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Abstract

Malaria is a serious and sometimes a fatal epidemic affecting nearly half of the world’s
population. In this project, we analyse a non-linear deterministic model to assess
the relation between rainfall, temperature, relative-humidity as climatic variables
and malaria incidence. The seven equations from the compartmental model were
reduced to two of which was used to derive the reproduction number as a function of
the climatic variables. We analysed both the local and global stability of the disease-
free equilibrium points and also the local stability of the endemic equilibrium.

We settled on two different biting rates and two different mortality rates so as to
accommodate the different climatic variables under study. Our scope to analyse d-
ifferent biting and mortality rates was achieved by simultaneously substituting two
models; one biting rate and one mortality rate into the reproduction number after
which numerical simulations are provided to determine the correlation between cli-
matic variables and malaria incidence.

Apart from reproduction number, the other index used in the analysis of the rela-
tion between temperature and future risk of malaria is the epidemic potential which
showed qualitatively that an increase or decrease in temperature will lead to a cor-
responding behaviour in malaria incidence. Our findings in this study confirm that
indeed there is some correlation between climatic variables and the dynamics of both
total and confirmed malaria incidence.
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Definition of Terms

The following terms are used in the project;

Gonotrophic Cycle

Time from blood feeding to oviposition.

Extrinsic Incubation Period EIP

The length of time it takes the malaria parasite to complete its development within
the mosquito and migrate to the salivary glands ready for transmission.

Reproduction Number, R0

The average number of secondary infections produced when one infected individual
is introduced into host population where everyone is susceptible

Epidemic Potential, EP

This is the reciprocal of the host density threshold, i.e a comparative index that can
be used to estimate the effect that change in temperature can have on the risk of
malaria.

Latent Period

The period from the point of infection to the state of being infectious, i.e period in
which individuals stay in exposed class.

Different biting and mortality rate models

The models for biting rate 1 and biting rate 2 are given by (3.36) and (3.37) respec-
tively while the models for mortality rate 1 and mortality rate 2 are given by (3.39)
and (3.41) respectively.

Zones sampled

Zone 1 is Kisumu and the entire Lake Victoria basin while zone 4 is Nairobi and its
environs.
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Chapter 1
INTRODUCTION

1.1 Background of Malaria

Malaria is a mosquito-borne illness caused by a parasite transmitted by a female
anopheles mosquito in the process of seeking a blood meal for egg formation. Malaria
has prevailed for more than a century and has a huge social, economic and health bur-
den. According to [1], the total expenditure on malaria control including insecticide-
spraying, supply and use of insecticide treated bed nets and access to rapid diagnosis
and medicine amounted to 1.8 billion U.S Dollars. Malaria is predominantly present
in the tropical countries. With the effort and investment which has been put in its
investigation for hundreds of years, it still remains a major public health problem.

Persons most vulnerable to the disease are those with no, or little, protective immu-
nity against the disease. High transmission areas such as sub-Saharan Africa have
the following categories of people as the most vulnerable:

• Children under the age of five years due to undeveloped immunity.

• Expectant women as a result of lowered (weakened) immunity more so for first
and second pregnancies.

• Travellers and immigrants from areas with low or no transmission and luck of
immunity

WHO [1], estimates that in 2013, there were 198 million cases of malaria worldwide
with an uncertainty interval of 124-283 million resulting in 584,000 deaths. Eighty
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percent of the cases occur in sub-Saharan Africa and 40 million cases were confirmed
in 2012 by 103 countries. Ninety percent of malaria deaths occur in Africa region
and children under the age of 5 accounts for 78 % of the total deaths [1].

Malaria incidence has grown due to increasing parasite drug resistance and mosquito
insecticide resistance. Malaria is believed to be one of the major vector-borne dis-
eases most sensitive to climate change. Climate change plays a big role in increasing
malaria incidence since climatic variables such as temperature, rainfall and relative-
humidity have an effect on both the vector and malaria parasite cycles.

There is still much uncertainty regarding the effects of climate change on malaria
due to limited attempts to incorporate environmental variables into mathematical
models describing malaria transmission. Developing a reliable modelling framework
is a challenge due to many factors influencing the transmission of malaria.The exact
role played by climate in driving malaria epidemics also remains a substantial debate
to most researchers [2].

Current methods of malaria eradication and control rely on the use of insecticide
treated bed nets (ITNs), indoor residual spraying (IRS), chemo-prevention to pre-
vent the blood stage infection and case management which includes diagnosis and
use of drugs for prevention and disease treatment[1].

Among the above methods, ITNs are regarded as the standard tools for malaria con-
trol. They do this by reducing the intensity of malaria transmission. This is evident
through the reduced average number of infectious bites received by a person over
some period of time i.e the Entomological Inoculation Rate (EIR). According to [3],
ITNs reduce EIR by a factor of 10.

Malaria is prevalent in tropical and subtropical regions because of availability of rain-
fall, consistent high temperatures and high humidity along with stagnant waters in
which mosquito larvae readily mature. These environmental factors affect the inci-
dence of malaria either through changes in the duration of mosquito and parasite life
cycle or influences on human, vector or parasite behaviour. Thus climate change can
affect malaria prevalence pattern by mosquitoes moving away from lower latitudes
to regions where populations have not developed immunity to the disease [2].

1.2 Causes of malaria

Malaria is caused by a protozoan parasite called Plasmodium which can be spread
to humans through the bites of an infected mosquito of genus Anopheles. The Plas-
modium is a single-celled organism that cannot survive outside of the host(s). There
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are about 400 different species of Anopheles but only 30 are of major importance.
There are various types of Plasmodium parasites, out of these only five cause malaria
in humans [1, 4, 22]. These are:

(i) Plasmodium falciparum - mainly found in Africa and responsible for most malaria
deaths globally.

(ii) Plasmodium vivax - mainly found in Asia and Latin America. This parasite is
the second most significant species after Plasmodium falciparum. It has less
severe symptoms, but it can hide in the liver for upto three years.

(iii) Plasmodium Ovale - fairly rare and usually found in west Africa. It can remain
in human Liver for several years without showing symptoms.

(iv) Plasmodium malarie - its quite rare and usually found in Africa.

(v) Plasmodium Knowlesi - this causes malaria among monkeys and occurs in rare
forested parts of South-East Asia.

Of these five types, Plasmodium falciparum is the most common cause of infection
in Africa and South East Asia. It accounts for approximately 80% of all malaria
causes and approximately 90% of deaths [5].

1.3 Life cycle of the malaria parasite

As shown in figure (1.2), the malaria parasite has two main stages of life: one re-
quires a human host (secondary host) which acts as a transmission vector and the
other requires a female Anopheles mosquito (definite host). During a blood meal,
the parasites which is in the form of sporozoites in the saliva of the infected female
Anopheles mosquito enter the human through bite, into the blood system and travels
to the liver.

Once in the liver, the malaria parasites invade the hepatic cells and undergo a sex-
ual multiplication. After some days, the sporozoites invade the red blood cells and
mature into schizonts, rapturing the red blood cells and releasing 8 to 24 new infec-
tive merozoites, see figure (1.1). The rapture is what frees the parasites and cause
them to affect other blood cells [6, 39]. The toxin released (sporozoites) after the
rapture is what causes the malaria symptoms. Some of the merozoites differentiate
into sexual immature forms known as gametocytes which are the precursors of male
(microgametocytes) and female (macrogametocytes) gametes.
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In the mosquito (definite host), the cycle is known as sporogonic cycle whereby the
parasites multiply in the mosquito host. When a mosquito bites and takes a blood
meal from an infected human being (host), it ingests the gametocytes which mature
in the mosquito gut. As shown in figure (1.1), these gametocytes fuse to form zygots
that mature into motile and elongated ookinetes. The ookinetes invade the stomach
(midgut) wall of the mosquito where they develop into oocysts. The oocysts grow,
rapture and in a week or so, release sporozoites. This proces is ambient temperature
dependent [7]. The sporozoites migrate into the insect’s salivary glands ready to
infect a new vertebrate host. When a mosquito bites a human, the sporozoites in
the saliva are injected into the skin and the cycle continues [8].
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Figure 1.1: Life cycle of plasmodium [42]
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Figure 1.2: Life cycle of parasites
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The incubation period for the gametocytes to form new sporozoites usually takes
7 - 12 days but this period varies greatly depending on the environmental tempera-
ture, relative-humidity and the species of plasmodium. The optimal conditions for
development of sporozoites are temperatures between 200 C and 300 C and relative
humidity greater than 60% [9].

Only female mosquitoes feed on blood; male mosquitoes feed on plant nectar and
hence do not transmit malaria. The females of the Anopheles genus prefer to feed
at dusk to dawn whereby the search for a meal usually start at dusk and continue
throughout the night [10].

