been attributed to the complex topography and the existence of large inland water 

bodies that have a unique mesoscale forcing influence. The region generally experiences two 

seasonal rainfall regimes. Most parts of the region nearer to the equator experience the 

bimodal regime. 

The first season, locally known as ‗long rains‘, occurs during the months of March to May 

(MAM). The second season, locally known as ‗short rains‘, occurs during the months of 

October to December (OND). These two wet seasons coincide with the passage of the Inter 

Tropical Convergence Zone (ITCZ) that lags behind the overhead sun by about 3 - 4 weeks 

(Ogallo, 1993b; Okoola, 1996; Mutemi, 2003). The intermediate periods between these two 

rainy seasons are relatively dry. Some parts of the region such as northern Uganda and 

southern Tanzania, further away from the equator experience a unimodal rainfall regime. 

Northern Uganda receives considerable rainfall during the months of June to July (JJA) 

season extending sometimes to September with a slight relaxation around June to July 

(Bamanya, 2007). However other parts of the region such as eastern Uganda experience three 

rainfall seasons exhibiting a trimodal regime, with the third peak occurring from July to 

August due to moisture influx from the Atlantic Ocean and Congo basin by westerly winds 

caused by intensification of the St. Helena anticyclone that displaces the meridional arm of 

the ITCZ to eastern Uganda (Bamanya, 2007). 

The Climate of the region is also controlled by global and regional telecommunications, as 

well as synoptic and local factors. Some of the synoptic scale features that affect rainfall over 

the LVB are the Lake Victoria trough, ITCZ, Subtropical anticyclones, Tropical cyclones, Jet 

streams, westerly waves and many other global and regional systems that include El-Nino 

Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD). The micro-scale features 
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interact with both the synoptic and large scale systems to produce the observed rainfall 

distribution over the region (Mukabana, 1992; Asnani, 1993; Ogallo, 1989). The 

characteristics of some of these global, regional, synoptic and local systems and their 

influence on the climate of East Africa and the LVB in particular are reviewed in the sub-

sections below. 

1.7.1 Lake Victoria Trough 

The quasi-permanent Lake Victoria trough coupled with the complex physical features 

induces mesoscale circulation with a strong diurnal cycle over the region. Due to the 

existence of inland water bodies mainly Lake Victoria, thermal contrasts that exist between 

land and water surfaces usually initiate local circulations, including land-sea breeze. A good 

example of the local effect is observed over the Lake Victoria which has a vigorous 

circulation of its own (Ogallo, 1988). The lake influence is due to its large body of water, the 

temperature contrasts between the lake and land during the day and the night resulting in a 

land breeze towards the lake during the night. In general, the land–sea breeze phenomenon 

results in the lake basin region getting some rainfall almost throughout the year. The rainfall 

is however significantly enhanced during the main rainy seasons discussed above due to the 

passage of ITCZ.  

1.7.2 Inter Tropical Convergence Zone  

The Inter – topical convergence zone (ITCZ) system is a boundary between inter-hemispheric 

monsoon wind systems over the region. The ITCZ is the main synoptic scale system that 

affects the intensity, distribution and migration of seasonal rainfall over the LVB. The onset 

and cessation of seasonal rainfall over the region depends on the onset and withdrawal of the 

ITCZ (Okoola, 1996). 

Over East Africa, the ITCZ has two spatial components. These include the zonal and 

meridional arms. The zonal arm, which has an East-West orientation, is a zone of 

convergence between the northeast and southeast monsoons/trades, while the meridional arm, 

which has a North-South orientation, is a zone of convergence between the westerlies from 

the Atlantic Ocean and the Easterlies (Kiangi et al., 1981; Ininda, 1995b; Okoola, 1996). The 

zonal component of the ITCZ migrates north and south of the equator following the seasonal 

migration of the sun with a time lag of about a month. The northward movement of the zonal 

arm of the ITCZ component is in response to the seasonal intensification (weakening) of the 

southeast (northeast) monsoon winds. It traverses East Africa twice a year causing the long 
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rains (March to May) and short rains (October to December) seasons over eastern Africa 

region (Ininda, 1995a; Okoola, 1996). 

For instance during long rains, the zonal component of the ITCZ, which runs from west 

Africa through central Africa to east Africa, moves from the Southern Hemisphere towards 

the Northern Hemisphere passing over parts of LVB. As a result, the rains start from the 

southern part and spread northwards. During this period, air masses from the Indian Ocean 

converge over East African region bringing in moisture. This component of the ITCZ reaches 

the north-most position in August and there after begins to retreat southwards when the 

southeast (northeast) monsoons weaken (intensify) until it reaches the south-most position in 

January (Griffith, 1972). 

The meridional component of the ITCZ oscillates from east to west and vice-versa, with the 

east most extent noted in July to August depending on the relative strength of the St. Helena 

anticyclone that is situated over the southern Atlantic Ocean. When this anticyclone 

intensifies, the meridional arm of the ITCZ is displaced eastwards giving rain to eastern parts 

of the LVB. During the season spanning from June to August the meridional arm of the ITCZ 

is normally located over eastern Uganda and highlands of western Kenya. This implies that 

much of Uganda is under the influence of moist, low-level westerly flow from the Congo 

Basin during this period. The effectiveness and depth of the ITCZ mainly depends on the 

intensity of the Subtropical anticyclones. These include the Arabian high to the northwest, the 

Azores high to the northeast of Africa, the Mascarene high to the southeast and the St. Helena 

high to the southwest. These anticyclones determine the characteristics of the monsoonal 

winds over East Africa. The characteristics of these subtropical anticyclones are reviewed in 

Section 1.7.3. 

1.7.3 Subtropical Anticyclones 

Subtropical Anticyclones are semi-permanent warm core, high-pressure systems centered 

over the subtropical latitudes, approximately S30 and N30  of the north and South Atlantic 

Ocean, and the Indian Ocean. Pressure differences create anticyclones between the equatorial 

regions and the subtropical regions necessary for driving the tropical trade winds. The 

anticyclones that influence the synoptic flow over East Africa are Mascarene, St Helena, 

Arabian, and the Azores high. These systems are most intensive during winter seasons of 

each hemisphere and weaken during summer. The moisture that comes into East African 

region depends on the location and strength of these anticyclones. 
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For instance, the Mascarene anticyclone over the south western Indian Ocean determines the 

characteristics of the moist south easterly monsoon flow over the Indian Ocean which 

influences rainfall over most of eastern Africa. The St. Helena anticyclone over the southeast 

Atlantic Ocean is responsible for the pronounced middle level westerly flow (the Congo air 

mass) over the region, which influences most parts of the LVB. The Azores high causes 

subsidence of warm dry air over the Sahara and neighboring regions while the Arabian 

anticyclone sends dry continental north easterly flow over most of the eastern parts of Africa 

(Griffith, 1972; Anyamba, 1984). 

1.7.4 El Niño Southern Oscillation  

The El Niño/Southern Oscillation (ENSO) phenomenon is a quasi-periodic feature of the 

ocean-atmosphere system (Ininda, 1995b), with extreme rainfall characteristics linked to 

ENSO conditions over the region (Ogallo, 1988). The ENSO have been found to play a key 

role in modulating climate pattern over   the LVB, with ENSO alone explaining about 50% of 

rainfall variance (Ogallo, 1988). Rainfall variability is known to be linked to ENSO 

phenomena. The variability is believed to show strong link to ENSO and IOD conditions 

especially during the OND season (Nicholson, 2013 and Mutai and Ward, 2000). 

The ENSO and IOD have been identified as a leading mode of tropical climate variability at 

inter-annual timescales characterized by SSTs and surface pressure anomalies over the global 

oceans (Ogallo, 1989). Recent study by Anyah and Otieno, (2013) over the region have 

demonstrated the ability of the GCM models to simulate climate scenarios especially during 

the ENSO and IOD episodes when downscaled. However the models still struggle to capture 

circulations around mountainous regions and lake breezes which call for opportunity for 

further research. 

1.7.5 Indian Ocean dipole  

The Indian Ocean Dipole (IOD) index is another mode of climate variability known to 

modulate rainfall over Africa region (Nicholson, 2013). The IOD is the difference between 

the sea surface temperature anomalies of the western and south eastern equatorial Indian 

Ocean.  Studies by Owiti et al., 2008) have shown anomalously warm sea surface 

temperatures are at times experienced over the western Indian Ocean and cold SSTs over the 

Eastern region. This condition has been found to have a great influence on the rainfall over 

east Africa. Mutai and Ward (2000) in his study showed that the winds from the Indian 
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Ocean are influenced by IOD SST anomalies especially on the amount of moisture that is 

pushed to the region.  

The IOD is positive when western Indian Ocean is warmer than the Eastern Indian Ocean, 

and vice versa. The positive phase of IOD is known to be of great influence on the rainfall 

condition over the Equatorial and South Africa region. It activates atmospheric convection 

and leads to enhanced rainfall during the rainy season and wet spells during the dry season. 

This positive phase causes an anomalous cooling of SST in the eastern tropical Indian Ocean 

and brings droughts in the Indonesian and Australian region. Negative phase of IOD occurs 

when eastern Indian Ocean is warmer, bringing more rainfall to Australian and Indonesian 

region. Studies have also shown that just like ENSO, IOD may induce unusual circulation 

and rainfall pattern in countries beyond the proximity of Indian Ocean (Owiti and Weijun , 

2012) 

Owiti et al., (2008) analyzed the evolution phases of IOD, and showed that it starts 

developing in April and reaches the peak in October or November and starts decaying in 

January. This therefore implies that the SST anomalies pattern experienced during IOD 

events have a strong signal on the regional climate system during OND rainfall season, hence 

indicating that some of the extreme events that have been experienced over the region have a 

close relationship with the negative and positive phases of IOD. Studies over the region have 

found strong relationships between the IOD and ENSO and the rainfall characteristics with 

dominant signals from easterly (westerly) wind anomalies for extremely positive (negative) 

IOD events (Owiti at al., 2008, Bowden et al., 2007 and  Nichlosn, 1996).  

1.7.6 Sea Surface Temperatures  

Studies on SST‘s have pointed out their direct influence on seasonal rainfall over East Africa. 

The SST anomalies have been found to exert a stronger control on inter annual variability of 

monsoon rainfall over Africa (Pohl and Camberlin, 2006). The impact of SST anomalies is 

nonlinear with respect to warm and cold events. The monsoon is weakened during the warm 

events but changes less noticeably during the cold events. Associated with the warm SST 

anomalies, both the Walker circulation and local Hadley circulation diminish substantially. 

These changes are accompanied by reduction in total rainfall and water vapor convergence in 

the Asian monsoon region. Rowell, (2013) explored possible reasons for the differing 

characters of the long rains and short rains seasons and their respective relationships with 

SSTs.  
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Negligible correlations were found between Pacific SST‘s and the long rains. However, 

significant correlations were found with the short rains. Warmer (colder) SSTs anomalies 

have been associated with wet (dry) conditions over East Africa. The interactions between 

global atmospheric jets, Madden Jullian Oscillation(MJO), high level wind circulations 

amongst others modulate the rainfall characteristics of the region (Rowell, 2013,  Omeny et 

al., 2008, Pohl and Camberlin 2006, Philipon et al., 2002, Mutai and Ward, 2000 and 

Omondi et al., 2009). 

1.7.7 Tropical Monsoons 

Monsoons are seasonal winds, which reverse their directions depending on the temperature 

difference between the oceans and the continents. They are seasonal (sometimes inter-

hemispheric) wind systems, which converge at the ITCZ. They are the major transporters of 

moisture inland for rain formation. During the short rains season (OND), the northeast 

monsoonal wind is advancing while the southeast monsoonal wind is receding. For the long 

rains season (MAM), the northeast monsoonal wind is receding while the southeast 

monsoonal wind is advancing. In both cases the low level monsoonal air current is topped by 

air due to easterly current which is generally dry. 

