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ABSTRACT 

The outline shape is one of the most important attributes in the classification or identification of an 

object. It is used in human visual perception although the exact processes are yet to be understood. 

In computer vision system, the object shape is modelled as a mathematical function and characteristic 

features are then extracted. The features are selected on the basis of invariance to object orientation, 

rescaling and translation. 

In this thesis, a set of image moment invariants have been used to represent the outline shape of 

military aircrafts. The Hu invariant moments have been used due to relative computational ease 

compared to other equivalent methods and their ability in preserving rotation, scaling and translation 

invariance. 

Aircraft satellite images are identified using Bayesian decision theory classification. The classification 

is based on the statistical properties of a training set. The resulting statistical classifier assigns a 

measurement to the class which most likely generated the measurement. The classification is 

supervised for the sake of reduction of identification error rate. The accuracy of the proposed method 

has been tested by computer simulation experiments using the MATLAB R2009a version. The effect 

of noise can mask a shape descriptor and render the characteristic feature to be un-usable. The 

presence of speckle noise in satellite imagery has such effects. In our investigation various satellite 

images with different levels of noise are filtered using Lee filter, for the extraction of features and the 

results assessed. The Peak Signal-to-noise Ratio (PSNR) is used to assess the quality of the filtered 

images. The computer simulation results show that the proposed algorithms are effective in filtering, 

extraction of features and in the recognition of images. The test images used include 100X100 up to 

1024X1024 gray level images.   
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CHAPTER 1 

INTRODUCTION 

1.1.   Background to the Study                As a scientific 

discipline, computer vision is concerned with the extraction of information from images to be 

employed in a decision making process. The image data can take many forms, such as video 

sequences, still images, digitized maps, diagrams and sketches. These images may be in 

colour format, grey scale or in binary format. The common approach is to extract 

characteristic features from the image either in the spatial domain or in some suitable 

transform domain. Whether the goal is classification or recognition, a measure of similarity or 

distance must be formulated and the success rate of the system evaluated. In all these 

applications the basic approach is the one of pattern recognition. It is based on extracting 

representative features from objects and then identifying measurable quantities that make 

these objects distinct from each other compared to objects in a given database. In order to 

extract the characteristic features from an image pattern several preprocessing procedures 

are necessary. These are:  

i. Re-sampling in order to assure that the image coordinate system is correct.  

ii. Noise reduction in order to assure that sensor noise does not introduce false 

information.  

iii. Contrast enhancement to assure that relevant information can be detected. 

 

 

Some of the application areas of computer vision are: 

1.1.1. Robotics                                                                                                                                 The 

visual recognition of image patterns is a fundamental human attribute that uses the eye as a 

sensor and dedicated parts of the brain as the decision making processor. The visual 

recognition enables humans to perform a variety of tasks such as target identification, ease 

of movement, handling tools, and communication among others. Advances in sensing and 

visual perception techniques have enabled some of these attributes to be transferred to 

robots. For example, identification of colour or shape are a useful asset in a robot in an 

industrial automation process that involves sorting of items [1], [2], [3]. 
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1.1.2.  Industrial Inspection 

Industrial inspection is an area in which pattern recognition is of importance. A pattern 

recognition system captures images via a camera and analyzes them to produce descriptions 

of the visual signal. For example, objects on a moving conveyor belt may pass an inspection 

station under the surveillance of a camera to detect defective or faulty parts. Therefore, 

images have to be analyzed online, and the pattern recognition system has to classify the 

objects into either “defective” or “non-defective” class. After that, a decision has to be taken, 

such as to reject the defective parts. 

In an assembly line, different objects must be classified in one of a number of classes known 

a priori. Examples are in a tools manufacturing plant, where a robot arm can be used to move 

objects in the right place [4], [5].  

 

A well-established application of image pattern recognition is in assembly of electronic 

components on printed circuit boards in order to isolate defects such as shorts, opens, over-

etching, under-etching, pad size violations, and spurious metals [6]. There is also need to 

identify typical solder joint defects on PCBs such as missing solder, cold solder, excess 

solder, blowholes, voids, and solder bridging. Mistakes of component insertion can also be 

inspected. A printed circuit board inspection system based on image processing and pattern 

recognition techniques has been developed and reported by Cao and Meng [6]. It involves a 

binary image drawn from the original PCB and comparing the areas or the circumferences of 

the two, evaluation can be carried out. Another technique is to compare the acquired image 

with the perfect one. The difference between the two images will influence the decision that 

will be made [6]. 

 

1.1.3. Biometric Identification and Verification 

Threat to security has born new ways for protection of software, hardware, and network 

systems from external attacks. One of the methods is by using biometric systems. Such 

systems use personal attribution in an individual that are unalterable and hence popular as 

identification and verification features. Types of image based biometrics are fingerprint, iris, 

eye retina, hand, gait, and the face. The fingerprint is a typical pattern in the form of lines 

network referred to as ridges and minutiae. Everyone’s fingerprint pattern has a unique form 

even among identical twins. The analysis of fingerprints for matching purposes generally 

requires the comparison of several features of the fingerprint pattern. These include patterns, 

which are aggregate characteristics of ridges, and minutiae points, which are unique features 
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found within the patterns. It is also necessary to know the structure and properties of human 

skin in order to successfully employ some of the imaging technologies. 

Pattern recognition algorithms compare the basic fingerprint patterns such as the arch, whorl, 

and loop between a previously stored template and a candidate fingerprint. This requires that 

the images be aligned in the same orientation. To do this, the algorithm finds a centroid in 

the fingerprint image and centers on that. In a pattern-based algorithm, the template contains 

the type, size, and orientation of patterns within the aligned fingerprint image. The candidate 

fingerprint image is graphically compared with the template to determine the degree to which 

they match [7]. 

Another type of biometric identification is iris recognition which exploits its unique pattern in 

an individual. Image templates encoded from pattern recognition algorithms allow the 

identification of an individual from an impostor as databases of enrolled templates are rapidly 

searched by pattern classifiers. These systems enable passport-free border-crossings, and 

some national ID systems based on this technology are being deployed. A key advantage of 

its recognition is its stability as an internal, protected, yet externally visible organ of the eye.  

An algorithm first has to realize an accurate registration of the inner and outer boundaries of 

the iris in a captured image. Further processes detect and exclude eyelids, eyelashes, and 

specular reflections that often occlude its parts. The image region that contains only the iris, 

is then analyzed to extract a bit pattern encoding the information needed to compare two of 

its images. For identification or verification, a template created by its imaging is compared to 

a library of stored templates in a database. A similarity distance measure is used as a 

decision threshold. A positive identification is ensured because of the statistical extreme 

improbability of two different persons having similar patterns [8]. 

Another biometric technique is the retinal identification [6]. Retinal recognition is the most 

reliable and stable means of biometric identification. The retina is not exposed to the external 

environment. As a biometric, it is therefore very stable. The retina consists of multiple layers 

of sensory tissue and millions of photoreceptors whose function is to transform light rays into 

electrical impulses. These impulses subsequently travel to the brain via the optic nerve, 

where they are converted to images.  It is the blood vessel pattern in the retina that forms the 

foundation for retinal recognition as a pattern recognition technique, even among identical 

twins - the blood vessel patterns of the retina are unique and different. Infrared light 

illuminates the blood vessel pattern of the retina and the reflected light is subsequently 

captured by a scanning device for processing. Consequently, algorithms are developed for 

the extraction of unique features. 

An additional biometric is the facial recognition system which is a pattern recognition system 

for identification or verification of a person from a digital image or a video frame. This is done 
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by comparing selected facial features from an image and a facial database. It is typically used 

in security systems.  

Facial recognition algorithms identify facial features by extracting features, from an image of 

the face. These features are then used to search for other images with matching features in 

a database.  Other techniques normalize a gallery of face images and then compress the 

face data, only saving the data in the image that is useful for face recognition. The recognition 

processes are mainly of the geometric type, which aims at distinguishing features, or 

photometric type, which is a statistical approach that compresses an image into luminance 

values and compares the values with stored templates to eliminate variances [2]. 

1.1.4. Medical Imaging                 Computer-aided 

diagnosis is also an important application of pattern recognition, aiming at assisting health 

personnel in making diagnostic decisions. Computer-assisted diagnosis has been applied to 

and is of interest for a variety of medical data, such as X-rays, Computer tomography images, 

Ultrasound images, Electrocardiograms (ECGs), Magnetic resonance imaging (MRI), 

Positron emission tomography (PET) and electroencephalograms (EEGs). The need for a 

computer-aided diagnosis stems from the fact that medical data are often not easily 

interpretable, and the interpretation can depend very much on the skill of the medical analyst. 

However, a pattern recognition system increases the chances of correct diagnosis thus 

assisting the health personnel [5]. 

Data mining in medicine and DNA data analysis has also seen an increased usage recently. 

The nucleotides in a DNA chains have four basic building elements referred to as: adenine 

(A), cytosine (C), guanine (G) and thymine (T). These four nucleotides are combined to form 

long sequences in a twisted ladder structure commonly referred to as helix. Several 

nucleotides, usually in the range of hundreds, when arranged in a particular order constitute 

a gene. Specific gene-sequence patterns are related to particular diseases and play an 

important role in medicine and genetic engineering. In this, pattern recognition is a key area 

that offers a wealth of developed tools for similarity search and comparison between DNA 

sequences. Such comparisons between healthy and diseased tissues are very important in 

medicine to identify critical differences between these two classes [5]. Similarly the 

comparison is applied in DNA pattern identification of corpses that cannot be identified in any 

other way due to decomposition or destruction in fires or air accidents. To add to that DNA 

pattern recognition is applied in forensic investigations in crime where the DNA Patterns of 

the victim or criminal is identified. 

 

1.1.5. Surveillance 
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Image recognition offers several opportunities for airborne surveillance for applications in 

civilian and military activities, such as search and rescue missions, border security, resource 

exploration, wildfire and oil spill detection, and target tracking, among others. An unmanned 

airborne vehicle is equipped with special sensors to image objects in ground and assigns the 

actual recognition task to a crew or record image data and analyze them off-line on the ground 

[9]. 

In the same arena, pattern recognition is applied in image-based automatic surveillance for 

airport surface. The advanced surface movement guidance and control systems require the 

unambiguous identification of airports runways and all aircraft and vehicles in the airport 

movement area, as well as accurate information on their position. A pattern recognition 

system provides users with a display of the location of all surface traffic, enabling its 

separation and guidance in all types of weather conditions without reducing the number of 

operations or the level of safety. 

The automatic target recognition (ATR) as a process of automatic target acquisition and 

classification is extremely important for defense applications. The generic ATR problem is to 

take information from one or more sensors, and if necessary, combine it with a priori 

information. A decision is then made about the type of targets present in the scene. The 

targets are usually prioritized by their tactical importance so that appropriate actions can be 

taken in a given situation once their presence has been inferred. The identification of enemy 

military hardware and installations in fighter aircraft is an example of the employment of such 

technologies [10].  

1.1.6. Character Recognition               Recognition of letters or 

numbers is another important area of pattern recognition, with major concerns in automation 

and data mining. An optical Character Recognition (OCR) system has a “front-end” device 

consisting of a light source, a scan lens, a document transport, and a detector. At the output 

of the light-sensitive detector, light-intensity variation is translated into “numbers” and an 

image array is formed. A pattern recognition algorithm then takes over to recognize the 

characters—that is, to classify each character in the correct “letter, number, punctuation” 

class. Storing the recognized document has a twofold advantage over storing its scanned 

image. First, further electronic processing, if needed, is easy via a word processor, and 

second, it is much more efficient to store ASCII characters than a document image. There is 

also a lot of interest in systems that recognize handwriting. A typical commercial application 

of such a system is in the machine reading of bank cheques. The machine must be able to 

recognize the amounts in figures and digits and match them. Furthermore, it may also check 

whether the payee corresponds to the account to be credited. Online handwriting pattern 
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recognition systems are another area of great commercial interest. Such systems accompany 

pen computers, with which the entry of data is done not via the keyboard but by writing [11], 

[12], and [13].  

1.1.7. Content based image retrieval                 Content based image 

retrieval is the application of pattern recognition techniques in searching for digital images in 

large databases. It uses the visual contents of an image such as colour, shape, texture, and 

spatial layout to represent and index an image. In a typical system, the visual content of the 

images in the database are extracted and described by multi-dimensional feature vectors. 

The feature vectors of the images in the database form a feature database. To retrieve 

images, users provide the system with example images or sketched figures. The system then 

changes these examples into its internal representation of feature vectors. The similarities or 

distances between the feature vectors of the query or sketch and those of the images in the 

database are then calculated and retrieval is performed with the aid of an indexing scheme. 

The indexing scheme provides an efficient way to search for the image database [6]. 

  

1.2.   Problem Statement 

The need to recognize aircraft type from shape arises in content based image retrieval and 

in surveillance. A pattern recognition process can be employed for identification of an input 

aircraft image by searching a library database. A successful system would need to extract 

feature patterns from the image that would be invariant to rotation, scaling, and translation. It 

would be expected that features from similar patterns would show some statistical deviations 

as they are captured under a different environment such as noise levels and measurement 

errors. Thus a decision making process that takes into consideration any prior knowledge of 

the patterns and also uses a statistical decision would provide a suitable solution to the 

problem. 

 

1.3.   Objectives 

The main objective of this investigation is to identify aircrafts from satellite images that are 

stored in a database. The specific objectives are: 

(i). To use preprocessing techniques such as noise reduction in order to enhance the 

image of the unknown aircraft. 

(ii). To extract characteristic features such as moments which are resistant to image 

geometric rotations, translations and scaling. 

(iii). To employ Bayesian decision making in the image recognition process.  
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1.4. Scope of the Work. 

The research work is limited to identification of military aircrafts from aerial view images 

taken by satellite. The recognition of aircraft types from structural diagrams and sketches is 

outside the scope of this thesis. 

 

1.5 . Thesis Organization  

The remaining part of the thesis is organized as follows. In chapter 2, the literature review 

that reports on various pattern recognition techniques that have been proposed by other 

researchers is presented. Chapter 3 covers diverse image features extraction methods but 

with a focus on moment invariant descriptors. Chapter 4 covers Bayesian decision based 

image recognition process while chapter 5 presents computer simulation results and the 

discussion. Lastly, in chapter 6, the conclusions and recommendations for further work are 

presented. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter gives a brief review of the techniques that have been proposed or used in pattern 

recognition. It reviews decision theoretic approaches used in the proposed technique such 

as moment invariants and Bayesian decision method. Pattern recognition is concerned 

primarily with the description and classification of measurements taken from physical 

processes. Approaches to computerized pattern recognition may be divided into two principle 

areas namely decision theoretic or structural methods. 

In the decision theoretic approach the patterns are described using quantitative descriptors 

taken from the spatial domain such as area, contour and beam angle, In addition,  transform 

based descriptors such as moments, Fourier coefficients, Wavelets coefficients, can also be 

used. In the structural approach the patterns are described by symbolic information such as 

strings and the relationships and properties between those symbols. 

  

2.1. Shape Features Properties 

Efficient shape features must present some essential properties such as: 

 

i. Characteristic features: This means that shapes that are perceived to be similar must 

possess features that distinguish them from dissimilar types. This represents 

compactness of the representation. In general, a shape descriptor is a set of vectors 

that are produced to represent a given shape feature. A descriptor attempts to quantify 

the shape in ways that agree with human intuition. Good retrieval accuracy requires a 

shape descriptor to effectively find perceptually similar shapes from a database.  

 

 

ii. Geometric invariance: This means that the location, the rotation and the scaling 

changing of the shape must not affect the extracted features. The affine transform 

performs a linear mapping from coordinates system to other coordinates system that 

preserves the "straightness" and "parallelism" of lines. The transform can be 

constructed using sequences of translations, scales, flips, rotations and shears. The 

extracted features must be as invariant as possible with the affine transform. When 

some parts of a shape are occulted by other objects, the feature of the remaining part 

must not change compared to the original shape. 

 

iii. Noise resistance: Features must be as robust as possible against noise, this means 

that features must not be changed significantly by noise levels. In order to satisfy this 
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requirement, efficient noise renewal methods must be incorporated as a preliminary 

stop in pattern processing. 

 

iv. Completeness and Compactness: The descriptors should be as complete as 

possible in representing the content of the information items. Also the size of a 

descriptor vector must be compact while the computation of the similarity or the 

distance between descriptors should be simple so as to reduce the execution time.  

 

2.2. Invariant Moments in Pattern recognition Techniques 

A. Kadir et al [14] have proposed an approach to identify plants using leaf shapes. A 

combination of geometric features such as moment invariants were used as characteristic 

features. In this technique, a comparative experiment of four methods to identify plants using 

leaf shape features was accomplished. In their work, Zernike and Polar Fourier transforms 

were employed for the first time in leaf identification. 

 

The moment invariants method has been widely used and has been developed to describe 

shape irrespective of position, orientation and scale.  

 

L. Keyes and A.C. Winstanley [15] have presented feature coding and recognition of 

topographic data. The topographic data was derived from air survey or raster scanning large-

scale paper maps, requiring classification of objects such as buildings, roads, rivers, fields 

and railways. The applicability of the above method to topographic shapes in the paper is 

described and its usefulness evaluated. The method derives descriptors consisting of a small 

number of real values from the object’s polygonal boundary. Two large corpora representing 

data sets from ordnance survey maps were used. The effectiveness of the description 

technique was evaluated by using one corpus as a training-set to derive distributions for the 

values for supervised learning. This was then used to re-classify the objects in both data sets 

using the descriptor to evaluate its effectiveness. 

  

J. Flusser has presented a survey of object recognition and classification methods based on 

image moments [16]. Various types of moments (geometric moments, complex moments) 

and moment-based invariants with respect to various image degradations and distortions 

(rotation, scaling, affine transform, image blurring, etc.) which can be used as shape 

descriptors for classification are reviewed. The paper also presents a general theory on the 

construction of moment invariants and show also a few of them in explicit forms. Efficient 
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numerical algorithms that can be used for moment computation are reviewed and 

demonstrated practically. 

 

L. Kotoulas and I. Andreadis [17], present an overview of the most commonly used image 

moments, namely geometric, complex, Zernike, Tchebyshev and Hahn. A hardware 

architecture capable of fast calculation of geometric, Zernike and Tchebyshev moments is 

also presented. 

 

Jorge Leon-Garcia et al [18] propose an automatic fingerprint recognition system based in 

fingerprint features and invariant moments. In this work the enhanced image is processed 

using two algorithms, the first one is Fast Fourier Transform (FFT) and the second one is a 

bank of Gabor filters. After the enhancement process, an algorithm to extract the minutiae 

information is applied obtaining distance, angle and coordinates. The invariant moments are 

used to discriminate between those fingerprints that are confused. 

 

A. Halet et al [19] propose a classification of images affected by different levels of noise. This 

classification is carried out for images of different texture, such as human faces, aircraft 

images, and binary images. Generic moment invariants are introduced that increase the 

identification chances without affecting invariance properties. 

 

G. Dimitoglou et al [20] propose a technique of facial expression recognition with the help of 

several properties associated with the face itself. As facial expression changes, the 

curvatures on the face and properties of the objects such as eyebrows, nose, lips and mouth 

area also changes. Hu moment invariants have been used to compute these changes and 

results are recorded as feature vectors. An artificial neural network was used as a 

classification tool. The generalized feedforward neural network recognizes seven universal 

expressions i.e. anger, disgust, fear, happiness, sadness, and excitement as well as 

gestures. The neural network was trained and tested by using the scaled conjugate gradient 

back propagation algorithm.  

 

2.3. Bayesian Techniques in Pattern recognition  

M. Husnain and S. Naweed [21] use a Bayesian technique to identify each of the large 

number of black-and-white rectangular pixel displays as one of the 26 capital letters in the 

English alphabet. The character images were based on 20 different fonts and each letter 

within 20 fonts was randomly distorted to produce a file of 20,000 unique instances. The 

features of the dataset and the errors committed by Holland-style adaptive classifiers were 
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analyzed in an attempt to use Bayesian decision theory in-order to reduce the error rate. At 

the end, principal component analysis is applied for dimensionality reduction. 

 

K. Jayech et al [22] propose a new approach based on enhanced naive Bayes theorem for 

image classification. For each block of images, a vector of descriptors is computed. Then, a 

classification of the vectors of descriptors to build a vector of labels for each image is carried 

out. Finally, three variants of Bayesian networks are proposed. The results showed a marked 

improvement over the normal networks. 

 

2.4. Vector Quantization Techniques 

A. Giusto [23] gives an introduction to the class of algorithms proposed by Kohonen (2001) 

[24] known as Learning Vector Quantization (LVQ) whose purpose is to classify data into a 

discrete and finite set of classes. A VQ classifier is based on the definition of certain key 

points referred to as codebook vectors in the data space. Once these codebooks are singled 

out, the new data is classified to belong to the same class of the closest codebook vector in 

the Euclidean metric. This highlights the key difference between a Bayesian and a VQ 

classifier; while the Bayesian strategy seeks to approximate the discriminant functions over 

the whole space used to represent the data, the VQ classifier focuses on a small region of 

this space, where most of the action takes place.  

S. Thepade et al [25] propose to reduce response time, computation complexity and search 

space while classifying an image using vector quantization. In this research paper, a novel 

technique based on vector quantization for fingerprint classification using Linde, Buzo, and 

Gray (LBG) also called Generalized Lloyd Algorithm (GLA) is proposed. The classification is 

done on fingerprint images using LBG codebooks of sizes 4. The proposed technique takes 

lesser computations as compared to usual fingerprint classification techniques.  