1.4 Life cycle of the mosquito

The life cycle of a mosquito can be prolonged or shortened by the type of species and
also depends upon the environmental conditions such as temperature and moisture.
The mosquito has four separate and distinct stages of its life cycle.
Egg: The eggs are laid in water since they require water for successful hatching. They
hatch into larvae in 24-48 hours depending on water temperature and availability of
food. In cold weather, the hatching may be prolonged into weeks.
Larvae: This stage also lives in water and requires food. They feed on algae,
bacteria and other micro-organisms. They live in water for 7-14 days depending on
water temperature.
Pupa: It also requires water and may take 1-4 days depending on the species and
temperature. This stage does not require food.

As shown in figure (1.3), the egg, larvae and pupa stage belong to the immature
stage which do not participate in the infection cycle but requires the availability of
stagnant water bodies for development.
Adult: Both the male and female adult mosquitoes are sexually active 2 days after
mosquito emergence from its aquatic breeding sites or pupal stage [11, 12]. The
average life span of an adult male is about one week while the female can live up to
a month. The adult female requires a blood meal for provision of protein needed for
egg development. After blood meal, it rests until the eggs develop and this process
is temperature dependent and usually lasts for 2-3 days in tropical conditions. The
lifespan of the adult mosquito depends on temperature, relative-humidity, sex of
mosquito and season.
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Figure 1.3: Life cycle of mosquito [42]

Temperature and moisture, in the form of precipitation and relative humidity
can hasten or slow down cycle transition since they are crucial regulators of the
growth and development within each stage in determining the end of one stage and
the beginning of the next stage.These environmental factors also regulate the length
of gonotrophic cycle [13]. Thus the transition usually occurs in 10-14 days in trop-
ical conditions. The development time of mosquito depends on the environmental
conditions and the species of the mosquito with warmer temperature catalysing de-
velopment.
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1.5 Transmission of the disease

According to [14] for malaria parasites to be transmitted from human to human, it
requires at least two mosquito bites. To become infected, the mosquito needs to first
feed (bite) an infected human host, then on the completion of the Extrinsic Incuba-
tion Period (EIP), the mosquito is infectious and needs a second bite to transmit the
parasite to another human host.

The EIP is the length of time it takes the malaria parasite to complete its develop-
ment within the mosquito and migrate to the salivary glands; it is one of the key rate
limiting steps in transmission of malaria and it is known to be strongly temperature
sensitive. EIP takes between 10 to more than 30 days depending on environmental
factors such as temperature and humidity [14, 9].

The mosquito transmitting malaria has discrete feeding cycles in which blood feed-
ing only occurs at the begining of a gonotrophic cycle and then not again until the
blood has been digested, a batch of eggs has matured and oviposition is completed
[15]. However there is the possibility of a small proportion of Anopheles mosquitoes
taking multiple blood feeds within a cycle due to energy depletion after emergence
from their breeding site.

In most cases, blood feeding is coupled with reproduction (egg formation) [14] and
therefore the frequency of possible transmission events (i.e acquiring the parasite in
an early feeding event and then passing it on in a later feed) depends on the duration
of this gonotrophic cycle.

Gonotrophic cycle is the time between blood feeding and oviposition and is temper-
ature dependent [18]. Under warmer conditions, about 300 C, the gonotrophic cycle
can be completed in just 2-3 days [16] resulting in high frequency of blood feeding.
Under cooler conditions (15 - 200 C), blood feeding might occur only once every 6-13
days.

The availability of moisture in the form of precipitation and relative-humidity can
catalyse the cycle transition [2, 12]. The breeding sites comes to existence in the
form of pools of stagnant waters after rainfall. The stagnant water bodies provide
conducive environment for the immature stages of mosquito which can be hastened
or slowed down by water temperature.

9



1.6 Signs and symptoms of malaria

Between 8-25 days after being bitten by an infectious parasite, the signs and symp-
toms of malaria begin to occur. For individuals who have taken antimalarial drugs,
the symptoms might occur later [5]. The malaria parasites enter the blood stream
and affect the red blood cells. These cells are essential and their destruction leads
to presentation of symptoms. Presentation of the signs and symptoms may include
fever and flu-like symptoms such as chills, headache, muscle aches, tiredness, nausea,
shivering, diarrhoea and vomiting [17, 22].

Severe malaria is usually caused by Plasmodium falciparum. Its symptoms arise 9-30
days after infection [17]. Individuals with cerebral malaria frequently exhibit neu-
rological symptoms including abnormal posturing, eyes facing in different directions
and coma. If not treated it can lead to death [17].

The classic symptoms of malaria is paroxysm- an occurrence of sudden coldness fol-
lowed by shivering, fever and then sweating occurring every two days in P. vivax and
every three days for P. malariae. P. falciparum infection can cause recurrent fever
every 36-38 hours or less pronounced and almost continuous fever [18].

1.7 Mathematical models and Epidemiology

The importance of mathematics and mathematical models dates back to early biolo-
gist and researchers in infectious diseases. Mathematical models provide an explicit
framework for understanding the disease transmission dynamics within (intra) and
between hosts and parasites. In mathematical modelling and expression, several
known biological and clinical information are included in a simplified form by select-
ing features that seem to be significant to the problem being investigated.

A model is a mathematical approximation of the complex reality and its structure
depends upon the process being studied its extension into the real world. Based on
the question being investigated, a model can help fit empirical observations and can
be applied to make theoretical predictions on lesser known situations. Mathematical
models have been applied for example: by epidemiologists as tools to predict the
occurrence of epidemics of infectious diseases and also currently it is applied as a
tool to eradicate malaria [19]

Malaria is one of the oldest diseases which has been explored through research and
has vast rich literature describing modelling approach, stages of the disease and e-
conomic impact to the human settlement. According to [19], combining different
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approaches rather than a single type of modelling may have long term usefulness in
eradication and control.

Mathematical models that study transmission of malaria are based on the reproduc-
tion number R0, defining the important aspects of transmission for any infectious
disease. The reproduction number R0 is the number of secondary infections that
result due to a single infection in a completely susceptible population. Control of the
disease is arrived at when R0 is expressed in such a way that the disease-free state
can be established and maintained [20].

Previous studies used ordinary differential equations to model the transmission of
malaria in which human population are classified into susceptible, exposed, infected
and recovered while mosquito population are divided into susceptible, exposed and
infectious.

1.8 Rationale of the study

Effects of climate change and global warming on malaria are of particular interest
to researchers due to the sensitive nature of the transmission of malaria to environ-
mental conditions. Since 1950s, the near surface global temperature of the earth has
increased by about 0.5 - 0.60 C [21] and it is expected that the same will rise by 20

C by the year 2100 [30]. Most environmental variables such as temperature, rain-
fall, relative-humidity and windspeed affect the incidence of malaria either through
changes in the duration of mosquito and parasite life cycles or influence on human,
vector or parasite behaviour.[3, 9]

According to [9], a lot is known about how parasite development is influenced by
temperature but the same cannot be said for mosquitoes. Increase in temperature
accelerates larval development, the frequency of blood feeding (biting rate) by adult
female mosquitoes on humans and reduces the time it takes the malaria parasite to
mature in female mosquitoes (E.I.P). The malaria parasite needs a minimum temper-
ature of 160 C for development [21]. Increase in rainfall not only creates additional
breeding sites for mosquitoes but also increases the relative-humidity. Therefore the
development of parasites in the mosquitoes is sensitive to external temperature while
the rate of larval development is dependent upon water temperature and availability
of breeding sites in terms of quality and quantity.
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1.9 Problem statement

How temperature, rainfall and relative-humidity relate to malaria transmission.

1.10 Objective of the study

Asses the relation between climatic variables and malaria incidence.

1.10.1 Specific Objetives

The specific objectives of this study are:

(i) Examine deterministic model which represent the transmission of the disease in
different environment .

(ii) Expressing the reproduction number as a function of temperature, rainfall and
relative-humidity.

(iii) Express the dependence of various mortality and biting rates on temperature
and relative-humidity.

(iv) To determine how different mortality and biting rates influence the dynamics
of malaria.

(v) Determine the correlation between the observed meteorological variables and
malaria incidence.

(vi) Determine the malaria risk through variation of reproduction number in the
event of changes in climatic variables.

12



Chapter 2
LITERATURE REVIEW

2.1 History of malaria

The term malaria originates from medical Italian word, mala aria meaning bad air.
The disease was formerly associated with swamps and marshland, hence derived its
name marsh fever [23]. Malaria took effect in the Roman empire and was known as
Roman fever. The favourable conditions such as stagnant waters, irrigated gardens,
run-off from agriculture and drainage problems in Rome provided a good environ-
ment for the impact of malaria [22].

Plasmodium falciparum is the most prevalent and lethal of the malaria parasites
infecting humans, yet the origin and evolutionary history of this important pathogen
remain controversial. The population size of P. falciparum increased due to increased
agricultural practice and advancing in human settlement. Some evidence suggests
that humans may originally have caught plasmodium falciparum from gorillas [23].

