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ABSTRACT

The one dimensional time independent Schrodinger’s equation is a second
order boundary value problem without the first order term explicitly. In this
current study, the solution of the time independent Schrodinger’s equation
is obtained using the Wood’s - Saxon Potential. The computation is done
numerically by using a sixth order method based on Lobatto quadrature.
This generates the different values of energies for the first six bound states
after the same number of iterations as that of Numerov’s method. The re-
sults obtained by Lobatto quadrature formula are compared against those for
Numerov’s method for the various values of the step lengths. This is done
in terms of computation of the errors with respect to the analytical solu-
tions. The magnitude of the errors for both methods indicates that Lobatto
quadrature method yield values which have smaller errors than Numerov’s
method when compared with the exact solutions.
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DEFINITION OF TERMS

i Forward difference
It is a finite difference given by;

∆[fk] = fk+1 − fk

ii Backward difference
It is given by;

∇[fk] = fk − fk−1

iii Central difference operator
It is a difference operator denoted by;

δ[fk] = f(k+ 1
2) − f(k− 1

2)

iv Work function, W0

It is the minimum amount of energy that is needed to dislodge an
electron from a certain metal surface.

v Threshold frequency, f0
The minimum frequency of a radiation that is needed to eject an elec-
tron from a certain metal surface.

vi Momentum , p
It is the product of linear velocity and mass.
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CHAPTER 1

INTRODUCTION

1.1 Background of Boundary Value Problems

1.1.1 Introduction

Numerical solution procedures occupy an extremely important part in many
areas of sciences. These include engineering, astrophysics, laser physics, nu-
clear reaction, highly oscillatory motions in bodies, atomic and nuclear scat-
tering problems, molecular-dynamics calculations for liquids and gases, stel-
lar mechanics and pollution of the atmosphere. In most areas, where there
is a quantitative component, there is always great interest in describing how
systems evolve with time, that is, in describing the dynamics of a system.
In the simplest one-dimensional case, the state of a system at any time, t, is
denoted by a function which is generally written as u = u(t). Considering u,
a dependent variable, knowing it is important in order to know the state that
the system is in, at any time, t. For example, u(t), could be the population of
an animal species in an ecosystem, the concentration of a chemical substance
in the blood, the number of infected individuals in a flu epidemic, the cur-
rent in an electrical circuit among others. The differential equation describes
how a state changes. Many models are in form of dynamic equations that
relate the state, u(t), to its rates of change as expressed by its derivatives,
u′(t), u′′(t), . . . and so on. Such equations are called differential equations
and many laws of nature take the form of such.
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Explicit solutions when known can be used as test cases for tracking the re-
liability and accuracy of a chosen numerical scheme. Thus the classification
of equilibrium and their stability properties as well as first intervals and Lya-
punov functions play an important role. This leads to the boundary value
problem which is a field of differential equations.

A boundary value problem is a differential equation together with a set of
additional constraints called the boundary conditions. A solution to a bound-
ary value problem satisfies the boundary conditions.

The boundary value problem described in this case is a two-point boundary
value problem. A two point boundary value problem of total order n on a fi-
nite interval [a, b] may be written as an explicit first order system of ordinary
differential equations with boundary values evaluated at two points as;

y′′(x) = f [x, y(x)], x ∈ (a, b) (1.1)

g(y(a), y(b)) = 0

Here y, f, g ∈ <n and the system is called explicit. The n boundary conditions
defined by g must be independent that is they cannot be expressed in terms
of each other. There are four types of boundary value problem depending on
the boundary conditions set. These are;

i) Dirichlet boundary condition

Also known as the first-type, is a type of boundary condition named
after Peter Gustar Lejeune Dirichlet. When imposed on an ordinary
or partial differential equation, it specifies the values that a solution
needs to take on along the boundary of the domain. Given an ordinary
differential equation;

y′′ + y = f(x, y)

the Dirichlet conditions on the interval [a,b] take the form:

y(a) = α and y(b) = β where α and β are given numbers.

ii) Neumann boundary condition

Also known as the second boundary condition was was named after
Calr Neumann. When imposed on an ordinary or partial differential

2



equation it specifies the values that the derivatives of a solution has
taken on the boundary of the domain. For an ordinary differential
equation for instance;

y′′ + y = f(x, y)

,

The Neumann boundary conditions on the interval [a,b] take the form
y′(a) = α and y′(b) = β where α and β are given numbers.

iii) Robin boundary condition

Also known as the third type boundary condition is a boundary condi-
tion named after Victor Gustare Robin. When imposed on an ordinary
or a partial differential equation, it is a specification of a linear combi-
nation of the values of a function and its derivative on the boundary
of the domain. It is therefore a weighted combination of Dirichlet and
Neumann boundary condition. Given that a and b are allowed to be
functions, rather than constants in an example, Ω = [0, 1], the Robin
boundary becomes the conditions:

ay(0) + by′(0) = f(0)

ay(1) + by′(1) = f(1)

for a given differential equation.

iv) Cauchy boundary condition

A Cauchy boundary condition named after Louis Cauchy specifies both
the function value and the normal derivative on the boundary of the
domain. They are common in second order ordinary differential equa-
tions; y′′(x) = f(x).

In order to ensure that a unique solution y(x) exists, one specifies the
value of the function y and the value of the derivative y′ at a given
point, say x = a. For instance y(a) = α and y′(a) = β where a is a
boundary value.

3



1.1.2 Phenomena giving rise to boundary value prob-
lems

In the current research, I consider the second order boundary value problem
where the first order derivative does not appear explicitly. It occurs in a
number of cases outlined below.

1 Newton’s Mechanics

If the force F(x,t) acting on a particle is known, then one can write a
second order differential equation to find x(t). For instance; F (x, t) =
ma (Newton’s Second law of motion).

F (x, t) = m
d2y(t)

dx2
(1.2)

which is second law of Newtonian mechanics. This law relates the force,
mass and acceleration of an object whose position is x(t) at time, t.
Force applied to an object is equal to its mass, m times its acceleration
d2y

dx2
.

A physical phenomenon involving this is when the trajectory of a ver-
tically projected object is considered between the point of projection
and landing. Hence, its height above the point of projection at any
time is given by x(t0) = x(tn) = 0 where t0 and tn represents the time
at point of projection and landing respectively.

2 Spring’s and Hooke’s law

For Hooke’s law provided the force, y is not so large not to deform the
spring then the restoring force Fspring = −ky where k > 0 is a constant
depending on the properties of the spring.

Combining Hooke’s law and Newton’s second law of motion implies

m
d2y

dx2
= −ky for m = 0

d2y

dx2
= −ky

m
⇒ d2y

dx2
= −ω2y

where ω2 = k
m

Let u(x) denote the position of a string at x which is specified and
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depends on f(x). Considering balance of the force, we get a differential
equation. The external forces are balanced by the tension of the elastic
spring. Thus

−τuxx = f(x)

for 0 < x < 1 and u(0) = u(1) = 0.

3 Deformation of an Elastica

The transverse deformation of a thin elastic in extensional rod sub-
jected to an axial loading and clamped at its ends is governed by the
differential system;

d2θ

ds2
+ P sin θ = 0,

0 < s < 1, θ(0) = θ(1) = 0

.

