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ABSTRACT 

Most NCD systems are unfair to either or both parties. Most systems are that of the simple 

random walk model, whereby in case of a claim, the policyholder moves down a discount 

level and vice versa. Then there are the extreme cases, whereby if a driver makes claim(s), he 

loses all the discounts accumulated over the years and goes back to the level of full premium 

payment. The other movements within the NCD systems are those of the in-between cases, 

these consider the frequency of claims, and can involve moving few steps back the discount 

level in case of claim(s). A fair NCD system, should take into consideration the frequency of 

claims and the non-homogeneity factor. 

 In this paper, we have used the Markov chains to explain the movement between levels and 

used the Mixed Poisson distributions to calculate probabilities, with the mixing distributions 

being the exponential distribution, the one parameter gamma distribution, the two parameter 

gamma distribution and the Lindley distribution. The rules applied in different systems have 

been analysed and combined to take into consideration the claims frequency. 

The following distributions have been constructed, the Geometric, the Negative Binomial 

distribution with one and two parameters, and the Poisson Lindley, and their parameters 

estimated using the method of moments and the maximum likelihood method. The 

distributions have then been used to fit the claim frequency data and a comparison made with 

data from a Poisson – Inverse Gaussian distribution. 
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CHAPTER I 
 

GENERAL INTRODUCTION 

1.1 BACKGROUND INFORMATION 

It is quite common in general insurance, for instance in the automobile insurance, for 

premium to be reduced by a certain factor, by the insurer, for a policyholder who has made 

no claim in a given period. In case of a claim, the premium is increased, also by a certain 

factor (a process known as loading). 

Either system amount to what is known as a multi-layer premium system, also known as the 

no-claims-discount system (NCD system) or the Bonus Malus System (BMS). 

The BMS are used by insurers to categorize policyholders into homogeneous risk groups that 

pay premiums relative to their claims experience. Once categorized, the risks can be rated 

using generalized linear models. Methods used in determination of fair premium that reflects 

the individual risk of a driver include: 

1. The use of variables such as policyholders age, occupation, gender, degree of 

disability, the type and use of car, and the place of garage. These variables are used in 

dividing automobile risks into different homogeneous classes, a method known as the 

priori rating. 

2. Policyholders from a given risk cell are subdivided into bonus-malus classes and their 

claims histories. This use of individual past claim history is known as the posterior 

rating, for example the BMS. 

NCD is determined by three elements: the premium scale, initial class and the transition rules. 

These determine the transfer from one class to another when the number of claims is known. 

An insured enters the system in the initial class when he applies for insurance and throughout 

the entire driving lifetime, the transition rules are applied upon each renewal to determine the 

new class. 

Depending on rules, new policyholders may be required to pay full premium initially and 

obtain discounts in future as a result of the claim free years. 
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THE EFFECTS OF THE NO CLAIMS DISCOUNT SYSTEMS 

This scheme entices the insured who makes few claims in the recent years to stay with the 

company by rewarding him with discounts on initial premium. 

In general, it rewards policyholders for not making claims during a year, i.e. granting bonuses 

to careful drivers. This leads to the existence of the phenomenon, hunger for bonus (Philipson 

C., 1960). It also reduces the cost of insurance cover and discourages small claims. 

Through NCD, drivers become more responsible about their vehicles and when driving. 

Drivers can also insure their NCD to protect it, once maximum discount is reached. The 

charge is added to the insurance policy. 

One of the features of a NCD system is its ability to deal with the problem of adverse 

selection as it is designed to evaluate true distribution of reported accidents relating to 

unchanging characteristics. 

Another role is linked to moral hazard. Distribution of reported accidents over time must be 

taken into account to maintain the incentives for cautious behaviour at an optimal level 

(Dionne, 2005).  

Dionne and Dostie (2007), show that such a system has two effects when the insurance 

industry is committed to its application. First, since past claims are associated with increased 

insurance premiums in the future (moral hazard), motivation of drivers will be more prudent. 

Secondly, there will be an improvement in risk classification by allowing insurance 

companies to make a bad risk pay more and a good one to pay less. 

 

1.2 STATEMENT OF THE PROBLEM 

An optimal NCD system should be efficient and competitive, aiming to relate as best as 

possible the premium paid by the insured to his driving experience (Guerreiro and Mexia, 

2002). This is not the case in most countries. 

These systems are established through the free market and others are government imposed. 

The free market involves the insurance companies coming up with their own systems while 

another way is where the government introduces the rules to be used by the insurance 

companies. The effectiveness of these NCD systems has been doubted for a long time. 

Most systems treat policyholders as homogeneous, which is not usually the case. 

The Kenyan system has seven classes, with levels, 40, 50, 60, 70, 80, 90 and 100. The merit 

factors ranges from 1 (coefficient for the entry class) to 0.4. The problem with this system is 
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no potential policyholder may expect it to be transparent as no provision seems to have been 

made in the premium construction to accommodate the bonus granted to the good drivers 

(Verico 2002). 

In UK, the highest level (50 – 60) is reached after 4 to 6 years making it a marketing scheme 

rather than a way of distinguishing risk.  

In Germany, it takes up to 25 years to earn the comparative level of bonus (Schmitt, 2000). 

In Brazil, motor insurance policyholders are subdivided into 7 classes with premium levels, 

100, 90, 85, 80, 75, 70 and 65, where newcomers join in class 7, at level 100. Each claim-free 

year results in a one-class discount and each at-fault claim is penalized by one class. Simple 

system, but it is doubtful if it will effectively motivate safe driving. 

Most drivers in Portugal escape the malus due to lack of efficient transfer of information 

between insurers. After making a claim the policyholder would leave his insurer and buy 

another policy, from a competitor (Guerreiro and Mexia, 2002). 

The motive for this study is the lack of efficiency in the BMSs in use. They encourage non-

reporting of minor claims rather than safe driving, they do not differentiate between small 

and big size claims, which is unfair and it is more of a marketing scheme and they do not take 

into consideration the distinction of the risks. 

In Kenya, most policyholders take the automobile policies that only cover the third party, and 

rarely take into consideration the comprehensive cover as they consider this too expensive. 

Even with the NCD in place they still do not take cover for their own vehicles. 

 

1.3 OBJECTIVES OF THE STUDY 

The main objective 

• To evaluate the different multi-layer systems and to consider risk distinction. 

The specific objective 

• To consider the different stages of the NCD systems and the rules applied. 

• To combine different transition rules for each stage so as to come up with a system 

that is fair to both parties. 

• To calculate the claim frequency distribution using the mixed Poisson distribution.       
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1.4 LITERATURE REVIEW 

The rules applied in a particular NCD system depend on the regulations. There is the free 

market, where there is total freedom and insurance companies design their own NCD systems 

using their own rules. Then there is the government imposed systems, where the rules that are 

applied in the NCD systems are governed by the government and every insurer has to apply 

these rules. 

What follows is the lit review on different rules applied in both types of systems, used by 

different countries. 

Das and Basu (2003) use two systems in a 3 by 3 stage NCD system that show two possible 

scenarios in terms of movement by drivers between the various levels of discount, with the 

assumption that the claim amount has a log-normal distribution. The systems do not fairly 

share the cost of premium between good and bad drivers. 

Institute and Faculty of Actuaries Examination, CT 4 (2009), over the years has several 

questions with the NCD systems with different rules applied within these systems. From the 3 

by 3 stage NCD systems to the 4 by 4 NCD systems, most of which are assumed to follow a 

Poisson distribution. 

Lemaire and Zi (1994), compare the merit rating systems of different countries, in the third 

party automobile insurance rating. They simulate and compare systems of different countries 

with different stages, levels and rules, using stationary average premium level, the variability 

of the policyholders’ payments, their elasticity with respect to the claim frequency and the 

magnitude of the hunger for bonus. The number of at-fault claims for a particular driver is 

assumed to conform to a Poisson distribution. 

Emamverdi et al (2013), compare the system being conducted by the Iranian insurance 

companies. The system is a 5 by 5 stage NCD system and is assumed to follow the Poisson 

distribution. They present a technique for coming up with optimal scales in automobile 

insurance, that can be commercially implemented and have reasonable penalties.  

Nath and Sinha (2014), inspect the desirability of the multi-layer premium system of the 

Insurance Regulatory and Development Authority of India, with six levels. They discover 

that though bad drivers are twice as likely to claim as good drivers, the premium they are 

charged is only on average marginally higher. The levels of the NCD should be adjusted, so 

that bad drivers pay double premium that of good drivers. 

Ibiwoye et al (2011), evaluate the 6 by 6 stage bonus-malus system in practice in Nigeria, and 

they observe that the system is far from optimal due to a number of weaknesses, for instance 

it does not consider frequency of claims, for a claim reported the policyholder’s bonuses are 
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cancelled, among others. They then construct a scale that has reasonable penalties and is 

commercially feasible. 

Soren Asmussen (2014), inspects how reasonable it is to view BMS via the stationary 

distribution. Among the systems he looks at is the one in use in Ireland, the bonus rules 

applied in the Irish system with six levels. His conclusion is that, transient distributions are 

far from the stationary, and this has considerable consequences on computation of average 

premiums.  

Jean Lemaire (1998) looks at the merit-rating technique used in most of Europe and Asia. 

One of the countries he considers is Brazil, with seven levels. The distribution of the number 

of claims is assumed to conform to a Poisson distribution. He discovers that rating freedom 

encourages insures to adapt tougher systems, and that most companies are now not using the 

same NCD systems with deregulation ideas gaining ground. 

Walhin and Paris (1999), clarify on how to construct a bonus-malus table using the principle 

of zero utility when working with mixed Poisson distributions. They use a nine by nine stage 

system as an illustration, and they discover that the parametric mixed Poisson distribution 

they use is a slightly better fit than the negative binomial or the Poisson Inverse Gaussian.  

Most systems are that of the simple random walk model, whereby in case of a claim, the 

policyholder moves down a discount level and vice versa. Then there are the extreme cases, 

where if a driver makes claim(s), he loses all the discounts accumulated over the years and 

goes back to the level of full premium payment. The other movements within the NCD 

systems are those of the in-between cases, these consider the frequency of claims, and can 

involve moving few steps back the discount level in case of claim(s). 

 

1.5 SIGNIFICANCE OF THE STUDY 

This study is significant in the automobile insurance as it combines different transition rules 

for each stage so as to come up with systems that are fair to both parties, by taking into 

consideration the claims frequency and risk distinction. 

Due to hunger for bonus, this will lead to drivers being more careful so as to get more 

discounts. It will also discourage the reporting of small claims, as most policyholders would 

not want to lose the discount they have accumulated over time. 
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CHAPTER II 

2.1 INTRODUCTION 

The NCD systems in this project are based on the Markov chains. In this chapter, the theories 

of Markov chains have been discussed. 

2.2 MARKOV CHAINS 

Modern probability theory studies chance processes for which the knowledge of previous 

outcomes influences predictions for future experiments. In principle, when we observe a 

sequence of chance experiments, all of the past outcomes could influence our predictions for 

the next experiment.  

In 1907, A. A. Markov began the study of an important new type of chance process. In this 

process, the outcome of a given experiment can affect the outcome of the next experiment. 

This type of process is called a Markov chain. 

 

2.2.1 Definition 

Markov chain- is a sequence of random variables nX , with the Markov property.  

A discrete-time stochastic process nX  is said to be a Markov Chain if it has the Markov 

property. 

Markov property – the future event depends on the immediate past and not the remote past. 

The future evolution of a system depends only on the current state of the system and not the 

past history. 

Random variable –The mathematical rule (or function) that assigns a given numerical value 

to each possible outcome of an experiment in the sample space of interest the future outcome 

is conditionally independent of the past given the present (Memoryless)  

2.2.2 Conditional probability 

Let us consider two events, E1 and E2, by Bayes theorem: 

2 1
2 1

1

1 2 2 1 1

Pr ( )
Pr ( )

Pr ( )
Pr ( , ) Pr ( ) Pr ( )

ob E E
ob E E

ob E
ob E E ob E E ob E

=

∴ =
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For three events, E1, E2 and E3, we have: 

 

1 2 3
3 2 1

1 2

1 2 3 3 2 1 2 1 1

1 2 3 3 2 2 1 1

Pr ( , , )
Pr ( , )

Pr ( , )
Pr ( , , ) Pr ( , ) Pr ( ) Pr ( )

Pr ( , , ) Pr ( ) Pr ( ) Pr ( )

ob E E E
ob E E E

ob E E
ob E E E ob E E E ob E E ob E

ob E E E ob E E ob E E ob E

=

=

=

 

 

Markov property means that: 

1 2 3 3 2Pr ( , , ) Pr ( )ob E E E ob E E=  

2.2.3 Notations and terminologies 

Events are called states, and a set of events {E1, E2, E3,...} is called state space. 

Pr { }j iob E E is called transitional probability ijP  

Pr { }ij j iP ob E E=  

      =Probability of moving from state Ei to state Ek 

         =Prob{Ei        Ej} 

 

Transition probability matrix is given by; 

          0 1 2 3E E E E L  

0 00 01 02 03

1 10 11 12 13

2 20 21 22 23

3 30 31 32 33

P ij

E P P P P
E P P P P

P E P P P P
E P P P P

 
 
 
 = =
 
 
  

L

L

L

L

M M M M M M

 

Where; 

0 1ijP≤ ≤  and 1ij
j

P =∑  

With the notations above; 

1 2 3 4 4 3 3 2 2 1 1Pr ( , , , ) Pr ( ) Pr ( ) Pr ( ) Pr ( )ob E E E E ob E E ob E E ob E E ob E=  

            
1 2 1 3 2 4 3

1 12 23 34

1 12 23 34

Pr ( ) Pr ( ) Pr ( ) Pr ( )
Pr ( )

ob E ob E E ob E E ob E E
ob E P P P

a P P P

=

=

=

 

Where 1 1Pr ( )a ob E= = initial probability 
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Generally, a Markov chain has two sets of probabilities: 

• Initial / absolute probability 

• Conditional / transition probability 

 

2.2.4 Higher orders of transition probabilities 

Second order of transition matrix is denoted by (2)
ijP  

(2)
ijP is the probability of moving from state iE to state jE in two steps. 