 

A. Witoelar et al [26] propose Learning Vector Quantization (LVQ) a popular multi-class 

classification algorithm. Prototypes in an LVQ system represent the typical features of 

classes in the data. Multiple prototypes are employed for a class to improve the 

representation of variations within the class and the generalization ability. In this paper, the 

dynamics of LVQ in an exact mathematical way, aiming at understanding the influence of the 

number of prototypes and their assignment to classes is investigated. Using a system of three 

prototypes the different behaviours of LVQ systems of multiple prototype and single prototype 

class representation is demonstrated. 
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2.5. Pattern Recognition Techniques in medicine 

I. Sommer et al [27] propose an approach for identifying similarities of protein–protein binding 

sites. The geometric shape of a binding site is described by computing a feature vector based 

on moment invariants. In order to search for similarities, feature vectors of binding sites are 

compared. Similar feature vectors indicate binding sites with similar shapes.  

 

A classification of lung nodules in low dose CT scans using geometric feature description has 

been presented by A. Farag et al [28]. In the method, the paper examines the effectiveness 

of geometric feature descriptors, common in computer vision, for false positive reduction and 

for classification of lung lumps in low dose CT scans. A data driven lung nodule modeling 

approach creates templates for common lump types, using active appearance models, which 

are then used to detect candidate lumps based on optimum similarity measured by 

normalized cross-correlation. Geometric feature descriptors are applied to the output of the 

detection step, in order to extract features from the nodule candidates, for further 

enhancement of output and possible reduction of false positives. Thus quantitative measures 

of enhancements of the performance of CAD models based on low dosage CT are now 

possible and are entirely model-based. 

 

P. D. Avani et al [29] propose an algorithm to identify the type of malaria causing parasite 

through their colour and shape. Malaria is a serious global health problem, and rapid, 

accurate diagnosis is required to control the disease. An image processing algorithm to 

automate the diagnosis of malaria in blood images is reported in this paper. In blood samples, 

if the red corpuscles of human beings are infected by malarial parasites, they will have a 

specific shape which can identify their presence. The research suggests that the shape of 

the affected red blood cells can be detected using 2D moments of the image of the infected 

cell. 

 

A medical manufacturing corporation called Welcome, working at the University of California, 

Berkeley, displayed an image on the internet showing two red blood cells taken from a patient 

with sickle cell disease. The cells were imaged by scanning electron microscopy. Two red 

blood cells, one normal and one diseased, were then processed using pattern recognition 

techniques to highlight the striking differences in their shapes and thus enabling the detection 

of anaemia [30]. 

 

2.6. Aircraft pattern Recognition 
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J.W.  Hsieh et al [31] propose image processing techniques to perform image preprocessing 

tasks, such as image quality enhancement, noise removal, automatic binarization, and 

rotation, scaling, translation adjustment. Then, distinguishable shape features derived from 

the characteristics exhibited by aircrafts are extracted on which the recognition is based. Last, 

multi-level recognition scheme is adopted to recognize the types of aircrafts by incorporating 

suitable weight into each recognition level. Experimental results reveal the feasibility and 

validity of the proposed approach in recognizing aircrafts in satellite images. 

 

W.  Li et al [32] propose an airplane detection approach based on visual saliency computation 

and symmetry detection. The advantages are two fold. First, saliency and symmetry detection 

perform in a stable way in obtaining target location and orientation information. Second, 

independent of target type, pose and size, saliency map and symmetry detection are 

computed only once. This saves a large amount of computational time but does not miss any 

targets. Experiments show that the method provides a promising way to detect airplanes in 

complex airport scenes.  

 

E. Polat et al [33] propose detection and recognition of stationary aircrafts in airports. In the 

study, a learning-based system that detects stationary aircrafts in satellite images obtained 

from Google Earth is developed. The features that emphasize the geometric structure of an 

aircraft are determined using a 2D Gabor filter. The aircraft detection is performed using 

Support Vector Machines (SVM) classification method. The SVM is a supervised learning 

method that analyzes data and recognizes patterns for classification. It takes a set of input 

data (a vector consists of Gabor filter output of images) and predicts the one of two classes 

(aircraft or non-aircraft). The performance of the system is demonstrated using satellite 

images collected from airports in Europe and United States.  

 

K. Roopa et al [34] describe an aircraft recognition system implemented using moment 

invariant technique and discrete cosine transform. They provide a performance comparison 

between the two methods by using the static images from a database of images of aircraft 

and the captured image of the test aircraft.  

 

F.W. Smith et al [35] undertook to study the feasibility of automatic interpretation of ship 

photographs using the spatial moments of the image as features to characterize the image. 

The photo interpretation consisted of estimating the location, orientation, dimensions, and 

heading of the ship. The study used simulated ship images in which the outline of the ship 

was transformed into a binary image to give a low-resolution high-contrast image of the ship 



25 
 

such as might be obtained using high resolution radar. The estimates were made using 

polynomials of invariant moments formed by transformations of the original spatial moments; 

density-invariant moments, central moments, and rotation-invariant moments. The 

transformations to invariant moments were chosen using linear regression. The best 

moments for the polynomials were chosen using linear regression.  

 

2.7. Proposed Method 

2.7.1. Stages in the proposed pattern recognition method 

Figure 2.1 is an illustration of a four stage process that shows the steps in image recognition. 

The presentation is grossly oversimplified. The data may undergo several separate 

transformation stages before a final outcome is reached. These transformations operate on 

the data in a way that usually reduces its dimension (reduces the number of features), 

removing redundant or irrelevant information, and transforms it to a form more appropriate 

for subsequent classification. 

 

 

 

 

 

 

Pattern                                                                                                                             

 

                                          Recognition                         

 

Fig 2.1 Steps in Image Recognition. 

 

2.7.2.  Preprocessing 

One of the main tasks in preprocessing an image is the removal or suppression of noise. 

There are two basic approaches to image denoising, spatial filtering methods and transform 

domain filtering methods. A traditional way to remove noise from image data is to employ 

spatial filters. Spatial filters can be further classified into non-linear and linear filters. The 

transform domain filtering methods can be subdivided according to the choice of the base 

functions. The basis functions can be further classified as data adaptive and non-adaptive. 

One of the popular transform domain filtering methods is the use of wavelets. In such 
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operations, the filtering process can be can be subdivided into linear and nonlinear. Linear 

filters such as the Wiener filter in the wavelet domain yield optimal results when the signal 

corruption can be modeled as a Gaussian process and the accuracy criterion is the Mean 

Square Error (MSE). Depending on the noise types, the noisy image can be generally 

modeled as one of the two models: additive model or multiplicative model. Speckle noise is 

a form of multiplicative noise which is more difficult to suppress than additive noise, it 

obscures small and low-intensity features. Many images are acquired under less than ideal 

conditions and consequently are contaminated by significant amounts of noise. Due to noise 

in the images, their segmentation, classification and detection becomes difficult. It is 

important for noise suppression algorithms to reduce the noise while preserving the important 

features in the images. Figure 2.2 illustrates a typical unprocessed satellite image. It can be 

noted that the object in the figure is barely recognizable due to the blurring effects of noise. 

 

Fig 2.2 Unprocessed satellite image [33] 

 

One major characteristic of images is their non-stationary nature and have many local 

features which are not very well described by using global features. Therefore, performance 

of linear algorithms used for image processing is limited. Adaptive nonlinear techniques are 

required for better performance. Linear techniques can cause blurring of edges whereas 

nonlinear techniques are edge preserving but still most of these techniques suffer from 

drawbacks like  sensitivity to the size and shape of the filter window, in addition most of these 

techniques do not enhance the edges, and may not suppress noise in the neighbourhood of  

the edges. The hard thresholds used in these techniques may result in artifacts in the 

smoothed output images. In our proposed method, the speckle noise is reduced by using the 

Lee filter.   The filter and other related adaptive filters essentially smooth homogeneous 

regions by averaging and avoid smoothing where edges may exist. The presence or absence 

of edges is based upon local coefficient of variation – higher values in the regional coefficient 

of variation indicate the location of edges. [36] 
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2.7.3.  Denoising 

The Lee filter is an adaptive filter which changes its characteristics according to the local 

statistics in the neighbourhood of the current pixel. It is able to smooth away noise in flat 

regions, but leaves the fine details (such as lines and textures) unchanged. The Lee filter is 

designed to eliminate speckle noise while preserving edges and point features in satellite 

images. Based on a linear speckle noise model and the Minimum Mean Square Error (MMSE) 

design approach, the filter produces the enhanced data. It uses a small window (3×3, 5×5, 

and 7×7) in which the local mean and variances are estimated. The distinct characteristic of 

the filter is that in the areas of low signal activity (flat regions) the estimated pixel approaches 

the local mean, whereas in the areas of high signal activity (edge areas) the estimated pixel 

favours the corrupted image pixel, thus retaining the edge information [36]. It is generally 

claimed that human vision is more sensitive to noise in a flat area than in an edge area [36]. 

The major drawback of the filter is that it leaves noise in the vicinity of edges and lines. 

However, it is still desirable to reduce noise in the edge area without sacrificing the edge 

sharpness. 

The Lee filter modifies the image based on statistics extracted from the local environment of 

each pixel. It varies the contrast stretch for each pixel depending upon the Intensity values in 

the surrounding moving kernel. Obviously, a filter that adapts the stretch to the region of 

interest (the area within the moving kernel) would produce a better enhancement. 

The basic equations of Lee filter as proposed by Jun-Wei Hsieh et al [31] are given in equation 

2.1. 

 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒𝑜𝑢𝑡 = [𝑀𝑒𝑎𝑛] + 𝐾[𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦𝑖𝑛 − 𝑀𝑒𝑎𝑛] 

          2.1 

                        Where Mean= average of pixels in a moving window 

                        Intensity value is the intensity of a particular pixel. 

 

𝐾 =
𝑉𝑎𝑟(𝑥)

[𝑀𝑒𝑎𝑛]2 𝜎2 + 𝑉𝑎𝑟(𝑥)  
 

 
                   2.2 

And 

𝑉𝑎𝑟(𝑥) = (
[𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑤𝑖𝑡ℎ𝑖𝑛 𝑤𝑖𝑛𝑑𝑜𝑤] + 𝑀𝑒𝑎𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑤𝑖𝑛𝑑𝑜𝑤2

𝑆𝑖𝑔𝑚𝑎2 + 1
) − [𝑀𝑒𝑎𝑛 𝑤𝑖𝑡ℎ𝑖𝑛 𝑤𝑖𝑛𝑑𝑜𝑤2] 

2.3 

Where Mean and σ are equal to the local mean and variance respectively of all pixels within 

the user-selected moving kernel. 
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2.7.3. Features Extraction  

A major problem associated with feature extraction is dimensionality. The number of features 

at the disposal of the designer of a classification system is usually very large. The number of 

features should be reduced to a sufficient minimum. This is to avoid computational 

complexity. Another major reason is the ratio of the number of training patterns N to the 

number of free classifier parameters, which lead to generalization properties of the resulting 

classifier. The basic questions arising in a classification task can be outlined as follows; 

i. How are the features generated? It is problem dependent, and it concerns the 

feature generation stage of the design of a classification system that performs 

a given pattern recognition task. 

ii.  What is the best number N features to use? This is also a very important task 

and it concerns the feature selection stage of the classification system. In 

practice, a larger than necessary number of feature candidates is generated, 

and then the “best” of them are adopted. 

Invariant moments will be used to form feature vectors of dimension 7, this figure arises from 

the Hu’s formulas for invariant moments,  as proposed in techniques used by Mingqiang et 

al [37], M. Hu [1], Dudani et al [10], Keyes L.et al [15], A. Farag et al [28], A. Kadir et al [14], 

W. Li et al [32], J. Kim [38], A. Halet et al [19], and K. Roopa, [34] 

 

2.7.4. Classification 

i. Having adopted the appropriate features, how does one design the classifier for the 

specific task? The line should be drawn optimally, with respect to an optimality 

criterion.  In general, the surfaces dividing the space in the various class regions are 

nonlinear. What type of nonlinearity must one adopt, and what type of optimizing 

criterion must be used in order to locate a surface in the right place in the N-

dimensional feature space? These questions concern the classifier design stage. 

ii. Finally, once the classifier has been designed, how can one assess the performance 

of the designed classifier? That is, what is the classification error rate? This is the task 

of the system evaluation stage. 

 

The Bayesian decision approach will be employed. It has several theoretical advantages 

including the property that the rate of miss-classification is minimized. For image processing 

simulation MATLAB tools will be utilized. These tools are selected because they are easily 

available, are not expensive and are easy to use. Boundaries of geometric objects will be 
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created with different rotation, translation, scale and shape and then classified using a 

database of images with known object types. 

 

 

2.7.4.1  Unsupervised Classification                       In unsupervised 

learning or clustering the system forms clusters of the input patterns. Given a particular set 

of patterns or cost function, different clustering algorithms lead to different clusters.  

The k-means clustering is a partitioning method. It partitions data into k mutually exclusive 

clusters, and returns the index of the cluster to which it has assigned each observation. Unlike 

hierarchical clustering, k-means clustering operates on actual observations (rather than the 

larger set of dissimilarity measures), and creates a single level of clusters. The distinctions 

indicate that k-means clustering is often more suitable than hierarchical clustering for large 

amounts of data. The k-means algorithm treats each observation in the data as an object 

having a location in space. It finds a partition in which objects within each cluster are as close 

to each other as possible, and as far from objects in other clusters as possible. One can 

choose from five different distance measures, depending on the kind of data that is to be 

clustered. Each cluster in the partition is defined by its member objects and by its centroid. 

The centroid for each cluster is the point to which the sum of distances from all objects in that 

cluster is minimized. The k-means algorithm computes cluster centroids differently for each 

distance measure, to minimize the sum with respect to the measure that one specifies. It 

uses an iterative algorithm that minimizes the sum of distances from each object to its cluster 

centroid, over all clusters. This algorithm moves objects between clusters until the sum 

cannot be decreased further. The result is a set of clusters that are as compact and well-

separated as possible. The details of the minimization using several optional input 

parameters to k-means, including ones for the initial values of the cluster centroids, and for 

the maximum number of iterations can be controlled. 

 

2.7.4.2. Supervised Classification              In supervised 

pattern recognition a set of training data are available, and the classifier is designed by 

exploiting this a priori known information. This is also known as machine learning. 

Bayes classification requires only a small amount of training data to estimate the parameters 

(means and variances of the variables necessary for classification). Variables are assumed 

to be independent, only the variances of the variables for each class need to be determined 

and not the entire covariance matrix. All model parameters are approximated with relative 

frequencies from the training set. These are maximum likelihood estimates of the 

probabilities. The class prior is calculated by assuming equiprobable classes [21], [22]. 
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I.e. prior=1/number of classes.             2.4 

Feature vectors will be treated as random vectors. This is natural, as the measurements 

resulting from different patterns exhibit a random variation. This is due partly to the 

measurement noise of the measuring devices and partly to the distinct characteristics of each 

pattern. A typical assumption is that the values associated with each class are distributed 

according to the Gaussian distribution. When the probability density functions are Gaussian, 

the n-dimensional Gaussian probability density function has the form given in equation 2.5. 

𝑝(𝑥 𝜔𝑗⁄ ) =
1

(2𝜋)𝑛 2⁄ |∑𝑗|
1

2⁄
𝑒−

1
2

[(𝑥−𝑚𝑗)
𝑇

∑𝑗
−1(𝑥−𝑚𝑗)]

 

                                

        2.5 

Where Cj and mj are the covariance matrix and mean vector of the pattern population of class 

𝜔𝑗 and |∑𝑗| is the determinant of Cj 

From Bayes Theorem; 

posterior probability =  
(prior probability)(likelihood probability)

evidence probability
 

                                                              

Posterior (𝜔𝑗/ x) = P (𝜔𝑗) p(x/𝜔𝑗)/p(x).                                    

        2.6 

The evidence may be ignored since it is a positive constant. In practice we are only interested 

in the numerator of that fraction, since the denominator does not depend on classes and the 

values of the features are given, so that the denominator is effectively constant. The 

numerator is equivalent to the joint probability model. 

We wish to determine which posterior is greatest. For the classification as Fighter aircraft, the 

first class, the posterior is given by equation 2.7, 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝐹𝑖𝑔ℎ𝑡𝑒𝑟 )

=
P(Fighter)p(Ф1/Fighter)p(Ф2/Fighter) … … . p(Ф7/Fighter)Prior(Fighter)

Evidence
 

        2.7 
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For the classification of F35A aircraft. 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟(𝐵𝑜𝑚𝑏𝑒𝑟)

=
P(Bomber)p(Ф1/Bomber)p(Ф2/Bomber) … … . p(Ф7/Bomber)Prior(Bomber)

Evidence
 

                 2.8 

For the classification of the B2 aircraft. In practice we are only interested in the numerator 

of the fractions, since the denominator does not depend on the classes but on the given 

data and the values of the features Ф1 are given, so that the denominator is effectively 

positive constant. Where Фi are the invariant moments features. 
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CHAPTER 3 

IMAGE PATTERN FEATURES 

In this chapter a review of the image pattern feature extraction techniques is discussed. 

Several qualitative and quantitative techniques have been developed for characterizing the 

shape of objects within an image. These techniques are useful for classifying objects in a 

pattern recognition system and for symbolically describing objects in an image understanding 

system. Shape parameters, one dimensional image functions, chain chord, shock graphs, 

moments and shape transforms are discussed in relation to feature extraction. 

 

3.1.  Shape Parameters        Shape image 

recognition involves a measure of similarity or dissimilarity of feature vectors representing 

those shapes. Geometric features can be used to discriminate shapes that exhibit large 

dissimilarities. Therefore they are used as filters or combined with other shape descriptors. 

They do not have enough discrimination power as shape descriptors. Shapes may be 

described with many parameters such as the centroid, axis of least inertia, digital bending 

energy, eccentricity, circularity ratio, elliptic variance, rectangularity, convexity, solidity, Euler 

number, profiles, holes area ratio. [2] [37] [38] .The following are a few examples of shape 

description. 

 

3.1.1.  Centroid Position 

The spatial moment concept can be extended to discrete images by forming spatial 

summations over a discrete image function f(j, k). The (m, n)th spatial geometric moment is 

defined as; 

𝑀𝑈(𝑚, 𝑛) = ∑ ∑ (𝑥𝑗)
𝑚

(𝑦𝑘)𝑛𝑓(𝑗, 𝑘)𝐾
𝑘=1

𝐽
𝑗=1                             3.1 

  

The (m, n)th scaled spatial geometric moment is then defined as; 

 

𝑀(𝑚, 𝑛) =
1

𝐽𝑚𝐾𝑛
∑ ∑ (𝑥𝑗)

𝑚
(𝑦𝑘)𝑛𝑓(𝑗, 𝑘)𝐾

𝑘=1
𝐽
𝑗=1                            3.2 

𝑀(𝑚, 𝑛) =
𝑀𝑈(𝑚,𝑛)

𝐽𝑚𝑘𝑛
                                      3.3 

The ratios 

𝑥𝑐 =
𝑀(1,0)

𝑀(0,0)
                                                     3.4  

𝑦𝑐 =
𝑀(1,0)

𝑀(0,0)
                                              3.5   
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Of first- to zero-order spatial moments define the image centroid. The centroid, is the balance 

point of the image function such that the mass of  

f(j, k) left and right of xj and above and below 𝑦𝑘 is equal [10]. 

 

3.1.2.  Profiles 

If shape image is projected on the Cartesian coordinates system one dimensional functions 

are obtained. These projections are known as image profiles [37] [39] [40]. 

𝑃𝑥 = ∑ 𝑓(𝑥, 𝑦)
𝑦𝑚𝑎𝑥
𝑦=𝑥𝑚𝑖𝑛                                                        3.6 

 

𝑃𝑦(𝑦) = ∑ 𝑓(𝑥, 𝑦)𝑥𝑚𝑎𝑥
𝑥=𝑖𝑚𝑖𝑛                          3.7  

Where f (x, y) represents the shape region. 

  

3.2.  Shape Signatures 

Shape signature is a 1-D functional representation of a boundary. It is generated in various 

ways. Complex coordinates, centroid distance function, tangent angle, curvature function, 

area function, triangle-area representation and chord length function are some of the often 

used shape signatures. The shape signature can be used as a shape descriptor in 

preprocessing in other feature extraction algorithms, for example, Fourier descriptors, 

wavelet description [2] [39]. The following are examples of shape signatures. 

 

 

 

3.2.1.  Complex coordinates 

The complex numbers generated from an image boundary points form a complex 

coordinates function. 

𝑧(𝑛) = [𝑥(𝑛) − 𝑐𝑥] + 𝑗[𝑦(𝑛) − 𝑐𝑦]                     3.8 

where (cx, cy) is the centroid of the shape [1]. 

 

3.2.2.  Centroid distance function 

f(t) = [x(t) –𝑥𝑐] + j[y(t) -𝑦𝑐]                      3.9 

where (xc, yc) is the centroid of the shape, which is the average of the boundary coordinates. 