Figure 1.1: Elastic deformation

The figure (1.1.2) shows the rod with unit length, magnitude of the
loading equal to P , and θ is the angle that the deformed rod makes
with the initial undeformed axis. This classical second-order non-linear
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two-point boundary value problem is called the elastic problem. The
solution, however becomes unstable as P increases and the rod bends
into a deformed shape. Hence, this boundary value problem is also a
differential eigenvalue problem that consists of determining θ and the
critical load P for deformed shapes to exist. Once θ has been deter-
mined the Cartesian co-ordinates of a deformed point on the rod can
be determined as the solution of the initial value problems.

An example of physical phenomena occurs in Boggio - Hadamard con-
jecture for a clamped plate. Given that u(x) denotes the deviation
from the equilibrium of the idealised one dimensional beam at point x,
then

u′′(x) = f

where
u(x0) = u(xn) = 0

1.2 Background of the problem

The laws of nature can be fashioned in the language of differential equations
namely partial differential equations, PDE and ordinary differential equa-
tions, ODE. Just like many physical phenomena, the Schrodinger’s Equa-
tion, SE can be described as a PDE for the time dependent, and ODE when
considering the time independent SE. The S.E. plays the role of second New-
ton’s law and conservation of energy in classical mechanics i.e. it predicts
the future behaviour of a dynamic system. It is closely related to the second
Newton’s law of motion F = ma.

According to quantum mechanics, we describe systems using wave functions.
It incorporates duality of matter ,that is, a system can act as a wave or par-
ticle. Thus a system such as that of an electron can be described by using
the wave function. For example, in this case, the wave may represent the
displacement or amplitude of the wave produced by that electron in space.
If we treat the system as a particle, then the wave function is used to give
us the probability of finding the particle at some point|φ|2. In order to de-
scribe any system in quantum mechanics, we must be able to determine what
the wave function is numerically. In quantum mechanics, the Schrodinger’s
equation describes how the quantum state of a physical system changes with
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time. It is therefore the fundamental equation of the non-relativistic quan-
tum mechanics which involves ODEs of second order in which the first order
does not occur explicitly. The study of this equation plays an exceptionally
important role in modern physics. It was formulated in late 1925 and pub-
lished in 1926, by the Austrian Physicist Erwin Schrodinger.

The concept of a wave function is a fundamental postulate of quantum me-
chanics. For standard interpretation of quantum mechanics, the wave func-
tion is the most complete description that can be given of a physical system.
Schrodinger’s equation describes not only molecular, atomic and subatomic
systems but also macroscopic systems even for the whole universe.

In the past other methods have been used to solve this equation including
perturbation theory, variational method and density functional.

Use of numerical schemes in solving the Schrodinger’s equation has also been
on the rise. Iterative and finite difference methods that converge to a solu-
tion faster and do not require a lot of storage are preferred. Thus there has
been a need to obtain efficient solution for solution of the time independent
Schrodinger’s equation which in this study is by use of Lobtto quadrature
method.

1.3 Statement Of The Problem

This involves the study of the numerical solution of ordinary differential equa-
tions in solving time independent Schrodinger’s equation. Since the solutions
to be obtained and their efficiency will help other readers to comprehend how
the solution of this equation has been done over the years and also to use the
most efficient numerical methods.

1.4 Objective of the study

The purpose is to investigate an efficient numerical scheme to the time inde-
pendent Schrodinger’s equation.
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1.5 Specific Objectives

1. To study the numerical solution for ordinary differential equations used
in solving Schrodinger’s equation.

2. To find the energy eigenvalues and the corresponding eigenfunctions for
the Woods- Saxon potential using a sixth order numerical scheme.

3. To check the accuracy by comparing with the analytic solution for a
Woods-Saxon potential with the computed value.
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CHAPTER 2

LITERATURE REVIEW

Boundary value methods based on either collation or finite differences are
not very popular for the solution of time independent Schrodinger’s equa-
tion, TISE due to the fact that the problem is based on the infinite interval.

Initially, the Schrodinger’s equation used to be solved with a guessed energy,
that always made the wave function to blow up at the infinity. Thus trial
and error was used to find an energy for which the wave function is tamed
up to a very large value of the radius.

An alternative approach for developing efficient methods, for the solution of
TISE is to use exponential fitting curves. Raptis and and Allison (1981) in
[2] had derived Numerov’s type exponentially fitted method.

Vanden et al (1989) in [19] investigated the numerical methods for solving
radial Schrodinger’s equation of the type(

d2

dr2
− F (E, r)

)
U(r) = 0

where

F (E, r) =
l(l + 1)

r2
− (E − V (r))

Rieth and Schommers (2002) in [34] developed a novel numerical method
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for the solution of Schrodinger’s Equation for a particle in an interaction
potential of the general shape. This method for the quantum-mechanical de-
termination of the eigenstates and eigenvalues of a particle (e.g. an electron)
in a potential of general shape. For such, the method allows to calculate the
exact solutions of the stationary Schrodinger’s Equation. A transition from
the stationary reference system to the stationary system under investigation
is performed by means of the TISE. The results are thus compared with var-
ious alternative numerical methods.

Maike Schulte (2007) in [35] solved the Schrodinger’s equation numerically
on an unbounded domains i.e. r → 0 and r → ∞. Here he discussed and
analysed the results on open boundary conditions for the two-dimensional
time-dependent Schrodinger’s Equation. The aim was to derive new math-
ematical models for the simulation of novel electronic devices of nano-scale
dimensions. It thus derives a new dicretisation scheme of the two dimensional
Schrodinger’s equation.

Tatu et al (2007) in [13] solved the eigenvalue problem for the Schrodinger’s
equation using Numerov’s method which is so far the highest ordered method
and at the same time a three-point method. Lower order methods such as
fourth order Runge- Kutta method leads to smaller net intervals, h and hence
longer integration times and more round off errors.

The current research realised that methods involving more than three adja-
cent functions values should be avoided, since they are frequently unstable.
It therefore studied the Numerov’s theory for integrating the one- dimen-
sional time independent Schrodinger’s equations.

y′′ = f(x)y(x), f(x) = V (x)− E, x ∈ [a, b]

with non-singular potential V(x). Numerov’s method of order 4 is superior
to other methods since besides having the same phase-lag order as the four-
step methods it has also a larger interval of periodicity. It also requires less
starting values.However its rate of convergence is slower.

Thus the current study is meant to highlight on the previous methods which
have been used in the past and to contribute to the missing link on a method
which leads to a faster rate of convergence. Hence the use of sixth order
numerical scheme derived using Lobatto Quadrature, also known as Radau
Quadrature.
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CHAPTER 3

SCHRODINGER’S
EQUATION AND ITS

NUMERICAL SCHEMES

3.1 Overview of Schrodinger’s Equation

The Schrodinger equation plays the role of Newton’s law and conservation
of energy in classical mechanics i.e. it predicts the future behaviour of a
dynamic system. It is a wave equation in terms of the wave function which
predicts analytically and precisely the probability of events or outcome. The
detailed outcome is not a large number of events, the Schrodinger equation,
S.E. will predict the distribution results.

Total energy in terms sum of kinetic energy and potential energy, 1
2
mv2 +

1
2
kx2, are transformed into Hamiltonian which acts upon the wave function to

generate the evolution of the wave function in the space. The Schrodinger’s
equation gives the quantized energies of the system. The SE exists in both
time dependent (partial differential equation) and time independent forms
(ordinary differential equation) forms.