During the second world war, in south Pacific, about 500,000 U.S troops encoun-
tered health hazard due to malaria infection and about 60,000 America soldiers died
of malaria during the Africa and south Pacific campaigns. Scientific study on malaria
began in 1880 by Charles Louis Alphause Laveren a French army doctor who dis-
covered parasites in the red blood cells of patients. He was awarded the 1907 Nobel
prize for philosophy or medicine. In 1881, Charles Finlay from Cuba, treated people
with yellow fever in Hava and this provided strong evidence to show that mosquitoes
were transmiting diseases to and fro humans [24].

In 1894, Sir Ronald Ross a Scottish Physician made a visit to Sir Patrick Manson in
London after which the collaboration and earnest research four years later resulted
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into Ross Ronald proving the complete life-cycle parasite in mosquitoes which earned
him a Nobel prize in medicine in 1902. He proved that the mosquito was the vector
for malaria in humans by showing that certain mosquito species transmit malaria
to birds, by isolating malaria parasites from the salivary glands of mosquitoes that
had fed on infected birds. These findings were later confirmed by a medical board
headed by Walter Reed in 1900 and later implemented by William C. Gorgas. The
recomendations in the public health work saved lives of thousands of workers and
helped in developing the methods used in future public-health campaigns against the
disease.

The very first effective treatment of malaria came from the bark of Cinchona tree
which contained quinine. The indigenous people of Peru used Cinchona to control
fever. In 1820, the active ingredient quinine was extracted from the bark of Cinchona
tree and named by Pierre Joseph and Joseph Bienaim. Until 1920’s, quinine pre-
dorminated malarial medication after which other medications developed. In 1940’s
chloroquine replaced quinine. In 1950, resistance to chloroquine emerged first in
south-east Asia and south America then spread globally in 1980’s [25].

The first pesticide used for indoor residual spraying was DDT. It was initially used
exclusively to combat malaria after which its use spread quickly to agriculture for
pest control rather than disease control. This wide spread use of DDT lead to its
resistance by mosquitoes. In 1960, the use of DDT was banned due to the nega-
tive consequences of its indiscriminate use. Before DDT, malaria was eliminated in
Brazil and Egypt by draining away or poisoning breeding grounds of the mosquitoes
or aquatic habitats of the larvae stage.

Another area which has been of interest to researchers is the vaccination. In 1967, a
study on malaria vaccine was demonstrated by immunizing mice with live, radiation-
attenuated sporozoites which provided significant protection. Since 1970, there has
been a considerable effort to develop similar vaccination strategies within humans.

2.2 Mathematical modelling of malaria

Mathematical models have been used to provide an explicit framework for under-
standing malaria transmission dynamics in human population for over 100 years.

2.2.1 Sir Ronald Ross model.

Around 1911, Sir Ronald Ross introduced the first deterministic differential equation
model of malaria by dividing the human population into two compartments i.e Sus-
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ceptible Sh and infected Ih with the infected class returning to susceptible class again
leading to SIS structure. The mosquito population also has only two compartments
i.e Susceptible Sm and Infectious Im but do not recover from from infection due to
their short life span hence follow the SI structure.

Time evolution of the fraction of individuals in the infected class (Ih, Im) is studied
using two differential equations one each for the human and mosquito as given below.

The equations that describe the model are:

dIh
dt

= abmIm(1− Ih)− rIh
dIm
dt

= acIh(1− Im)− µ2Im

with the reproduction number as:

R0 =
ma2bc

rµ2

with the parameters and their values as:

a: man biting rate [0.01-0.5 day−1]

b: proportion of bites that produce infection in human [0.2-0.5]

c: proportion of bites by which one susceptible mosquito becomes infected [0.5]

m: Ratio of number of female mosquitoes to that of humans [0.5-40]

r: average recovery rate of humans [0.005-0.05 day−1]

µ1: per capita rate of human mortality [0.017 year−1]

µ2: per capita rate of mosquito mortality [0.05-0.5 day−1]

τm: Latent period of mosquito [5-15 days]

τh: Latent period of human [10-100 days]

Latent period is the period from the point of infection to the begining of the state
of infectiousness during which infected individuals stay in the exposed class.

It is clear that the parameters m, a, b and c that contribute to the change of R0

in this model are related to mosquitoes and humans and any change in them can
significantly affect malaria transmission. Increasing mosquito mortality and reducing
mosquito biting rate can reduce R0. The Ross model outlines the basic features of
malaria transmission and puts the main burden of transmission on mosquito-specific
features, thereby paving the way for mosquito-based malaria control programmes.
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Malaria parasite spends approximately 10 days inside a mosquito during its life
cycle. The simple Ross model did assume this latency (incubation) period of the
parasite of mosquito and their survival during that period. This resulted in the
model predicting a rapid progress of the epidemic on human and higher equilibrium
prevalence of infectious mosquito.

Ronald Ross in his classical mathematical model of malaria used the word pathometry
to mean quantitative study of disease either on the individual or in the community
[26]. Ross through his model showed that reduction of mosquito numbers below a
certain figure, trasmission threshold, was significant to counter malaria.

2.2.2 MacDonald model

In 1950, McDonald modified Ross’s model by integrating biological information of
latency period (τm) and he introduced the exposed class of mosquitoes (Em) [27].
He divided the mosquito population into SEI. The model studies the time evolution
of the exposed (Em) and infected (Im) classes in mosquitoes. The increasing latency
period scaled down the R0.

The equations that describe the model are:

dIh
dt

= abmIm(1− Ih)− γIh
dEm

dt
= acIh(1− Em − Im)− acIh(t− τm)[1− Em(t− τm)

− Im(t− τm)]e−µ2τm − µ2Em

dIm
dt

= acIh(t− τm)[1− Em(t− τm)− Im(t− τm)]e−µ2τm − µ2Im

with the reproduction number as:

R0 =
ma2bc

γµ2

e−µ2τm

2.2.3 Anderson and May model

In an extension to Ross and MacDonald models, Anderson and May considered the
21 days latency period of the parasite in humans and introduced the exposed (Eh)
class in human population in their model [28]. This divided the host population into
three compartments (ShEhIh) along with that of the mosquito population (SmEmIm).
This, therefore is a SEIS model for the human population and the model consists of
four differential equations describing the time evolution of both the exposed and the
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infected classes for humans and mosquitoes (EhIhEmIm). The R0 for this model is
further reduced due to inclusion of human latency period.

The equations that describe the model are:

dEh(t)
dt

= abmIm[1− Eh(t)− Ih(t)]− abmIm(t− τh[1− Eh(t− τh)
− Ih(t− τh)]e−(γ+µ1)τh − γEh(t)− µ1Eh(t)

Ih(t)
dt

= abmIm(t− τh)[1− Eh(t− τh)− Ih(t− τh)]e−(γ+µ1)τh − γIh(t)− µ1Ih(t)

dEm

dt
= acIh(1−Em− Im)−acIh(t− τm)[1−Em(t− τm− Im(t− τm))]e−µ2τm −µ2Em

dIm
dt

= acIh(t− τm)[1− Em(t− τm − Im(t− τm))]e−µ2τm − µ2Im

with the reproduction number as;

R0 = ma2bc
γµ2

e−µ2τme−µ1τh

2.2.4 Review of Other Models

Continuous exposure to the disease results to development of immunity hence immu-
nity comes in handy as one of the inter-related factors for transmission of the disease
in a population. According to Koella [31], incorporating immunity into malaria mod-
els is significant because it makes models more realistic. Koella studied the effect
of variability of the parameters and added an infection rate which depends on im-
munity by additional latent stage for the mosquitoes to the Ross-MacDonald model.
Approximation of recovery rate, loss of immunity, biting rate, rate of infection and
susceptibility of humans and mosquitoes were also surveyed.

The research and development of climate models done later were to focus on the
improvement and understanding of the likely impact of climate on malaria transmis-
sion. Martens [30] used an integrated mathematical model to examine how climate
change might affect global malaria transmission. The study assessed the effects of
projected changes in temperature and precipitation on mosquito and parasite char-
acteristics and their potential impact on malaria risk. The first sought to estimate
the possible spatial shift in areas suitable for malaria transmission using the crit-
ical vector density threshold as a comparative index whereas the second approach
considered possible changes in world malaria disease burden due to climate change.
This model by Martens only generates broad estimates of future trends and does not
include all relevant factors which would influence the distribution of malaria.
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To understand the dynamic system, more studies were required using statistical tech-
niques of modelling so as to provide decision makers with probability distribution.
The use of larger and more complex model complicates and cripples the analysis of
the results. Apart from this, another dilemma in an attempt to relate malaria to
climatic variables was lack of data for comprehensive analysis as this leads to a lot
of assumptions.

Use of simple mathematical models to look at the effects of temperature on the a-
bility of Anopheles Maculipennis to transmit plasmodium vivax malaria came into
focus. Lindsey and Martens [32] looked at the implications of climate change sce-
narios on highland malaria in Africa and more specifically in Zimbabwe. He also
observed that all regions of the world indicated an increase in malaria transmission
as climate changed with a varying magnitude depending on the climate scenario and
specific characteristics of the malaria vector in question. They showed that rise in
temperature is likely to increase the risk of epidemics in the highlands.