𝑥𝑐 =
1

𝑁
∑ 𝑥(𝑡)𝑁−1

𝑡=0       3.10 

 

𝑦𝑐 =
1

𝑁
∑ 𝑦(𝑡)𝑁−1

𝑡=0       3.11 
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3.2.3.  Tangent angle 

A contour is described in terms of the arc length between a given point and the origin, within 

the image. As the length t at a given point, the number of consecutive pixels is defined 

between the given point and the point considered as the origin. The contour description can 

be achieved via a one-parameter real-valued function, the arc tangent angle θ(t) or the 

corresponding curvature k(t), defined as; 

𝜃(𝑡) = 𝑡𝑎𝑛−1 [
𝑑𝑦 (𝑡)

𝑑𝑥 (𝑡)
]                  3.12 

 

𝑘(𝑡) =  
𝑑𝜃 (𝑡)

𝑑𝑡
                       3.13 

 

where x(t), y(t) are the coordinates of the respective point as a function of length t from the 

origin and;  

𝑑𝑡 = √𝑑𝑦2 + 𝑑𝑥2
                           3.14 

 

3.2.4.  Perimeter and Area  

Perimeter and area measurements are meaningful only for binary images. Consider a 

discrete binary image containing one or more objects, where  

f(j, k)=1 if a pixel is part of the object and f(j, k)=0  for all non-object or background pixels. 

The perimeter of each object is the count of the number of pixel sides traversed around the 

boundary of the object starting at an arbitrary initial boundary pixel and returning to the initial 

pixel. The area of each object within the image is simply the count of the number of pixels in 

the object for which f(j, k)=1. The enclosed area of an object is defined to be the total number 

of pixels for which f(j, k)=0  or 1 within the outer perimeter boundary 𝑃𝐸  of the object. The 

enclosed area can be computed during a boundary-following process while the perimeter is 

being computed. Assume that the initial pixel in the boundary-following process is the first 

black pixel encountered in a raster scan of an image. Then, proceeding in a clockwise 

direction around the boundary, a crack code C(p), is generated for each side p of the object 

perimeter such that C(p) = 0, 1, 2, 3 for directional angles 0, 90, 180, 270°, respectively. The 

enclosed area is 

𝐴𝐸 = ∑ 𝑗(𝑝 − 1)∆𝑘(𝑝)𝑃𝐸
𝑝=1      3.15 

where 𝑃𝐸  is the perimeter of the enclosed object and  

𝑗(𝑝) = ∑ ∆𝑗𝑝
𝑖=1 (𝑖)               3.16 

with j(0) = 0. The delta terms are defined by 
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∆𝑗(𝑝) = {
1
0

−1
            

𝐼𝑓 𝐶(𝑝) = 1

𝐼𝑓 𝐶(𝑝) = 0 𝑜𝑟 2

𝐼𝑓 𝐶(𝑝) = 3

         3.17 

 

∆𝑘𝑝 = {
1
0

−1
           

𝐼𝑓 𝐶(𝑝) = 0

𝐼𝑓 𝐶(𝑝) = 1 𝑜𝑟 3

𝐼𝑓 𝐶(𝑝) = 2

          3.18 

 

 

 

3.2.5.  Chord length function 

A widely used shape description is contour function. It reduces a 2-D function into a 1-D 

function which is easier to handle than the original shape. There are two types of chord length 

functions, distance verses angle and curvature functions. Distance verses angle functions 

uses angle from a given direction as its variable. The curvature function uses the arc length 

from a starting point as a variable. Curvature function exists for any contour [37]. 

 

3.3. Chain code                                                              The chain code is a 

technique of representing a binary object by encoding only the boundary. The chain code is composed 

of a sequence of numbers between 0 and 7. Each number represents the transition between two 

consecutive boundary pixels, 0 being a step to the right, 1 a step diagonally right/up, 2 a step up, etc. 

The following figure contains the directions associated to each code: 

 

Fig 3.1 Chain code directions [37]. 

The chain code thus has as many elements as there are boundary pixels. It can be used to 

encode the shape of the object, but not its location. Therefore there is need to remember the 

coordinates of the first pixel in the chain to solve that [37]. 
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3.3.1.  Vertex chain code (VCC) 

An element of the VCC indicates the number of cell vertices, which are in touch with the 

bounding contour of the shape in that element’s position. Only three elements “1”, “2” and “3” 

can be used to represent the bounding contour of a shape composed of pixels in the 

rectangular grid. Figure 3.2 shows the elements of the VCC to represent a shape. An element 

of the VCC indicates the number of cell vertices, which in contact with the bounding contour 

of the shape in that element position. On figure 3.2, starting from the dot the code indicated 

is 11212113. 

 

  

Fig. 3.2 Vertex chain code [37].  

 

3.3.2.  Axis of least inertia 

The axis of least inertia of a shape is defined as the line for which the integral of the square 

of the distances to points on the shape is a minimum. It serves as a unique reference line to 

preserve the orientation of the shape. The preservation of shape orientation of a shape is 

essential for extracting features, which are invariant to linear transformations. The slope 

angle ɵ of the axis of least inertia of a shape curve is estimated. Once the slope angle     ɵ 

is calculated, each point on the shape curve is projected on to the axis of least inertia. Given 

a point (𝑥𝑖 , 𝑦𝑖) on a shape curve, the co-ordinates of its projected point (Ax , Ay ) on the axis 

of least inertia (Fig. 3.3) is located. 

The axis minimizes the sum of the squared distance from its position to the boundary of the 

shape. It is defined by equation 3.19. 

𝐼(𝛼, 𝑆) = ∫ ∫ 𝑟2(𝑥, 𝑦, 𝛼)
𝑆

 𝑑𝑥 𝑑𝑦                                 3.19 

r (x, y, 𝛼) is the perpendicular distance from the point (x, y) to the line given by x sin 𝛼 - y 

cos 𝛼 =0. The coordinate (0, 0) is the location of the centroid. 
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Fig 3.3 Axis of least inertia [37] 

 

 

3.4. Moments 

Moments of images provide efficient local descriptors and have been used extensively in 

image analysis applications. Their main advantage is their ability to provide invariant 

measures of shape. 

 

3.4.1.  Boundary moments 

The boundary moments can be used to reduce the dimension of boundary representation. If 

it is a 1-D shape representation z(i), then the rth moment mr and central moment μr can be 

estimated as indicated in equation 3.20. 

𝑚𝑟 =
1

𝑁
∑|𝑧(𝑖)|𝑟

𝑛

𝑖=0

 

                     and      

𝜇𝑟 =
1

𝑁
∑|𝑧(𝑖) − 𝑚1|𝑟

𝑁

𝑖=1

 

          3.20 

Where N is the number of boundary points. The normalized moments are invariant to shape 

translation, rotation and scaling. Less noise-sensitive shape descriptors can be obtained from 

normalizing the higher central moment function as given in equation 3.21 [41] 

𝐹1 =
(𝜇2)

1
2⁄

𝑚1
        𝐹2 =

𝜇3

𝜇2
3

2⁄
       and      𝐹3 =

𝜇4

𝜇2
2
        3.21 

Axis of least inertia 

Shape Centroid 

Feature Point Extreme point E2 

dt2 

dt1 

 

Extreme point E1 
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The other approaches of boundary moments treats the 1-D shape feature function z(i) as a 

random variable v and creates a K bins histogram p(vi) from z(i). Then, the rth central moment 

is obtained [27] as given in equation 3.22 

𝜇𝑟 = ∑(𝑣𝑖 − 𝑚)𝑟𝑝(𝑣𝑖)

𝐾

𝑖=1

 

                    and  

𝑚 = ∑ 𝑣𝑖𝑝(𝑣𝑖)

𝐾

𝑖=1

 

                         3.22 

The advantage of boundary moment descriptors is that they are easy to implement. However, 

it is difficult to associate higher order moments with some physical interpretation. 

 

 

3.4.2.  Region moments 

Among the region-based descriptors, moments are utilized extensively. These include 

invariant moments, Zernike moments, Radial Tchebyshev moments, Legendre moments, 

Polynomial moments, Poisson Fourier-Mellin etc. [42] 

The general form of a moment function mpq of order (p + q) of a shape region can be given 

as: 

𝑚𝑝𝑞 = ∑ ∑ 𝜓𝑝𝑞(𝑥, 𝑦)𝑓(𝑥, 𝑦)

𝑦𝑥

 

                       

p,q = 0,1,2,3……..            3.23 

where Ψpq as in the equation 3.23 is known as the moment weighting kernel or the basis set; 

The function  f(x, y) is the shape region. 

 

3.4.2.1.  Invariant moments  

Invariant moments (IM) are also called geometric moment invariants and have a basis Ψpq = 

xpyq. They are not orthogonal. The geometric moment function mpq of order (p + q) [43] is 

given as: 

𝑚𝑝𝑞 = ∑ ∑ 𝑥𝑝𝑦𝑞𝑓(𝑥, 𝑦)

𝑦𝑥

 

                         p,q = 0,1,2…………                 3.24 

The geometric central moments, which are invariant to translation, are defined as [42] 

𝜇𝑝𝑞 = ∑ ∑(𝑥 − �̅�)𝑝(𝑦 − �̅�)𝑞

𝑦𝑥

𝑓(𝑥, 𝑦) 
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                                p,q= 0,1,2………..              3.25 

Where �̅� =
𝑚10

𝑚00
         and                 �̅� =  

𝑚01

𝑚00
                     3.26 

A set of 7 invariant moments have been derived and shown to offer complete invariance as 

given in equation 3.27 [1] [2] [3] [4] [5]. 

∅𝟏 = 𝜂20 + 𝜂02 

∅𝟐 = (𝜂20 − 𝜂02)2 + 4𝜂11
2 

∅𝟑 = (𝜂30 − 3𝜂12)2 + (3𝜂21 − 𝜂03)2 

∅𝟒 = (𝜂30 + 𝜂12)2 + (𝜂21 + 𝜂03)2 

∅𝟓 = (𝜂30 − 3𝜂12)(𝜂30 + 𝜂12)[(𝜂30 + 𝜂12)2 − 3(𝜂21 + 𝜂03)2]

+ (3𝜂21 − 𝜂03)(𝜂21 + 𝜂03). [3(𝜂30 + 𝜂12)2 − (𝜂21 + 𝜂03)2] 

∅𝟔 = (𝜂20 − 𝜂02)[(𝜂30 + 𝜂12)2 − (𝜂21 + 𝜂03)2] + 4𝜂11
2(𝜂30 + 𝜂12)(𝜂21 + 𝜂03) 

∅𝟕 = (3𝜂21 − 𝜂03)(𝜂30 + 𝜂12)[(𝜂30 + 𝜂12)2 − 3(𝜂21 + 𝜂03)2]

+ (3𝜂12 − 𝜂03)(𝜂21 + 𝜂03). [3(𝜂30 + 𝜂12)2 − (𝜂21 + 𝜂03)2] 

 

Where 𝜂𝑝𝑞 =
𝜇𝑝𝑞

𝜇00
𝛾  and 𝛾 = 1 +

(𝑝+𝑞)

2
 for p+q=2,3………..        3.27 

 

Invariant moments are computationally simple and are also invariant to rotation, scaling and 

translation. However, they have several drawbacks: 

(i) Information redundancy due to non orthogonality of the basis. 

(ii) Higher-order moments are very sensitive to noise. 

(iii) Large variation in the dynamic range of values: since the basis involves powers of p 

and q, the moments computed have large variation in the dynamic range of values for 

different orders. This may cause numerical instability when the image size is large. 

 

3.4.2.2.  Algebraic moment invariants 

The algebraic moment invariants are computed from the first m central moments and are 

given as the eigenvalues of predefined matrices, M[j,k], whose elements are scaled factors of 

the central moments. They are not orthogonal. The algebraic moment invariants can be 

constructed up to arbitrary order and are invariant to affine transformations. However, 

algebraic moment invariants performed either very well or very poorly on the objects with 

different configuration of outlines. [2] 

 

3.4.2.3.  Zernike moments  
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Zernike moments are a class of orthogonal moments and have been shown to be effective in 

terms of image representation. Zernike moments, a type of moment function, are the mapping 

of an image onto a set of complex Zernike polynomials. As these Zernike polynomials are 

orthogonal to each other, Zernike moments can represent the properties of an image with no 

redundancy or overlap of information between the moments. The Zernike complex moments 

are as given in equation 3.30 [8] using equation 3.28 and 3.29. 

𝑉𝑛𝑚(𝑥, 𝑦) = 𝑉𝑛𝑚(𝑟𝑐𝑜𝑠𝜃, 𝑠𝑖𝑛𝜃) = 𝑅𝑛𝑚(𝑟)𝑒𝑥𝑝(𝑗𝑚𝜃)        3.28 

where Rnm(r) is the orthogonal radial polynomial.  

𝑅𝑛𝑚(𝑟) = ∑ (−1)𝑠

(𝑛−|𝑚|)
2

𝑠=0

(𝑛 − 𝑠)!

𝑠! (
𝑛 − 2𝑠 + |𝑚|

2 ) ! (
𝑛 − 2𝑠 − |𝑚|

2 ) !
𝑟𝑛−2𝑠 

                3.29 

n = 0, 1, 2, … 0 ≤ |m| ≤ n; and n - |m| is even. The Zernike polynomials are a complete set of 

complex valued functions orthogonal over the unit disk, i.e x2 + y2 ≤ 1. The Zernike moment 

of order n with repetition m of shape region described by the function f(x, y) is given by 

equation 3.30 [30]. 

𝑍𝑛𝑚 =
𝑛+1

𝜋
∑ ∑ 𝑓(𝑟𝑐𝑜𝑠𝜃, 𝑟𝑠𝑖𝑛𝜃). 𝑅𝑛𝑚(𝑟). 𝑒𝑥𝑝(𝑗𝑚𝜃)  r ≤ 1        3.30 

Expressed in a polar coordinate system. 

The Zernike moments have the following advantages: 

(i) Rotation invariance: The magnitudes of Zernike moments are invariant to rotation. 

(ii) Robustness: They are robust to noise and minor variations in shape. 

(iii) Expressiveness: Since the basis is orthogonal, they have minimum information 

redundancy. 

However, the computation of Zernike moments pose several problems as do many of the 

continuous orthogonal moments.  

(i) The image coordinate space must be transformed to the unit circle domain where the 

orthogonal polynomial is defined.  

(ii) The continuous integrals must be approximated by discrete summations. This 

approximation not only leads to numerical errors in the computed moments, but also 

severely affects the analytical properties such as rotational invariance and 

orthogonality. 

(iii) The computational complexity of the radial Zernike polynomial increases as the order 

becomes large. 

 

 



41 
 

3.4.6.  Radial Tchebyshev moments  

The radial Tchebyshev moment of order p and repetition q is defined as [11]: 

𝑆𝑝𝑞 =
1

2𝜋𝜌(𝑝, 𝑚)
∑ ∑ 𝑡𝑝(𝑟). 𝑒𝑥𝑝(−𝑗𝑞𝜃). 𝑓(𝑟, 𝜃)

2𝜋

𝜃=0

𝑚−1

𝑟=0

 

         

3.31 

 

where tp(r) is the scaled orthogonal Chebyshev polynomials for an image of size N × N and 

where; 

𝑡0(𝑥) = 1 

𝑡1(𝑥) =
(2𝑥 − 𝑁 + 1)

𝑁
 

𝑡𝑝(𝑥) =
(2𝑝 − 1)𝑡1(𝑥)𝑡𝑝−1(𝑥) − (𝑝 − 1) {1 −

(𝑝 − 1)2

𝑁2 }

𝑝
𝑡𝑝−2(𝑥)   

𝑓𝑜𝑟          p>1             3.32 

ρ(p,N) is the squared-norm: 

𝜌(𝑝, 𝑁) =
𝑁 (1 −

1
𝑁2) (1 −

22

𝑁2) … (1 −
𝑝2

𝑁2)

2𝑝 + 1
 

p=0,1,…,N-1               3.33 

and m = (N/2) + 1. 

 

The mapping between (r, θ) and image coordinates (x, y) is given by: 

𝑥 =
𝑟𝑁

2(𝑚 − 1)
cos θ +

𝑁

2
 

𝑦 =
𝑟𝑁

2(𝑚 − 1)
𝑠𝑖𝑛𝜃 +

𝑁

2
 

                                                  3.34 

Radial Chebyshev moments possess rotational invariance property. 

 

3.4.7.  Legendre Moments 

Orthogonal Legendre moments are used in pattern recognition and image processing 

applications. Translation and scale Legendre moment invariants are achieved directly by 

using Legendre polynomials. The Legendre moments are continuous orthogonal moments. 

They can be used to attain a near zero value of redundancy measure in a set of moment 

functions, so that the moments correspond to independent characteristics of the image. The 

translation and scale invariant functions of Legendre moments are achieved by using a 
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combination of the corresponding invariants of geometric moments. They can also be 

accomplished by normalizing the translated and/or scaled images using complex or 

geometric moments. However, the derivation of these functions is not based on Legendre 

polynomials. This is mainly due to the fact that it is difficult to extract a common displacement 

or scale factor from Legendre polynomials. The two dimensional Legendre moments of order 

(p + q), with image intensity function f(x, y), are defined as equation 3.35: [8] 

𝐿𝑝𝑞 =
(2𝑝 + 1)(2𝑞 + 1)

4
∫ ∫ 𝑃𝑝(𝑥)𝑃𝑞(𝑦)𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦  

1

−1

1

−1

 

 

𝑤ℎ𝑒𝑟𝑒  𝑥, 𝑦 ∈ [−1,1]                          

3.35 

 

Where Legendre polynomial, Pp(x), of order p is given by equation 3.36: 

𝑃𝑝(𝑥) = ∑(−1)
𝑝−𝑘

2

𝑝

𝑘=0

1

2𝑝

(𝑝 + 𝑘)! 𝑥𝑘

(
𝑝 − 𝑘

2 ) ! (
𝑝 + 𝑘

2 ) ! 𝑘!
 

                         

        3.36 

The recurrence relation of Legendre polynomials, Pp(x), is given as follows: 

𝑃𝑝(𝑥) =
(2𝑝 − 1)𝑥𝑃𝑝−1(𝑥) − (𝑝 − 1)𝑃𝑝−2(𝑥)

𝑝
 

                                                        3.37 

Where Po(x) = 1, P1(x) = x and p>1. Since the region of definition of Legendre polynomials is 

the interior of [-1, 1], a square image of N x N pixels with intensity function f(i, j), 0 ≤ i, j ≤ (N 

- 1), is scaled in the region of -1 < x, y < 1. In the result of this, equation (3.37) can now be 

expressed in discrete form as: [8] 

𝐿𝑝𝑞 = 𝜆𝑝𝑞 ∑ ∑ 𝑃𝑝(𝑥𝑖)𝑃𝑞(𝑦𝑗)𝑓(𝑖, 𝑗)

𝑁−1

𝑗=0

𝑁−1

𝑖−0

 

                3.38 

where the normalizing constant, 

𝜆𝑝𝑞 =
(2𝑝 + 1)(2𝑞 + 1)

𝑁2
 

                3.39 

xi and yi denote the normalized pixel coordinates in the range of [-1, 1], which are given by: 
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𝑥𝑖 =
2𝑖

𝑁−1
− 1             And                  𝑦𝑗 =

2𝑗

𝑁−1
− 1      

        3.40 

 

 

3.5.  Shape transform domains 

These are methods which are formed by the transform of the detected object or of the whole 

image. Transforms can then be used to characterize the appearance of images. The shape 

feature is represented by the all or partial coefficients of a transform. 

 

3.5.1.  Fourier descriptors 

The perimeter of an arbitrary closed curve can be represented by its instantaneous curvature 

at each perimeter point. A point on the perimeter is measured by its polar position z(s) as a 

function of arc length s. The complex function z(s) may be expressed in terms of its real part 

x(s) and imaginary part y(s) as expressed in equation 3.41 [44] 

𝑧(𝑠) = 𝑥(𝑠) + 𝑗𝑦(𝑠)                                                                                

       3.41 

 

 

Fig 3.4 Tangent angle [37] 

The tangent angle defined in Figure 3.4 is given by 

𝜑(𝑠) = 𝑎𝑟𝑐𝑡𝑎𝑛 {

𝑑𝑦(𝑠)
𝑑𝑦⁄

𝑑𝑥(𝑠)
𝑑𝑥

⁄
} 

3.42 

and the curvature is the real function given by equation 3.43  

𝑘(𝑠) =
𝜑(𝑠)

𝑑𝑠
 

3.43 

The coordinate points [x(s), y(s)] can be obtained from the curvature function by the 

reconstruction formulas 3.44 
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𝑥(𝑠) = 𝑥(0) ∫ 𝑘
𝑠

0

(𝛼) cos{𝜑(𝛼)}𝑑𝛼 

𝑦(𝑠) = 𝑦(0) ∫ 𝑘(𝛼)𝑠𝑖𝑛{𝜑(𝛼)}
𝑠

0
𝑑𝛼   

      3.44 

Where x(0) and y(0) are the starting point coordinates. 

 

3.5.1.1  One-dimensional Fourier descriptors 

In general, a Fourier descriptor is obtained by applying the Fourier transform on a shape 

signature derived from shape boundary coordinates. The normalized Fourier transformed 

coefficients are termed the Fourier descriptor of the shape. Fourier descriptors derived from 

different signatures have significant different performance on shape retrieval. For example, 

Fourier descriptor derived from centroid distance function r(t) outperforms Fourier descriptor 

derived from other shape signatures in terms of overall performance. [37] The discrete 

Fourier transform of r(t) is then given by equation 3.45: 

 

𝑎𝑛 =
1

𝑁
∑ 𝑟(𝑡)𝑒𝑥𝑝 (

−𝑗2𝜋𝑛𝑡

𝑁
)

𝑁−1

𝑡=0

 

 

n=0,1,…………….,N-1       3.45 

 

Since the centroid distance function r(t) is only invariant to rotation and translation, the 

acquired Fourier coefficients have to be further normalized so that they are scaling and start 

point independent shape descriptors. From Fourier transform theory, the general form of the 

Fourier coefficients of a contour centroid distance function r(t) transformed through scaling 

and change of start point from the original function r(t)(o) is given by equation 3.46: [12][45] 

𝑏𝑛 =
𝑎𝑛

𝑎1
=

𝑒𝑥𝑝(𝑗𝑛𝜏). 𝑠. 𝑎𝑛
0

𝑒𝑥𝑝(𝑗𝜏). 𝑠. 𝑎1
0

 

 

=
𝑎𝑛

0

𝑎1
0

𝑒𝑥𝑝[𝑗(𝑛 − 1)𝜏] 

= 𝑏𝑛
0𝑒𝑥𝑝[𝑗(𝑛 − 1)𝜏] 

𝑊ℎ𝑒𝑟𝑒 𝜏 is the angle incurred by the change of start point. 