The S.E. is both an inter-twin of both quantum mechanics and the wave
function, φ. Quantum mechanics was motivated by two kinds of experimental
observations; quantisation energy transfer in light-matter interactions, and
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the dual wave- particle of both light and matter. Thus motivated, Max
Planck to correctly calculate the spectrum of the black -body radiation in
1900 by postulating that an electromagnetic field can exchange energy with
atoms only in quanta which are the product of the radiation frequency and
the constant h; i.e.

E = hf (3.1)

3.2 Derivation of Schrodinger’s Equation

This is done by first stating some useful results from previous authors which
are also utilised in the derivation of the Schrodinger’s equation.

1. Albert Einsten’s Result

E = hf0 +
1

2
mv2 = W0 +

p2

2m
(3.2)

where h is Plank’s constant, f0 is the threshold frequency v, the velocity,
p the momentum of the wave particle and W0 is the work function.

2. Niel’s Result

h =
~
2π

(3.3)

3. Bor’s and de Broglie’s Results

p =
h

π
(3.4)

where p is the momentum of wave particle.

Erwin Schrdinger was motivated by de Broglie’s ideas and set his mind on
finding a wave equation for the electron. He used Maxwell’s equations for
electromagnetic fields. The wave equation governing electromagnetic waves
in free space is derived from Maxwell’s equation in free space, which are;

∇XE = −∂B
∂t

(3.5)

∇XB =
1

c2

∂E

∂t
(3.6)

∇.E = 0 (3.7)

∇.B = 0 (3.8)

12



where c is the speed of light in vacuum, E is the electric field and B is
the magnetic field. The equations (3.5), (3.6), (3.7), (3.8) are referred to
as Faraday’s law, Ampere’s law, Gauss law for electricity and Gauss law for
magnetism respectively.

Schrodinger’s equation has been derived by several physicists but this de-
scribes derivation by Schrodinger himself where he began with the classical
wave equation, as derived by Maxwell’s equations governing electrodynam-
ics.

The Maxwell’s first law given by equation (3.5) illustrates generation of a
voltage by a changing magnetic field (electromagnetic induction) which is
the basis of functioning of generators, inductors and transformers. The sec-
ond law given by equation (3.6) embodies Ampere’s law and is the magnetic
equivalence of the first equation. It explains why there is a circulating mag-
netic field surrounding a wave with electrical current running through it as
used in the electromagnetic and magnetic poles associated with the rotat-
ing ion core in the earth. The third law given by equation (3.7) stipulates
that charge is a source for the electric field. If charges are present, then the
right-hand side of equation (3.7) is non-zero and proportional to the charge
density. The equation (3.8) is the magnetic case which can be referred to as
“no magnetic monopoles”law.

Applying the curl operator to both sides of equation (3.5), and substituting
∇XB from equation (3.6), yields

∇X(∇XE) = − 1

c2

∂2E

∂2t
(3.9)

Let ~V be any vector; using the following vector identity

∇X(∇X~V ) = ∇X((∇.~V )−∇2V )

Applying this to the left hand side of equation (3.9) yields

∇X(∇XE) = ∇(∇.E)−∇2E

Using equation (3.7), this reduces to

∇2E = − 1

c2

∂2

∂t2
= 0

13



which is the electromagnetic wave equation. It can be written as

∂2E

∂x2
− 1

c2

∂2E

∂t2
= 0 (3.10)

Solving equation (3.10) by method of separation of variables for example, let
the solution of (3.10) be

E(x, t) = ψ(x)T (t) (3.11)

The equation 3.10 is satisfied by the plane wave equation.

E(x, t) = E0e
i(kx−ω)t (3.12)

where K = 2π
λ

and ω = πf in which K and f are the spatial and temporal
frequencies respectively, which must satisfy the dispersion relation obtained
upon substitution of (3.12) into (3.10)

⇒
(
∂2

∂x2
− 1

c2

∂2

∂2t

)
E0e

i(kx−ωt) = 0

⇒
(
−k2 +

ω2

c2

)
E0e

i(kx−ωt) = 0

Solving the wave vector, we arrive at the dispersion relation for light in the
free space:

k =
ω

c
(3.13)

or c = fλ relation represents classical electromagnetic waves and is related
to the theory of quantum photons.
From Einsten, that energy of a photon is

E − hf = ~ω

~ =
h

2π
ω = 2πf

where ω is the angular velocity and the momentum of a photon is

p =
h

α
= ~K

14



Thus (3.12) can be written as

E(x, t) = E0e
(px−εt)

Substituting into (3.10), we obtain(
∂2

∂x2
− 1

c2

∂2

∂t2

)
− E0e

(px−εt) = 0 (3.14)

− i

~2

(
p2 − ε2

c2

)
E0e

i
~ (px−εt) = 0 (3.15)

ε2 = p2c2 (3.16)

The relativistic total energy, is thus given by ε2 = p2c2 +m2c4 for a particle
with zero rest mass, which is right since light is made of photons.

Next, assuming with de Broglie that frequency and energy and wavelength
and momentum, are related in the same way for classical particles as for
photons, and consider a wave equation for non-zero rest, mass particles.
Thus getting ε2 = p2c2 +m2c4 instead of ε2 = p2c2. Since there is no dealing
with electric field, we can give the solution to our wave equation a new name
say ψ and call it a wave function. This shows that (3.14) is homogeneous
and hence the units of the function operated upon are arbitrary. Equation
(3.15), now becomes;

1

~2

(
p2 − ε2

c2
+m2c2

)
ψe

i
~ (px−εt) = 0 (3.17)

can be obtained from(
∂2

∂x2
− 1

c2

∂2

∂t2
− m2c2

~2

)
ψe

i

~
(px−εt)

= 0 (3.18)

Since light is treated as a collection of photons, the square of the electric field
is proportional to the number of photons. Thus our wave function

ψ(x, t) = ψ0e
i
~ (px−εt) (3.19)
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can be normalised to a unit probability. Then, the probability. Then, the
probability that the particle is located somewhere in space is;∫ ∞

−∞
ψ.ψ = 1 (3.20)

Removing restriction to one dimension and rearranging, we obtain this as
the Klein- Gordon equation for a free particle,

∇2ψ − m2c2

~2
ψ =

1

c2

∂2ψ

∂t2
(3.21)

Klein - Gordon is a relativistic equation hence Schrodinger had to take nec-
essary assumptions to establish a non- relativistic equation.