(2)
ij iv vj

v

P P P= ∑
 

2P PP=  

Extending to 3P  
3 2P PP=  

This implies that, 
(3) (2)

ij iv vj
v

P P P= ∑
 

Or 3 2P P P=  
(3) (2)

ij vj iv
v

P P P= ∑
 

In general,  
1 ( ) ( 1)n n n n

ij vj iv
v

P P P P P P− −= ⇒ = ∑
 

1 ( ) ( 1)n n n n
ij iv vj

v
P PP P P P− −= ⇒ = ∑

 
More generally, 

   
( ) ( ) ( )m n m n m n m n

ij iv vj
v

P P P P P P+ += ⇒ = ∑  

This is called the Chapman Kolmogorov equations or formula. 

 

2.2.5 Classification of states 

• Return probabilities 

Let ( )n
jjf = the probability of returning to state jE in nsteps for the first time. 
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And ( )n
jjp = the probability of returning to state jE in nsteps but not necessarily for the first    

time. 
( ) ( )n n

jj jjf p≥  

Assumptions: (0) 0jjf = and (0 ) 1jjp =  

Then the relationship between the two will be; 

( ) ( ) ( )

1

n
n v n v

jj jj jj
v

p f p −

=

= ∑ ; 1 ( )n i≥ L  

Let ( )

0

( ) n n
jj

n

F S f S
∞

=

= ∑
 

and ( )

0

( ) n n
jj

n

P S p S
∞

=

= ∑  

(0) ( )

1

( )

1

( )

( ) ( )

n n
jj jj

n

n n
jj

n

F S f f S

F S f S ii

∞

=

∞

=

= +

=

∑

∑ L

 

(0) ( )

1

( )

1

( )

( ) 1 ( )

n n
jj jj

n

n n
jj

n

P S p p S

P S p S iii

∞

=

∞

=

= +

= +

∑

∑ L

 

Multiplying equation (i) by Sn and then summing the results over n : 

( ) ( ) ( )

1 1 1

n
n n v n v n

jj jj jj
n n v

P S f p S
∞ ∞

−

= = =

=∑ ∑∑  

       ( )( )( ) ( )

1 1

n
v v n v n v

jj jj
n v

f S P S
∞

− −

= =

= ∑∑  

From equation ( )iii we have;  

( )

1

( ) 1 n n
jj

n

P S p S
∞

=

− = ∑
 

    

( )( )

( )( )

( ) ( )

1 1

( ) ( )

1 1

( ) ( )

1 1

( ) ( )

1

n
v v n v n v

jj jj
n v

v v n v n v
jj jj

n v

v v n v n v
jj jj

v n

v v n v n v
jj jj

v n v

f S P S

f S P S

f S P S

f S P S

∞
− −

= =

∞ ∞
− −

= =

∞ ∞
− −

= =

∞ ∞
− −

= =

=

=

 =  
 
 

=  
 

∑∑

∑∑

∑ ∑

∑ ∑
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     { }( ) (0) (1) (2) 2 (3) 3

1

v v
jj jj jj jj jj

v

f S p p S p S p S
∞

=

 = + + + + ∑ L
 

    ( ) ( )

1 0

v v n n
jj jj

v n
f S p S

∞ ∞

= =

 
=  

 
∑ ∑  

( )

1
( ) 1 ( )v v

jj
v

P S f S P S
∞

=

∴ − = ∑  

        
( )

1

( )

( ) ( )

v v
jj

v
P S f S

P S F S

∞

=

=

=

∑  

 

( ) ( ) ( ) 1P S P S F S− • =  

1( )
1 ( )

P S
F S

=
−

 

 

• Persistency, Transiency and Periodicity 

Let 
( )

1

n
j jj

n
f f

∞

=

= ∑  

 = the probability of eventually returning to state jE  

Persistency – a state jE is persistent (recurrent) if: 

  ( )

1
1n

j jj
n

f f
∞

=

= =∑  

But ( )0 1n
jjf≤ ≤  and ( )

1

1n
jj

n

f
∞

=

=∑  

Thus { }( ) : 1, 2, 3,n
jjf n = L is a probability mass function (pmf)  

Furthermore, ( )n
jjf is the probability of returning to jE in n for the first time. Such a 

pmf is called first passage distribution, i.e. { }( ) : 1, 2,3,n
jjf n = L is a first passage 

distribution pmf, with mean usually known as mean recurrence time and denoted by 

jµ which is given as; ( )

1

n
j jj

n

nfµ
∞

=

= ∑  

If jµ = ∞  then jE is called null persistent state. 

            If jµ ∞< then jE is called non-null persistent state. 
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Transiency – a state jE is transient if: 

  ( )

1

1n
j jj

n

f f
∞

=

= ∑ <  

Alternatively,  

( )

( )0

1

1

1

n n
jj

n nn
jj

n

p S
f S

∞

∞
=

=

=
−

∑
∑

 

Putting 1S = we have, 

( )

( )0

1

1

1

n
jj

nn
jj

n

p
f

∞

∞
=

=

=
−

∑
∑

 

For persistency,  ( )

1

1n
j jj

n

f f
∞

=

= =∑  

( )

0

1 1
1 1 0

n
jj

n
p

∞

=

= = = ∞
−∑  

For transiency, ( )

1

1n
j jj

n

f f
∞

=

= ∑ <  

( )

0

1
1 ( 1)

n
jj

n

p
anumberlessthan

∞

=

= ∞
−∑ <  

Multiplying 
1( )

1 ( )
P S

F S
=

−
 by 1 S− and then taking the limit as 1S →  

lim(1 ) lim 1( )
1 11 ( )
S SP S

S S F S
− −

=
→ → −  

    

lim 1 1 1 1 1 0
11 ( ) 1 ( ) 1 1 0

S
S F S F S

− − −
= = = =

→ − − −
 which is undetermined 

 

Using the l’hopital rule; 

(1 )lim lim1
1 11 ( ) [1 ( )]

d SS dS
dS SF S F S
dS

−−
=

→ →− −
 

    

1 1
'( ) '(1)

1

j

F S F

µ

−
= =

−

=
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For persistent state 

The left hand side: 

(0) (1) (2) 2 ( 1) ( 1) ( )

(0) (1) 2 ( 1) ( ) ( ) 1

( )

lim
(1 ) ( )

1
lim

(1 ){
1

}
lim

n n n n
jj jj jj jj jj

n n n n
jj jj jj jj

n
jj

S P S
S

S p p S p S p S p S
S
p S p S p S p S

p
n

− −

− +

= −
→

= − + + + + + +
→

− − − − +

=
→ ∞

L L

L

 

 

 

 

For persistent state Ej ; 

( ) ( )

1 0

1;n n
j jj jj

n n

f f p
∞ ∞

= =

= = = ∞∑ ∑  

For non-null, 
( )lim 1n

j jj
j

p
n

µ
µ

∞∴ =
→ ∞

<
  

For null, 

( )lim 1n
j jj

j

p
n

µ
µ

∞∴ =
→ ∞

<

 

 

For transient state jE  

( ) ( )

1 0

1;n n
j jj jj

n n

f f p
∞ ∞

= =

= ∞∑ ∑< <
 

( )

lim lim (1 )(1 ) ( )
1 11 ( )

lim 1 1 0
1 1 (1)

n
jj

SS P S
S S F S

p
S F

−
− =

→ → −

−
= =

→ −

 

Summary of the limit theorem 

 

( )lim n
jjp

n
=

→ ∞
 

 

( )lim 1n
jj

j

p
n µ

=
→ ∞

   0 if jE is transient and/or null persistent 
    

1/μj if Ej is non-null persistent
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Periodicity – a state jE is of period d when d = { }( )gcd : 0n
jjn p >   

When 1d = , then jE is said to be aperiodic.
   

Ergodic – a state jE  is ergodic if it is persistent, non-null and aperiodic. 

 

2.2.6 Classification of the Markov chains 

 Definitions  

Reachability – a state kE can be reached from state jE if there exists a positive 

integer such that, the probability of moving from state jE  to kE is greater than zero. 

( ) 0n
jkp >  

Communicating states – two states jE and kE are said to be communicating if jE can 

be reached kE and vice versa. 

Theorem: if kE can be reached from jE , and jE can be reached from iE , then kE can 

be reached from .iE  

A set C of states is closed if no state outside it can be reached from set C or in any 

state in set .C  

 

• Absorbing Markov chains 

A Markov chain is said to be absorbing if the chain has at least one absorbing state. 

A state jE is absorbing if 1jjp =  and 0kjp = for k j≠  

 

• Irreducible Markov chain 

A Markov chain is irreducible if there exists no closed set other than itself. 

A Markov chain is irreducible if every state can be reached from every other state. 

 

Definition of same types 

Two states are of the same type if: 

1. Both are persistent or both are transient. 

2. If persistent, both are either null or both are non-null. 

3. Both are of the same period. 

 

Theorem:- All states in an irreducible Markov chain are of the same type 
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2.2.7 Invariant (stationary) distribution 

A probability distribution { }: 1, 2,k kπ = L is stationary or invariant if: 

k j jk
j

pπ π= ∑  

Such that; 

 1k
k

π =∑  

Or j i ij
i

pπ π= ∑  

Or i h hi
h

pπ π= ∑
 

In general, 
( )n

k j jk j jk
j j

p pπ π π= =∑ ∑
 

In short form; 

( )

'

' ' '
' '

P

P
P

π π

π π
π π

=

=

=
 

Theorem:- if a Markov chain is irreducible and ergodic then there exists limit 

  
( )lim n

k jkp
n

π =
→ ∞  

This is independent of the initial state Ej
 

This kπ  is an invariant distribution, that is, it satisfies: 

  k j jk
j

pπ π= ∑
 

  
1kπ =∑

 

  
0kπ >
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CHAPTER III 

NO CLAIMS DISCOUNT SYSTEMS 

3.1 INTRODUCTION 

In this chapter, different systems have been looked at with various levels, from the 3 by 3 

stage NCD system to the 10 by 10 stage NCD system. 

The rules applied in each of the systems have also been analysed and systems whose rules are 

fair to both parties, that is, the insured and the insurer, have been created. 

3.2 THE THREE STAGE BMS 

Das and Basu (2003) consider two scenarios, explaining the movement of drivers between 

various levels of discount in a three stage NCD system: 

System 1 

The movement is by one level. Drivers move up one level to a higher discount level when 

they make no claim, unless they are already at the highest level, and in that case they stay 

there. In case of claim(s), a driver moves down by one level, unless already at the lowest 

level where he stays. 

Transition graph 3.2.0 

 

 

 

 

Transition matrix 3.2.0 

11 11

21 21

32 32

1 0
0 1

0 1

P P
P P

P P

− 
 − 
 − 

  

K j jk
j

Pπ π= ∑  

Level 

1 

Level 

2 

Level 

3 

1-P11 1-P21 

P21 
P32 P11 

1-P32 
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1kπ =∑    

0kπ >   

' 'Pπ π=  or 'Pπ π=   

Using 'Pπ π=  we have; 

1

2

3

π
π
π

 
 
 
  

 =

11 11

21 21

32 33

1 0
0 1

0 1

P P
P P

P P

− 
 − 
 − 

 
1

2

3

π
π
π

 
 
 
  

 

1 1 11 2 12

2 1 11 3 32

3 2 21 3 32

1 2 3

( )
( ) (1 )
( ) (1 ) (1 )
( ) 1

i P P
ii P P
iii P P
iv

π π π
π π π
π π π
π π π

= +

= − +

= − + −

+ + =

  

From (iii), we have: 

 

3 3 32 2 21

3 32 2 21

3 32 2 21

2 21

32

(1 ) (1 )
[1 (1 )] (1 )

(1 )
(1 )3

P P
P P

P P
P

P

π π π
π π
π π

ππ

− − = −

− − = −
= −

−
=

  

Replacing 3π  value / equation into (ii), we have: 

2 21
2 1 11 32

32

2 1 11 2 21

1 11 2 2 21

1

1 11 2 21

1 11 2 21

2 21
1

11

(1 )(1 )

(1 ) (1 )
(1 ) (1 )
(1 11) 2[1 (1 21)]
(1 ) (1 1 )
(1 )

(1 )

PP P
P

P P
P P
P P
P P
P P

P
P

ππ π

π π π
π π π
π π
π π
π π

ππ

−
= − +

= − + −
− = − −
− = − −
− = − +
− =

=
−

  

Replacing the value for 1π  and 3π into the equation (iv), we have; 

2 21 2 21
2

11 32

21 21
2

11 32

(1 )
1

1

(1 )
1 1

1

P P
P P

P P
P P

π π
π

π

−
+ + =

−

 −
+ + = − 
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21 32 32 11 21 11
2

11 32

11 32
2

21 32 32 11 21 11

(1 ) (1 )(1 )
(1 )

(1 )
(1 ) (1 )(1 )

P P P P P P
P P

P P
P P P P P P

π

π

 + − + − −
=  − 

−
=

+ − + − −

  

 

The denominator; 

21 32 32 11 21 11

21 32 32 32 11 11 21 21 11

21 32 21 21 11 32 32 11 11

21 32 11 32 11

(1 ) (1 )(1 )
1

1
( 1 ) ( 1)(1 )

P P P P P P
P P P P P P P P P
P P P P P P P P P
P P P P P

= + − + − −

= + − + − − +

= − + + − + −

= − + + + −

 

21 11 32 11 32

11 32 21 11 32

(1 ) (1 )( 1)
(1 )(1 ) (1 )

P P P P P
P P P P P

= − − − + − +
= − + − − −

  

 

Therefore, 32 11
2

11 32 21 11 32

(1 )
(1 )(1 ) (1 )

P P
P P P P P

π −
=

− + − − −
  

 

Solution for 1π  ; 

32 112 21 21
1

11 11 32 21 11 32 11

32 21
1

11 32 21 11 32

(1 )
(1 ) (1 )(1 ) (1 ) (1 )

(1 )(1 ) (1 )

P PP P
P P P P P P P

P P
P P P P P

ππ

π

−
= = ×

− − + − − − −

=
− + − − −

  

 

Solution for 2;π  

11
2 1

21

(1 )P
P

π π−
=   

 

Solution for 3;π   

3 1 21π π π= − −   

 