          3.46 

where bn and bn (o)  are the normalized Fourier coefficients of the transformed shape and the 

original shape, respectively. If we ignore the phase information and only use magnitude of 
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the coefficients, then |bn| and |bn
(o)| are the same. In other words, |bn| is invariant to 

translation, rotation, scaling and change of start point. 

The set of magnitudes of the normalized Fourier coefficients of the shape  

{|bn|, 0 < n < N} are used as shape descriptors, denoted as: 

{𝑏𝑛, 0 < 𝑛 < 𝑁}        

One-dimensional Fourier descriptor has several nice characteristics such as simple 

derivation, simple normalization and simple to do matching. For efficient retrieval, several 

Fourier descriptors are sufficient for shape description. 

  

3.5.2.  Region-based Fourier descriptor 

The region-based Fourier descriptor is referred to as generic Fourier descriptor, which can 

be used for general applications. Basically, generic Fourier descriptor is derived by applying 

a modified polar Fourier transform on shape image [33],[34]. In order to apply modified polar 

Fourier transform, the polar shape image is treated as a normal rectangular image. The steps 

are 

(i) The approximated normalized image is rotated counter clockwise by an 

angular step sufficiently small. 

(ii) The pixel values along positive x-direction starting from the image center 

are copied and pasted into a new matrix as row elements. 

(iii) The steps 1 and 2 are repeated until the image is rotated by 360°. 

The result of these steps is that an image in polar space plots into Cartesian space.The 

transformation of a polar image into a Cartesian coordinate image is shown in figure 3.5. 

 

Fig 3.5 Polar into Cartesian coordinate image. [45]  

The Fourier transform is acquired by applying a discrete 2D Fourier transform on this shape 

image: 

𝑝𝑓(𝜌, 𝜃) = ∑ ∑ 𝑓(𝑟, 𝜃𝑖)𝑒𝑥𝑝 [𝑗2𝜋 (
𝑟

𝑅
𝜌 +

2𝜋𝑖

𝑇
ᶲ)]

𝑖𝑟

 

          3.47 
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Where 

0 ≤ 𝑟 = √[(𝑥 − 𝑔𝑥)2 + (𝑦 − 𝑔𝑦)
2

] <R 

and 

𝜃𝑖 = 𝑖 (
2𝜋

𝑇
; 0 ≤ 𝜌 < 𝑅, 0 ≤ ∅ < 𝑇. (𝑔𝑥, 𝑔𝑦)) 

3.48 

   

is the centroid of the shape; R and T are the radial and angular resolutions. The acquired 

Fourier coefficients are translation invariant. Rotation and scaling invariance are achieved by 

the following generic Fourier descriptor equation, which is given by equation 3.49   

𝑓𝑔 = {
|𝑝𝑓(0,0)|

𝑎𝑟𝑒𝑎
,
|𝑝𝑓(0,1)|

|𝑝𝑓(0,0)|
, …

|𝑝𝑓(0, 𝑛)|

|𝑝𝑓(0,0)|
, … ,

|𝑝𝑓(𝑚, 0)|

|𝑝𝑓(0,0)|
, …

|𝑝𝑓(𝑚, 𝑛)|

|𝑝𝑓(0,0)|
} 

          3.49 

Where area is the area of the bounding circle in which the polar 

image resides. The maximum number of the radial frequencies 

selected is given as m and n is the maximum number of angular 

frequencies selected. To achieve hierarchical coarse to fine 

representation requirement m and n can be adjusted. The 

experimental results have shown Generic Fourier descriptor as 

invariant to translation, rotation, and scaling [41] [44] [45]. 
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CHAPTER 4 

BAYESIAN DECISION BASED IMAGE RECOGNITION 

The Bayesian classification method is one of the most popular probabilistic   based 

techniques and will be presented here. The approach to be followed builds upon probabilistic 

arguments stemming from the statistical nature of the generated features. As has already 

been pointed out in the introductory chapter, this is due to the statistical variation of the 

patterns as well as to the noise in the measuring sensors. The classification of an unknown 

pattern into the most probable class will be performed. Thus, the task now becomes that of 

defining what “most probable” means. 

 

4.1.  Bayes Classifier  

Bayes classifier is a statistical technique based on  Bayes' theorem which is given by the 

relationship in equation 4.1. 

P(𝐴𝑗 𝐵⁄ ) =
P(𝐵 𝐴𝑗⁄ )P(𝐴𝑗)

𝑃(𝐵)
 

                                                                                        4.1 

P(Aj): Is the prior belief (probability of hypothesis before seeing any data). 

P(B/Aj): Is the likelihood (probability of the data if the hypothesis is true. 

The probability of the data through observation is given by equation 4.2.  

𝑃(𝐵) =  ∑ 𝑃(𝐵 𝐴𝑗⁄ )

𝑗

𝑃(𝐴𝑗) 

               4.2 

P(Aj/B)j: Is the posterior (probability of hypothesis having seen the data) 

Bayes classifier has decision density functions of the form. 

𝑑𝑗(𝑥) = 𝑝 (𝑥
𝜔𝑗⁄ ) 𝑃(𝜔𝑗)        

j = 1,2,………….W        4.3 

where 𝑝 (𝑥
𝜔𝑗⁄ ) is the probability density function (pdf) of the pattern vectors of class 𝜔𝑗 , and 

P(𝜔𝑗) is the probability that class 𝜔𝑗 occurs. Given an unknown pattern vector, the process 
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is to compute a total of W decision functions and then assign the pattern to the class whose 

decision function yielded the largest numerical value. The case where the pdf is Gaussian 

is of particular interest. The n-dimensional Gaussian pdf has the form given in equation 4.4 

𝑃(𝑥 𝜔𝑗⁄ ) =
1

(2𝜋)𝑛 2⁄ |∑|
1

2⁄
𝑒−

1
2

[(𝑥−𝑚𝑗)
𝑇

∑−1(𝑥−𝑚𝑗)]
 

       

                                                                                 4.4 

Where ∑and mj are the covariance matrix and mean vector of the pattern population of class 

𝜔𝑗 and |∑| is the determinant of ∑. [46] 

Given a classification task of M classes,  𝜔1,  𝜔2, 𝜔3,… 𝜔𝑚 and an unknown pattern, which 

is represented by a feature vector x, then M conditional probabilities 𝑝 (
𝜔𝑗

𝑥⁄ ), j = 1, 2, 3……M 

are formed. These are also referred to as a posteriori probabilities. Each of them represents 

the probability that the unknown pattern belongs to the respective class ωj, given that the 

corresponding feature vector takes the value x. Indeed, the Bayes’ classifier computes either 

the maximum of these M values or, equivalently, the maximum of an appropriately defined 

function of them. The unknown pattern is then assigned to the class corresponding to this 

maximum [41]. 

4.2. Approaches to statistical pattern recognition 

In pattern classification, the goal is to assign a pattern vector x that represent a set of 

measurements to one of M possible classes 𝜔𝑖 , where 

i = 1,…M. A decision rule partitions the measurement space into M regions Ω𝑖 i = 1,…C. If an 

observation vector is in Ωi then it is assumed to belong to class 𝜔𝑖. 

𝑃(𝜔𝑖/(𝑥)) =  
𝑃(𝑥/𝜔𝑖)𝑃(𝜔𝑖)

𝑃(𝑥)
  

                                 4.5  

where p(x) is the pdf of x and for which we have; 
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𝑃(𝑥) = ∑ 𝑃(𝑥/𝜔𝑖)𝑃(𝜔𝑖)

𝐶

𝑖=1

 

    4.6 

The Bayes classification rule is stated as; 

If P(𝜔1/x)>P(𝜔2/x)  x is classified to 𝜔1 

P(𝜔2/x)>P(𝜔1/x) x is classified to 𝜔2 

Each region may be multiply connected – that is, it may be made up of several disjoint 

regions. The boundaries between the regions Ω𝑖 are the decision boundaries or decision 

surfaces. Generally, it is in regions close to these boundaries that the highest proportion of 

misclassifications occurs. In such situations, we may reject the pattern or withhold a decision 

until further information is available so that a classification may be made later. This option is 

known as the reject option and therefore we have C + 1 outcomes of a decision rule (the 

reject option being denoted by 𝜔𝑜) in a C-class problem. There are two approaches to 

discrimination that will be explored. The first assumes knowledge of the underlying class-

conditional probability density functions (the probability density function of the feature vectors 

for a given class) [21].  

 

4.2.1. Supervised versus unsupervised 

The two main divisions of classification are supervised classification also referred to as 

discrimination and unsupervised classification which is simply referred to as clustering. In 

supervised classification we have a set of data samples (each consisting of measurements 

on a set of variables) with associated labels, the class types. These are used as exemplars 

in the classifier design. In unsupervised classification, the data are not labelled and we seek 

to find groups in the data and the features that distinguish one group from another. A 

clustering scheme may be applied to the data for each class separately and then 

representative samples for each group within the class (the group means, for example) used 
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as the prototypes for that class. It is usual to use the group mean vector as the prototype [21] 

[22]. 

 

 

 

 

 

 

4.3.  Bayes’ decision rule for minimum error 

Consider M classes, 𝜔1, 𝜔2,𝜔3, … 𝜔𝑀,  with a priori probabilities and we wish to minimize the 

probability of making an error and there is no information regarding an object other than the 

class probability distribution then we would assign an object to class 𝜔𝑗 if; 

P(𝜔𝑗)> P(𝜔𝑘) k=1,….,M; k≠ 𝑗         

         4.7 

This classifies all given objects. For classes with equal probabilities, patterns are assigned 

arbitrarily between those classes. However, we do have an observation vector or 

measurement vector x and we wish to assign x to one of the M classes. A decision rule based 

on probabilities is to assign x to class ωj if the probability of class ωj given the observation x, 

p(ωj|x), is greatest over all classes ω1,… ωM.  

That is, assign x to class ωj if; 

P(ωj|x) > P(ωk|x) k=1,….,M; k≠ 𝑗         

     4.8 

This decision rule partitions the measurement space into M regions  Ω1, Ω2….. ΩC such that if 

x ∈ Ωj then x belongs to class ωj . The a posteriori probabilities  P(ωj|x)  may be expressed 

in terms of the a priori probabilities and the class-conditional density functions p(x|ωi) using 

Bayes’ theorem as: 

𝑃(𝜔𝑖|𝑥) =
𝑃(𝑥|𝜔𝑖)𝑃(𝜔𝑖)

𝑃(𝑥)
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                                                                                4.9 

and so the decision rule (4.8) may be written as 

 assign x to ωj if; 

P(x|ωj)p(ωj) > 𝑃(x|ωk)P(ωk) 

         k= 1,….,M; k≠ 𝑗           

        4.10 

This is known as Bayes’ rule for minimum error. [47] 

For two classes, the decision rule (4.10) may be written: 

𝑙𝑟(𝑥) =
𝑃(𝑥|𝜔1)

𝑃(𝑥|𝜔2)
>

𝑃(𝜔2)

𝑃(𝜔1)
 

                                   implies x ∈  class ω1                              4.11 

The function 𝑙𝑟(𝑥) is the likelihood ratio. Figures 4.1 and 4.2 give a simple illustration for a 

two-class discrimination problem. Class ω1 is normally distributed with zero mean and unit 

variance,  

𝑃(𝑥|𝜔1) = 𝑁(𝑥|0,1) 

        4.12 

Class ω2 is a normal mixture (a weighted sum of normal densities). 

For example.  

𝑃(𝑥|𝜔2) = 0.6𝑁(𝑥|1,1) + 0.4𝑁(𝑥|−1,2) 

        4.13 

Figure 4.1 illustrates plots of   p(x|ωi)p(ωi)  where i =1, 2, and the priors are taken to be   

                   𝑃(𝜔1) = 0.5 ,𝑃(𝜔2) = 0.5   4.14  

𝑃(𝑥|𝜔𝑖)𝑃(𝜔𝑖) 

i=1,2, the priors are taken as 0.5 
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Fig 4.1 Posterior Probabilities [5] 

 

Figure 4.2 illustrates plots of the likelihood ratio Lr(x) and the threshold   
 𝑃(𝜔2)

𝑃(𝜔1)⁄ . From 

figure 4.2 the decision rule (4.4) leads to a disjoint region for class  𝜔2.  

The fact that the decision rule (4.2) minimizes the error may be seen as follows. The 

probability of making an error, p(error), may be expressed as: 

𝑝(𝑒𝑟𝑟𝑜𝑟) = ∑ 𝑝(𝑒𝑟𝑟𝑜𝑟|𝜔𝑖)

𝐶

𝑖=1

𝑝(𝜔𝑖) 

             4.15 
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           𝑥0 

Fig 4.2 Likelihood ratio lr(x) and the threshold. 

 

4.4. Vector Quantization              Clustering is the task of 

assigning a set of objects into groups so that the objects in the same cluster are more similar (in some 

sense or another) to each other than to those in other groups. Clustering is a main task of explorative 

data mining, and a common technique for statistical data analysis used in many fields, including 

machine learning, pattern recognition, image analysis, information retrieval, and bioinformatics. 

Cluster analysis itself is the general task to be solved. Popular notions of clusters include groups with 

low distances among the cluster members, dense areas of the data space, intervals or particular 

statistical distributions. Clustering can therefore be formulated as a multi-objective optimization 

problem.  

  Let X be the Data set; 

𝑋 = {𝑥1, 𝑥2 , 𝑥3 … 𝑥𝑁} 

                                                               4.16 

m-clustering of X is defined as  the partition of X into m sets (clusters), 

C1……..Cm so that the following three conditions are met: 

 

i. 𝐶𝑖 ≠  0,                      𝑖 =  1, . . . , 𝑚 

L
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http://en.wikipedia.org/wiki/Data_mining
http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Data_analysis
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Pattern_recognition
http://en.wikipedia.org/wiki/Image_analysis
http://en.wikipedia.org/wiki/Information_retrieval
http://en.wikipedia.org/wiki/Distance_function
http://en.wikipedia.org/wiki/Multi-objective_optimization
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ii. ∪𝑖=1
𝑚 𝐶𝑖 = 𝑋 

iii. 𝐶𝑖 ∩ 𝐶𝑗 = 0, 𝑖 ≠ 𝑗, 𝑖, 𝑗 = 1,2,3 … … . 𝑚       

       4.17 

Typical cluster models include: 

i. Connectivity models: for example hierarchical clustering builds models based on 

distance connectivity. 

ii. Centroid models: for example the k-means algorithm represents each cluster by a 

single mean vector. 

iii. Distribution models: clusters are modeled using statistical distributions, such as 

multivariate normal distributions used by the expectation-maximization algorithm. 

Vector Quantization is a connectivity model based on the distance between data. However, 

the goal of VQ is to place points in space in a way that is representative of the data 

distribution. A Vector Quantization classifier is based on the definition of certain key points 

called codebook vectors in the data space. Once these relevant points are singled out, the 

new data is classified to belong to the same class of the closest codebook vector in the 

Euclidean metric.  

For example, consider Figure 4.3, where two codebook vectors are represented with a 

diamond and with a crossed square. The definition of a codebook vector includes the location 

in the relevant space and the class that  codebook vector belongs to, which can be read in 

the legend. Accordingly, vector x is classified to belong to class 2, while vector y   belongs to 

class 1. Basically, the salient features of the data are quantized (i.e. approximated) and 

represented by the exclusive means of the codebook vectors, which can be thought of as the 

most representative points of each class. Accordingly, the codebook points define a 

partitioning of the data space through the midplanes between neighbouring pairs of vectors. 

For the data represented in Figure 4.3, a good placement of the representative points may 

look like in Figure 4.4 where the midplanes between neighbouring pairs of vectors would 

http://en.wikipedia.org/wiki/Hierarchical_clustering
http://en.wikipedia.org/wiki/K-means_algorithm
http://en.wikipedia.org/wiki/Multivariate_normal_distribution
http://en.wikipedia.org/wiki/Expectation-maximization_algorithm


55 
 

approximate the optimal Bayesian separation curve. This highlights the key difference 

between a Bayesian and a VQ classifier: while the Bayesian strategy seeks to approximate 

the discriminant functions over the whole space used to represent the data, the VQ classifier 

focuses on a small region of this space, where most of the action takes place. The 

identification of good codebook vectors may seem difficult without prior knowledge of (or 

assumptions about) the statistical distributions involved [46] [47] [48] [49].

 

distance s 

Fig 4.3 Nearest neighbour classifier rule. 

Vector x belongs to class 2, while vector y to class 1 [23]. 
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                                                Distance x 

Fig 4.4 Hypothetical placement of the codebook vectors  

The vectors are for the data shown in Figure 4.3 of certain key points called codebook vectors 

in the data space [23]. 

 

 

The representative codeword is determined to be the closest in Euclidean distance from the 

input vector. 
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Figure 4.5 illustrates codewords in 2-dimensional space. Input vectors are marked with an x, 

codewords are marked with circles, and the Voronoi regions are separated with boundary 

lines  [50] [51] [52] [53] [54] [55] [56]. 

 

 

Distance s 

Fig 4.5 An illustration of Voronoi regions [23] 

Where s and t are Cartesian coordinates. 
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CHAPTER 5 

RESULTS AND DISCUSSIONS 

The database that has been used in simulating and testing the various techniques is made 

up of 108 satellite aircraft images taken from both the Federation of American Scientists, and 

World Military Aircrafts Top View databases. These are standard databases used by 

researchers and can be accessed through the internet. The former database is made up of 

all American military aircrafts such as bombers, attack aircrafts, fighter aircrafts, cargo 

aircrafts, tanker aircrafts, rotary aircrafts, trainer aircrafts, and X-planes. The latter database 

is made up of the rest of the world military aircrafts.  The Federation of American Scientists 

(FAS) is an organization with the stated intent of using science and scientific analysis to 

attempt to make the world more secure. The FAS was founded in 1945 by scientists who 

developed the first atomic bombs who later realized that this precedent had created an 

extremely dangerous world order. It promotes a safer and more secure world by developing 

and advancing solutions to important science and technology security  problems by educating 

the public and policy makers. 

The images employed were of various sizes ranging from 100X100 to 1024 X 1024 pixels 

with 8-bits resolution. The simulation of the pattern recognition scheme and the assessment 

of the performance used the MATLAB version 7.8.0.347 (R2009a) platform.  

5.1 Preprocessing                      The reduction of 

noise is one of the most important processes that can be used to improve the image 

recognition rate. In satellite images, the degradation in quality is due to speckle noise. Thus, 

the reduction of speckle noise is often the first stage in a satellite image recognition system. 

There is no comprehensive method that takes all the constraints in a noisy image into 

consideration. Filtering is one of the common methods which is used to reduce the speckle 

noise. The Lee filter has been reported to give favourable results by several researchers. In 

this thesis it has been recommended based on the statistical and experimental results. Figure 

5.1 illustrates two aircraft satellite images before denoising and figure 5.2 illustrates images 

after pre-processing and binarization. 
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Fig 5.1 Unprocessed images.  

                                                   

5.1.1 Denoising Results 

Figure 5.2 is a representation of preprocessed that is noise removal and binarization images. 

The denoising process is based on boundary signature. The programme code is given in 

Appendix A1. 

             

 

Fig 5.2 Typical pre-processed aircraft satellite images  

 

Satellite images are mostly contaminated by speckle noise. This is multiplicative that can be 

modelled as: J = I+n*I, where n is uniformly distributed random noise with zero mean and 

variance δ2. I is the noise free image and J is the noisy image. The effects of filtering with a 

Lee adaptive filter were simulated using different levels of speckle noise as shown in figure 

5.3 then filtered. Their minimum square error (MSE) and PSNR (Peak Signal to Noise Ratio) 

are evaluated as illustrated in table 5.1 

 

Original Image 
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Image with a 10% noise addition 

 

 

Image with a 20% noise addition 

 

 

Image with a 30% noise addition 

 

 

 

Image with a 40% noise addition 
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Image with a 50% noise addition 

 

 

Image with a 60% noise addition 

 

 

Image with a 70% noise addition 

 

 

 

Image with an 80% noise addition 
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Image with a 90% noise addition 

 

Fig 5.3   Images of B2 bomber with different noise levels  

 

Table 5.1 PSNR levels 

Noise Level 

Variances 

0.01 0.02 0.03 0.04 0.06 0.08 

PSNR 

dB 

25.66 22.68 20.91 19.66 18.72 17.92 

     

The image used for simulation is a standard 512X512 pixel 8 bit depth image with sharp 

edges as shown in figure 5.4(a).  A uniformly distributed multiplicative noise with mean zero 

and various variances as illustrated is added to the simulated imagery. To test the efficiency 

of the filter mentioned above, a 5x5 kernel is used for the filter. Previous results have shown 

that a small kernel of 3X3, 5X5 or 7X7 offer the best results. The filter is applied to the noise 

contaminated imagery. Figure 5.4(b) shows the filtered image. 
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(a) Noisy image    (b) Denoised image 

Fig 5.4 A noisy and denoised image of B2 bomber 

 

5.2.  Filter performance quantification 

The PSNR is the peak signal-to-noise ratio, in decibels, between an image and its filtered 

counterpart. This ratio is used as a quality measurement between the original and a filtered 

image. The higher the PSNR, the better the quality of the filter, or reconstructed image. The 

Mean Square Error (MSE) and the Peak Signal to Noise Ratio (PSNR) are the two error 

metrics used to compare image filtration quality. The MSE represents the cumulative squared 

error between the filtered and the original image, whereas PSNR represents a measure of 

the peak error. The lower the value of MSE, the lower the error. To compute the PSNR, the 

mean-squared error is calculated using the following equation: 

𝑀𝑆𝐸 =
1

𝑀𝑁
∑ ∑[𝑔(𝑖, 𝑗) − 𝑓(𝑖, 𝑗)]2

𝑁

𝑗=1

𝑀

𝑖=1

 

                  5.1 

Where M X N is image size, g (i, j) is the Noisy image, f (I, j) is the filtered image. Then the 

PSNR is evaluated using equations 5.2. Figure 5.4 illustrates the noisy image and the result 

of filtration. Table 5.1 illustrates the results of filtering with different levels of noise. 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
2552

𝑀𝑆𝐸
) 

                  5.2 
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Where 255 is the maximum intensity in an 8 bit image.            