The first step is to approximate ε2 = p2c2m2c4 as follows;

ε = mc2

√
1 +

p2

m2c2
(3.22)

≈ mc2

(
1 +

1

2

p2

m2c2

)
(3.23)

≈ mc2 +
p2

2m
= m2 + T (3.24)

The last term is the classical Kinetic energy ,T. Thus equation (3.19) can be
rewritten as

ψ(x, t) = ψoe

i

~
(px−mct−Tt)

(3.25)

e

−i
~

(mc2t)
ψ0e

i

~
(px−Tt)

(3.26)

Assuming that the particle velocity is small such that mv << mc, which im-

plies that p2 << m2c2. Thus the leading term in equation (3.26) , e

−imc2t

~



will oscillate much faster than the last term, e

iT t
~


. Thus

ψ = e
−i
~ mc

2tφ (3.27)
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where

ψ = φ0e

i

~
(px−Tt)

(3.28)

Then

∂ψ

∂t
=
−i
~
mc2e

−i
~

(mc2t)
φ+ e

−i
~

(mc2t)∂φ

∂t
(3.29)

∂2ψ

∂t2
=

−m2c2

~2
e
−i
~ (mc2t)φ− 2i

~
mc2e

−i
~

mc2t∂φ

∂t

 (3.30)

Discarding the last term since it is small and approximating in equation
(3.18), we get

e
−i
~ mc

2t

[
∂2

∂x2
+

2im

~
∂

∂t

]
φ = 0 (3.31)

∂2φ

∂x2
+

2im

~
∂φ

∂t
= 0 (3.32)

Rearranging and generalising to three spatial dimensions, we finally arrive at
the Schrodinger’s equation

−~2

2m

∂2φ

∂x2
+ V (x)φ(x, t) = i~

∂φ

∂t
(3.33)

which is called the Schrodinger’s time dependent equation, TDSE, and where
the non-relativistic wave function φ is also constrained to the condition that
it be normalizable to unit probability. In one dimension when t = 0, the
equation (3.33) reduces to time independent Schrodinger’s equation, (TISE)
which is an ordinary oifferential equation and is written as;

−~2

2m

d2φ(x)

dx2
+ V (x)φ(x) = Eφ(x) (3.34)

where V(x) is the local potential difference and
−~2

2m

d2

dx2
is the K.E. opera-

tor. In equation (3.34) , the left hand side is the Hamiltonian operator of
the wave function.

17



The TISE predicts that wave functions can form standing waves called sta-
tionary state, and the general solution is given by

φ(x) = φ(x)e

−iEx
~ (3.35)

For N particles, in one dimension the Hamiltonian is;

Ĥ =
N∑
n=1

p̂2

2Mn

+ V (x1, x2, . . . , xN), p̂2
n = −i~ d

dxn

where the position of particle n is xn. The corresponding TISE is

−~2

2

N∑
n=1

1

mn

d2φ(x1, x2, . . . , xN)

dx2
+V (x1, x2, . . . , xN)φ(x1, x2, . . . , xN) = Eφ(x1, x2, . . . , xN)

and hence the general solution takes the form

φ(x1, x2, . . . , xN) = e
−iE
~ φ(x1, x2, . . . , xN)

For non-interacting distinguishable particles, the potential of the system only
influences each particle separately, so that the total potential energy is the
sum of the potential energies for each particle:

V (x1, x2, . . . , xN) =
N∑
n=1

V (xn)

and the wave function can be written as a product of the wave functions for
each particle:

φ(x1, x2, . . . , xN) = ΠN
n=1φ(xn)

For the bound states, the boundary conditions is that the wave function goes
to zero as x → ±∞ i.e. picking a finite value of |x| = a and assuming that

18



wave functions are identically zero at those values of x to generate the two-
point boundary value problem i.e.

−~2

2m

d2φ(x)

dx2
+ V (x)φ(x = Eφ(x)

and

φ(−a) = φ(a) = 0

3.3 Methods for solving Time-Independent Schrodinger’s

Equation

3.3.1 Matrix diagonalisation method

The one dimensional Schrodinger’s equation may be written as;[
d2

dx2
− f(x)

]
y(x) = 0, f(x) = u(x)− E, (3.36)

where u(x) =

(
2m

~2

)
V (x), E =

(
2m

~2

)
ε and u(x) and E represents the po-

tential and the energy in dimensionless form. For the purpose of numerical
treatment, we write it as;

y′′ + [E − u(x)]y = 0 (3.37)

where;

Eφ =
−~2

2m

d2φ

x. 2
+ V (~r)φ (3.38)

If the potential is independent of x, then the solution to this equation can
be written as;

φ(x, t) = AE
−
iEt

~
+iKx

(3.39)

φ(x = 0) = φ(x = L) = 0 (3.40)
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This method aims at transforming the given differential equation to matrix
equation.

First set up a lattice of discrete points and record the value of the function
at each lattice point (nodes). The corresponding value for each lattice point
is a value for the wave function.
Then, φ(xn) generates a column vector indicating its values at different φ
points.

φ(x) =



φ(x1)
φ(x2)

...
φ(xn)

...
φ(xN)


Then Eφ = − ~2

2m

d2φ

dx2
+ U(~r)φ

⇒ E


φ1

φ2
...
φN

 =

 H
N ×N



φ1

φ2
...
φN


The eigenvalues of N × N of H therefore be evaluated. This produces N
eigenvalues and N eigenvectors.

Thus [V,D] = eig(H) where D has the eigenvalues of matrix H as its diago-
nal elements, V has normalized eigenvectors of H as its columns.
Considering the case of a particle in a box;

Eφ =
−~2

2m

d2

dx2
+ V (x)φ

Consider Eφ = [V (x)]φ since V (x) is a potential function on a discrete lattice
V would tell us the potential at each lattice point, hence it will be diagonal.

Eφn = V (xn)φn ⇒ E


φ1

φ2
...
φN

 =

H = V (x)



φ1

φ2
...
φN


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and

V (x) =


V1 0 0 . . . 0
0 V2 0 . . . 0
0 0 V3 . . . 0
...

...
. . . . . .

0 0 0 . . . V (xN)



But E is given by

Eφ =
−~2

2m

d2φ

dx2

Rewriting
d2φ

dx2
in terms of central difference operator beginning with;[

dφ

dx

]
:

[
dφ

dx

]
n+ 1

2

=
φn + 1− φn

h

and [
dφ

dx

]
n− 1

2

=
φn − φn − 1

h

hence [
d2φ

dx2

]
n

=

[
[
dφ

dx
]n+1/2 − [

dφ

dx
]n−1/2

]
/h

⇒ φn+1 − 2φn + φn−1

h2
⇒ Eφn = t0[2φn − φn+1 − φn−1]

where t0 =
~2

2mh2
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⇒ E


φ1

φ2

.

.

.
φN

 = t0



2 −1 0 0 0 0
−1 2 −1 0 0 0
0 −1 . .
0 0 . .
0 0 . .
0 0 . . . −1
0 0 . . −1 2





φ1

φ2

.

.
φn
.
φN


which is a tridiagonal matrix. Inclusion of the potential matrix yields

Eφn = U(xn)− to(φn− − 2φn + φn+1)

Hence

E



φ1

φ2

.

.
φn
.
φN


=



2t0 + U(x1) −t0 0 0 0 0
−t0 2t0 + U(x2) −t0 0 0 0
0 −t0 .
0 0 . .
0 0 . .
0 0 . . −t0
0 0 . . −t0 2t0 + U(xN)





φ1

φ2

.