System 2 

The second scenario that Das and Basu (2003) look at is whereby, in case of no claim, the 

movement is the same as that of system 1 and in case of claim(s), the policyholder moves 

down to the lowest level of claim, that is level 1, no matter what level he is at. 
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Transition graph 3.2.1 

 

            

          

     

  

        

     

 

    

 

 

Transition matrix 3.2.1 

11 11

21 21

31 31

1 0
0
0 1

P P
P P
P P

− 
 
 
 − 

  

Stationary solution 

[ ] [ ]
11 11

1 2 3 1 2 3 21 21

31 31

' '
1 0

0
0 1

P
P P
P P
P P

π π

π π π π π π

=

− 
 =  
 − 

 

1 1 11 2 21 3 31

2 1 11

3 2 21 3 31

1 2 3

)
) (1 )
) (1 ) (1 )
) 1

i P P P
ii P
iii P P
iv

π π π π
π π
π π π
π π π

= + +

= −

= − + −

+ + =

 

3 3 31 2 21

3 31 2 21

3 31 2 21

2 21
3

31

2
1

11

( )
(1 ) (1 )

[1 (1 )] (1 )
(1 )

(1 )

( ),
1

From iii
P P

P P
P P

P
P

From ii
P

π π π
π π
π π

π
π

π
π

− − = −
− − = −

= −

−
=

=
−

  

 

Level 

2 

Level 

3 

Level 

1 

1-P21 

P21 

1-P11 P31 

1-P31 

P11 
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Replacing the values/equations for 1π  and 3π  into equation (iv); 

2 21
2 2

11 31

21
2

11 31

31 11
2

31 31 11 11 21

(1 ) 1
1

11 1 1
1

(1 )
(1 ) (1 )(1 )

P
P P

P
P P

P P
P P P P P

π π π

π

π

−
+ + =

−

 −
+ + = − 

−
=

+ − + − −

  

 

Denominator   

31 31 11 11 21

31 31 31 11 21 11 11 21

31 11 21 31

(1 ) (1 )(1 )
1

(1 )(1 )

P P P P P
P P P P P P P P
P P P P

= + − + − −
= + − + − − +

= + − − +
  

Therefore; 

31 112
1

11 31 31 11 11 21 11

31
1

31 31 11 11 21

(1 ) 1
1 (1 ) (1 )(1 ) 1

(1 ) (1 )(1 )

P P
P P P P P P P

P
P P P P P

ππ

π

−
= = ×

− + − + − − −

=
+ − + − −

 

 

2 11 1

3 1 2

(1 )

1

Pπ π

π π π

= −

= − −
  

 

Then Das and Basu (2003) describe through an example a NCD scheme defined by system 1. 

From the results and data obtained they discuss the features of the scheme and variations that 

can make it better. They discover that the set up is highly biased against good drivers, 

meaning the scheme is not ideal / suitable. The possible variations to improve the scheme 

according to them include; 

• Making the variation in the probability of accident between good and bad drivers big 

enough. 

• Severity of accidents or magnitude of claims should be brought into consideration. 

• There should be higher number of categories and magnitudes of discounts and number 

of groups or categories of drivers. 

• A driver causing an accident would not claim unless he believes that payback for loss 

(reimbursement) would offset (cancel/reduce the effect) the possible loss of NCD. 
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System 3. 

This system has been used as a question by the Institute and Faculty of Actuaries 

Examination. CT 4 – September 27th,2012, question 5: 

A NCD system operates with three levels of discount, 0%, 15% and 40%. If a policyholder 

makes no claim during the year he moves up a level of discount (or remains at the maximum 

level). If he makes one claim during the year he moves down one level  of discount (or 

remains at the minimum level), and if he makes two or more claims he moves down to or 

remains at the minimum level. 

The probability for each policyholder of making two or more claims in a year is 25% of the 

probability of making only one claim. 

The long term probability of being at the 15% level is the same as the long term probability 

of being at the 40% level. 

The probability of one claim C=  

The probability of two or more claims Cβ=  

The probability of no claim 1 C= −  

Level 1 = 0% discount 

Level 2 = 15% discount 

Level 3 = 40% discount 

Transition graph 3.2.2 

 

    

          

     

 

    

          

     

Transition matrix 3.2.2 

 

1 0
0 1

(1 ) 1

C C
C C
C C Cβ β

− 
 − 
 − − 

  

Where 1
5

β =  

Level 
2 

Level
3 

Level 

1 

1-C 

1-βC 

1-C βC 

C 

1-C 

C 



21 
  

System 3 is a special case, as it takes into consideration the frequency of the claims made by 

policyholders. 

 

Remark 

The system 1 and 2 illustrated by Das and Basu (2003) is a set up that is highly biased against 

good drivers, thus, the NCD is not ideal. 

The system illustrated in the Institute and Faculty of Actuaries Examination, CT4 - 

September 27th, 2012, gives better and more options to drivers as opposed to system 1 or 2 

solely. 

For improvement of the scheme, according to Das and Basu, a possible variation would be an 

increase in the number of categories and magnitudes of discounts and the number of groups 

or categories of drivers. Another possible variation is to bring into consideration the severity 

of accidents or magnitudes of claims. 

An example of an ideal 3 by 3 stage NCD system would be: 

Level Level occupied if; 

0n =  1n =  2n ≥  

3 3 2 1 

2 3 1 1 

1 2 1 1 

 

Let; 

The probability of no claim = P0 

The probability of one claim = P1 

The probability of two or more claims = 0 11 ( )P P− −  

 

Transition graph 3.2.3 

 

 

 

 

 

 

 

 

Level 
2 

Level 
3 

Level 
1 

P1 

P0 

P0 

1-P0 
1- (P0+ P1) 

1-P0 

P0 
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Transition matrix 3.2.3 

0 0

0 0

0 1 1 0

1 0
1 0

1 ( )

P P
P P

P P P P

− 
 − 
 − +   
 

3.3.THE FOUR STAGE NCD 

 System 1 

The Institute and Faculty of Actuaries Examination, CT 4 – April 2009, question number 12 

– A motor insurer operates a NCD system with the following levels of discount, 0%, 25%, 

50%, 60%. The rule governing a policyholder’s discount level based upon the number of 

claims made in the previous year is as follows: 

• Following a year with no claims, the policyholder moves up one level of discount or 

remains at the 60% level. 

• Following a year with one claim, the policyholder moves down one level of discount 

or remains at the 0% level. 

• Following a year with two or more claims, the policyholder moves down two discount 

levels (subject to a limit of the 0% discount level). 

 

The number of claims made by a policyholder in a year is assumed to follow a Poisson 

distribution with mean 0.30 

Probability of no claims 
!

ne
n

λ λ−

=   

Since n = 0, probability of no claims 
0

0!
e e

λ
λ

λ−

−==   

P (0 claims) 0.3 0.740818e−= =   

Probability of one claim 
1

1!
e e

λ
λ

λ λ
−

−==  

P (1 claim) 0.3 0.2222450.3e− ==   

 

Probability of two or more claims = 1- 0.740818-0.222245 

 

P (2 or more claims) =0.0369936 
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Transition graph 3.3.0 

 

 

 

 

 

 

  

 

 

 

 

 

 

Transition matrix 3.3.0 

 

Levels 1 2 3 4 

1 1 ( )e e eλ λ λλ λ− − −+ − +   e λ−  0 0 

2 1 ( )e e eλ λ λλ λ− − −+ − +  0 e λ−  0 

3 1 ( )e eλ λλ− −− +  e λλ −  0 e λ−  

4 0 1 ( )e eλ λλ− −− +  e λλ −  e λ−  

 

when 0.3λ = −  then we have the following transition matrix: 

0.26 0.74 0 0
0.26 0 0.74 0
0.04 0.22 0 0.74

0 0.04 0.22 0.74

 
 
 
 
 
 

  

 

 

 

 

 

Stationary distribution 

Level 
1 

0%                                      

Level 
2     

25% 

Level  
3 

50% 

Level 
4 

60% 

1-(e-λ + e-λ) 

e-λ 

1-(e-λ + e-λ) 

 e-λ 

 λe-λ  λe-λ  1-e-λ 

 e-λ  e-λ 
1- e-λ 
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Using 'Pπ π=   

 

1 1

2 2

3 3

4 4

0.26 0.74 0 0
0.26 0 0.74 0
0.04 0.22 0 0.74

0 0.04 0.22 0.74

π π
π π
π π
π π

    
    
    = ×
    
    

    

  

 

1 1 2 3

2 1 3 4

3 2 4

4 3 4

1 2 3 4

) 0.26 0.26 0.04
) 0.74 0.22 0.04
) 0.74 0.22
) 0.74 0.74

) 1

i
ii
iii
iv
v

π π π π
π π π π
π π π
π π π

π π π π

= + +
= + +
= +
= +

+ + + =

  

 

From equation (iv), we have; 

4 4 3

4 3

4 3 3

4 3

0.74 0.74
0.26 0.74

0.74 2.8462
0.26
2.85

π π π
π π

π π π

π π

− =
=

= =

=

  

Replacing the value of 4π  into equation (iii), we have; 

3 2 3

3 2 3

3 3 2

3 2

2 3

2 3

2 3

0.74 (0.22 2.85 )
0.74 0.6262
0.6262 0.74

0.3738 0.74
0.3738
0.74

0.5052
0.51

π π π
π π π
π π π

π π

π π

π π
π π

= + ×

= +
− =

=

=

=

=

  

Replacing the value of 2π  into equation (i), we have; 

1 1 3 3

1 1 3 3

1 3

1 3

1 3

0.26 (0.26 0.51 ) 0.04
0.26 0.13 0.04

0.74 0.17
0.17
0.74
0.23

π π π π
π π π π

π π

π π

π π

= + × +
− = +

=

=

=

  

Replacing the values for 1, 2 4andπ π π  into equation (v), we have; 
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3 3 3 3

3

3

1

2

4

0.23 0.51 2.85 1
4.59 1

0.22
(0.23 0.22) 0.0501
(0.51 0.22) 0.1111
(2.85 0.22) 0.6210

π π π π
π

π
π
π
π

+ + + =

=

=
= × =

= × =
= × =

  

Average discount 4 3 2 160% 50% 25% 100%π π π π= + + +   

 

Remark 

The transition rule for the four stage NCD system above, from the Institute and Faculty of 

Actuaries Examination, does not take into consideration the claim frequency.  

An example of an ideal 4 by 4 stage NCD system would be: 

Level  Level occupied if; 

0n =  1n =  2n =  3n ≥  

4 4 3 2 1 

3 4 2 1 1 

2 3 1 1 1 

1 2 1 1 1 

 

 The probability of no claim 0P=  

The probability of one claim 1P=  

The probability of two claims 2P=  

The probability of three or more claims 0 1 21 ( )P P P= − + +  

 

 

 

 

Transition graph 3.3.1 

P2 

1-(P0+P1+P2) 
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       P0          

   

                 

 

Transition matrix 3.3.1 

0 0

0 0

0 1 1 0

0 1 2 2 1 0

1 0 0
1 0 0

1 ( ) 0
1 ( )

P P
P P

P P P P
P P P P P P

− 
 − 
 − +
 − + +   

 

3.4 THE FIVE STAGE BMS 

System 1 

Lemaire and Zi (1994) simulate and compare the automobile third party insurance merit 

rating systems of 22 countries, to define an ‘index of toughness’ for all the systems. One of 

the countries whose BMS was analysed was Spain with 5 classes and premium levels, 70%, 

80%, 90%, 100% and 100%. The starting level is 100%, and in case of no claim a 

policyholder moves up by one level. For each claim made by a policyholder, he moves all the 

way to the 100% level and loses all discounts. 

 

Transition graph 3.4.0 

Assumption is that the number of at-fault claims for a given policyholder conforms to a 

Poisson distribution with parameter λ  .  

 

 

 

The probability of no claim will be ( 0)n = ; 

Level 
1 

Level 
2 

Level 
3 

Level 
4 

P0 

1-(P0+P1) 

P0 

1-P0 

P0 P0 

1-P0 P1 P1 
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!

ne
n

λ λ−

=
 

0

0!
e e

λ
λλ−

−= =   

The probability of a claim, 1 (1 )n e λ−= = −   

Level 100% means the driver pays the full premium, getting 0% discount. 

Level 90% means the driver pays the full premium, getting 10% discount. 

Level 80% means the driver pays the full premium, getting 20% discount. 

Level 70% means the driver pays the full premium, getting 30% discount. 

 

 

 

 

 

 

  

Transition matrix 3.4.0 

1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

e e
e e
e e
e e
e e

λ λ

λ λ

λ λ

λ λ

λ λ

− −

− −

− −

− −

− −

 −
 − 
 −
 

− 
 − 

  

The use of the Spain system has been discontinued by most insurers as complete rating 

freedom now exists. 

 

System 2 

Level 
2 

Level 
3 

Level 
4 

Level 
5 

Level 
1 

e-λ e-λ e-λ 

e-λ 1-e-λ 1-e-λ 

1-e-λ 

1-e-λ 

e-λ 

1-e-λ 



28 
  

Emamverdi et al (2013), focus on techniques / practical method for construction of optimal 

BMSs with reasonable penalties that can be commercially implemented. 

They look at the Iranian BMS that rewards policyholders with no claim in a year by going 

down one level in the scale, whereas send them to the first level, the level with the largest 

premium as penalty in case of a claim. 

The rule of the Iranian system is shown in the following table: 

 

Class Class after 

0 claims 

Class after one 

or more claims 

4 3 4 

3 2 4 

2 1 4 

1 0 4 

0 0 4 

 

Class 4 is the lowest level with the lowest level of discount, while class 0 is the highest level 

with the highest level of discount. 