                                      

The computer simulation results show that the proposed algorithm is effective in extraction 

of speckle noise from images subjected to high noise levels. Although it does not give an 

account of the perceptible degradation to the cover-image, the PSNR is the most widely used 

metric in finding the quality of a filtered image. 

 

 

5.3. Invariant Image moments. 

Invariant moments are very sensitive to noise especially the moments of higher order. In the 

following procedure, invariant moments tests of a B2 bomber aircraft image with different 

noise levels was undertaken table 5.2. It is concluded that the noise levels affect the values 

of the invariant moments and therefore this may lead to erroneous results in the recognition 

process. Thus, the importance of preprocessing. 

 

 

 

 

 

 

 

Table 5.2 Invariant moments of an image with different levels of noise. 

 Ø
1
 Ø

2
 Ø

3
 Ø

4
 Ø

5
 Ø

6
 Ø

7
 

B2 
ORIGINAL 
SATELLITE 
IMAGE 

 
 
6.61 

 
 
14.05 

 
 
15.24 

 
 
17.45 

 
 
33.94 

 
 
24.67 

 
 
39.26 

B2 
( 10%NOISE) 

6.55 13.91 15.03 17.24 33.53 24.40 39.24 

B2 
( 20% NOISE) 

6.54 13.88 14.96 17.17 33.39 24.32 38.61 

B2 6.47 13.71 14.63 16.84 32.72  23.90 38.46 
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( 40% NOISE) 
B2 
( 80% NOISE) 

6.41 13.57 14.25 16.46 31.97 23.46 36.72 

B2 
( 90% NOISE) 

Invariant moments cannot be evaluated 

B2 
( 95% NOISE) 

Invariant moments cannot be evaluated 

 

Invariant moments for images above 80% noise level cannot be evaluated.  Invariant 

moments exhibit translation, rotation and scaling invariance. Tests to show these properties 

were applied to a noisy image, and the results are shown in figure 5.5. Hu’s moments which 

are calculated from the first 7 geometrical moments or up to the third order of moments were 

calculated. From the results illustrated in table 5.3, invariance of the moments can be readily 

deduced. 

5.1.2  Invariance Tests. 

 

Fig 5.5 a. Original image 

 

                                    

Fig 5.5 b Translated image  

 

 

 

 

Fig 5.5 c Scaled image  
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    Fig 5.5 d  Rotated image (30o anticlockwise) 

 

Fig 5.5 Invariance tests 

 

 

 

Table 5.3 Invariance Tests 

 

Фi Original 

Image 

Scaled 

Image 

Rotated 

Image 

Translated 

Image 

 

Φ1 6.50 6.50 6.50 6.50 

Φ2 16.32 16.32 16.32 16.32 

Φ3 25.56 25.56 25.56 25.56 

Φ4 25.88 25.88 25.89 25.88 

Φ5 43.30 43.30 43.30 43.30 

Φ6 34.09 34.10 34.09 34.09 

Φ7 47.39 47.38 47.39 47.38 
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The conclusion deduced from table 5.3 is that there is moment invariance after geometrical 

transformations of scaling, rotation and translation. Invariant moments are computationally 

simple. However, they have several drawbacks: These are, 

(iv) Information redundancy: since the basis is not orthogonal, these moments suffer from 

a high degree of information redundancy. 

(v) Noise sensitivity: higher-order moments are very sensitive to noise. 

(vi) Large variation in the dynamic range of values: since the basis involves powers of p 

and q, the moments computed  may have large variation in the dynamic range of 

values for different orders. This may cause numerical instability when the image size 

is large. 

 

5.3.1 Data Set 

The following list is made up of six different classes of military aircrafts.  

These are, 

1. Fighter aircraft 

2. Cargo aircraft 

3. Bomber aircraft 

4. Rotary wing aircraft 

5. Reconnaissance aircraft 

6. Training aircraft 

There are hybrid aircrafts like the fighter bomber aircrafts. These are classified to the nearest 

class of the hybrid. This is a representative sampling of world military aircraft. The database 

is made up of American military aircrafts that is bombers, fighter aircrafts, cargo aircrafts, 

rotary aircrafts, trainer aircrafts, and reconnaissance planes and the rest of the world military 

aircrafts. Tables 5.4 to 5.9 exhibit these data. 

 

 

5.3.2 The Training Set 

Table 5.4 Features extracted from fighter aircrafts 
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 Invariant Moments 

Aircraft 

Name 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 Ф7 

A-6 intruder 5.03 16.96 15.33 17.20 36.63 26.76 33.85 

Horten IX 6.25 13.11 12.73 14.92 28.92 21.71 33.07 

Alpha jet 4.97 15.32 12.47 14.67 28.43 22.56 29.99 

F14 tomcat 5.74 13.96 12.96 15.17 29.47 22.40 30.36 

A-7 corsair II 5.74 15.39 17.00 19.11 37.62 27.15 38.31 

F15 7.15 16.44 19.71 22.03 43.01 30.24 39.53 

F18 7.12   16.79    20.02    22.41    43.73   30.80    48.51 

F20 7.20  16.22   17.96   20.16   39.34   28.44   43.87 

F22 6.59    15.61    16.40    18.61    36.25    26.60   38.40 

Mig 21 7.03    15.20    19.12    21.39    41.77    28.99    47.00 

F35A 7.18 17.54 19.70 21.89 42.82 30.83 45.04 

Mirage 2000  7.11 15.98 17.34 19.54 38.11 27.71 40.98 

F5 Freedom 

Fighter 

7.04 15.47 17.05 19.25 37.53 27.16 40.83 

A-10  

Thunderbolt II 
5.66 17.92 19.37 21.06 41.53 30.33 42.21 

Mig23  7.19 17.79 19.52 21.71 42.44 30.76 44.87 

A-4 skyhawk 5.12 15.99 11.96 14.12 27.40 22.35 28.38 

 

 

 

 

 

 

 



69 
 

Table 5.5 Features extracted from cargo aircrafts 

 

 Invariant Moments 

Aircraft 

Name 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 Ф7 

 

C5 

 

7.03 

 

16.22 

 

18.13 

 

20.34 

 

39.70 

 

28.63 

 

45.69 

 

Antonov 

 

7.26 

 

20.06 

 

22.45 

 

24.65 

 

48.31 

 

34.83 

 

52.89 

 

Rama 

 

7.28 

 

17.63 

 

19.74 

 

21.93 

 

42.89 

 

30.91 

 

48.26 

 

Aerostar 

 

7.27 

 

19.38 

 

21.74 

 

23.95 

 

46.90 

 

33.79 

 

51.52 

 

123 RF 

 

7.18 

 

16.86 

 

18.74 

 

20.92 

 

40.87 

 

29.52 

 

44.34 

A40 7.27    19.79    22.49   24.73    48.44    34.77    51.68 

An condr 7.23    19.81    22.09    24.28    47.56    34.32   51.51 

Il 2 7.27    28.64    27.52    29.16    57.59    43.48    59.82 

Il 14 7.18    16.59   18.47    20.67    40.37    29.14    44.64 

KC10 7.07    24.87    27.09    29.78    58.23   42.23   60.28 

C160 

 

7.22    17.44    19.6    21.81    42.63    30.69    47.13 

C212 

 

7.15   17.10    19.25    21.46    41.94    30.18    46.14 

Cn 235 

 

7.27    19.63    22.51    24.71    48.42   34.53    52.32 
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Table 5.6 Features extracted from bomber aircrafts 

 

 Invariant Moments 

Aircraft 

Name 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 Ф7 

Sukhoi 25 7.25    18.59    21.5    23.74    46.47    33.04    52.01 

AMX 7.22 16.55 18.40 20.59 40.21 29.04 45.30 

F16 6.58 15.49 17.00 19.20 37.44 27.13 39.56 

F5 tiger 7.04 15.47 17.05 19.25 37.53 27.16 40.83 

MIG 31 7.08 16.43 17.74 19.94 38.91 28.33 41.19 

Rafale 7.14 16.60 18.70 20.90 40.82 29.37 43.25 

Saab viggen 7.05 16.01 17.19 19.38 37.80 27.57 40.12 

Sukhoi27 7.09 15.99 17.34 19.54 38.11 27.72 40.59 

YF117 7.00 16.06 17.98 20.22 39.45 28.43 41.73 

B2 6.61 14.05 15.25 17.45 33.95 24.68 39.26 

Delta wing 7.04 16.56 18.53 20.73 40.48 29.18 45.06 

Q5 7.14    15.89   19.46    21.72    42.42    29.66    47.76 

J8 ii Shinyang 7.0 14.91 15.94 18.13 35.31 25.78 39.65 

J9 7.11    15.80   17.35    19.55    38.14    27.63    43.45 

Sukhoi 30 7.22    17.41    20.42    22.70    44.37    31.40 48.65 
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Super 

Galeb 

7.23   20.79    22.99    25.14    49.32    35.68    51.49 

Tornado 7.21    17.51    20.56   22.84    44.65    31.59    51.64 

B52 

 

7.17    18.49    21.23    23.41    45.84   32.65    49.07 

Yak 38 7.09    15.57    19.28    21.53    42.05    29.31    48.11 

J11 

 

7.18   16.58    19.88   22.18 43.32    30.47    48.66 

Jh7 

 

7.23    16.90    18.87   21.06    41.15    29.68    45.02 

Orao 

 

7.17    16.05   17.68    19.88    38.79   28.08    44.52 

 

IDF Taiwan 

 

7.16 

 

16.25 

 

18.09 

 

20.28 

 

39.60 

 

28.58 

 

42.80 

J10 7.04    15.89   17.67    19.87    38.77   27.99    41.79 

Jaguar 7.18   16.54    19.85    22.15    43.27    30.42    50.03 

MCA 7.20  16.14    17.73    19.93    38.88    28.17    42.77 

Mirage F1 7.17    16.29    19.68    21.95    42.88    30.09    49.93 

Sukhoi 7 7.03   15.51    19.20    21.53    42.02 29.29    46.98 

 

YAK 130 

 

6.59 

 

15.96 

 

17.87 

 

20.03 

 

39.17 

 

28.21 

 

40.34 

X-45C 7.00 17.30 19.74 21.75 42.62 30.42 44.29 

CAXF7IYK 7.00 19.91 21.43 23.22 45.66 33.32 48.57 
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Table 5.7 Features extracted from rotary aircrafts 

 

 Invariant Moments 

Aircraft 

Name 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 Ф7 

 

Apache 

 

7.17 

 

16.67 

 

19.74 

 

21.88 

 

42.80 

 

30.21 

 

47.13 

Huey cobra 

 

7.05    15.20    19.11    21.28    41.59    28.88    47.62 

Eurocopter 

 

7.15   15.70    19.34    21.50   42.04    29.35    47.37 

Dauphin 

 

7.25    17.78    20.55    22.73    44.48   31.62    49.00 

Defender 

 

7.2680    18.73    21.35    23.50    46.04    32.87   50.72 

532 

Cougar 

7.22    16.67    19.81    21.97    42.99    30.31    49.15 

A129 

Mangusta 

7.20   16.36    19.65    21.80    42.65    29.99    48.69 

Lynx 7.23   16.72    19.88    22.05    43.13    30.41    48.44 

Mi4 

 Hound 

7.23    16.67    19.89    22.07    43.16    30.40   48.33 

Mi6  

Hook 

7.20   16.51    19.74    21.91   42.84    30.16    47.93 

Mi8  

Hip 

7.26    17.58   20.52   22.69   44.41    31.48    48.61 

Puma 

 

7.21    16.68    19.82    21.97    42.98    30.31    48.54 
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SA 341 

Gazelle 

7.26    18.36    20.96    23.10    45.24    32.28    48.03 

Yak Firebar 7.19   16.56    19.84    22.07    43.14    30.35    47.56 

Ah 1 6.98   

 

14.85    19.03    21.20    41.43    28.62    45.54 

AS 565 

Pather 

4.78   

 

11.16    12.53    14.10    29.02    20.63    27.61 

Ka 25 

 

7.14   16.25    18.03   20.22    39.47    28.52    43.80 

Ka 52  

Hokum 

7.21   17.29    20.30    22.48    43.99    31.13    47.88 

Mi 4 

 

7.23   16.61    19.85   22.03    43.08   30.33    48.75 

Mi 6 

 

7.24     17.43    20.38    22.54    44.12    31.25    50.24 

Mi 8 

 

7.28    19.34    21.89    24.06    47.14    33.73    50.44 

Mi 24 7.23   17.37    20.28    22.44    43.92    31.13    47.61 

Mi 25 7.23    17.08    20.09    22.24    43.52    30.78    47.33 

Mi 26 7.24    17.43    0.38    2.54    4.11    1.25    50.24 

Mi 35 

Havoc 

 

7.18     

 16.37  19.66    21.83    42.68    30.01     

46.99 

Mi 35 Hind 7.24     17.50    0.38    2.54    4.12    1.29    47.73 

SA 330 7.21     16.63    9.80    1.96    2.96    0.28    49.61 

SA 342 7.28     21.30    2.90    4.98    9.02    5.65    51.45 

Sa 360 4.81     11.26    3.10   4.50     8.57    1.00    29.40 

Ah 1 6.98   14.85    19.03    21.20   41.43    28.62    45.54 

 

Table 5.8 Features extracted from reconnaissance aircrafts 
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 Invariant Moments 

Aircraft 

Name 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 Ф7 

Mitsubishi 

A5M 

7.05 16.15 18.22 20.48 39.95 28.73 44.10 

Northrop X-

47B 

6.58 19.48 21.01 22.86 44.96 32.61 46.08 

Wirelizard 7.21 17.09 19.07 21.28 41.57 29.99 47.94 

XL-RG 7.27 17.61 19.73 21.92 42.86 30.89 47.18 

CAW4F62P 7.19 16.27 19.63 21.86 42.71 29.99 51.30 

CA8Q39AI 7.27 16.94 18.85 21.05 41.12 29.68 45.76 

CAORC6ZQ 7.07 19.61 21.29 23.04 45.32 33.00 48.84 

A310-3 7.11    19.43    21.93    24.11    47.23    33.82    50.70 

An 71 7.21   16.88    18.85    21.05    41.12    29.66    46.26 

An 72 7.21    16.88    18.85    21.05   41.12   29.66    46.26 

EMB  

145 

6.67    15.58    16.56    18.75    36.55    26.73    39.48 

 

 

 

Table 5.9 Features extracted from training aircrafts 

 

 Invariant Moments 

Aircraft 

Name 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 Ф7 

 

A5 

 

7.15 

 

20.28 

 

22.41 

 

24.50 

 

48.06 

 

34.64 

 

50.20 

 

RV-7A 

 

7.28 

 

18.06 

 

20.91 

 

23.11 

 

45.23 

 

32.14 

 

50.76 
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YAK 7 

 

7.10 

 

18.21 

 

20.61 

 

22.93 

 

44.80 

 

32.18 

 

49.04 

 

VQ warbird 

 

7.18 

 

17.97 

 

20.43 

 

22.72 

 

44.40 

 

31.86 

 

48.87 

 

Buhligen 

 

7.11 

 

17.64 

 

20.10 

 

22.45 

 

43.83 

 

31.42 

 

49.28 

T 6 7.24    20.62    23.72    25.85    50.75    36.17    52.78 

 

Bellanca 

citabria 

 

7.25 

 

17.06 

 

19.02 

 

21.22 

 

41.47 

 

29.92 

 

49.00 

 

DRF 

 

7.29 

 

18.90 

 

21.67 

 

23.87 

 

46.75 

 

33.32 

 

50.91 

Casa_3 

 

6.33    14.71    14.84   17.02    33.10   24.58    36.19 

 

The training set is made up of samples from the data set for which the correct class label is 

known. Training is the process of estimating the classifier’s parameters such as the means 

and variances of P(x/Ci). Once the classifier has been trained then it can be used to label 

unknown data. These are indicated as unknown aircrafts on Table 5.10. 

5.3.3 Test Set 

The test set is used for the classifier evaluation. It contains data for which the class label is 

also known. A sample is presented to the classifier and compared to the classifier’s output to 

the known correct label. Then the percentage of data that has been correctly labeled is 

determined. It is a statistical necessity that the training data and the test data are different. In 

this process the leave one out technique will be applied. One data vector will be left out and 

used as test sample while all the rest are used as training set. The process is repeated for 

as many tests as the data number. The classifier is thus evaluated. 
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5.4. BAYESIAN CLASSIFICATION 

As presented in chapter 4, given an unknown pattern vector, the process is to compute a total 

of W decision functions and then assign the pattern to the class whose decision function 

yields the highest numerical value. 

The Bayes classifier is designed for use when features are independent of one another within 

each class. It classifies data in three steps: 

1. Training step: Using the training samples, the method estimates the parameters of a 

probability distribution, assuming features are conditionally independent in a given 

class. 

2. Prediction step: For any unseen test sample, the method computes the posterior 

probability of that sample belonging to each class. The method then classifies the test 

sample according the largest posterior probability. 

3. Identification step: Within a class the shortest distance from the data set is found and 

thus the sample identified. 

The class event conditional probability independence assumption greatly simplifies the 

training step since one can estimate the one-dimensional class event conditional probability 

density for each feature individually. While the class-conditional independence between 

features is not true in general, research shows that this optimistic assumption works well in 

practice [46]. This assumption of class independence allows the Bayes classifier to better 

estimate the parameters required for accurate classification while using less training data 

than many other classifiers. This makes it particularly effective for datasets containing many 

predictors or features. The following table 5.10 shows two extracted features sets of unknown 

aircrafts that are to be classified. 

 

Table 5.10 Unknown Images Features 

 

Aircraft 

Image 

Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 Ф7 
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Unknown  

Aircraft I 

6.19 16.11 21.76 23.28 45.85 33.31 46.41 

Unknown 

Aircraft II 

7.21    18.75    18.75   20.95    40.9    29.54    44.74 

 

 

 

 

For a finite set of classes and an unknown feature vector x where x is a d-dimensional vector 

the conditional posterior probabilities for every class is calculated. This probabilities depend 

on the estimated values of the likelihood. The class for which the posteriori is maximum is 

chosen and this is the class to which the image whose feature vector produces this maximum 

belongs. 

 

 

5.4.1 Multivariate Gaussian Classifier 

 

Consider the 7-dimensional data x from the respective classes Ci modelled using a 

multivariate Gaussian. 

𝑃(𝑥 𝐶⁄ ) = 𝑃(𝑥 𝜇, Σ⁄ ) = 𝑁(𝑥; 𝜇, 𝛴) 

    

=
1

(2𝜋)
𝑑
2  Σ0.5

𝑒𝑥𝑝 (−
1

2
 (𝑥 − 𝜇)𝑇Σ−1(𝑥 − 𝜇)) 

                     5.3    

The log Likelihood is given by. 

𝐿𝐿(𝑥 𝜇, Σ⁄ ) = 𝑙𝑛𝑃(𝑥 𝜇, Σ⁄ ) = −
𝑑

2
𝑙𝑛(2𝜋) −

1

2
𝑙𝑛|Σ| −

1

2
 (𝑥 − 𝜇)𝑇Σ−1(𝑥 − 𝜇) 

        5.4 

And the log Posterior Probability: 
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𝑙𝑛𝑃(𝐶/𝑥) =  −
1

2
 (𝑥 − 𝜇)𝑇Σ−1(𝑥 − 𝜇) −

1

2
𝑙𝑛|Σ| + 𝑙𝑛𝑃(𝐶) + 𝑐𝑜𝑛𝑠𝑡 

                     5.5 

Where µ is the mean of individual classes, ∑ is the class covariance and P(C) is the class 

Prior probability. It is also noted that (𝑥 − 𝜇)𝑇Σ−1(𝑥 − 𝜇) is the mahalanobis distance and d 

is the feature vector dimension.  

The following table illustrates the world air forces fleet in year 2013 [57]. 

 

 

Table 5.11a Aircraft type numbers 

 

Aircraft Type Number 

Fighter aircraft fleet 12568 

Bomber aircraft fleet 3002 

Reconnaissance aircraft fleet 1856 

Cargo aircraft fleet 5145 

Helicopter aircraft fleet 18686 

Training aircraft fleet 10525 

TOTAL 51782 

 

Table 5.11b Class prior probabilities. 