During the Northern Hemisphere winter (DJF), most parts of East Africa are under the 

influence of the northeast monsoonal wind currents. These winds originate from the Arabian 

high and are generally dry since they are of continental origin and their trajectory is largely 

over the land (Anyamba, 1984; Okoola, 1996). They enter East Africa in a north easterly 

direction and bifurcate into two air streams over northern Kenyan. One stream flows 

southward along the east African coast and over the mainland Tanzania while the other flows 

westward into Uganda, southern Sudan and eastern Democratic Republic of Congo (DRC). 

The southeast/southwest monsoonal wind currents are experienced during the Southern 

Hemisphere winter (June-September). These winds are cool and moist, and originate from the 

Mascarene Anticyclone in the southern Indian Ocean. They are transported by the east 

African low level jet stream that is fully developed in July. They branch into two air streams 

over the coastal plains of Tanzania and eastern Kenya. These monsoonal currents are 

shallow, being confined to the lowest three kilometers above sea level (Findlater, 1969; 1971; 

Okoola, 1996). Their inversion hinders cloud development, rendering them shallow and 

therefore unable to precipitate. Much of the equatorial eastern Africa is cold and dry during 

the inversion of these Southeast/Southwest monsoonal currents. However, eastern Uganda 

and western Kenya receive considerable amounts of rainfall due to the interaction between 
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the southeast monsoonal wind currents, the Congo air mass and the Lake Victoria thermally-

induced mesoscale circulation (Kiangi et al., 1981; Mukabana and Pielke, 1996). 

The intensity of the southeast monsoonal air currents is stronger in a narrow zone which is 

confined to the east Africa highlands. The peak wind speed is found near 850 mb level. This 

maximum in the southeast monsoonal current constitutes the east African low level jet 

(Findlater, 1971). The influence of this jet stream together with other global jet streams on 

the LVB weather is reviewed in section 1.7.8.  

1.7.8 Jet Streams  

A jet stream is a current of fast moving air found in both the upper and the lower levels of the 

atmosphere. Jet streams are usually found somewhere between 10-15 km (6-9 miles) above 

the earth‘s surface. The jet streams that have been observed to influence weather over eastern 

Africa are the Subtropical Jet, Tropical Easterly Jet (TEJ) at about 650 mb, African Easterly 

Jet (AEJ), Turkana Jet (Kinuthia and Asnani, 1982) and East African Low Level Jet 

(EALLJ). Several authors have discussed the effect of these jet streams on the climate of East 

Africa. These include Findlater (1969); Okoola (1996); Mukabana (1992) and Asnani (1993). 

Jet streams are associated with the formation of the waves in some regions (Krishnamurti and 

Bhalme, 1976).  
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CHAPTER TWO 

2.0     LITERATURE REVIEW FOR THE STUDY 

2.1 Climatology of the Lake Victoria Basin 

The general climate of the basin is highly variable ranging from equatorial type, modified 

with rainfall occurrences all year round, particularly over the lake surface, to semi arid type 

characterized by intermittent droughts over regions near the shores (Anyah, 2005). However, 

the seasonal rainfall is also characterized by a bimodal cycle, just like most areas of East 

Africa. 

While this seasonal cycle of rainfall is mainly controlled by the north-south migration of 

ITCZ, studies have shown the existence of a quasi-permanent trough that occurs over Lake 

Victoria (Asnani, 1993) due to locally induced convection, orographic influence and land-

lake thermal contrast modulates rainfall pattern over the lake and hinterlands. The existence 

of this quasi-permanent trough over the lake favors convection over the basin throughout the 

year. 

It has been established that the estimates of the mean annual rainfall distribution over the 

Lake Basin based on the measurements taken from lakeshore rain gauge stations vary 

between 800mm and 3000 mm (Ogallo 1981, Nicholson 1996, Asnani, 1993). The large-scale 

precipitation over the lake is mainly initiated from the easterly/southeasterly (Indian Ocean) 

monsoon flow that transports maritime moisture into the interior of East Africa. The humid 

Congo air mass has also been linked to significant rainfall amounts received over the western 

and northwestern parts of the lake (Asnani, 1993). 

Large-scale winds over the Lake Basin are mainly easterly trades most of the year.  

Superimposed on this basic flow regime are the south-easterly (SE) or north-easterly (NE) 

monsoons that are mostly driven towards, and often converge over, the ITCZ location. The 

strength of the monsoons also depends on the sub-tropical anticyclones over the Arabian Sea 

(Arabian high pressure cell) and southwestern Indian Ocean (Macarene high pressure cell).  

The distribution of solar radiation over the lake is also partly related to the season, altitude 

and latitude. Thus, since the lake lies astride the equator, the lake basin is characterized by 

intense insolation throughout the year. Lake water temperatures also usually follow the 

magnitude of solar radiation input but with some lag (Bugenyi and Magumba, 1996). Thus, 

based on sample measurements over a number of points over the lake surface, the mean 
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monthly solar radiation is estimated at 240-270W/m ranges between 24 and 28 and the 

surface water temperatures (Ochumba, 1996; Bugenyi and Magumba, 1996). 

2.1.1 Climate Extremes over the LVB 

The inter-annual variability of the Lake Basin is closely linked to the SST anomalies over the 

global ocean basins.  The inter-annual variability of the LVB climate is characterized by 

periodic episodes of anomalously wet/dry conditions. Some of the most recent events include 

the 1961/62 and 1997/98 floods that left behind a huge trail of damage to property and 

infrastructure (Anyah, 2005). The 1961/62 floods were associated with a strong zonal SST 

gradient over the equatorial Indian Ocean and mid-troposphere westerly flow from Tropical 

Atlantic (Anyamba, 1984; Anyah and Semazzi, 2005). 

On the other hand, the  1997/98 floods coincided with one of the warmest ENSO episodes 

(strongest El Niño) of the last century as well as very strong Indian Ocean dipole mode. 

These floods resulted to the displacement of communities, and destruction of the 

infrastructure and crops as well as outbreak of diseases. Droughts on the other hand affect 

food production, availability of water, and generation of hydroelectric power for industrial 

and domestic consumption and outbreak of some unique diseases including those related to 

water scarcity and contamination. The majority of short falls in food supply recorded in 1928, 

1933-34, 1937, 1939, 1942-44, 1947, 1951, 1952-55, 1957-58m 1984/85 and 1999-2000 over 

the region could be easily associated with rainfall deficits experienced in the respective years 

(Odada et al., 2006). 

2.1.2 Socio-economic Activities over the LVB 

There are several socioeconomic activities which the people of the LVB are involved in and 

these include: fishing, farming, bee keeping, trading activities, quarrying and sand mining 

and mining of gold and other minerals (Odada et al. 2006). 

Fishing is undertaken for both subsistence and commercial goals. Most of the fisher folk have 

been fishing over the years as a source of their livelihood. In the past decade fishing became 

increasingly commercialized threatening even the nutrition source for the LVB inhabitants. 

Most fish and particularly Nile Perch is sold to fish processing plants or other agents as a 

result increased prices that are out of reach of most poor to average households. Fish frames 

from the processing plants are now common sources of nutrition to these households 

(LEVMP, 2003). Fish catch is also declining due to increased fishing effort and illegal fishing 

methods. 
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Agriculture by far is the main stay of the LVB inhabitants. Farming of food and cash crops is 

practiced in the LVB. Food crops include maize, bananas, cassava, sorghum, millet, rice, 

sweet potatoes and an assortment of vegetables and fruits. Main cash crops include coffee, 

cotton and sugar care. Livestock in the LVB is significant particularly in the Tanzania, 

Uganda, Rwanda and Burundi sides. The traditional way of livestock keeping is still 

practiced. This has some environmental implications, cultural traits and economic 

significance. However, with the declining open spaces for grazing and pressure for land, there 

is a need for adapting cattle rearing to new realities. In the natural resources utilization area, 

the LVB inhabitants also indulge in beekeeping for livelihood and commerce. Tourism is 

based on mainly wildlife. In this basin, the Serengeti, Maasai Mara, Owen falls and the 

source of the Nile at Jinja among others represent the wealth of tourist attractions of the LVB 

(Odada et al., 2006). 

Mining is another natural resource-based activity in the LVB. Gold mining, quarrying and 

sand mining are some of the major mining activities. On the Tanzania side, gold mining is 

quite a big industry. This, however, poses a threat to the Lake and its flora and fauna if it is 

not carried out in a responsible manner. Mercury, which is mainly used by small-scale miners 

for processing of gold, is a heavy metal which accumulates in the food chain and may be 

dangerous once the amounts accumulated are high and widespread. Odada et al., 2006 found 

evidence of low mercury concentrations in fish and human hair, lower than the WHO 

reference value, in Mgusu gold mine and the Nungwe Bay of the Lake Victoria goldfields of 

Tanzania. Living organisms in the water like fish may take it in small proportions from the 

contaminated water flowing from mining sites or riverbanks; human beings eat the fish and 

the metal accumulates in their bodies. 

2.1.3 Observations, Processes, Modeling, Prediction and Applications 

In terms of climate, the lake produces it own climate with distinct diurnal, seasonal and inter-

annual characteristics. Kinuthia and Asnani, (1979) reported that meso-scale circulation 

(lake/land breeze) generated by land/sea interactions and orographic forcing, for instance, 

around Lake Victoria, have a great impact on the climate of the surrounding regions. The 

high ground to the east and north east of Lake Victoria experiences a phenomenal level of 

hailstorms occurrences annually. Temporal variation of rainfall over the LVB occurs on 

various time scales, which include diurnal time scales (Kinuthia and Asnani, 1979; Asnani, 

1993; and Barring, 1987), quasi–biweekly time scales (Okoola, 1993), intra–
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seasonal/monthly time scales (Tomsett, 1969, Mutai, 2000), seasonal time scales (Ogallo, 

1988) and annual time scales (Ogallo, 1984). 

Kizza et., al, (2009) studied the temporally variability of rainfall over the LVB. They 

established a positive trend in the Oct-Dec rainfall. The extreme rains in 1961 and 1997 were 

studied by Conway (2002) who showed that the two events were associated with a dipole-like 

reversal of Indian Ocean sea surface temperatures. In addition, 1997 was a strong El Niño 

year. The 1961 and 1997 events were, similar in spatial and temporal characteristics and 

occurred mainly in the short rains period (October–December). The two events had far 

reaching hydrological impacts in the regions (including record river flows and flooding) with 

large socio-economic consequences (Conway et al. 2005). Other years with extreme rainfall 

include 1937, 1941, 1947, 1951, 1961, 1963, 1977, 1989, 1997 and 2001. 

It has been reported that the current state of prediction over the monsoon region is not much 

better than the prediction of long-term mean climate and there is almost no skill in the 

prediction of seasonal anomalies (Palmer et al., 2000). The use of an ensemble mean of 

seasonal forecasts, generated from adjacent start dates, also appeared to perform very close to 

a climatological forecast, thus showing almost no skill for the prediction of seasonal 

anomalies (Palmer et al., 2004). Fowler and Ekstrom, (2009) examined the performance of 

seasonal climate prediction using atmospheric GCMs in the context of the Atmospheric 

Model Inter–comparison Project (AMIP) data sets. The examination of the performance of 

monthly and seasonal forecasts from a number of research and operational atmospheric 

GCMs showed very low skill for the prediction of precipitation. 