The probability of no claim is e θ− and the probability of one or more claims is 1 .e θ−−   

 

Transition graph 3.4.1 

 

 

 

 

 

 

 

 

Transition matrix 3.4.1 

Class 
3 

Class 
2 

Class 
1 

Class 
0 

Class
4 

e-θ e-θ e-θ 
e-θ 

e-θ 

1-e-θ 1-e-θ 
1-e-θ 

1-e-θ 

1-e-θ 
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The transition probability matrix will be: 

0 0 0 1
0 0 0 1

( ) 0 0 0 1
0 0 0 1
0 0 0 1

e e
e e

P e e
e e

e e

θ θ

θ θ

θ θ

θ θ

θ θ

θ

− −

− −

− −

− −

− −

 −
 − 
 = −
 

− 
 − 

  

Remark 

The Spanish system from Lemaire and Zi (1994) and the Iranian system from  Emamverdi et 

al (2013) that we looked at, the transition rules are the same for both systems. The set up is 

biased against careful drivers, as a driver with only one claim is treated the same as a driver 

with two or more claims. 

An example of a five stage BMS that takes into consideration the frequency of claims would 

be one with the following transition rules and with level 5 being the highest discount level 

and level 1 being the lowest.  

 

Level Level occupied if; 

0n =  1n =  2n =  3n =  4n ≥  

5 5 4 3 2 1 

4 5 3 2 1 1 

3 4 2 1 1 1 

2 3 1 1 1 1 

1 2 1 1 1 1 

 

Let: 

The probability of no claim 0P=  

The probability of one claim 1P=  

The probability of two claims 2P=  

The probability of three claims 3P=  

The probability of four or more claims 0 1 2 31 ( )P P P P= − + + +  

 

Transition graph 3.4.2 



30 
  

 

 

 

 

 

 

 

 

 

 

 

 

Transition matrix 3.4.2           

0 1 2 3 0 1 2 3

0 1 2 0 1 2

0 1 0 1

0 0

0 0

1 ( )
0 1 ( )

0 0 1 ( )
0 0 0 1
0 0 0 1

P P P P P P P P
P P P P P P

P P P P
P P

P P

− + + + 
 − + + 
 − +
 − 
 − 

 

The BMS is suitable as it considers the claims frequency. 

3.5  THE SIX STAGE BMS 

System 1 

Nath and Sinha (2014) try to find out the probabilities of claims by different categories of 

policyholders (motorists). They inspect the desirability of the multi-layer premium system of 

the Insurance Regulatory and Development Authority (IRDA). 

The levels of NCD system of IRDA is as follows: 

 

  

 

Levels / Age of vehicle No Claim Discount Saving 

Level 
5 

Level 
4 

Level 
3 

Level 
2 

Level 
1 

P3 

P2 
P2 

P1 
P1 

P1 

P0 
P0 P0 

1-P0 

P0 

1-(P0+P1+P2+P3) 1-(P0+P1+P2) 1-(P0+P1) 

1-P0 

P0 



31 
  

5 50% 

4 45% 

3 35% 

2 25% 

1 20% 

0 00% 

 

Each year at renewal, a policyholder moves up to the next level of NCD if he hasn’t made a 

claim for an accident where he is at fault in that year. If a policyholder makes a claim for an 

accident where he is at fault he moves down to level zero unless he is on maximum NCD for 

life. The NCD level does not change when a policyholder makes a claim for something that is 

not his fault like his car or motorcycle is stolen or damaged by storm. 

 

Transition graph 3.5.0 

   

 

 

 

 

 

Probability of no claim is P0 and the probability of at least one claim (1-P0) 

Transition probability matrix 3.5.0 

0 0

0 0

0 0

0 0

0 0

0 0

1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

P P
P P
P P
P P
P P
P P

− 
 − 
 −
 − 
 −
 

−  

  

 

Level 
1 

Level 
2 

Level 
3 

Level 
4 

Level 
5 

Level 
0 

P0 P0 P0 P0 P0 

1-P0 

1-P0 1-
P 0

 

1-P0 

P0 

1-P0 

1-P0 
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Stationary distribution 

Using ' 'Pπ π=  we have; 

[ ] [ ]

0 0

0 0

0 0
0 1 2 3 4 5 0 1 2 3 4 5

0 0

0 0

0 0

1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

P P
P P
P P
P P
P P
P P

π π π π π π π π π π π π

− 
 − 
 −

=  − 
 −
 

−  

  

0 0 0 1 0 2 0 3 0 4 0 5 0

0 0 0 1 2 3 4 5

1 0 0

2 1 0

3 2 0

4 3 0

5 4 0 5 0 0 4 5

0 1 2 3 4 5

( ) (1 ) (1 ) (1 ) (1 ) (1 ) (1 )
1 ( )

( )
( )
( )
( )
( ) ( )
( ) 1

i P P P P P P
P

ii P
iii P
iv P
v P
vi P P P
vii

π π π π π π π
π π π π π π π

π π
π π
π π

π π
π π π π π
π π π π π π

= − + − + − + − + − + −
= − + + + + +

=
=
=
=

= + = +
+ + + + + =

 

Replacing the equation (vii) into (i), we have; 0 01 Pπ = −   

Replacing the value of 0 01 Pπ = − into equation (ii), we have; 1 0 0(1 )P Pπ = −   

Replacing the value of 1π  into equation (iii), we get; 

2
2 0 0 0 0 0(1 ) (1 )P P P P Pπ = − • = −  

Replacing the value of 2π  equation (iv), we have; 

2 3
3 0 0 0 0 0(1 ) (1 )P P P P Pπ = − • = −  

Replacing the value of 3π  into equation (v), we get; 

3 4
4 0 0 0 0 0(1 ) (1 )P P P P Pπ = − • = −  

 

 

 



33 
  

Replacing the value of 4π  into equation (vi), we have; 

4
5 0 0 0 5 0

5
5 5 0 0 0

5 0 0 0
5

5 0

[(1 ) ]

(1 )
(1 ) (1 )

P P P P
P P P
P P P

P

π π

π π
π

π

= − • +

− = −

− = −

=

  

The average yearly premium paid, 0( , )A P m  in the steady state in terms of 0P  and m  is; 

5
0 0

( , ) ii
A P m m π

=
= ×∑  Percentage of discounts at different levels 

{ }

5
2 3 4 0

0 0 0 0 0
0

2 3 4 5
0 0 0 0 0 0 0 0 0 0

(1 )[100 80 75 65 55 (50 )
100 1

(1 )100% [(1 ) ]80% [(1 ) ]75% [(1 ) ]65% [(1 ) ]55% 50%

Pm P P P P P
P

m P P P P P P P P P P

= − + + + + +
−

= − + − + − + − + − + ×

 where m  is the yearly amount of premium.  

System 2 

Ibiwoye et al (2011) evaluate the BMS in practice in Nigeria motor insurance industry and 

construct an alternative BMS that has reasonable penalties and is commercially feasible, 

since the Nigerian BMS is a rule of thumb as operators do not honour the industry agreed 

tariff.  

In the Nigerian BMS, private car policyholders are grouped into six classes with premium 

levels 100, 80, 75, 66.7, 60 and 50 designated as C0, C1, C2, C3, C4 and C5 respectively. 

Reporting of a claim leads to loss of all discounts, regardless of the policyholder’s risk class 

and he starts all over from class C0, where he will pay 100% of annual premium. In case of 

no claim, the policyholder moves to the next premium level. If a policyholder moves to 

another insurer at the end of the period, he keeps the same class as long as he is able to 

document his class with the previous insurer. 

NCD class C0 C1 C2 C3 C4 C5 

Percentage 

Discount 

0 20 25 
33

1
3

  
40 50 

Percentage 

of 

premium 

100 80 75 
66

2
3

  
60 50 
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Transition graph 3.5.1 

  

 

 

 

 

Let 0P =  Probability of no claim and 0(1 )P− =  Probability of a claim 

Transition probability matrix 3.5.1 

0 0

0 0

0 0

0 0

0 0

0 0

(1 ) 0 0 0 0
(1 ) 0 0 0 0
(1 ) 0 0 0 0
(1 ) 0 0 0 0
(1 ) 0 0 0 0
(1 ) 0 0 0 0

P P
P P
P P
P P
P P
P P

− 
 − 
 −
 − 
 −
 

−  

  

Among the 22 countries that Lemaire and Zi (1994) look at, include Hong Kong, Malaysia 

and Portugal.  

System 3 

The Portugal BMS has six number of classes with levels 70, 100, 115, 130, 145 and 200. Its 

starting level is 100, and for a claim free two years, a policyholder moves down a premium 

level and for each claim a policyholder moves a premium level. (Note – if a policyholder 

does not make a claim within a year, he does not move down a premium level or up the 

discount level, this only happens after two consecutive claim-free years. 

 

Transition graph 3.5.2 

The number of at fault claims for a policyholder, conform to a Poisson distribution with 

parameter λ  . 

Probability of no claim e λ−=   

Probability of a claim 1 e λ−= −   

C1 C2 C3 C4 C5 

C0 

P0 P0 P0 P0 P0 

1-P0 

P0 

1-P0 1-P0 

1-
P 0

 

1-P0 1-P0 
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Level Premium level Discount level 

1 70% 30% 

2 100% 0% (starting level) 

3 115% -15% 

4 130% -30% 

5 145% -45% 

6 200% -100% 

 

 

 

 

 

 

 

 

 

Transition probability matrix 3.5.2 

1 0 0 0 0
0 1 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1

e e
e e

e e
e e

e e
e e

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

− −

− −

− −

− −

− −

− −

 −
 − 
 −
 

− 
 −
 

−  

  

 

 

 

 

Level 
1 

Level 
2 

Level 
3 

Level 
4 

Level 
5 

Level 
6 

1-e-λ 

e-λ 

1-e-λ 

e-λ 

1-e-λ 1-e-λ 

1-e-λ 

e-λ e-λ 

e-λ 

1-e-λ 

e-λ 
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System 4 

The Malaysian – Singapore’s BMS has six numbers of classes as well with premium levels 

45, 55, 61.67, 70, 75 and 100. The starting point is level 100, for a claim-free year a 

policyholder moves down a premium level and in case of a claim, all discounts are lost. 

Level Premium level Discount level 

1 45 55 

2 55 45 

3 61.67 38.33 

4 70 30 

5 75 25 

6 100 0 

 

Transition graph 3.5.3 

 

 

 

 

 

 

 

 

Transition matrix 3.5.3 

0 0 0 0 1
0 0 0 0 1

0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

e e
e e

e e
e e

e e
e e

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

− −

− −

− −

− −

− −

− −

 −
 − 
 −
 

− 
 −
 

−  

  

Level 
1 

Level 
2 

Level 
3 

Level 
4 

Level 
5 

Level 
6 

1-e-λ 

1-e-λ 

1-
e-λ

 1-e-λ 1-e-λ 

1-e-λ 

e-λ e-λ 
e-λ e-λ e-λ 

e-λ 
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System 5 

The Hong Kong BMS has six classes with levels 40, 50, 60, 70, 80 and 100 with the starting 

level being 100, the movement between the levels is described in the table below. 

Level Level occupied if Premium 

level 

(percentage) 

Discount 

level 

(percentage) 
0n =   1n =   2n ≥   

1 1 3 6 40 60 

2 1 4 6 50 50 

3 2 5 6 60 40 

4 3 6 6 70 30 

5 4 6 6 80 20 

6 5 6 6 100 0 

 

Transition graph 3.5.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

Level 
5 

Level 
4 

Level 
3 

Level 
2 Level 

1 

Level 
6 

e-λ e-λ e-λ e-λ 

e-λ 

1-e-λ 

1-e-λ 

1-
e-λ

(1
 +

 λ
) 

1-e-λ(1 + λ) 

1-e-λ(1 + λ) 

e-λ 

1-e-λ 

λe-λ 

λe-λ 

λe-λ 
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Transition probability matrix 3.5.4 

0 0 0 1 (1 )
0 0 0 1 (1 )

0 0 0 1 (1 )
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

e e e
e e e

e e e
e e

e e
e e

λ λ λ

λ λ λ

λ λ λ

λ λ

λ λ

λ λ

λ λ
λ λ

λ λ

− − −

− − −

− − −

− −

− −

− −

 − +
 − + 
 − +
 

− 
 −
 

−  

  

System 6 

Asmussen (2014) in his article, modelling and performance of Bonus Malus Systems: 

Stationarity Versus age-correction, suggests an age-correction to the stationary distribution 

and present an extensive numerical study of its effects. The number of claims is assumed to 

conform to a Poisson distribution. He looks at the BMS in Ireland, which has six classes and 

the transition rules are as described below: 

l   1r   0n =   1n =   2n = +   
6 100 5 6 6 
5 90 4 6 6 
4 80 3 6 6 
3 70 2 5 6 
2 60 1 4 6 
1 50 1 3 6 
 

Where: l =  class 

 1r =premium level 

 n=number of claims 
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Transition graph 3.5.5 

 

 

 

 

 

 

 

 

 

The probability of no claim e λ−=   

The probability of one claim e λλ −=   

The probability of two or more claims 1 ( )e eλ λλ− −= − +   

 

Transition matrix 3.5.5 

1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

1 ( ) 0 0 0
1 ( ) 0 0 0
1 ( ) 0 0 0

e e
e e
e e

e e e e
e e e e
e e e e

λ λ

λ λ

λ λ

λ λ λ λ

λ λ λ λ

λ λ λ λ

λ λ
λ λ
λ λ

− −

− −

− −

− − − −

− − − −

− − − −

 −
 − 
 −
 

− + 
 − +
 

− +  

  

 

 

 

Level 
4 

Level 
3 

Level 
2 

Level 
5 

Level 
1 

Level 
6 

λe-λ 

e-λ 
e-λ e-λ e-λ 

e-λ 

λe-λ λe-λ 

1-e-λ 

1-e-λ 1-e-λ 1-e-λ(1+ λ) 
1-e-λ(1 + λ) 

1-e-λ(1 + λ) e-λ 
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Remark 

The IRDA NCD system by Nath and Sinha (2014), Nigerian BMS by Ibiwoye et al (2011) 

and the Malaysian – Singapore BMS by Lemaire and Zi (1994) have 6 classes with the same 

transition rules explaining the movement of drivers between these classes. The systems treat 

drivers who make claim(s) the same, not considering the number of claims made by an 

individual. They bring the policyholders with claim(s) all the way back to the lowest discount 

level, no matter what level they are at. Such systems discourage drivers. 

The Portugal BMS looked at by Lemaire and Zi (1994) has a transition looked at has a 

transition rule that discriminates against careful drivers.  A driver with one claim in a year 

should not be treated the same as a driver with more than one claim. 