 

Class Label  Class Prior Probabilities 

Fighter 0.2427 

Cargo 0.0994 

Bomber 0.0580 

Rotary 0.3609 
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Reconnaissance 0.0358 

Training 0.2032 

TOTAL 1 

 

Table 5.11 Class prior probabilities 

The Bayes Gauss algorithm as illustrated in Appendix 10.2 shows that max-posterior for 

unknown aircraft I is a Fighter class aircraft and unknown aircraft II is a Rotary wing class 

aircraft. 

 

5.4.2 Identification  

The method used is intra-class distance evaluation. Having known that the aircraft is in 

fighter class the next step is to get the distance of all the type vectors in that class from the 

unknown plane. The one with the shortest distance will be the aircraft type. Table 5.12 

illustrates the distances of the fighter class aircraft from the unknown aircraft. 

 

 

Table 5.12 Fighter class/unknown aircraft I distances. 

Aircraft Type Distance from unknown aircraft 

 

Mig23 

5.64        

 

A-4 skyhawk 

31.09 

A-10 A ThunderboltII 7.71    

 

Alpha jet 

29.18    

 

F-5 freedom fighter 

34.77   
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F14 tomcat 

28.16    

 

Mirage 2000 

12.46     

 

F15 

5.83     

F35A 5.14 

 

 

 

 

Table 5.13 Rotary wing/unknown aircraft II distances. 

Aircraft Type Distance from unknown aircraft 

 

Apache 

3.99     

Huey cobra 4.70     

Eurocopter 4.27     

Dauphin 6.53     

Defender 9.30 

 

Therefore from the evaluated distances the unknown aircraft I type corresponds to type 

F35A while unknown aircraft II is like type Apache helicopter. 

 

Bayes classifier has several properties that make it surprisingly useful in practice. In 

particular, the decoupling of the class conditional feature distributions means that each 

distribution can be independently estimated as a one dimensional distribution. This in turn 

helps to alleviate problems stemming from dimensionality, such as the need for data sets that 

http://en.wikipedia.org/wiki/Curse_of_dimensionality
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scale exponentially with the number of features. Like all probabilistic classifiers under the 

MAP decision rule, it arrives at the correct classification as long as the correct class is more 

probable than any other class; hence class probabilities do not have to be estimated very 

well. In other words, the overall classifier is robust enough to ignore serious deficiencies in 

its underlying probability model [2]. 

 

5.5. Vector Quantization 

5.5.1.  Clustering  

In centroid-based clustering, clusters are represented by a central vector, which may not 

necessarily be a member of the data set. When the number of clusters is fixed to k, k-means 

clustering gives a formal definition as an optimization problem. That is to find the k cluster 

centers and to assign the objects to the nearest cluster center, such that the squared 

distances from the cluster are minimized. 

 

Table 5.14 illustrates vector features of 50 aircrafts that are used as clustering sample. They 

represent a sample of all aircraft classes. 

 

Table 5.14 Invariant moments for training patterns. 

 

  Moments (Фi) 

 Aircraft Image Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 Ф7 

1 Apache 7.17 16.67 19.74 21.88 42.80 30.21 47.13 

2 A5 7.15 20.28 22.41 24.50 48.06 34.64 50.20 

3 C5 7.03 16.22 18.13 20.34 39.70 28.63 45.69 

4 Mig23 7.19 17.79 19.52 21.71 42.44 30.76 44.87 

5 A-4 skyhawk 5.12 15.99 11.96 14.12 27.40 22.35 28.38 

6 A-10 A 

ThunderboltII 

5.66 17.92 19.37 21.06 41.53 30.33 42.21 

7 A-6 intruder 5.03 16.96 15.33 17.20 36.63 26.76 33.85 

http://en.wikipedia.org/wiki/K-means_clustering
http://en.wikipedia.org/wiki/K-means_clustering
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8 A-7 corsairII  5.74 15.39 17.00 19.11 37.62 27.15 38.31 

9 Alpha jet 4.97 15.32 12.47 14.67 28.43 22.56 29.99 

10 AMX 7.22 16.55 18.40 20.59 40.21 29.04 45.30 

11 Image 12 7.21 16.33 18.04 20.23 39.49 28.57 45.07 

12 F-5 freedom 

fighter 

5.15 12.27 10.92 13.19 25.46 20.04 26.86 

13 F14 tomcat  5.74 13.96 12.96 15.17 29.47 22.40 30.36 

14 F16 6.58 15.49 17.00 19.20 37.44 27.13 39.56 

15 F5 tiger 7.04 15.47 17.05 19.25 37.53 27.16 40.83 

16 Horten IX 6.25 13.11 12.73 14.92 28.92 21.71 33.07 

17 MIG 21 7.01 15.10 16.32 18.51 36.06 26.25 40.68 

18 MIG 31 7.08 16.43 17.74 19.94 38.91 28.33 41.19 

19 Mitsubishi A5M 7.05 16.15 18.22 20.48 39.95 28.73 44.10 

20 Northrop X-47B 6.58 19.48 21.01 22.86 44.96 32.61 46.08 

21 Rafale 7.14 16.60 18.70 20.90 40.82 29.37 43.25 

22 Saab viggen 7.05 16.01 17.19 19.38 37.80 27.57 40.12 

23 Sukhoi27 7.09 15.99 17.34 19.54 38.11 27.72 40.59 

24 X-45C 7.00 17.30 19.74 21.75 42.62 30.42 44.29 

25 YAK 130 6.59 15.96 17.87 20.03 39.17 28.21 40.34 

26 YF117 7.00 16.06 17.98 20.22 39.45 28.43 41.73 

27 RV-7A 7.28 18.06 20.91 23.11 45.23 32.14 50.76 

28 YAK 7 7.10 18.21 20.61 22.93 44.80 32.18 49.04 

29 VQ warbird 7.18 17.97 20.43 22.72 44.40 31.86 48.87 

30 M5 7.11 15.81 17.38 19.59 38.20 27.67 47.36 

31 Antonov 7.26 20.06 22.45 24.65 48.31 34.83 52.89 

32 Rama 7.28 17.63 19.74 21.93 42.89 30.91 48.26 

33 Mirage 2000 7.11 15.98 17.34 19.54 38.11 27.71 40.98 
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34 Buhligen 7.11 17.64 20.10 22.45 43.83 31.42 49.28 

35 Bellanca citabria 7.25 17.06 19.02 21.22 41.47 29.92 49.00 

36 Drf lufftrettung 7.21 16.33 18.04 20.23 39.49 28.57 45.07 

37 DRF 7.29 18.90 21.67 23.87 46.75 33.32 50.91 

38 A5 7.03 16.22 18.13 20.34 39.70 28.63 45.69 

39 Aerostar 7.27 19.38 21.74 23.95 46.90 33.79 51.52 

40 Wirelizard 7.21 17.09 19.07 21.28 41.57 29.99 47.94 

41 XL-RG 7.27 17.61 19.73 21.92 42.86 30.89 47.18 

42 123 RF 7.18 16.86 18.74 20.92 40.87 29.52 44.34 

43 CAW4F62P 7.19 16.27 19.63 21.86 42.71 29.99 51.30 

44 CA8Q39AI 7.27 16.94 18.85 21.05 41.12 29.68 45.76 

45 CAXF7IYK 7.00 19.91 21.43 23.22 45.66 33.32 48.57 

46 CAORC6ZQ 7.07 19.61 21.29 23.04 45.32 33.00 48.84 

47 B2 6.61 14.05 15.25 17.45 33.95 24.68 39.26 

48 Delta wing 7.04 16.56 18.53 20.73 40.48 29.18 45.06 

49 F15 7.15 16.44 19.71 22.03 43.01 30.24 49.53 

50 F35A 7.18 17.54 19.70 21.89 42.82 30.83 45.04 

 

Unknown aircraft I 6.19 16.11    21.76   23.28  45.85    33.31    46.41 

 

In table 5.15, starting with 5 clusters, the number of clusters are gradually increased to see if 

k-means can find a better grouping of the data. The total sum of distances decreases at each 

iteration as k-means reassigns points between clusters and recomputes cluster centroids. In 

this case, the minimum was reached after five iterations. A silhouette plot for this solution 

indicates that these five clusters give a better separation than one, two or three. However 

there would not be any need of a higher number of clusters than five as indicated by the 10 

clusters. This is shown on tables 5.16 and 5.18.  
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Table 5.15 a   k-means clustering 

 Aircraft Image class in 5 

clusters 

class in 10 

clusters 

1 Apache 5 9 

2 A5 3 8 

3 C5 1 7 

4 Mig23 1 4 

5 A-4 skyhawk 2 3 

6 A-10 A ThunderboltII 1 4 

7 A-6 intruder 4 5 

8 A-7 corsairII  4 10 

9 Alpha jet 2 3 

10 AMX 1 7 

11 Image 12 1 7 

12 F-5 freedom fighter 2 3 

13 F14 tomcat  2 3 

14 F16 4 10 

15 F5 tiger 4 10 

16 Horten IX 2 3 

17 MIG 21 4 10 

18 MIG 31 4 10 

19 Mitsubishi A5M 1 7 

20 Northrop X-47B 3 6 

21 Rafale 1 1 

22 Saab viggen 4 10 

23 Sukhoi27 4 10 

24 X-45C 1 4 
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25 YAK 130 4 10 

26 YF117 4 10 

27 RV-7A 3 6 

28 YAK 7 3 6 

29 VQ warbird 5 6 

30 M5 1 2 

31 Antonov 3 8 

32 Rama 5 9 

33 Mirage 2000 4 10 

34 Buhligen 5 9 

35 Bellanca citabria 5 9 

36 Drf lufftrettung 1 7 

37 DRF 3 8 

38 A5 1 7 

39 Aerostar 3 8 

40 Wirelizard 5 9 

41 XL-RG 5 9 

42 123 RF 1 1 

43 CAW4F62P 5 9 

44 CA8Q39AI 1 1 

45 CAXF7IYK 3 6 

46 CAORC6ZQ 3 6 

47 B2 4 5 

48 Delta wing 1 1 

49 F15 5 9 

50 F35A 1 4 
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Table 5.15 b   k-means clustering for unknown aircrafts 

Aircraft Image class in 5 clusters class in 10 clusters 

Unknown aircraft I                1            4 

Unknown aircraft II                5            9 

The k-means clustering is a partitioning method, k-means treats each observation in the data 

as an object having a location in space. It finds a partition in which objects within each cluster 

are as close to each other as possible, and as far from objects in other clusters as possible 

as shown in the data scatter figure 5.6. Each cluster in the partition is defined by its member 

objects and by its centroid, or center.  

 

Fig 5.6 Data scatter  

The centroid for each cluster is the point to which the sum of distances from all objects in that 

cluster is minimized, k-means uses an iterative algorithm that minimizes the sum of distances 

from each object to its cluster centroid, over all clusters. This algorithm moves objects 

between clusters until the sum cannot be decreased further. The result is a set of clusters 

that are as compact and well-separated as possible as illustrated in Table 5.16.         

Table 5.16 Cluster analysis 

CLUSTE

R NAME 

                               Feature vectors of Centroids Region

al 

4.5 5 5.5 6 6.5 7 7.5
12

13

14

15

16

17

18

19

20

21

 

 

4.9672,15.3168,12.4693,14.6741,28.4333,22.5569,29.9875

5.0326,16.9623,15.3296,17.1987,36.6321,26.7596,33.8529

5.1226,15.9883,11.9615,14.1234,27.4048,22.3531,28.3778

5.147,12.2681,10.922,13.1887,25.4586,20.0428,26.8567

5.6575,17.9239,19.3685,21.0637,41.5321,30.3261,42.2122

5.7388,15.3942,16.9992,19.1147,37.6194,27.1467,38.31

5.7431,13.9585,12.9588,15.166,29.4651,22.396,30.3618

6.2529,13.1119,12.7299,14.9238,28.9219,21.7099,33.0719

6.5772,19.4837,21.0117,22.8585,44.9557,32.6103,46.0845

6.5795,15.4917,17.003,19.1986,37.44,27.1314,39.5597

6.5916,15.9557,17.8735,20.0335,39.1701,28.211,40.3366

6.6132,14.0538,15.2462,17.4521,33.9469,24.6798,39.2648

6.9957,17.295,19.7378,21.7481,42.6212,30.4234,44.2918

6.9972,16.0617,17.9813,20.221,39.4533,28.4278,41.7328

6.9998,19.9056,21.4341,23.2191,45.6556,33.3219,48.5715

7.0117,15.1013,16.3163,18.5126,36.0642,26.252,40.6767

7.0341,16.2207,18.1325,20.3399,39.7008,28.6312,45.6856

7.0357,16.561,18.533,20.7279,40.4805,29.1781,45.0629

7.0435,15.4697,17.0509,19.2473,37.5289,27.1649,40.8285

7.0522,16.0148,17.1865,19.3809,37.7995,27.5699,40.1182

7.0528,16.1492,18.2228,20.479,39.9537,28.7261,44.0954

7.0664,19.6129,21.2931,23.0439,45.3218,33.0005,48.8419

7.08,16.4279,17.7435,19.9382,38.911,28.3295,41.1876

7.0851,15.9946,17.3427,19.5387,38.1121,27.7164,40.5879

7.0953,18.2058,20.6083,22.9251,44.8021,32.1817,49.0411

7.1103,15.9757,17.3413,19.538,38.1088,27.7054,40.9786

7.1108,15.8055,17.3835,19.5856,38.1995,27.6672,47.3622

7.113,17.641,20.1031,22.447,43.8347,31.4249,49.2752

7.1361,16.5988,18.7023,20.8974,40.8222,29.3675,43.2478

7.1487,20.2793,22.4129,24.4962,48.0614,34.6401,50.198

7.1499,16.4371,19.7132,22.025,43.0091,30.2437,49.5308

7.1729,16.6723,19.7413,21.8784,42.8038,30.2146,47.1336

7.1776,17.5437,19.701,21.8948,42.8153,30.8308,45.0371

7.1809,17.9672,20.4339,22.7161,44.4025,31.8551,48.8718

7.1841,16.8646,18.7361,20.9179,40.8663,29.518,44.3389

7.1921,17.7858,19.5198,21.7067,42.4404,30.7621,44.8716

7.1922,16.2656,19.6322,21.8554,42.7149,29.9882,51.2989

7.2064,17.0892,19.0674,21.2786,41.5705,29.9882,47.9394

7.2107,16.333,18.0353,20.2322,39.4912,28.572,45.0657

7.2107,16.3331,18.0354,20.2324,39.4915,28.5722,45.0672

7.2238,16.5452,18.3967,20.5945,40.213,29.0375,45.2979

7.2465,17.0632,19.023,21.2244,41.4673,29.9214,48.9954

7.2622,20.06,22.4514,24.6544,48.3096,34.8264,52.8906

7.2701,16.9379,18.8457,21.0479,41.115,29.6837,45.7595

7.2701,19.3823,21.7406,23.9494,46.8998,33.7869,51.5175

7.2729,17.6093,19.727,21.9225,42.8627,30.8879,47.1756

7.2766,18.0604,20.9122,23.1103,45.2309,32.1405,50.764

7.2789,17.6297,19.7419,21.9342,42.8875,30.9092,48.2559

7.2927,18.8974,21.6726,23.8694,46.7461,33.3181,50.9088

10

20

30

40

50

60
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Data 

 Ф1 Ф2 Ф3 Ф4 Ф5 Ф6 Ф7  

C1 7.02 19.00 21.53 23.54 46.18 33.31 49.52 16 

C2 7.04 16.74 18.63 20.79 40.63 29.33 44.87 5 

C3 7.20 17.15 19.69 21.92 42.84 30.60 48.72 9 

C4 6.66 15.74 16.95 19.11 37.57 27.26 39.79 12 

C5 5.45 14.13 12.21 14.42 27.94 21.81 29.73 10 

 

From the above results it is deduced that while the more precise Bayesian classifier classifies the 

given samples as to F35A and Apache aircraft respectively, the Vector Quantization clusters the 

unknown aircrafts in the same clusters with F35A and Apache aircraft respectively figure 5.7 illustrates 

the F35A aircraft. 

 

Fig 5.7 The F35A aircraft 

5.6.  Optimization 

5.6.1 Minimizing the Classification Error Probability 

The Bayesian classifier is optimal with respect to minimizing the classification error 

probability. Moving the threshold away from x0, in Figure 4.1, always increases the 

corresponding area under the curves. Let R1 be the region of the feature space in which we 

decide in favour of ω1 and R2 be the corresponding region for ω2. Then an error is made if x 

ε R1, although it belongs to ω2 or if x ε R2, although it belongs to ω1. That is, 

𝑃𝑒 = 𝑃(𝑥𝜀𝑅2, 𝜔1) + 𝑃(𝑥𝜀𝑅1, 𝜔2)                   5.6 

 

Where Pe is the joint probability of two events. This becomes, 
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𝑃𝑒 = 𝑃(𝑥𝜀𝑅2/𝜔1)𝑃(𝜔1) + 𝑃(𝑥𝜀𝑅1/𝜔2)𝑃(𝜔2)                                 5.7 

 

=𝑃(𝜔1) ∫ 𝑝
𝑅2

(𝑥 𝜔1⁄ ) 𝑑𝑥 + 𝑃(𝜔2) ∫ 𝑝
𝑅1

(𝑥 𝜔2⁄ ) 𝑑𝑥                           5.8 

Or using the Bayes rule 

 

𝑃𝑒 = ∫ 𝑃(𝜔1 𝑥⁄ )𝑝
𝑅2

(𝑥) 𝑑𝑥 ∫ 𝑃(𝜔2 𝑥⁄ )𝑝
𝑅1

(𝑥) 𝑑𝑥                                                       

         5.9  

It is now easy to see that the error is minimized if the partitioning regions R1 and R2 of the 

feature space are chosen so that 

 

𝑅1: 𝑃(𝜔1 𝑥⁄ ) > 𝑃(𝜔2 𝑥⁄ )        𝑅2: 𝑃(𝜔2 𝑥⁄ ) > 𝑃(𝜔1 𝑥⁄ )      

                       5.10 

Indeed, since the union of the regions R1 and R2 covers all the space, from the definition of 

a probability density function we have: 

 

∫ 𝑃(𝜔1 𝑥⁄ )𝑝
𝑅1

(𝑥) 𝑑𝑥 + ∫ 𝑃(𝜔1 𝑥⁄ )𝑝
𝑅2

(𝑥) 𝑑𝑥 = 𝑃(𝜔1)                    5.11 

Therefore 

𝑃𝑒 = 𝑃(𝜔1) − ∫ (𝑃(𝜔1 𝑥⁄ ) −
𝑅1

𝑃(𝜔2 𝑥⁄ ))𝑝(𝑥)𝑑𝑥                    5.12 

This suggests that the probability of error is minimized if R1 is the region of space in 

which  P(ω1 x⁄ ) > P(ω2 x⁄ ). Then, R2 becomes the region where the reverse is true. 

Generalizations to the multiclass case are straightforward. In a classification task with M 

classes, ω1,ω2, ω3, ω4 … . . ωM        an unknown pattern, represented by the feature vector x, is 

assigned to class ωi  if  

P (𝜔𝑖|x) > P (𝜔𝑗|x)                  5.13 

It turns out that such a choice also minimises the classification error probability. 
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5.6.2.  Creating Clusters and Determining Separation                To show how well-

separated the resulting clusters are, a silhouette is plotted using the cluster indices output 

from k-means. The silhouette plot displays a measure of how close each point in one cluster 

is to points in the neighbouring clusters. This measure ranges from +1, indicating points that 

are very distant from neighbouring clusters, through 0, indicating points that are not distinctly 

in one cluster or another, to -1, indicating points that are obviously assigned to the wrong 

cluster. This can be observed in figures 5.8 and 5.9.  

 

      Cluster 

Fig 5.8    Five Clusters silhouette 

From the silhouette plot, most points in the clusters have a large silhouette value, greater than 0.6, 

indicating that the cluster is somewhat separated from neighbouring clusters. However, the third and 

fifth clusters contain few points with low silhouette values. This means they are near the borders of 

other clusters. 
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Cluster 

Fig 5.9 Ten cluster silhouette 

The silhouette figure 5.9 indicates that the output in cluster 6 is assigned to very near the border on 

the other side of the cluster where it is situated. 

5.63. Determining the Correct Number of Clusters        The number of 

clusters is increased to see if k-means can find a better grouping of the data, by minimizing 

the sum of the distances between the clusters. Information about each iteration is given in 

table 5.17  

 

 

 

Table 5.17 Distance minimization of 10 clusters. 

Iteration Distance sum 

1 862.23 
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2 595.66 

3 543.87 

4   441.75 

5 337.81 

6 337.81 

   Table 5.18 Distance minimization of 5 clusters. 

Iteration Distance sum 

1 223.49 

2 185.66 

3 164.9 

4 158.13 

5 153.76 

6 153.76 

 The tables above show that after 6 iterations the total sum of distances from the centroids 

is 337.807 if ten cluster are used and the mean separation is 0.6192. At the same time if 

five clusters are used and after 5 iterations the total sum of distances from the centroids is 

153.757 while the mean separation is 0.6419. 

               

It can be seen that with 10 clusters minimization of the sums and thus of the centroids is 

reached faster after only 5 iterations. 

The total sum of distances is equal to 153.757 and the mean separation is equal to 

0.6192.In conclusion it is seen that 5 clusters give a better separation than 10 clusters. It 

would therefore be unnecessary to use more than 5 clusters for the classification. 