In an attempt to solve the problem of uncertainty and sensitivity to parameterization and 

initial conditions that are characterized in most GCMs, the concept of multimodal ensemble 

prediction has been developed and tested for forecasting purposes, Palmer et al., (2000). The 

use of an ensemble prediction from one model systematically provides better results than the 

standard deterministic forecasting with only one run which improves the accuracy and 

forecasts reliability to the consumers. This in the past has been studied by researchers 

including (Krishnamurti et al., 2000 and Hagedorn et al., 2005). 

Using numerical simulation, Ininda (1998) showed that the rainfall over most regions in East 

Africa is influenced by the SST through modification of the east-west (Walker‟s) circulation 

and the local north–south (Hadley) circulation. Mutemi (2003) applied an updated version of 

ECHAM AGCM (ECHAM4.5) to study the variability of East Africa climate. The model 
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reproduced the climatological mean pattern such as the bimodal seasonality of rainfall 

associated with the north-south migration of the ITCZ and monsoonal flow, except the 

correct amplitudes of the inter-annual variability linked to extreme El-Niño episodes such as 

the 1982 and 1997 were not well reproduced. 

Otieno (2013) analyzed GPC model performance over the Greater Horn of Africa using the 

twelve GPC models. He found that the forecast skill is much better over the equatorial region 

and the models perform poorly in the northern and southern sectors. 

2.1.4 Downscaling 

Despite notable development, GCMs do not provide perfect simulations of reality and cannot 

provide the details on very small spatial scales due to incomplete scientific understanding and 

limitations of available observations (Jolley and Wheater, 1996). For bridging the gap 

between the scale of GCMs and required resolution for practical applications, downscaling 

provides climate change information at a suitable spatial and temporal scale from the GCM 

data. Statistical and dynamical downscaling are two broad main types.   

2.1.4.1 Dynamical Downscaling 

Dynamical downscaling is usually based on the use of regional climate models (RCMs), 

which generate finer resolution output based on atmospheric physics over a region using 

GCM fields as boundary conditions ( Giorgi and Mearns, 1991 and 1999). The physical 

consistency between 

GCMs and RCMs are controlled by the agreement of their large-scale circulations (Von 

Storch et al., 2000). The individual choice of domain size controls the divergence between 

the RCMs and their driving GCMs (Jones et al., 1997).  

As a consequence of the higher spatial resolution output, RCMs provide a better description 

of topographic phenomena such as orographic effects (Christensen, 2007). Moreover, the 

finer dynamical processes in RCMs produce more realistic mesoscale circulation patterns ( 

Buonomo et al., 2007). However, RCMs are not expected to capture the observed spatial 

precipitation extremes at a fine cell scale (Fowler and Ekstrom, 2009). A study by Rauscher 

et al., (2009) has found that the skill improvement of RCM depends not only on the RCM 

resolution but also on the region and the season. Although RCMs may give feedback to their 

driving GCMs, many dynamic downscaling approaches are based on a one-way nesting 

approach and have no feedback from the RCM to the driving GCM (Maraun et al., 2010).  
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The main problem with RCMs is that significant biases in the simulation of mean 

precipitation on large scales can be inherited from the driving GCM (Durman et al., 2004). 

Frei et al. (2006) noted that inter-model differences are related to model biases. Moreover, 

Christensen et al. (2008) suggest that GCM biases may not be linear and biases may not be 

cancelled out by simply taking differences between the control and future scenarios, which 

many studies have adopted ( Jenkins et al., 2009).  

Despite their rapid development, RCMs are still ridden with problems related to 

parameterization schemes due to the fact that physical processes are modeled at a scale on 

which they cannot be explicitly resolved (Maraun et al., 2010). The RCM precipitation 

outputs are still found to be sensitive to the numerical scheme and parameters (Fowler and 

Ekstrom, 2009; Bachner et al., 2008; Murphy et al., 2009). 

2.1.4.2 Statistical Downscaling 

Based on particular statistical relationships between the coarse GCMs and fine observed data, 

statistical downscaling is a straightforward means of obtaining high resolution climate 

projections (Wilby et al., 2004). Taking the relationship with RCMs into consideration, 

Maraun et al., (2010) divided statistical downscaling approaches into prefect prognosis (PP), 

model output statistics (MOS) and weather generators.  In PP, the statistical downscaling 

relationships are established by observations. In MOS, gridded RCM simulations and 

observations are used together to develop downscaling relationship. Using PP, MOS or both 

of them, weather generators are hybrid downscaling methods. 

With respect to types of statistical methods, downscaling can be categorical, continuous-

valued or hybrid (Wilby and Wigley, 1997). In categorical downscaling, classifications and 

clustering are the common statistical techniques to relate data to different groups according to 

large-scale circulation patterns and data attributes (Fowler and Ekstrom, 2009). For 

continuous-valued downscaling, regression relationships are widely used to map large scale 

predictors onto local-scale predictands (Chandler and Wheater, 2002).  In hybrid 

downscaling, different statistical approaches are combined (Wilby et al., 2002) and they are 

sometimes referred to as weather generators, based on algorithms of conceptual processes 

(Chandler, 2006; Kilsby et al., 2007). 

Although statistical downscaling can be a computationally efficient alterative to dynamic 

downscaling, the validity of statistical downscaling is based on an assumption that the 

empirical relationship identified for the current climate will hold for future climate scenarios 
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(Wilby et al., 2004). It also assumes that the employed large-scale predictor variables are 

adequately modeled by the GCM for the resultant scenarios to be valid. Busuioc et al. (1998), 

in their verification of the validity of empirical downscaling techniques, found that in the case 

considered, GCMs were reliable at the regional scale with respect to precipitation in their 

study area and that the assumptions of validity of predictor-predictand relationship held up 

under changed climate conditions. 

Von Storch et al. (1993) suggested that if statistical downscaling is to be useful, the 

relationship between predictor and predictand should explain a large part of the observed 

variability and that the expected changes in the mean climate should lie within the range of its 

natural variability. This is generally true for temperature. However, for precipitation the 

influence of ‗local‘ factors on occurrence and amounts can often be considerable. As a result 

of these site-specific considerations the relationship between the large-scale predictors and 

local outputs often reflects a smaller part of the actual observed variability (Sweeney and 

Fearl, 2003).  
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CHAPTER THREE 

3.0 THE FIFTH VERSION OF THE COUPLED MODEL INTER-

COMPARISON MODELS 

3.1 Theoretical Framework 

The key tool in this research was the fifth version of the Coupled Model Inter-comparison 

Project (CMIP5) model output. An attempt was made in this section to provide detailed 

information on the CMIP5. The CMIP5 project comprises 29 modeling centers with each 

centre giving outputs from their models on monthly and seasonal basis. Some of the CMIP5 

models being used worldwide for predictions and climate projections and adopted in this 

study are the Autralian, Beijing, Institute of Space Research model, Canadian, Ec- Earth 

Consortium, NOAA, Korean, Japan, Max-Planck, and Norwegian models.  

Over the last 15 years, a number of international climate centers have developed operational 

capabilities for global long-range prediction, typically for 3 months mean climate anomalies 

and to 6 months ahead, using ensemble integrations of dynamical models. Working through 

Expert Teams, WMO has fostered coordination between these centers, leading to the 

establishment of new infrastructure within the Global Data Processing and Forecasting 

System (GDPFS) that improves both access to the forecast information and the usefulness of 

this information for generating climate services. 

3.2 Model Physics of the Fifth Version of the Coupled Model Inter-comparison 

Project 

 

EC-EARTH is an Earth System Model (ESM) that is developed by a consortium of European 

Weather Services and university groups. It is based on the seasonal prediction system of 

European Centre for Medium-Range Weather Forecasts (ECMWF) and currently consists of 

an atmosphere and an ocean model that communicate with each other through the Oasis 

coupler (Rotstayn, 1998). 

 In EC-EARTH it is possible to modify the external climate forcing, for example by imposing 

different concentrations of greenhouse gases, resulting in changes in the atmospheric and 

ocean circulation at global and regional scales. One can also produce several simulations with 

a specific forcing but slightly different initial conditions to explore the uncertainty of future 

climate projections. The ensembles of ESM simulations can thereafter be downscaled to 
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study the impact of a changed climate at regional and local scales, as is planned in Mistra-

SWECIA. 

The atmospheric component of EC-EARTH is the ECMWF IFS (Integrated Forecast System) 

model version 31r1. There are 62 levels in the vertical, with a model top at 5hPa (~37 km). 

The dynamical part of the model uses a spectral transform approach, with a present horizontal 

resolution of TL159. The physical parameterization schemes of the model (including clouds, 

rain, turbulence and land surface processes) are all calculated on a reduced N80 Gaussian 

grid, which corresponds to a 1.125 degrees spacing (125 km). 

The ocean component is NEMO (Nucleus for European Modelling of the Ocean), a primitive 

equation model adapted to regional and global ocean circulation problems. Prognostic 

variables are the three-dimensional velocity field, a linear or non-linear sea surface height, 

temperature and salinity. In the horizontal direction, the model uses a curvilinear orthogonal 

grid with the North Pole shifted to Greenland. The nominal horizontal resolution is 2 degrees 

with refinement at the equator. In the vertical direction, a full or partial step z-coordinate, or 

s-coordinate, or a mixture of the two can be used. There are 31 levels in the vertical. The grid 

is based on a three dimensional Arakawa C-grid. Various physical choices are available to 

describe ocean physics. NEMO includes the sea-ice model LIM2(LouvainIceModelversion2) 

(Rotstayn, 1998). 

CNRM-ESM was developed by the European Centre of Meteorology in order to contribute to 

phase 5 of the Coupled Model Inter-comparison Project (CMIP5). CNRM  includes the 

atmospheric model ARPEGE-Climat ,the ocean model NEMO, the land surface scheme 

ISBA and the sea ice model GELATO coupled through the OASIS system (Zhang and 

McFarlane, 1995). Horizontal resolution has been increased both in the atmosphere (from 

2.8_ to 1.4_) and in the ocean (from 2_ to 1_). The dynamical core of the atmospheric 

component has been revised. A new radiation scheme has been introduced and the treatments 

of tropospheric and stratospheric aerosols have been improved.  

The global spectral ARPEGE-Climat atmospheric model is derived from the ARPEGE/IFS 

(Integrated Forecast System) numerical weather prediction model developed jointly by 

Meteo-France and European Center for Medium-range Weather Forecast (ECMWF). This is 

a spectral model that operates on a T127 triangular truncation within CNRM-ESM. All the 

physics and the calculations of the nonlinear terms require spectral transforms onto a reduced 

Gaussian grid (Hortal and Simmons,  1991) equivalent to a spatial resolution of about 1.4 in 
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both longitude and latitude. CNRM-ESM is run in a ‗‗low-top‘‘ configuration with 31 vertical 

levels, following a progressive hybrid r-pressure discretization. 

The ocean component of CNRM-ESM.1 is based on the ocean part of the ‗‗Nucleus for 

European Modelling of the Ocean‘‘ (NEMO, version v3.2). refinement of 1/3_ is added in the 

tropics. In the vertical, 42 levels are used (from 10 m at the surface, to 25 at 100 m, 130 at 

600 m, and 300 at 5,000 m) and a partial step formulation (Barnier et al., 2006; Penduff et al., 

2007) is applied to the thickness of the bottom layer. At the surface, the model has a linear 

free surface (Roullet and Madec, 2000). Advection of temperature and salinity is done using a 

total variance dissipation scheme (Levy et al., 2001 and Cravatte et al., 2007), a second-

order, two-step monotonic scheme with moderate numerical diffusion. 

MIROC-ESM is based on a global climate model MIROC (Model for Interdisciplinary 

Research on Climate) which has been cooperatively developed by the University of Tokyo, 

NIES, and JAMSTEC (K-1 model developers, 2004; Nozawa et al., 2007). A comprehensive 

atmospheric general circulation model (MIROC-AGCM 2010) including an on-line aerosol 

component (SPRINTARS 5.00), an ocean GCM with sea-ice component (COCO 3.4), and a 

land surface model (MATSIRO) are interactively coupled in MIROC. These atmosphere, 

ocean, and land surface components, as well as a river routing scheme, are coupled by a flux 

coupler (K-1 model developers, 2004). 