The Hong Kong BMS by Lemaire and Zi (1994) as well as the Irish system discussed in the 

article by Asmussen (2014), have 6 classes with similar transition rules, where a driver who 

makes a claim and is at level 4, 5 or 6 is treated the same as a driver who makes two or more 

claims at any level. 

An example of an ideal six stage BMS that takes into consideration frequency of claims is as 

follows: 

 

Level Level occupied when 

0n =  1n =  2n =  3n =  4n =  5n ≥  

6 6 5 4 3 2 1 

5 6 4 3 2 1 1 

4 5 3 2 1 1 1 

3 4 2 1 1 1 1 

2 3 1 1 1 1 1 

1 2 1 1 1 1 1 

 

With level 6 being the highest discount level. 

 

 

 

 



41 
  

 

 

Transition graph 3.5.6 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Transition matrix 3.5.6 

0 1 2 3 4 0 1 2 3 4

0 1 2 3 0 1 2 3

0 1 2 0 1 2

0 1 0 1

0 0

0 0

1 ( )6
0 1 ( )5

0 0 1 ( )4
0 0 0 1 ( )3
0 0 0 0 12
0 0 0 0 11

P P P P P P P P P P
P P P P P P P P

P P P P P P
P P P P

P P
P P

− + + + + 
 − + + + 
 − + +
 − + 
 −
 

−    

Level 
2 

Level 
3 

Level 
4 

Level 
5 

Level 
6 

Level 
1 

P4 

P3 
P2 P3 

P2 P2 

P1 

P0 P0 P0 P0 

P1 P1 P1 

P0 

1-P0 

1-P0 

 1-(P
0  + P

1  + P
2 ) 

1-(P0 + P1) 1-(P0 + P1 + P2 + P3) 

1-(P0 + P1 + P2 + P3 + P4) 

P0 
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3.6 THE SEVEN STAGE BMS 

The other countries that Lemaire and Zi (1994) look at are Brazil, Kenya, Sweden, Thailand 

and UK. 

System 1 

Brazil has 7 classes with levels 65, 70, 75, 80, 90 and 100 (starting level). for a claim free 

year a policyholder moves down a premium level, where he pays less premium and for each 

claim made he moves up a premium level. 

Transition graph 3.6.0 

Level Percentage of premium Percentage of discount 

1 100 0 

2 90 10 

3 85 15 

4 80 20 

5 75 25 

6 70 30 

7 65 35 

 

  

 

 

 

 

 

Assumption – the BMS has the number of at-fault claims for a given policyholder 

conforming to a Poisson distribution. 

Probability of no claim e λ−=  and  the probability of a claim 1 e λ−= −   

 

 

Level 
1 

Level 
2 

Level 
3 

Level 
4 

Level 
5 

Level 
6 

Level 
7 

e-λ 
e-λ e-λ 

e-λ 

e-λ 

e-λ 
e-λ 

1-e-λ 1-e-λ 1-e-λ 
1-e-λ 

1-e-λ 

1-e-λ 

1-e-λ 
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Transition matrix 3.6.0 

1 0 0 0 0 0
1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

e e
e e

e e
e e

e e
e e

e e

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

− −

− −

− −

− −

− −

− −

− −

 −
 − 
 −
 

− 
 −
 

− 
 − 

  

System 2 

Lemaire (2013) in his article, North America Actuarial Journal looks at the Brazilian BMS 

again, with the same number of classes and levels. New policyholders start at level 7 (100% 

premium level). The transition rules are presented below: 

Class Level of 

premium 

(percentage) 

Level occupied if 

0 

claims 

1 

claim 

2 

claims 

3 

claims 

4 

claims 

5 

claims 

≥6 

claims 

7 100 6 7 7 7 7 7 7 

6 90 5 7 7 7 7 7 7 

5 85 4 6 7 7 7 7 7 

4 80 3 5 6 7 7 7 7 

3 75 2 4 5 6 7 7 7 

2 70 1 3 4 5 6 7 7 

1 65 1 2 3 4 5 6 7 

 

The assumption is that the distribution ( ; 0,1, 2,...)kP k =  of the number of claims of a specific 

driver conforms to a Poisson distribution with parameter λ  , where λ is called the claim 

frequency of the policyholder and is assumed to be constant over time. 

!
k

k
eP

k

λλ−

=   

The probability of no claim,
0

0 0!
eP e

λ
λλ−

−= =   

The probability of one claim,
1

1 1!
eP e

λ
λλ λ

−
−= =   
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The probability of two claims,
2 2

2 2! 2
e eP

λ λλ λ− −

= =   

The probability of three claims,
3 3

3 3! 6
e eP

λ λλ λ− −

= =   

The probability of four claims,
4 4

4 4! 24
e eP

λ λλ λ− −

= =   

The probability of five claims,
5 5

5 5! 120
e eP

λ λλ λ− −

= =   

The probability of six or more claims, 6P   

2 3 4 5

2 3 4 5

1
2 6 24 120

1 1
2 6 24 120

e e e ee e

e

λ λ λ λ
λ λ

λ

λ λ λ λλ

λ λ λ λλ

− − − −
− −

−

 
= − + + + + + 

 
 

= − + + + + + 
 

  

 

Transition graph 3.6.1 

 

 

 

 

 

 

  

 

  

 

 

Level 
1 

Level 
2 

Level 
3 

Level 
4 

Level 
5 

Level 
6 

Level 
7 

P0 

P0 P0 P0 P0 P0 

P1 
P1 P1 

P1 P1 

P2 

P3 

P4 P5 

P2 
P3 

P4 

P6+ 

P5+ 

P3 

P2 

P2 

P4+ 

P3+ 
P2+ 

1-P0 
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Transition matrix 3.6.1 

2 3 4 5 2 3 4 5

2 3 4 2 3 4

2 3 2 3

2 2

1 1
2 6 24 120 2 6 24 120

0 1 1
2 6 24 2 6 24

0 0 1 1
2 6 2 6

0 0 0 1 1
2 2

0 0

e e e ee e e

e e ee e e

e ee e e

ee e e

λ λ λ λ
λ λ λ

λ λ λ
λ λ λ

λ λ
λ λ λ

λ
λ λ λ

λ λ λ λ λ λ λ λλ λ

λ λ λ λ λ λλ λ

λ λ λ λλ λ

λ λλ λ

− − − −
− − −

− − −
− − −

− −
− − −

−
− − −

 
− + + + + + 

 
 

− + + + + 
 

 
− + + + 

 
 

− + + 
 

( )0 0 1 1
0 0 0 0 0 1
0 0 0 0 0 1

e e e
e e

e e

λ λ λ

λ λ

λ λ

λ λ− − −

− −

− −

 
 
 
 
 
 
 
 
 
 
 
 
 
 − +
 

− 
 − 

  

 

System 3 

The Kenyan system has 7 classes as well with levels 40, 50, 60, 70, 80, 90 and 100 (starting 

level). When a policyholder makes a claim, he loses all discounts, while a claim free year 

leads to him going down a premium level / up a discount level. 

 

Levels Premium level Discount level 

1 100 0 

2 90 10 

3 80 20 

4 70 30 

5 60 40 

6 50 50 

7 40 60 
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Transition graph 3.6.2 

 

 

 

 

 

  

 

 

The assumption is that, the number of claims conforms to a Poisson distribution, with 

parameter λ  . 

The probability of no claim e λ−=   

The probability of a claim 1 e λ−= −   

 

Transition matrix 3.6.2 

1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0

e e
e e
e e
e e
e e
e e
e e

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

− −

− −

− −

− −

− −

− −

− −

 −
 − 
 −
 

− 
 −
 

− 
 − 

  

System 4 

Jean Lemaire (2013), a comparative analysis of most European and Japanese BMS, looks at 

the British and Swedish BMS. The British BMS’s conclusions class after claims is 

summarised below: 

 

Level 
7 

Level 
4 

Level 
2 

Level 
3 

Level 
6 

Level 
5 

Level 
1 

e-λ e-λ e-λ e-λ e-λ 

e-λ 

1-e-λ 

1-e-λ 1-e-λ 1-e-λ 
1-e-λ 1-e-λ 

1-e-λ 
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Class  Premium 

level 

Class after claims 

0 1 2 3 or more 

7 100 6 7 7 7 

6 75 5 7 7 7 

5 65 4 6 7 7 

4 55 3 5 7 7 

3 45 2 5 7 7 

2 40 1 4 6 7 

1 35 1 4 6 7 

 

Let, the probability of no claim 0P=  

       The probability of a claim 1P=  

       The probability of two claims 2P=  

       The probability of three or more claims 0 1 21 ( )P P P= − + +  

 

Transition graph 3.6.3 

 

 

 

 

  

 

 

 

 

Level 
1 

Level 
2 

Level 
7 

Level 
3 

Level 
4 

Level 
5 

1-(P0 + P1+P2) 

 

1-(P0 + P1+P2) 

 

1-(P0 + P1) 

 

1-(P0 + P1) 

 
1-(P0 + P1) 

 

P0 

Level 
6 

1-P0 

P2 

P1 

P2 

P1 
P1 

1-P0 

P0 P0 P0 

P0 P0 

P1 P1 

P0 
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Transition matrix 3.6.3 

0 1 2 0 1 2

0 1 2 0 1 2

0 0 1

0 1 0 1

0 1 0 1

0 0

0 0

0 0 0 1 ( )
0 0 0 1 ( )

0 0 0 0 0 1 ( )
0 0 0 0 1 ( )
0 0 0 0 1 ( )
0 0 0 0 0 1
0 0 0 0 0 1

P P P P P P
P P P P P P

P P P
P P P P

P P P P
P P

P P

− + + 
 − + + 
 − +
 − + 
 − +
 

− 
 − 

 

 

System 6 

Jean Lemaire (2013) also looks at the Swedish BMS and the table below shows its transition 

rules. 

Class Premium 

level 

Class after claims 

0n =  1n =  2n =  3n ≥  

7 100 6 7 7 7 

6 80 5 7 7 7 

5 70 4 7 7 7 

4 60 3 6 7 7 

3 50 2 5 7 7 

2 40 1 or 2 4 6 7 

1 25 1 3 5 7 

 

Let; 

The probability of no claim 0P=  

The probability of one claim 1P=  

The probability of two claims 2P=  

The probability of three or more claims 0 1 21 ( )P P P= − + +  
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Transition graph 3.6.4 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

                     1-(P0 + P1+P2)         

        1-(P0 + P1+P2) 

 

 

 

 

Level 
1 

Level  

2 

Level  

3 

Level 

 4 

Level 

 5 

Level 
6 

Level 
7 

Level 
 1 

Level 

 2 

Level 

 3 

Level  

4 

Level  

5 

Level 

6 

Level  

7 

P0 

P1 

P0 

P2 P1 
P2 

P1 

P1 

P0 

1-P0 

1-P0 

1-(P0 + P1) 
1-(P0 + P1+P2) 1-(P0 + P1) 

1-(P0 + P1+P2) 

P0 

P2 P2 

P0 P0 P0 

P0 P0 

P0 

P0 P0 
P0 

P0 

P1 

P1 

1-(P0 + P1) 1-(P0 + P1) 
1-P0 

1-P0 

P0 

P1 

P1 



50 
  

Transition matrix 3.6.4 

0 1 2 0 1 2

0 1 2 0 1 2

0 1 0 1

0 1 0 1

0 0

0 0

0 0

0 0 0 1 ( )
0 0 0 1 ( )

0 0 0 0 1 ( )
0 0 0 0 1 ( )
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

P P P P P P
P P P P P P

P P P P
P P P P

P P
P P

P P

− + + 
 − + + 
 − +
 − + 
 −
 

− 
 − 

 

 

0 1 2 0 1 2

0 1 1 0 1 2

0 1 0 1

0 0 1

0 0 0

0 0

0

0 0 0 1 ( )
0 0 0 1 ( )
0 0 0 0 1 ( )
0 0 0 0 0 1 ( )
0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0 1

P P P P P P
P P P P P P
P P P P

P P P
P P P

P P
P

− + + 
 − + + 
 − +
 − + 
 −
 

− 
 −   

Remark 

The Kenyan system is unfair and does not take into consideration the claim frequency. 

The Thailand BMS only gives favourable options to policyholders which is a disadvantage to 

the insurance companies. 

An ideal seven stage BMS would be as follows: 

 

Level Level occupied if; 

0n =  1n =  2n =  3n =  4n =  5n =  6n ≥  

7 7 6 5 4 3 2 1 

6 7 5 4 3 2 1 1 

5 6 4 3 2 1 1 1 

4 5 3 2 1 1 1 1 

3 4 2 1 1 1 1 1 

2 3 1 1 1 1 1 1 

1 2 1 1 1 1 1 1 

 

Level 7 is the highest level of discount. 
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Transition graph  3.6.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transition matrix 3.6.5 

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 0 1 2 3 4

0 1 2 3 0 1 2 3

0 1 2 0 1 2

0 1 0 1

0 0

0 0

1 ( )7
0 1 ( )6

0 0 1 ( )5
0 0 0 1 ( )4
0 0 0 0 1 ( )3
0 0 0 0 0 12
0 0 0 0 0 11

P P P P P P P P P P P P
P P P P P P P P P P

P P P P P P P P
P P P P P P

P P P P
P P

P P

− + + + + + 
 − + + + + 
 − + + +
 − + + 
 − +
 

− 
 − 

 

This is the same Brazilian BMS looked at by Lemaries (2013) in his article, North American 

Actuarial Journal 

 

 

 

 

 

Level  
2 

Level      
5 

Level      
6 

Level      
7 

Level      
3 

Level      
4 

Level          
1 

P5  

P4 
P3 

P2 P4 

P3 

P2 
P3 

P2 P2 

P0 

P1 

 

P0 

 P1 

P0 

P1 

P0 

P1 
P1 

P0 

 

1- P0 

 

1-( P0 + P1 + P2+ P3+ P4+ P5) 

 

1-( P0 + P1 + P2+ P3+ P4) 

1-( P0 + P1 + P2+ P3) 

1-( P0 + P1 + P2) 

1-( P0 + P1) 

1-( P0) 

P0 

P0 
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3.4.THE EIGHT STAGE NCD SYSTEM 
An idea should have the following transition rule 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Level 
2 Level 

3 
Level 

4 
Level 

5 
Level 

6 
Level 

7 
Level 

8 

P6 

P5 

P5 

P4 

P3 

P2 

P4 
P3  

P2 

P3 

P4 

P2 

P3 

P2 

Level  
1 

P0 P0 P0 P0 P0 P0 
P1 P1 

 

P1 P1 P1 
P1 

P0 

1- P0 

1-( P0 + P1 + P2+ P3+ P4+ P5+P6) 

1-( P0 + P1 + P2+ P3+ P4+ P5) 

1-( P0 + P1 + P2+ P3+ P4) 

1-
( P

0 
+ 

P 1
 +

 P
2+

 P
3)

 

1-( P0 + P1 + P2) 

1-( P0 + P1) 

1-P0  

P0  

Level     Level occupied if 
8 n=0 n=14 n=2 n=3 n=4 n=5 n=6 n≥7 
7 8 7 6 5 4 3 2 1 
6 7 6 5 4 3 2 1 1 
5 6 5 4 3 2 1 1 1 
4 5 4 3 2 1 1 1 1 
3 4 3 2 1 1 1 1 1 
2 3 2 1 1 1 1 1 1 
1 2 1 1 1 1 1 1 1 

 

Level 8 is the highest level of discount 

P2 
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3.7 THE NINE STAGE BMS 

J. F. Walhin and J. Paris (1999), give an illustration of a BMS with nine classes. 

Class 0 1 2 3 4 5 6 7 8 

Premium 

(percentage) 

75 80 90 95 100 150 170 185 250 

 

The transition rules are as follows: 

1− if no accident during the year. 