5.6.4.  Performance evaluation in respect to the probability of classification error.  

         Error Counting Approach: 



92 
 

Consider an M class classification task. The objective is to estimate the classification error 

probability by testing the “correct/false” response of an independently designed classifier 

using a finite set of N test feature vectors. In this case every class is a test feature vector. Let 

Ni be the vectors in each class with 

 

∑ 𝑁𝑖

𝑀

𝑖

= 𝑁 

                    5.14 

And Pi the corresponding error probability for class ωi. Assuming independence among the 

feature vectors, the probability that ki vectors from class ωi being misclassified is given by the 

binomial distribution [5].  

𝑃(𝑘𝑖𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑) =  (
𝑁𝑖

𝑘𝑖
) 𝑃𝑖

𝑘𝑖(1 − 𝑃𝑖)𝑁𝑖−𝑘𝑖  

            5.15 

In our case the probabilities Pi are not known. An estimate 𝑃�̂� results if we maximize with 

respect to Pi. Differentiating and equating to zero results in the estimate, 

 𝑃�̂� =
𝑘𝑖

𝑁𝑖
 

                      5.16 

 

Thus, the total error probability estimate is given by:  

𝑃�̂� =  ∑ P(ωi)
𝑘𝑖

𝑁𝑖

M

i=1

 

                                     5.17 

Where P (ωi) is the occurrence probability of class ωi. And 𝑃�̂� is an unbiased estimate of the 

true error probability. The minimum size of the test data set, N, is derived in terms of the true 

error probability P of the already designed classifier. Thus, if very small data sets are used 

for testing the performance of a classifier, the resulting estimate may not be reliable. 
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5.6.5. Data Set Finite Size Exploitation: 

    Resubstitution Method:            The same data set 

is used, first for training and then for testing. One need not go into mathematical details in 

order to see that such a procedure is not very fair. Indeed, this is justified by the mathematical 

analysis. The performance of this method were analyzed using normal distributions. The 

analysis results show that this method provides an optimistic estimate of the true error 

probability. The amount of bias of the resubstitution estimate is a function of the ratio N/l, that 

is, the data set size and the dimension of the feature space. Furthermore, the variance of the 

estimate is inversely proportional to the data set size N. In words, in order to obtain a 

reasonably good estimate, N as well as the ratio 
𝑁

𝑙
   must be large enough. The results from 

the analysis and the related simulations show that 
𝑁

𝑙
  should be at least three and that an 

upper bound of the variance is 
1

8
𝑁. The larger the ratio 

𝑁

𝑙
 the more comfortable the analysis 

[5].  

In this thesis the data size     N=108 

            Data dimension l=7 

                           Therefore, N/l=15.7  

Upper bound of the variance    = 1/8N    

      = 13.5 

5.6.6.    Holdout Method:            The available data 

set is divided into two subsets, one for training and one for testing. The major drawback of 

this technique is that it reduces the size for both the training and the testing data. Another 

problem is to decide how many of the N available data will be allocated to the training set and 

how many to the test set. A finite data set introduces an excess mean error and a variance 

around it, as different data sets, of the same size, are used for the design. Both of these 

quantities depend on the size of the training set. The classification error probability of a 

classifier, designed using a finite training data set, N, is always higher than the corresponding 

asymptotic error probability (N →∞). This excess error decreases as N increases. On the 

other hand, the variance of the error counting depends on the size of the test set, and for 

small test data sets the estimates can be unreliable. Efforts made to optimize the respective 

sizes of the two sets have not yet led to practical results [5]. 
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5.6.7. Leave-One-Out Method:          This method 

alleviates the lack of independence between the training and test sets in the resubstitution 

method and at the same time frees itself from the dilemma associated with the holdout 

method. The training is performed using N-1 samples, and the test is carried out using the 

excluded sample. If this is misclassified, an error is counted. This is repeated N times, each 

time excluding a different sample. The total number of errors leads to the estimation of the 

classification error probability. Thus, training is achieved using, basically, all samples, and at 

the same time independence between training and test sets is maintained. The major 

disadvantage of the technique is its high computational complexity. For certain types of 

classifiers (i.e., linear or quadratic) it turns out that a simple relation exists between the leave-

one-out and the resubstitution. Thus, in such cases the former estimate is obtained using the 

latter method with some computationally simple modifications. The holdout error estimate, 

for a Bayesian classifier, is an upper bound of the true Bayesian error. In contrast, the 

resubstitution error estimate is a lower bound of the Bayesian error. 

i.  𝑃𝑒
𝑁              Denotes the classification error probability for a classifier    designed 

using a finite set of N training samples                

ii.  𝑃𝑒
−𝑁           Denotes the average E [Pe

N ] over all possible training sets of size N. 

iii. Pe         is the average asymptotic error as N →∞. 

The holdout and leave-one-out methods (for statistically independent samples) provide an 

unbiased estimate of𝑃𝑒
−𝑁. In contrast, the resubstitution method provides a biased 

(underestimated) estimate of 𝑃𝑒
−𝑁  as the data size N increases, both curves tend to approach 

the asymptotic Pe. As illustrated on figure 5.10 
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Fig 5.10 Leave-One-Out method [25] 

 

5.6.8. Error Matrix, Recall and Precision 

An error Matrix is a visual performance assessment of a classification algorithm in the form 

of a table layout or matrix. Each column of the matrix represents predicted classifications and 

each row represents actual defined classifications. This representation is a useful way to help 

evaluate a classifier model. A well behaved model should produce consistent percentage 

correctness numbers for accuracy, recall, precision and an F measure. If it does not, there is 

cause to further evaluate the data used to train the model and the data used to test the model. 

This is a helpful way to evaluate the classifier. The classification system has been trained to 

distinguish between aircrafts, an error table will summarize the results of testing the 

algorithm. Using the sample of 108 aircrafts the error table is as illustrated in table 5.19. 

  

Table 5.19 Error table 

 Aircraft Identified as 

   

1 Apache Apache 

2 A5 A5 

3 C5 C5 

4 Mig23 Mig23 

5 A-4 skyhawk A-4 skyhawk 
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6 A-10 A ThunderboltII A-10 A ThunderboltII 

7 A-6 intruder A-6 intruder 

8 A-7 corsairII  YAK 7 

9 Alpha jet Alpha jet 

10 AMX AMX 

11 Image 12 Image 12 

12 F-5 freedom fighter F-5 freedom fighter 

13 F14 tomcat  F14 tomcat  

14 F16 F16 

15 F5 tiger F5 tiger 

16 Horten IX Horten IX 

17 MIG 21 MIG 21 

18 MIG 31 MIG 31 

19 Mitsubishi A5M Mitsubishi A5M 

20 Northrop X-47B Northrop X-47B 

21 Rafale Rafale 

22 Saab viggen Saab viggen 

23 Sukhoi27 Sukhoi27 

24 X-45C X-45C 

25 YAK 130 YAK 130 

26 YF117 YF117 

27 RV-7A RV-7A 

28 YAK 7 A-7 corsairII  

29 VQ warbird VQ warbird 

30 M5 M5 

31 Antonov Antonov 

32 Rama Rama 

33 Mirage 2000 Mirage 2000 
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34 Buhligen Buhligen 

35 Bellanca citabria Bellanca citabria 

36 Drf lufftrettung Drf lufftrettung 

37 DRF DRF 

38 A5 A5 

39 Aerostar Aerostar 

40 Wirelizard Wirelizard 

41 XL-RG XL-RG 

42 123 RF 123 RF 

43 CAW4F62P CAW4F62P 

44 CA8Q39AI CA8Q39AI 

45 CAXF7IYK CAXF7IYK 

46 CAORC6ZQ CAORC6ZQ 

47 B2 B2 

48 Delta wing Delta wing 

49 F15 F15 

50 F35A F35A 

Columns represent predictions made by the algorithm. In the first row, one aircraft was classified 

correctly as Apache. The 8th and 28th aircrafts were incorrectly classified as the 28th and 8th aircrafts 

respectively.The following two aircrafts figure 5.11(a) and 5.11(b). 

                         

Fig 5.11 (a) Yak 7 aircraft        (b) A7 Corsair II 

Accuracy is defined as the correct classifications divided by all classifications. From the 

above table, 
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True Predictions = 48 

                    False Predictions = 2 

      Accuracy = 0.96 

Recall is defined as the number of correct classifications penalized by the number of missed 

items. 

 

     Recall = 48/50 

                      =0.96 

 

Precision is defined as the correct classifications penalized by the number of incorrect 

classifications. 

Precision = 0.96 

F Measure (F): 

F measure is a derived effectiveness measurement. The resultant value is interpreted as a 

weighted average of the precision and recall. The best value is 1 and the worst is 0. 

F = 2((precision*recall) / (precision+recall)). 

F = 2((0.96*0.96)/ (0.96+0.96)). 

F = 0.96 

All the data is reasonably balanced across the table showing a majority of correct 

classifications. 
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CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

6.1.  The Classifier               Statistical pattern 

recognition is a term used to cover all stages of an investigation from problem formulation 

and data collection through to discrimination and classification, assessment of results and 

interpretation. The topic of invariant moments feature extraction classification was discussed 

showing that the application based on moment’s features extraction separate from Bayesian 

classifiers has been successful. As previously mentioned work carried out by A. Kadir et al 

[14] successfully    identified plant leaves using leaf shape features. Likewise L. Keyes and 

A.C. Winstanley [15] in a paper titled “Topographic object recognition through shape” 

successfully presented feature coding and recognition of topographic data. Tables 5.4 

illustrates the invariant moments of the fighter class aircrafts. Table 5.10 illustrates the 

invariant features of unknown aircrafts and it would have sufficed to compare the distance 

metrics between the unknown aircrafts and all the other classes of aircrafts for classification. 

However the two applications have not yet previously been combined to see how successful 

they could be. The main topic concerns classifier design: given a training set of patterns of 

known class, a classifier has been designed that is optimal for the expected operating 

conditions (the test conditions). The classifier is not too complex (there are too many free 

parameters) so as not to model noise in the design set i.e. over-fitting. The classifier is 

complex enough, to capture structure in the data. Several training factors could influence the 

accuracy of the Bayesian classifier and the training images could themselves be a source of 

uncertainty. 

 



100 
 

6.2. Misrecognition              An error or 

misrecognition occurs when the classifier assigns a pattern to one class when it actually 

belongs to another. It is the uncertain classifications which mainly contribute to the error rate. 

Therefore, rejecting a pattern (withholding a decision) may lead to a reduction in the error 

rate. This rejected pattern may be discarded, or set aside until further information allows a 

decision to be made. Although the option to reject may alleviate or remove the problem of a 

high misrecognition rate, some otherwise correct classifications are also converted into 

rejects.  Therefore trade-offs should be considered between error rate and reject rate. A 

clustering algorithm can be employed to reveal the groups in which feature vectors are 

clustered in the N-dimensional feature space. From the results it can be seen that the 

clustering vector quantization method can be used for a fast hand classification that is not 

very precise and the Bayesian classification can be used for a precise classification. However 

the precision of the VQ method can be augmented by increasing the number of codewords 

in the Voronoi diagram. These is clearly deduced from the following results. 

6.3 Recommendations 

Based on the results presented here, success can be claimed in demonstrating shape 

classification by the recognition and feature coding of satellite aircraft images using a 

Bayesian approach and invariant moments. 

However, to further investigate and develop this project the following recommendations for 

the future extension of this research are made: 

(i) Of most obvious need of improvement is the graphics resolution of the satellite images 

that are to be used.  

(ii) More trials could be performed on more data this would generate fuller results for 

supervised learning using the statistical analysis.  

(iii) Extend further the types of feature descriptors utilized. 

(iv) Finally, the aircraft could be represented as a three dimensional model, and 

manipulated through homogeneous transformations. This would allow the aircraft to 

be scaled, translated, and rotated, and then displayed in any of an infinite number of 

aspects. 
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APPENDIX 

This appendix is divided into two parts. Part A1 contains a paper that was published during 

this research [48] and information about the conference. Part A2 presents the MATLAB 

code simulations that were used to generate the results presented in chapter 5 of this 

thesis.  
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APPENDIX A 

MATLAB CODE 

 

A1 Boundary Signature 

% Import an image from any supported graphics image file format, in any % of the supported 
bit depths,  
% this example reads a truecolour image into the MATLAB workspace as % the variable 
RGB. 
b = imread ('C: \Users\wambaa\Desktop\AIRCRAFTS DATABASE\X-45-C.jpg'); 
% B =bwboundaries (b) traces the exterior boundaries of objects, % eliminating boundaries 
of holes inside these objects, in the binary image % b. 
[B, L] = bwboundaries (b,'noholes'); 
% Transform Cartesian coordinates to polar or cylindrical 
for k = 1: length (B) 
boundary = B {k}; 
[theta, rho] = cart2pol ((boundary (: 2)-280),-(boundary (: 1)-280)); 
% Convert angles to degrees. 
plot (theta*180/pi,rho,'k','LineWidth',0.5) 
end 
 

A2  Image Enhancement 

% Read and show the image. 
I = imread('C:\Users\wambaa\Desktop\AIRCRAFTS DATABASE\X-45-C.jpg'); 
imshow(I); 
% morphologically open image. 
% imopen performs morphological opening on the grayscale or binary  
% image with a structuring element  
% the argument must be a single structuring element object, as opposed % to an array of 
objects.  
% Morphological open operation is an erosion followed by a dilation, using % the same 
structuring element  
% for both operations. 
background = imopen (I, strel('disk',30)); 
% Display the Background Approximation as a Surface figure, surf (double (background (1:8: 
end, 1:8: end))), zlim ([0 255]); 
set (gca,'ydir','reverse'); 
I2 = I - background; 
figure, imshow (I2); 
I3 = imadjust (I2); 
figure, imshow (I3); 
level = graythresh (I3); 
bw = im2bw (I3, level); 
bw = bwareaopen (bw, 50); 
imshow (bw); 
title ('Binary Image') 
 
 
A3 Edge Enhancement 

% creates a predefined 2-D filter h of the specified type. 
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B=imread ('C: \Users\wambaa\Desktop\AIRCRAFTS DATABASE\X-45-C.jpg') 
G=fspecial ('unsharp', 0.5); 
% filters the data with a two-dimensional FIR filter. It computes the result, using % two-
dimensional  
% correlation, and returns the central part of the correlation that is the same size % as X. 
BG = filter2 (G, B) 
Imshow (B), figure, imshow (BG/255) 
 

A4 Gray Threshold 

B = imread ('C: \Users\wambaa\Desktop\AIRCRAFTS DATABASE\X-45-C.jpg'); 
imshow (B); 
% Create a binary version of the image so you can use toolbox functions. 
threshold = graythresh (B, []); 
figure, imshow (threshold); 
 

A5  Median Adaptive Filter 

% 2-D median filtering 
B=imread ('C: \Users\wambaa\Desktop\AIRCRAFTS DATABASE\X-45-C.jpg'); 
L = medfilt2 (B, [3 3]); 
figure, imshow (L) 
 
A6 Lee Adaptive filter 
 
function outputImage=fcnFirstOrderStatisticsFilter (inputImage, mask) 
%fcnFirstOrderStatisticsFilter performs noise filtering on an image based 
% on using First Order Local Statistics around a prespecified pixel 
% neighbourhood. 
InputImage=imread('C:\Users\Wambaa\Desktop\AIRCRAFTS 
DATABASE\cameraman001.tif'); 
imshow (inputImage); 
ImageType=class (inputImage); 
mask = getnhood (strel ('square', 5)); 
windowSize=size(mask); 
InputImage=padarray(inputImage,[floor(windowSize(1)/2),floor(windowSize(2)/2)],'symmetri
c','both'); 
inputImage=double((inputImage)); 
[nRows,nCols]=size (inputImage); 
localMean=zeros([nRows nCols]); 
localVar=zeros([nRows nCols]); 
k=zeros(nRows, nCols); 
for i=ceil(windowSize(1)/2):nRows-floor(windowSize(1)/2) 
    for j=ceil(windowSize(2)/2):nCols-floor(windowSize(2)/2) 
        localNeighborhood=inputImage(i-floor(windowSize(1)/2):i+floor(windowSize(1)/2),... 
            j-floor(windowSize(2)/2):j+floor(windowSize(2)/2)); 
        localNeighborhood =localNeighborhood(mask); 
        localMean(i,j)= mean(localNeighborhood(:)); 
        localVar(i,j) = var(localNeighborhood(:)); 
    end 
end 
localNoiseVar=localVar(ceil(windowSize(1)/2):nRows-floor(windowSize(1)/2),... 
ceil(windowSize(2)/2):nCols-floor(windowSize(2)/2))./(localMean(ceil(windowSize(1)/2):... 
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nRows-floor(windowSize(1)/2),ceil(windowSize(2)/2):nCols-floor(windowSize(2)/2))+eps); 
globalNoiseVar = sum(localNoiseVar(:)); 
k(ceil(windowSize(1)/2):nRows-floor(windowSize(1)/2),ceil(windowSize(2)/2):nCols-
floor(windowSize(2)/2))... 
=(1-((localMean(ceil(windowSize(1)/2):nRows-floor(windowSize(1)/2),... 
ceil(windowSize(2)/2):nCols-
floor(windowSize(2)/2)).^2).*(localVar(ceil(windowSize(1)/2):nRows-
floor(windowSize(1)/2),... 
ceil(windowSize(2)/2):nCols-
floor(windowSize(2)/2))))./(localVar(ceil(windowSize(1)/2):nRows-floor(windowSize(1)/2),... 
ceil(windowSize(2)/2):nCols-floor(windowSize(2)/2))*(1+globalNoiseVar))); 
outputImage = (localMean(ceil(windowSize(1)/2):nRows-floor(windowSize(1)/2),... 
ceil(windowSize(2)/2):nCols-floor(windowSize(2)/2))+(k(ceil(windowSize(1)/2):nRows-
floor(windowSize(1)/2),... 
ceil(windowSize(2)/2):nCols-
floor(windowSize(2)/2)).*(inputImage(ceil(windowSize(1)/2):nRows-
floor(windowSize(1)/2),... 
ceil(windowSize(2)/2):nCols-floor(windowSize(2)/2))-
localMean(ceil(windowSize(1)/2):nRows-floor(windowSize(1)/2),... 
ceil(windowSize(2)/2):nCols-floor(windowSize(2)/2))))); 
outputImage = cast(outputImage,imageType); 
imshow(outputImage) 
 
 
 
A7 MSE/ PSNR  
 
% PSNR of a grayscale image. The PSNR block computes the peak signal-to-noise ratio, 
% in decibels, between two images. This ratio is often used as a quality measurement 
% between the original and a filtered image. The higher the PSNR, the better the quality 
% of the filtered, or reconstructed image. 
% Clean up. 
clc; 
close all; 
clear; 
workspace; 
format long g; 
format compact; 
fontSize=20; 
% Get Images 
grayImage=imread('C:\Users\Wambaa\Desktop\Phone Memory 
Copy\DSP\Images\standard_test_images\cameraman.tif'); 
[rows columns]=size(grayImage); 
% Display the first image 
figure;imshow(grayImage,[]); 
title('Filtered Gray scale Image','FontSize',fontSize); 
set(gcf,'Position',get(0,'Screensize'));% Maximum figure. 
% Get a second image by adding noise to the first image. 
noisyImage=imnoise(grayImage,'speckle',0.03); 
% Display the second image 
figure;imshow(noisyImage,[]); 
title('Noisy Gray Scale Image','FontSize',fontSize); 
% PSNR Calculation 
% First The Square Error Image. 
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squaredErrorImage = (double(noisyImage)-double(grayImage)).^2; 
% Mean Squared Error. 
mse = sum(sum(squaredErrorImage))/(rows*columns); 
PSNR = 10*log10(256^2/mse); 
message = sprintf(' The mean square error is %.2f.\n The PSNR = %.2f',mse,PSNR) 
msgbox(message) 
 
 
A8  Features Extraction 
A8.1.  Invariant Moments 
 
function phi = invmoments(F) 
% Author: Wambaa D.G. 
% invmoments computes invariant moments of an image. 
% phi= invmoments computes the moment invariants of the image 
% F.phi is a seven element row vector containing  
% the moment invariants  
% F must be a 2-D,real ,nonsparse,numeric or logic matrix. 
F=imread('C:\Users\wambaa\Desktop\AIRCRAFTS DATABASE\X-45-C.jpg'); 
if (ndims(F) ~= 2) || issparse(F) || ~isreal(F) || ~(isnumeric(F) || ... 
 islogical(F)) 
error(['F must be a 2-D,real,non-sparse,numeric or logical '... 
'matrix.']); 
end 
F = double(F); 
phi = compute_phi(compute_eta(compute_m(F))); 
%........................................................................% 
function m = compute_m(F) 
[M,N] = size(F); 
[x,y] = meshgrid(1:N,1:M); 
% Turn x,y, and F into column vectors to make the summation a bit 
% easier to compute in the folowing. 
x = x(:); 
y = y(:); 
F = F(:); 
m.m00 = sum(F); 
% Protect against divide by zero warnings. 
if (m.m00 == 0) 
    m.m00 = eps; 
end 
% The other central moments: 
m.m10 = sum(x.*F); 
m.m01 = sum(y.*F); 
m.m11 = sum(x.*y.*F); 
m.m20 = sum(x.^2.*F); 
m.m02 = sum(y.^2.*F); 
m.m30 = sum(x.^3.*F); 
m.m03 = sum(y.^3.*F); 
m.m12 = sum(x.*y.^2.*F); 
m.m21 = sum(x.^2.*y.*F); 
%............................................% 
function e = compute_eta(m) 
xbar = m.m10/m.m00; 
ybar = m.m01/m.m00; 
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e.eta11 = (m.m11-ybar*m.m10)/m.m00^2; 
e.eta20 = (m.m20-xbar*m.m10)/m.m00^2;  
e.eta02 = (m.m02-ybar*m.m01)/m.m00^2; 
e.eta30 = (m.m30-3*xbar*m.m20+2*xbar^2*m.m10)/m.m00^2.5; 
e.eta03 = (m.m03-3*ybar*m.m02+2*ybar^2*m.m01)/m.m00^2.5; 
e.eta21 = (m.m21-2*xbar*m.m11-ybar*m.m20+2*xbar^2*m.m10)/m.m00^2.5; 
e.eta12 = (m.m12-2*ybar*m.m11-xbar*m.m02+2*ybar^2*m.m10)/m.m00^2.5; 
%...................................................................% 
function phi = compute_phi(e) 
phi(1)= abs(log(e.eta20+e.eta02)); 
phi(2)=abs(log((e.eta20-e.eta02)^2+4*e.eta11^2)); 
phi(3)=abs(log((e.eta30-3*e.eta12)^2+(3*e.eta21-e.eta03)^2)); 
phi(4)=abs(log((e.eta30+3*e.eta12)^2+(e.eta21+e.eta03)^2)); 
phi(5)=abs(log((e.eta30-3*e.eta12)*(e.eta30+e.eta12)*... 
 ((e.eta30+e.eta12)^2-3*(e.eta21+e.eta03)^2)+... 
 (3*e.eta21-e.eta03)*(e.eta21+e.eta03)*... 
 (3*(e.eta30+e.eta12)^2-(e.eta21+e.eta03)^2))); 
phi(6)=abs(log((e.eta20-e.eta02)*((e.eta30+e.eta12)^2-... 
 (e.eta21+e.eta03)^2)+... 
  4*e.eta11*(e.eta30+e.eta12)*(e.eta21+e.eta03))); 
phi(7)=abs(log((3*e.eta21-e.eta03)*(e.eta30+e.eta12)*... 
 ((e.eta30+e.eta12)^2-3*(e.eta21+e.eta03)^2)+... 
 (3*e.eta12-e.eta30)*(e.eta21+e.eta03)*... 
 (3*(e.eta30+e.eta12)^2-(e.eta21+e.eta03)^2))).'; 
%Note that the absolute value of the log was used instead of the moment invariant %values 
themselves. This is so as to reduce the dynamic range and the absolute %values avoids 
having to deal with the complex numbers that result when %computing log of negative 
moments invariants because interest lies in the %invariance of the moments and not the sign.  
  