The MIROC-AGCM has a spectral dynamical core, and uses a flux-form semi-Lagrangian 

scheme for the tracer advection. The horizontal triangular truncation at a total horizontal 

wave number of 42 (T42; equivalent grid interval is approximately 2.8125 degrees in latitude 

and longitude) is used. 

An aerosol module in MIROC, SPRINTARS, predicts mass mixing ratios of the main 

tropospheric aerosols: carbonaceous (BC and organic matter; OM), sulfate, soil dust, and sea 

salt, and the precursor gases of sulfate, i.e. sulfur dioxide (SO ) and DMS. The aerosol 

transport processes include emission, advection, diffusion, sulfur chemistry, wet deposition, 

dry deposition, and gravitational settling. Emissions of soil dust, sea salt, and DMS are 

calculated using the internal parameters of the model, and external emission inventories are 

used for the other aerosol sources. SPRINTARS is coupled with the radiation and 

cloud/precipitation schemes for calculating the direct, semi-direct, and indirect effects of 

aerosols. 
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The MPI-ESM was developed by the Max-Plank Institute of Meteorology. MPI-ESM couples 

the atmosphere, ocean and land surface through the exchange of energy, momentum, water 

and important trace gases such as carbon dioxide. Compared to the previous version 

ECHAM5/MPIOM, the MPI-ESM was extended by numerous developments. It is based on 

the components of ECHAM6 for atmosphere and MPIOM for ocean as well as JSBACH for 

terrestrial biosphere and HAMOCC for the ocean´s biogeochemistry. The coupling of 

atmosphere and land on the one hand and ocean and biogeochemistry on the other hand is 

made possible by the separate coupling program OASIS3. Energy, momentum, water and 

CO2 are exchanged with the help of this coupling. 

The atmospheric component focuses on the coupling between diabatic processes and large-

scale circulations, both of which are ultimately driven by radiative forcing. It consists of a dry 

spectral-transform dynamical core, a transport model for scalar quantities other than 

temperature and surface pressure, a suite of physical parameterizations for the representation 

of diabatic processes, as well as boundary data sets for externalized parameters, such as trace 

gas and aerosol distributions, tabulations of gas absorption optical properties, temporal 

variations in spectral solar irradiance, land-surface properties 

Table 1 summarizes the main characteristics of the eight CMIP5 models, including the 

resolution of the models and hindcast period of each Center model as well as the convective 

schemes employed in each of the models. 
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Table 1: The Coupled Model Inter-comparison Project 5 (CMIP5) Models 

Model Name  Center  Convective Scheme   Horizontal 

Resolution  

Hindcast  

period  

CCCMA Canadian Centre for 

Climate Modelling 

and Analysis 

Zhang and McFarlane 

scheme (Zhang and 

McFarlane, 1995) 

2.8125* 2.79062 1951–2005 

EC-EARTH EC-EARTH 

consortium 

Prognostic Arakawa-

Shubert based  Rotstayn, 

(1998) 

1.125 * 1.12148 1951–2005 

GFDL-ESM 

 

NOAA Geophysical 

Fluid Dynamics 

Laboratory Center  

Brethron scheme 

(Bretherton et al., 2004) 

0.625 * 0.5 1951–2005 

MIROC-

ESM 

 

Japan Agency for 

Marine-Earth 

Science and 

Technology, (The 

University of Tokyo 

Arakawa and Shubert 

(Arakawa and Shubert, 

1974) 

1.4 * 1.4 1951–2005 

MPI-ESM Max Planck Institute 

for Meteorology) 

Bulk mass flux scheme 

(Tiedtke, 1989) with 

modification for deep 

convection according 

to Nordeng (1994) 

1.875 * 1.85 1951–2005 

NorESM Norwegian Climate 

Centre 

Zhang and McFarlane 

scheme (Zhang and 

McFarlane, 1995) 

2.5 * 1.895 1951–2005 

HadGEM2  Korea 

Meteorological 

Administration 

Bulk mas flux scheme 

(Del Genio and Yao, 

1993) 

1.25 * 2 1951–2005 

CNRM European Centre of 

Meteorology 

Zhang and McFarlane 

scheme (Zhang and 

McFarlane, 1995) 

2.8125* 2.79062 1951-2005 

 

 

3.3 Representative Concentration Pathways 

Socio-economic and emission scenarios are used in climate research to provide plausible 

descriptions of how the future may evolve with respect to a range of variables including 

socio-economic change, technological change, energy and land use, and emissions of 

greenhouse gases and air pollutants. They are used as input for climate model runs and as a 

basis for assessment of possible climate impacts and mitigation options and associated costs. 

In the past, several sets of scenarios have performed such a role, including the IS92 scenarios 

(Leggett et al., 1992) and, more recently, the scenarios from the Special Report on Emission 
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Scenarios (SRES) (Nakicenovic et al., 2000). A literature review revealed that scenarios can 

be found with a year 2100 radiative forcing from as low as 2.5 W/m
2
 to between 8 and 

9 W/m
2
 and higher (Fisher et al., 2007). The RCP set, thus, should cover this range, but also 

include intermediate scenarios as the majority of the scenarios in the literature lead to 

intermediate forcing levels. 

The Representative Concentration Pathways (RCPs) are named according to radiative forcing 

target level for 2100. The radiative forcing estimates are based on the forcing of greenhouse 

gases and other forcing agents. The four selected RCPs were considered to be representative 

of the literature, and included one mitigation scenario leading to a very low forcing level 

(RCP2.6), two medium stabilization scenarios (RCP4.5/RCP6) and one very high baseline 

emission scenarios (RCP8.5) (Moss et al., 2008). The first scenario (RCP2.6) has also been 

referred to as RCP3PD, a name that emphasizes the radiative forcing trajectory (first going to 

a peak forcing level of 3 W/m
2
 followed by a decline (PD = Peak–Decline). The Fourth 

Assessment Report (AR4) identified only 6 scenarios that lead to forcing levels below 

3 W/m
2
, but by now more than 20 scenarios in the literature lead to similar forcing levels as 

RCP2.6. RCP4.5 corresponds to the ‗category IV‘ scenarios in AR4 (containing the far 

majority of the scenarios assessed in AR4, i.e. 118). The number of mitigation scenarios 

leading to 6 W/m
2
 in the literature is relatively low (around 10)—but at the same time many 

baseline scenarios (no climate policy) correspond to this forcing level. Finally, RCP8.5 leads 

to a forcing level near the 90th percentile for the baseline scenarios, but a recent literature 

review was still able to identify around 40 scenarios with a similar forcing level. 

Table 2 summarizes the general overview of representative concentration pathways (RCPs) 

and their descriptions. 

Table 2: General overview of representative concentration pathways (RCPs) and their 

descriptions 

Scenario 
Description 

RCP8.5 
Rising radiative forcing pathway leading to 8.5 W/m

2
 (~1370 ppm CO2 eq) by 

2100. 

RCP6 
Stabilization without overshoot pathway to 6 W/m

2
 (~850 ppm CO2 eq) at 

stabilization after 2100 

RCP4.5 
Stabilization without overshoot pathway to 4.5 W/m

2
 (~650 ppm CO2 eq) at 

stabilization after 2100 

RCP2.6 
Peak in radiative forcing at ~3 W/m

2
 (~490 ppm CO2 eq) before 2100 and then 

decline (the selected pathway declines to 2.6 W/m
2
 by 2100). 
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CHAPTER FOUR 

4.0  DATA AND METHODOLOGY 

This section presents a discussion of the data and methodology that were used in the study. 

4.1 Data 

The data used in the study included observed point stations datasets consisting of the monthly 

rainfall archives used for GHA/ East Africa climate operations at the IGAD Climate 

Prediction and Application Centre (ICPAC), Individual model hindcasts from the CMIP5 

website and Climate Research Unit (CRU) monthly datasets. The observed point station 

datasets cover Kenya, Uganda and Tanzania all making a total of 14 stations considered in 

the study within the Lake Victoria basin. All the datasets were spanning from 1971 to 2005 

(35years) for historical records and 2006- 2100 for future projections. 

4.1.1 In-situ Observations 

The in-situ data including observed monthly station rainfall datasets for various National 

Meteorological Services of regional institutions were obtained from the respective 

meteorological headquarters and were picked based on the rainfall homogenous zones. The 

climatic homogeneous zones adopted in the study were developed by the IGAD Climate 

Prediction and Applications Centre (ICPAC), (Mutua et al., 1999). 

 Figures 2- 4 indicate the stations and homogeneous zones used for March to May (MAM), 

June to August (JJA) and October to December (OND) respectively. Figure 5 shows the 

distribution of the selected stations over the area of study. Table 3 shows the latitude-

longitude locations and altitude of the various stations that were considered in the study.  
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Figure 2:  Homogeneous climatic zones for the March-May rainfall season over the LVB 

(Mutua et al., 1999.) 

       

Figure 3: Homogeneous climatic zones for the June- August rainfall season over the LVB 

(Mutua et al., 1999.) 
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Figure 4: Homogeneous climatic zones for the October-December rainfall season over the 

LVB (Mutua et al., 1999.) 

 

 

Figure 5: Station codes and their locations as used in the study (Sabiiti, 2008) 
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Table 3: Station’s latitude-longitude in (degrees), altitude (m) and their codes 

STATION CODE LONGITUDE LATITUDE ALTITUDE 

(M) ABOVE 

MSL 

BUKOBA BUK 31.82 -1.27 1150 

ENTEBBE ENT 32.45 0.05 1200 

KABETE KABT 36.7 -1.27 1180 

KABALE KAB 29.98 -1.25 1870 

KISUMU KIS 34.73 -0.07 1200 

KITALE KIT 34.95 1.03 1900 

MASINDI MAS 32.9 2.25 1140 

MBARARA MBA 30.63 -0.6 1399 

MUSOMA MUS 33.8 -1.5 1148 

MWANZA MWA 32.85 -2.53 1144 

NAKURU NAK 36.05 -0.27 1848 

NAMULONGE NAM 32.62 0.53 1167 

SOROTI SOR 33.62 1.72 1073 

TORORO TOR 34.17 0.72 1171 

 

4.1.2 Model Hindcast Datasets from Coupled Model Inter-comparison Project 5 

Centers 

The model hindcast rainfall datasets will be obtained from individual CMIP5 centers. The 

datasets are at a horizontal resolution of 50 km. For the part of historical assessment, the 

datasets were spanning from 1970 to 2005for historical and 2006-2100 for the future 

scenarios considering RCP 4.5 and RCP 8.5. 
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4.2 Data Quality Control  

In order to make valid inference from the analysis of the observed data, it is necessary to 

ascertain its quality. Errors in the datasets arise from instrumentation errors, station 

conditions, observational and recording procedures, transmission, coding and decoding, and 

during data processing. Data quality control refers to careful scrutiny of the completeness and 

consistency of the climate data records over an area. Therefore, the data quality was 

examined before being used in the analysis in order to remove any errors inherent in the data. 

The method of estimation of missing rainfall data and temporal consistency check described 

Section 4.2.1 was used. 

4.2.1 Estimation of Missing Rainfall Data 

Several methods are available in literature for estimating missing data. These include simple 

long-term average, correlation, isopleths or Thiessen polygon methods.  