Yang [33] described a compartmental model where humans follow SEIRS type pat-
tern and mosquitoes follow the SEI pattern. Parameters used in this model, like
the time taken for mosquitoes eggs to develop into adults and the time taken for
plasmodium gametocytes ingested by the mosquito to develop into sporozoites and
migrate to the salivary glands (EIP), are functions of temperature. He defined a
reproductive number R0 for this model and showed through linear stability that the
disease free equilibrium was stable for R0 < 1. He also showed that for R0 > 1 ,
and endemic equilibrium was biologically relevant and used numerical simulation to
support his proposition that for R0 > 1, the disease free equilibrium was unstable
and the endemic equilibrium was stable.

The potential effect of climate change on highland malaria was analysed by Hay et
al [34] using a regression approach. This was done with a focus on four sites in East
Africa highlands. They suggested that the increase in malaria incidence in Kericho
(Kenya) and Usambara (Tanzania), was pegged on the rise in antimalarial drug re-
sistance. In southern Uganda, the changes were related to El nino while in Muhanga,
they attributed the change in land use and related temperatures.

Zhau et al [35] used time series techniques to analyse retrospectively outpatients
data to asses the link between climate variability and transmission of malaria in
highlands of Kenya. They observed that there was an association between increase
of outpatient malaria cases and changes in climate conditions. Higher temperatures
catalyse the egg to adult development and thus shorten the mosquito life cycle and
the end result is production of more mosquitoes [36]. Horsheu and Morse [37] de-
scribed in detail the development of weather driven dynamic mathematical malaria
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model which captured both the seasonality and inter annual variability of infection
at their test site in Zimbabwe.

From the models discussed above, it is prudent to relate the malaria transmission
to climatic factors such as temperature, rainfall and relative-humidity. Malaria inci-
dence is determined by a variety of factors among them are abundance of mosquito
species, human behaviour and the prescence of malaria parasites [38, 30]. Climate
change affects malaria incidence directly or indirectly. Directly climate change affects
the behaviour (e.g biting rate) and geographical distribution of mosquitoes and the
life cycle of the parasite (by prolonging or shortening) while indirectly it could have
an effect by influencing environmental factors such as vegetation and the availability
of breeding sites.

Reproductive number, R0 is a measure that summarises many important processes
in transmission of infectious diseases. How severe the disease can be, or whether
the disease will lead to an epidemic or die out eventually is quantified through this
number. For malaria microparasite, R0 is defined as the average number of secondary
infections produced when one infected individual is introduced into a host population
where everyone is susceptible [14, 30, 38]. The basic reproduction number is a mea-
sure of an individual parasites reproductive potential and enables one to simplify the
epidemiology of malaria i.e if R0 > 1, the disease will spread indefinitely while if
R0 < 1, the disease will die out eventually.

Our research will be drawn from Parham and Michael [2] who developed a model
framework for modelling the effect of temperature and rainfall. They included the
effect of weather on the biting rate, demographic (net population growth) param-
eters and duration of Plasmodium life cycle on temperature. Demographic effects
were included to predict the number of fatalities that may arise as a result of the
disease. They also found out that the effect of temperature on vector abundance
had a strong physiological basis and thus could be meaningfully captured by the
deterministic population model. However, the effect of rainfall was less predictable
and more difficult to quantify.

The authors, [2, 14] found out that the rate of malaria spread increases significantly
within a temperature window of 32 − 330 C . They concluded that in addition to
temperature and rainfall, the transmission rate depended more strongly on vector
density than on parasite species. Changes in temperature can lead to negative or
positive impact as far as distribution of malaria is concerned, i.e it can cause an in-
crease or decrease in malaria cases depending on the initial temperature of the region.

According to [14], the parasite development time and feeding patterns (the gonotroph-
ic cycle) exhibit different thermal sensitivities. Delays in infection and transmission
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can reduce vectorial capacity by 20− 60%. The delays have important implications
for disease epidemiology and control for future transmission models. The authors,
[2, 30] stressed on the use of mathematical models to conceptualize the effect of cli-
mate change on malaria transmission and argued that mathematical models are su-
perior because they can address multiplicative exposure effects, non-linear feedback
pathways, spatio-temporal heterogeneities and transmission outcome for dynamic
complex processes.
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Chapter 3
MODEL DESCRIPTION

3.1 Model Formulation

This mathematical model is to help understand better the effects of climate change
on transmission of malaria. The disease is modelled using ordinary differential equa-
tions (O.D.E’s) where humans and mosquitoes interact and infect each other. We
used different biting and mortality rates to show the relationship between R0 and
climatic variables such as temperature, rainfall and relative-humidity.

As given by Parham and Michael [2], the compartmental model in figure (3.1) was
considered;
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Figure 3.1: Compartmental Representation
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The model in figure (3.1) divides the human population into two classes: the
susceptible (SH) and infected (IH). The recovered class of infected human is as-
sumed to acquire full immunity hence enter the removed class. According to [2, 39],
susceptible humans get infected at a rate a when they are bitten by an infectious
mosquito. As shown in figure (3.1), the mosquito population is divided into three
classes: the susceptible (SM), the exposed but not infectious (EM), and those that
are infectious(IM). Mosquitoes never recover from infection; that is, their infective
period ends with their death due to their short life cycle which is not significant
compared to the period of investigation [39].

The susceptible compartment contains either the human host or mosquito vector all
of which are not infectious but are susceptible. The human and mosquito infectious
compartments contains the collection of infected human host or infectious mosquito
vector respectively. The individuals in this compartment are infected and can infect
others.

For transmission of malaria parasite to take place from one human to the other, the
mosquito has to bite twice [14]. To become infected, the mosquito needs to first feed
(bite) on infected human host then on the completion of the Extrinsic Incubation
Period (E.I.P), the mosquito is infectious and needs a second bite to transmit the
parasite to another susceptible human host. The E.I.P is the length of time it takes
the malaria parasite to complete its development within the mosquito and migrate
to the salivary glands ready for transmission.

The governing equations are:

dSM

dt
= λ(R, T )− a(T )b1

IH
N
SM − µ(T )SM

dEM

dt
= a(T )b1

IH
N
SM − µ(T )EM − a(T )b1

IH
N
SM lm(T )

dIM
dt

= a(T )b1
IH
N
SM lm(T )− µ(T )IM

dSH

dt
= −a(T )b2

IM
N
SH

dIH
dt

= a(T )b2
IM
N
SH − γIH

dM(t)
dt

= λ(R, T )− µ(T )M(t)

dN(t)
dt

= −γIH

(3.1)
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Table (3.1) and (3.2) summarises the variables and constants used in the model equa-
tions (3.1) and the compartmental model figure (3.1). The total population sizes for
the female mosquitoes and human hosts are denoted by M(t) and N(t) respectively.
The transmission terms a(T )b2SH

IM
N

corresponds to frequency dependent infection

of susceptible human hosts SH by infectious mosquitoes IM and a(T )b1SM
IH
N

for the
rate at which susceptible mosquitoes SM get infected by the infected human host IH .

Variable Definition
SM Susceptible Mosquitoes
EM Exposed and not infectious mosquitoes
IM Infectious mosquitoes
SH Susceptible humans
IH Infected humans
N(t) Total number of humans
M(t) Total number of mosquitoes

Table 3.1: Table of variables and their definitions

Parameter Definition
λ(R, T ) Adult mosquito birth rate
a(T ) Mosquito biting rate
b1 Proportion of bites by susceptible mosquitoes on infected humans that

successfully produce infection
µ(T ) Adult mosquito per capita death rate
lm(T ) Survival probability of infected mosquitoes over the incubation period

of the parasite.
b2 proportion of bites by infectious mosquitoes on susceptible humans that

successfully produce infection
γ Rate at which infectious humans recover and acquire immunity.

Table 3.2: Table of Parameters against their definitions
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Assumptions in the model;

(i) The recovered class of infected humans acquires full immunity

(ii) No recovery for infected mosquito

(iii) All parameters and variables in the model are non negative.

(iv) The human population is constant.

3.2 Model Analysis.

For analysis of the model, we transform the system of populations into a system of
proportions of the individuals in each class.

The proportions of the classes SH , IH , SM , EM and IM are defined as sh = SH

N
,

ih = IH
N

, sm = SM

M
, em = EM

M
and im = IM

M
respectively.

If the female vector-host ratio is given by:

k = M(t)
N(t)

where k is the number of female mosquitoes per human host.