3+ per accident during the year. 

0+  if any accident in class 8. 

0− if no accident in class 0. 

Class after claims can be summarised as follows: 

Class Premium level Class after claims Discount level 

0n =  1n ≥  

8 250 7 8 -150 

7 185 6 8 -85 

6 170 5 8 -70 

5 150 4 8 -50 

4 100 3 7 0 

3 95 2 6 5 

2 90 1 5 10 

1 80 0 4 20 

0 75 0 3 25 

 

Let; 

The probability of no claim =P0 and the probability of claim(s) =1- P0 
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Transition graph 3.7.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Transition matrix 3.7.0 

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

1 0 0 0 0 0 0 08
1 0 0 0 0 0 0 07
1 0 0 0 0 0 0 06
1 0 0 0 0 0 0 05

0 1 0 0 0 0 0 04
0 0 1 0 0 0 0 03
0 0 0 1 0 0 0 02
0 0 0 0 1 0 0 01
0 0 0 0 0 1 0 00

P P
P P
P P
P P

P P
P P

P P
P P

P P

− 
 − 
 −
 − 
 −
 

− 
 −
 

− 
 −   

 

Level   
0 

Level  
1 

Level  
2 

Level  
3 

Level    
4 

Level  
6 

Level   
7 

Level   
8 

Level    
5 

P0 

P0 

 

P0 

 

P0 P0 P0 P0 

1- P0 1- P0 1- P0 

P0 

 

1- P0 

1-
 P

0 

 

1- P0 

 

1- P0 

 
1- P0 

 

1- P0 

 P0 
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Remark 

The nine stage BMS illustrated by J. F. Walhin and J. Paris (1999) does not consider the 

number of claims reported by individuals.  

The ideal nine stage BMS that considers claims frequency is shown by the table below; 

 

Level Level occupied if 

n o=  1n =  2n =  3n =  4n =  5n =  6n =  7n =  8n ≥  

9 9 8 7 6 5 4 3 2 1 

8 9 7 6 5 4 3 2 1 1 

7 8 6 5 4 3 2 1 1 1 

6 7 5 4 3 2 1 1 1 1 

5 6 4 3 2 1 1 1 1 1 

4 5 3 2 1 1 1 1 1 1 

3 4 2 1 1 1 1 1 1 1 

2 3 1 1 1 1 1 1 1 1 

1 2 1 1 1 1 1 1 1 1 

 

Level 9 is the highest level of discount. 
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P6 

P5 

P4 

P3 

P2 

P7 

Level 

2 

Level 
3 

Level 

4 

Level 

5

Level 
6 

Level  

7 

Level   
9 

Level   
1 

Level   
8 

P6 

P5 

P4 
P3 

P2 

P5 P4 

P3 

P2 

P4 

P3 

P2 

P3 

P2 P2 

1-(P0 +P1+ P2+ P3+ P4+ P5 + P6+P7) 

1-(P0 +P1+ P2+ P3+ P4+ P5 + P6) 

1-(P0 +P1+ P2+ P3+ P4+ P5) 

1-(P
0  +P

1 + P
2 + P

3 + P
4 ) 

1-(P0 +P1+ P2+ P3 ) 
1-(P0 +P1+ P2) 

1-(P0 +P1) 

1-P0  

1-P0  
 

P0  
 

P0 

P1 

P0 P0 

P1 P1 P1 P1 P1 P1 

P0 P0 
P0 P0 

Transition graph 3.7.1 

P0 
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Transition matrix 3.7.1 

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 0 1 2 3 4

0 1 2 3 0 1 2 3

0 1 2 0

1 ( )9
0 1 ( )8

0 0 1 ( )7
0 0 0 1 ( )6
0 0 0 0 1 ( )5
0 0 0 0 0 1 (4

3
2
1

P P P P P P P P P P P P P P P P
P P P P P P P P P P P P P P

P P P P P P P P P P P P
P P P P P P P P P P

P P P P P P P P
P P P P

− + + + + + + +
− + + + + + +

− + + + + +
− + + + +

− + + +
− 1 2

0 1 0 1

0 0

0 0

)
0 0 0 0 0 0 1 ( )
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1

P P
P P P P

P P
P P

 
 
 
 
 
 
 
 

+ + 
 − +
 

− 
 − 

 

 

3.9.THE TEN STAGE BMS 

Lemaire and Zi (1994) look at the automobile third party insurance merit-rating systems of 22 

countries among them is Denmark, whose BMS has 10 number of classes with levels 30, 40, 

50, 60, 70, 80, 90, 100, 120, and 150 with level 100 as the starting level. For a claim free 

year, a policyholder moves down a premium level and for a year with claim(s), he moves up 

two levels. 

Class Premium level Discount level Class after claims 

0n =  1n ≥  

10 150 -50 9 10 

9 120 -20 8 10 

8 100 0 7 10 

7 90 10 6 9 

6 80 20 5 8 

5 70 30 4 7 

4 60 40 3 6 

3 50 50 2 5 

2 40 60 1 4 

1 30 70 1 3 

 

The probability of no claim e λ−= and the probability of claim(s) 1 e λ−= −  
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Level 
9 

Level 
8 

Level 
7 

Level 
6 

Level 
5 

Level 
4 

Level 
3 

Level 
2 

Level 
1 

Level 
10 

1-e-λ 

1-
e-λ

 

1-
e-λ

 

1-
e-λ

 
1-

e-λ
 

1-
e-λ

 

1-
e-λ

 
1-

e-λ
 

e-λ 

e-λ
 

e-λ
 

e-λ
 

e-λ
 

e-λ
 

e-λ
 

e-λ
 

e-λ
 

e-λ 

1-e-λ 

1-e-λ 

Transition graph 3.8.0 
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Transition matrix 3.8.0 

1 0 1 0 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0
4 0 0 0 0 1 0 0 0 0
5 0 0 0 0 0 1 0 0 0
6 0 0 0 0 0 0 1 0 0
7 0 0 0 0 0 0 0 1 0
8 0 0 0 0 0 0 0 0 1
9 0 0 0 0 0 0 0 0 1

10 0 0 0 0 0 0 0 0 1

e e
e e

e e
e e

e e
e e

e e
e e

e e
e e

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

λ λ

− −

− −

− −

− −

− −

− −

− −

− −

− −

− −

 −
 − 
 −
 

− 
 −
 

− 
 − 
 −
 −
 − 





 

 

Remark 

 

The table below represents the transition rules for an ideal ten stage BMS. 

 

Level Level occupied if 

n o=  1n =  2n =  3n =  4n =  5n =  6n =  7n =  8n =  9n ≥  

10 10 9 8 7 6 5 4 3 2 1 

9 10 8 7 6 5 4 3 2 1 1 

8 9 7 6 5 4 3 2 1 1 1 

7 8 6 5 4 3 2 1 1 1 1 

6 7 5 4 3 2 1 1 1 1 1 

5 6 4 3 2 1 1 1 1 1 1 

4 5 3 2 1 1 1 1 1 1 1 

3 4 2 1 1 1 1 1 1 1 1 

2 3 1 1 1 1 1 1 1 1 1 

1 2 1 1 1 1 1 1 1 1 1 

 

 

Level 10 is the highest discount level 
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Transition matrix 3.8.1 

 

 

 

 

 

 

 

 

 

  

  

 

 

   

 

 

P6 

P5 

P4 

P3 

P2 

P7 

Level 

2 

Level 
3 

Level 

4 

Level 

5

Level 
6 

Level  

7 

Level   
9 

Level   
1 

Level   
10 

P2 

Level   
8 

P3 

P6 

P5 

P4 
P3 

P2 

P5 P4 

P3 

P2 

P4 

P3 

P2 

P3 

P2 P2 

P4 

P5 

P6 

P7 

P8 

1-(P0 +P1+ P2+ P3+ P4+ P5 + P6+P7+ P8) 
1-(P0 +P1+ P2+ P3+ P4+ P5 + P6+P7) 

1-(P0 +P1+ P2+ P3+ P4+ P5 + P6) 

1-(P0 +P1+ P2+ P3+ P4+ P5 ) 

1-(P
0  +P

1 + P
2 + P

3 + P
4 ) 

1-(P0 +P1+ P2+ P3 ) 
1-(P0 +P1+ P2) 

1-(P0 +P1) 
1-P0  

1-P0  
 

P0  
 P0 

P1 

P0 P0 

P1 P1 P1 P1 P1 P1 
P1 

P0 P0 P0 
P0 P0 

P0 
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Transition matrix 3.8.1 

 

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 0 1 2 3 4 5 6

0 1 2 3 4 5 0 1 2 3 4 5

0 1 2 3 4 0

1 ( )10
0 1 ( )9

0 0 1 ( )8
0 0 0 1 ( )7
0 0 0 0 1 (6

5
4
3
2
1

P P P P P P P P P P P P P P P P P P
P P P P P P P P P P P P P P P P

P P P P P P P P P P P P P P
P P P P P P P P P P P P

P P P P P P P

− + + + + + + + +
− + + + + + + +

− + + + + + +
− + + + + +

− + 1 2 3 4

0 1 2 3 0 1 2 3

0 1 2 0 1 2

0 1 0 1

0 0

0 0

)
0 0 0 0 0 1 ( )
0 0 0 0 0 0 1 ( )
0 0 0 0 0 0 0 1 ( )
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1

P P P
P P P P P P P P

P P P P P P
P P P P

P P
P P

 
 
 
 
 
 
 + + +
 

− + + + 
 − + +
 

− + 
 − 
 − 
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CHAPTER IV 

CLAIM FREQUENCY DISRIBUTION 

4.1 INTRODUCTION 

Poisson distribution is commonly used in describing the probability of the number of claims 

within a given period (claim frequency distribution). The distribution has a constant 

parameter, that is, the characteristics of policyholders (drivers) are assumed to be 

homogeneous. This is not the case in reality. To take care of the non-homogeneity factor, 

most studies are now using the mixed Poisson distributions to describe the claim frequency 

distribution. 

Poisson mixtures capture much of the heterogeneous structure and they fit data better than the 

standard Poisson. In this chapter, we are going to consider mixed Poisson distributions using 

the following mixing distributions: 

i. Exponential 

ii. One parameter gamma. 

iii. Two parameter gamma. 

iv. Lindley. 

For each mixed distribution, we are going to estimate its parameters. The estimation methods 

we will look at include: 

• The method of moments. 

• The maximum likelihood method. 

4.2 PARAMETER ESTIMATION 

4.2.1 THE METHOD OF MOMENTS 

To obtain the method of moment estimator (MME), first we derive the equations that relate 

the population moments to the parameters of interest, that is, the expected values. A sample is 

then drawn and the population moments are estimated from the sample. The equations are 

then solved for the parameters of interest, using the sample moments in place of the unknown 

population moments. This will result in the estimates of those parameters. 

Suppose the problem is to estimate, k , unknown parameters, 1, , kθ θL  with the distribution 

characterized as ( ; )Wf w θ . 

Suppose the first k  moments of the true distribution (the population moments) can be 

expressed as functions of sθ : 
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1 1 1

2
2 2 1

1

[ ] ( , , )

[ ] ( , , )

[ ] ( , , )

k

k

k
k k k

E W g
E W g

E W g

µ θ θ

µ θ θ

µ θ θ

= =

= =

= =

L

L

M

L

  

Suppose a sample of size nis drawn, resulting in the values 1, , nw wL  for 1, ,j k= L   

Let 
1

1ˆ
n

i
j

i
w

n
µ

=

= ∑  be the j th−  sample moment, an estimate of jµ  . 

The method of moments estimator for 1̂
ˆ, , kθ θL  is defined as the solution to the equations: 

 

1 1 1

2 2 1

1

ˆ ˆˆ ( , , )
ˆ ˆˆ ( , , )

ˆ ˆˆ ( , , )

k

k

k k k

g

g

g

µ θ θ

µ θ θ

µ θ θ

=

=

=

L

L

M

L

 

 

4.2.2 MAXIMUM LIKELIHOOD METHOD 

 

It is a method of estimating the parameters of a statistical model. For a fixed set of data and 

underlying statistical model, this method selects the set of values of the model parameter that 

maximizes the likelihood function. 