In this study missing data values were estimated using long-term average and correlation 

methods based on the cross-correlation between the nearest rainfall stations to the one with 

missing value and the ratio of the climatological values of rainfall over the stations. The 

missing records in station data were estimated using the relation given by the WMO (1986) in 

Equation (1). 

n

mn
m

X

XX
X


   ……………………………………………….. (1) 

In Equation (1) Xm is the estimated rainfall for the month at a station , Xn  is the observed 

rainfall for the month at the neighboring station, 


Xn  is the average rainfall of the 

neighboring station, 


Xm  is the average rainfall of the station with missing data which is 

highly correlated with the station, m and n are the length of the records for the station with 

missing data and the neighboring station. To fill in the missing data, a station with the highest 

cross-correlation to the one with missing data was used. 

Under the temporal consistency check, the mass curve analysis techniques were used. Under 

this technique, the observed values were compared to the preceding ones. The method was 

also used to detect omissions in sequential records.
 

4.3 Methodology 

This section presents methods that were used to achieve various specific objectives listed 

above. 
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4.3.1 Trend Analysis 

Analysis of trends of data in time series will be carried out using several methods.  These will 

include graphical and statistical methods (Ogallo 1980, 1981). The Graphical method 

involves plotting of smoothed and unsmoothed times series. The time series will be smoothed 

using 5 running average filter. Under statistical method a linear   polynomial function was 

fitted and significance of slope tested using the Equation 2 of the form 

y t =    a + bi xt………………………………………. (2) 

Trend is significant when b is significant based on T- test. 

4.3.2 Standardized Anomaly Indices 

The amount of rainfall varies significantly from one location to another. It is therefore 

necessary to standardize rainfall values at the specific location before any comparisons can be 

made between the two locations. Many methods have been used to standardize time series 

observations. The two most common parameters that have been used in normalizing time 

series observations are the mean and the variance.  

Various indices have been used to assess rainfall anomaly in East Africa. Studies in the 

region that have used such indices include the standardized rainfall anomaly index (Ogallo 

and Nassib, 1984) and weighted rainfall anomaly index (Ininda, 1995 a). The standardized 

rainfall anomaly was adopted in this study for fair comparison of model simulated and 

observed records. The standardized anomaly, z, was computed using Equation (3) 

)3....(................................................................................
Sx

XX
z




  

In Equation 3, X is the observed data, 


X is the mean of the data and Sx is the standard 

deviation of the data set. The value of z provides immediate information about the 

significance of a particular deviation from the mean (Nyenzi, 1988). 

4.3.3 Downscaling of CMIP5 Ensemble model outputs 

In this study, the primary downscaling technique considered for downscaling CMIP5 outputs 

was empirical statistical downscaling technique. 

Empirical statistical downscaling is based on the development of mathematical transfer 

functions or relationships between observed large-scale precipitation and the observed 

surface precipitation. The transfer function is generally regression-based and is derived 

between a set of atmospheric grid scale predictors, output from both reanalysis projects and 

CMIP5, and a single predictand. However, the use of statistical downscaling requires a 
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number of assumptions, the most fundamental of which is that the derived relationships 

between the observed predictor and predictand will remain constant under conditions of 

climate change and that the relationships are` time-invariant‘ (Maraun et al., 2010).  

This was determined in terms of multivariate linear regression of the form given by Equation 

(4) 

 
n

=i

iiioi e+xb+a=y
1

…………………………………..  (4) 

 

In Equation 4, oa  and ib are the intercept and regression coefficients for the predictors ix  

applied in the Equation and ie  is the multivariate error term. In this study, the predictors were 

the model outputs.  

Principal Components Regression (PCR) was employed with gridded predictors, to 

recalibrates large-scale CMIP5 fields  to the observed smaller spatial scale observed 

precipitation using regression analyses in which the predictand was observed rainfall over a 

region (P). PCR does not only relates large-scale climatic information to the smaller spatial 

scale variable of interest, but also eliminates systematic errors and biases in CMIP5  fields by 

regressing with the predictand fields. Expressing PCR in Equation 5 

 ln   tk

k

k

kt PCP ,

1

0  


  ----------------------------------------( 5) 

In Equation 5, tP is the seasonal rainfall in year ‗t‘, tkPC ,  is the k
th
 Principal Components 

(PCs) from the retained k PCs of precipitation forecast,   denote the regression coefficients 

obtained by minimizing the sum of squares of error.  We considered the logarithm of the 

rainfall as predictand to eliminate the possibility of estimating negative flows. To select ‗K‘ 

PCs from the predictor set (gridded precipitation forecasts). Step-wise regression was 

employed since it maximizes the correlation between the observed rainfall and predicted 

rainfall for the chosen validation scheme.   

4.3.4 Model output verification methods  

Determination of the skill of the downscaled model outputs during the climatological period 

were investigated through the verification of model outputs using simple correlation analysis, 

analysis of errors, linear regression analysis and graphical displays. 
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4.3.4.1 Graphical Displays  

The method of graphical display is the simplest way of comparing the relationship between 

variables. This method was used to provide visual comparison between the trends of CRU 

and model outputs. Such a method however is subjective and provides only qualitative 

comparison, and may be biased by the scales of the various datasets used and needs to be 

supplemented by other methods described in respective Sections. 

4.3.4.2 Analysis of error in simulated outputs  

Error analysis was used to determine the Root Mean Square Error (RMSE) in the simulated 

model outputs. The Root Mean Square Error (RMSE) was computed as in Equation 6 







N

i N

OiMi
RMSE

1

2)(
………………………………. (6) 

 

In Equation 6, Mi and Oi are the model simulated and observed values respectively. N is the 

length of the records.  

4.3.4.3 Correlation Analysis 

Correlation analysis was done between the CRU rainfall data and the model data to determine 

stations that strongly correlate with the CMIP5 outputs. The correlation coefficient (r) 

between a model output variable )( if and the corresponding observation (Oi) is given by 

Equation 7 
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In Equation 7, N is the total number of years used for analysis,


f   is the mean of the model 

output and


O  is the mean observation of the observed variable.  The correlation ranges from -

1 to 1 where a value of 1 denotes perfect linear relationship and -1 denotes a perfect inverse 

linear relationship.  

The computed value of correlation coefficient between observed and model output was tested 

using the student t-test. The test significance level considered was 95% level of significance. 

If the computed value of t is greater than the tabulated value, then the correlation coefficient 

was significant. The t-test for correlation coefficient is given by Equation 8: 
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In Equation 8, n is the total number of years used in the study; 2n  is the degrees of 

freedom, tn 2  is the value of the confidence level computed from the correlation coefficient 

and r  is the correlation coefficient. If the computed value of t is greater than the tabulated 

value of 2nt , then the correlation coefficient is significant. 

4.3.4.4  Multiple Linear Regression 

Once the correlation between variables is established, it is usually important to determine the 

nature of the relationship between the correlating variables. Regression analysis helps 

determine linear relationships between variables. In this study regression analysis was done 

using Equation 9.  


n

=i

iiioi e+xb+a=y
1

 ………………………………………… (9) 

In Equation 9, oa  and ib are the intercept and regression coefficients for the predictors ix  

applied in the Equation. In this study, the predictors were the model outputs. The variance of 

the error term ie , in this case is given by Equation 10. 

 S2=
SSE

n− ( k+1)  ……………………………………………… (10) 

In Equation 10, SSE  is the sum of the square of errors, n  is the period of time considered for 

the study. 

The test of the adequacy of the model was done by computing R² (the multiple coefficient of 

determination) given by Equation 11. 
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In Equation 11, y
i  is the model output and y is the mean of the model output. For a perfect 

model the value of 2R
 
should be 100%. For R² = 0, it implies lack of fit, while R² = 1 implies 

perfect fit. Regression analysis in this study was used to determine the linear relationship 

between the model outputs and seasonal rainfall anomalies for the 14 rainfall stations used in 
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the study. The stepwise regression technique was used as a means of picking the best 

individual predictor into the regression model equation.  

4.3.5 Categorical Statistics  

Categorical statistics was used to analyze the relationship of model output and the observed 

rainfall values.  A 3 x 3 contingency table was used to display the data.  

Table 3 gives the basic structure and entries from categorical analysis from which some skill 

score was evaluated. The letters in the Table were used to calculate the various scores. Below 

Normal (BN), Normal (N) and Above Normal (AN) categories were used to indicate the 

rainfall that was observed and predicted.  Letters A-I denote the values obtained at different 

categories for the predicted and observed events. Letters J-O show the totals of the events 

observed at different categories, and letter T is the total number of events carried out. 

   Table 4: A 3 * 3 contingency Table 

 FORECAST TOTAL 

OBSERVED  BELOW 

NORMAL 

NORMAL ABOVE 

NORMAL 

 

BELOW 

NORMAL 

A B  C M 

NORMAL D E  F N 

ABOVE 

NORMAL 

G H I O 

TOTAL  J K L T 

 

4.3.5.1 Bias Score 

The bias score measures the ratio of the frequency of forecast rainfall events to the frequency 

of observed rainfall events. It indicates whether the forecast system has a tendency to under 

forecast (Bias<1) or over forecast (Bias>1) rainfall events. It ranges from 0 to ∞ the perfect 

score is 1 (100%). The Bias score will be calculated using Equation 12 generated from Table 

4. 
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4.3.5.2 Probability of Detection  

The Probability of Detection (PoD) gives a simple measure of proportion of rainfall events 

successfully forecasted by the model. It is calculated by dividing the total number of correct 

forecasts by total number of events observed. PoD ranges from 0 to 1 where a perfect score is 

1 (100%). Equation 5, gives the formula for computing the PoD for below normal, normal 

and above normal categories with the letters have their meanings as defined in Subsection 

4.3.5. 

 PoD=   
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4.3.5.3 False Alarm Ratio  

The FAR gives a simple proportional measure of the model‘s tendency to forecast above 

normal rainfall where the rainfall is below normal. The score ranges from 0 to 1 (100%), the 

perfect score is 0. The FAR for the below and above normal categories will be given by 

Equation 14 with the letters having their meanings defined Subsection 4.3.5. 

FAR=
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4.3.5.4 Heidke Skill Score  

The Heidke Skill Score (HSS) measures the fraction of correct forecasts after eliminating 

those forecasts which would be correct due to purely random chance. The numerator is the 

number of correct forecasts, and the reference forecast in this case is the rainfall events 

experienced by a given geographical location (Climatology). The score ranges from -∞ to 1, 
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the perfect score is 1 (100%). Any score less than zero means the model is worse off than 

climatology. The HSS for this study will be computed using Equation 15. The meanings of 

the letters in Equation 15 are defined in Subsection 4.3.5.  

HSS=

A+ E+ I−
JM +KN +LO

T

T−
JM +KN+LO

T

……………………………… (15) 
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CHAPTER FIVE 

5.0  RESULTS AND DISCUSSIONS 

5.1 Result from Quality Control 

The missing data of stations with less that 10% of records missing were estimated, while 

those which had more than 10% of missing records were omitted from the study. The rainfall 

data that were estimated in the study are summarized in Table 5 

Table 5: Estimation of Missing Data for stations with less than 10% of missing records 

over the LVB 

Station Years with Missing Data Months with Missing Data 

Mbarara 1973, 1974, 1985 

1990 

1992 

1994 

Jan, Feb, Mar 

Aug, Dec 

Dec 

Dec 

Kabale 1973, 1974, 1985 

1990 

Jul, Aug, Sept, Nov, Dec 

Aug, Sept, Oct, Nov, Dec 

Namulonge 2003 

2004 

Sept, Oct, Nov, Dec 

Nov 

Kitale 1994 

2004 

May 

Dec 

Musoma 2004 Dec 

 

5.1.1 Result from Homogeneity Test 

The single mass curve homogeneity test was applied to the data. The Figure 6 shows some of 

the examples of results obtained from the homogeneity test for the observed rainfall. All the 
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mass curves were almost linear, signifying that the rainfall records were homogeneous. The 

data was therefore considered homogeneous and hence suitable for use in the study. 
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Figure 6: Mass curve to test the homogeneity of the annual observed rainfall records for 

the period 1961-2009 

5.1.2 Results from Evaluation of CRU datasets against station 

The choice of CRU datasets for this study was based on the fact that CRU data strongly 

correlates with the observed rainfall station data during the MAM and OND seasons over the 

LVB. Figures 7 and 8 show the inter-annual variability of CRU and observed rainfall datasets 

for representative stations of the LVB, i.e., Mwanza, Kisumu and Entebbe stations. From 

Figure 7 it can be noticed that CRU datasets picked most of the station extremes with 

significant correlations of 0.82, 0.44 and 0.30 respectively and from Figure 8, the significant 

correlations of 0.61, 0.74 and -0.30 respectively.  However the highest correlation explained 

only 51% and less in accuracy of the datasets over these stations, hence subsequent results in 

the study used CRU for the analyses. 
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Figure 7:  Inter-annual variability of rainfall output (mm) of CRU (blue shading) and 

station observations (red shading) over Mwanza, Kisumu and Entebbe for March-May 

season. 