Differentiating the proportions above with respect to time, we have:

dsh
dt

= −a(T )b2kshim + γshih

dih
dt

= γi2h − γih + a(T )b2kimsh

dsm
dt

= (1− sm)λ(R,T )
M(t)

− a(T )b1ihsm

dem
dt

= a(T )b1ihsm − a(T )b1ihsmlm(T )− λ(R,T )
M(t)

em

dim
dt

= a(T )b1ihsmlm(T )− λ(R,T )
M(t)

im

(3.2)

The new system (3.2) contains the total mosquito vector population M. Given that
ih + sh = 1 and sm + em + im = 1, we reduce the five equations to three equations
by eliminating sh and em.
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Making sh and em subject, we have; sh = 1− ih and em = 1− (sm + im)

Substituting sh and em into the system (3.2), we have;

dih
dt

= γi2h − (γ + a(T )b2kim)ih + a(T )b2kim

dsm
dt

= (1− sm)λ(R,T )
M
− a(T )b1ihsm

dim
dt

= a(T )b1ihsmlm(T )− λ(R,T )
M(t)

im

(3.3)

Since the mosquito population is assumed to be constant at any time, we equated
the second last equation in (3.1) to zero;

dM(t)
dt

= λ(R, T )− µ(T )M(t) = 0

Making µ(T ) subject, we have, µ(T ) = λ(R,T )
M(t)

and substituting into the system (3.3)
which depends on the total mosquito population M , the system thus reduces to three
equations;

dsm
dt

= (1− sm)µ(T )− a(T )b1ihsm (3.4)

dim
dt

= a(T )b1ihsmlm(T )− µ(T )im (3.5)

dih
dt

= γi2h − (γ + a(T )b2kim)ih + a(T )b2kim (3.6)

3.3 A compact positively invariant set.

Theorem 1. The set
D={(sm, im, ih) ∈ R3

+; sm ≥ 0, im ≥ 0, ih ≥ 0; sm + im ≤ 1; 0 ≤ ih ≤ 1}
is positive invariant with respect to the model.

Proof: The model is monitoring human and mosquito population, therefore it is
assumed that all the state variables are non-negative. From (3.4), when sm = 0 =⇒
ṡm > 0 and if sm = 1 ⇒ ṡm < 0, from (3.5), when im = 0 =⇒ i̇m > 0 and if
im = 1 ⇒ i̇m < 0, also from (3.6), when ih = 0 =⇒ i̇h > 0 and if ih = 1 ⇒ i̇h = 0.
The right hand side of the equations is continuous with continuous partial derivatives
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in the given region thus there is a unique solution. Since the solutions remain in D,
they are continuous for all t ≥ 0. If B ∈ C1[0, 1], then the right hand side is globally
lipschitzian in D so that the initial value problem has a unique solution for all t ≥ 0.
In the interior of D, the right side is locally lipschizian since for every closed bounded
subset, there exists lipschitz constant.

Thus, for all points in the interior of D, the initial value problem has a unique
solution for all t ≥ 0. Thus solutions on the boundary of D eventually enter the
interior and those starting in D remain there. Thus, the initial value problem is well
posed in the closed set D. Therefore, in D the model is well posed epidemiologically
and mathematically.

3.4 Reproduction Number R0

The reproduction number R0 is obtained using the next generation matrix i.e FV −1

where F and V denote the matrices for new infection and transmission terms respec-
tively.

The two disease compartments responsible for transmission are ih and im, thus from
(3.6) and (3.5) we have;

dih
dt

= γi2h − (γ + a(T )b2kim)ih + a(T )b2kim
dim
dt

= a(T )b1ihsmlm(T )− µ(T )im
(3.7)

According to [29], we define the transmission vector F and the vector of infected
components V from system above as;

F =

[
γi2h + a(T )b2kim

a(T )b1lm(T )ihsm

]
,V =

[
−(γ + a(T )b2kim)ih

−µ(T )im

]
(3.8)

The Jacobian of the two vectors above gives F and V as the matrices for the new
infection and transmission terms

F =

[
2γih a(T )b2k

a(T )b1lmsm 0

]
, (3.9)

V =

[
−(γ + a(T )b2kim) −a(T )b2kih

0 −µ(T )

]
(3.10)
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When computed at the DFE ; ih = 0, im = 0 and s∗m = 1 the two equations above
reduce to ;

F =

[
0 a(T )b2k

a(T )lm(T )b1 0

]
, V =

[
−γ 0

0 −µ(T )

]
(3.11)

Hence;

V −1 =

[
− 1
γ

0

0 − 1
µ(T )

]

Thus FV −1 will be given by;

FV −1 =

 0 −a(T )b2k
µ(T )

−a(T )b1lm(T )
γ

0

 (3.12)

Let K = −FV −1 be the next generation matrix, namely

K = −FV −1 =

 0 a(T )b2k
µ(T )

a(T )b1lm(T )
γ

0

 (3.13)

where the entries of K are interpreted as the number of secondary infections produced
by the infected vectors and hosts during the course of their infection.

It follows that the R0 is given by

R0 = −ρ(FV −1)

.
where ρ-is the spectral radius of the next generation matrix −FV −1

The eigenvalues of K above are

λ1,2 = ±

√
a2(T )b1b2lm(T )

γµ(T )
k

R0 is given by the eigenvalue with the greatest magnitude, We have;

R0 =

√
a2(T )b1b2lm(T )

γµ(T )
k
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Recall, k = M(t)
N(t)

, substituting this into the R0 above, the result becomes:

R2
0 =

M(R, T )a2(T )b1b2lm(T )

γµ(T )N

The square arises since, according to [14], it takes two generations for infected hosts
to produce new infected hosts, i.e the mosquito bites twice for transmission to take
place, once to acquire the parasite and again to transmit to a new host. Thus we
have;

R0 =
M(R, T )a2(T )b1b2lm(T )

γµ(T )N
(3.14)

From [2, 14, 29], R0 is known to provide the necessary condition for the eradication
of an epidemic, in that if R0 < 1, the disease can be eradicated and if R0 > 1, the
disease will persist in the population.

a(T ) is the number of mosquito bites per individual per day and it is dependent
on the mosquito feeding (biting) rate which is highly affected by temperature
as seen in (3.38) and (3.39), [2, 14, 40].

a(T )b1 and a(T )b2 are a measure of the conservation of bites through the biting
rate a
lm(T )
µ(T )

is the fraction of vectors that progress from exposed to infected class.

1
γ

is the human average duration of infectiousness

3.5 Equilibrium States

The equilibria are obtained by equating the left hand side of equations (3.4), (3.5)
and (3.6) to zero thus yielding

(1− sm)µ(T )− a(T )b1smih = 0

a(T )b1lm(T )ihsm − imµ(T ) = 0

γi2h − (γ + a(T )b2kim)ih + a(T )b2kim = 0

(3.15)

For easy analysis of the steady states, the solutions of the system (3.15) are expressed
in terms of ih.
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Making sm the subject from (3.15), we have;

sm = µ(T )
µ(T )+a(T )b1ih

(3.16)

Also, making im subject from (3.15) and substituting sm from (3.16) above, we end
up with;

im = ab1lm(T )ih
µ(T )+a(T )ih

(3.17)

3.6 Stability Analysis

In this section we establish the local and global stability of the disease-free equilibria
(DFE) and endemic equilibria.

3.6.1 Disease-free equilibrium points, (DFE), E0

At the disease-free equilibrium, we have an absence of disease in the population i.e
ih = im = 0 and thus sm = 1. Substituting this into the system (3.15) gives the
steady state E0 = (1, 0, 0)

3.6.2 Local stability analysis of the disease free equilibrium

Analysis of the above is done by linearising the reduced system of differential equa-
tions in (3.4) to give the Jacobian matrix as;

J =


−µ(T )− a(T )b1ih 0 −a(T )b1sm

a(T )b1lm(T )ih −µ(T ) a(T )b1lm(T )sm

0 −a(T )b2kih + a(T )b2k 2γih − (γ + a(T )b2kim)

 (3.18)

At the DFE, E0 = E0(1, 0, 0), the above Jacobian reduces to;

JDFE =


−µ(T ) 0 −a(T )b1

0 −µ(T ) a(T )b1lm(T )

0 a(T )b2k −γ


with the characteristic polynomial P (λ) at DFE given by,

P (λ) =
∣∣JDEF − λI∣∣ = 0
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or

P (λ) =
∣∣JDEF − λI∣∣ =

∣∣∣∣∣∣∣∣
−µ(T )− λ 0 −a(T )b1

0 −µ(T )− λ a(T )b1lm(T )

0 a(T )b2k −γ − λ

∣∣∣∣∣∣∣∣ = 0

Expanding the above along the first column gives;

−(µ(T ) + λ)[λ2 + (µ(T ) + γ)λ+ µγ − a2(T )b1b2klm(T )] = 0

Since k = M
N

, we have R0γµ(T ) = a2(T )b1b2klm(T ). Substituting this into the
expanded characteristic polynomial, P (λ), we have

−(µ(T ) + λ)[λ2 + (µ(T ) + γ)λ+ µ(T )γ(1−R0)] = 0

The roots of the above equation will have negative real parts provided:

µ(T )γ(1−R0) > 0

The resulting eigenvalues of the characteristic polynomial are;

λ1 = −µ(T )

and
λ2,3 = −(µ(T ) + γ)±

√
(µ(T ) + γ)2 − 4µ(T )γ(1−R0)

The three eigenvalues have negative real parts for R0 < 1. Thus, according to [39],
E0 is locally asymptotically stable if and only if R0 < 1 and we have thus established
the following Lemma:

Lemma 1: The disease-free equilibrium E0 is locally stable if R0 < 1 and unstable
if R0 > 1.