Let 1( , , ; )nf x x θL  be the joint probability or density function of n  , random variable 

1, , nX XL  with sample values 1, , nx xL  . The likelihood function of the sample is given by; 

1 1( ; , , ) ( , , )n nL x x f x xθ =L L   

( )L θ  is a briefer notation 

L is a function of θ  for a fixed sample values 

If 1, , nX XL  are discrete iid random variables with probability function ( , )p x θ  then the 

likelihood function is given by; 

1 1( ) ( , , )n nL P X x X xθ = = =L   

In the continuous case, if density is ( , )f x θ , then the likelihood function is; 

1

( ) ( , )
n

i
i

L f xθ θ
=

= ∏
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         1

1

( )

( ; )

n

i i
i

n

i
i

P X x

P x θ

=

=

= =

=

∏

∏
 

Although the likelihood function depends on the observed sample value, 1( , , ),nx x x= L  it is 

regarded as a function of parameterθ . 

 

4.3 GAMMA FUNCTIONS 

 

Definition 1: 

1
( ) 0

( 1) 0

( )

( )

t

t

i t e dt

ii t e dt

α
α

α
α

∞ − −

∞ −
+

Γ =

Γ =

∫

∫

  

 

Property 1.1 

Integration by parts of definition 1(ii); 

( ) ( ) ( ) ( ) '( ) ( )f x g x dx f x G x f x G x dx= −∫ ∫   

 

Let 1( ) '( )f x t f x tα αα −= ⇒ =  and ( ) t tg x e e− −= ⇒ −   

 

Thus; 

0
( 1) tt e dtαα

∞ −Γ + = ∫   

 

    

1
0 0

1

0

( )

( 1) ( )

t t

t

t e t e dt

t e dt

α α

α

α

α

α α

α α α

∞− ∞ − −

∞ − −

= − − • −

=

= Γ

Γ + = Γ

∫

∫
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Property 1.2 

1

0

1 1

0

( )

(1)

t

t

t e dt

t e dt

αα
∞

− −

∞
− −

Γ =

Γ =

∫

∫
  

        

0

0
(0 1) 1

(1) 1

te dt

te

∞
−

∞

=

−= = − − =

Γ =

∫

−  

 

Property 1.3 

( 1) ( )n n nΓ + = Γ   

 

   

( 1) ( 1)

( 1)( 2) ( 2)

( 1)( 2) 2 1 (1)

!

n n n

n n n n

n n n

n

= − Γ −

= − − Γ −

= − − • • Γ

=

L

L

 

 

( )1 !n nΓ + =  , n is a positive integer. 

 

Property 1.4 

10

( 1)xe x dxβ α
α

α
β

∞ −
+

Γ +
=∫  ; , 0α β ≥   

 

Proof; 

Let yy x xβ
β

= ⇒ =   meaning dy dx
dx

=   

Therefore; 

0 0

x y y dye x dx e
α

β α

ββ
∞ ∞− −  

=  
 

∫ ∫  
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0

1

1

1

1 ( 1)

( 1)

ye y dyα
α

α

α

β β

α
β

α
β

∞ −

+

+

=
×

= Γ +

Γ +
=

∫

  

 

4.4 MIXED POISSON DISTRIBUTIONS 

4.4.1 INTRODUCTION 

In this chapter, we are going to use mixed Poisson distributions when the mixing distributions 

are, exponential, one parameter and two parameter gamma and the Lindley distributions.   

The parameters of these distributions have been estimated using the method of moments and 

the maximum likelihood method. 

The following section will briefly describe the estimation of parameters. 

We have also considered each mixed distribution separately, finding its mean and variance 

and estimating their parameters. 

A probability distribution is said to be a mixed distribution if its probability density function 

can be expressed as; 

( ) ( / ) ( )f x f x g dλλ λ λ
Θ

= ∫  , λ ∈Θ  

Where; 

( / ) ( )f x gλ λ =mixture or mixed distribution 

( / )f x λ =  conditional distribution 

( )g λ =  mixing density / distribution 

 

Regardless of the form of ( / )f x λ , the expected value of a function ( )h x is obtained as; 

/

/

[ ( )] [ ( )] ( )

[ ] [ ] [ ]

x

x

E h x E h x g d

E X E E E

λ λ λ
Θ

Λ

=

= = Λ

∫
  

The variance of X in the mixed distribution is the sum of the variance of its conditional mean 

and the mean of its conditional variance. 

/ /[ ] [ ] [ ] ( )x xV X V E E V iλ λ= + L  
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A random variable X follows a mixed Poisson distribution with mixing distribution having a 

probability density function, g , if its probability function is; 

0

( ) ( ) ( )
!

xeP X x p x g d
x

λλ λ λ
∞ −

= = = ∫   , 0,1,x = L  

In terms of probability generating function, ( )H S of :X   

( 1)

0

( ) ( ) ( )SH S e g d iiλ λ λ
∞

− −= ∫ L   

( 1)XM S −  is the moment generating function of a mixed distribution evaluated at 1S − . 

Meaning the probability generating function of a mixed Poisson distribution determines the 

mixing distribution through its moment generating function. 

Consider a random variable, X , whose distribution is a mixed Poisson distribution. Then; 

0

0

( ) ( ) ( )
!

( ) ( ) [1 ( )]
!

x

x

ei P X x G d
x

eii P X x G d
x

λ

λ

λ λ λ

λ λ λ

∞ −

∞ −

≤ =

= = −

∫

∫
  

 

Where 
0

( ) ( )G g x dx
λ

λ = ∫  is the distribution function of parameter λ . 

The variance of the mixed Poisson distribution: 
2 2( ) [ ] ( [ ])Var X E X E X= −   

  
2 2[ ] [ ] ( [ ])

[ ] ( )
E E E X
E Var

λ λ
λ λ

= + −
= +

 

For a probability generating function ( ) :Q t   

0

( ) [ ] exp[ ( 1)] ( )XQ t E t t g dλ λ λ
∞

= = −∫   

Factorial moments of the mixed Poisson distribution are the same as the moments of the 

mixing distribution about the origin. Thus, the moments about the origin of the mixed 

Poisson distribution can be expressed in terms of those of the mixing distribution.  
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4.4.2 POISSON – EXPONENTIAL MIXTURE (GEOMETRIC DISTRIBUTION) 

Assuming that the number of claims, x , is Poisson distributed with parameter 0λ > , and λ is 

distributed with parameter .µ   

( / ) ; 0,1,
!

xef x x
x

λλλ
−

= = Land 0λ >   

 

The distribution of λ is; 

( ; )g e dµλλ µ µ λ−=  ; , 0µ λ >   

 

The mixture: 

0

( )
!

xef x e d
x

λ
µλλ µ λ

∞ −
−= •∫   

         

0

(1 )

0

1

1 1

!

!
( 1)

! (1 )
!

! (1 ) (1 )
1( )

1 (1 )

x

x

x

x x

x

e e d
x

e d
x

x
x

x
x

f x

λ µλ

λ µ

µ λ λ

µ λ λ

µ
µ

µ µ
µ µ

µ
µ µ

∞
− −

∞
− +

+

+ +

= •

=

Γ +
= •

+

= • =
+ +

= •
+ +

∫

∫

 

which is a Geometric distribution. 

  

In terms of pgf ; 

( 1)

0

( ) SH S e e dλ µλµ λ
∞

− − −= ∫   

          [( 1) ]

0

Se dλ µµ λ
∞

− − + += ∫  

          
[( 1) ]

0(1 )

Se
S

λ µ

µ
µ

∞− − + + 
=  − + 
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1
(1 ) 1

1

1
1

S S

S

µµ
µ µ

µ
µ

µ

 
= = − + + − 

+
=

 
−  + 

 

which is the pgf of a Geometric distribution with parameter 
1

µ
µ+

  

 

The mean of the Geometric distribution – '(1)H   

1

2

2

1( ) 1
1 1

1
1

(1 )'( )

1
1

SH S
S

H S
S

µ
µµ

µ µ
µ

µ
µ

µ

−
 += ⇒ × − + +   −  + 

+
=

  
−  +  

 

 

2 2

2 2

1(1 ) (1 )'(1)
11

11
1

H

X

µ µ
µ µ

µµ
µµ

µ

+ +
= = =

    
−     ++    

=

 

 

The variance of the Geometric distribution  

32

2 3

3

3 2

''( ) '( )

2(1 )''( ) 1
1(1 )

1
1

2 2''(1)
1(1 )

H S H S
S

SH S
S S

H

µ
µµ

µµ

µ

µ µ
µµ µ

−

−

∂
=

∂

  ∂ +
= = −  ∂ ++      

−  +  

 
= • = ++  
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2

2 2 2

[ ] ''(1) '(1) [ '(1)]
2 1 1 1[ ]

Var x H H H

Var x µ
µµ µ µ

= + −
+

= + − =
    

 

Estimation of parameter, µ , of the Geometric distribution 

 

i. The method of moments  

1[ ]

1

E x X

X

µ

µ

= =

=
  

Thus the MME of µ is
1ˆ
X

µ =
 

 

ii. The maximum likelihood method  

 

1

1( )
1 1

xn

i

L µµ
µ µ=

  
=   + +  

∏

  

          
1

1
1 1

n n

i
i

xµ
µ µ =

   
=    + +   

∑  

1

1

1ln ( ) ln ln
1 1

ln ( ) [ln ln(1 )] [ ln(1 )

n

i
i

n

i
i

L n x

L n x

µµ
µ µ

µ µ µ µ
µ µ

=

=

   
= +   + +   

∂ ∂  
= − + + − + 

∂ ∂  

∑

∑
  

       
1

1

1 1 1
1 1

(1 ) 1

n

i
i

n

i
i

n x

x
n

µ µ µ

µ µ µ

=

=

   
= − + • −  + +   

= −
+ +

∑

∑
 

10
(1 ) 1

n

i
i

x
n

n µ µ
== −

+ +

∑
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1

1

1

1 (1 )

1ˆ

n

i
i

n

i
i

n

i
i

x
n

n
nx

n
Xx

µ µ

µ

µ

=

=

=

=
+ +

=

= =

∑

∑

∑

 

4.4.3 POISSON-GAMMA MIXTURE (NEGATIVE BINOMIAL DISTRIBUTION) 

4.4.3.1 The one parameter gamma mixing distribution  

Let  ( / )
!

xef x
x

λ λλ
−

=

 

; 0,1,2,x = L

 

And the distribution of λ ,
1

( )
( )

eg
λ αλλ

α

− −

=
Γ  

The mixture; 
1

0
( )

! ( )

xe ef x d
x

λ λ αλ λ λ
α

− − −∞
= •

Γ∫

 

         

2 1

0

1
! ( )

1 ( ) ( ) 1
! ( ) ! ( )2 2

x

x x

e d
x

x x
x x

λ α

α α

λ λ
α

α α
α α

∞ − + −

+ +

= •
Γ

Γ + Γ +
= • = •

Γ Γ

∫
 

1 1 1( ) ; 0,1, 2,
2 2

xx
f x x

x

αα+ −    = =    
    

L

 

which is a NBD with parameter α  

In terms of pdf,  

( 1)

0
( ) ( )SH S e g dλ λ λ

∞ − −= ∫  

          

1
(1 )

0 ( )
S ee d

λ α
λ λ λ

α

− −∞ − −=
Γ∫

 

          

( 2) 1

0

1
( )
1 ( )
( ) (2 )
1 0.5

(2 ) (1 0.5 )

Se d

S

S S

λ α

α

α α

α α

λ λ
α

α
α

∞ − − + −=
Γ

Γ
= •

Γ −

= =
− −

∫

 

which is the pgf of NBD with parameter α  
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The mean of the one parameter gamma mixing distribution 

[ ] '(1)

'( ) ( )

E X H

H S H S
S

=
∂

=
∂

 

           

1

0.5
(1 0.5 )

0.5 0.5
(1 0.5 )

S S

S

α

α

α

α

α
+

∂
=

∂ −

×
=

−

 

'(1)H Xα= =
 

 

The variance of the one parameter gamma mixing distribution 

''( ) '( )H S H S
S
∂

=
∂

 

              
1

2

0.5 0.5
(1 0.5 )

0.5 0.5 [0.5 0.5)
(1 0.5 )

S S

S

α

α

α

α

α

α α

+

+

∂ ×
=

∂ −

• +
=

−

 

[0.5 0.5]"(1)
0.5

H α α +
=

 
2[ ] "(1) '(1) [ '(1)]Var X H H H= + −
 

 

2

2 2

[0.5 0.5]
0.5

0.5 0.5 0.5 0.5
0.5

0.5
2

α α α α

α α α α

α

α

+
= + −

+ + −
=

=

=

 

 

Estimation of the parameter α, of the one parameter gamma mixing distribution 

 

a. The method of moments 

 

ˆ
X

X
α

α
=

=
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b. The maximum likelihood method 

1

1 1 1( )
2 2

xn

i

x
L

x

αα
α

=

+ −    =     
    

∏  

          
( )

[ ]
1

1

1

( 1)!(0.5) (0.5)
!( 1)!

1 11 ! 0.5 0.5
( )! ( 1)!

n

i
i

n
x

i

n x
n

i n
i i

x
x

x
x

α

α

α
α

α
α

=

=

=

+ −
=

−

 ∑
 = + − • • • •
 − 

∏

∑

 

1 1 1

ln ( ) ln( 1)! ln ! ln( 1)! ln 0.5 0.5
n n n

i i i
i i i

L x x n x nα α α α
= = =

= + − − − − + +∑ ∑ ∑  

1

ln ( ) ln( 1)! ln( 1)! 0.5
n

i
i

d L d x n n
d d

α α α α
α α =

 
= + − − − + 

 
∑  

 

! 2 n nn nn eπ −≈  

( )0.5! 2 n nn n n eπ −∴ ≈  

 

In this case therefore; 

 

[ ]{ }
( )

0.5 1 ( 1)

1 1

1 1

ln( 1)! ln 2 ( 1) ( 1)

ln( 1)! 0.5ln 2 0.5ln( 1) ( 1) ln 1 ( 1)

i i

n n
x x

i i i
i i

n n

i i i i i
i i

x x x e

x x x x x

α αα π α α

α π α α α α
α α

+ − − + −

= =

= =

+ − = + − • + − •

∂ ∂
+ − = + + − + + − + − − + −  ∂ ∂

∑ ∑

∑ ∑
 

         1

1

0.5 0.5 0.5
1 ( 1)( 1)

n

n
i i

i
i

x n Xxα αα=

=

 
= = = + − + −  + −

∑
∑

 

 

[ ]{ }
( )

0.5 1 ( 1)

1

1

ln( 1)! ln 2 ( 1) ( 1)

ln( 1)! 0.5ln 2 0.5ln( 1) ( 1) ln 1 ( 1)

n

i
n

i

eα αα π α α

α π α α α α
α α

− − −

=

=

− = − • − •

∂ ∂
− = + − + − − − −  ∂ ∂

∑

∑
 

0.5ln( 1)!
1

α
α α
∂

− =
∂ −
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Remember; 
1

ln ( ) ln( 1)! ln( 1)! 0.5
n

i
i

d L d x n n
d d

α α α α
α α =

 
= + − − − + 

 
∑

 
 

ln ( ) 0.5 0.5 0.5
( 1) 1

0.5 0.50 0.5
( 1) 1

d L n n
d n X

n n
n X

α
α α α

α α

= − +
+ − −

= − +
+ − −

 

which is nonlinear equation and can be found by numerical method.  