    

                                                

Figure 8: Inter-annual variability of rainfall output (mm) of CRU (blue shading) and 

station observations (red shading) over Mwanza, Kisumu and Entebbe for October-

December season  
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5.2 Trend Analysis and the Annual Cycle 

The trends in rainfall showing the temporal patterns are presented. To examine rainfall trends 

over the area of study, climatic homogeneous zones over the region were used. Each of the 

two main rain seasons was considered using the representative stations for each of the rainfall 

homogeneous zones. The observed annual cycle of rainfall as well as the seasonal trends of 

the three seasons: MAM, JJA and OND were plotted and the results are in the respective 

Subsections 5.2.1, 5.2.2, 5.2.3 and 5.2.4 respectively. 

5.2.1 Observed and Model Annual Cycles of Rainfall 

Figure 9 represents the plotted rainfall cycle for observed rainfall and MPI, CNRM, MIROC 

and EC-EARTH models over the area of study. It can be seen that over the LVB, there are 

two major rainfall seasons occurring between March–May (MAM) with its peak in April and 

October–December (OND) with a peak occurring in November 

The months of June–August (JJA) are relatively dry. The observed rainfall pattern over this 

region can be alluded to the systems discussed earlier in Section 1.7. The models were able to 

simulate the observed annual cycle of bimodal rainfall with peaks in April and November 

respectively. However, during the March-May season, the MPI, CNRM and EC-EARTH had 

their peaks in May except for the MIROC model which had a peak in April. During the OND 

season, the entire represented model had a peak rainfall in the in October except for the 

MIROC model whose peak was in September. 
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Figure 9: Rainfall annual cycle for observed (Cyan), MPI (Blue), MIROC (Red), EC-

EARTH (Green) and CRNRM (Purple) models for the years 1971-2005 over the LVB 
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5.2.2 Observed March-May Rainfall Trends 

Figures 10, 11 and 12 show observed March-May rainfall trends over Kisumu, Mwanza and 

Mbarara. Following the March–May (MAM) homogeneous climatic zones over the area of 

study, outlined in Figure 2, seasonal rainfall from Kisumu, Mwanza and Mbarara was used to 

examine the trends in MAM season rainfall over the LVB. The results for three stations in 

Figures 10, 11 and 12 indicated, Mwanza in the northern part of Tanzania, and Kisumu in the 

southwestern part of Kenya, are experiencing decreasing rainfall trends. The results in Figure 

12 show an increasing rainfall trend over Mbarara station. However, the test for the 

significance of the trend indicated that Kisumu and Mwanza had insignificant decreasing 

trend whereas, Mbarara had an insignificantly increasing trend as shown in Table 6. 

 

 

Figure 10: :  Observed March-May seasonal rainfall time series (blue), trend line (purple) 

and 5 year moving average (red) for Kisumu for 1961-2013. 
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Figure 11: Observed March-May seasonal rainfall time series (blue), trend line (purple) 

and a 5 year moving average (red) for Mwanza for 1961-2009. 

 

Figure 12: Observed March-May seasonal rainfall time series (red), trend line (purple) and 

a 5 year moving average (red) for Mbarara for 1961-2013. 

5.2.3 Observed June-August Rainfall Trends 

The trends in June-August rainfall are presented in Figures 13-14. The results for Mbarara 

indicate increasing trend while Kabale indicate decreasing trend in rainfall during this season. 

Mbarara, which is situated North-South of the LVB had a significant increasing slope while 

Kabale had an insignificant decreasing slope. 
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Figure 13: Observed June-July seasonal rainfall time series (blue), trend line (purple) and 

a 5 year moving average (red) for Mbarara for 1961-2013 

 

Figure 14: Observed June-July seasonal rainfall time series (blue), trend line (purple) and 

a 5 year moving average (red) for Kabale for 1961-2013. 

5.2.4 Observed October-December rainfall trends  

Figures 15 and 16 show the rainfall trends in the October–December (OND) season over the 

area of study basing on the representative stations from OND homogeneous climatic zones 
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(Figure 4) were used. The stations considered here included Bukoba and Mwanza. The 

seasonal rainfall trends for Mwanza (Figure 15) and Bukoba (Figure 16) were analyzed. The 

results for Bukoba and Mwanza show insignificantly decreasing trends during the OND 

season. This implies some evidence of rainfall variability over the region of study. 

 

 

Figure 15: Observed October- December seasonal rainfall time series (blue), trend line 

(purple) and a 5 year moving average (red) for Mwanza for 1961-2009 

 

 

Figure 16: Observed October- December seasonal rainfall time series (blue), trend line 

(purple) and 5 year moving average (red) for Bukoba for 1961-2009 
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The Table 6 summarizes the stations considered for each season and their respective p-value. 

Table 6:  Stations Considered for each season and their respective P-value 

March-May Season 

Station P-value 

Kisumu 0.066 

Mwanza 0.38 

Mbarara 0.32 

July-August Season 

Mbarara 0.042 

Kabale 0.057 

October-December Season 

Mwanza 0.073 

Bukoba 0.061 

 

5.3 Evaluating the Best Performing Models 

In order to select the models that were performing better in terms of skill over the LVB, error 

analysis, correlation analysis and categorical statistics were carried out. These are discussed 

in the Subsections 5.3.1, .5.3.2 and 5.3.3. 

Figure 17 shows the sub-domains that were considered in the study for ease of application of 

model simulated outputs. 
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Figure 17: Sub -domains (A, B, C and D) for application of the Model simulated outputs 

over the LVB. 

5.3.1 Results from error analysis  

The study examined the errors between the seasonal model outputs and the CRU seasonal 

rainfall for the seasons within the year. The Root Mean Square Errors (RMSE) shown in 

Table 7 were analyzed for the sub-domains representative stations shown in Figure 17. The 

results from error analysis indicated that most of the models had larger errors during the 

MAM season and decrease during the OND season. This implies that the model performances 

in simulating the observations are fairly better over some parts of the region during the OND 

season as compared to the MAM season.  

5.3.1.1 Analysis of the Root Mean Square Errors (RMSE)  

The results in Table 7 show the values of the root mean square errors computed using 

Equation (6) in Section 4.2.4.2 over the sub-domains A, B, C and D indicated in Figure 17. 

The results show that the models had larger errors during the MAM season and they decrease 

during the OND season. Shaded values show cases where the errors were fairly large by more 

than 0.2. The larger errors during MAM season are attributed to poor simulation of the 

observations during this season. The improvement of the model performance in simulating 

the observations results to lesser errors during the OND season. 
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Table 7: Computed Root Mean Square Error (RMSE) between Model outputs and CRU 

seasonal rainfall records. 

Sub-

Domain/ 

season 

MAM OND 

 

C
C

C
M

A
 

 C
N

R
M

 

 E
C

-E
A

R
T

H
 

  G
F

D
L

 

 H
ad

G
E

M
 

 M
IR

O
C

 

 M
P

I 

 N
o
rE

S
M

 

 C
C

C
M

A
 

 C
N

R
M

 

 E
C

-E
A

R
T

H
 

  G
F

D
L

 

 H
ad

G
E

M
 

 M
IR

O
C

 

 M
P

I 

 N
o
rE

S
M

 

 

A 0.28 0.17 0.22 0.2 0.23 0.18 0.18 0.20 0.19 0.12 0.12 0.18 0.14 0.10 0.14 0.15 

B 0.21 0.18 0.41 0.27 0.34 0.11 0.18 0.27 0.32 0.14 0.20 0.23 0.16 0.10 0.15 0.17 

C 0.19 0.15 0.18 0.26 0.31 0.12 0.16 0.32 0.19 0.15 0.14 0.26 0.16 0.12 0.14 0.16 

D 0.22 0.19 0.34 0.26 0.33 0.15 0.20 0.28 0.21 0.17 0.14 0.27 0.17 0.12 0.16 0.19 

 

5.3.1.2 Root Mean Square Error for March-May Season 

Figure 18 shows bar graphs representing the RMSE computed for the individual models over 

the sub-domains A, B, C and D for March-May season. Across the four sub-domains,  EC-

EARTH and HadGEM models had the highest RMSE of approximately 0.41 and 0.35 

respectively, whereas, MIROC, MPI and CNRM had the lowest RMSE of 0.11, 0.12 and 0.14 

respectively, for the period 1971- 2005. However, the errors committed by the individual 

models during this season were fairly larger by 0.17 and this may be attributed to the poor 

simulation of the observed rainfall by the global models. 
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Figure 18: Computed RMSE for individual models for March- May season over the sub-

domains A, B, C and D considered in the study for time period 1971- 2005 
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5.3.1.3 Root Mean Square Error for October-December Season 

Figure 19 shows the RMSE computed for the individual models over the sub-domains A, B, 

C and D for the October-December season. Across the four sub-domains, CCCMA, GFDL 

and NorESM models had the highest RMSE of  0.31, 0.24 and 0.21 respectively, whereas, 

MIROC, EC-EARTH and CNRM had the lowest RMSE of 0.11, 0.12 and 0.14 respectively 

for the time period 1971- 2005. However, during this season the errors were fairly lower than 

the March-May season by 0.07 and this may be attributed to the improvement in the 

simulation of the observed rainfall by the global models 
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Figure 19:  Computed percentage RMSE for individual models for October- December 

season over the sub-domains A, B, C and D for the time period 1971-2005. 

5.3.2 Validation of Model Outputs 

The study validated the rainfall outputs from the best models basing on the RMSE as an 

objective to evaluate model performance over the region. The results from the validation of 

the model would provide the reliability (confidence) that would be attached to the climate 

change projection obtained by the CMIP5 Representative Concentration Pathways (RCPs) 

system over the region.  

Model performance was evaluated on the basis of its ability to simulate the annual cycle and 

the observed temporal patterns of rainfall over the region of study. CRU rainfall data records 
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at a spatial resolution of 1.5
o
 x 1.2

o 
were used to aid the comparison of model gridded data

 

with observations over the area of study. 

5.3.2.1 Results from the validation of seasonal rainfall Trends 

The study evaluated the skill of the CMIP5 models in simulating the observed trends in seasonal 

rainfall over the region of study. Model-simulated seasonal rainfall outputs were compared with 

CRU datasets. Some results for the various seasons are presented for the sub-domains over the 

area of study in the Subsections 5.3.2.1.1 and 5.3.2.1.2. 