3.6.3 Global stability analysis of the disease free-equilibrium.

As in [39], we use the following theorem to prove the global stability of the disease-
free equilibrium point.

Theorem 2: The disease-free equilibrium is globally asymptotically stable if R0 ≤ 1
and unstable if R0 > 1
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Proof: Consider the following Lyapunov function;

L = µ(T )
a(T )

ih + b2kim

Its derivative along the solution of the system is;

L′ = µ(T )
a(T )

i′h + b2ki
′
m (3.19)

= µ(T )
a(T )

[γi2h − (γ + a(T )b2kim)ih + a(T )b2kim] + b2k[a(T )b1lm(T )ihsm − imµ(T )]

(3.20)

= a(T )b1b2klm(T )ihsm − µ(T )
a(T )

γih + µ(T )
a(T )

γi2h − b2µ(T )kimih + µ(T )b2kim − b2µ(T )kim

(3.21)

= µ(T )
a(T )

γih[
a2(T )b1b2klmsm

µ(T )γ
− 1] + µ(T )

a(T )
γi2h − b2µ(T )kimih (3.22)

= µ(T )
a(T )

γih[R0sm − 1] + µ(T )
a(T )

γi2h − b2µ(T )kimih (3.23)

= µ(T )
a(T )

γih[R0sm − 1] + µ(T )
a(T )

ih[γih − a(T )b2kim] (3.24)

≤ µ(T )
a(T )

γih[R0sm − 1] (3.25)

Since sm ≤ 1, then L′ ≤ 0 if R0 ≤ 1. L′ = 0 if and only if R0 = 1 and ih = im = 0.
By Lyapunov-Lesalle’s Theorem, [39], every solution that starts in D={sm, im, ih}
approaches the largest positive invariant subset of the set where L′ = 0. Thus every
solution that starts in the feasible region where the solutions have biological meaning
approaches E0 as t −→ +∞. This shows that the disease eventually disappears from
the community. Hence the disease-free equilibrium point is globally asymptotically
stable hence the theorem is proved.

3.6.4 Local Stability of endemic equilibrium E1

In this section, we will prove that when R0 > 1, then the endemic equilibrium is
asymptotically stable.

For existence and uniqueness of endemic equilibrium EE = (s∗m, i
∗
m, i

∗
h) > 0

Theorem 3:
If R0 > 0, the endemic equilibrium of the system is locally asymptotically stable.
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Proof: We consider the Jacobian of system (3.16) given by;

JE1 =


−µ(T )− a(T )b1i

∗
h 0 −a(T )b1s

∗
m

a(T )b1lm(T )i∗h −µ(T ) a(T )b1lm(T )s∗m

0 −a(T )b2ki
∗
h + a(T )b2k 2γi∗h − (γ + a(T )b2ki

∗
m)


(3.26)

The characteristic polynomial of the Jacobian above is given by;

p(λ) =
∣∣JE1 − λI

∣∣ = 0

or

p(λ) =

∣∣∣∣∣∣∣∣
−µ(T )− a(T )b1i

∗
h − λ 0 −a(T )b1s

∗
m

a(T )b1lm(T )i∗h −µ(T )− λ a(T )b1lm(T )s∗m

0 −a(T )b2ki
∗
h + a(T )b2k 2γi∗h − (γ + a(T )b2ki

∗
m)− λ

∣∣∣∣∣∣∣∣ = 0

Expanding along the first raw, we have;

λ3 + [2µ+ ab1i
∗
h + γ(1− 2i∗h) + ab2ki

∗
m]λ2+

[µ2 +2γµ−4γµi∗h+2ab2kµi
∗
h+ab1γi

∗
h(1−2i∗h)+a2b1b2ki

∗
mi
∗
h+a2b1b2klms

∗
m(i∗h−1)]λ+

a2b1b2kµi
∗
mi
∗
h + ab1γµi

∗
h + a2b1b2kµlmi

∗
hs
∗
m + ab2kµ

2i∗m+

γµ2 − 2µ2γi∗h − a2b1b2kµlms∗m − 2ab1µγi
∗
h = 0 (3.27)

If the characteristic polynomial of the matrix (3.26) is given by

a0λ
3 + a1λ

2 + a2λ+ a3 = 0

then from (3.25), we have;
a0 = 1

a1 = 2µ+ ab1i
∗
h + γ(1− 2i∗h) + ab2ki

∗
m

a2 = µ2+2γµ−4γµi∗h+2ab2kµi
∗
h+ab1γi

∗
h(1−2i∗h)+a2b1b2ki

∗
mi
∗
h+a2b1b2klms

∗
m(i∗h−1)

a3 = a2b1b2kµi
∗
mi
∗
h+ab1γµi

∗
h+a

2b1b2kµlmi
∗
hs
∗
m+ab2kµ

2i∗m+γµ2−2µ2γi∗h−a2b1b2kµlms∗m−2ab1µγi
∗
h

From the expression of R0 derived previously, we have R0 = a2b1b2klm
µγ

> 1 or

a2b1b2klm > µγ thus we can deduce that a1 > 0, a2 > 0, a3 > 0.
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We need to show that a1a2 > a0a3 or a1a2 − a0a3 > 0 :

a1a2−a0a3 = 2µ3+4µγ(1−2i∗h)[µ+ab2ki
∗
m]+4ab2kµ

2i∗m+3ab1µ
2i∗h+2ab1γµi

∗
h(1−3i∗h)

+ a2b1b2kγ(2i∗mi
∗
h + 3s∗mi

∗
hlm − lms∗m − 4i∗mi

2∗
h − 2lms

∗
mi

2∗
h )

+ 2a2b22k
2µi2∗m + a3b21b2ki

∗
h(i
∗
mi
∗
h + lms

∗
mi
∗
h − lms∗m)

+ a3b1b
2
2k

2i∗m(i∗mi
∗
h + lms

∗
mi
∗
h − lms∗m) + 8γ2µi∗h(i

∗
h − 1)

+ ab1γ
2i∗h(4i

2∗
h − 2i∗h − 1) + a2b21i

2∗
h (µ+ γ − 2γi∗h) (3.28)

If R0 > 1 and a1a2 > a0a3, then by Routh-Hurwitz Criterion, the eigenvalues of the
matrix have negative real parts and thus the endemic equilibrium is locally stable.

3.7 Adult mosquito birth rate.

According to Parham and Michael [2], the adult mosquito birth rate λ(R, T ), which
is a function of rainfall and temperature is the parameter most affected by climate
change. The birth rate can be expressed as:

λ(R, T ) = BEPE(R)PL(R)PL(t)PP (R)
τE+τL(T )+τP

(3.29)

where

• R is rainfall

• T is temperature

• BE is number of eggs laid per oviposition

• PE is daily survival probability of eggs

• PL is daily survival probability of larvae

• PP is daily survival probability of pupa

• τE is duration of egg stage

• τL is duration of larvae stage

• τP is duration of the pupa stage
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• α, β and γ are constants

The assumptions in above model are:

• BE is independent of environmental conditions.

• Duration of each stage depends only on temperature if there is sufficient rainfall
to sustain development.

• Eggs have the highest daily survival probability.

The daily survival probabilities of eggs, larvae and pupae are given by

PE(R) = 4PME

R2
LE
R(RLE −R)

PL(R) = 4PML

R2
LL
R(RLL −R)

PP (R) = 4PMP

R2
LP
R(RLP −R)

(3.30)

The effect of temperature on larvae duration in days can be expressed as;

τL(T ) =
1

αT + β
(3.31)

and the daily survival probability of larvae on temperature as;

PL(T ) = e−(αT+β) (3.32)

and the identical wash out limits as

RLE = RLL = RLP = RL (3.33)

Substituting (3.30), (3.31), (3.32), and (3.33) into (3.29) gives rise to;

λ(R, T ) = 64
BEPMEPMLPMPR

3(RL −R)3(αT + β)e−(αT+β)

R6
L[1 + τE(αT + β) + τP (αT + β)]

(3.34)
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3.8 R0 as a function of temperature, rainfall and

Relative Humidity

According to Martens [30], to get the survival probability lm(T ) of infected mosquitoes
over the incubation period of the parasite in relation to the ambient temperature and
latent period, the relation below was used:

lm(T ) = P n

where the incubation period of the parasite in the vector, n, is in days and is given
by [30, 2];

n = DD
T−Tmin

where DD is the total degree days required for the development of the parasite and
Tmin is the minimum temperature required for parasite development. The incubation
period of the parasite in the malarial mosquito must have elapsed before the infected
vector can transmit the parasite. Thus;

lm(T ) = p
DD

T−Tmin (3.35)

If P (T ) is the survival probability of mosquito and µ(T ) is the mortality rate, then
according to Lunde et al [9], the survival probability is related to the mortality by;

µ(T ) = −lnp(T ), or, p(T ) = e−µ(T ) (3.36)

Substituting (3.36) into (3.35) gives

lm(T ) = e
−µ(T )

[
DD

T−Tmin

]
(3.37)

Definition of Biting and Mortality Rates

To be able to analyse the dependence of R0 on temperature and rainfall, we explored
more into equations of the biting and mortality rates as a function of temperature.