We consider the Newton-Raphson method; 

0
0

0

( )ˆ
'( )

g
g

α
α α

α
= −   

Where;

 
0

ln ( )( ) Lg αα
α

∂
=

∂
 

0α = the initial estimate using the method of moments. 

 

Therefore; 

0
0.5 0.5( ) 0.5

( 1) 1
ng n

n X
α

α α
 

= − + + − − 
 

 

0 2 2

0.5 0.5 0.5 0.5'( ) 0.5
( 1) 1 ( 1) ( 1)

n ng n
n X n X

α
α α α α α

 ∂
= − + = − ∂ + − − − + − 

 

0 Xα =  
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4.4.3.2 The two parameter gamma mixing distribution 

Let ( )
!

xef x
x

λ λλ
−

= and 1( )
( )

g e
α

βλ αβλ λ
α

− −=
Γ

 

The mixture; 

1

0

( )
! ( )

xef x e d
x

λ α
βλ αλ β λ λ

α

∞ −
− −= •

Γ∫  

            

(1 ) 1

0! ( )

( )
! ( ) (1 )
( )
! ( ) (1 )

1 1 ; 0,1, 2,
1 1

x

x

x

x

e d
x

x
x

x
x

x
x

x

α
λ β α

α

α

α

α

α

β λ λ
α

β α
α β

α β
α β

α β
β β

∞
− + + −

+

+

=
Γ

Γ +
= •

Γ +

Γ +
= •

Γ +

+ −    
= =    + +    

∫

L

 

which is a NBD with parameter α and 
1

β
β+

 

In terms of pgf ; 

( 1)

0

( ) ( )SH S e g dλ λ λ
∞

−= ∫
 

 

( 1) 1

0

[(1 ) ] 1

0

( )

( )

S

S

e e d

e d

α
λ βλ α

α
λ β α

β λ λ
α

β λ λ
α

∞
− − −

∞
− − + −

=
Γ

=
Γ

∫

∫  

 
( )

( ) (1 )S

α

α

β α
α β

Γ
= •

Γ − +
 

 

(1 )

1 1

11 11

S

SS

α

α

α α

α

β
β

β β
β β

ββ

=
+ −

   
   + +   = =

   −−    + + 

 

 

which is NBD with parameter α and 
1

β
β+
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The mean of the two parameter gamma mixing distribution 

'(1)X H=  

'( ) ( )H S H S
S
∂

=
∂  

 1

1 1

1
1

S

α

α

α β
β β

β

+

 
• + + =

 
− + 

 

1

1 1
'(1)

11
1

H

α

α

α β
β β

β

+

 
• + + =

 
− + 

 

 

 
α
β

=  

'(1)H X Meanα
β

= = =  

 

The variance of the two parameter gamma mixing distribution  
2[ ] "(1) '(1) [ '(1)]

"( ) '( )

Var X H H H

H S H S
S

= + −

∂
=

∂  

  
2

2

( 1)
(1 )

1
1

S

α

α

α

α αβ
β

β

+

+

+
+

=
 

− + 

  

2

2 2

( 1) (1 )"(1)
(1 )

H
α α

α α

α αβ β
β β β

+

+

+ +
= •

+

 

2

2 2

( 1)[ ]Var X α α α α
ββ β

+
= + −  

  

 2 2

(1 )α αβ α β
β β
+ +

= =  
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Estimation of the parameters of the two gamma mixing distribution 

 

1. Method of moments 

 

X

X

α
β

α β

=

=

 
2

2

2

(1 ) (1 )

ˆ

XS

X
S X

α β β
ββ

β

+ +
= =

=
−

 

 
2

2 2
ˆ X XX X

S X S X
α β  

= = = − −   

2. The maximum likelihood method 
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1
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i
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0.5 0.5 ln
( 1) 1 1

0.5 0.5 ln ln(1 )
( 1) 1

0.5 0.5 ln ln 1
( 1) 1

0.5 0.5 ln ln ln( ) ln
( 1) 1

0.5 0.5 ln ln( )
( 1) 1

n n
n X

n n n
n X

n n n
n X X X

n n n X X n X
n X

n n X
n X

β
α α β

β β
α α

α α
α α

α α
α α

α α
α α

 
= − +  + − − + 

= − + − +
+ − −

 = − + − + + − −  

= − + − − + +
+ − −

= − + − +
+ − −

 

0.5 0.50 ln ln( )
( 1) 1

n n X
n X

α α
α α

= − + − +
+ − −

 

 

which is a non-linear equation and needs to be solved by numerical method, using the 

Newton’s method: 

 
2

0 2

X
S X

α =
−

 

0

0
0 2

ln ( ) 0.5 0.5( ) ln ln( )
( 1) 1

( ) 0.5 0.5 1'( )
( 1) ( )( 1)

L ng n X
n X

g n ng
n X X

αα α α
α α α
α

α
α α α αα

∂
= = − + − +

∂ + − −
∂

= = − + −
∂ + − +−

 

0
0

0

( )
'( )

g
g

α
α α

α
= −

  

4.5 THE POISSON LINDLEY DISTRIBUTION  

Assuming that ( )
!

xef x
x

λ λλ
−

=  and 
2

( ) ( 1) ; ,
1

g e λθθλ λ λ θ
θ

−= +
+

>0  

 

Then, 
2

0

( ) ( 1)
! 1

xef x e d
x

λ
λθλ θ λ λ

θ

∞ −
−= • +

+∫  
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In terms of pgf; 
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The mean of the Poisson Lindley distribution 
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The variance of the Poisson Lindley distribution 
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Estimation of the parameter θ in the Poisson Lindley distribution  

 

1) The method of moments. 
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2) The maximum likelihood method. 
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which is nonlinear and needs to be solved by numerical method, like the Newton’s method. 
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CHAPTER V 

DATA ANALYSIS 

5.1 INTRODUCTION 

In this chapter, fitting data is done using the Geometric, NBD and the Poisson Lindley 

distributions. 

Secondary data used is by Luc Tremblay (1992), and the analysis is based on excel. 

No of 

claims 

Per policy 

(x) 

Frequency 

No of policies 

(f) 

 

x*f 

 

( )x x−  

 
2( )x x−  

 
2( )f x x× −  

0 103,704 0 -0.15514 0.024068 2,495.99139 
 

1 14,075 14,075 0.84486 0.713788 10,046.57090 
 

2 1,766 3,532 1.84486 3.403508 6,010.59557 
 

3 255 765 2.84486 8.093228 2,063.77318 
 

4 45 180 3.84486 14.782948 665.23266 
 

5 6 30 4.84486 23.472668 140.83601 
 

6 2 12 5.84486 34.162388 68.32478 
 

Total  119,853 18,594   21,491.3245 
 

 

Mean 18594 0.15514
119853

x= = =  

Variance

21491.3245
1198

0.1793
5

0
3

14 3= =
 

 

5.1.1 Method of moments 

 

• For Geometric distribution; 

1ˆ
X

µ =
 

1ˆ 6.44579
0.15514

µ = =
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• For the one parameter NBD; 

ˆ Xα =
 

ˆ 0.15514α =  

• For the two parameter NBD; 

2
ˆ X

S X
α =

−  

20.15514ˆ
0.17931 0.15514

0.99563α = =
−  

 

2
ˆ

0.15514ˆ
0.17931 0.15514

6.41765

X
S X

β

β

=
−

= =
−  

• For Poisson Lindley; 

2( 1) ( 1) 8ˆ
2

X X X
X

θ
− − + − +

=  

2(0.15514 1) (0.15514 1) (8 0.15514)ˆ 7.22908
2 0.15514

θ
− − + − + ∗

= =
×  
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Method of moments 

No of 

claims 

(x) 

Observed 

data 

Poisson 

distribution 

Geometric 

distribution 

One 

parameter 

gamma 

Two 

parameter 

gamma 

Poisson 

Lindley 

distribution 

0 103, 704 102,629.559 103,756.255 107,633.414 19,294.257 103,733.629 

1 14,075 15,921.950 13,934.887 8,349.124 32,326.655 13,971.601 

2 1,766 1,235.066 1,871.512 2,411.102 13,534.686 1,863.813 

3 255 63.869 251.352 866.044 11,356.665 246.661 

4 45 2.477 33.758 341.561 9,532.608 32.425 

5 6 0.07686 4.5338 141.923 8,003.274 4.238 

6 2 0.00199 0.6089 60.970 6,720.268 0.551 

Total 119,853 119,853 119,852.906 119,804.138 100,768.413 119,852.918 

 

 

5.1.2 Maximum likelihood method 

 

• For Geometric distribution; 

1ˆ
X

µ =
 

1ˆ 6.44579
0.15514

µ = =
 

• For the one parameter NBD; 

0
0

0

( )ˆ
'( )

g
g

α
α α

α
= −

 

0 0.15514Xα = =
 

0
0.5 0.5 0.5 0.5 119853( ) 0.5 (0.5 119853)

( 1) 1 119853(0.15514 0.15514 1 0.15514 1
ng n

n X
α

α α
   ×

= − + = − + ×   + − − + − −   
 

      
130857.2=  
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0 2 2

0.5 0.5 0.5 0.5'( ) 0.5
( 1) 1 ( 1) ( 1)

n ng n
n X n X

α
α α α α α

 ∂
= − + = − ∂ + − − − + −   

 
 

        2 2

0.5 119853 0.5
(0.15514 1) 119853(0.15514 0.15514 1

83955.
)

55×
= − =

− + −
 

130857.2 1.40351
83955.55

ˆ 0.15514α = − = −  

• For the two parameter NBD; 
2

0 2 0.99563248X
S X

α = =
−

 

0
ln ( ) 0.5 0.5( ) ln ln( )

( 1) 1
L ng n X

n X
αα α α

α α α
∂

= = − + − +
∂ + − −

         
0.9956) ln(0.15514 0.9956)

0.9956 1) 0.995
0.5 0

6 1

13720423.

.5 119853 (119853 ln
119853(0.15514

6

×
= − + − +

=

×
− −+

 

0
0 2

( ) 0.5 0.5 1'( )
( 1) ( )( 1)

g n ng
n X X

α
α

α α α αα
∂

= = − + −
∂ + − +−

 

       

2

0.5 119853 0.5 119853 1
119853(0.15514 0.9956 1) 0.9956 (0.15514 0.9956)(0.9956 1)

3141709200

×
= − + −

+ − +−

=

 

 

0
0

0

( )ˆ
'( )

g
g

α
α α

α
= −

 

     

13720423.60.9956 0.9913
3141709200

= − =

 
 

ˆ
0.1
0.99126 6.389

5514
5

X
αβ = = =
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• For Poisson Lindley distribution  

0
0

0

( )ˆ
'( )

g
g

θ
θ θ

θ
= −

 

 

0 7.2291θ =

 

1
0

1

2 1 3 2 1 3( )
( 1) 1 2 ( 1) 1( 2 )

n

i
i

n

i
i

x
n n n n nXg

nX n nx
θ

θ θ θ θ θ θ θθ

=

=

= + − − = + − −
+ + + + + ++ +

∑

∑
 

 

7.2291 7.22
2 119853 1 3 119853 119853 0.15514

(119853 0.15514) (2 119853) (119853 (91) 7.2291 1) 7.2291 1)

12794

(

.7

× × ×
= + − −

× + × +

−=

+× +

 

0 2 2 2

3 2 1'( )
( 2 )( 1) ( 1)

n nX ng
nX n n

θ
θθ θ θ

= + − −
+ ++ +

 

 

2 2 2 27.2291 1) 7.2291 1) 7
3 119853 119853 0.15514 2 119853 1

( ( [(119853 0.1551.2291 7.2291]

20.056

4) (2 119853)

86

× × ×
= + − −

× + × +

=

+ +
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Maximum Likelihood Method 

No of 

claims 

(x) 

Observed 

data 

Poisson 

distribution 

Geometric 

distribution 

NBD based on 

one parameter 

gamma 

NBD based on 

two parameters 

gamma 

Poisson Lindley 

distribution 

0 103, 704 102,629.559 103,756.255 317,064.079 
 

103,765.315 
 

113,903.654 
 

1 14,075 15,921.950 13,934.887 (222,501.329) 
 

13,919.629 
 

5,654.581 
 

2 1,766 1,235.066 1,871.512 22,445.325 
 

1,875.480 
 

280.185 
 

3 255 63.869 251.352 2,231.408 
 

253.065 
 

13.859 
 

4 45 2.477 33.758 445.303 
 

34.172 
 

0.6845 
 

5 6 0.07686 4.5338 115.623 
 

4.6163 
 

0.03375 
 

6 2 0.00199 0.6089 34.653 
 

0.6238 
 

0.001662 
 

Total 119,853 119,853 119,852.906 119,835.062 
 

119,852.901 
 

119,853 
 

 

 

5.2 REMARKS AND RECOMMENDATIONS 

 

From the method of moment’s table, the Geometric and Poisson Lindley distributions 

compare well with the observed data (seems to give better results) while the Geometric and 

two parameter gamma distributions compare well with the observed data, from the maximum 

likelihood table. The Geometric distribution is clearly a better fit in both methods. 

The data used may not give a true representation of the claims, as secondary data was used. A 

current claims experience will be a better data for the same research, and other mixtures other 

than the Poisson can be looked into to establish if they are better than the ones looked at. 
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