.
φn
.
φN



3.3.2 Runge - Kutta of order 4

This is used in the solution of

d2y

dx2
= αf(x, y) = 0 (3.41)

where y(a) = βy(b) = γ, is a constant. β and γ are constants and are the
values of the function, y at the both boundaries. Equation (3.41) is reduced
to two first ordinary differential equations by assuming

dy

dx
= p = fn1(x, y, p) (3.42)

then

dp

dx
= −αfn2(x, y, p) (3.43)
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The solution y(x) for this problem from x0 = a to xn = b where the step
length h is given by;

h =
xn − xo

n

The set of 1st order ODEs 3.42 and 3.43 are solved together from the following
formula.

yn+1 = yn + 1
6
(K1 + 2K2 + 2K3 +K4)

pn+1 = pn + 1
6
(L1 + 2L2 + L3 + L4)

}
(3.44)

where K1, K2, K3, K4, L1, L2, L3andL4 are calculated as follows:

K1 = hfn1(xn, yn, pn)

L1 = hfn2(xn, yn, pn)

K2 = hfn1(xn + h
2
, yn + K1

2
, pn + L1

2
)

L2 = hfn2(xn + h
2
, yn + K1

2
, pn + L1

2
)

K3 = hfn1(xn + h
2
, yn + K2

2
, pn + L2

2
)

L3 = hfn2(xn + h
2
, yn + K2

2
, pn + L2

2
)

K4 = hfn1(xn+h, yn +K3 + pn + L3)

L4 = hfn2(xn+h, yn +K3 + pn + L3)



(3.45)

3.3.3 Runge Kutta Butcher of 6th order method

The BVPs of second order is solved by RBK of 6th order. Applying this
method to solve equations 3.42 and 3.43 by the formula given

yn+1 = yn + h
90

(7K1 + 32K2 + 12K4 + 32K5 + 7K6)

pn+1 = pn + h
90

(7L1 + 32L2 + 12L4 + 32L5 + 7L6)

 (3.46)

23



where the constants K1, K2K3, K4, K5, K6, L1, L2, L3, L4, L5 and L6 are cal-
culated as follows;

K1 = fn1(xn, yn, pn)

L1 = fn2(xn, yn, pn)

K2 = fn1(xn, yn, pn) + h
4
L1

L2 = fn2(xn + h
4
, yn + hK1

4
, pn + hL1

4
)

K3 = fn1(xn, yn, pn) + hL1

8
+ hL2

8

L3 = fn2(xn + h
4
, yn + hK1

8
+ hK2

8
, pn + hL1

8
+ hL2

8
)

K4 = fn1(xn, yn, pn)− hL2

2
+ hL3

L4 = fn2(xn + h
2
, yn − hK2

2
+ hK3, pn − hL2

2
+ hL3)

K5 = fn1(xn, yn, pn) + 3hL1

16
+

9L4

16

L5 = fn2(xn + 3h
4
, yn + 3hK1

16
+

9hK4

16
, pn − 3hL1

16
+

9hL4

16
)

K6 = fn1(xn, yn, pn)− h
7
(3L1 − 2L2 − 12L3 + 12L4 − 8L5)

L6 = fn2[xn + h, yn − h
7
(3K1 − 2K2 − 12K3 + 12K4 − 8K5)

, pn −
h

7
(3L1 − 2L2 − 12L3 + L4 − 8L5)]



(3.47)

p0 is predicted from

p(0)
r =

[
y(1) − y(0)]

h

]
then p(0) is modified by

pr+1
(0) = pr(0) +

(
(yr(1) − y(1)

h

)

3.3.4 Numerov’s Method

The time independent Schrodinger’s equation can be written in a more gen-
eral way as

y′′ = f(r, y) (3.48)

24



This can be solved by deriving difference equations corresponding to equa-
tion 3.48or tansforming it into a system of first order equations or by means
of Numerov’s method with uniform partition of the finite interval(0, ~r);

0 = r0 < r1 < r2 < . . . < rn = r̄, rk = kh

where k = 0, 1, 2, ..., n

Using Taylor’s theorem under the assumption that f and y(r) are sufficiently
smooth, we write

y(ri + h) = y(ri + 1) = y(ri) + hy′(ri) +
h2

2!
y′′(ri) + . . . (3.49)

Replacing h by −h in equation (3.49) entails

y(ri − h) + y(ri)− hy′(ri)
h2

2!
y′′(ri) + . . . (3.50)

Combining equations (3.49) and (3.50) yields

y(ri + h)− 2y(ri) + y(ri − h) =
2h2

2!
y′′(ri)y

′′(ri) +
2h4

4!
y(4)(ri) + . . . (3.51)

which when differentiated twice yields the following equation

y′′(ri + 1)− 2y′′(ri) + y′′(ri − 1) =
2h2

2!
y(4)(ri) +

2h4

4!
y(6)(ri) + . . . (3.52)

from equation 3.51

h2y(4)(ri) = y′′(ri + 1)− 2y′′(ri) + y′′(ri − 1)− 2h4

4!
y(6)(ri) + . . . (3.53)

and this equation yields in turn, with the use of equation (3.53) in equation
(3.51)

y(ri + 1)− 2y(ri) + y(ri − 1) = h2y′′(ri) +
h2

12
[

1

h2
[y′′(ri + 1)−

2y′′(ri) + y′′(ri − 1)
2h4

12!
y(6)(ri) + . . .]] +

2h6

6!
y(6)(ri)

=
h2

12
[y′′(ri + 1) + 10y′′(ri) + y′′(ri − 1)]− 3h6

6!
y(6)(ri) +O(h8)

(3.54)
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Substituting by means of equation (3.48) and eliminating the 6th order terms
in equation (3.54) gives us the Numerov’s method of order four, which is two
step method. It is an implicit method and is reducible to an explicit equation
whenever f is linear in y as is the case with Schrodinger’s equation.

3.3.5 Method of De Vogelaere

This method has flexibility in allowing changes in stepsize during the inte-
gration. Consider equidistant points x0 = a, x1, x2, . . . , x2n = b with mesh
spacingh. At each integration k (k = 0, 1, 2, . . . , n − 1) the De Vogelaere’s
algorithm consists of three formulas which compute (in the stated order)
[ȳ2k+1, ȳ2k+2, ȳ′2k+2] in terms of the given [ȳ2k−1, ȳ2k, ȳ′2k]

An upper bound for the local truncation error is established, the interval
of absolute stability is [-2,0] and it is shown that its global truncation er-
ror is of order h where h is the step length. Consider equidistant points
x0 = a, x1, x2, . . . , x2n = b with mesh spacing h. It is important to note
that the odd and even-labelled points play distinct rules since the last point
for the computation must be even-labelled points play distinct rules since
the last point for the computation must be even-labelled. At each iteration
k(k = 0, 1, 2, . . . , n− 1) the De Vogelaere algorithm consists of three formu-
lae which compute (in the stated order) [ȳ2k+1, ȳ2k+2, ȳ′2k+2] in terms of given
[ȳ2k−1, ȳ2k, ȳ′2k] Using Taylor’s theorem to expand y(x) and f(x) = f(x, y(x))
about the point x2k we obtain;

y(x2k + λ) = y(x2k) + λy′(x2k) +
λ2

2!
y′′(x2k) + . . .+

λp

p!
yp(x2k) + . . . (3.55)

f(x2k + λ) = f(x2k + λf ′(x2k +
λ2

2!
f ′′(x2k) + . . .+

λp

p!
fp(x2k) + . . . (3.56)

where
y′′(x) = f(x), y′′′(x) = f ′(x), y(4) = f ′′(x) + . . .