Biting 1 and Biting 2 given by (3.38) and (3.39) are the two models representing
biting rate of the female Anopheles mosquito i.e, the number of mosquito bites per
individual per day [14, 40].
Mortality 1 and Mortality 2 given by (3.41) and (3.43) are the two models rep-
resenting mortality rate of the female mosquito [9].
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According to [30, 2], the mosquito biting rate per day was given by the frequency
with which the vector takes a blood meal. The frequency of feeding depends on the
speed at which the blood meal is digested. The belief is that as temperature rise,
the frequency of biting increases. This can be measured by;

D1

T − T1
where D1 is the number of degree days required for the digestion of a portion of blood
ingested, T is the actual average temperature and T1 is the minimum temperature
required for the digestion of the blood meal. Thus according to [40], the number of
mosquito bites per individual per day is given by;

a(T ) = T−T1
D1

(3.38)

which shows that the frequency of feeding by a female mosquito a(T ) increases as
temperature increases.

Also according to Paajmans [14], the biting rate of Anopheles Pseudopunctipennis
one of the main malaria vectors in South Africa was described as:

a(T ) = ηT (T − ω)
√

(ρ− T ) (3.39)

where η = 0.000203, ω = 11.7 and ρ = 42.3 are constants.

We were motivated to pick on (3.36) and (3.37) because;

(i) The research was done within a mean temperature range of 180C to 350C which
covers the thermal limits for transmission of Plasmodium falciparum which is
the main cause of malaria in Kenya

(ii) The temperature range in (i) above is applicable to the Kenyan scenario.

Lunde et al [9], expressed the survival probability p(T ), as a function of temperature
given by (3.40) which prolonged the daily survival probability at higher temperatures.

p(T ) = e
−1

AT 2+BT+C (3.40)

Substituting (3.40) into (3.36) gives the mortality rate as;

µ(T ) = 1
AT 2+BT+C

(3.41)

where A, B and C are constants.
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Parham [9] took a different approach from Martens by formulating a model in which
he included the effects of relative humidity, (RH) in the survival probability p(T ).
His model resembles (3.40) only that the constants A, B and C are replaced by
expressions, β0, β1 and β2 which are functions of RH. The survival probability p(T )
was expressed as a function of temperature T and RH as;

p(T,RH) = e
−1

β2T 2+β1T+β0 (3.42)

Substituting (3.42) into (3.36), gives the mortality rate as;

µ(T ) = 1
β2T 2+β1T+β0

(3.43)

where,
β0 = U1(RH)2 + V1RH +W1

β1 = U2(RH)2 + V2RH +W2

β2 = U3(RH)2 + V3RH +W3

and U1, U2, U3, V1, V2, V3,W1,W2 and W3 are constants.

In order to obtain the effect of rainfall, temperature and relative-humidity on R0 we
substitute the vector population M(R, T ); i.e

M(R, T ) = λ(R,T )
µ(T )

(3.44)

Substituting (3.37) and (3.44) into (3.14) results in

R0 = λ(R,T )b1b2
γNµ2(T )

a2e
−µ(T )

[
DD

T−Tmin

]
(3.45)

Substituting biting 1, (3.38) and mortality 1, (3.41) into (3.45) yields

R0 = λ(R,T )b1b2
γN

(
T−T1
D1

)2
[AT 2 + BT + C]2exp

[
−DD

(AT 2+BT+C)(T−Tmin)

]
(3.46)

Substituting biting 1, (3.38) and mortality 2, (3.43) into (3.45) yields

R0 = λ(R,T )b1b2
γN

(
T−T1
D1

)2
[β2T

2 + β1T + β0]
2exp

[
−DD

(β2T 2+β1T+β0)(T−Tmin)

]
(3.47)

Substituting biting 2, (3.39) and mortality 1, (3.41) into (3.45) yields

R0 = λ(R,T )b1b2
γN

[
ηT (T − ω)

√
(ρ− T )

]2
[AT 2+BT+C]2exp

[
−DD

(AT 2+BT+C)(T−Tmin)

]
(3.48)
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Substituting biting 2, (3.39) and mortality 2, (3.43) into (3.45) yields

R0 = λ(R,T )b1b2
γN

[
ηT (T − ω)

√
(ρ− T )

]2
[β2T

2+β1T+β0]
2exp

[
−DD

(β2T 2+β1T+β0)(T−Tmin)

]
(3.49)

3.9 Epidemic Potential, EP(T).

Apart from the use of the reproduction number to determine the endemic nature of
malaria, we also use the epidemic potential (EP) as an index to project the future
risk of malaria in the event of change in temperature due to global climate change.
The EP serves as a summary parameter that can be used as a comparative index
to estimate the effect that change in ambient temperature can have on the risk of
malaria [41].

The disadvantage of this index is that unlike the R0 which is an integrated link
system model, it incorporates temperature as the only climatic variable in the form
of mortality rate. Epidemic potential EP, is derived from R0 (3.14), by factoring out
1
γ

the average duration of human infectiousness.

R0 =
1

γ

[
M(R,T )a2(T )b1b2Pn

N(−lnP )

]
=

1

γ

[
ma2(T )b1b2Pn

(−lnP )

]
=
V C

γ

where the vectorial capacity VC is the number of potential infectious bites that can
occur per unit time per infectious host and the mosquito vector density m is the
number of female mosquitoes per human.

If we let VC = 1, i.e assume that 1 potential contact is infected by a mosquito per
infectious person per unit time, then;

mCT =
(−lnP )

a2b1b2P n

where mCT is the critical threshold density and represents the average number of
female mosquitoes per person necessary for an infectious human to give rise to one
new case of malaria in a susceptible population.

Thus the epidemic potential (EP ) is the reciprocal of (mCT ) .

EP =
1

mCT

=
a2b1b2P

n

(−lnP )
(3.50)
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According to [30], an increase in EP indicates that conditions are suitable for fewer
vectors to effectively potentiate epidemic spread in a given area where P. falciparum
exist. As EP rises, conditions favour a greater chance of parasite development per
mosquito, i.e, a high EP indicates that despite a smaller vector population, a given
degree of endemicity may be maintained. The direct effect of temperature is on n,
the development time of the parasite and the host mortality rates.

Substituting biting 1, (3.38) and mortality 1, (3.41) into (3.50) yields

EP = b1b2

(
T−T1
D1

)2
[AT 2 + BT + C]exp

[
−DD

(AT 2+BT+C)(T−Tmin)

]
(3.51)

Substituting biting 1, (3.38) and mortality 2, (3.43) into (3.50) yields

EP = b1b2

(
T−T1
D1

)2
[β2T

2 + β1T + β0]exp
[

−DD
(β2T 2+β1T+β0)(T−Tmin)

]
(3.52)

Substituting biting 2, (3.39) and mortality 1, (3.41) into (3.50) yields

EP = b1b2

[
ηT (T − ω)

√
(ρ− T )

]2
[AT 2 + BT + C]exp

[
−DD

(AT 2+BT+C)(T−Tmin)

]
(3.53)

Substituting biting 2, (3.39) and mortality 2, (3.43) into (3.50) yields

EP = b1b2

[
ηT (T − ω)

√
(ρ− T )

]2
[β2T

2 + β1T + β0]exp
[

−DD
(β2T 2+β1T+β0)(T−Tmin)

]
(3.54)
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Chapter 4
RESULTS AND ANALYSIS

4.1 Numerical Simulation

Here we use MATLAB to run simulations in order to illustrate the behaviour and
relationships between the confirmed and total malaria incidence and the climatic
variables. We considered two regions in Kenya for analysis; i.e Lake Victoria region
named Zone 1 and Nairobi and its environs named Zone 4 where the analysis was
done on both monthly and seasonal values.

The parameters in Table (4.1) were used in simulation to compute the values of R0

as temperature, rainfall and relative-humidity change.

4.2 Confirmed Malaria

This is the percentage of individuals who are confirmed medically to have malaria
using the data between the year 2009-2011 for zone 1 and 4. Here we used the re-
production number, R0 and epidemic potential, EP as the indices used to determine
the risk of malaria and the future trends in malaria incidence and prevalence respec-
tively.

For a better understanding of the relationship between climatic variables and malari-
a, we plotted graphs of temperature and rainfall against confirmed unlagged-malaria,
figures (4.2), (4.3), and (4.1) perspectively both seasonally and monthly and also the
reproduction number and epidemic potential against confirmed unlagged-malaria,
figures (4.6), (4.10) and (4.12) seasonally. We also quantitatively calculated the cor-
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relation co-efficient between the climatic variables, R0, EP and confirmed malaria.