5.3.2.1.1 March-May Season 

Figure 20 shows the graphical display of March-May (MAM) seasonal rainfall as simulated 

by the some of the individual CMIP5 models obtained from CRU for the period 1970–2005 

over the sub-domains A, B, C and D shown in Figure 17. The results indicate that although 

some of the models underestimate rainfall during this season the observed year to year 

rainfall trends for the months of March-May are fairly well simulated by the model over sub-

domains in the area of study. 
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CRU CNRM, MIROC, MPI over Zone C
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Figure 20: Inter- annual variability of CNRM (blue), MIROC (pink), MPI (yellow) and 

CRU (cyan) for March-May (MAM) for a period 1971-2005 over the sub domains A, B, C 

and D 
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5.3.2.1.2 Ensemble Model Validation for March-May (MAM) Season 

Figure 21 shows the graphical display of March-May (MAM) seasonal rainfall as simulated 

by the ensembles of the best three models, CNRM, MIROC and MPI models based on the 

RMSE in Table 6, compared with CRU for the period 1970–2005 over the sub-domains A, B, 

C and D shown in Figure 17. The results indicate that the observed year to year rainfall trends 

for the months of March-May are fairly well simulated by the model over sub-domains in the 

area of study as compared to the individual models in Figure 21. An ensemble model output 

minimizes the errors observed in the individual models (Otieno, 2013).  In addition, the 

model ensemble picked the direction but still underestimated the observed variability. 
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Figure 21: Inter-annual variability of Ensemble (pink) and CRU (blue) for March-May 

(MAM) for the period 1971-2005 over the sub domains A, B, C and D 

5.3.2.1.3 October–December season  

Figure 22 graphical display of October- December (OND) seasonal rainfall as simulated by 

the some of the individual CMIP5 models as compared to CRU for the period 1970–2005 

over the sub-domains A, B, C and D shown in Figure 17. The results show individual models 

fairly simulates rainfall during this season. The year to year rainfall trends for MIROC, 

CNRM, EC-EARTH and CRU rainfall exhibit reasonable harmony over sub-domain A, B, C, 

and D in the area of study. 
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CRU,CNRM,EC-EARTH,MIROC over Zone B
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CRU,CNRM,EC-EARTH,MIROC over Zone C
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CRU,CNRM,EC-EARTH,MIROC over Zone D
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Figure 22: : Inter-annual variability of CNRM (blue), MIROC (pink), MPI (yellow) and 

CRU (cyan) for October-December (OND)  for a period of 1971-2005 over the sub domains 

A, B, C and D 

5.3.2.1.4 Ensemble Model Validation for October-December Season 

Figure 23 shows the graphical display of October- December (OND) seasonal rainfall as 

simulated by the ensembles of the best three models based on the RMSE in Table 6, these 

models were CNRM, MIROC and EC-EARTH, compared with CRU for the period 1970–

2005 over the sub-domains A, B, C and D shown in Figure 17. The results indicate that the 

observed year to year rainfall trends for the months of October-December are well simulated 

by the model over sub-domains in the area of study as compared to the individual models in 

Figure 23. From this it is noted that an ensemble model output minimizes the errors observed 

in the individual models. 

The peaks during the OND season associated with ENSO events were fairly well replicated 

by the ensemble of these three models i.e., MIROC, EC-EARTH and CNRM over the four 

sub-domains in the study area. These peaks could be associated w it h  some global tele-

connection like ENSO phenomenon which is the main driver during the OND season 

(Muhati et al., 2007). However a few peaks of the observed rainfall pattern were missed in 

sub-domain D and this could be due to weak linkage with ENSO conditions in these region.  
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CRU(CNRM,MIROC) over Zone A
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CRU(CNRM,EC-EARTH,MIROC) over Zone B
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CRU(CNRM,EC-EARTH,MIROC) over Zone C
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CRU(CNRM,EC-EARTH,MIROC) over Zone D
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Figure 23: Inter-annual Variability of Ensemble (pink) and CRU (blue) for October-

December (OND) for the  period 1971-2005 over the sub domains A, B, C and D 

5.3.2.1.5 Regression Analysis 

Table 8 shows the performance of the individual models output based on their coefficient of 

determination and P-values from the regression analysis. The regression equation developed 

for each zone shows the models output that were picked at 95% confidence level. High R-

square values and low P-values is an indication of good performance of the model output 

across the zones. Most zones had values of R-square below 45% and P-values below 0.002.  

These results could be an indication that the models have low skill around these zones during 

the MAM season.  

Regression analysis helped to determine linear relationships between model output and CRU. 

The stepwise regression analysis was used as a mean of picking the best individual predictors 

(model output) into the regression model equation. The sub domains showed higher skill 

during the OND season than the MAM season as indicated by a high R-square value of 50% 

and a low P-value of 0.001. 

Table 8: Regression Model Equations developed for the Models output at different sub-

domains with R-square value above 25% for March-May and 45% for October-December 

seasons respectively and their P-values  
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March-May Season 

Sub-

domains 

Regression Equation R-

Square 

P-Value 

A A25=-0.555*CCMA-0.305*CNRM-0.332*MIROC 25 0.064 

B B26= -0.495*CNRM+0.583*MPI 26 0.022 

C C27=-0.538*CNRM+0.465*ECEARTH+0.189*MPI 27 0.046 

D D49=0.314*MIROC+0.371*MPI+0.289*CNRM 49 0.012 

October-December Season 

Sub-

domains 

Regression Equation R-square P-Value 

A A50=-0.201*CNRM+0.185*EC-EARTH-0.104*NorESM 50 0.007 

B B51=-0.295*CCMA-1.175*EC-EARTH+0.152*MIROC 51 0.006 

C C59=0.292*EC-EARTH+0.15*MIROC-0.164*MPI 59 0.002 

D D53= -0.360*CNRM+0.434*EC-EARTH 53 0.026 

 

5.3.2.2 Correlation Analysis 

Tables 9 and 10 show the negative and positive correlation values obtained between the 

model output and the CRU rainfall for MAM and OND seasons respectively. The analysis 

was done and the significance of each correlation coefficient tested using the student T-test at 

95% confidence level. Any correlation value equal or greater than 0.30 was statistically 

significant. This however explained less than 8% of the total variance. 

From Table 9, it can be noted that the significant correlations between the model outputs and 

the CRU rainfall anomalies were from three models CNRM, MIROC and MPI whereas the 

other models showed relatively low correlations. The three models with significant 

correlations across the four representative sub domains also had relatively low RMSE values 

as shown in Table 6. This shows that these models can simulate the observed rainfall patterns 

relatively well compared to the rest during this season. 

Table 10 shows correlation coefficients between model outputs and CRU rainfall anomalies 

for the October- December season. Most of the significant correlations were obtained 

between CNRM, EC-EARTH and MIROC models and the CRU anomalies. During this 

season, the correlation coefficients were relatively higher than those obtained during the 

MAM season, an indication of the models ability to simulate the observed pattern during this 

season. 
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Table 9: Correlation Coefficients between Model output and CRU Rainfall Anomalies for 

March - May season over the sub domains A, B, C, D. Green and yellow shading indicates 

significant positive and negative correlations, respectively, while unshaded values indicate 

statistically insignificant correlations. 

CRU/ 

sub-somain 

CCMA CNRM EC-

EARTH 

GFDL HadGEM MIROC MPI NorESM 

A -0.20 0.31 0.16 0.27 -0.15 -0.36 0.39 0.18 

B 0.17 -0.32 -0.33 -0.19 0.12 0.32 0.40 -0.20 

C 0.19 0.30 0.10 0.19 0.13 0.33 0.31 0.10 

D -0.23 -0.40 0.19 0.26 0.26 0.37 -0.43 0.17 

 

Table 10:  Correlation Coefficients between Model output and CRU Rainfall Anomalies 

for October-December season over the sub domains A, B, C, D. Green and yellow shading 

indicates significant positive and negative correlations respectively, while unshaded values 

indicate statistically insignificant correlations. 

CRU/ 

Sub-

domain 

CCMA CNRM EC-

EARTH 

GFDL HadGEM MIROC MPI NorESM 

A 0.26 0.32 0.39 0.23 0.29 0.36 -0.29 -0.22 

B -0.22 -0.44 -0.32 0.36 -0.14 -0.33 -0.21 -0.38 

C 0.16 -0.35 0.35 0.21 0.26 0.35 -0.31 -0.22 

D 0.22 0.34 -0.42 0.14 0.24 0.44 -0.25 -0.24 

 

5.3.3 Categorical Statistics 

Tables 11 and 12 show the various scores that were used to assess the skill and accuracy of 

the ensemble model output at various sub-domains. A regression analysis was done to 

establish the best individual model output at 95% confidence level. Only the model output in 

the regression equation that had high R-square and low P-values were picked at sub-domains. 

The results for Percent correct, Probability of Detection, Heidke Skill Score, the False Alarm 

Ratio and bias for MAM and OND seasons were calculated from the 3 by 3 contingency 

table. 
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From the analysis of the Percent correct in Table 11, sub-domains A and B recorded a 50 

percent correct while sub domains C and D recorded less than 50 percent correct. These 

results show that the skill of the models is much lower during the March-April-May season 

over the LVB. 

From the analysis of the Heidke skill score (HSS); none of the model outputs had values 

close to a perfect score of 100%. The score were especially higher for all the sub-domains 

considered in the study. 

The analyses from the Bias score show that the perfect score of 100% was not achieved in 

any of the instances for the model output presented. The cases of forecasting nearing almost 

perfect were achieved in no instances. The cases of over-forecasting were more than those 

under-forecasted especially for most stations over the LVB. 

From the analysis of FAR, for the normal category, two sub- domains C and D predicted 

above 50%; for the above normal category, and all the sub domains predicted below 50% for 

below normal category. PoD gives the proportion of rainfall events successfully forecasted by 

the model. For a good forecast the PoD is 100%. Most of the sub domains had a score of 

more than 50% in the three categories. This indicates that the model successfully forecasts 

more than half of the rainfall events in region.   

Table 12 shows the skill scores of the ensemble model output during the OND season. During 

this season   all the sub domains got a score of more that 50% correct as compared to the 

March-May season. The skills were generally better than those obtained during March-May 

season an indication that there is a remarkable improvement in the way in which the models 

simulate the observed pattern in October- December season. 
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Table 11: Percent correct (%), Probability of detection (POD) (%), False Alarm (FAR) (%), 

BIAS (%) and Heidke Skill Score (HSS) (%) for MAM Ensemble model output  picked 

across all the four sub-domains at different Categories, Below Normal (BN), Normal (N) 

and Above Normal 
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POD FAR BIAS HSS 

BN N AN BN AN BN N AN  

A CNRM,MIROC, 

MPI 

50 33 58 61 22 33 43 161 109 0.262 

B CNRM,MIROC, 
MPI 

53 40 64 60 25 44 51 118 90 0.317 

C CNRM,MIROC, 

MPI 

46 29 52 57 28 50 38 161 114 0.196 

D CNRM,MIROC, 

MPI 

44 28 51 57 22 53 36 160 122 0.184 

 

Table 12: Percent correct (%), Probability of detection (POD) (%), False Alarm (FAR) (%), 

BIAS (%) and Heidke Skill Score (HSS) (%) for OND Ensemble model output  picked 

across all the four sub-domains at different Categories, Below Normal (BN), Normal (N) 

and Above Normal. 
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POD FAR BIAS  HSS 

BN N AN BN AN BN N AN 

A CNRM,MIROC,EC-

EARTH 

53 27 51 56 30 53 38 158 117 0.168 

B CNRM,MIROC,EC-

EARTH 

61 27 49 53 38 55 44 158 117 0.182 

C CNRM,MIROC,EC-

EARTH 

58 26 52 52 41 54 44 160 112 0.178 
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D CNRM,MIROC,EC-

EARTH 

51 25 47 57 43 52 43 151 119 157 

 

5.3.3.1 Results from the Spatial Rainfall Patterns 

Figure 24 shows the simulated spatial patterns of rainfall in hundreds of millimeters per day 

as obtained from (a) the CRU (b) MPI (c) MIROC (d) CNRM. The figure shows rainfall 

distribution during March-May season. The results indicate that rainfall decreases towards the 

eastern part of the region. Over the western part, there are markedly similar patterns in almost 

all the four plots during this season. The MPI model was able to capture the effect of 

orographic features and inland water bodies as indicated by the extreme over the water body. 