The first expression is given by;

I1 =
h2

6
[4f(x2k)− f(x)2k−1],
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which is transformed to a form of order h5. On using equation (3.56) with
λ = −h, we have

h2

6
[4f(x2k)− f(x2k−1)]

=
h2

6

[
4f(x2k)− f(x2k)− hf ′(x2k) +

h2

2
f ′′(x2k) +O(h3)

]
=
h2

6

[
3f(x2k) + hf ′(x2k)−

h2

2
f ′′(x2k)

]
+O(h5)

=
h2

2!
f(x2k) +

h3

3!
f ′(x2k) +

h4

4!
f ′′(x2k)− (

1

12
+

1

4!
)h4f ′′(x2k) +O(h5)

=
h2

2!
y′′(x2k) +

h3

3!
y′′′(x2k) +

h4

4!
y(4)(x2k)−

1

8
h4f ′′(x2k) +O(h5)

= y(x2k+1)− y(x2k)− hy′(x2k)−
1

8
h4f ′′(x2k) +O(h5)


(3.57)

where the first and last terms give

y(x2k+1) = y(x2k) + hy′(x2k) +
h2

6
[4f(x2k)− f(x2k1)] +

1

8
h4f ′′(x2k) +O(h5)

(3.58)
The second expression is

I2 =
h2

3
[4f(x2k+1) + 2f(x2k)]

setting λ = h in equation (3.56) and retaining terms upto order h6 gives;

h2

3
[4f(x2k+1) + 2f(x2k)]

=
h2

3

[
4f(x2k) + hf ′(x2k) +

h2

2
f ′′(x2k) +

h3

6
f ′′′(x2k) +O(h4) + 2f(x2k)

]
=
h2

3

[
6f(x2k) + 4hf ′(x2k) + 2h2f ′′(x2k) +

(2h)3

3
f ′′′(x2k)

]
O(h6)

= 2
(2h)2

2!
f(x2k) +

(2h)3

3!
f ′(x2k) +

(2h)4

4!
f ′′(x2k) +

(2h)5

5!
f ′′′(x2k) +

2

9
− 25

5!


(3.59)
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Thus

h5f ′′′(x2x) +O(h6) = y(x2k+2)− y(x2k)− 2hy′(x2k)−
2

45
h5f ′′′(x2k) +O(h6)

from which we solve for;

y(x2k+2) = y(x2k)+2hy′(x2k)+
h2

3
[4(f2k+1) + f(x2k)]+

2

45
h5f ′′′(x2k)+O(h6)

(3.60)
The remaining third term expression to be calaculated is

I3 =
h

3
[f(x2k) + 4f(x2k+1) + f(x2k+2)]

and evaluate this upto terms of O(h6), namely

h
3
[f(x2k) + f(x2k+1) + f(x2k+2)]

= h
3
[f(x2k) + 4[f(x2k) + hf ′(x2k) + h2

2!
f ′′(x2k) + h3

3!
f ′′′(x2k)

+h4

4!
f (4)(x2k) +O(h5)] + f(x2k) + 2hf ′(x2k) + (2h)2

2!
f ′′(x2k)+

(2h)3

3!
f ′′′(x2k) + (2h)4

4!
f (4)(x2k) + 0(h5)]

= 2hf(x2k) + (2h)2

2!
f ′(x2k) + (2h)3

3!
f ′′(x2k) + (2h)4

4!
f ′′′(x2k)+

(2h)5

5!
f (4)(x2k)) + ( 5

18
25

5!
)h5f (4)(x2k) + 0(h6)

= 2hy′′(x2k) + (2h)2

2!
y′′′(x2k) + (2h)3

3!
y(4)(x2k) + (2h)4

4!
y(5)(x2k)+

(2h)5

5!
y(6)(x2k) + 1

90
h5f (4)(x2k) +O(h6)



(3.61)

so that

y′(x2k+2) = y′(x2k) +
h

3
f(x2k) + 4f(x2k+1) + f(x2k+2)− 1

90
h3f (4)(x2k) +O(h)6

(3.62)

The De Vogelaere algorithm consists of the three formulas equations (3.58),
(3.60) and (3.62) wherein terms of order h4, h5, and h6 are neglected, there-
fore, the algorithm is as follows;

Given (ȳ2k−1, ȳ2k, ȳ
′
2k) compute first

f2k = f(x2k, ȳ2k)
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,
f(x2k−1 = f(x2k−1, ȳ2k−1)

,and thereafter
(ȳ′2k+1)

from

ȳ′2k+1 = ȳ′2k + hȳ′2k +
h2

6
[4f2k − f2k−1], (3.63)

Compute second
f2k+1 = f(x2k+1, ȳ2k+1)

and thereafter ȳ2k+2 from

ȳ′2k+2 = ȳ′2k + 2hȳ′2k +
h2

3
[4f2k+1 + 2f2k], (3.64)

and compute the third one f2k+2 = f(x2k+2, ȳ2k+2) and thereafter ȳ′2k+2 from

ȳ′2k+2 = ȳ2k +
h

3
[f2k + 4f2k+1 + f2k+2] (3.65)

The derivatives at the odd-labelled mesh points are absent in this algorithm.
The even labelled points are more accurate than those at odd-labelled ones.

The local truncation errors in y2k+2 and y′2k+2 are of order 5 while that of
y2k+1 is of order 4. It is not self starting hence to overcome this,

y−1 = y0 − z0 +
h2

2
f0

where f−1 is calculated and has an error term of order h3.

If y(x) is the exact solution of the initial-value problem, the global truncation
errors in the function and derivative values at the end of the nth De Volelaere
step are

y(x2n−1 − y2n−1) = e(1)
n , (3.66)

y(x2n − y2n) = e(2)
n , (3.67)

y′(x2n − y′2n) =
e

(3)
n

h
(3.68)

(3.69)
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3.3.6 Piecewise Pertubation Methods

The given equation is replaced by another differential equation (called refer-
ence equation), which can be solved exactly. Perturbation theory estimates
the deviation of the solution of the reference equation from the original equa-
tion.

Each piecewise perturbation method is defined by the recipe used for the
piecewise approximation of the coefficients of the differential equation con-
sidered: if then the method is referred to as a constant perturbation method,
whereas if they are approximated by piecewise lines, then it is called a line
perturbation method.
Piecewise Pertubation approach is used to solve equations of the kind

y′′ = f(x)y(x)

with x ∈ [a, b] where f(x) is some bounded real function. Introducing a
partition of [a,b]: x0 = a < x1 < x2 <, . . . < xn = b. There is no special
restriction upon the manner of distributing the mesh points except if f(x)
is discontinuous at one point, then such a point should be taken as a mesh
point. We concentrate on the piecewise pertubation algorithm which propa-
gate the solution from xk all the way up to xk+1

Introducing the variable σ ∈ [0, hk] and denote X = xk and g(δ) = f(X + δ)
then the one step problem is

y′′(X + δ) + g(δ)y(X + δ) (3.70)
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CHAPTER 4

APPLICATION OF
LOBATTO QUADRATURE

4.1 TISE and Woods-Saxon Potential

A basic problem in the nuclear physics is the motion of the free electrons
which have a conclusive influence on the abundance of metallic clusters.
These electrons are moving in well defined orbitals, around the central nucleus
and in a mean field potential which is produced by the positively charged
ions and the rest of the electrons. In the mean field potential, the details of
the potential are described by free parameters such as depth , width and the
slope of the potential, which have to be fitted to experimental observation.
Thus a mean field potential is always empirical and its an example given by
the Woods-Saxon potential. The TISE is given by

d2φ

dx2
= [V (x)− E(x)]φ(x) (4.1)

subject to φ(0) = 0 for x → ±∞. E is a real number denoting the energy
value and V is a given function which denotes the potential. E is the eigen-
value while φ is the eigenvector of the Schrodinger’s equation. The value of
V is dicretised depending on how it occurs.