For further comparison and analysis, we computed graphs for confirmed-lagged malar-
ia both in seasons and months as shown in figures (4.4, 4.5). The lagging was done
by comparing the effects of climatic variables, R0 and EP in one season (or month)
to malaria incidence in the next season (or month). The analysis of unlagged and
lagged malaria were done using the two biting rates (3.38) and (3.39) which are func-
tions of temperature and also the two mortality rates (3.41) and (3.43) which are
functions of temperature, rainfall and relative-humidity.

From figure (4.1), we observe that as rainfall peaks in one season, malaria does not
peak immediately in the same season and similarly if rainfall reduces in one season,
malaria drops after sometime .i.e. a change in rainfall pattern will lead to a cor-
responding change in malaria whose effect will be felt after sometime. The same
behaviour is observed when we plotted temperature against confirmed malaria for
the same zone. The effects of climatic variables are much clearer under seasonal anal-
ysis as compared to monthly analysis because of the fact that a change in climatic
variable does not simultaneously cause a change in malaria but in most cases, the
effect comes after one or more months.

As shown in figure (4.5) the computations of lagged-malaria, we observed that as R0

and temperature peaks, lagged-malaria peaks almost immediately and a reduction
in the climatic variable relates to a reduction in malaria incidence.

A similar observation was made when we computed reproduction number and epi-
demic potential against malaria, figures (4.7, 4.8). This is because the two indices are
functions of climatic variables. A change in climatic variables, R0 and EP does not
correspond to a sudden change in malaria due to transmission dynamics in malaria
which includes; the fact that the mosquito needs to bite twice, incubation period
and four stages of mosquito growth to maturity before malaria transmission occurs,
figure (1.3). Thus, during analysis this transmission dynamics are taken into account
by lagging malaria data by one season or month.

4.3 Total Malaria

This data is obtained from the percentage of individuals who are reported to have
suffered from malaria-like signs and symptoms prior to medical tests for confirma-
tion.

As seen in the analysis of confirmed malaria, there is a similar relationship between
climatic variables and total malaria both in seasons and monthly, figure (4.14, 4.15
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and 4.20). This is to ascertain that, changes in climatic variables leads to unpleasant
change in the functions of the body system. In the process the human body might
succumb to the extreme sudden changes in climatic variables thus leading to mani-
festation of malaria-like symptoms.

Since the malaria-like symptoms does not manifest immediately, we lagged the data
for total malaria so as to show clearly the relationship as seen in the peaks and
troughs in the graphs of epidemic potential, reproduction number, climatic variables
and total malaria, see figures (4.15, 4.17 and 4.19). Quantitatively, the high correla-
tion co-efficient; 0.6747, 0.6599 and 0.6767 computed in figures (4.15, 4.17 and 4.19)
respectively also confirm that there is a high correlation between climatic variables
and total malaria.

From the graphs shown in figures (4.10 - 4.13), the biting rate models (3.38, 3.39)
and mortality rate models (3.41, 3.43) shows the same relation with the confirmed
malaria incidence when the analysis is done in the same zone. On the other hand,
when a comparison is done from one zone to another, we found out that the relation
does vary for both reproduction number and epidemic potential.
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Parameter Value Units
T1 19.9 0C
D1 36.5 0Cdays
Tmin 16 0C
DD 111 0Cdays
BE 200 Dimensionless
PME 0.9 Dimensionless
PML 0.25 Dimensionless
PMP 0.75 Dimensionless
RL 50 mm
τE 1 days
τp 1 days
α 0.00554 (0C2days)−1

β -0.06737 (days)−1

b1 0.04 Dimensionless
b2 0.09 Dimensionless
γ 1/120 days−1

η 0.000203 Dimensionless
ω 11.7 Dimensionless
ρ 42.3 Dimensionless
A -0.03 (0C2days)−1

B 1.31 (0Cdays)−1

C -4.4 days−1

U1 0.00113 Dimensionless
V1 -0.158 Dimensionless
W1 -6.61 Dimensionless
U2 -2.32 x 10−4 Dimensionless
V2 0.051 Dimensionless
W2 1.06 Dimensionless
U3 4 x 10−6 Dimensionless
V3 -1.09 x 10−3 Dimensionless
W3 -0.0255 Dimensionless

Table 4.1: Table of parameters estimates and their Units
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Figure 4.1: Rainfall and Confirmed Malaria for Zone 1
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Figure 4.2: Temperature and Confirmed Malaria for Zone 1
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Figure 4.3: Temperature and Confirmed Malaria for Zone 1
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Figure 4.4: Temperature and Lagged-malaria for Zone 1
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Figure 4.5: Temperature and lagged-Malaria Zone 1
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Figure 4.6: R0 and Confirmed Malaria for Zone 1 using (3.38); (3.41)
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Figure 4.7: R0 and Lagged-Malaria for Zone 1 using (3.38); (3.41)
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Figure 4.8: Epidemic potential and Confirmed Malaria for Zone 1, using (3.38);
(3.41)
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Figure 4.9: Epidemic potential and Lagged-Malaria for Zone 1, using (3.38); (3.41)
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Figure 4.10: R0 and Confirmed Malaria for Zone 1, using (3.39); (3.43)
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Figure 4.11: R0 and Confirmed Malaria for Zone 4, using (3.39); (3.43)
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Figure 4.12: EP and Confirmed Malaria for Zone 1, using (3.39); (3.43)
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Figure 4.13: EP and Confirmed Malaria for Zone 4, using (3.39); (3.41)
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Figure 4.14: Temperature and Total Malaria for Zone 1, using (3.38); (3.41)
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Figure 4.15: Temp and Total Lagged Malaria for Zone 1, using (3.38); (3.41)
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Figure 4.16: R0 and Total Malaria for Zone 1, using (3.38); (3.41)
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Figure 4.17: R0 and Total Lagged Malaria for Zone 1, using (3.38); (3.41)
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Figure 4.18: EP and Total Malaria for Zone 1, using (3.38); (3.41)
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Figure 4.19: EP and Total Lagged Malaria for Zone 1, using (3.38); (3.41)
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Figure 4.20: Rain and Total Malaria for Zone 1, using (3.38); (3.41)
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Figure 4.21: R0 and Total Malaria for Zone 1, using (3.39); (3.43)
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Figure 4.22: R0 and Total Malaria for Zone 4, using (3.39); (3.43)
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Figure 4.23: EP and Total Malaria for Zone 1, using (3.39); (3.43)
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Figure 4.24: EP and Total Malaria for Zone 4, using (3.39); (3.41)
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Chapter 5
CONCLUSION AND
RECOMMENDATIONS

In this study, we modelled malaria as a 5-Dimensional system of ODEs where the
model was reformulated in terms of the proportions of the classes of the respective
populations. We reduced the system to a 3-dimensional system of ODEs which were
used to carry out stability analysis, derive the reproduction number and express it
as a function of climatic variables: rainfall, temperature and relative-humidity.

From the stability analysis,we found that DFE is locally asymptotically stable when
R0 < 1 and unstable when R0 > 1 and globally asymptotically stable when R0 ≤ 1
and unstable if R0 > 1. We also found that when R0 > 1, then the endemic equi-
librium is locally asymptotically stable and that for the basic reproduction number
R0 ≤ 1 the disease free equilibrium is globally stable so that the disease dies out
with time but if R0 > 1 the disease free equilibrium point is unstable and the disease
persists.

We defined the indices (R0 and EP ) used in gauging malaria risk and determination
for future trends as a function of the climatic variables. Computation of confirmed
and total malaria shows that qualitatively, seasonal values are more reliable in show-
ing clear relationship between malaria and climatic variables as compared to the
monthly values which has scattered information. A change in climatic variable does
not correspond to an immediate change in malaria incidence.

Following are some suggestions and recommendations for future investigation;

(i) Improving the model to capture important features of malaria transmission that
our model does not include such as incubation period and mosquito develop-
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ment.

(ii) A part from rainfall, temperature and relative-humidity as the climatic variables
affecting malaria incidence, also incorporate altitude, wind speed, daylight,
snow and clouds.

(iii) Predict future climate by using long-term average data consolidated for 30 years
giving normal trends in meteorological behaviour which can be used to predict
future malaria risk.

Mathematical models can provide an important approach to understanding the dis-
ease risk and planning for its control. In particular, the reproduction number R0,
is a threshold parameter which provides a quantitative framework to determine the
risk of malaria. The epidemic potential EP , is also an index which can be used to
predict the future trend of malaria prevalence so as to help the decision makers in
planning.

If the EP is computed over 30 years period coupled with indication of an increase or
decrease in value, then it implies qualitative increase or decrease in malaria. Since
EP is an index which incorporates temperature as a climatic variable, computations
of its values showing the future trends is helpful in gauging qualitatively the future
malaria risk in the event of climate change.
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