From all the spatial plots, it was noted that the models were able to capture two extremes both 

on land and over the water body. 

(a

) 

(b) 
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c) 
(d

) 

Figure 24: March-May simulated spatial rainfall patterns for the period 1971-2005 as 

obtained from CRU, MPI, MIROC and CNRM over the LVB 

Figure 25 shows the simulated spatial patterns of rainfall in hundreds of millimeters per day 

obtained from (a) CRU and (b) model ensemble for the March- May season of the three 

models in Figure 25 over the Lake Victoria Basin. The ensemble model output was able to 

capture and replicate a spatial pattern as depicted by the CRU rainfall pattern. There was a 

marked extreme over the water body and depressed rainfall on the eastern side of the study 

region. 



 59 

(a)  (b)  

Figure 25:  March-May simulated spatial rainfall patterns for the period 1971-2005 as 

obtained from CRU and ENS over the LVB 

Figure 26 shows the simulated spatial patterns of rainfall in hundreds of millimeters per day 

as obtained from (a) the CRU (b) MIROC (c) EC-EARTH (d) CNRM. The figure shows 

rainfall distribution during October- December season (the scale is in hundreds of milliliters). 

The results show that nearly all the three models EC-earth, CNRM and MIROC simulate the 

OND season fairly well and indicate that most of the rainfall is influenced by increased 

ENSO events and the eastward shift the Congo rainfall belt during this season. This implies 

that the climate model used captures the effect of such features like the ITCZ and the 

influence of the Lake effect.  



 60 

(a

) 

(b

) 

(c) (d

) 

Figure 26:  October-December simulated spatial rainfall patterns for the period 1971-2005 

as obtained from (a) CRU, (b) MIROC, (c) EC-EARTH and (d) CNRM over the LVB. 

Figure 27 represents simulated spatial rainfall pattern in hundreds of millimeters per day for 

ENS and CRU of the three models in Figure 26 over the LVB. The results indicate enhanced 

rainfall on the western side of the study region and an extreme event over the land on the 
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same side. The eastern side experiences depressed rainfall as in the earlier case. However, the 

ensemble output replicates the rainfall pattern better than the individual models. 

(a)

 

(b)

 

Figure 27: October-December simulated spatial rainfall patterns for the period 1971-2005 

as obtained from (a) CRU, (b) ENS over the LVB. 

5.4 Climate Projections using Model Outputs 

The results from the Subsection 5.3.3.1 indicated that, when averaged over a large area, the 

present-day simulated model rainfall is fairly accurate compared to the observed datasets over 

the LVB. The study examined the model-projected climate for RCP 4.5 scenario over the 

LVB for the downscaled outputs. The downscaling process was done following the procedure 

outlined in Section 4.2.3.1. The results of the downscaled projected temporal and spatial 

model patterns are presented. 

5.4.1 Projected Temporal Patterns for March-May and October- December Seasons 

Figures 28 and 29 represent the projected temporal rainfall patterns for the seasons of March-

May, and October-December over the study area. The results presented in each case are for RCP 

4.5 scenario for the period 2001-2030, 2041-2070 and 2071-2100. 
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The results from time series analysis for March- May season indicate that there shall be no 

significant trend in the rainfall in the near future. However, during the period ranging from 2041-

2070, MAM rainfall is projected to decrease as indicated by a decreasing trend. The highest 

rainfall is projected in 2047 while lowest rainfall is projected in 2041. The figure also shows that 

rainfall is not likely to stabilize towards the mean rainfall for the MAM season in the projected 

time windows 2001-2030, 2041-2070 and 2071-2100. 

Figure 29 shows the trend analysis for October- December season for the time period 2021-2050, 

2041-2070 and 2071-2100. From the plots, there is unlikelihood of a significant trend in the near 

future in the entire three time window. However, the highest rainfall is projected in 2041 and 

2081 while the lowest rainfall is projected in 2085. The figure also shows that rainfall is not 

likely to stabilize towards the mean rainfall for the season in the year 2030. 
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Figure 28: Rcp 4.5 projected temporal rainfall pattern for March–May season for the 

period 2021-2050, 2041-2070 and 2071-2100 over the LVB 
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Figure 29: Rcp 4.5 projected temporal rainfall pattern for October- December season for 

the period 2001-2021-2050, 2041-2070 and 2071-2100 over the LVB 

5.4.2 Projected Seasonal Spatial Rainfall Patterns for Rcp 4.5 Scenario 

This section presents the spatial rainfall patterns for model projections for the time windows 

2021-2050, 2041-2070 and 2071-2100 for MAM and OND seasons following RCP 4.5 

scenario over the LVB. 

5.4.2.1 March – May and October- December Season for the Period (2021- 2050) 

Figures 30-32 represent the projected spatial patterns of rainfall in millimeters per day over 

the LVB using the MPI and MIROC models for time windows 2021-2050, for RCP 4.5 

scenario. The results in Figure 31 show rainfall spatial patterns during March-May for MPI 

and MIROC models and October- December following the RCP 4.5 scenario for the period 

2021-2050. 

The results indicate drier conditions for the time period 2021-2050 during MAM over 

towards the eastern part of the study region and an extreme over the water body and towards 

the western side of the study region. However, during the OND season, the MIROC model 

projects enhanced rainfall on the western part with an extreme over land and water, while 

MPI model projects depressed rainfall with an extreme over the lake only. 
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(a) 
(a) 

(b) 
(b) 

Figure 30: MIROC & MPI projected spatial rainfall patterns (2021-2050) for (a) March–

May and (b) October-December following the RCP 4.5 scenario over the LVB 

5.4.2.2 March – May and October- December Seasons for the Period 2041- 2070 

Figure 31 shows rainfall spatial patterns during March-May for MPI and MIROC models and 

October- December for RCP 4.5 scenario for the period 2041-2070. 

The results indicate drier conditions for the time period 2041-2070 during MAM over 

towards the eastern part of the study region and an extreme over the water body and the 

western side of the study region. However, during the OND season, the MIROC model 
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projects enhanced rainfall on the western part with an extreme over land and water, while 

MPI model projects depressed rainfall with an extreme over the lake only. 

 

 (a)  (a) 

(b)  (b) 

Figure 31: MIROC & MPI projected spatial rainfall patterns for  the period  2041-2070 for 

(a) March–May and (b) October-December following the RCP 4.5  scenario. 
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5.4.2.3 March – May and October- December Seasons for the Period 2071- 2100 

Figure 32 shows rainfall spatial patterns during March-May for MPI and MIROC models  

and October- December for RCP 4.5 scenario for the period 2071-2100.. The results in both 

cases indicate that MAM is likely to experience depressed rainfall except for an extreme 

event over the Lake Victoria whereas the highest rainfall will be experienced around Lake 

Victoria during mainly OND and significant amount of rainfall expected to the western part 

of the region. Enhanced rainfall during OND is likely to be caused by increased ENSO events 

and the eastward shift the Congo rainfall belt during this season. The lowest rainfall is 

expected on the eastern side of the region of study. 

(a)  (a) 

(b)  (b) 

Figure 32: MIROC & MPI projected spatial rainfall patterns for the period 2071-2100 for 

(a) March–May and (b) October-December following the RCP 4.5 scenario over the LVB. 
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CHAPTER SIX 

6.0 SUMMARY, CONCLUSION AND RECOMMENDATIONS 

This chapter provides a summary of the results obtained from the various methods used to 

achieve the objectives of the study. The chapter also provides the conclusions drawn and the 

recommendations made. 

6.1.1 Summary 

The overall objective of the study was to assess the performance of the Coupled Model Inter-

comparison Project (CMIP5) over the Lake Victoria Basin. The data used in the study 

included the observed point station data, gridded rainfall data from Climate Research Unit, 

University of East Anglia (CRU) and hindcast data from eight Coupled Model Inter-

comparison Project 5 (CMIP5) for the period 1971 to 2005 for historical and 2006-2100 for 

model future projections. The methodology employed included trend analysis spatial 

analysis, correlation analysis, Principal Component Analysis (PCA) regression analysis, and 

categorical statistical skill score.  

Majority of the eight models analyzed correctly reproduce the mean seasonal and annual 

cycle of precipitation for the period 1971–2005 as compared to gridded satellite-derived 

observations. There were no significant trends in the observed rainfall over the study region 

for MAM and OND seasons. However, for OND all the representative stations used had 

increasing rainfall trends which signify the possibility of wetter condit ions in future. The 

spatial patterns of the individual model output from MPI, MIROC and CNRM were 

closest to the observed rainfall pattern for OND season than MAM season, with two extremes 

on land and over the water body.  

The analysis for the correlation coefficients showed relatively higher coefficients for the 

ensemble model output than for the individual models. Categorical statistics score showed 

higher skill for the ensemble models than for the individual models output. The skill and 

accuracy of the forecasts was enhanced especially during OND season. Model projection 

trends showed decreasing trends for MAM and increasing trends for OND season. The 

spatial patterns for future projections indicates enhanced rainfall pattern in the eastern side 

of the study region with the enhanced two rainfall extremes over the land and water body. 
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6.1.2 Conclusion 

 

This study has indicated some evidence of increasing trends in observed rainfall patterns over 

some areas in the region of study and decreasing trends in others. The trends indicate that 

climate change and its impacts will affect the different regions differently depending on the 

micro climate and season of the year.  

CMIP5 models considered in the present study were able to capture the main features of 

seasonal mean rainfall distribution and its annual cycle, albeit significant biases in individual 

models depending on region and season. For instance, MPI, MIROC and CNRM were able to 

replicate the observed annual and seasonal patterns whereas GFDL was not able to capture 

the center of JJA seasonal rainfall, while EC-EARTH delayed the onset of the same season. 

NorESM pushed the center of MAM, JJA and OND seasonal rainfall further north. 

The spatial pattern of rainfall modes identified important features over the LVB region. Two 

centers of enhanced precipitation were identified over land and Lake areas in the first rainfall 

mode. The center over the Lake Victoria seemed to be enhanced than the center over land 

which might be a pointer to increasing sea surface temperatures. However, the models 

seemed to be struggling to capture the observed patterns since for LVB, rainfall events are 

controlled by the mesoscale systems. 

6.1.3 Recommendations 

 

The results of the study will be useful to climate model research scientists, policy makers, 

National Meteorological and Hydrological Services (NMHS), and other professionals in all 

sectors that are affected by the climatic information. Such sectors include Meteorology, 

Hydrology, agriculture, industry, energy and researchers, among others. 

Further research using all the 19 CMIP 5 models needs to be done to assess the 

improvement performance skill. There is need for a similar research with 12 global 

models for JJA season to contrast and compare with the performance of the model output 

for the OND and MAM seasons. In addition, further analyses of the future climate 

projections should be considered for the rcp 8.5 to compare and contrast with the rcp 4.5 

considered in the present study.  

As multi-model ensembles have been suggested as one of the methods to reduce model 

uncertainty; it is important that the performance of the individual member is assessed for its 
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reliability. A model that struggles to represent climate system properly would surely not add 

any value to the ensemble, and while refining parameterization by either including additional 

parameters might be one of the ways of enriching the model performance, there are new 

parameters to amplify biases and more uncertain model parameters to constrain as is the case 

in the CMIP5 models, thus, uncertainty assessment as a precursor in climate change studies 

remain valid in the current CMIP generation. 
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