The potential V(x) is given by;
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V (x) =
pp

c(x)
+

Q

c2(x)
exp

(
x− x0

a0

)
(4.2)

where c(x) = 1 + exp

(
x− x0

a0

)
and PP, Q, a0 and x0 are numerical param-

eters. The Woods-Saxon potential is much used in nuclear physics. Solving
numerically for the eigenvalues. The following choice of parameters. x0 = 7

, a0 = 0.6, pp = −50 , Q =
pp

a0

as agreed upon by Adams et al [18]. u0 is the

potential depth, while x0 is width of the potential and a0 its diffuseness and
is the surface thickness which is usually adjusted to the experimental values
of ionization energies. Substitution of the parameters into The Woods-Saxon
potential yields

V (x) =
−50

1 + exp[(x− 7)/0.6]
+

Q

(1 + exp[(x− 7)/0.6])2
exp (

x− 7

0.6
) (4.3)

4.2 Derivation of the sixth order scheme us-

ing Lobatto quadrature

It also called Radau quadrature method. It a Gaussian quadrature method
with the weighting functionW (x)1 in which the endpoints of the interval [-1,
1] are include in a total of n nodes thus resulting in r = n− 2 .The general
formula is ∫ 1

−1

f(x)dx = W1f(−1) +Wnf(1) +
n∑
i=2

Wif(xi)

The free abscissas xi for i = 2, . . . , n − 1 are the roots of the polynomial,
P ′n−1(x), where P (x) is a Legendre polynomial. The weights are obtained by:

Wi =
2n

[1− x2
i ]P

′′
n−1(xi)P ′m(xi)

=
2

n(n− 1)[Pn−1(xi)]2
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and the end points are given by

W1,n =
2

n(n− 1)

and the error term is given by

E = −n(n− 1)322n−1[(n− 2)!]4

(2n− 1)[(2n− 2)!]3
f 2n−2(ξ)

for ξ ∈ (−1, 1). The coefficients of Wi are positive. The algebraic degree of
accuracy is 2n− 2. There exists tables of nodes and Weights for the Lobatto
quadrature in [22]

4.2.1 Generating a sixth numerical scheme Lobatto
quadrature formula

Given y′′ = F (x, y) where x ∈ [a, b] with R1(y) = γ1 and R2(y) = γ2 such
that h =

(
b−a
n

)
with yn denoting the approximation to the value at y(x) at

x = xn

δ2y(xn) =

∫ xn+1

xn

(xn+1 − t)[y′′(t) + y′′(2xn − t)]dt (4.4)

Using

t = xn +
h

2
(1 + u)

Then Integrating by parts and letting

u = xn+1 − t

and
dv = y′′(t) + y′′(2xn − t)

and using change of variables; then we obtain

δ2y(xn) = y(xn+1)− 2y(xn) + y(xn−1

and

δ2y(xn) =

∫ xn+1

xn

(xn+1 − t)[y′′(t) + y′′(2xn − t)]dt
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δ2y(xn) =
h2

4

∫ 1

−1

(1− u)[y′′(xn −
h

2
(1 + u)) + y′′(xn +

h

2
(1 + u))]du

Evaluating this by a known quadrature formula; the weighting function in
the integral can be taken as 1 or 1 − u. Or rewrite the integral using the
expression

w0y
′′(xn) +w1[y′′(xn−1) + y′′(xn+1)]

p∑
i=1

Wri [y
′′(xn − rih) + y′′(xn + rih)] +E

(4.5)
where w0, w1 and wri are the weights and ri are the abscissas and E is the
truncation error.

δ2yn = h2[w0y
′′
n + w1(yn−1 + y′′n+1) +

p∑
i=1

wri(y
′′
n−ri + y′′n+ri

)] (4.6)

Taking p = 3 and expanding both sides of equation (4.6) in a Taylor’s series
about x = xn and equate the coefficients of the powers of h up to six. This
will generate a sixth order scheme. We get 3 equations in eight unknowns.
The wi are solved in terms of the r′is, which are chosen as the abscissas of the
quadrature formula or as the values which optimize the order of the difference
scheme. The values of y(x) at x = xn±ri are not known. This can be done
an by approximating using a fifth order approximation to yn±ri as follows;

yn+q = (1− q)yn + qyn+1 +
q(q − 1)

24
h2[(q2 − q − 1)y′′n−1

−2(q2 + q − 5)y′′n + (q2 + 3q + 3)y′′n+1] + T ∗n

yn−q = (1− q)yn + qyn−1 +
q(q − 1)

24
h2[(q2 + 3q + 3)y′′n−1 − 2(q2 + q − 5)y′′n

+(q2 − q − 5)y′′n + (q2 − q − 1)y′′n+1] + T ∗
′

n
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where q = ri, i = 1, 2, 3 and

T ∗n =
1

360
(3q5 − 10q3 + 7q)h5y(5)(xn) +

1

1440
[2q6 − 5q4 + 3]h6y(6)(ξ3)(4.7)

T ∗
′

= − 1

360
(3q5 − 10q3 + 7q)h5y(5)(xn) +

1

1440
[2q6 − 5q4 + 3q]h6y(6)(ξ4)(4.8)

where xn < ξ3, ξ4 < xn+1 Based on Lobatto integration, the finite difference
scheme becomes;

δ2yn =
h2

12
[2y′′n + 5s(y′′n−r + y′′n+r) + 5r(y′′n+s)] (4.9)

where r =
(

5−
√

5
10

)
and s =

(
5+
√

5
10

)
. Using this scheme to solve the schrodinger’s

equation subject to y(a) = y(b) = 0, we use the second approximation scheme
in [32] to determine the values of yn±r and yn±s and put them in equation
(4.9) and obtain

(−1 + An)yn−1 + (2 +Bn)yn + (−1 + Cn)yn+1 = Dn (4.10)

for n = 1, 2, 3, . . . , N − 1
This can be simplified as

My = (J +Q)y = B

where M is N − 1 matrix is the sum of J and Q matrices which form a
tridiagonal matrix where the non-zero elements are given by ji,i = 2, and
ji+1,i = −1 and qi,i = Bi, qi+1,i = Ai, qi, i + 1 = Ci and B = (bi) is and
(n− 1)- dimensional column vector such that

b1 = D1, bi = Di, i = 2, 3, 4, . . . , N − 2

bN−1 = DN−1

The values of An, Bn, Cn and Dn for the approximation are given as in [32]

4.2.2 Sixth order Lobatto quadrature method for so-
lution of TISE

The TISE is given by equation (3.34) and can be rearranged to give:

h2

2m

d2φ(x)

dx2
= V (x)φ(x)− Eφ(x) (4.11)
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but experimentally the ratio of ~2 : 2m has been found to be one. Thus we
have

d2φ(x)

dx2
= V (x)φ(x)− Eφ(x) = f(x)φ(x) (4.12)

where
f(x) = [e− V (x)]

and

φ′′(x) =
φ(x− h)− 2φ(x) + φ(x+ h)

h2

but Hφ = Eφ where the square matrix H is the Hamiltonian operator of the
system and it is equal to the sum of the Kinetic energy and potential en-
ergy. The eigenvectors of H are the stationary states of the time-independent
Schrodinger equation and the eigenvalues are the corresponding energies of
the Stationary states.

During calculations, fix the minimum amount of energy say Emin say −50
(for this study) and maximum energy, Emax to be 1010. The negative ener-
gies leads to abound state problemcondition. The minimum local de Broglie
wavelength is given by

λ =
~√
Em

(4.13)

Grid spacing h corresponding to about one point per radian i.e. h = λ/2π.
The number of grid points needed can be estimated by finding the outer
turning points xt such that V (xt) = Em and allowing for an extra 2λ into
classically forbidden region.