A9  Euclidean Distance 
function d = DistMatrix(A,B) 
% Return distance matrix between point A(x1, x2, x3, x4, x5, x6, x7) and  
% B(y1, y2, y3, y4, y5, y6, y7) 
% Author: Wambaa D.G,. 
[hA,wA] = size(A); 
[hB,wB] = size(B); 
if hA == 1 & hB == 1 
d=sqrt(dot((A-B),(A-B))); 
else 
C= [ones(1,hB);zeros(1,hB)]; 
D=flipud(C); 
E= [ones(1,hB);zeros(1,hB)]; 
F=flipud(C); 
G= [ones(1,hB);zeros(1,hB)]; 
H=flipud(C); 
I= [ones(1,hB);zeros(1,hB)]; 
J= [ones(1,hA);zeros(1,hA)]; 
K=flipud(J); 
L= [ones(1,hA);zeros(1,hA)]; 
M=flipud(L); 
N= [ones(1,hA);zeros(1,hA)]; 
O=flipud(N); 
P= [ones(1,hA);zeros(1,hA)]; 
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Q=A*C; R=A*D; S=A*E; T=A*F;  U=A*G; V=A*H; W=A*I; X=B*J; Y=B*K; Z=B*L; AA=B*M; 
AB=B*N; AC=B*O; AD=B*P; 
d=sqrt((Q-X’).^2+(R-Y’).^2+(S-Z’).^2+(T-AA’).^2+(U-AB’).^2+(V-C’).^2…... 
+(W-AD’).^2 
end 
 
 
 

A10 Classification  

A10.1. Covariance Matrix 
function  [C, M] = covmatrix(X) 
% COVMATRIX  Computes the covariance matrix of a vector population. 
% [C,M] = COVMATRIX (X) computes the covariance matrix C and the mean  
% vector M of a    
% vector population organized as the rows of matrix X. C is of size N by N and M % is of size 
N by  
% 1 , where N is the dimension of the vectors  ( the number of columns of X). 
[K,n] = size(X); 
X = double(X); 
If n==1 % Handle special case 
C = 0; 
M = X; 
else 
% Compare an unbiased estimate of M. 
M = sum(X,1)/K; 
% Substract the mean from each row of X. 
X = X-M(ones (K,1), :; 
% Compute an unbiased estimate of C. Note that the product is  
%  X’*X because the vectors are rows of X. 
C = (X’*X)/(K-1); 
M = M’; % Convert b to a column vector. 
end 
  
 
 

A10.2. Bayesian Classification 

function d = bayesgauss(X, CA, MA P) 

% BAYESGAUSS Bayes Classifier for Gaussian Patterns. 
% D= BAYESGAUSS(X, CA, MA, P) computes the Bayes decision 
% functions of the patterns in the rows of array X using the covariance  
% matrices   and mean vectors provided in the arrays CA and MA.  
% CA is an array of n-by-n-by-W, where n is the dimensionality of the  
% patterns and W is the number of classes. Array MA is of dimension  
% n-by-W i.e the columns of MA are the individual mean vectors.  
% The location of the covariance matrices and the mean vectors in their  
% respective arrays must correspond. %There must be a covariance  
% matrix and a mean vector for each pattern class, even if some of the %covariance matrices 
and or mean vectors are equal. X is an array of  
% k-by-n, where k is the total number of patterns to be classified i.e the  
% pattern vectors are rows of X. P is a 1-by-W  array , containing 
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% the probabilities of occurrence of each class. If P is not included in the % argument list, 
the classes are assumed to be equally likely.The output % D is a column vector of length K. 
Its Ith  element is the class number  
% assigned to the Ith  vector in X during Bayes classification. 
d = [ ]; % initialize d. 
error(nargchk(3,4,nargin)) % verify correct number of inputs. 
n =  size(CA, 1); % Dimensions of patterns 
% Protect against the possibility that the class number is included as an  
% (n+1)th  element of the  vectors. 
X = double(X(:, 1:n)); 
W = size(CA,3);% Number of pattern classes. 
K = size(X,1); % Number of patterns to classify. 
if nargin ==3 
P(1:W) = 1/W; %Classes assumed equally likely. 
else 
if  sum(P) ~= 1 
error(‘ Elements of P must sum to 1.’); 
end 
end 
% Compute the determinants. 
for J = 1:W 

DM(J) = det(CA(:, :, J)); 

end 
% Compute inverses , using right division (IM/CA), where IM =  
% eye(size(CA, 1 )) % is the n-by-n % identity matrix .Reuse  CA to  
% conserve memory.  
IM = eye(size(CA,1)); 
for J = 1:W 
CA(:, :,J) = IM/CA(;, :, J); 
end  
% Evaluate the decision functions. The sum terms are the Mahalanobis  
% distances. 
MA = MA’ ; % Organize the mean vectors as rows. 

for  I = 1:K 

for J = 1:W 
m = MA(J, ;); 
Y = X-m(ones(size(X,1),1), :) ; 
if P(J) == 0 
D(I, J) = -inf; 
else  
D(I, J) = log(P(J)) – 0.5*log(DM(J)) … 
-0.5*sum(Y(I, :) * (CA(:, :, J) * (I, :) ‘)); 
end 
end 
end 
% Find the maximum in each row of D. These maxima give the class of  
% each pattern : 
for  I = 1:K 
J = find(D(I, :) == max(D(I, : ))); 
D(I, :) = J(:); 
End 
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% when there are multiple maxima the decision is arbitrary .Pick the first % one. 

D = d(:, 1); 
 

 

 

 

  

APPENDIX B 

B.1 Vector Quantization                k-means uses a two-

phase iterative algorithm to minimize the sum of point-to-centroid distances, summed over all k clusters: 

1. The first phase uses batch updates, where each iteration consists of reassigning points to their 

nearest cluster centroid, all at once, followed by recalculation of cluster centroids. This phase 

occasionally does not converge to solution that is a local minimum, that is, a partition of the 

data where moving any single point to a different cluster increases the total sum of distances. 

This is more likely for small data sets. The batch phase is fast, but potentially only approximates 

a solution as a starting point for the second phase.  

2. The second phase uses online updates, where points are individually reassigned if doing so will 

reduce the sum of distances, and cluster centroids are recomputed after each reassignment. 

Each iteration during the second phase consists of one pass though all the points. The second 

phase will converge to a local minimum, although there may be other local minima with lower 

total sum of distances. The problem of finding the global minimum can only be solved in 

general by an exhaustive (or clever, or lucky) choice of starting points, but using several 

replicates with random starting points typically results in a solution that is a global minimum. 

3. IDX = kmeans(X,k) partitions the points in the n-by-p data matrix X into k clusters. This 

iterative partitioning minimizes the sum, over all clusters, of the within-cluster sums of point-

to-cluster-centroid distances. Rows of X correspond to points, columns correspond to variables. 

k-means returns an n-by-1 vector IDX containing the cluster indices of each point. By default, 

kmeans uses squared Euclidean distances. 

4. [IDX,C] = kmeans(X,k) returns the k cluster centroid locations in the k-by-p matrix C. 

5. [IDX,C,sumd] = kmeans(X,k) returns the within-cluster sums of point-to-centroid distances 

in the 1-by-k vector sumd. 

6. [IDX,C,sumd,D] = kmeans(X,k) returns distances from each point to every centroid in the 

n-by-k matrix D. 

7. [...] = k-means(...,param1,val1,param2,val2,...) enables you to specify optional 

parameter/value pairs to control the iterative algorithm used by k-means.  

 

 

 

 

B1.2. Unsupervised Classification                 function y = 

kMeansCluster(m,k,isRand) 
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% kMeansCluster 

% Author:  

% Purpose: Classify the objects in data matrix based on the attributes. 

% Criteria: Minimize Euclidean distance between centroids and object points. 

% Output: matrix data plus an additional column for the class of each object. 

% k = 5 : number of classes 

% Input: m, matrix data:objects in rows and attributes in columns. 

% Local variables  

% f :row number of data that belong to class i 

% c : centroid coordinate size(1:k, 1:maxCol) 

% g : current iteration class matrix size (1:maxRow) 

% I : scalar iterator 

% maxCol : scalar number of rows in the data matrix m = number of attributes 

% maxRow :scalar number of columns in the data matrix m= number of objects 

% termp : previous iteration group matrix size (1:maxRow) 

if nargin<3, isRand = 0; end 

if nargin <2, k=1; end 

[maxRow,maxCol] = size(m) 

if  maxRow<=k, 

y = [m,1:maxRow] 

else 

% initial value of centroid 

if  isRand, 

p = randperm(size(m,1)); % random initialization 

for i=1 : k 

c(i:) = m((p(i),:) 

end 

else 

for i=1:k 

c(I,:) = m(I,:) % Sequential initialization 

end 

end 

temp = zeros(maxRow,1); % initialize as zero vector 

while 1, 

d = DistMatrix(m,c); % Calculate objects centroid distances 

[g] = min(d,[],2); % find class matrix g 

if g == temp, 

break; % stop the iteration 

else  

temp = g; % copy class matrix to temporary variable 

end 

for i = 1:k 

f = find(g == i); 

 if f  % only compute centroid if f is not empty 

c(I,:) = mean(m(find(g == i), :) ,1); 

end 

end 

end 

y = [m,g]; 

end 

 

function e = separation(m,k,isRand) 

size(X); 

idx10 = kmeans(X,10,'distance','sqEuclidean','display','iter'); 
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[silh10,h] = silhouette(X,idx10,'sqEuclidean'); 

set(get(gca,'Children'),'FaceColor',[.8 .8 1]) 

xlabel('Silhouette Value') 

ylabel('Cluster') 

mean(silh10) 
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ABSTRACT 
In the present study the method of moments invariants has been 

applied to produce a set of normalized invariant moments to 

identify aircrafts from a database of aircrafts. Invariance to 

translation, scaling and rotation allows considerable robustness 

when applied to images of aircrafts. Bayesian Decision Theory 

is applied in the classification of the images.     

Keywords 

Computer vision, Moment invariants, Bayesian Theory, 

Classification, Features, Lee filter.  
 

INTRODUCTION 
The ability to reliably identify aircraft is an important aspect of 

air traffic safety. Civilian air traffic controllers need to be 

constantly updated on the status of aircraft moving through the 

local airspace. In military scenarios, the need to reliably identify 

aircraft is even more stringent, since erroneous identification 

could easily result in friendly fire incidents. In the present study 

Aircraft Satellite Images are Identified Using Bayesian Decision 

Theory Classification and Moment Invariants Feature Extraction. 

The Bayesian Classification is based on the statistical properties 

of a training set: a collection of  

Measurements for which the corresponding class is known. The 

resulting statistical classifier assigns a measurement to the class 

which most likely generated the measurement. Also each training 

example increases the probability that the identification is correct 

and serves as a benchmark for other classifications. Invariance to 

translation, scaling and rotation allows considerable robustness 

when applied to satellite images of aircrafts. The satellite images 

are normally contaminated by speckle noise and Lee filter has 

been applied in the image enhancement stage. The study is 

demonstrated by numerical matlab simulation performed using 

2D aircraft images. 

  

MOMENT INVARIANTS 
The 2-D moment of order (p+q) of a digital image f(x, y) is 

defined as  

mpq =  ∑x∑y xpyqf(x,y)                                               (2.1)                                             

for p,q = 0,1,2…., where the summations are over the values of 

the spatial coordinates x and y spanning the image. 

 

The corresponding central moment is defined as  

µpq = ∑x∑y(x-xc) p(y-yc) qf(x, y)                                 (2.2) 

Where 

xc = m10/m00  and yc = m01/ m00                                                  (2.3)                                                                         

                                                    

Normalized central moment of order (p+q) is defined as  

                             ηpq = µpq/µ00
γ                                      (2.4) 

for p,q = 0,1,2,….. Where  

                             γ = (p+q )/2 + 1                                 (2.5)                  

For p+q = 2,3…. 

Individual moments values do not have the descriptive power to 

uniquely represent arbitrary shapes nor possess the required 

invariance characteristics, but sets of functions based on these 

moments can be determined that do so. A set of seven 2-D 

moment invariants that are insensitive to translation, scaling, 

rotation and reflection can be derived from the above equations. 
















–







–

                              (2.6) 

3  BAYESIAN CLASSIFICATION 

It is a fundamental statistical approach to the generic pattern 

classification problems. It makes the assumption that the 

solution to pattern classification problem is purely based on 

probabilistic values and all the relevant probability values are 

known. The decision rule of Bayesian Decision Theory says 

that for minimum error rate classifier, we should choose the 

class with minimum posterior probability. 

The explanation is as under: 

 let λ be finite set of classes c1, c2, c3 … cn and our unknown 

feature vector x, where x (∈ R) is a d-dimensional vector. After 

calculating conditional posterior probabilities of every class of 

λ, choose the class c∈λ for which the posteriori is maximum. 

The estimation of P (Ci | x) depends on estimated value of P(x | 

Ci), the likelihood. The generic Bayes Rule 

is given by 

          (3.1) 
Where P(C) is prior probability and P(x) is marginal 

probability, aka evidence. Where 

 

Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that 

copies are not made or distributed for profit or commercial advantage 
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To copy otherwise, or republish, to post on servers or to redistribute 

to lists, requires prior specific permission and/or a fee. 
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P(x) is calculated by 

 
Eq (3.1)  can be written as 

 

posterior = likelihood X  prior    

   evidence 

                  

The main problem in pattern classification problems is to 

calculate the conditional probability density values 

which are unknown. As feature vector x is generated by a per-

class prototype xλ where the dataset is in bulk, the distribution 

of the data is assumed to be Normal (Gaussian). This 

assumption plays a vital role in correct prediction of pattern 

classification. The value P(x | C) can be predicted by other 

techniques like logistic regression but this is not the objective of 

this paper. Our target so far is to find the class with maximum 

posterior probability max λ P(C | x) with minimum error rate, 

not just P(x |C). The statistical decision theory can be 

formulated resorting to the Bayes theory introducing the 

concept of a risk defined as the expected value of the error cost 

function. If the latter is assumed to be either a quadratic 

function or a uniform function, then the Maximum A posteriori 

Probability (MAP) inference solutions can be calculated. 

 

 

4. PREPROCESSING 

   

  

Fig 4.1 Contaminated satellite aircraft images. 

Images are contaminated by noise through 

i. Imperfect instruments 

ii. Problems with data acquisition PROCESS 

iii. Natural phenomena interference 

iv. Transmission errors. 

The type of noise found in satellite images is speckle noise and 

this determines the algorithm used in denoising. Fig 4.1 

This is a multiplicative noise. The distribution noise can be 

expressed by:  

J = I + n*I 

• Where, J is the distribution speckle noise image, I is 

the input image and n is the uniform noise image.  

 The mathematical function determines the filter type. 

i. Mean filter-averages the window pixels. 

ii. Median filter-calculates the median pixel. 

iii. Lee-sigma and Lee filters-use statistical 

distribution of pixels in the window. 

iv. Local region filter-compares the variances of 

window regions. 

v. The Frost filter replaces the pixel of interest with 

a weighted sum of the values within the nxn 

moving window and assumes a multiplicative 

noise and stationary noise statistics.  

• Lee filter is applied so as to reduce the multiplicative 

noise to an additive noise that is easier to handle. 

5 Results 

   

B2 Bomber AH64 Helicopter     C5 Carrier 

Fig 5.1 The Training set Classes C1, C2, and C3 respectively 

a b           

    c d 

Fig 5.2 an aircraft test image with noise contamination variance 

of 0.01, 0.02, 0.03, and 0.04 respectively. 

 

Fig 5.3 Binarized and Thresholded image. 

 

 

Table 5.1 Extracted Geometrical feature vectors of test set 

 

 

 

 

 

Classes  Ø
1
  Ø

2
  Ø

3
  Ø

4
  Ø

5
  Ø

6
  Ø

7
  

B2 
Class 1  

6.6132  14.0538 15.2462 17.4521 33.9469 24.6798 39.2648  

AH 64 
Class 2  

7.1729  16.6723  19.7413  21.8784 42.8038 30.2146 47.1336  

C5 
Class 3 

7.1487   20.2793  22.4129  24.4962  48.0614 34.6401  50.1980  
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Ø

1
  Ø

2
  Ø

3
  Ø

4
  Ø

5
  Ø

6
  Ø

7
  

B2 
ORIGINAL  

6.6132  14.0538 15.2462 17.4521 33.9469 24.6798 39.2648  

B2 NOISE 
FILTERED  

6.6001  13.9810 15.1678 17.4434 33.8456 24.6578 40.9765  

B2 

 ( 0.01 

VAR)  

6.5579  13.9115  15.0382  17.2442  33.5329 24.4031  41.0169  

B2 
 ( 0.02 
VAR) 

6.5406  13.8898 14.9673  17.1737 33.3923 24.3223  38.6145  

B2 
( 0.03 VAR) 

6.4703  13.7136  14.6351  16.8403  32.7292   23.9045  38.4642  

B2 
( 0.04VAR) 

6.4124  13.5763  14.2593  16.4614  31.9765  23.4609  36.7216  

 

Table 5.2 Extracted Geometrical feature vectors of added noise 

images. 

 

6 Bayesian Decision  

For a minimum error rate classifier the choice is on the class with 

maximum posterior probability. 

Let λ be set of 3 classes C1, C2, C3. x be an unknown feature 

vector of dimension 7.Calculate the conditional posterior 

probabilities of every class Ci and choose the class with 

maximum posteriori probability. 3 classes of Data which are all 

likely to happen therefore 

 

P (Ci) = 0.333 

Posterior = likelihood x prior 

          Evidence 

P (Ci\x) = P (x\Ci) P (Ci) 

P(x) 

Posterior (AH 64) =P (AH 64) P(x/ AH 64) 

P (evidence) 

Posterior (C5) =P (C5) P(x/ C5) 

P (evidence) 

Posterior (B2) =P (B2) P(x/ B2) 

P (evidence) 

 

Posterior 

probability 

 

FILTERED 
SAMPLE SAMPLE 1 SAMPLE 2 SAMPLE 3 SAMPLE 4 SAMPLE 5  

 
AH 64 

 

1.6954X10
-2 1.6789X10

-2
  

 
1.6034X10

-2 1.5674X10
-2 1.5045X10

-2 1.4567X10
-2 

C5 

 

1.9653X10
-2 1.8965X10

-2 1.8463X10
-2 1.8062X10

-2 1.7453X10
-2 1.6666X10

-2 
B2 

 

2.4239X10
-2 2.2346X10

-2 2.21567X10
-2 2.1866X10

-2 1.9889X10
-2 1.8976X10

-2 

 

Table 6.1 Posterior Probability  

7 CONCLUSION 

While combining moment features extraction with Bayesian 

classification and using Lee filters in preprocessing decreases 

the error rate of identification as compared to non-use of the 

filters or use of other types of filters this is seen by the increase 

of the posterior probability values.  
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