Thus N can be determined by the formula N = (2xt
h

+ 4π) rounded to the
nearest energy. If N is first fixed, the xt = (N/2− 4π)h which simplifies to

xt = (
(N/2− 4π)√

EM
)

Numerov’s scheme is thus used to find the energy at different states after
putting a trial energy for the initial energy. The found energy is thus iterated
up to required degree of accuracy. Considering the minimum energy to be
negative energy yields a bound state problem with the boundary conditions
given as:

y(0) = 0
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and
y(x) = exp(−

√
−E)

for large values of x. During the numerical treatment, the values of energy
values are computed in the internal points only for different bound states.

This can be solved using Woods- Saxon potential and the results obtained.
Inthe solution, the variables are changed such that we replace δ2y(x) by δ2φ
in equation (4.9) and obtain equation (4.14)

φi−1 − 2φi + φi+1 =
h2

12
[2fiφi + 5s(fi−rφi−r + fi+1φi+1) + 5r(fi+sφi+ s)]

(4.14)
Where

fi = −E + Vi

fi−r = −E + Vi−r

fi+r = −E + Vi+r

fi+s = −E + Vi+s

Solution of this equation yields the energy values as shown in the results
shown in the tables (5.1), (5.2), (5.3) and (5.4) respectively for various values
of the step length h.
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CHAPTER 5

RESULTS AND
DISCUSSIONS

5.1 Results

The results in table (5.1) to (5.4) show the values of the various bound state
energies with their corresponding errors when different values of step lengths
(indicated) are used in computation.

Table 5.1: Woods-Saxon Potential using Numerov’s and the Sixth
order scheme with h = 1

4

Energy states Exact Values Eval by Sixth order Errors From Nume Errors in Sixth order

E1 -49.457788728 -49.45778874 0.3598× 10−4 0.1248× 10−7

E2 -48.148430420 -48.14843007 0.6811× 10−4 0.3515× 10−6

E3 -46.290753954 -46.29075974 0.6889× 10−3 0.5789× 10−5

E4 -43.968318432 -43.96834815 0.2690× 10−2 0.2972× 10−4

E5 -41.236077720 -41.23637122 0.4583× 10−2 0.2935× 10−3

E6 -38.122785097 -38.1317581 0.1998× 10−1 0.8973× 10−2
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Table 5.2: Woods-Saxon Potential using Numerov’s and the Sixth
order scheme h = 1

8

Energy states Exact Values Eval by Sixth order Errors From Nume Errors in Sixth order

E1 -49.457788728 -49.45778874 0.3598× 10−4 0.1248× 10−7

E2 -48.148430420 -48.14843065 0.5396× 10−3 0.2174× 10−6

E3 -46.290753954 -46.29075721 0.7857× 10−4 0.3251× 10−5

E4 -43.968318432 -43.96831947 0.1264× 10−3 0.1036× 10−5

E5 -41.236077720 -41.23616744 0.2984× 10−3 0.8972× 10−4

E6 -38.122785097 -38.123368 0.1177× 10−2 0.6517× 10−3

Table 5.3: Woods-Saxon Potential using Numerov’s and the Sixth
order scheme h = 1

16

Energy states Exact Values Eval by Sixth order Errors From Numerov’s Errors in Sixth order

E1 -49.457788728 -49.45778874 0.3598× 10−4 0.1248× 10−7

E2 -48.148430420 -48.14843051 0.5396× 10−4 0.9261× 10−7

E3 -46.290753954 -46.1484305 0.4350× 10−4 0.7561× 10−7

E4 -43.968318432 -43.968319 0.4322× 10−5 0.5691× 10−6

E5 -41.236077720 -41.2364434 0.3473× 10−2 0.3657× 10−3

E6 -38.122785097 -38.12283621 0.7867× 10−4 0.5111× 10−4
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Table 5.4: Woods-Saxon Potential using Numerov’s and the Sixth
order scheme h = 1

32

Energy states Exact Values Eval by Sixth order Errors From Nume Errors in Sixth order

E1 -49.457788728 -49.45778874 0.3598× 10−4 0.1248× 10−7

E2 -48.148430420 -48.14843048 0.5396× 10−4 0.6293× 10−7

E3 -46.290753954 -46.29075399 0.4350× 10−4 0.3572× 10−7

E4 -43.968318432 -43.96833095 0.4322× 10−5 0.1252× 10−4

E5 -41.236077720 -41.23608291 0.3473× 10−2 0.5192× 10−5

E6 -38.122785097 -38.12279303 0.4340× 10−3 0.7932× 10−5

5.2 Discussion

During calculations of the ground state energy, the trial energies that give
not solutions are inserted and the output difference is only minimised at the
ground state for various energy levels. The solution is calculated for some
energy E0. The technical part is how to choose this energy so that the eigen-
values lies inside the required interval above which it can cause ionisation
effect. Bound states energy solutions of the TISE exists only for discrete
eigenvalues.

The calculations are improved beginning with the trial energies E which
should be chosen within the allowed band. i.e. below an eigenstate, φleft and
φright are computed for the E + ∆E where ∆E is some energy increment.
The difference changes sign. Once a sign change occurs, then the ∆E = −∆E

2

and repeated until the desired accuracy is obtained.

The computed value is then compared with the analytical value. The interest
is to find the eigenvalue of the each bound state using a Lobatto quadrature
method.

The numerical results indicate that the new method is much more accurate
than the Numerov’s method. We conclude that finite difference schemes offers
an easy way to solve the 1D Schrodinger’s equation numerically. Generally,
the results are more accurate for higher order finite difference methods. For
example, for the Woods-Saxon Potential problem, we obtained more accurate
results with a small number of grid points .

By comparing the output for the analytical solutions of the non-dimensional
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Schrodinger’s equations, it can be verified that the sixth order numerical
scheme gave sufficiently accurate results. In summary, the sixth order method
is efficient in determining the eigenstates and eigenvalues of a particle in
generally shaped interaction potentials. It is evident from the various tables
that decreasing the size of the step length reduces the magnitude of the error.
Thus higher accuracy is obtained when computations for the same number
of iterations are done for relatively smaller values of step lengths.

If a microscopic system is conservative, then there is a quantum states of the
system, called stationary states, in which the energy is sharper at the bound
states.
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CHAPTER 6

CONCLUSION AND
RECOMMENDATION

6.1 Conclusion

This research was based on investigating the numerical solution of one di-
mensional time independent Schrodinger’s equation using the sixth order
Lobatto quadrature method. This was achieved and the results compared
against those obtained by Numerov’s method. The results implies that the
sixth order method yields smaller errors as compared to that of Numerov’s
method. In addition, smaller step lengths significantly leads to reduced mag-
nitude of errors. The current study also highlights on various methods which
have also been used in past to solve the same equation.

6.2 Recommendations

In the findings of this study, I recommend the following:

XThe choice of the higher value of energy should be done well otherwise the
computed energies will diverge from the analytic solution for high quantum
numbers.
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XPossible extension to this work in finding more efficient numerical schemes
of higher orders to compute the bound state energies for the same boundary
conditions.

XThis research can be extended to finding energy values for higher bound
states with care taken on choice of minimum energy to avoid ionisation of
the electrons involved.
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